xref: /linux/arch/x86/events/intel/core.c (revision ea49432d184a6a09f84461604b7711a4e9f5ec9c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Per core/cpu state
4  *
5  * Used to coordinate shared registers between HT threads or
6  * among events on a single PMU.
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/stddef.h>
12 #include <linux/types.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/nmi.h>
17 
18 #include <asm/cpufeature.h>
19 #include <asm/hardirq.h>
20 #include <asm/intel-family.h>
21 #include <asm/intel_pt.h>
22 #include <asm/apic.h>
23 #include <asm/cpu_device_id.h>
24 
25 #include "../perf_event.h"
26 
27 /*
28  * Intel PerfMon, used on Core and later.
29  */
30 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
31 {
32 	[PERF_COUNT_HW_CPU_CYCLES]		= 0x003c,
33 	[PERF_COUNT_HW_INSTRUCTIONS]		= 0x00c0,
34 	[PERF_COUNT_HW_CACHE_REFERENCES]	= 0x4f2e,
35 	[PERF_COUNT_HW_CACHE_MISSES]		= 0x412e,
36 	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS]	= 0x00c4,
37 	[PERF_COUNT_HW_BRANCH_MISSES]		= 0x00c5,
38 	[PERF_COUNT_HW_BUS_CYCLES]		= 0x013c,
39 	[PERF_COUNT_HW_REF_CPU_CYCLES]		= 0x0300, /* pseudo-encoding */
40 };
41 
42 static struct event_constraint intel_core_event_constraints[] __read_mostly =
43 {
44 	INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
45 	INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
46 	INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
47 	INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
48 	INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
49 	INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
50 	EVENT_CONSTRAINT_END
51 };
52 
53 static struct event_constraint intel_core2_event_constraints[] __read_mostly =
54 {
55 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
56 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
57 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
58 	INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
59 	INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
60 	INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
61 	INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
62 	INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
63 	INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
64 	INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
65 	INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
66 	INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
67 	INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
68 	EVENT_CONSTRAINT_END
69 };
70 
71 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
72 {
73 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
74 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
75 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
76 	INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
77 	INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
78 	INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
79 	INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
80 	INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
81 	INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
82 	INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
83 	INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
84 	EVENT_CONSTRAINT_END
85 };
86 
87 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
88 {
89 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
90 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
91 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
92 	EVENT_EXTRA_END
93 };
94 
95 static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
96 {
97 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
98 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
99 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
100 	INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
101 	INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
102 	INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
103 	INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
104 	EVENT_CONSTRAINT_END
105 };
106 
107 static struct event_constraint intel_snb_event_constraints[] __read_mostly =
108 {
109 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
110 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
111 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
112 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
113 	INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
114 	INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
115 	INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
116 	INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
117 	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
118 	INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
119 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
120 	INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
121 
122 	/*
123 	 * When HT is off these events can only run on the bottom 4 counters
124 	 * When HT is on, they are impacted by the HT bug and require EXCL access
125 	 */
126 	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
127 	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
128 	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
129 	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
130 
131 	EVENT_CONSTRAINT_END
132 };
133 
134 static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
135 {
136 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
137 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
138 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
139 	INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
140 	INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMPTY */
141 	INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
142 	INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
143 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
144 	INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
145 	INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
146 	INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
147 	INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
148 	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
149 
150 	/*
151 	 * When HT is off these events can only run on the bottom 4 counters
152 	 * When HT is on, they are impacted by the HT bug and require EXCL access
153 	 */
154 	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
155 	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
156 	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
157 	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
158 
159 	EVENT_CONSTRAINT_END
160 };
161 
162 static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
163 {
164 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
165 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
166 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
167 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
168 	EVENT_EXTRA_END
169 };
170 
171 static struct event_constraint intel_v1_event_constraints[] __read_mostly =
172 {
173 	EVENT_CONSTRAINT_END
174 };
175 
176 static struct event_constraint intel_gen_event_constraints[] __read_mostly =
177 {
178 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
179 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
180 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
181 	EVENT_CONSTRAINT_END
182 };
183 
184 static struct event_constraint intel_slm_event_constraints[] __read_mostly =
185 {
186 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
187 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
188 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
189 	EVENT_CONSTRAINT_END
190 };
191 
192 static struct event_constraint intel_skl_event_constraints[] = {
193 	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
194 	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
195 	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
196 	INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2),	/* INST_RETIRED.PREC_DIST */
197 
198 	/*
199 	 * when HT is off, these can only run on the bottom 4 counters
200 	 */
201 	INTEL_EVENT_CONSTRAINT(0xd0, 0xf),	/* MEM_INST_RETIRED.* */
202 	INTEL_EVENT_CONSTRAINT(0xd1, 0xf),	/* MEM_LOAD_RETIRED.* */
203 	INTEL_EVENT_CONSTRAINT(0xd2, 0xf),	/* MEM_LOAD_L3_HIT_RETIRED.* */
204 	INTEL_EVENT_CONSTRAINT(0xcd, 0xf),	/* MEM_TRANS_RETIRED.* */
205 	INTEL_EVENT_CONSTRAINT(0xc6, 0xf),	/* FRONTEND_RETIRED.* */
206 
207 	EVENT_CONSTRAINT_END
208 };
209 
210 static struct extra_reg intel_knl_extra_regs[] __read_mostly = {
211 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x799ffbb6e7ull, RSP_0),
212 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x399ffbffe7ull, RSP_1),
213 	EVENT_EXTRA_END
214 };
215 
216 static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
217 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
218 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
219 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
220 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
221 	EVENT_EXTRA_END
222 };
223 
224 static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
225 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
226 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
227 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
228 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
229 	EVENT_EXTRA_END
230 };
231 
232 static struct extra_reg intel_skl_extra_regs[] __read_mostly = {
233 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
234 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
235 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
236 	/*
237 	 * Note the low 8 bits eventsel code is not a continuous field, containing
238 	 * some #GPing bits. These are masked out.
239 	 */
240 	INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
241 	EVENT_EXTRA_END
242 };
243 
244 static struct event_constraint intel_icl_event_constraints[] = {
245 	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
246 	FIXED_EVENT_CONSTRAINT(0x01c0, 0),	/* old INST_RETIRED.PREC_DIST */
247 	FIXED_EVENT_CONSTRAINT(0x0100, 0),	/* INST_RETIRED.PREC_DIST */
248 	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
249 	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
250 	FIXED_EVENT_CONSTRAINT(0x0400, 3),	/* SLOTS */
251 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_RETIRING, 0),
252 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BAD_SPEC, 1),
253 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FE_BOUND, 2),
254 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BE_BOUND, 3),
255 	INTEL_EVENT_CONSTRAINT_RANGE(0x03, 0x0a, 0xf),
256 	INTEL_EVENT_CONSTRAINT_RANGE(0x1f, 0x28, 0xf),
257 	INTEL_EVENT_CONSTRAINT(0x32, 0xf),	/* SW_PREFETCH_ACCESS.* */
258 	INTEL_EVENT_CONSTRAINT_RANGE(0x48, 0x54, 0xf),
259 	INTEL_EVENT_CONSTRAINT_RANGE(0x60, 0x8b, 0xf),
260 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xff),  /* CYCLE_ACTIVITY.STALLS_TOTAL */
261 	INTEL_UEVENT_CONSTRAINT(0x10a3, 0xff),  /* CYCLE_ACTIVITY.CYCLES_MEM_ANY */
262 	INTEL_UEVENT_CONSTRAINT(0x14a3, 0xff),  /* CYCLE_ACTIVITY.STALLS_MEM_ANY */
263 	INTEL_EVENT_CONSTRAINT(0xa3, 0xf),      /* CYCLE_ACTIVITY.* */
264 	INTEL_EVENT_CONSTRAINT_RANGE(0xa8, 0xb0, 0xf),
265 	INTEL_EVENT_CONSTRAINT_RANGE(0xb7, 0xbd, 0xf),
266 	INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xe6, 0xf),
267 	INTEL_EVENT_CONSTRAINT(0xef, 0xf),
268 	INTEL_EVENT_CONSTRAINT_RANGE(0xf0, 0xf4, 0xf),
269 	EVENT_CONSTRAINT_END
270 };
271 
272 static struct extra_reg intel_icl_extra_regs[] __read_mostly = {
273 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffffbfffull, RSP_0),
274 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffffbfffull, RSP_1),
275 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
276 	INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
277 	EVENT_EXTRA_END
278 };
279 
280 static struct extra_reg intel_spr_extra_regs[] __read_mostly = {
281 	INTEL_UEVENT_EXTRA_REG(0x012a, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
282 	INTEL_UEVENT_EXTRA_REG(0x012b, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
283 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
284 	INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
285 	INTEL_UEVENT_EXTRA_REG(0x40ad, MSR_PEBS_FRONTEND, 0x7, FE),
286 	INTEL_UEVENT_EXTRA_REG(0x04c2, MSR_PEBS_FRONTEND, 0x8, FE),
287 	EVENT_EXTRA_END
288 };
289 
290 static struct event_constraint intel_spr_event_constraints[] = {
291 	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
292 	FIXED_EVENT_CONSTRAINT(0x0100, 0),	/* INST_RETIRED.PREC_DIST */
293 	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
294 	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
295 	FIXED_EVENT_CONSTRAINT(0x0400, 3),	/* SLOTS */
296 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_RETIRING, 0),
297 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BAD_SPEC, 1),
298 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FE_BOUND, 2),
299 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BE_BOUND, 3),
300 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_HEAVY_OPS, 4),
301 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BR_MISPREDICT, 5),
302 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FETCH_LAT, 6),
303 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_MEM_BOUND, 7),
304 
305 	INTEL_EVENT_CONSTRAINT(0x2e, 0xff),
306 	INTEL_EVENT_CONSTRAINT(0x3c, 0xff),
307 	/*
308 	 * Generally event codes < 0x90 are restricted to counters 0-3.
309 	 * The 0x2E and 0x3C are exception, which has no restriction.
310 	 */
311 	INTEL_EVENT_CONSTRAINT_RANGE(0x01, 0x8f, 0xf),
312 
313 	INTEL_UEVENT_CONSTRAINT(0x01a3, 0xf),
314 	INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf),
315 	INTEL_UEVENT_CONSTRAINT(0x08a3, 0xf),
316 	INTEL_UEVENT_CONSTRAINT(0x04a4, 0x1),
317 	INTEL_UEVENT_CONSTRAINT(0x08a4, 0x1),
318 	INTEL_UEVENT_CONSTRAINT(0x02cd, 0x1),
319 	INTEL_EVENT_CONSTRAINT(0xce, 0x1),
320 	INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xdf, 0xf),
321 	/*
322 	 * Generally event codes >= 0x90 are likely to have no restrictions.
323 	 * The exception are defined as above.
324 	 */
325 	INTEL_EVENT_CONSTRAINT_RANGE(0x90, 0xfe, 0xff),
326 
327 	EVENT_CONSTRAINT_END
328 };
329 
330 
331 EVENT_ATTR_STR(mem-loads,	mem_ld_nhm,	"event=0x0b,umask=0x10,ldlat=3");
332 EVENT_ATTR_STR(mem-loads,	mem_ld_snb,	"event=0xcd,umask=0x1,ldlat=3");
333 EVENT_ATTR_STR(mem-stores,	mem_st_snb,	"event=0xcd,umask=0x2");
334 
335 static struct attribute *nhm_mem_events_attrs[] = {
336 	EVENT_PTR(mem_ld_nhm),
337 	NULL,
338 };
339 
340 /*
341  * topdown events for Intel Core CPUs.
342  *
343  * The events are all in slots, which is a free slot in a 4 wide
344  * pipeline. Some events are already reported in slots, for cycle
345  * events we multiply by the pipeline width (4).
346  *
347  * With Hyper Threading on, topdown metrics are either summed or averaged
348  * between the threads of a core: (count_t0 + count_t1).
349  *
350  * For the average case the metric is always scaled to pipeline width,
351  * so we use factor 2 ((count_t0 + count_t1) / 2 * 4)
352  */
353 
354 EVENT_ATTR_STR_HT(topdown-total-slots, td_total_slots,
355 	"event=0x3c,umask=0x0",			/* cpu_clk_unhalted.thread */
356 	"event=0x3c,umask=0x0,any=1");		/* cpu_clk_unhalted.thread_any */
357 EVENT_ATTR_STR_HT(topdown-total-slots.scale, td_total_slots_scale, "4", "2");
358 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued,
359 	"event=0xe,umask=0x1");			/* uops_issued.any */
360 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired,
361 	"event=0xc2,umask=0x2");		/* uops_retired.retire_slots */
362 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles,
363 	"event=0x9c,umask=0x1");		/* idq_uops_not_delivered_core */
364 EVENT_ATTR_STR_HT(topdown-recovery-bubbles, td_recovery_bubbles,
365 	"event=0xd,umask=0x3,cmask=1",		/* int_misc.recovery_cycles */
366 	"event=0xd,umask=0x3,cmask=1,any=1");	/* int_misc.recovery_cycles_any */
367 EVENT_ATTR_STR_HT(topdown-recovery-bubbles.scale, td_recovery_bubbles_scale,
368 	"4", "2");
369 
370 EVENT_ATTR_STR(slots,			slots,			"event=0x00,umask=0x4");
371 EVENT_ATTR_STR(topdown-retiring,	td_retiring,		"event=0x00,umask=0x80");
372 EVENT_ATTR_STR(topdown-bad-spec,	td_bad_spec,		"event=0x00,umask=0x81");
373 EVENT_ATTR_STR(topdown-fe-bound,	td_fe_bound,		"event=0x00,umask=0x82");
374 EVENT_ATTR_STR(topdown-be-bound,	td_be_bound,		"event=0x00,umask=0x83");
375 EVENT_ATTR_STR(topdown-heavy-ops,	td_heavy_ops,		"event=0x00,umask=0x84");
376 EVENT_ATTR_STR(topdown-br-mispredict,	td_br_mispredict,	"event=0x00,umask=0x85");
377 EVENT_ATTR_STR(topdown-fetch-lat,	td_fetch_lat,		"event=0x00,umask=0x86");
378 EVENT_ATTR_STR(topdown-mem-bound,	td_mem_bound,		"event=0x00,umask=0x87");
379 
380 static struct attribute *snb_events_attrs[] = {
381 	EVENT_PTR(td_slots_issued),
382 	EVENT_PTR(td_slots_retired),
383 	EVENT_PTR(td_fetch_bubbles),
384 	EVENT_PTR(td_total_slots),
385 	EVENT_PTR(td_total_slots_scale),
386 	EVENT_PTR(td_recovery_bubbles),
387 	EVENT_PTR(td_recovery_bubbles_scale),
388 	NULL,
389 };
390 
391 static struct attribute *snb_mem_events_attrs[] = {
392 	EVENT_PTR(mem_ld_snb),
393 	EVENT_PTR(mem_st_snb),
394 	NULL,
395 };
396 
397 static struct event_constraint intel_hsw_event_constraints[] = {
398 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
399 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
400 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
401 	INTEL_UEVENT_CONSTRAINT(0x148, 0x4),	/* L1D_PEND_MISS.PENDING */
402 	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
403 	INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
404 	/* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
405 	INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
406 	/* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
407 	INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
408 	/* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
409 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
410 
411 	/*
412 	 * When HT is off these events can only run on the bottom 4 counters
413 	 * When HT is on, they are impacted by the HT bug and require EXCL access
414 	 */
415 	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
416 	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
417 	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
418 	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
419 
420 	EVENT_CONSTRAINT_END
421 };
422 
423 static struct event_constraint intel_bdw_event_constraints[] = {
424 	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
425 	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
426 	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
427 	INTEL_UEVENT_CONSTRAINT(0x148, 0x4),	/* L1D_PEND_MISS.PENDING */
428 	INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4),	/* CYCLE_ACTIVITY.CYCLES_L1D_MISS */
429 	/*
430 	 * when HT is off, these can only run on the bottom 4 counters
431 	 */
432 	INTEL_EVENT_CONSTRAINT(0xd0, 0xf),	/* MEM_INST_RETIRED.* */
433 	INTEL_EVENT_CONSTRAINT(0xd1, 0xf),	/* MEM_LOAD_RETIRED.* */
434 	INTEL_EVENT_CONSTRAINT(0xd2, 0xf),	/* MEM_LOAD_L3_HIT_RETIRED.* */
435 	INTEL_EVENT_CONSTRAINT(0xcd, 0xf),	/* MEM_TRANS_RETIRED.* */
436 	EVENT_CONSTRAINT_END
437 };
438 
439 static u64 intel_pmu_event_map(int hw_event)
440 {
441 	return intel_perfmon_event_map[hw_event];
442 }
443 
444 static __initconst const u64 spr_hw_cache_event_ids
445 				[PERF_COUNT_HW_CACHE_MAX]
446 				[PERF_COUNT_HW_CACHE_OP_MAX]
447 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
448 {
449  [ C(L1D ) ] = {
450 	[ C(OP_READ) ] = {
451 		[ C(RESULT_ACCESS) ] = 0x81d0,
452 		[ C(RESULT_MISS)   ] = 0xe124,
453 	},
454 	[ C(OP_WRITE) ] = {
455 		[ C(RESULT_ACCESS) ] = 0x82d0,
456 	},
457  },
458  [ C(L1I ) ] = {
459 	[ C(OP_READ) ] = {
460 		[ C(RESULT_MISS)   ] = 0xe424,
461 	},
462 	[ C(OP_WRITE) ] = {
463 		[ C(RESULT_ACCESS) ] = -1,
464 		[ C(RESULT_MISS)   ] = -1,
465 	},
466  },
467  [ C(LL  ) ] = {
468 	[ C(OP_READ) ] = {
469 		[ C(RESULT_ACCESS) ] = 0x12a,
470 		[ C(RESULT_MISS)   ] = 0x12a,
471 	},
472 	[ C(OP_WRITE) ] = {
473 		[ C(RESULT_ACCESS) ] = 0x12a,
474 		[ C(RESULT_MISS)   ] = 0x12a,
475 	},
476  },
477  [ C(DTLB) ] = {
478 	[ C(OP_READ) ] = {
479 		[ C(RESULT_ACCESS) ] = 0x81d0,
480 		[ C(RESULT_MISS)   ] = 0xe12,
481 	},
482 	[ C(OP_WRITE) ] = {
483 		[ C(RESULT_ACCESS) ] = 0x82d0,
484 		[ C(RESULT_MISS)   ] = 0xe13,
485 	},
486  },
487  [ C(ITLB) ] = {
488 	[ C(OP_READ) ] = {
489 		[ C(RESULT_ACCESS) ] = -1,
490 		[ C(RESULT_MISS)   ] = 0xe11,
491 	},
492 	[ C(OP_WRITE) ] = {
493 		[ C(RESULT_ACCESS) ] = -1,
494 		[ C(RESULT_MISS)   ] = -1,
495 	},
496 	[ C(OP_PREFETCH) ] = {
497 		[ C(RESULT_ACCESS) ] = -1,
498 		[ C(RESULT_MISS)   ] = -1,
499 	},
500  },
501  [ C(BPU ) ] = {
502 	[ C(OP_READ) ] = {
503 		[ C(RESULT_ACCESS) ] = 0x4c4,
504 		[ C(RESULT_MISS)   ] = 0x4c5,
505 	},
506 	[ C(OP_WRITE) ] = {
507 		[ C(RESULT_ACCESS) ] = -1,
508 		[ C(RESULT_MISS)   ] = -1,
509 	},
510 	[ C(OP_PREFETCH) ] = {
511 		[ C(RESULT_ACCESS) ] = -1,
512 		[ C(RESULT_MISS)   ] = -1,
513 	},
514  },
515  [ C(NODE) ] = {
516 	[ C(OP_READ) ] = {
517 		[ C(RESULT_ACCESS) ] = 0x12a,
518 		[ C(RESULT_MISS)   ] = 0x12a,
519 	},
520  },
521 };
522 
523 static __initconst const u64 spr_hw_cache_extra_regs
524 				[PERF_COUNT_HW_CACHE_MAX]
525 				[PERF_COUNT_HW_CACHE_OP_MAX]
526 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
527 {
528  [ C(LL  ) ] = {
529 	[ C(OP_READ) ] = {
530 		[ C(RESULT_ACCESS) ] = 0x10001,
531 		[ C(RESULT_MISS)   ] = 0x3fbfc00001,
532 	},
533 	[ C(OP_WRITE) ] = {
534 		[ C(RESULT_ACCESS) ] = 0x3f3ffc0002,
535 		[ C(RESULT_MISS)   ] = 0x3f3fc00002,
536 	},
537  },
538  [ C(NODE) ] = {
539 	[ C(OP_READ) ] = {
540 		[ C(RESULT_ACCESS) ] = 0x10c000001,
541 		[ C(RESULT_MISS)   ] = 0x3fb3000001,
542 	},
543  },
544 };
545 
546 /*
547  * Notes on the events:
548  * - data reads do not include code reads (comparable to earlier tables)
549  * - data counts include speculative execution (except L1 write, dtlb, bpu)
550  * - remote node access includes remote memory, remote cache, remote mmio.
551  * - prefetches are not included in the counts.
552  * - icache miss does not include decoded icache
553  */
554 
555 #define SKL_DEMAND_DATA_RD		BIT_ULL(0)
556 #define SKL_DEMAND_RFO			BIT_ULL(1)
557 #define SKL_ANY_RESPONSE		BIT_ULL(16)
558 #define SKL_SUPPLIER_NONE		BIT_ULL(17)
559 #define SKL_L3_MISS_LOCAL_DRAM		BIT_ULL(26)
560 #define SKL_L3_MISS_REMOTE_HOP0_DRAM	BIT_ULL(27)
561 #define SKL_L3_MISS_REMOTE_HOP1_DRAM	BIT_ULL(28)
562 #define SKL_L3_MISS_REMOTE_HOP2P_DRAM	BIT_ULL(29)
563 #define SKL_L3_MISS			(SKL_L3_MISS_LOCAL_DRAM| \
564 					 SKL_L3_MISS_REMOTE_HOP0_DRAM| \
565 					 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
566 					 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
567 #define SKL_SPL_HIT			BIT_ULL(30)
568 #define SKL_SNOOP_NONE			BIT_ULL(31)
569 #define SKL_SNOOP_NOT_NEEDED		BIT_ULL(32)
570 #define SKL_SNOOP_MISS			BIT_ULL(33)
571 #define SKL_SNOOP_HIT_NO_FWD		BIT_ULL(34)
572 #define SKL_SNOOP_HIT_WITH_FWD		BIT_ULL(35)
573 #define SKL_SNOOP_HITM			BIT_ULL(36)
574 #define SKL_SNOOP_NON_DRAM		BIT_ULL(37)
575 #define SKL_ANY_SNOOP			(SKL_SPL_HIT|SKL_SNOOP_NONE| \
576 					 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
577 					 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
578 					 SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM)
579 #define SKL_DEMAND_READ			SKL_DEMAND_DATA_RD
580 #define SKL_SNOOP_DRAM			(SKL_SNOOP_NONE| \
581 					 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
582 					 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
583 					 SKL_SNOOP_HITM|SKL_SPL_HIT)
584 #define SKL_DEMAND_WRITE		SKL_DEMAND_RFO
585 #define SKL_LLC_ACCESS			SKL_ANY_RESPONSE
586 #define SKL_L3_MISS_REMOTE		(SKL_L3_MISS_REMOTE_HOP0_DRAM| \
587 					 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
588 					 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
589 
590 static __initconst const u64 skl_hw_cache_event_ids
591 				[PERF_COUNT_HW_CACHE_MAX]
592 				[PERF_COUNT_HW_CACHE_OP_MAX]
593 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
594 {
595  [ C(L1D ) ] = {
596 	[ C(OP_READ) ] = {
597 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_INST_RETIRED.ALL_LOADS */
598 		[ C(RESULT_MISS)   ] = 0x151,	/* L1D.REPLACEMENT */
599 	},
600 	[ C(OP_WRITE) ] = {
601 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_INST_RETIRED.ALL_STORES */
602 		[ C(RESULT_MISS)   ] = 0x0,
603 	},
604 	[ C(OP_PREFETCH) ] = {
605 		[ C(RESULT_ACCESS) ] = 0x0,
606 		[ C(RESULT_MISS)   ] = 0x0,
607 	},
608  },
609  [ C(L1I ) ] = {
610 	[ C(OP_READ) ] = {
611 		[ C(RESULT_ACCESS) ] = 0x0,
612 		[ C(RESULT_MISS)   ] = 0x283,	/* ICACHE_64B.MISS */
613 	},
614 	[ C(OP_WRITE) ] = {
615 		[ C(RESULT_ACCESS) ] = -1,
616 		[ C(RESULT_MISS)   ] = -1,
617 	},
618 	[ C(OP_PREFETCH) ] = {
619 		[ C(RESULT_ACCESS) ] = 0x0,
620 		[ C(RESULT_MISS)   ] = 0x0,
621 	},
622  },
623  [ C(LL  ) ] = {
624 	[ C(OP_READ) ] = {
625 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
626 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
627 	},
628 	[ C(OP_WRITE) ] = {
629 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
630 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
631 	},
632 	[ C(OP_PREFETCH) ] = {
633 		[ C(RESULT_ACCESS) ] = 0x0,
634 		[ C(RESULT_MISS)   ] = 0x0,
635 	},
636  },
637  [ C(DTLB) ] = {
638 	[ C(OP_READ) ] = {
639 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_INST_RETIRED.ALL_LOADS */
640 		[ C(RESULT_MISS)   ] = 0xe08,	/* DTLB_LOAD_MISSES.WALK_COMPLETED */
641 	},
642 	[ C(OP_WRITE) ] = {
643 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_INST_RETIRED.ALL_STORES */
644 		[ C(RESULT_MISS)   ] = 0xe49,	/* DTLB_STORE_MISSES.WALK_COMPLETED */
645 	},
646 	[ C(OP_PREFETCH) ] = {
647 		[ C(RESULT_ACCESS) ] = 0x0,
648 		[ C(RESULT_MISS)   ] = 0x0,
649 	},
650  },
651  [ C(ITLB) ] = {
652 	[ C(OP_READ) ] = {
653 		[ C(RESULT_ACCESS) ] = 0x2085,	/* ITLB_MISSES.STLB_HIT */
654 		[ C(RESULT_MISS)   ] = 0xe85,	/* ITLB_MISSES.WALK_COMPLETED */
655 	},
656 	[ C(OP_WRITE) ] = {
657 		[ C(RESULT_ACCESS) ] = -1,
658 		[ C(RESULT_MISS)   ] = -1,
659 	},
660 	[ C(OP_PREFETCH) ] = {
661 		[ C(RESULT_ACCESS) ] = -1,
662 		[ C(RESULT_MISS)   ] = -1,
663 	},
664  },
665  [ C(BPU ) ] = {
666 	[ C(OP_READ) ] = {
667 		[ C(RESULT_ACCESS) ] = 0xc4,	/* BR_INST_RETIRED.ALL_BRANCHES */
668 		[ C(RESULT_MISS)   ] = 0xc5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
669 	},
670 	[ C(OP_WRITE) ] = {
671 		[ C(RESULT_ACCESS) ] = -1,
672 		[ C(RESULT_MISS)   ] = -1,
673 	},
674 	[ C(OP_PREFETCH) ] = {
675 		[ C(RESULT_ACCESS) ] = -1,
676 		[ C(RESULT_MISS)   ] = -1,
677 	},
678  },
679  [ C(NODE) ] = {
680 	[ C(OP_READ) ] = {
681 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
682 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
683 	},
684 	[ C(OP_WRITE) ] = {
685 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
686 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
687 	},
688 	[ C(OP_PREFETCH) ] = {
689 		[ C(RESULT_ACCESS) ] = 0x0,
690 		[ C(RESULT_MISS)   ] = 0x0,
691 	},
692  },
693 };
694 
695 static __initconst const u64 skl_hw_cache_extra_regs
696 				[PERF_COUNT_HW_CACHE_MAX]
697 				[PERF_COUNT_HW_CACHE_OP_MAX]
698 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
699 {
700  [ C(LL  ) ] = {
701 	[ C(OP_READ) ] = {
702 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
703 				       SKL_LLC_ACCESS|SKL_ANY_SNOOP,
704 		[ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
705 				       SKL_L3_MISS|SKL_ANY_SNOOP|
706 				       SKL_SUPPLIER_NONE,
707 	},
708 	[ C(OP_WRITE) ] = {
709 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
710 				       SKL_LLC_ACCESS|SKL_ANY_SNOOP,
711 		[ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
712 				       SKL_L3_MISS|SKL_ANY_SNOOP|
713 				       SKL_SUPPLIER_NONE,
714 	},
715 	[ C(OP_PREFETCH) ] = {
716 		[ C(RESULT_ACCESS) ] = 0x0,
717 		[ C(RESULT_MISS)   ] = 0x0,
718 	},
719  },
720  [ C(NODE) ] = {
721 	[ C(OP_READ) ] = {
722 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
723 				       SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
724 		[ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
725 				       SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
726 	},
727 	[ C(OP_WRITE) ] = {
728 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
729 				       SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
730 		[ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
731 				       SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
732 	},
733 	[ C(OP_PREFETCH) ] = {
734 		[ C(RESULT_ACCESS) ] = 0x0,
735 		[ C(RESULT_MISS)   ] = 0x0,
736 	},
737  },
738 };
739 
740 #define SNB_DMND_DATA_RD	(1ULL << 0)
741 #define SNB_DMND_RFO		(1ULL << 1)
742 #define SNB_DMND_IFETCH		(1ULL << 2)
743 #define SNB_DMND_WB		(1ULL << 3)
744 #define SNB_PF_DATA_RD		(1ULL << 4)
745 #define SNB_PF_RFO		(1ULL << 5)
746 #define SNB_PF_IFETCH		(1ULL << 6)
747 #define SNB_LLC_DATA_RD		(1ULL << 7)
748 #define SNB_LLC_RFO		(1ULL << 8)
749 #define SNB_LLC_IFETCH		(1ULL << 9)
750 #define SNB_BUS_LOCKS		(1ULL << 10)
751 #define SNB_STRM_ST		(1ULL << 11)
752 #define SNB_OTHER		(1ULL << 15)
753 #define SNB_RESP_ANY		(1ULL << 16)
754 #define SNB_NO_SUPP		(1ULL << 17)
755 #define SNB_LLC_HITM		(1ULL << 18)
756 #define SNB_LLC_HITE		(1ULL << 19)
757 #define SNB_LLC_HITS		(1ULL << 20)
758 #define SNB_LLC_HITF		(1ULL << 21)
759 #define SNB_LOCAL		(1ULL << 22)
760 #define SNB_REMOTE		(0xffULL << 23)
761 #define SNB_SNP_NONE		(1ULL << 31)
762 #define SNB_SNP_NOT_NEEDED	(1ULL << 32)
763 #define SNB_SNP_MISS		(1ULL << 33)
764 #define SNB_NO_FWD		(1ULL << 34)
765 #define SNB_SNP_FWD		(1ULL << 35)
766 #define SNB_HITM		(1ULL << 36)
767 #define SNB_NON_DRAM		(1ULL << 37)
768 
769 #define SNB_DMND_READ		(SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
770 #define SNB_DMND_WRITE		(SNB_DMND_RFO|SNB_LLC_RFO)
771 #define SNB_DMND_PREFETCH	(SNB_PF_DATA_RD|SNB_PF_RFO)
772 
773 #define SNB_SNP_ANY		(SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
774 				 SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
775 				 SNB_HITM)
776 
777 #define SNB_DRAM_ANY		(SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
778 #define SNB_DRAM_REMOTE		(SNB_REMOTE|SNB_SNP_ANY)
779 
780 #define SNB_L3_ACCESS		SNB_RESP_ANY
781 #define SNB_L3_MISS		(SNB_DRAM_ANY|SNB_NON_DRAM)
782 
783 static __initconst const u64 snb_hw_cache_extra_regs
784 				[PERF_COUNT_HW_CACHE_MAX]
785 				[PERF_COUNT_HW_CACHE_OP_MAX]
786 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
787 {
788  [ C(LL  ) ] = {
789 	[ C(OP_READ) ] = {
790 		[ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
791 		[ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_L3_MISS,
792 	},
793 	[ C(OP_WRITE) ] = {
794 		[ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
795 		[ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_L3_MISS,
796 	},
797 	[ C(OP_PREFETCH) ] = {
798 		[ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
799 		[ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
800 	},
801  },
802  [ C(NODE) ] = {
803 	[ C(OP_READ) ] = {
804 		[ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
805 		[ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
806 	},
807 	[ C(OP_WRITE) ] = {
808 		[ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
809 		[ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
810 	},
811 	[ C(OP_PREFETCH) ] = {
812 		[ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
813 		[ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
814 	},
815  },
816 };
817 
818 static __initconst const u64 snb_hw_cache_event_ids
819 				[PERF_COUNT_HW_CACHE_MAX]
820 				[PERF_COUNT_HW_CACHE_OP_MAX]
821 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
822 {
823  [ C(L1D) ] = {
824 	[ C(OP_READ) ] = {
825 		[ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS        */
826 		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPLACEMENT              */
827 	},
828 	[ C(OP_WRITE) ] = {
829 		[ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES       */
830 		[ C(RESULT_MISS)   ] = 0x0851, /* L1D.ALL_M_REPLACEMENT        */
831 	},
832 	[ C(OP_PREFETCH) ] = {
833 		[ C(RESULT_ACCESS) ] = 0x0,
834 		[ C(RESULT_MISS)   ] = 0x024e, /* HW_PRE_REQ.DL1_MISS          */
835 	},
836  },
837  [ C(L1I ) ] = {
838 	[ C(OP_READ) ] = {
839 		[ C(RESULT_ACCESS) ] = 0x0,
840 		[ C(RESULT_MISS)   ] = 0x0280, /* ICACHE.MISSES */
841 	},
842 	[ C(OP_WRITE) ] = {
843 		[ C(RESULT_ACCESS) ] = -1,
844 		[ C(RESULT_MISS)   ] = -1,
845 	},
846 	[ C(OP_PREFETCH) ] = {
847 		[ C(RESULT_ACCESS) ] = 0x0,
848 		[ C(RESULT_MISS)   ] = 0x0,
849 	},
850  },
851  [ C(LL  ) ] = {
852 	[ C(OP_READ) ] = {
853 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
854 		[ C(RESULT_ACCESS) ] = 0x01b7,
855 		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
856 		[ C(RESULT_MISS)   ] = 0x01b7,
857 	},
858 	[ C(OP_WRITE) ] = {
859 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
860 		[ C(RESULT_ACCESS) ] = 0x01b7,
861 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
862 		[ C(RESULT_MISS)   ] = 0x01b7,
863 	},
864 	[ C(OP_PREFETCH) ] = {
865 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
866 		[ C(RESULT_ACCESS) ] = 0x01b7,
867 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
868 		[ C(RESULT_MISS)   ] = 0x01b7,
869 	},
870  },
871  [ C(DTLB) ] = {
872 	[ C(OP_READ) ] = {
873 		[ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
874 		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
875 	},
876 	[ C(OP_WRITE) ] = {
877 		[ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
878 		[ C(RESULT_MISS)   ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
879 	},
880 	[ C(OP_PREFETCH) ] = {
881 		[ C(RESULT_ACCESS) ] = 0x0,
882 		[ C(RESULT_MISS)   ] = 0x0,
883 	},
884  },
885  [ C(ITLB) ] = {
886 	[ C(OP_READ) ] = {
887 		[ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT         */
888 		[ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK    */
889 	},
890 	[ C(OP_WRITE) ] = {
891 		[ C(RESULT_ACCESS) ] = -1,
892 		[ C(RESULT_MISS)   ] = -1,
893 	},
894 	[ C(OP_PREFETCH) ] = {
895 		[ C(RESULT_ACCESS) ] = -1,
896 		[ C(RESULT_MISS)   ] = -1,
897 	},
898  },
899  [ C(BPU ) ] = {
900 	[ C(OP_READ) ] = {
901 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
902 		[ C(RESULT_MISS)   ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
903 	},
904 	[ C(OP_WRITE) ] = {
905 		[ C(RESULT_ACCESS) ] = -1,
906 		[ C(RESULT_MISS)   ] = -1,
907 	},
908 	[ C(OP_PREFETCH) ] = {
909 		[ C(RESULT_ACCESS) ] = -1,
910 		[ C(RESULT_MISS)   ] = -1,
911 	},
912  },
913  [ C(NODE) ] = {
914 	[ C(OP_READ) ] = {
915 		[ C(RESULT_ACCESS) ] = 0x01b7,
916 		[ C(RESULT_MISS)   ] = 0x01b7,
917 	},
918 	[ C(OP_WRITE) ] = {
919 		[ C(RESULT_ACCESS) ] = 0x01b7,
920 		[ C(RESULT_MISS)   ] = 0x01b7,
921 	},
922 	[ C(OP_PREFETCH) ] = {
923 		[ C(RESULT_ACCESS) ] = 0x01b7,
924 		[ C(RESULT_MISS)   ] = 0x01b7,
925 	},
926  },
927 
928 };
929 
930 /*
931  * Notes on the events:
932  * - data reads do not include code reads (comparable to earlier tables)
933  * - data counts include speculative execution (except L1 write, dtlb, bpu)
934  * - remote node access includes remote memory, remote cache, remote mmio.
935  * - prefetches are not included in the counts because they are not
936  *   reliably counted.
937  */
938 
939 #define HSW_DEMAND_DATA_RD		BIT_ULL(0)
940 #define HSW_DEMAND_RFO			BIT_ULL(1)
941 #define HSW_ANY_RESPONSE		BIT_ULL(16)
942 #define HSW_SUPPLIER_NONE		BIT_ULL(17)
943 #define HSW_L3_MISS_LOCAL_DRAM		BIT_ULL(22)
944 #define HSW_L3_MISS_REMOTE_HOP0		BIT_ULL(27)
945 #define HSW_L3_MISS_REMOTE_HOP1		BIT_ULL(28)
946 #define HSW_L3_MISS_REMOTE_HOP2P	BIT_ULL(29)
947 #define HSW_L3_MISS			(HSW_L3_MISS_LOCAL_DRAM| \
948 					 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
949 					 HSW_L3_MISS_REMOTE_HOP2P)
950 #define HSW_SNOOP_NONE			BIT_ULL(31)
951 #define HSW_SNOOP_NOT_NEEDED		BIT_ULL(32)
952 #define HSW_SNOOP_MISS			BIT_ULL(33)
953 #define HSW_SNOOP_HIT_NO_FWD		BIT_ULL(34)
954 #define HSW_SNOOP_HIT_WITH_FWD		BIT_ULL(35)
955 #define HSW_SNOOP_HITM			BIT_ULL(36)
956 #define HSW_SNOOP_NON_DRAM		BIT_ULL(37)
957 #define HSW_ANY_SNOOP			(HSW_SNOOP_NONE| \
958 					 HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
959 					 HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
960 					 HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
961 #define HSW_SNOOP_DRAM			(HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
962 #define HSW_DEMAND_READ			HSW_DEMAND_DATA_RD
963 #define HSW_DEMAND_WRITE		HSW_DEMAND_RFO
964 #define HSW_L3_MISS_REMOTE		(HSW_L3_MISS_REMOTE_HOP0|\
965 					 HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
966 #define HSW_LLC_ACCESS			HSW_ANY_RESPONSE
967 
968 #define BDW_L3_MISS_LOCAL		BIT(26)
969 #define BDW_L3_MISS			(BDW_L3_MISS_LOCAL| \
970 					 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
971 					 HSW_L3_MISS_REMOTE_HOP2P)
972 
973 
974 static __initconst const u64 hsw_hw_cache_event_ids
975 				[PERF_COUNT_HW_CACHE_MAX]
976 				[PERF_COUNT_HW_CACHE_OP_MAX]
977 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
978 {
979  [ C(L1D ) ] = {
980 	[ C(OP_READ) ] = {
981 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
982 		[ C(RESULT_MISS)   ] = 0x151,	/* L1D.REPLACEMENT */
983 	},
984 	[ C(OP_WRITE) ] = {
985 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
986 		[ C(RESULT_MISS)   ] = 0x0,
987 	},
988 	[ C(OP_PREFETCH) ] = {
989 		[ C(RESULT_ACCESS) ] = 0x0,
990 		[ C(RESULT_MISS)   ] = 0x0,
991 	},
992  },
993  [ C(L1I ) ] = {
994 	[ C(OP_READ) ] = {
995 		[ C(RESULT_ACCESS) ] = 0x0,
996 		[ C(RESULT_MISS)   ] = 0x280,	/* ICACHE.MISSES */
997 	},
998 	[ C(OP_WRITE) ] = {
999 		[ C(RESULT_ACCESS) ] = -1,
1000 		[ C(RESULT_MISS)   ] = -1,
1001 	},
1002 	[ C(OP_PREFETCH) ] = {
1003 		[ C(RESULT_ACCESS) ] = 0x0,
1004 		[ C(RESULT_MISS)   ] = 0x0,
1005 	},
1006  },
1007  [ C(LL  ) ] = {
1008 	[ C(OP_READ) ] = {
1009 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
1010 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
1011 	},
1012 	[ C(OP_WRITE) ] = {
1013 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
1014 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
1015 	},
1016 	[ C(OP_PREFETCH) ] = {
1017 		[ C(RESULT_ACCESS) ] = 0x0,
1018 		[ C(RESULT_MISS)   ] = 0x0,
1019 	},
1020  },
1021  [ C(DTLB) ] = {
1022 	[ C(OP_READ) ] = {
1023 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1024 		[ C(RESULT_MISS)   ] = 0x108,	/* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
1025 	},
1026 	[ C(OP_WRITE) ] = {
1027 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1028 		[ C(RESULT_MISS)   ] = 0x149,	/* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
1029 	},
1030 	[ C(OP_PREFETCH) ] = {
1031 		[ C(RESULT_ACCESS) ] = 0x0,
1032 		[ C(RESULT_MISS)   ] = 0x0,
1033 	},
1034  },
1035  [ C(ITLB) ] = {
1036 	[ C(OP_READ) ] = {
1037 		[ C(RESULT_ACCESS) ] = 0x6085,	/* ITLB_MISSES.STLB_HIT */
1038 		[ C(RESULT_MISS)   ] = 0x185,	/* ITLB_MISSES.MISS_CAUSES_A_WALK */
1039 	},
1040 	[ C(OP_WRITE) ] = {
1041 		[ C(RESULT_ACCESS) ] = -1,
1042 		[ C(RESULT_MISS)   ] = -1,
1043 	},
1044 	[ C(OP_PREFETCH) ] = {
1045 		[ C(RESULT_ACCESS) ] = -1,
1046 		[ C(RESULT_MISS)   ] = -1,
1047 	},
1048  },
1049  [ C(BPU ) ] = {
1050 	[ C(OP_READ) ] = {
1051 		[ C(RESULT_ACCESS) ] = 0xc4,	/* BR_INST_RETIRED.ALL_BRANCHES */
1052 		[ C(RESULT_MISS)   ] = 0xc5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
1053 	},
1054 	[ C(OP_WRITE) ] = {
1055 		[ C(RESULT_ACCESS) ] = -1,
1056 		[ C(RESULT_MISS)   ] = -1,
1057 	},
1058 	[ C(OP_PREFETCH) ] = {
1059 		[ C(RESULT_ACCESS) ] = -1,
1060 		[ C(RESULT_MISS)   ] = -1,
1061 	},
1062  },
1063  [ C(NODE) ] = {
1064 	[ C(OP_READ) ] = {
1065 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
1066 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
1067 	},
1068 	[ C(OP_WRITE) ] = {
1069 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
1070 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
1071 	},
1072 	[ C(OP_PREFETCH) ] = {
1073 		[ C(RESULT_ACCESS) ] = 0x0,
1074 		[ C(RESULT_MISS)   ] = 0x0,
1075 	},
1076  },
1077 };
1078 
1079 static __initconst const u64 hsw_hw_cache_extra_regs
1080 				[PERF_COUNT_HW_CACHE_MAX]
1081 				[PERF_COUNT_HW_CACHE_OP_MAX]
1082 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1083 {
1084  [ C(LL  ) ] = {
1085 	[ C(OP_READ) ] = {
1086 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
1087 				       HSW_LLC_ACCESS,
1088 		[ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
1089 				       HSW_L3_MISS|HSW_ANY_SNOOP,
1090 	},
1091 	[ C(OP_WRITE) ] = {
1092 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
1093 				       HSW_LLC_ACCESS,
1094 		[ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
1095 				       HSW_L3_MISS|HSW_ANY_SNOOP,
1096 	},
1097 	[ C(OP_PREFETCH) ] = {
1098 		[ C(RESULT_ACCESS) ] = 0x0,
1099 		[ C(RESULT_MISS)   ] = 0x0,
1100 	},
1101  },
1102  [ C(NODE) ] = {
1103 	[ C(OP_READ) ] = {
1104 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
1105 				       HSW_L3_MISS_LOCAL_DRAM|
1106 				       HSW_SNOOP_DRAM,
1107 		[ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
1108 				       HSW_L3_MISS_REMOTE|
1109 				       HSW_SNOOP_DRAM,
1110 	},
1111 	[ C(OP_WRITE) ] = {
1112 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
1113 				       HSW_L3_MISS_LOCAL_DRAM|
1114 				       HSW_SNOOP_DRAM,
1115 		[ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
1116 				       HSW_L3_MISS_REMOTE|
1117 				       HSW_SNOOP_DRAM,
1118 	},
1119 	[ C(OP_PREFETCH) ] = {
1120 		[ C(RESULT_ACCESS) ] = 0x0,
1121 		[ C(RESULT_MISS)   ] = 0x0,
1122 	},
1123  },
1124 };
1125 
1126 static __initconst const u64 westmere_hw_cache_event_ids
1127 				[PERF_COUNT_HW_CACHE_MAX]
1128 				[PERF_COUNT_HW_CACHE_OP_MAX]
1129 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1130 {
1131  [ C(L1D) ] = {
1132 	[ C(OP_READ) ] = {
1133 		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1134 		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
1135 	},
1136 	[ C(OP_WRITE) ] = {
1137 		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1138 		[ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
1139 	},
1140 	[ C(OP_PREFETCH) ] = {
1141 		[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
1142 		[ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
1143 	},
1144  },
1145  [ C(L1I ) ] = {
1146 	[ C(OP_READ) ] = {
1147 		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
1148 		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
1149 	},
1150 	[ C(OP_WRITE) ] = {
1151 		[ C(RESULT_ACCESS) ] = -1,
1152 		[ C(RESULT_MISS)   ] = -1,
1153 	},
1154 	[ C(OP_PREFETCH) ] = {
1155 		[ C(RESULT_ACCESS) ] = 0x0,
1156 		[ C(RESULT_MISS)   ] = 0x0,
1157 	},
1158  },
1159  [ C(LL  ) ] = {
1160 	[ C(OP_READ) ] = {
1161 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1162 		[ C(RESULT_ACCESS) ] = 0x01b7,
1163 		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1164 		[ C(RESULT_MISS)   ] = 0x01b7,
1165 	},
1166 	/*
1167 	 * Use RFO, not WRITEBACK, because a write miss would typically occur
1168 	 * on RFO.
1169 	 */
1170 	[ C(OP_WRITE) ] = {
1171 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1172 		[ C(RESULT_ACCESS) ] = 0x01b7,
1173 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1174 		[ C(RESULT_MISS)   ] = 0x01b7,
1175 	},
1176 	[ C(OP_PREFETCH) ] = {
1177 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1178 		[ C(RESULT_ACCESS) ] = 0x01b7,
1179 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1180 		[ C(RESULT_MISS)   ] = 0x01b7,
1181 	},
1182  },
1183  [ C(DTLB) ] = {
1184 	[ C(OP_READ) ] = {
1185 		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1186 		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
1187 	},
1188 	[ C(OP_WRITE) ] = {
1189 		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1190 		[ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
1191 	},
1192 	[ C(OP_PREFETCH) ] = {
1193 		[ C(RESULT_ACCESS) ] = 0x0,
1194 		[ C(RESULT_MISS)   ] = 0x0,
1195 	},
1196  },
1197  [ C(ITLB) ] = {
1198 	[ C(OP_READ) ] = {
1199 		[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
1200 		[ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.ANY              */
1201 	},
1202 	[ C(OP_WRITE) ] = {
1203 		[ C(RESULT_ACCESS) ] = -1,
1204 		[ C(RESULT_MISS)   ] = -1,
1205 	},
1206 	[ C(OP_PREFETCH) ] = {
1207 		[ C(RESULT_ACCESS) ] = -1,
1208 		[ C(RESULT_MISS)   ] = -1,
1209 	},
1210  },
1211  [ C(BPU ) ] = {
1212 	[ C(OP_READ) ] = {
1213 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1214 		[ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1215 	},
1216 	[ C(OP_WRITE) ] = {
1217 		[ C(RESULT_ACCESS) ] = -1,
1218 		[ C(RESULT_MISS)   ] = -1,
1219 	},
1220 	[ C(OP_PREFETCH) ] = {
1221 		[ C(RESULT_ACCESS) ] = -1,
1222 		[ C(RESULT_MISS)   ] = -1,
1223 	},
1224  },
1225  [ C(NODE) ] = {
1226 	[ C(OP_READ) ] = {
1227 		[ C(RESULT_ACCESS) ] = 0x01b7,
1228 		[ C(RESULT_MISS)   ] = 0x01b7,
1229 	},
1230 	[ C(OP_WRITE) ] = {
1231 		[ C(RESULT_ACCESS) ] = 0x01b7,
1232 		[ C(RESULT_MISS)   ] = 0x01b7,
1233 	},
1234 	[ C(OP_PREFETCH) ] = {
1235 		[ C(RESULT_ACCESS) ] = 0x01b7,
1236 		[ C(RESULT_MISS)   ] = 0x01b7,
1237 	},
1238  },
1239 };
1240 
1241 /*
1242  * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
1243  * See IA32 SDM Vol 3B 30.6.1.3
1244  */
1245 
1246 #define NHM_DMND_DATA_RD	(1 << 0)
1247 #define NHM_DMND_RFO		(1 << 1)
1248 #define NHM_DMND_IFETCH		(1 << 2)
1249 #define NHM_DMND_WB		(1 << 3)
1250 #define NHM_PF_DATA_RD		(1 << 4)
1251 #define NHM_PF_DATA_RFO		(1 << 5)
1252 #define NHM_PF_IFETCH		(1 << 6)
1253 #define NHM_OFFCORE_OTHER	(1 << 7)
1254 #define NHM_UNCORE_HIT		(1 << 8)
1255 #define NHM_OTHER_CORE_HIT_SNP	(1 << 9)
1256 #define NHM_OTHER_CORE_HITM	(1 << 10)
1257         			/* reserved */
1258 #define NHM_REMOTE_CACHE_FWD	(1 << 12)
1259 #define NHM_REMOTE_DRAM		(1 << 13)
1260 #define NHM_LOCAL_DRAM		(1 << 14)
1261 #define NHM_NON_DRAM		(1 << 15)
1262 
1263 #define NHM_LOCAL		(NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
1264 #define NHM_REMOTE		(NHM_REMOTE_DRAM)
1265 
1266 #define NHM_DMND_READ		(NHM_DMND_DATA_RD)
1267 #define NHM_DMND_WRITE		(NHM_DMND_RFO|NHM_DMND_WB)
1268 #define NHM_DMND_PREFETCH	(NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
1269 
1270 #define NHM_L3_HIT	(NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
1271 #define NHM_L3_MISS	(NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
1272 #define NHM_L3_ACCESS	(NHM_L3_HIT|NHM_L3_MISS)
1273 
1274 static __initconst const u64 nehalem_hw_cache_extra_regs
1275 				[PERF_COUNT_HW_CACHE_MAX]
1276 				[PERF_COUNT_HW_CACHE_OP_MAX]
1277 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1278 {
1279  [ C(LL  ) ] = {
1280 	[ C(OP_READ) ] = {
1281 		[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
1282 		[ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_L3_MISS,
1283 	},
1284 	[ C(OP_WRITE) ] = {
1285 		[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
1286 		[ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_L3_MISS,
1287 	},
1288 	[ C(OP_PREFETCH) ] = {
1289 		[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
1290 		[ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
1291 	},
1292  },
1293  [ C(NODE) ] = {
1294 	[ C(OP_READ) ] = {
1295 		[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
1296 		[ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_REMOTE,
1297 	},
1298 	[ C(OP_WRITE) ] = {
1299 		[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
1300 		[ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_REMOTE,
1301 	},
1302 	[ C(OP_PREFETCH) ] = {
1303 		[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
1304 		[ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_REMOTE,
1305 	},
1306  },
1307 };
1308 
1309 static __initconst const u64 nehalem_hw_cache_event_ids
1310 				[PERF_COUNT_HW_CACHE_MAX]
1311 				[PERF_COUNT_HW_CACHE_OP_MAX]
1312 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1313 {
1314  [ C(L1D) ] = {
1315 	[ C(OP_READ) ] = {
1316 		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1317 		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
1318 	},
1319 	[ C(OP_WRITE) ] = {
1320 		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1321 		[ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
1322 	},
1323 	[ C(OP_PREFETCH) ] = {
1324 		[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
1325 		[ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
1326 	},
1327  },
1328  [ C(L1I ) ] = {
1329 	[ C(OP_READ) ] = {
1330 		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
1331 		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
1332 	},
1333 	[ C(OP_WRITE) ] = {
1334 		[ C(RESULT_ACCESS) ] = -1,
1335 		[ C(RESULT_MISS)   ] = -1,
1336 	},
1337 	[ C(OP_PREFETCH) ] = {
1338 		[ C(RESULT_ACCESS) ] = 0x0,
1339 		[ C(RESULT_MISS)   ] = 0x0,
1340 	},
1341  },
1342  [ C(LL  ) ] = {
1343 	[ C(OP_READ) ] = {
1344 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1345 		[ C(RESULT_ACCESS) ] = 0x01b7,
1346 		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1347 		[ C(RESULT_MISS)   ] = 0x01b7,
1348 	},
1349 	/*
1350 	 * Use RFO, not WRITEBACK, because a write miss would typically occur
1351 	 * on RFO.
1352 	 */
1353 	[ C(OP_WRITE) ] = {
1354 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1355 		[ C(RESULT_ACCESS) ] = 0x01b7,
1356 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1357 		[ C(RESULT_MISS)   ] = 0x01b7,
1358 	},
1359 	[ C(OP_PREFETCH) ] = {
1360 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1361 		[ C(RESULT_ACCESS) ] = 0x01b7,
1362 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1363 		[ C(RESULT_MISS)   ] = 0x01b7,
1364 	},
1365  },
1366  [ C(DTLB) ] = {
1367 	[ C(OP_READ) ] = {
1368 		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI   (alias)  */
1369 		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
1370 	},
1371 	[ C(OP_WRITE) ] = {
1372 		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI   (alias)  */
1373 		[ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
1374 	},
1375 	[ C(OP_PREFETCH) ] = {
1376 		[ C(RESULT_ACCESS) ] = 0x0,
1377 		[ C(RESULT_MISS)   ] = 0x0,
1378 	},
1379  },
1380  [ C(ITLB) ] = {
1381 	[ C(OP_READ) ] = {
1382 		[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
1383 		[ C(RESULT_MISS)   ] = 0x20c8, /* ITLB_MISS_RETIRED            */
1384 	},
1385 	[ C(OP_WRITE) ] = {
1386 		[ C(RESULT_ACCESS) ] = -1,
1387 		[ C(RESULT_MISS)   ] = -1,
1388 	},
1389 	[ C(OP_PREFETCH) ] = {
1390 		[ C(RESULT_ACCESS) ] = -1,
1391 		[ C(RESULT_MISS)   ] = -1,
1392 	},
1393  },
1394  [ C(BPU ) ] = {
1395 	[ C(OP_READ) ] = {
1396 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1397 		[ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1398 	},
1399 	[ C(OP_WRITE) ] = {
1400 		[ C(RESULT_ACCESS) ] = -1,
1401 		[ C(RESULT_MISS)   ] = -1,
1402 	},
1403 	[ C(OP_PREFETCH) ] = {
1404 		[ C(RESULT_ACCESS) ] = -1,
1405 		[ C(RESULT_MISS)   ] = -1,
1406 	},
1407  },
1408  [ C(NODE) ] = {
1409 	[ C(OP_READ) ] = {
1410 		[ C(RESULT_ACCESS) ] = 0x01b7,
1411 		[ C(RESULT_MISS)   ] = 0x01b7,
1412 	},
1413 	[ C(OP_WRITE) ] = {
1414 		[ C(RESULT_ACCESS) ] = 0x01b7,
1415 		[ C(RESULT_MISS)   ] = 0x01b7,
1416 	},
1417 	[ C(OP_PREFETCH) ] = {
1418 		[ C(RESULT_ACCESS) ] = 0x01b7,
1419 		[ C(RESULT_MISS)   ] = 0x01b7,
1420 	},
1421  },
1422 };
1423 
1424 static __initconst const u64 core2_hw_cache_event_ids
1425 				[PERF_COUNT_HW_CACHE_MAX]
1426 				[PERF_COUNT_HW_CACHE_OP_MAX]
1427 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1428 {
1429  [ C(L1D) ] = {
1430 	[ C(OP_READ) ] = {
1431 		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI          */
1432 		[ C(RESULT_MISS)   ] = 0x0140, /* L1D_CACHE_LD.I_STATE       */
1433 	},
1434 	[ C(OP_WRITE) ] = {
1435 		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI          */
1436 		[ C(RESULT_MISS)   ] = 0x0141, /* L1D_CACHE_ST.I_STATE       */
1437 	},
1438 	[ C(OP_PREFETCH) ] = {
1439 		[ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS      */
1440 		[ C(RESULT_MISS)   ] = 0,
1441 	},
1442  },
1443  [ C(L1I ) ] = {
1444 	[ C(OP_READ) ] = {
1445 		[ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS                  */
1446 		[ C(RESULT_MISS)   ] = 0x0081, /* L1I.MISSES                 */
1447 	},
1448 	[ C(OP_WRITE) ] = {
1449 		[ C(RESULT_ACCESS) ] = -1,
1450 		[ C(RESULT_MISS)   ] = -1,
1451 	},
1452 	[ C(OP_PREFETCH) ] = {
1453 		[ C(RESULT_ACCESS) ] = 0,
1454 		[ C(RESULT_MISS)   ] = 0,
1455 	},
1456  },
1457  [ C(LL  ) ] = {
1458 	[ C(OP_READ) ] = {
1459 		[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1460 		[ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1461 	},
1462 	[ C(OP_WRITE) ] = {
1463 		[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1464 		[ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1465 	},
1466 	[ C(OP_PREFETCH) ] = {
1467 		[ C(RESULT_ACCESS) ] = 0,
1468 		[ C(RESULT_MISS)   ] = 0,
1469 	},
1470  },
1471  [ C(DTLB) ] = {
1472 	[ C(OP_READ) ] = {
1473 		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI  (alias) */
1474 		[ C(RESULT_MISS)   ] = 0x0208, /* DTLB_MISSES.MISS_LD        */
1475 	},
1476 	[ C(OP_WRITE) ] = {
1477 		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI  (alias) */
1478 		[ C(RESULT_MISS)   ] = 0x0808, /* DTLB_MISSES.MISS_ST        */
1479 	},
1480 	[ C(OP_PREFETCH) ] = {
1481 		[ C(RESULT_ACCESS) ] = 0,
1482 		[ C(RESULT_MISS)   ] = 0,
1483 	},
1484  },
1485  [ C(ITLB) ] = {
1486 	[ C(OP_READ) ] = {
1487 		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1488 		[ C(RESULT_MISS)   ] = 0x1282, /* ITLBMISSES                 */
1489 	},
1490 	[ C(OP_WRITE) ] = {
1491 		[ C(RESULT_ACCESS) ] = -1,
1492 		[ C(RESULT_MISS)   ] = -1,
1493 	},
1494 	[ C(OP_PREFETCH) ] = {
1495 		[ C(RESULT_ACCESS) ] = -1,
1496 		[ C(RESULT_MISS)   ] = -1,
1497 	},
1498  },
1499  [ C(BPU ) ] = {
1500 	[ C(OP_READ) ] = {
1501 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1502 		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1503 	},
1504 	[ C(OP_WRITE) ] = {
1505 		[ C(RESULT_ACCESS) ] = -1,
1506 		[ C(RESULT_MISS)   ] = -1,
1507 	},
1508 	[ C(OP_PREFETCH) ] = {
1509 		[ C(RESULT_ACCESS) ] = -1,
1510 		[ C(RESULT_MISS)   ] = -1,
1511 	},
1512  },
1513 };
1514 
1515 static __initconst const u64 atom_hw_cache_event_ids
1516 				[PERF_COUNT_HW_CACHE_MAX]
1517 				[PERF_COUNT_HW_CACHE_OP_MAX]
1518 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1519 {
1520  [ C(L1D) ] = {
1521 	[ C(OP_READ) ] = {
1522 		[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD               */
1523 		[ C(RESULT_MISS)   ] = 0,
1524 	},
1525 	[ C(OP_WRITE) ] = {
1526 		[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST               */
1527 		[ C(RESULT_MISS)   ] = 0,
1528 	},
1529 	[ C(OP_PREFETCH) ] = {
1530 		[ C(RESULT_ACCESS) ] = 0x0,
1531 		[ C(RESULT_MISS)   ] = 0,
1532 	},
1533  },
1534  [ C(L1I ) ] = {
1535 	[ C(OP_READ) ] = {
1536 		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                  */
1537 		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                 */
1538 	},
1539 	[ C(OP_WRITE) ] = {
1540 		[ C(RESULT_ACCESS) ] = -1,
1541 		[ C(RESULT_MISS)   ] = -1,
1542 	},
1543 	[ C(OP_PREFETCH) ] = {
1544 		[ C(RESULT_ACCESS) ] = 0,
1545 		[ C(RESULT_MISS)   ] = 0,
1546 	},
1547  },
1548  [ C(LL  ) ] = {
1549 	[ C(OP_READ) ] = {
1550 		[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1551 		[ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1552 	},
1553 	[ C(OP_WRITE) ] = {
1554 		[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1555 		[ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1556 	},
1557 	[ C(OP_PREFETCH) ] = {
1558 		[ C(RESULT_ACCESS) ] = 0,
1559 		[ C(RESULT_MISS)   ] = 0,
1560 	},
1561  },
1562  [ C(DTLB) ] = {
1563 	[ C(OP_READ) ] = {
1564 		[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI  (alias) */
1565 		[ C(RESULT_MISS)   ] = 0x0508, /* DTLB_MISSES.MISS_LD        */
1566 	},
1567 	[ C(OP_WRITE) ] = {
1568 		[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI  (alias) */
1569 		[ C(RESULT_MISS)   ] = 0x0608, /* DTLB_MISSES.MISS_ST        */
1570 	},
1571 	[ C(OP_PREFETCH) ] = {
1572 		[ C(RESULT_ACCESS) ] = 0,
1573 		[ C(RESULT_MISS)   ] = 0,
1574 	},
1575  },
1576  [ C(ITLB) ] = {
1577 	[ C(OP_READ) ] = {
1578 		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1579 		[ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES                */
1580 	},
1581 	[ C(OP_WRITE) ] = {
1582 		[ C(RESULT_ACCESS) ] = -1,
1583 		[ C(RESULT_MISS)   ] = -1,
1584 	},
1585 	[ C(OP_PREFETCH) ] = {
1586 		[ C(RESULT_ACCESS) ] = -1,
1587 		[ C(RESULT_MISS)   ] = -1,
1588 	},
1589  },
1590  [ C(BPU ) ] = {
1591 	[ C(OP_READ) ] = {
1592 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1593 		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1594 	},
1595 	[ C(OP_WRITE) ] = {
1596 		[ C(RESULT_ACCESS) ] = -1,
1597 		[ C(RESULT_MISS)   ] = -1,
1598 	},
1599 	[ C(OP_PREFETCH) ] = {
1600 		[ C(RESULT_ACCESS) ] = -1,
1601 		[ C(RESULT_MISS)   ] = -1,
1602 	},
1603  },
1604 };
1605 
1606 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_slm, "event=0x3c");
1607 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_slm, "2");
1608 /* no_alloc_cycles.not_delivered */
1609 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_slm,
1610 	       "event=0xca,umask=0x50");
1611 EVENT_ATTR_STR(topdown-fetch-bubbles.scale, td_fetch_bubbles_scale_slm, "2");
1612 /* uops_retired.all */
1613 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_slm,
1614 	       "event=0xc2,umask=0x10");
1615 /* uops_retired.all */
1616 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_slm,
1617 	       "event=0xc2,umask=0x10");
1618 
1619 static struct attribute *slm_events_attrs[] = {
1620 	EVENT_PTR(td_total_slots_slm),
1621 	EVENT_PTR(td_total_slots_scale_slm),
1622 	EVENT_PTR(td_fetch_bubbles_slm),
1623 	EVENT_PTR(td_fetch_bubbles_scale_slm),
1624 	EVENT_PTR(td_slots_issued_slm),
1625 	EVENT_PTR(td_slots_retired_slm),
1626 	NULL
1627 };
1628 
1629 static struct extra_reg intel_slm_extra_regs[] __read_mostly =
1630 {
1631 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1632 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
1633 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1),
1634 	EVENT_EXTRA_END
1635 };
1636 
1637 #define SLM_DMND_READ		SNB_DMND_DATA_RD
1638 #define SLM_DMND_WRITE		SNB_DMND_RFO
1639 #define SLM_DMND_PREFETCH	(SNB_PF_DATA_RD|SNB_PF_RFO)
1640 
1641 #define SLM_SNP_ANY		(SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
1642 #define SLM_LLC_ACCESS		SNB_RESP_ANY
1643 #define SLM_LLC_MISS		(SLM_SNP_ANY|SNB_NON_DRAM)
1644 
1645 static __initconst const u64 slm_hw_cache_extra_regs
1646 				[PERF_COUNT_HW_CACHE_MAX]
1647 				[PERF_COUNT_HW_CACHE_OP_MAX]
1648 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1649 {
1650  [ C(LL  ) ] = {
1651 	[ C(OP_READ) ] = {
1652 		[ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
1653 		[ C(RESULT_MISS)   ] = 0,
1654 	},
1655 	[ C(OP_WRITE) ] = {
1656 		[ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
1657 		[ C(RESULT_MISS)   ] = SLM_DMND_WRITE|SLM_LLC_MISS,
1658 	},
1659 	[ C(OP_PREFETCH) ] = {
1660 		[ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
1661 		[ C(RESULT_MISS)   ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
1662 	},
1663  },
1664 };
1665 
1666 static __initconst const u64 slm_hw_cache_event_ids
1667 				[PERF_COUNT_HW_CACHE_MAX]
1668 				[PERF_COUNT_HW_CACHE_OP_MAX]
1669 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1670 {
1671  [ C(L1D) ] = {
1672 	[ C(OP_READ) ] = {
1673 		[ C(RESULT_ACCESS) ] = 0,
1674 		[ C(RESULT_MISS)   ] = 0x0104, /* LD_DCU_MISS */
1675 	},
1676 	[ C(OP_WRITE) ] = {
1677 		[ C(RESULT_ACCESS) ] = 0,
1678 		[ C(RESULT_MISS)   ] = 0,
1679 	},
1680 	[ C(OP_PREFETCH) ] = {
1681 		[ C(RESULT_ACCESS) ] = 0,
1682 		[ C(RESULT_MISS)   ] = 0,
1683 	},
1684  },
1685  [ C(L1I ) ] = {
1686 	[ C(OP_READ) ] = {
1687 		[ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
1688 		[ C(RESULT_MISS)   ] = 0x0280, /* ICACGE.MISSES */
1689 	},
1690 	[ C(OP_WRITE) ] = {
1691 		[ C(RESULT_ACCESS) ] = -1,
1692 		[ C(RESULT_MISS)   ] = -1,
1693 	},
1694 	[ C(OP_PREFETCH) ] = {
1695 		[ C(RESULT_ACCESS) ] = 0,
1696 		[ C(RESULT_MISS)   ] = 0,
1697 	},
1698  },
1699  [ C(LL  ) ] = {
1700 	[ C(OP_READ) ] = {
1701 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1702 		[ C(RESULT_ACCESS) ] = 0x01b7,
1703 		[ C(RESULT_MISS)   ] = 0,
1704 	},
1705 	[ C(OP_WRITE) ] = {
1706 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1707 		[ C(RESULT_ACCESS) ] = 0x01b7,
1708 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1709 		[ C(RESULT_MISS)   ] = 0x01b7,
1710 	},
1711 	[ C(OP_PREFETCH) ] = {
1712 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1713 		[ C(RESULT_ACCESS) ] = 0x01b7,
1714 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1715 		[ C(RESULT_MISS)   ] = 0x01b7,
1716 	},
1717  },
1718  [ C(DTLB) ] = {
1719 	[ C(OP_READ) ] = {
1720 		[ C(RESULT_ACCESS) ] = 0,
1721 		[ C(RESULT_MISS)   ] = 0x0804, /* LD_DTLB_MISS */
1722 	},
1723 	[ C(OP_WRITE) ] = {
1724 		[ C(RESULT_ACCESS) ] = 0,
1725 		[ C(RESULT_MISS)   ] = 0,
1726 	},
1727 	[ C(OP_PREFETCH) ] = {
1728 		[ C(RESULT_ACCESS) ] = 0,
1729 		[ C(RESULT_MISS)   ] = 0,
1730 	},
1731  },
1732  [ C(ITLB) ] = {
1733 	[ C(OP_READ) ] = {
1734 		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1735 		[ C(RESULT_MISS)   ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
1736 	},
1737 	[ C(OP_WRITE) ] = {
1738 		[ C(RESULT_ACCESS) ] = -1,
1739 		[ C(RESULT_MISS)   ] = -1,
1740 	},
1741 	[ C(OP_PREFETCH) ] = {
1742 		[ C(RESULT_ACCESS) ] = -1,
1743 		[ C(RESULT_MISS)   ] = -1,
1744 	},
1745  },
1746  [ C(BPU ) ] = {
1747 	[ C(OP_READ) ] = {
1748 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1749 		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1750 	},
1751 	[ C(OP_WRITE) ] = {
1752 		[ C(RESULT_ACCESS) ] = -1,
1753 		[ C(RESULT_MISS)   ] = -1,
1754 	},
1755 	[ C(OP_PREFETCH) ] = {
1756 		[ C(RESULT_ACCESS) ] = -1,
1757 		[ C(RESULT_MISS)   ] = -1,
1758 	},
1759  },
1760 };
1761 
1762 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_glm, "event=0x3c");
1763 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_glm, "3");
1764 /* UOPS_NOT_DELIVERED.ANY */
1765 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_glm, "event=0x9c");
1766 /* ISSUE_SLOTS_NOT_CONSUMED.RECOVERY */
1767 EVENT_ATTR_STR(topdown-recovery-bubbles, td_recovery_bubbles_glm, "event=0xca,umask=0x02");
1768 /* UOPS_RETIRED.ANY */
1769 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_glm, "event=0xc2");
1770 /* UOPS_ISSUED.ANY */
1771 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_glm, "event=0x0e");
1772 
1773 static struct attribute *glm_events_attrs[] = {
1774 	EVENT_PTR(td_total_slots_glm),
1775 	EVENT_PTR(td_total_slots_scale_glm),
1776 	EVENT_PTR(td_fetch_bubbles_glm),
1777 	EVENT_PTR(td_recovery_bubbles_glm),
1778 	EVENT_PTR(td_slots_issued_glm),
1779 	EVENT_PTR(td_slots_retired_glm),
1780 	NULL
1781 };
1782 
1783 static struct extra_reg intel_glm_extra_regs[] __read_mostly = {
1784 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1785 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x760005ffbfull, RSP_0),
1786 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x360005ffbfull, RSP_1),
1787 	EVENT_EXTRA_END
1788 };
1789 
1790 #define GLM_DEMAND_DATA_RD		BIT_ULL(0)
1791 #define GLM_DEMAND_RFO			BIT_ULL(1)
1792 #define GLM_ANY_RESPONSE		BIT_ULL(16)
1793 #define GLM_SNP_NONE_OR_MISS		BIT_ULL(33)
1794 #define GLM_DEMAND_READ			GLM_DEMAND_DATA_RD
1795 #define GLM_DEMAND_WRITE		GLM_DEMAND_RFO
1796 #define GLM_DEMAND_PREFETCH		(SNB_PF_DATA_RD|SNB_PF_RFO)
1797 #define GLM_LLC_ACCESS			GLM_ANY_RESPONSE
1798 #define GLM_SNP_ANY			(GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM)
1799 #define GLM_LLC_MISS			(GLM_SNP_ANY|SNB_NON_DRAM)
1800 
1801 static __initconst const u64 glm_hw_cache_event_ids
1802 				[PERF_COUNT_HW_CACHE_MAX]
1803 				[PERF_COUNT_HW_CACHE_OP_MAX]
1804 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1805 	[C(L1D)] = {
1806 		[C(OP_READ)] = {
1807 			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1808 			[C(RESULT_MISS)]	= 0x0,
1809 		},
1810 		[C(OP_WRITE)] = {
1811 			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1812 			[C(RESULT_MISS)]	= 0x0,
1813 		},
1814 		[C(OP_PREFETCH)] = {
1815 			[C(RESULT_ACCESS)]	= 0x0,
1816 			[C(RESULT_MISS)]	= 0x0,
1817 		},
1818 	},
1819 	[C(L1I)] = {
1820 		[C(OP_READ)] = {
1821 			[C(RESULT_ACCESS)]	= 0x0380,	/* ICACHE.ACCESSES */
1822 			[C(RESULT_MISS)]	= 0x0280,	/* ICACHE.MISSES */
1823 		},
1824 		[C(OP_WRITE)] = {
1825 			[C(RESULT_ACCESS)]	= -1,
1826 			[C(RESULT_MISS)]	= -1,
1827 		},
1828 		[C(OP_PREFETCH)] = {
1829 			[C(RESULT_ACCESS)]	= 0x0,
1830 			[C(RESULT_MISS)]	= 0x0,
1831 		},
1832 	},
1833 	[C(LL)] = {
1834 		[C(OP_READ)] = {
1835 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1836 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1837 		},
1838 		[C(OP_WRITE)] = {
1839 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1840 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1841 		},
1842 		[C(OP_PREFETCH)] = {
1843 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1844 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1845 		},
1846 	},
1847 	[C(DTLB)] = {
1848 		[C(OP_READ)] = {
1849 			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1850 			[C(RESULT_MISS)]	= 0x0,
1851 		},
1852 		[C(OP_WRITE)] = {
1853 			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1854 			[C(RESULT_MISS)]	= 0x0,
1855 		},
1856 		[C(OP_PREFETCH)] = {
1857 			[C(RESULT_ACCESS)]	= 0x0,
1858 			[C(RESULT_MISS)]	= 0x0,
1859 		},
1860 	},
1861 	[C(ITLB)] = {
1862 		[C(OP_READ)] = {
1863 			[C(RESULT_ACCESS)]	= 0x00c0,	/* INST_RETIRED.ANY_P */
1864 			[C(RESULT_MISS)]	= 0x0481,	/* ITLB.MISS */
1865 		},
1866 		[C(OP_WRITE)] = {
1867 			[C(RESULT_ACCESS)]	= -1,
1868 			[C(RESULT_MISS)]	= -1,
1869 		},
1870 		[C(OP_PREFETCH)] = {
1871 			[C(RESULT_ACCESS)]	= -1,
1872 			[C(RESULT_MISS)]	= -1,
1873 		},
1874 	},
1875 	[C(BPU)] = {
1876 		[C(OP_READ)] = {
1877 			[C(RESULT_ACCESS)]	= 0x00c4,	/* BR_INST_RETIRED.ALL_BRANCHES */
1878 			[C(RESULT_MISS)]	= 0x00c5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
1879 		},
1880 		[C(OP_WRITE)] = {
1881 			[C(RESULT_ACCESS)]	= -1,
1882 			[C(RESULT_MISS)]	= -1,
1883 		},
1884 		[C(OP_PREFETCH)] = {
1885 			[C(RESULT_ACCESS)]	= -1,
1886 			[C(RESULT_MISS)]	= -1,
1887 		},
1888 	},
1889 };
1890 
1891 static __initconst const u64 glm_hw_cache_extra_regs
1892 				[PERF_COUNT_HW_CACHE_MAX]
1893 				[PERF_COUNT_HW_CACHE_OP_MAX]
1894 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1895 	[C(LL)] = {
1896 		[C(OP_READ)] = {
1897 			[C(RESULT_ACCESS)]	= GLM_DEMAND_READ|
1898 						  GLM_LLC_ACCESS,
1899 			[C(RESULT_MISS)]	= GLM_DEMAND_READ|
1900 						  GLM_LLC_MISS,
1901 		},
1902 		[C(OP_WRITE)] = {
1903 			[C(RESULT_ACCESS)]	= GLM_DEMAND_WRITE|
1904 						  GLM_LLC_ACCESS,
1905 			[C(RESULT_MISS)]	= GLM_DEMAND_WRITE|
1906 						  GLM_LLC_MISS,
1907 		},
1908 		[C(OP_PREFETCH)] = {
1909 			[C(RESULT_ACCESS)]	= GLM_DEMAND_PREFETCH|
1910 						  GLM_LLC_ACCESS,
1911 			[C(RESULT_MISS)]	= GLM_DEMAND_PREFETCH|
1912 						  GLM_LLC_MISS,
1913 		},
1914 	},
1915 };
1916 
1917 static __initconst const u64 glp_hw_cache_event_ids
1918 				[PERF_COUNT_HW_CACHE_MAX]
1919 				[PERF_COUNT_HW_CACHE_OP_MAX]
1920 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1921 	[C(L1D)] = {
1922 		[C(OP_READ)] = {
1923 			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1924 			[C(RESULT_MISS)]	= 0x0,
1925 		},
1926 		[C(OP_WRITE)] = {
1927 			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1928 			[C(RESULT_MISS)]	= 0x0,
1929 		},
1930 		[C(OP_PREFETCH)] = {
1931 			[C(RESULT_ACCESS)]	= 0x0,
1932 			[C(RESULT_MISS)]	= 0x0,
1933 		},
1934 	},
1935 	[C(L1I)] = {
1936 		[C(OP_READ)] = {
1937 			[C(RESULT_ACCESS)]	= 0x0380,	/* ICACHE.ACCESSES */
1938 			[C(RESULT_MISS)]	= 0x0280,	/* ICACHE.MISSES */
1939 		},
1940 		[C(OP_WRITE)] = {
1941 			[C(RESULT_ACCESS)]	= -1,
1942 			[C(RESULT_MISS)]	= -1,
1943 		},
1944 		[C(OP_PREFETCH)] = {
1945 			[C(RESULT_ACCESS)]	= 0x0,
1946 			[C(RESULT_MISS)]	= 0x0,
1947 		},
1948 	},
1949 	[C(LL)] = {
1950 		[C(OP_READ)] = {
1951 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1952 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1953 		},
1954 		[C(OP_WRITE)] = {
1955 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1956 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1957 		},
1958 		[C(OP_PREFETCH)] = {
1959 			[C(RESULT_ACCESS)]	= 0x0,
1960 			[C(RESULT_MISS)]	= 0x0,
1961 		},
1962 	},
1963 	[C(DTLB)] = {
1964 		[C(OP_READ)] = {
1965 			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1966 			[C(RESULT_MISS)]	= 0xe08,	/* DTLB_LOAD_MISSES.WALK_COMPLETED */
1967 		},
1968 		[C(OP_WRITE)] = {
1969 			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1970 			[C(RESULT_MISS)]	= 0xe49,	/* DTLB_STORE_MISSES.WALK_COMPLETED */
1971 		},
1972 		[C(OP_PREFETCH)] = {
1973 			[C(RESULT_ACCESS)]	= 0x0,
1974 			[C(RESULT_MISS)]	= 0x0,
1975 		},
1976 	},
1977 	[C(ITLB)] = {
1978 		[C(OP_READ)] = {
1979 			[C(RESULT_ACCESS)]	= 0x00c0,	/* INST_RETIRED.ANY_P */
1980 			[C(RESULT_MISS)]	= 0x0481,	/* ITLB.MISS */
1981 		},
1982 		[C(OP_WRITE)] = {
1983 			[C(RESULT_ACCESS)]	= -1,
1984 			[C(RESULT_MISS)]	= -1,
1985 		},
1986 		[C(OP_PREFETCH)] = {
1987 			[C(RESULT_ACCESS)]	= -1,
1988 			[C(RESULT_MISS)]	= -1,
1989 		},
1990 	},
1991 	[C(BPU)] = {
1992 		[C(OP_READ)] = {
1993 			[C(RESULT_ACCESS)]	= 0x00c4,	/* BR_INST_RETIRED.ALL_BRANCHES */
1994 			[C(RESULT_MISS)]	= 0x00c5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
1995 		},
1996 		[C(OP_WRITE)] = {
1997 			[C(RESULT_ACCESS)]	= -1,
1998 			[C(RESULT_MISS)]	= -1,
1999 		},
2000 		[C(OP_PREFETCH)] = {
2001 			[C(RESULT_ACCESS)]	= -1,
2002 			[C(RESULT_MISS)]	= -1,
2003 		},
2004 	},
2005 };
2006 
2007 static __initconst const u64 glp_hw_cache_extra_regs
2008 				[PERF_COUNT_HW_CACHE_MAX]
2009 				[PERF_COUNT_HW_CACHE_OP_MAX]
2010 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2011 	[C(LL)] = {
2012 		[C(OP_READ)] = {
2013 			[C(RESULT_ACCESS)]	= GLM_DEMAND_READ|
2014 						  GLM_LLC_ACCESS,
2015 			[C(RESULT_MISS)]	= GLM_DEMAND_READ|
2016 						  GLM_LLC_MISS,
2017 		},
2018 		[C(OP_WRITE)] = {
2019 			[C(RESULT_ACCESS)]	= GLM_DEMAND_WRITE|
2020 						  GLM_LLC_ACCESS,
2021 			[C(RESULT_MISS)]	= GLM_DEMAND_WRITE|
2022 						  GLM_LLC_MISS,
2023 		},
2024 		[C(OP_PREFETCH)] = {
2025 			[C(RESULT_ACCESS)]	= 0x0,
2026 			[C(RESULT_MISS)]	= 0x0,
2027 		},
2028 	},
2029 };
2030 
2031 #define TNT_LOCAL_DRAM			BIT_ULL(26)
2032 #define TNT_DEMAND_READ			GLM_DEMAND_DATA_RD
2033 #define TNT_DEMAND_WRITE		GLM_DEMAND_RFO
2034 #define TNT_LLC_ACCESS			GLM_ANY_RESPONSE
2035 #define TNT_SNP_ANY			(SNB_SNP_NOT_NEEDED|SNB_SNP_MISS| \
2036 					 SNB_NO_FWD|SNB_SNP_FWD|SNB_HITM)
2037 #define TNT_LLC_MISS			(TNT_SNP_ANY|SNB_NON_DRAM|TNT_LOCAL_DRAM)
2038 
2039 static __initconst const u64 tnt_hw_cache_extra_regs
2040 				[PERF_COUNT_HW_CACHE_MAX]
2041 				[PERF_COUNT_HW_CACHE_OP_MAX]
2042 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2043 	[C(LL)] = {
2044 		[C(OP_READ)] = {
2045 			[C(RESULT_ACCESS)]	= TNT_DEMAND_READ|
2046 						  TNT_LLC_ACCESS,
2047 			[C(RESULT_MISS)]	= TNT_DEMAND_READ|
2048 						  TNT_LLC_MISS,
2049 		},
2050 		[C(OP_WRITE)] = {
2051 			[C(RESULT_ACCESS)]	= TNT_DEMAND_WRITE|
2052 						  TNT_LLC_ACCESS,
2053 			[C(RESULT_MISS)]	= TNT_DEMAND_WRITE|
2054 						  TNT_LLC_MISS,
2055 		},
2056 		[C(OP_PREFETCH)] = {
2057 			[C(RESULT_ACCESS)]	= 0x0,
2058 			[C(RESULT_MISS)]	= 0x0,
2059 		},
2060 	},
2061 };
2062 
2063 EVENT_ATTR_STR(topdown-fe-bound,       td_fe_bound_tnt,        "event=0x71,umask=0x0");
2064 EVENT_ATTR_STR(topdown-retiring,       td_retiring_tnt,        "event=0xc2,umask=0x0");
2065 EVENT_ATTR_STR(topdown-bad-spec,       td_bad_spec_tnt,        "event=0x73,umask=0x6");
2066 EVENT_ATTR_STR(topdown-be-bound,       td_be_bound_tnt,        "event=0x74,umask=0x0");
2067 
2068 static struct attribute *tnt_events_attrs[] = {
2069 	EVENT_PTR(td_fe_bound_tnt),
2070 	EVENT_PTR(td_retiring_tnt),
2071 	EVENT_PTR(td_bad_spec_tnt),
2072 	EVENT_PTR(td_be_bound_tnt),
2073 	NULL,
2074 };
2075 
2076 static struct extra_reg intel_tnt_extra_regs[] __read_mostly = {
2077 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
2078 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x800ff0ffffff9fffull, RSP_0),
2079 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0xff0ffffff9fffull, RSP_1),
2080 	EVENT_EXTRA_END
2081 };
2082 
2083 static struct extra_reg intel_grt_extra_regs[] __read_mostly = {
2084 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
2085 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
2086 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
2087 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x5d0),
2088 	EVENT_EXTRA_END
2089 };
2090 
2091 #define KNL_OT_L2_HITE		BIT_ULL(19) /* Other Tile L2 Hit */
2092 #define KNL_OT_L2_HITF		BIT_ULL(20) /* Other Tile L2 Hit */
2093 #define KNL_MCDRAM_LOCAL	BIT_ULL(21)
2094 #define KNL_MCDRAM_FAR		BIT_ULL(22)
2095 #define KNL_DDR_LOCAL		BIT_ULL(23)
2096 #define KNL_DDR_FAR		BIT_ULL(24)
2097 #define KNL_DRAM_ANY		(KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \
2098 				    KNL_DDR_LOCAL | KNL_DDR_FAR)
2099 #define KNL_L2_READ		SLM_DMND_READ
2100 #define KNL_L2_WRITE		SLM_DMND_WRITE
2101 #define KNL_L2_PREFETCH		SLM_DMND_PREFETCH
2102 #define KNL_L2_ACCESS		SLM_LLC_ACCESS
2103 #define KNL_L2_MISS		(KNL_OT_L2_HITE | KNL_OT_L2_HITF | \
2104 				   KNL_DRAM_ANY | SNB_SNP_ANY | \
2105 						  SNB_NON_DRAM)
2106 
2107 static __initconst const u64 knl_hw_cache_extra_regs
2108 				[PERF_COUNT_HW_CACHE_MAX]
2109 				[PERF_COUNT_HW_CACHE_OP_MAX]
2110 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2111 	[C(LL)] = {
2112 		[C(OP_READ)] = {
2113 			[C(RESULT_ACCESS)] = KNL_L2_READ | KNL_L2_ACCESS,
2114 			[C(RESULT_MISS)]   = 0,
2115 		},
2116 		[C(OP_WRITE)] = {
2117 			[C(RESULT_ACCESS)] = KNL_L2_WRITE | KNL_L2_ACCESS,
2118 			[C(RESULT_MISS)]   = KNL_L2_WRITE | KNL_L2_MISS,
2119 		},
2120 		[C(OP_PREFETCH)] = {
2121 			[C(RESULT_ACCESS)] = KNL_L2_PREFETCH | KNL_L2_ACCESS,
2122 			[C(RESULT_MISS)]   = KNL_L2_PREFETCH | KNL_L2_MISS,
2123 		},
2124 	},
2125 };
2126 
2127 /*
2128  * Used from PMIs where the LBRs are already disabled.
2129  *
2130  * This function could be called consecutively. It is required to remain in
2131  * disabled state if called consecutively.
2132  *
2133  * During consecutive calls, the same disable value will be written to related
2134  * registers, so the PMU state remains unchanged.
2135  *
2136  * intel_bts events don't coexist with intel PMU's BTS events because of
2137  * x86_add_exclusive(x86_lbr_exclusive_lbr); there's no need to keep them
2138  * disabled around intel PMU's event batching etc, only inside the PMI handler.
2139  *
2140  * Avoid PEBS_ENABLE MSR access in PMIs.
2141  * The GLOBAL_CTRL has been disabled. All the counters do not count anymore.
2142  * It doesn't matter if the PEBS is enabled or not.
2143  * Usually, the PEBS status are not changed in PMIs. It's unnecessary to
2144  * access PEBS_ENABLE MSR in disable_all()/enable_all().
2145  * However, there are some cases which may change PEBS status, e.g. PMI
2146  * throttle. The PEBS_ENABLE should be updated where the status changes.
2147  */
2148 static __always_inline void __intel_pmu_disable_all(bool bts)
2149 {
2150 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2151 
2152 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
2153 
2154 	if (bts && test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
2155 		intel_pmu_disable_bts();
2156 }
2157 
2158 static __always_inline void intel_pmu_disable_all(void)
2159 {
2160 	__intel_pmu_disable_all(true);
2161 	intel_pmu_pebs_disable_all();
2162 	intel_pmu_lbr_disable_all();
2163 }
2164 
2165 static void __intel_pmu_enable_all(int added, bool pmi)
2166 {
2167 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2168 	u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
2169 
2170 	intel_pmu_lbr_enable_all(pmi);
2171 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
2172 	       intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
2173 
2174 	if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
2175 		struct perf_event *event =
2176 			cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
2177 
2178 		if (WARN_ON_ONCE(!event))
2179 			return;
2180 
2181 		intel_pmu_enable_bts(event->hw.config);
2182 	}
2183 }
2184 
2185 static void intel_pmu_enable_all(int added)
2186 {
2187 	intel_pmu_pebs_enable_all();
2188 	__intel_pmu_enable_all(added, false);
2189 }
2190 
2191 static noinline int
2192 __intel_pmu_snapshot_branch_stack(struct perf_branch_entry *entries,
2193 				  unsigned int cnt, unsigned long flags)
2194 {
2195 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2196 
2197 	intel_pmu_lbr_read();
2198 	cnt = min_t(unsigned int, cnt, x86_pmu.lbr_nr);
2199 
2200 	memcpy(entries, cpuc->lbr_entries, sizeof(struct perf_branch_entry) * cnt);
2201 	intel_pmu_enable_all(0);
2202 	local_irq_restore(flags);
2203 	return cnt;
2204 }
2205 
2206 static int
2207 intel_pmu_snapshot_branch_stack(struct perf_branch_entry *entries, unsigned int cnt)
2208 {
2209 	unsigned long flags;
2210 
2211 	/* must not have branches... */
2212 	local_irq_save(flags);
2213 	__intel_pmu_disable_all(false); /* we don't care about BTS */
2214 	__intel_pmu_lbr_disable();
2215 	/*            ... until here */
2216 	return __intel_pmu_snapshot_branch_stack(entries, cnt, flags);
2217 }
2218 
2219 static int
2220 intel_pmu_snapshot_arch_branch_stack(struct perf_branch_entry *entries, unsigned int cnt)
2221 {
2222 	unsigned long flags;
2223 
2224 	/* must not have branches... */
2225 	local_irq_save(flags);
2226 	__intel_pmu_disable_all(false); /* we don't care about BTS */
2227 	__intel_pmu_arch_lbr_disable();
2228 	/*            ... until here */
2229 	return __intel_pmu_snapshot_branch_stack(entries, cnt, flags);
2230 }
2231 
2232 /*
2233  * Workaround for:
2234  *   Intel Errata AAK100 (model 26)
2235  *   Intel Errata AAP53  (model 30)
2236  *   Intel Errata BD53   (model 44)
2237  *
2238  * The official story:
2239  *   These chips need to be 'reset' when adding counters by programming the
2240  *   magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
2241  *   in sequence on the same PMC or on different PMCs.
2242  *
2243  * In practice it appears some of these events do in fact count, and
2244  * we need to program all 4 events.
2245  */
2246 static void intel_pmu_nhm_workaround(void)
2247 {
2248 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2249 	static const unsigned long nhm_magic[4] = {
2250 		0x4300B5,
2251 		0x4300D2,
2252 		0x4300B1,
2253 		0x4300B1
2254 	};
2255 	struct perf_event *event;
2256 	int i;
2257 
2258 	/*
2259 	 * The Errata requires below steps:
2260 	 * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
2261 	 * 2) Configure 4 PERFEVTSELx with the magic events and clear
2262 	 *    the corresponding PMCx;
2263 	 * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
2264 	 * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
2265 	 * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
2266 	 */
2267 
2268 	/*
2269 	 * The real steps we choose are a little different from above.
2270 	 * A) To reduce MSR operations, we don't run step 1) as they
2271 	 *    are already cleared before this function is called;
2272 	 * B) Call x86_perf_event_update to save PMCx before configuring
2273 	 *    PERFEVTSELx with magic number;
2274 	 * C) With step 5), we do clear only when the PERFEVTSELx is
2275 	 *    not used currently.
2276 	 * D) Call x86_perf_event_set_period to restore PMCx;
2277 	 */
2278 
2279 	/* We always operate 4 pairs of PERF Counters */
2280 	for (i = 0; i < 4; i++) {
2281 		event = cpuc->events[i];
2282 		if (event)
2283 			x86_perf_event_update(event);
2284 	}
2285 
2286 	for (i = 0; i < 4; i++) {
2287 		wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
2288 		wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
2289 	}
2290 
2291 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
2292 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
2293 
2294 	for (i = 0; i < 4; i++) {
2295 		event = cpuc->events[i];
2296 
2297 		if (event) {
2298 			x86_perf_event_set_period(event);
2299 			__x86_pmu_enable_event(&event->hw,
2300 					ARCH_PERFMON_EVENTSEL_ENABLE);
2301 		} else
2302 			wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
2303 	}
2304 }
2305 
2306 static void intel_pmu_nhm_enable_all(int added)
2307 {
2308 	if (added)
2309 		intel_pmu_nhm_workaround();
2310 	intel_pmu_enable_all(added);
2311 }
2312 
2313 static void intel_set_tfa(struct cpu_hw_events *cpuc, bool on)
2314 {
2315 	u64 val = on ? MSR_TFA_RTM_FORCE_ABORT : 0;
2316 
2317 	if (cpuc->tfa_shadow != val) {
2318 		cpuc->tfa_shadow = val;
2319 		wrmsrl(MSR_TSX_FORCE_ABORT, val);
2320 	}
2321 }
2322 
2323 static void intel_tfa_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
2324 {
2325 	/*
2326 	 * We're going to use PMC3, make sure TFA is set before we touch it.
2327 	 */
2328 	if (cntr == 3)
2329 		intel_set_tfa(cpuc, true);
2330 }
2331 
2332 static void intel_tfa_pmu_enable_all(int added)
2333 {
2334 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2335 
2336 	/*
2337 	 * If we find PMC3 is no longer used when we enable the PMU, we can
2338 	 * clear TFA.
2339 	 */
2340 	if (!test_bit(3, cpuc->active_mask))
2341 		intel_set_tfa(cpuc, false);
2342 
2343 	intel_pmu_enable_all(added);
2344 }
2345 
2346 static inline u64 intel_pmu_get_status(void)
2347 {
2348 	u64 status;
2349 
2350 	rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
2351 
2352 	return status;
2353 }
2354 
2355 static inline void intel_pmu_ack_status(u64 ack)
2356 {
2357 	wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
2358 }
2359 
2360 static inline bool event_is_checkpointed(struct perf_event *event)
2361 {
2362 	return unlikely(event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
2363 }
2364 
2365 static inline void intel_set_masks(struct perf_event *event, int idx)
2366 {
2367 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2368 
2369 	if (event->attr.exclude_host)
2370 		__set_bit(idx, (unsigned long *)&cpuc->intel_ctrl_guest_mask);
2371 	if (event->attr.exclude_guest)
2372 		__set_bit(idx, (unsigned long *)&cpuc->intel_ctrl_host_mask);
2373 	if (event_is_checkpointed(event))
2374 		__set_bit(idx, (unsigned long *)&cpuc->intel_cp_status);
2375 }
2376 
2377 static inline void intel_clear_masks(struct perf_event *event, int idx)
2378 {
2379 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2380 
2381 	__clear_bit(idx, (unsigned long *)&cpuc->intel_ctrl_guest_mask);
2382 	__clear_bit(idx, (unsigned long *)&cpuc->intel_ctrl_host_mask);
2383 	__clear_bit(idx, (unsigned long *)&cpuc->intel_cp_status);
2384 }
2385 
2386 static void intel_pmu_disable_fixed(struct perf_event *event)
2387 {
2388 	struct hw_perf_event *hwc = &event->hw;
2389 	u64 ctrl_val, mask;
2390 	int idx = hwc->idx;
2391 
2392 	if (is_topdown_idx(idx)) {
2393 		struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2394 
2395 		/*
2396 		 * When there are other active TopDown events,
2397 		 * don't disable the fixed counter 3.
2398 		 */
2399 		if (*(u64 *)cpuc->active_mask & INTEL_PMC_OTHER_TOPDOWN_BITS(idx))
2400 			return;
2401 		idx = INTEL_PMC_IDX_FIXED_SLOTS;
2402 	}
2403 
2404 	intel_clear_masks(event, idx);
2405 
2406 	mask = 0xfULL << ((idx - INTEL_PMC_IDX_FIXED) * 4);
2407 	rdmsrl(hwc->config_base, ctrl_val);
2408 	ctrl_val &= ~mask;
2409 	wrmsrl(hwc->config_base, ctrl_val);
2410 }
2411 
2412 static void intel_pmu_disable_event(struct perf_event *event)
2413 {
2414 	struct hw_perf_event *hwc = &event->hw;
2415 	int idx = hwc->idx;
2416 
2417 	switch (idx) {
2418 	case 0 ... INTEL_PMC_IDX_FIXED - 1:
2419 		intel_clear_masks(event, idx);
2420 		x86_pmu_disable_event(event);
2421 		break;
2422 	case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS - 1:
2423 	case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
2424 		intel_pmu_disable_fixed(event);
2425 		break;
2426 	case INTEL_PMC_IDX_FIXED_BTS:
2427 		intel_pmu_disable_bts();
2428 		intel_pmu_drain_bts_buffer();
2429 		return;
2430 	case INTEL_PMC_IDX_FIXED_VLBR:
2431 		intel_clear_masks(event, idx);
2432 		break;
2433 	default:
2434 		intel_clear_masks(event, idx);
2435 		pr_warn("Failed to disable the event with invalid index %d\n",
2436 			idx);
2437 		return;
2438 	}
2439 
2440 	/*
2441 	 * Needs to be called after x86_pmu_disable_event,
2442 	 * so we don't trigger the event without PEBS bit set.
2443 	 */
2444 	if (unlikely(event->attr.precise_ip))
2445 		intel_pmu_pebs_disable(event);
2446 }
2447 
2448 static void intel_pmu_assign_event(struct perf_event *event, int idx)
2449 {
2450 	if (is_pebs_pt(event))
2451 		perf_report_aux_output_id(event, idx);
2452 }
2453 
2454 static void intel_pmu_del_event(struct perf_event *event)
2455 {
2456 	if (needs_branch_stack(event))
2457 		intel_pmu_lbr_del(event);
2458 	if (event->attr.precise_ip)
2459 		intel_pmu_pebs_del(event);
2460 }
2461 
2462 static int icl_set_topdown_event_period(struct perf_event *event)
2463 {
2464 	struct hw_perf_event *hwc = &event->hw;
2465 	s64 left = local64_read(&hwc->period_left);
2466 
2467 	/*
2468 	 * The values in PERF_METRICS MSR are derived from fixed counter 3.
2469 	 * Software should start both registers, PERF_METRICS and fixed
2470 	 * counter 3, from zero.
2471 	 * Clear PERF_METRICS and Fixed counter 3 in initialization.
2472 	 * After that, both MSRs will be cleared for each read.
2473 	 * Don't need to clear them again.
2474 	 */
2475 	if (left == x86_pmu.max_period) {
2476 		wrmsrl(MSR_CORE_PERF_FIXED_CTR3, 0);
2477 		wrmsrl(MSR_PERF_METRICS, 0);
2478 		hwc->saved_slots = 0;
2479 		hwc->saved_metric = 0;
2480 	}
2481 
2482 	if ((hwc->saved_slots) && is_slots_event(event)) {
2483 		wrmsrl(MSR_CORE_PERF_FIXED_CTR3, hwc->saved_slots);
2484 		wrmsrl(MSR_PERF_METRICS, hwc->saved_metric);
2485 	}
2486 
2487 	perf_event_update_userpage(event);
2488 
2489 	return 0;
2490 }
2491 
2492 static int adl_set_topdown_event_period(struct perf_event *event)
2493 {
2494 	struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
2495 
2496 	if (pmu->cpu_type != hybrid_big)
2497 		return 0;
2498 
2499 	return icl_set_topdown_event_period(event);
2500 }
2501 
2502 static inline u64 icl_get_metrics_event_value(u64 metric, u64 slots, int idx)
2503 {
2504 	u32 val;
2505 
2506 	/*
2507 	 * The metric is reported as an 8bit integer fraction
2508 	 * summing up to 0xff.
2509 	 * slots-in-metric = (Metric / 0xff) * slots
2510 	 */
2511 	val = (metric >> ((idx - INTEL_PMC_IDX_METRIC_BASE) * 8)) & 0xff;
2512 	return  mul_u64_u32_div(slots, val, 0xff);
2513 }
2514 
2515 static u64 icl_get_topdown_value(struct perf_event *event,
2516 				       u64 slots, u64 metrics)
2517 {
2518 	int idx = event->hw.idx;
2519 	u64 delta;
2520 
2521 	if (is_metric_idx(idx))
2522 		delta = icl_get_metrics_event_value(metrics, slots, idx);
2523 	else
2524 		delta = slots;
2525 
2526 	return delta;
2527 }
2528 
2529 static void __icl_update_topdown_event(struct perf_event *event,
2530 				       u64 slots, u64 metrics,
2531 				       u64 last_slots, u64 last_metrics)
2532 {
2533 	u64 delta, last = 0;
2534 
2535 	delta = icl_get_topdown_value(event, slots, metrics);
2536 	if (last_slots)
2537 		last = icl_get_topdown_value(event, last_slots, last_metrics);
2538 
2539 	/*
2540 	 * The 8bit integer fraction of metric may be not accurate,
2541 	 * especially when the changes is very small.
2542 	 * For example, if only a few bad_spec happens, the fraction
2543 	 * may be reduced from 1 to 0. If so, the bad_spec event value
2544 	 * will be 0 which is definitely less than the last value.
2545 	 * Avoid update event->count for this case.
2546 	 */
2547 	if (delta > last) {
2548 		delta -= last;
2549 		local64_add(delta, &event->count);
2550 	}
2551 }
2552 
2553 static void update_saved_topdown_regs(struct perf_event *event, u64 slots,
2554 				      u64 metrics, int metric_end)
2555 {
2556 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2557 	struct perf_event *other;
2558 	int idx;
2559 
2560 	event->hw.saved_slots = slots;
2561 	event->hw.saved_metric = metrics;
2562 
2563 	for_each_set_bit(idx, cpuc->active_mask, metric_end + 1) {
2564 		if (!is_topdown_idx(idx))
2565 			continue;
2566 		other = cpuc->events[idx];
2567 		other->hw.saved_slots = slots;
2568 		other->hw.saved_metric = metrics;
2569 	}
2570 }
2571 
2572 /*
2573  * Update all active Topdown events.
2574  *
2575  * The PERF_METRICS and Fixed counter 3 are read separately. The values may be
2576  * modify by a NMI. PMU has to be disabled before calling this function.
2577  */
2578 
2579 static u64 intel_update_topdown_event(struct perf_event *event, int metric_end)
2580 {
2581 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2582 	struct perf_event *other;
2583 	u64 slots, metrics;
2584 	bool reset = true;
2585 	int idx;
2586 
2587 	/* read Fixed counter 3 */
2588 	rdpmcl((3 | INTEL_PMC_FIXED_RDPMC_BASE), slots);
2589 	if (!slots)
2590 		return 0;
2591 
2592 	/* read PERF_METRICS */
2593 	rdpmcl(INTEL_PMC_FIXED_RDPMC_METRICS, metrics);
2594 
2595 	for_each_set_bit(idx, cpuc->active_mask, metric_end + 1) {
2596 		if (!is_topdown_idx(idx))
2597 			continue;
2598 		other = cpuc->events[idx];
2599 		__icl_update_topdown_event(other, slots, metrics,
2600 					   event ? event->hw.saved_slots : 0,
2601 					   event ? event->hw.saved_metric : 0);
2602 	}
2603 
2604 	/*
2605 	 * Check and update this event, which may have been cleared
2606 	 * in active_mask e.g. x86_pmu_stop()
2607 	 */
2608 	if (event && !test_bit(event->hw.idx, cpuc->active_mask)) {
2609 		__icl_update_topdown_event(event, slots, metrics,
2610 					   event->hw.saved_slots,
2611 					   event->hw.saved_metric);
2612 
2613 		/*
2614 		 * In x86_pmu_stop(), the event is cleared in active_mask first,
2615 		 * then drain the delta, which indicates context switch for
2616 		 * counting.
2617 		 * Save metric and slots for context switch.
2618 		 * Don't need to reset the PERF_METRICS and Fixed counter 3.
2619 		 * Because the values will be restored in next schedule in.
2620 		 */
2621 		update_saved_topdown_regs(event, slots, metrics, metric_end);
2622 		reset = false;
2623 	}
2624 
2625 	if (reset) {
2626 		/* The fixed counter 3 has to be written before the PERF_METRICS. */
2627 		wrmsrl(MSR_CORE_PERF_FIXED_CTR3, 0);
2628 		wrmsrl(MSR_PERF_METRICS, 0);
2629 		if (event)
2630 			update_saved_topdown_regs(event, 0, 0, metric_end);
2631 	}
2632 
2633 	return slots;
2634 }
2635 
2636 static u64 icl_update_topdown_event(struct perf_event *event)
2637 {
2638 	return intel_update_topdown_event(event, INTEL_PMC_IDX_METRIC_BASE +
2639 						 x86_pmu.num_topdown_events - 1);
2640 }
2641 
2642 static u64 adl_update_topdown_event(struct perf_event *event)
2643 {
2644 	struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
2645 
2646 	if (pmu->cpu_type != hybrid_big)
2647 		return 0;
2648 
2649 	return icl_update_topdown_event(event);
2650 }
2651 
2652 
2653 static void intel_pmu_read_topdown_event(struct perf_event *event)
2654 {
2655 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2656 
2657 	/* Only need to call update_topdown_event() once for group read. */
2658 	if ((cpuc->txn_flags & PERF_PMU_TXN_READ) &&
2659 	    !is_slots_event(event))
2660 		return;
2661 
2662 	perf_pmu_disable(event->pmu);
2663 	x86_pmu.update_topdown_event(event);
2664 	perf_pmu_enable(event->pmu);
2665 }
2666 
2667 static void intel_pmu_read_event(struct perf_event *event)
2668 {
2669 	if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
2670 		intel_pmu_auto_reload_read(event);
2671 	else if (is_topdown_count(event) && x86_pmu.update_topdown_event)
2672 		intel_pmu_read_topdown_event(event);
2673 	else
2674 		x86_perf_event_update(event);
2675 }
2676 
2677 static void intel_pmu_enable_fixed(struct perf_event *event)
2678 {
2679 	struct hw_perf_event *hwc = &event->hw;
2680 	u64 ctrl_val, mask, bits = 0;
2681 	int idx = hwc->idx;
2682 
2683 	if (is_topdown_idx(idx)) {
2684 		struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2685 		/*
2686 		 * When there are other active TopDown events,
2687 		 * don't enable the fixed counter 3 again.
2688 		 */
2689 		if (*(u64 *)cpuc->active_mask & INTEL_PMC_OTHER_TOPDOWN_BITS(idx))
2690 			return;
2691 
2692 		idx = INTEL_PMC_IDX_FIXED_SLOTS;
2693 	}
2694 
2695 	intel_set_masks(event, idx);
2696 
2697 	/*
2698 	 * Enable IRQ generation (0x8), if not PEBS,
2699 	 * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
2700 	 * if requested:
2701 	 */
2702 	if (!event->attr.precise_ip)
2703 		bits |= 0x8;
2704 	if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
2705 		bits |= 0x2;
2706 	if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
2707 		bits |= 0x1;
2708 
2709 	/*
2710 	 * ANY bit is supported in v3 and up
2711 	 */
2712 	if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
2713 		bits |= 0x4;
2714 
2715 	idx -= INTEL_PMC_IDX_FIXED;
2716 	bits <<= (idx * 4);
2717 	mask = 0xfULL << (idx * 4);
2718 
2719 	if (x86_pmu.intel_cap.pebs_baseline && event->attr.precise_ip) {
2720 		bits |= ICL_FIXED_0_ADAPTIVE << (idx * 4);
2721 		mask |= ICL_FIXED_0_ADAPTIVE << (idx * 4);
2722 	}
2723 
2724 	rdmsrl(hwc->config_base, ctrl_val);
2725 	ctrl_val &= ~mask;
2726 	ctrl_val |= bits;
2727 	wrmsrl(hwc->config_base, ctrl_val);
2728 }
2729 
2730 static void intel_pmu_enable_event(struct perf_event *event)
2731 {
2732 	struct hw_perf_event *hwc = &event->hw;
2733 	int idx = hwc->idx;
2734 
2735 	if (unlikely(event->attr.precise_ip))
2736 		intel_pmu_pebs_enable(event);
2737 
2738 	switch (idx) {
2739 	case 0 ... INTEL_PMC_IDX_FIXED - 1:
2740 		intel_set_masks(event, idx);
2741 		__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
2742 		break;
2743 	case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS - 1:
2744 	case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
2745 		intel_pmu_enable_fixed(event);
2746 		break;
2747 	case INTEL_PMC_IDX_FIXED_BTS:
2748 		if (!__this_cpu_read(cpu_hw_events.enabled))
2749 			return;
2750 		intel_pmu_enable_bts(hwc->config);
2751 		break;
2752 	case INTEL_PMC_IDX_FIXED_VLBR:
2753 		intel_set_masks(event, idx);
2754 		break;
2755 	default:
2756 		pr_warn("Failed to enable the event with invalid index %d\n",
2757 			idx);
2758 	}
2759 }
2760 
2761 static void intel_pmu_add_event(struct perf_event *event)
2762 {
2763 	if (event->attr.precise_ip)
2764 		intel_pmu_pebs_add(event);
2765 	if (needs_branch_stack(event))
2766 		intel_pmu_lbr_add(event);
2767 }
2768 
2769 /*
2770  * Save and restart an expired event. Called by NMI contexts,
2771  * so it has to be careful about preempting normal event ops:
2772  */
2773 int intel_pmu_save_and_restart(struct perf_event *event)
2774 {
2775 	x86_perf_event_update(event);
2776 	/*
2777 	 * For a checkpointed counter always reset back to 0.  This
2778 	 * avoids a situation where the counter overflows, aborts the
2779 	 * transaction and is then set back to shortly before the
2780 	 * overflow, and overflows and aborts again.
2781 	 */
2782 	if (unlikely(event_is_checkpointed(event))) {
2783 		/* No race with NMIs because the counter should not be armed */
2784 		wrmsrl(event->hw.event_base, 0);
2785 		local64_set(&event->hw.prev_count, 0);
2786 	}
2787 	return x86_perf_event_set_period(event);
2788 }
2789 
2790 static void intel_pmu_reset(void)
2791 {
2792 	struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
2793 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2794 	int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
2795 	int num_counters = hybrid(cpuc->pmu, num_counters);
2796 	unsigned long flags;
2797 	int idx;
2798 
2799 	if (!num_counters)
2800 		return;
2801 
2802 	local_irq_save(flags);
2803 
2804 	pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
2805 
2806 	for (idx = 0; idx < num_counters; idx++) {
2807 		wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
2808 		wrmsrl_safe(x86_pmu_event_addr(idx),  0ull);
2809 	}
2810 	for (idx = 0; idx < num_counters_fixed; idx++) {
2811 		if (fixed_counter_disabled(idx, cpuc->pmu))
2812 			continue;
2813 		wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
2814 	}
2815 
2816 	if (ds)
2817 		ds->bts_index = ds->bts_buffer_base;
2818 
2819 	/* Ack all overflows and disable fixed counters */
2820 	if (x86_pmu.version >= 2) {
2821 		intel_pmu_ack_status(intel_pmu_get_status());
2822 		wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
2823 	}
2824 
2825 	/* Reset LBRs and LBR freezing */
2826 	if (x86_pmu.lbr_nr) {
2827 		update_debugctlmsr(get_debugctlmsr() &
2828 			~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
2829 	}
2830 
2831 	local_irq_restore(flags);
2832 }
2833 
2834 static int handle_pmi_common(struct pt_regs *regs, u64 status)
2835 {
2836 	struct perf_sample_data data;
2837 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2838 	int bit;
2839 	int handled = 0;
2840 	u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
2841 
2842 	inc_irq_stat(apic_perf_irqs);
2843 
2844 	/*
2845 	 * Ignore a range of extra bits in status that do not indicate
2846 	 * overflow by themselves.
2847 	 */
2848 	status &= ~(GLOBAL_STATUS_COND_CHG |
2849 		    GLOBAL_STATUS_ASIF |
2850 		    GLOBAL_STATUS_LBRS_FROZEN);
2851 	if (!status)
2852 		return 0;
2853 	/*
2854 	 * In case multiple PEBS events are sampled at the same time,
2855 	 * it is possible to have GLOBAL_STATUS bit 62 set indicating
2856 	 * PEBS buffer overflow and also seeing at most 3 PEBS counters
2857 	 * having their bits set in the status register. This is a sign
2858 	 * that there was at least one PEBS record pending at the time
2859 	 * of the PMU interrupt. PEBS counters must only be processed
2860 	 * via the drain_pebs() calls and not via the regular sample
2861 	 * processing loop coming after that the function, otherwise
2862 	 * phony regular samples may be generated in the sampling buffer
2863 	 * not marked with the EXACT tag. Another possibility is to have
2864 	 * one PEBS event and at least one non-PEBS event which overflows
2865 	 * while PEBS has armed. In this case, bit 62 of GLOBAL_STATUS will
2866 	 * not be set, yet the overflow status bit for the PEBS counter will
2867 	 * be on Skylake.
2868 	 *
2869 	 * To avoid this problem, we systematically ignore the PEBS-enabled
2870 	 * counters from the GLOBAL_STATUS mask and we always process PEBS
2871 	 * events via drain_pebs().
2872 	 */
2873 	if (x86_pmu.flags & PMU_FL_PEBS_ALL)
2874 		status &= ~cpuc->pebs_enabled;
2875 	else
2876 		status &= ~(cpuc->pebs_enabled & PEBS_COUNTER_MASK);
2877 
2878 	/*
2879 	 * PEBS overflow sets bit 62 in the global status register
2880 	 */
2881 	if (__test_and_clear_bit(GLOBAL_STATUS_BUFFER_OVF_BIT, (unsigned long *)&status)) {
2882 		u64 pebs_enabled = cpuc->pebs_enabled;
2883 
2884 		handled++;
2885 		x86_pmu.drain_pebs(regs, &data);
2886 		status &= intel_ctrl | GLOBAL_STATUS_TRACE_TOPAPMI;
2887 
2888 		/*
2889 		 * PMI throttle may be triggered, which stops the PEBS event.
2890 		 * Although cpuc->pebs_enabled is updated accordingly, the
2891 		 * MSR_IA32_PEBS_ENABLE is not updated. Because the
2892 		 * cpuc->enabled has been forced to 0 in PMI.
2893 		 * Update the MSR if pebs_enabled is changed.
2894 		 */
2895 		if (pebs_enabled != cpuc->pebs_enabled)
2896 			wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
2897 	}
2898 
2899 	/*
2900 	 * Intel PT
2901 	 */
2902 	if (__test_and_clear_bit(GLOBAL_STATUS_TRACE_TOPAPMI_BIT, (unsigned long *)&status)) {
2903 		handled++;
2904 		if (!perf_guest_handle_intel_pt_intr())
2905 			intel_pt_interrupt();
2906 	}
2907 
2908 	/*
2909 	 * Intel Perf metrics
2910 	 */
2911 	if (__test_and_clear_bit(GLOBAL_STATUS_PERF_METRICS_OVF_BIT, (unsigned long *)&status)) {
2912 		handled++;
2913 		if (x86_pmu.update_topdown_event)
2914 			x86_pmu.update_topdown_event(NULL);
2915 	}
2916 
2917 	/*
2918 	 * Checkpointed counters can lead to 'spurious' PMIs because the
2919 	 * rollback caused by the PMI will have cleared the overflow status
2920 	 * bit. Therefore always force probe these counters.
2921 	 */
2922 	status |= cpuc->intel_cp_status;
2923 
2924 	for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
2925 		struct perf_event *event = cpuc->events[bit];
2926 
2927 		handled++;
2928 
2929 		if (!test_bit(bit, cpuc->active_mask))
2930 			continue;
2931 
2932 		if (!intel_pmu_save_and_restart(event))
2933 			continue;
2934 
2935 		perf_sample_data_init(&data, 0, event->hw.last_period);
2936 
2937 		if (has_branch_stack(event))
2938 			data.br_stack = &cpuc->lbr_stack;
2939 
2940 		if (perf_event_overflow(event, &data, regs))
2941 			x86_pmu_stop(event, 0);
2942 	}
2943 
2944 	return handled;
2945 }
2946 
2947 /*
2948  * This handler is triggered by the local APIC, so the APIC IRQ handling
2949  * rules apply:
2950  */
2951 static int intel_pmu_handle_irq(struct pt_regs *regs)
2952 {
2953 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2954 	bool late_ack = hybrid_bit(cpuc->pmu, late_ack);
2955 	bool mid_ack = hybrid_bit(cpuc->pmu, mid_ack);
2956 	int loops;
2957 	u64 status;
2958 	int handled;
2959 	int pmu_enabled;
2960 
2961 	/*
2962 	 * Save the PMU state.
2963 	 * It needs to be restored when leaving the handler.
2964 	 */
2965 	pmu_enabled = cpuc->enabled;
2966 	/*
2967 	 * In general, the early ACK is only applied for old platforms.
2968 	 * For the big core starts from Haswell, the late ACK should be
2969 	 * applied.
2970 	 * For the small core after Tremont, we have to do the ACK right
2971 	 * before re-enabling counters, which is in the middle of the
2972 	 * NMI handler.
2973 	 */
2974 	if (!late_ack && !mid_ack)
2975 		apic_write(APIC_LVTPC, APIC_DM_NMI);
2976 	intel_bts_disable_local();
2977 	cpuc->enabled = 0;
2978 	__intel_pmu_disable_all(true);
2979 	handled = intel_pmu_drain_bts_buffer();
2980 	handled += intel_bts_interrupt();
2981 	status = intel_pmu_get_status();
2982 	if (!status)
2983 		goto done;
2984 
2985 	loops = 0;
2986 again:
2987 	intel_pmu_lbr_read();
2988 	intel_pmu_ack_status(status);
2989 	if (++loops > 100) {
2990 		static bool warned;
2991 
2992 		if (!warned) {
2993 			WARN(1, "perfevents: irq loop stuck!\n");
2994 			perf_event_print_debug();
2995 			warned = true;
2996 		}
2997 		intel_pmu_reset();
2998 		goto done;
2999 	}
3000 
3001 	handled += handle_pmi_common(regs, status);
3002 
3003 	/*
3004 	 * Repeat if there is more work to be done:
3005 	 */
3006 	status = intel_pmu_get_status();
3007 	if (status)
3008 		goto again;
3009 
3010 done:
3011 	if (mid_ack)
3012 		apic_write(APIC_LVTPC, APIC_DM_NMI);
3013 	/* Only restore PMU state when it's active. See x86_pmu_disable(). */
3014 	cpuc->enabled = pmu_enabled;
3015 	if (pmu_enabled)
3016 		__intel_pmu_enable_all(0, true);
3017 	intel_bts_enable_local();
3018 
3019 	/*
3020 	 * Only unmask the NMI after the overflow counters
3021 	 * have been reset. This avoids spurious NMIs on
3022 	 * Haswell CPUs.
3023 	 */
3024 	if (late_ack)
3025 		apic_write(APIC_LVTPC, APIC_DM_NMI);
3026 	return handled;
3027 }
3028 
3029 static struct event_constraint *
3030 intel_bts_constraints(struct perf_event *event)
3031 {
3032 	if (unlikely(intel_pmu_has_bts(event)))
3033 		return &bts_constraint;
3034 
3035 	return NULL;
3036 }
3037 
3038 /*
3039  * Note: matches a fake event, like Fixed2.
3040  */
3041 static struct event_constraint *
3042 intel_vlbr_constraints(struct perf_event *event)
3043 {
3044 	struct event_constraint *c = &vlbr_constraint;
3045 
3046 	if (unlikely(constraint_match(c, event->hw.config))) {
3047 		event->hw.flags |= c->flags;
3048 		return c;
3049 	}
3050 
3051 	return NULL;
3052 }
3053 
3054 static int intel_alt_er(struct cpu_hw_events *cpuc,
3055 			int idx, u64 config)
3056 {
3057 	struct extra_reg *extra_regs = hybrid(cpuc->pmu, extra_regs);
3058 	int alt_idx = idx;
3059 
3060 	if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
3061 		return idx;
3062 
3063 	if (idx == EXTRA_REG_RSP_0)
3064 		alt_idx = EXTRA_REG_RSP_1;
3065 
3066 	if (idx == EXTRA_REG_RSP_1)
3067 		alt_idx = EXTRA_REG_RSP_0;
3068 
3069 	if (config & ~extra_regs[alt_idx].valid_mask)
3070 		return idx;
3071 
3072 	return alt_idx;
3073 }
3074 
3075 static void intel_fixup_er(struct perf_event *event, int idx)
3076 {
3077 	struct extra_reg *extra_regs = hybrid(event->pmu, extra_regs);
3078 	event->hw.extra_reg.idx = idx;
3079 
3080 	if (idx == EXTRA_REG_RSP_0) {
3081 		event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
3082 		event->hw.config |= extra_regs[EXTRA_REG_RSP_0].event;
3083 		event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
3084 	} else if (idx == EXTRA_REG_RSP_1) {
3085 		event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
3086 		event->hw.config |= extra_regs[EXTRA_REG_RSP_1].event;
3087 		event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
3088 	}
3089 }
3090 
3091 /*
3092  * manage allocation of shared extra msr for certain events
3093  *
3094  * sharing can be:
3095  * per-cpu: to be shared between the various events on a single PMU
3096  * per-core: per-cpu + shared by HT threads
3097  */
3098 static struct event_constraint *
3099 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
3100 				   struct perf_event *event,
3101 				   struct hw_perf_event_extra *reg)
3102 {
3103 	struct event_constraint *c = &emptyconstraint;
3104 	struct er_account *era;
3105 	unsigned long flags;
3106 	int idx = reg->idx;
3107 
3108 	/*
3109 	 * reg->alloc can be set due to existing state, so for fake cpuc we
3110 	 * need to ignore this, otherwise we might fail to allocate proper fake
3111 	 * state for this extra reg constraint. Also see the comment below.
3112 	 */
3113 	if (reg->alloc && !cpuc->is_fake)
3114 		return NULL; /* call x86_get_event_constraint() */
3115 
3116 again:
3117 	era = &cpuc->shared_regs->regs[idx];
3118 	/*
3119 	 * we use spin_lock_irqsave() to avoid lockdep issues when
3120 	 * passing a fake cpuc
3121 	 */
3122 	raw_spin_lock_irqsave(&era->lock, flags);
3123 
3124 	if (!atomic_read(&era->ref) || era->config == reg->config) {
3125 
3126 		/*
3127 		 * If its a fake cpuc -- as per validate_{group,event}() we
3128 		 * shouldn't touch event state and we can avoid doing so
3129 		 * since both will only call get_event_constraints() once
3130 		 * on each event, this avoids the need for reg->alloc.
3131 		 *
3132 		 * Not doing the ER fixup will only result in era->reg being
3133 		 * wrong, but since we won't actually try and program hardware
3134 		 * this isn't a problem either.
3135 		 */
3136 		if (!cpuc->is_fake) {
3137 			if (idx != reg->idx)
3138 				intel_fixup_er(event, idx);
3139 
3140 			/*
3141 			 * x86_schedule_events() can call get_event_constraints()
3142 			 * multiple times on events in the case of incremental
3143 			 * scheduling(). reg->alloc ensures we only do the ER
3144 			 * allocation once.
3145 			 */
3146 			reg->alloc = 1;
3147 		}
3148 
3149 		/* lock in msr value */
3150 		era->config = reg->config;
3151 		era->reg = reg->reg;
3152 
3153 		/* one more user */
3154 		atomic_inc(&era->ref);
3155 
3156 		/*
3157 		 * need to call x86_get_event_constraint()
3158 		 * to check if associated event has constraints
3159 		 */
3160 		c = NULL;
3161 	} else {
3162 		idx = intel_alt_er(cpuc, idx, reg->config);
3163 		if (idx != reg->idx) {
3164 			raw_spin_unlock_irqrestore(&era->lock, flags);
3165 			goto again;
3166 		}
3167 	}
3168 	raw_spin_unlock_irqrestore(&era->lock, flags);
3169 
3170 	return c;
3171 }
3172 
3173 static void
3174 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
3175 				   struct hw_perf_event_extra *reg)
3176 {
3177 	struct er_account *era;
3178 
3179 	/*
3180 	 * Only put constraint if extra reg was actually allocated. Also takes
3181 	 * care of event which do not use an extra shared reg.
3182 	 *
3183 	 * Also, if this is a fake cpuc we shouldn't touch any event state
3184 	 * (reg->alloc) and we don't care about leaving inconsistent cpuc state
3185 	 * either since it'll be thrown out.
3186 	 */
3187 	if (!reg->alloc || cpuc->is_fake)
3188 		return;
3189 
3190 	era = &cpuc->shared_regs->regs[reg->idx];
3191 
3192 	/* one fewer user */
3193 	atomic_dec(&era->ref);
3194 
3195 	/* allocate again next time */
3196 	reg->alloc = 0;
3197 }
3198 
3199 static struct event_constraint *
3200 intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
3201 			      struct perf_event *event)
3202 {
3203 	struct event_constraint *c = NULL, *d;
3204 	struct hw_perf_event_extra *xreg, *breg;
3205 
3206 	xreg = &event->hw.extra_reg;
3207 	if (xreg->idx != EXTRA_REG_NONE) {
3208 		c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
3209 		if (c == &emptyconstraint)
3210 			return c;
3211 	}
3212 	breg = &event->hw.branch_reg;
3213 	if (breg->idx != EXTRA_REG_NONE) {
3214 		d = __intel_shared_reg_get_constraints(cpuc, event, breg);
3215 		if (d == &emptyconstraint) {
3216 			__intel_shared_reg_put_constraints(cpuc, xreg);
3217 			c = d;
3218 		}
3219 	}
3220 	return c;
3221 }
3222 
3223 struct event_constraint *
3224 x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3225 			  struct perf_event *event)
3226 {
3227 	struct event_constraint *event_constraints = hybrid(cpuc->pmu, event_constraints);
3228 	struct event_constraint *c;
3229 
3230 	if (event_constraints) {
3231 		for_each_event_constraint(c, event_constraints) {
3232 			if (constraint_match(c, event->hw.config)) {
3233 				event->hw.flags |= c->flags;
3234 				return c;
3235 			}
3236 		}
3237 	}
3238 
3239 	return &hybrid_var(cpuc->pmu, unconstrained);
3240 }
3241 
3242 static struct event_constraint *
3243 __intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3244 			    struct perf_event *event)
3245 {
3246 	struct event_constraint *c;
3247 
3248 	c = intel_vlbr_constraints(event);
3249 	if (c)
3250 		return c;
3251 
3252 	c = intel_bts_constraints(event);
3253 	if (c)
3254 		return c;
3255 
3256 	c = intel_shared_regs_constraints(cpuc, event);
3257 	if (c)
3258 		return c;
3259 
3260 	c = intel_pebs_constraints(event);
3261 	if (c)
3262 		return c;
3263 
3264 	return x86_get_event_constraints(cpuc, idx, event);
3265 }
3266 
3267 static void
3268 intel_start_scheduling(struct cpu_hw_events *cpuc)
3269 {
3270 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3271 	struct intel_excl_states *xl;
3272 	int tid = cpuc->excl_thread_id;
3273 
3274 	/*
3275 	 * nothing needed if in group validation mode
3276 	 */
3277 	if (cpuc->is_fake || !is_ht_workaround_enabled())
3278 		return;
3279 
3280 	/*
3281 	 * no exclusion needed
3282 	 */
3283 	if (WARN_ON_ONCE(!excl_cntrs))
3284 		return;
3285 
3286 	xl = &excl_cntrs->states[tid];
3287 
3288 	xl->sched_started = true;
3289 	/*
3290 	 * lock shared state until we are done scheduling
3291 	 * in stop_event_scheduling()
3292 	 * makes scheduling appear as a transaction
3293 	 */
3294 	raw_spin_lock(&excl_cntrs->lock);
3295 }
3296 
3297 static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
3298 {
3299 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3300 	struct event_constraint *c = cpuc->event_constraint[idx];
3301 	struct intel_excl_states *xl;
3302 	int tid = cpuc->excl_thread_id;
3303 
3304 	if (cpuc->is_fake || !is_ht_workaround_enabled())
3305 		return;
3306 
3307 	if (WARN_ON_ONCE(!excl_cntrs))
3308 		return;
3309 
3310 	if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
3311 		return;
3312 
3313 	xl = &excl_cntrs->states[tid];
3314 
3315 	lockdep_assert_held(&excl_cntrs->lock);
3316 
3317 	if (c->flags & PERF_X86_EVENT_EXCL)
3318 		xl->state[cntr] = INTEL_EXCL_EXCLUSIVE;
3319 	else
3320 		xl->state[cntr] = INTEL_EXCL_SHARED;
3321 }
3322 
3323 static void
3324 intel_stop_scheduling(struct cpu_hw_events *cpuc)
3325 {
3326 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3327 	struct intel_excl_states *xl;
3328 	int tid = cpuc->excl_thread_id;
3329 
3330 	/*
3331 	 * nothing needed if in group validation mode
3332 	 */
3333 	if (cpuc->is_fake || !is_ht_workaround_enabled())
3334 		return;
3335 	/*
3336 	 * no exclusion needed
3337 	 */
3338 	if (WARN_ON_ONCE(!excl_cntrs))
3339 		return;
3340 
3341 	xl = &excl_cntrs->states[tid];
3342 
3343 	xl->sched_started = false;
3344 	/*
3345 	 * release shared state lock (acquired in intel_start_scheduling())
3346 	 */
3347 	raw_spin_unlock(&excl_cntrs->lock);
3348 }
3349 
3350 static struct event_constraint *
3351 dyn_constraint(struct cpu_hw_events *cpuc, struct event_constraint *c, int idx)
3352 {
3353 	WARN_ON_ONCE(!cpuc->constraint_list);
3354 
3355 	if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
3356 		struct event_constraint *cx;
3357 
3358 		/*
3359 		 * grab pre-allocated constraint entry
3360 		 */
3361 		cx = &cpuc->constraint_list[idx];
3362 
3363 		/*
3364 		 * initialize dynamic constraint
3365 		 * with static constraint
3366 		 */
3367 		*cx = *c;
3368 
3369 		/*
3370 		 * mark constraint as dynamic
3371 		 */
3372 		cx->flags |= PERF_X86_EVENT_DYNAMIC;
3373 		c = cx;
3374 	}
3375 
3376 	return c;
3377 }
3378 
3379 static struct event_constraint *
3380 intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
3381 			   int idx, struct event_constraint *c)
3382 {
3383 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3384 	struct intel_excl_states *xlo;
3385 	int tid = cpuc->excl_thread_id;
3386 	int is_excl, i, w;
3387 
3388 	/*
3389 	 * validating a group does not require
3390 	 * enforcing cross-thread  exclusion
3391 	 */
3392 	if (cpuc->is_fake || !is_ht_workaround_enabled())
3393 		return c;
3394 
3395 	/*
3396 	 * no exclusion needed
3397 	 */
3398 	if (WARN_ON_ONCE(!excl_cntrs))
3399 		return c;
3400 
3401 	/*
3402 	 * because we modify the constraint, we need
3403 	 * to make a copy. Static constraints come
3404 	 * from static const tables.
3405 	 *
3406 	 * only needed when constraint has not yet
3407 	 * been cloned (marked dynamic)
3408 	 */
3409 	c = dyn_constraint(cpuc, c, idx);
3410 
3411 	/*
3412 	 * From here on, the constraint is dynamic.
3413 	 * Either it was just allocated above, or it
3414 	 * was allocated during a earlier invocation
3415 	 * of this function
3416 	 */
3417 
3418 	/*
3419 	 * state of sibling HT
3420 	 */
3421 	xlo = &excl_cntrs->states[tid ^ 1];
3422 
3423 	/*
3424 	 * event requires exclusive counter access
3425 	 * across HT threads
3426 	 */
3427 	is_excl = c->flags & PERF_X86_EVENT_EXCL;
3428 	if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) {
3429 		event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT;
3430 		if (!cpuc->n_excl++)
3431 			WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1);
3432 	}
3433 
3434 	/*
3435 	 * Modify static constraint with current dynamic
3436 	 * state of thread
3437 	 *
3438 	 * EXCLUSIVE: sibling counter measuring exclusive event
3439 	 * SHARED   : sibling counter measuring non-exclusive event
3440 	 * UNUSED   : sibling counter unused
3441 	 */
3442 	w = c->weight;
3443 	for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) {
3444 		/*
3445 		 * exclusive event in sibling counter
3446 		 * our corresponding counter cannot be used
3447 		 * regardless of our event
3448 		 */
3449 		if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE) {
3450 			__clear_bit(i, c->idxmsk);
3451 			w--;
3452 			continue;
3453 		}
3454 		/*
3455 		 * if measuring an exclusive event, sibling
3456 		 * measuring non-exclusive, then counter cannot
3457 		 * be used
3458 		 */
3459 		if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED) {
3460 			__clear_bit(i, c->idxmsk);
3461 			w--;
3462 			continue;
3463 		}
3464 	}
3465 
3466 	/*
3467 	 * if we return an empty mask, then switch
3468 	 * back to static empty constraint to avoid
3469 	 * the cost of freeing later on
3470 	 */
3471 	if (!w)
3472 		c = &emptyconstraint;
3473 
3474 	c->weight = w;
3475 
3476 	return c;
3477 }
3478 
3479 static struct event_constraint *
3480 intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3481 			    struct perf_event *event)
3482 {
3483 	struct event_constraint *c1, *c2;
3484 
3485 	c1 = cpuc->event_constraint[idx];
3486 
3487 	/*
3488 	 * first time only
3489 	 * - static constraint: no change across incremental scheduling calls
3490 	 * - dynamic constraint: handled by intel_get_excl_constraints()
3491 	 */
3492 	c2 = __intel_get_event_constraints(cpuc, idx, event);
3493 	if (c1) {
3494 	        WARN_ON_ONCE(!(c1->flags & PERF_X86_EVENT_DYNAMIC));
3495 		bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
3496 		c1->weight = c2->weight;
3497 		c2 = c1;
3498 	}
3499 
3500 	if (cpuc->excl_cntrs)
3501 		return intel_get_excl_constraints(cpuc, event, idx, c2);
3502 
3503 	return c2;
3504 }
3505 
3506 static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
3507 		struct perf_event *event)
3508 {
3509 	struct hw_perf_event *hwc = &event->hw;
3510 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3511 	int tid = cpuc->excl_thread_id;
3512 	struct intel_excl_states *xl;
3513 
3514 	/*
3515 	 * nothing needed if in group validation mode
3516 	 */
3517 	if (cpuc->is_fake)
3518 		return;
3519 
3520 	if (WARN_ON_ONCE(!excl_cntrs))
3521 		return;
3522 
3523 	if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) {
3524 		hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT;
3525 		if (!--cpuc->n_excl)
3526 			WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0);
3527 	}
3528 
3529 	/*
3530 	 * If event was actually assigned, then mark the counter state as
3531 	 * unused now.
3532 	 */
3533 	if (hwc->idx >= 0) {
3534 		xl = &excl_cntrs->states[tid];
3535 
3536 		/*
3537 		 * put_constraint may be called from x86_schedule_events()
3538 		 * which already has the lock held so here make locking
3539 		 * conditional.
3540 		 */
3541 		if (!xl->sched_started)
3542 			raw_spin_lock(&excl_cntrs->lock);
3543 
3544 		xl->state[hwc->idx] = INTEL_EXCL_UNUSED;
3545 
3546 		if (!xl->sched_started)
3547 			raw_spin_unlock(&excl_cntrs->lock);
3548 	}
3549 }
3550 
3551 static void
3552 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
3553 					struct perf_event *event)
3554 {
3555 	struct hw_perf_event_extra *reg;
3556 
3557 	reg = &event->hw.extra_reg;
3558 	if (reg->idx != EXTRA_REG_NONE)
3559 		__intel_shared_reg_put_constraints(cpuc, reg);
3560 
3561 	reg = &event->hw.branch_reg;
3562 	if (reg->idx != EXTRA_REG_NONE)
3563 		__intel_shared_reg_put_constraints(cpuc, reg);
3564 }
3565 
3566 static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
3567 					struct perf_event *event)
3568 {
3569 	intel_put_shared_regs_event_constraints(cpuc, event);
3570 
3571 	/*
3572 	 * is PMU has exclusive counter restrictions, then
3573 	 * all events are subject to and must call the
3574 	 * put_excl_constraints() routine
3575 	 */
3576 	if (cpuc->excl_cntrs)
3577 		intel_put_excl_constraints(cpuc, event);
3578 }
3579 
3580 static void intel_pebs_aliases_core2(struct perf_event *event)
3581 {
3582 	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3583 		/*
3584 		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3585 		 * (0x003c) so that we can use it with PEBS.
3586 		 *
3587 		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3588 		 * PEBS capable. However we can use INST_RETIRED.ANY_P
3589 		 * (0x00c0), which is a PEBS capable event, to get the same
3590 		 * count.
3591 		 *
3592 		 * INST_RETIRED.ANY_P counts the number of cycles that retires
3593 		 * CNTMASK instructions. By setting CNTMASK to a value (16)
3594 		 * larger than the maximum number of instructions that can be
3595 		 * retired per cycle (4) and then inverting the condition, we
3596 		 * count all cycles that retire 16 or less instructions, which
3597 		 * is every cycle.
3598 		 *
3599 		 * Thereby we gain a PEBS capable cycle counter.
3600 		 */
3601 		u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
3602 
3603 		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3604 		event->hw.config = alt_config;
3605 	}
3606 }
3607 
3608 static void intel_pebs_aliases_snb(struct perf_event *event)
3609 {
3610 	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3611 		/*
3612 		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3613 		 * (0x003c) so that we can use it with PEBS.
3614 		 *
3615 		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3616 		 * PEBS capable. However we can use UOPS_RETIRED.ALL
3617 		 * (0x01c2), which is a PEBS capable event, to get the same
3618 		 * count.
3619 		 *
3620 		 * UOPS_RETIRED.ALL counts the number of cycles that retires
3621 		 * CNTMASK micro-ops. By setting CNTMASK to a value (16)
3622 		 * larger than the maximum number of micro-ops that can be
3623 		 * retired per cycle (4) and then inverting the condition, we
3624 		 * count all cycles that retire 16 or less micro-ops, which
3625 		 * is every cycle.
3626 		 *
3627 		 * Thereby we gain a PEBS capable cycle counter.
3628 		 */
3629 		u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
3630 
3631 		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3632 		event->hw.config = alt_config;
3633 	}
3634 }
3635 
3636 static void intel_pebs_aliases_precdist(struct perf_event *event)
3637 {
3638 	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3639 		/*
3640 		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3641 		 * (0x003c) so that we can use it with PEBS.
3642 		 *
3643 		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3644 		 * PEBS capable. However we can use INST_RETIRED.PREC_DIST
3645 		 * (0x01c0), which is a PEBS capable event, to get the same
3646 		 * count.
3647 		 *
3648 		 * The PREC_DIST event has special support to minimize sample
3649 		 * shadowing effects. One drawback is that it can be
3650 		 * only programmed on counter 1, but that seems like an
3651 		 * acceptable trade off.
3652 		 */
3653 		u64 alt_config = X86_CONFIG(.event=0xc0, .umask=0x01, .inv=1, .cmask=16);
3654 
3655 		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3656 		event->hw.config = alt_config;
3657 	}
3658 }
3659 
3660 static void intel_pebs_aliases_ivb(struct perf_event *event)
3661 {
3662 	if (event->attr.precise_ip < 3)
3663 		return intel_pebs_aliases_snb(event);
3664 	return intel_pebs_aliases_precdist(event);
3665 }
3666 
3667 static void intel_pebs_aliases_skl(struct perf_event *event)
3668 {
3669 	if (event->attr.precise_ip < 3)
3670 		return intel_pebs_aliases_core2(event);
3671 	return intel_pebs_aliases_precdist(event);
3672 }
3673 
3674 static unsigned long intel_pmu_large_pebs_flags(struct perf_event *event)
3675 {
3676 	unsigned long flags = x86_pmu.large_pebs_flags;
3677 
3678 	if (event->attr.use_clockid)
3679 		flags &= ~PERF_SAMPLE_TIME;
3680 	if (!event->attr.exclude_kernel)
3681 		flags &= ~PERF_SAMPLE_REGS_USER;
3682 	if (event->attr.sample_regs_user & ~PEBS_GP_REGS)
3683 		flags &= ~(PERF_SAMPLE_REGS_USER | PERF_SAMPLE_REGS_INTR);
3684 	return flags;
3685 }
3686 
3687 static int intel_pmu_bts_config(struct perf_event *event)
3688 {
3689 	struct perf_event_attr *attr = &event->attr;
3690 
3691 	if (unlikely(intel_pmu_has_bts(event))) {
3692 		/* BTS is not supported by this architecture. */
3693 		if (!x86_pmu.bts_active)
3694 			return -EOPNOTSUPP;
3695 
3696 		/* BTS is currently only allowed for user-mode. */
3697 		if (!attr->exclude_kernel)
3698 			return -EOPNOTSUPP;
3699 
3700 		/* BTS is not allowed for precise events. */
3701 		if (attr->precise_ip)
3702 			return -EOPNOTSUPP;
3703 
3704 		/* disallow bts if conflicting events are present */
3705 		if (x86_add_exclusive(x86_lbr_exclusive_lbr))
3706 			return -EBUSY;
3707 
3708 		event->destroy = hw_perf_lbr_event_destroy;
3709 	}
3710 
3711 	return 0;
3712 }
3713 
3714 static int core_pmu_hw_config(struct perf_event *event)
3715 {
3716 	int ret = x86_pmu_hw_config(event);
3717 
3718 	if (ret)
3719 		return ret;
3720 
3721 	return intel_pmu_bts_config(event);
3722 }
3723 
3724 #define INTEL_TD_METRIC_AVAILABLE_MAX	(INTEL_TD_METRIC_RETIRING + \
3725 					 ((x86_pmu.num_topdown_events - 1) << 8))
3726 
3727 static bool is_available_metric_event(struct perf_event *event)
3728 {
3729 	return is_metric_event(event) &&
3730 		event->attr.config <= INTEL_TD_METRIC_AVAILABLE_MAX;
3731 }
3732 
3733 static inline bool is_mem_loads_event(struct perf_event *event)
3734 {
3735 	return (event->attr.config & INTEL_ARCH_EVENT_MASK) == X86_CONFIG(.event=0xcd, .umask=0x01);
3736 }
3737 
3738 static inline bool is_mem_loads_aux_event(struct perf_event *event)
3739 {
3740 	return (event->attr.config & INTEL_ARCH_EVENT_MASK) == X86_CONFIG(.event=0x03, .umask=0x82);
3741 }
3742 
3743 static inline bool require_mem_loads_aux_event(struct perf_event *event)
3744 {
3745 	if (!(x86_pmu.flags & PMU_FL_MEM_LOADS_AUX))
3746 		return false;
3747 
3748 	if (is_hybrid())
3749 		return hybrid_pmu(event->pmu)->cpu_type == hybrid_big;
3750 
3751 	return true;
3752 }
3753 
3754 static inline bool intel_pmu_has_cap(struct perf_event *event, int idx)
3755 {
3756 	union perf_capabilities *intel_cap = &hybrid(event->pmu, intel_cap);
3757 
3758 	return test_bit(idx, (unsigned long *)&intel_cap->capabilities);
3759 }
3760 
3761 static int intel_pmu_hw_config(struct perf_event *event)
3762 {
3763 	int ret = x86_pmu_hw_config(event);
3764 
3765 	if (ret)
3766 		return ret;
3767 
3768 	ret = intel_pmu_bts_config(event);
3769 	if (ret)
3770 		return ret;
3771 
3772 	if (event->attr.precise_ip) {
3773 		if ((event->attr.config & INTEL_ARCH_EVENT_MASK) == INTEL_FIXED_VLBR_EVENT)
3774 			return -EINVAL;
3775 
3776 		if (!(event->attr.freq || (event->attr.wakeup_events && !event->attr.watermark))) {
3777 			event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD;
3778 			if (!(event->attr.sample_type &
3779 			      ~intel_pmu_large_pebs_flags(event))) {
3780 				event->hw.flags |= PERF_X86_EVENT_LARGE_PEBS;
3781 				event->attach_state |= PERF_ATTACH_SCHED_CB;
3782 			}
3783 		}
3784 		if (x86_pmu.pebs_aliases)
3785 			x86_pmu.pebs_aliases(event);
3786 
3787 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3788 			event->attr.sample_type |= __PERF_SAMPLE_CALLCHAIN_EARLY;
3789 	}
3790 
3791 	if (needs_branch_stack(event)) {
3792 		ret = intel_pmu_setup_lbr_filter(event);
3793 		if (ret)
3794 			return ret;
3795 		event->attach_state |= PERF_ATTACH_SCHED_CB;
3796 
3797 		/*
3798 		 * BTS is set up earlier in this path, so don't account twice
3799 		 */
3800 		if (!unlikely(intel_pmu_has_bts(event))) {
3801 			/* disallow lbr if conflicting events are present */
3802 			if (x86_add_exclusive(x86_lbr_exclusive_lbr))
3803 				return -EBUSY;
3804 
3805 			event->destroy = hw_perf_lbr_event_destroy;
3806 		}
3807 	}
3808 
3809 	if (event->attr.aux_output) {
3810 		if (!event->attr.precise_ip)
3811 			return -EINVAL;
3812 
3813 		event->hw.flags |= PERF_X86_EVENT_PEBS_VIA_PT;
3814 	}
3815 
3816 	if ((event->attr.type == PERF_TYPE_HARDWARE) ||
3817 	    (event->attr.type == PERF_TYPE_HW_CACHE))
3818 		return 0;
3819 
3820 	/*
3821 	 * Config Topdown slots and metric events
3822 	 *
3823 	 * The slots event on Fixed Counter 3 can support sampling,
3824 	 * which will be handled normally in x86_perf_event_update().
3825 	 *
3826 	 * Metric events don't support sampling and require being paired
3827 	 * with a slots event as group leader. When the slots event
3828 	 * is used in a metrics group, it too cannot support sampling.
3829 	 */
3830 	if (intel_pmu_has_cap(event, PERF_CAP_METRICS_IDX) && is_topdown_event(event)) {
3831 		if (event->attr.config1 || event->attr.config2)
3832 			return -EINVAL;
3833 
3834 		/*
3835 		 * The TopDown metrics events and slots event don't
3836 		 * support any filters.
3837 		 */
3838 		if (event->attr.config & X86_ALL_EVENT_FLAGS)
3839 			return -EINVAL;
3840 
3841 		if (is_available_metric_event(event)) {
3842 			struct perf_event *leader = event->group_leader;
3843 
3844 			/* The metric events don't support sampling. */
3845 			if (is_sampling_event(event))
3846 				return -EINVAL;
3847 
3848 			/* The metric events require a slots group leader. */
3849 			if (!is_slots_event(leader))
3850 				return -EINVAL;
3851 
3852 			/*
3853 			 * The leader/SLOTS must not be a sampling event for
3854 			 * metric use; hardware requires it starts at 0 when used
3855 			 * in conjunction with MSR_PERF_METRICS.
3856 			 */
3857 			if (is_sampling_event(leader))
3858 				return -EINVAL;
3859 
3860 			event->event_caps |= PERF_EV_CAP_SIBLING;
3861 			/*
3862 			 * Only once we have a METRICs sibling do we
3863 			 * need TopDown magic.
3864 			 */
3865 			leader->hw.flags |= PERF_X86_EVENT_TOPDOWN;
3866 			event->hw.flags  |= PERF_X86_EVENT_TOPDOWN;
3867 		}
3868 	}
3869 
3870 	/*
3871 	 * The load latency event X86_CONFIG(.event=0xcd, .umask=0x01) on SPR
3872 	 * doesn't function quite right. As a work-around it needs to always be
3873 	 * co-scheduled with a auxiliary event X86_CONFIG(.event=0x03, .umask=0x82).
3874 	 * The actual count of this second event is irrelevant it just needs
3875 	 * to be active to make the first event function correctly.
3876 	 *
3877 	 * In a group, the auxiliary event must be in front of the load latency
3878 	 * event. The rule is to simplify the implementation of the check.
3879 	 * That's because perf cannot have a complete group at the moment.
3880 	 */
3881 	if (require_mem_loads_aux_event(event) &&
3882 	    (event->attr.sample_type & PERF_SAMPLE_DATA_SRC) &&
3883 	    is_mem_loads_event(event)) {
3884 		struct perf_event *leader = event->group_leader;
3885 		struct perf_event *sibling = NULL;
3886 
3887 		if (!is_mem_loads_aux_event(leader)) {
3888 			for_each_sibling_event(sibling, leader) {
3889 				if (is_mem_loads_aux_event(sibling))
3890 					break;
3891 			}
3892 			if (list_entry_is_head(sibling, &leader->sibling_list, sibling_list))
3893 				return -ENODATA;
3894 		}
3895 	}
3896 
3897 	if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
3898 		return 0;
3899 
3900 	if (x86_pmu.version < 3)
3901 		return -EINVAL;
3902 
3903 	ret = perf_allow_cpu(&event->attr);
3904 	if (ret)
3905 		return ret;
3906 
3907 	event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
3908 
3909 	return 0;
3910 }
3911 
3912 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
3913 {
3914 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3915 	struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
3916 	u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
3917 
3918 	arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
3919 	arr[0].host = intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
3920 	arr[0].guest = intel_ctrl & ~cpuc->intel_ctrl_host_mask;
3921 	if (x86_pmu.flags & PMU_FL_PEBS_ALL)
3922 		arr[0].guest &= ~cpuc->pebs_enabled;
3923 	else
3924 		arr[0].guest &= ~(cpuc->pebs_enabled & PEBS_COUNTER_MASK);
3925 	*nr = 1;
3926 
3927 	if (x86_pmu.pebs && x86_pmu.pebs_no_isolation) {
3928 		/*
3929 		 * If PMU counter has PEBS enabled it is not enough to
3930 		 * disable counter on a guest entry since PEBS memory
3931 		 * write can overshoot guest entry and corrupt guest
3932 		 * memory. Disabling PEBS solves the problem.
3933 		 *
3934 		 * Don't do this if the CPU already enforces it.
3935 		 */
3936 		arr[1].msr = MSR_IA32_PEBS_ENABLE;
3937 		arr[1].host = cpuc->pebs_enabled;
3938 		arr[1].guest = 0;
3939 		*nr = 2;
3940 	}
3941 
3942 	return arr;
3943 }
3944 
3945 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
3946 {
3947 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3948 	struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
3949 	int idx;
3950 
3951 	for (idx = 0; idx < x86_pmu.num_counters; idx++)  {
3952 		struct perf_event *event = cpuc->events[idx];
3953 
3954 		arr[idx].msr = x86_pmu_config_addr(idx);
3955 		arr[idx].host = arr[idx].guest = 0;
3956 
3957 		if (!test_bit(idx, cpuc->active_mask))
3958 			continue;
3959 
3960 		arr[idx].host = arr[idx].guest =
3961 			event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
3962 
3963 		if (event->attr.exclude_host)
3964 			arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
3965 		else if (event->attr.exclude_guest)
3966 			arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
3967 	}
3968 
3969 	*nr = x86_pmu.num_counters;
3970 	return arr;
3971 }
3972 
3973 static void core_pmu_enable_event(struct perf_event *event)
3974 {
3975 	if (!event->attr.exclude_host)
3976 		x86_pmu_enable_event(event);
3977 }
3978 
3979 static void core_pmu_enable_all(int added)
3980 {
3981 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3982 	int idx;
3983 
3984 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
3985 		struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
3986 
3987 		if (!test_bit(idx, cpuc->active_mask) ||
3988 				cpuc->events[idx]->attr.exclude_host)
3989 			continue;
3990 
3991 		__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
3992 	}
3993 }
3994 
3995 static int hsw_hw_config(struct perf_event *event)
3996 {
3997 	int ret = intel_pmu_hw_config(event);
3998 
3999 	if (ret)
4000 		return ret;
4001 	if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
4002 		return 0;
4003 	event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
4004 
4005 	/*
4006 	 * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
4007 	 * PEBS or in ANY thread mode. Since the results are non-sensical forbid
4008 	 * this combination.
4009 	 */
4010 	if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
4011 	     ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
4012 	      event->attr.precise_ip > 0))
4013 		return -EOPNOTSUPP;
4014 
4015 	if (event_is_checkpointed(event)) {
4016 		/*
4017 		 * Sampling of checkpointed events can cause situations where
4018 		 * the CPU constantly aborts because of a overflow, which is
4019 		 * then checkpointed back and ignored. Forbid checkpointing
4020 		 * for sampling.
4021 		 *
4022 		 * But still allow a long sampling period, so that perf stat
4023 		 * from KVM works.
4024 		 */
4025 		if (event->attr.sample_period > 0 &&
4026 		    event->attr.sample_period < 0x7fffffff)
4027 			return -EOPNOTSUPP;
4028 	}
4029 	return 0;
4030 }
4031 
4032 static struct event_constraint counter0_constraint =
4033 			INTEL_ALL_EVENT_CONSTRAINT(0, 0x1);
4034 
4035 static struct event_constraint counter2_constraint =
4036 			EVENT_CONSTRAINT(0, 0x4, 0);
4037 
4038 static struct event_constraint fixed0_constraint =
4039 			FIXED_EVENT_CONSTRAINT(0x00c0, 0);
4040 
4041 static struct event_constraint fixed0_counter0_constraint =
4042 			INTEL_ALL_EVENT_CONSTRAINT(0, 0x100000001ULL);
4043 
4044 static struct event_constraint *
4045 hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4046 			  struct perf_event *event)
4047 {
4048 	struct event_constraint *c;
4049 
4050 	c = intel_get_event_constraints(cpuc, idx, event);
4051 
4052 	/* Handle special quirk on in_tx_checkpointed only in counter 2 */
4053 	if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
4054 		if (c->idxmsk64 & (1U << 2))
4055 			return &counter2_constraint;
4056 		return &emptyconstraint;
4057 	}
4058 
4059 	return c;
4060 }
4061 
4062 static struct event_constraint *
4063 icl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4064 			  struct perf_event *event)
4065 {
4066 	/*
4067 	 * Fixed counter 0 has less skid.
4068 	 * Force instruction:ppp in Fixed counter 0
4069 	 */
4070 	if ((event->attr.precise_ip == 3) &&
4071 	    constraint_match(&fixed0_constraint, event->hw.config))
4072 		return &fixed0_constraint;
4073 
4074 	return hsw_get_event_constraints(cpuc, idx, event);
4075 }
4076 
4077 static struct event_constraint *
4078 spr_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4079 			  struct perf_event *event)
4080 {
4081 	struct event_constraint *c;
4082 
4083 	c = icl_get_event_constraints(cpuc, idx, event);
4084 
4085 	/*
4086 	 * The :ppp indicates the Precise Distribution (PDist) facility, which
4087 	 * is only supported on the GP counter 0. If a :ppp event which is not
4088 	 * available on the GP counter 0, error out.
4089 	 * Exception: Instruction PDIR is only available on the fixed counter 0.
4090 	 */
4091 	if ((event->attr.precise_ip == 3) &&
4092 	    !constraint_match(&fixed0_constraint, event->hw.config)) {
4093 		if (c->idxmsk64 & BIT_ULL(0))
4094 			return &counter0_constraint;
4095 
4096 		return &emptyconstraint;
4097 	}
4098 
4099 	return c;
4100 }
4101 
4102 static struct event_constraint *
4103 glp_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4104 			  struct perf_event *event)
4105 {
4106 	struct event_constraint *c;
4107 
4108 	/* :ppp means to do reduced skid PEBS which is PMC0 only. */
4109 	if (event->attr.precise_ip == 3)
4110 		return &counter0_constraint;
4111 
4112 	c = intel_get_event_constraints(cpuc, idx, event);
4113 
4114 	return c;
4115 }
4116 
4117 static struct event_constraint *
4118 tnt_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4119 			  struct perf_event *event)
4120 {
4121 	struct event_constraint *c;
4122 
4123 	/*
4124 	 * :ppp means to do reduced skid PEBS,
4125 	 * which is available on PMC0 and fixed counter 0.
4126 	 */
4127 	if (event->attr.precise_ip == 3) {
4128 		/* Force instruction:ppp on PMC0 and Fixed counter 0 */
4129 		if (constraint_match(&fixed0_constraint, event->hw.config))
4130 			return &fixed0_counter0_constraint;
4131 
4132 		return &counter0_constraint;
4133 	}
4134 
4135 	c = intel_get_event_constraints(cpuc, idx, event);
4136 
4137 	return c;
4138 }
4139 
4140 static bool allow_tsx_force_abort = true;
4141 
4142 static struct event_constraint *
4143 tfa_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4144 			  struct perf_event *event)
4145 {
4146 	struct event_constraint *c = hsw_get_event_constraints(cpuc, idx, event);
4147 
4148 	/*
4149 	 * Without TFA we must not use PMC3.
4150 	 */
4151 	if (!allow_tsx_force_abort && test_bit(3, c->idxmsk)) {
4152 		c = dyn_constraint(cpuc, c, idx);
4153 		c->idxmsk64 &= ~(1ULL << 3);
4154 		c->weight--;
4155 	}
4156 
4157 	return c;
4158 }
4159 
4160 static struct event_constraint *
4161 adl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4162 			  struct perf_event *event)
4163 {
4164 	struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
4165 
4166 	if (pmu->cpu_type == hybrid_big)
4167 		return spr_get_event_constraints(cpuc, idx, event);
4168 	else if (pmu->cpu_type == hybrid_small)
4169 		return tnt_get_event_constraints(cpuc, idx, event);
4170 
4171 	WARN_ON(1);
4172 	return &emptyconstraint;
4173 }
4174 
4175 static int adl_hw_config(struct perf_event *event)
4176 {
4177 	struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
4178 
4179 	if (pmu->cpu_type == hybrid_big)
4180 		return hsw_hw_config(event);
4181 	else if (pmu->cpu_type == hybrid_small)
4182 		return intel_pmu_hw_config(event);
4183 
4184 	WARN_ON(1);
4185 	return -EOPNOTSUPP;
4186 }
4187 
4188 static u8 adl_get_hybrid_cpu_type(void)
4189 {
4190 	return hybrid_big;
4191 }
4192 
4193 /*
4194  * Broadwell:
4195  *
4196  * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
4197  * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
4198  * the two to enforce a minimum period of 128 (the smallest value that has bits
4199  * 0-5 cleared and >= 100).
4200  *
4201  * Because of how the code in x86_perf_event_set_period() works, the truncation
4202  * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
4203  * to make up for the 'lost' events due to carrying the 'error' in period_left.
4204  *
4205  * Therefore the effective (average) period matches the requested period,
4206  * despite coarser hardware granularity.
4207  */
4208 static u64 bdw_limit_period(struct perf_event *event, u64 left)
4209 {
4210 	if ((event->hw.config & INTEL_ARCH_EVENT_MASK) ==
4211 			X86_CONFIG(.event=0xc0, .umask=0x01)) {
4212 		if (left < 128)
4213 			left = 128;
4214 		left &= ~0x3fULL;
4215 	}
4216 	return left;
4217 }
4218 
4219 static u64 nhm_limit_period(struct perf_event *event, u64 left)
4220 {
4221 	return max(left, 32ULL);
4222 }
4223 
4224 static u64 spr_limit_period(struct perf_event *event, u64 left)
4225 {
4226 	if (event->attr.precise_ip == 3)
4227 		return max(left, 128ULL);
4228 
4229 	return left;
4230 }
4231 
4232 PMU_FORMAT_ATTR(event,	"config:0-7"	);
4233 PMU_FORMAT_ATTR(umask,	"config:8-15"	);
4234 PMU_FORMAT_ATTR(edge,	"config:18"	);
4235 PMU_FORMAT_ATTR(pc,	"config:19"	);
4236 PMU_FORMAT_ATTR(any,	"config:21"	); /* v3 + */
4237 PMU_FORMAT_ATTR(inv,	"config:23"	);
4238 PMU_FORMAT_ATTR(cmask,	"config:24-31"	);
4239 PMU_FORMAT_ATTR(in_tx,  "config:32");
4240 PMU_FORMAT_ATTR(in_tx_cp, "config:33");
4241 
4242 static struct attribute *intel_arch_formats_attr[] = {
4243 	&format_attr_event.attr,
4244 	&format_attr_umask.attr,
4245 	&format_attr_edge.attr,
4246 	&format_attr_pc.attr,
4247 	&format_attr_inv.attr,
4248 	&format_attr_cmask.attr,
4249 	NULL,
4250 };
4251 
4252 ssize_t intel_event_sysfs_show(char *page, u64 config)
4253 {
4254 	u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
4255 
4256 	return x86_event_sysfs_show(page, config, event);
4257 }
4258 
4259 static struct intel_shared_regs *allocate_shared_regs(int cpu)
4260 {
4261 	struct intel_shared_regs *regs;
4262 	int i;
4263 
4264 	regs = kzalloc_node(sizeof(struct intel_shared_regs),
4265 			    GFP_KERNEL, cpu_to_node(cpu));
4266 	if (regs) {
4267 		/*
4268 		 * initialize the locks to keep lockdep happy
4269 		 */
4270 		for (i = 0; i < EXTRA_REG_MAX; i++)
4271 			raw_spin_lock_init(&regs->regs[i].lock);
4272 
4273 		regs->core_id = -1;
4274 	}
4275 	return regs;
4276 }
4277 
4278 static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
4279 {
4280 	struct intel_excl_cntrs *c;
4281 
4282 	c = kzalloc_node(sizeof(struct intel_excl_cntrs),
4283 			 GFP_KERNEL, cpu_to_node(cpu));
4284 	if (c) {
4285 		raw_spin_lock_init(&c->lock);
4286 		c->core_id = -1;
4287 	}
4288 	return c;
4289 }
4290 
4291 
4292 int intel_cpuc_prepare(struct cpu_hw_events *cpuc, int cpu)
4293 {
4294 	cpuc->pebs_record_size = x86_pmu.pebs_record_size;
4295 
4296 	if (is_hybrid() || x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
4297 		cpuc->shared_regs = allocate_shared_regs(cpu);
4298 		if (!cpuc->shared_regs)
4299 			goto err;
4300 	}
4301 
4302 	if (x86_pmu.flags & (PMU_FL_EXCL_CNTRS | PMU_FL_TFA)) {
4303 		size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);
4304 
4305 		cpuc->constraint_list = kzalloc_node(sz, GFP_KERNEL, cpu_to_node(cpu));
4306 		if (!cpuc->constraint_list)
4307 			goto err_shared_regs;
4308 	}
4309 
4310 	if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
4311 		cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
4312 		if (!cpuc->excl_cntrs)
4313 			goto err_constraint_list;
4314 
4315 		cpuc->excl_thread_id = 0;
4316 	}
4317 
4318 	return 0;
4319 
4320 err_constraint_list:
4321 	kfree(cpuc->constraint_list);
4322 	cpuc->constraint_list = NULL;
4323 
4324 err_shared_regs:
4325 	kfree(cpuc->shared_regs);
4326 	cpuc->shared_regs = NULL;
4327 
4328 err:
4329 	return -ENOMEM;
4330 }
4331 
4332 static int intel_pmu_cpu_prepare(int cpu)
4333 {
4334 	return intel_cpuc_prepare(&per_cpu(cpu_hw_events, cpu), cpu);
4335 }
4336 
4337 static void flip_smm_bit(void *data)
4338 {
4339 	unsigned long set = *(unsigned long *)data;
4340 
4341 	if (set > 0) {
4342 		msr_set_bit(MSR_IA32_DEBUGCTLMSR,
4343 			    DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
4344 	} else {
4345 		msr_clear_bit(MSR_IA32_DEBUGCTLMSR,
4346 			      DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
4347 	}
4348 }
4349 
4350 static bool init_hybrid_pmu(int cpu)
4351 {
4352 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
4353 	u8 cpu_type = get_this_hybrid_cpu_type();
4354 	struct x86_hybrid_pmu *pmu = NULL;
4355 	int i;
4356 
4357 	if (!cpu_type && x86_pmu.get_hybrid_cpu_type)
4358 		cpu_type = x86_pmu.get_hybrid_cpu_type();
4359 
4360 	for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
4361 		if (x86_pmu.hybrid_pmu[i].cpu_type == cpu_type) {
4362 			pmu = &x86_pmu.hybrid_pmu[i];
4363 			break;
4364 		}
4365 	}
4366 	if (WARN_ON_ONCE(!pmu || (pmu->pmu.type == -1))) {
4367 		cpuc->pmu = NULL;
4368 		return false;
4369 	}
4370 
4371 	/* Only check and dump the PMU information for the first CPU */
4372 	if (!cpumask_empty(&pmu->supported_cpus))
4373 		goto end;
4374 
4375 	if (!check_hw_exists(&pmu->pmu, pmu->num_counters, pmu->num_counters_fixed))
4376 		return false;
4377 
4378 	pr_info("%s PMU driver: ", pmu->name);
4379 
4380 	if (pmu->intel_cap.pebs_output_pt_available)
4381 		pr_cont("PEBS-via-PT ");
4382 
4383 	pr_cont("\n");
4384 
4385 	x86_pmu_show_pmu_cap(pmu->num_counters, pmu->num_counters_fixed,
4386 			     pmu->intel_ctrl);
4387 
4388 end:
4389 	cpumask_set_cpu(cpu, &pmu->supported_cpus);
4390 	cpuc->pmu = &pmu->pmu;
4391 
4392 	x86_pmu_update_cpu_context(&pmu->pmu, cpu);
4393 
4394 	return true;
4395 }
4396 
4397 static void intel_pmu_cpu_starting(int cpu)
4398 {
4399 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
4400 	int core_id = topology_core_id(cpu);
4401 	int i;
4402 
4403 	if (is_hybrid() && !init_hybrid_pmu(cpu))
4404 		return;
4405 
4406 	init_debug_store_on_cpu(cpu);
4407 	/*
4408 	 * Deal with CPUs that don't clear their LBRs on power-up.
4409 	 */
4410 	intel_pmu_lbr_reset();
4411 
4412 	cpuc->lbr_sel = NULL;
4413 
4414 	if (x86_pmu.flags & PMU_FL_TFA) {
4415 		WARN_ON_ONCE(cpuc->tfa_shadow);
4416 		cpuc->tfa_shadow = ~0ULL;
4417 		intel_set_tfa(cpuc, false);
4418 	}
4419 
4420 	if (x86_pmu.version > 1)
4421 		flip_smm_bit(&x86_pmu.attr_freeze_on_smi);
4422 
4423 	/*
4424 	 * Disable perf metrics if any added CPU doesn't support it.
4425 	 *
4426 	 * Turn off the check for a hybrid architecture, because the
4427 	 * architecture MSR, MSR_IA32_PERF_CAPABILITIES, only indicate
4428 	 * the architecture features. The perf metrics is a model-specific
4429 	 * feature for now. The corresponding bit should always be 0 on
4430 	 * a hybrid platform, e.g., Alder Lake.
4431 	 */
4432 	if (!is_hybrid() && x86_pmu.intel_cap.perf_metrics) {
4433 		union perf_capabilities perf_cap;
4434 
4435 		rdmsrl(MSR_IA32_PERF_CAPABILITIES, perf_cap.capabilities);
4436 		if (!perf_cap.perf_metrics) {
4437 			x86_pmu.intel_cap.perf_metrics = 0;
4438 			x86_pmu.intel_ctrl &= ~(1ULL << GLOBAL_CTRL_EN_PERF_METRICS);
4439 		}
4440 	}
4441 
4442 	if (!cpuc->shared_regs)
4443 		return;
4444 
4445 	if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
4446 		for_each_cpu(i, topology_sibling_cpumask(cpu)) {
4447 			struct intel_shared_regs *pc;
4448 
4449 			pc = per_cpu(cpu_hw_events, i).shared_regs;
4450 			if (pc && pc->core_id == core_id) {
4451 				cpuc->kfree_on_online[0] = cpuc->shared_regs;
4452 				cpuc->shared_regs = pc;
4453 				break;
4454 			}
4455 		}
4456 		cpuc->shared_regs->core_id = core_id;
4457 		cpuc->shared_regs->refcnt++;
4458 	}
4459 
4460 	if (x86_pmu.lbr_sel_map)
4461 		cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
4462 
4463 	if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
4464 		for_each_cpu(i, topology_sibling_cpumask(cpu)) {
4465 			struct cpu_hw_events *sibling;
4466 			struct intel_excl_cntrs *c;
4467 
4468 			sibling = &per_cpu(cpu_hw_events, i);
4469 			c = sibling->excl_cntrs;
4470 			if (c && c->core_id == core_id) {
4471 				cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
4472 				cpuc->excl_cntrs = c;
4473 				if (!sibling->excl_thread_id)
4474 					cpuc->excl_thread_id = 1;
4475 				break;
4476 			}
4477 		}
4478 		cpuc->excl_cntrs->core_id = core_id;
4479 		cpuc->excl_cntrs->refcnt++;
4480 	}
4481 }
4482 
4483 static void free_excl_cntrs(struct cpu_hw_events *cpuc)
4484 {
4485 	struct intel_excl_cntrs *c;
4486 
4487 	c = cpuc->excl_cntrs;
4488 	if (c) {
4489 		if (c->core_id == -1 || --c->refcnt == 0)
4490 			kfree(c);
4491 		cpuc->excl_cntrs = NULL;
4492 	}
4493 
4494 	kfree(cpuc->constraint_list);
4495 	cpuc->constraint_list = NULL;
4496 }
4497 
4498 static void intel_pmu_cpu_dying(int cpu)
4499 {
4500 	fini_debug_store_on_cpu(cpu);
4501 }
4502 
4503 void intel_cpuc_finish(struct cpu_hw_events *cpuc)
4504 {
4505 	struct intel_shared_regs *pc;
4506 
4507 	pc = cpuc->shared_regs;
4508 	if (pc) {
4509 		if (pc->core_id == -1 || --pc->refcnt == 0)
4510 			kfree(pc);
4511 		cpuc->shared_regs = NULL;
4512 	}
4513 
4514 	free_excl_cntrs(cpuc);
4515 }
4516 
4517 static void intel_pmu_cpu_dead(int cpu)
4518 {
4519 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
4520 
4521 	intel_cpuc_finish(cpuc);
4522 
4523 	if (is_hybrid() && cpuc->pmu)
4524 		cpumask_clear_cpu(cpu, &hybrid_pmu(cpuc->pmu)->supported_cpus);
4525 }
4526 
4527 static void intel_pmu_sched_task(struct perf_event_context *ctx,
4528 				 bool sched_in)
4529 {
4530 	intel_pmu_pebs_sched_task(ctx, sched_in);
4531 	intel_pmu_lbr_sched_task(ctx, sched_in);
4532 }
4533 
4534 static void intel_pmu_swap_task_ctx(struct perf_event_context *prev,
4535 				    struct perf_event_context *next)
4536 {
4537 	intel_pmu_lbr_swap_task_ctx(prev, next);
4538 }
4539 
4540 static int intel_pmu_check_period(struct perf_event *event, u64 value)
4541 {
4542 	return intel_pmu_has_bts_period(event, value) ? -EINVAL : 0;
4543 }
4544 
4545 static void intel_aux_output_init(void)
4546 {
4547 	/* Refer also intel_pmu_aux_output_match() */
4548 	if (x86_pmu.intel_cap.pebs_output_pt_available)
4549 		x86_pmu.assign = intel_pmu_assign_event;
4550 }
4551 
4552 static int intel_pmu_aux_output_match(struct perf_event *event)
4553 {
4554 	/* intel_pmu_assign_event() is needed, refer intel_aux_output_init() */
4555 	if (!x86_pmu.intel_cap.pebs_output_pt_available)
4556 		return 0;
4557 
4558 	return is_intel_pt_event(event);
4559 }
4560 
4561 static int intel_pmu_filter_match(struct perf_event *event)
4562 {
4563 	struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
4564 	unsigned int cpu = smp_processor_id();
4565 
4566 	return cpumask_test_cpu(cpu, &pmu->supported_cpus);
4567 }
4568 
4569 PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
4570 
4571 PMU_FORMAT_ATTR(ldlat, "config1:0-15");
4572 
4573 PMU_FORMAT_ATTR(frontend, "config1:0-23");
4574 
4575 static struct attribute *intel_arch3_formats_attr[] = {
4576 	&format_attr_event.attr,
4577 	&format_attr_umask.attr,
4578 	&format_attr_edge.attr,
4579 	&format_attr_pc.attr,
4580 	&format_attr_any.attr,
4581 	&format_attr_inv.attr,
4582 	&format_attr_cmask.attr,
4583 	NULL,
4584 };
4585 
4586 static struct attribute *hsw_format_attr[] = {
4587 	&format_attr_in_tx.attr,
4588 	&format_attr_in_tx_cp.attr,
4589 	&format_attr_offcore_rsp.attr,
4590 	&format_attr_ldlat.attr,
4591 	NULL
4592 };
4593 
4594 static struct attribute *nhm_format_attr[] = {
4595 	&format_attr_offcore_rsp.attr,
4596 	&format_attr_ldlat.attr,
4597 	NULL
4598 };
4599 
4600 static struct attribute *slm_format_attr[] = {
4601 	&format_attr_offcore_rsp.attr,
4602 	NULL
4603 };
4604 
4605 static struct attribute *skl_format_attr[] = {
4606 	&format_attr_frontend.attr,
4607 	NULL,
4608 };
4609 
4610 static __initconst const struct x86_pmu core_pmu = {
4611 	.name			= "core",
4612 	.handle_irq		= x86_pmu_handle_irq,
4613 	.disable_all		= x86_pmu_disable_all,
4614 	.enable_all		= core_pmu_enable_all,
4615 	.enable			= core_pmu_enable_event,
4616 	.disable		= x86_pmu_disable_event,
4617 	.hw_config		= core_pmu_hw_config,
4618 	.schedule_events	= x86_schedule_events,
4619 	.eventsel		= MSR_ARCH_PERFMON_EVENTSEL0,
4620 	.perfctr		= MSR_ARCH_PERFMON_PERFCTR0,
4621 	.event_map		= intel_pmu_event_map,
4622 	.max_events		= ARRAY_SIZE(intel_perfmon_event_map),
4623 	.apic			= 1,
4624 	.large_pebs_flags	= LARGE_PEBS_FLAGS,
4625 
4626 	/*
4627 	 * Intel PMCs cannot be accessed sanely above 32-bit width,
4628 	 * so we install an artificial 1<<31 period regardless of
4629 	 * the generic event period:
4630 	 */
4631 	.max_period		= (1ULL<<31) - 1,
4632 	.get_event_constraints	= intel_get_event_constraints,
4633 	.put_event_constraints	= intel_put_event_constraints,
4634 	.event_constraints	= intel_core_event_constraints,
4635 	.guest_get_msrs		= core_guest_get_msrs,
4636 	.format_attrs		= intel_arch_formats_attr,
4637 	.events_sysfs_show	= intel_event_sysfs_show,
4638 
4639 	/*
4640 	 * Virtual (or funny metal) CPU can define x86_pmu.extra_regs
4641 	 * together with PMU version 1 and thus be using core_pmu with
4642 	 * shared_regs. We need following callbacks here to allocate
4643 	 * it properly.
4644 	 */
4645 	.cpu_prepare		= intel_pmu_cpu_prepare,
4646 	.cpu_starting		= intel_pmu_cpu_starting,
4647 	.cpu_dying		= intel_pmu_cpu_dying,
4648 	.cpu_dead		= intel_pmu_cpu_dead,
4649 
4650 	.check_period		= intel_pmu_check_period,
4651 
4652 	.lbr_reset		= intel_pmu_lbr_reset_64,
4653 	.lbr_read		= intel_pmu_lbr_read_64,
4654 	.lbr_save		= intel_pmu_lbr_save,
4655 	.lbr_restore		= intel_pmu_lbr_restore,
4656 };
4657 
4658 static __initconst const struct x86_pmu intel_pmu = {
4659 	.name			= "Intel",
4660 	.handle_irq		= intel_pmu_handle_irq,
4661 	.disable_all		= intel_pmu_disable_all,
4662 	.enable_all		= intel_pmu_enable_all,
4663 	.enable			= intel_pmu_enable_event,
4664 	.disable		= intel_pmu_disable_event,
4665 	.add			= intel_pmu_add_event,
4666 	.del			= intel_pmu_del_event,
4667 	.read			= intel_pmu_read_event,
4668 	.hw_config		= intel_pmu_hw_config,
4669 	.schedule_events	= x86_schedule_events,
4670 	.eventsel		= MSR_ARCH_PERFMON_EVENTSEL0,
4671 	.perfctr		= MSR_ARCH_PERFMON_PERFCTR0,
4672 	.event_map		= intel_pmu_event_map,
4673 	.max_events		= ARRAY_SIZE(intel_perfmon_event_map),
4674 	.apic			= 1,
4675 	.large_pebs_flags	= LARGE_PEBS_FLAGS,
4676 	/*
4677 	 * Intel PMCs cannot be accessed sanely above 32 bit width,
4678 	 * so we install an artificial 1<<31 period regardless of
4679 	 * the generic event period:
4680 	 */
4681 	.max_period		= (1ULL << 31) - 1,
4682 	.get_event_constraints	= intel_get_event_constraints,
4683 	.put_event_constraints	= intel_put_event_constraints,
4684 	.pebs_aliases		= intel_pebs_aliases_core2,
4685 
4686 	.format_attrs		= intel_arch3_formats_attr,
4687 	.events_sysfs_show	= intel_event_sysfs_show,
4688 
4689 	.cpu_prepare		= intel_pmu_cpu_prepare,
4690 	.cpu_starting		= intel_pmu_cpu_starting,
4691 	.cpu_dying		= intel_pmu_cpu_dying,
4692 	.cpu_dead		= intel_pmu_cpu_dead,
4693 
4694 	.guest_get_msrs		= intel_guest_get_msrs,
4695 	.sched_task		= intel_pmu_sched_task,
4696 	.swap_task_ctx		= intel_pmu_swap_task_ctx,
4697 
4698 	.check_period		= intel_pmu_check_period,
4699 
4700 	.aux_output_match	= intel_pmu_aux_output_match,
4701 
4702 	.lbr_reset		= intel_pmu_lbr_reset_64,
4703 	.lbr_read		= intel_pmu_lbr_read_64,
4704 	.lbr_save		= intel_pmu_lbr_save,
4705 	.lbr_restore		= intel_pmu_lbr_restore,
4706 
4707 	/*
4708 	 * SMM has access to all 4 rings and while traditionally SMM code only
4709 	 * ran in CPL0, 2021-era firmware is starting to make use of CPL3 in SMM.
4710 	 *
4711 	 * Since the EVENTSEL.{USR,OS} CPL filtering makes no distinction
4712 	 * between SMM or not, this results in what should be pure userspace
4713 	 * counters including SMM data.
4714 	 *
4715 	 * This is a clear privilege issue, therefore globally disable
4716 	 * counting SMM by default.
4717 	 */
4718 	.attr_freeze_on_smi	= 1,
4719 };
4720 
4721 static __init void intel_clovertown_quirk(void)
4722 {
4723 	/*
4724 	 * PEBS is unreliable due to:
4725 	 *
4726 	 *   AJ67  - PEBS may experience CPL leaks
4727 	 *   AJ68  - PEBS PMI may be delayed by one event
4728 	 *   AJ69  - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
4729 	 *   AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
4730 	 *
4731 	 * AJ67 could be worked around by restricting the OS/USR flags.
4732 	 * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
4733 	 *
4734 	 * AJ106 could possibly be worked around by not allowing LBR
4735 	 *       usage from PEBS, including the fixup.
4736 	 * AJ68  could possibly be worked around by always programming
4737 	 *	 a pebs_event_reset[0] value and coping with the lost events.
4738 	 *
4739 	 * But taken together it might just make sense to not enable PEBS on
4740 	 * these chips.
4741 	 */
4742 	pr_warn("PEBS disabled due to CPU errata\n");
4743 	x86_pmu.pebs = 0;
4744 	x86_pmu.pebs_constraints = NULL;
4745 }
4746 
4747 static const struct x86_cpu_desc isolation_ucodes[] = {
4748 	INTEL_CPU_DESC(INTEL_FAM6_HASWELL,		 3, 0x0000001f),
4749 	INTEL_CPU_DESC(INTEL_FAM6_HASWELL_L,		 1, 0x0000001e),
4750 	INTEL_CPU_DESC(INTEL_FAM6_HASWELL_G,		 1, 0x00000015),
4751 	INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X,		 2, 0x00000037),
4752 	INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X,		 4, 0x0000000a),
4753 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL,		 4, 0x00000023),
4754 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_G,		 1, 0x00000014),
4755 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,		 2, 0x00000010),
4756 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,		 3, 0x07000009),
4757 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,		 4, 0x0f000009),
4758 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,		 5, 0x0e000002),
4759 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_X,		 1, 0x0b000014),
4760 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,		 3, 0x00000021),
4761 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,		 4, 0x00000000),
4762 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,		 5, 0x00000000),
4763 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,		 6, 0x00000000),
4764 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,		 7, 0x00000000),
4765 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_L,		 3, 0x0000007c),
4766 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE,		 3, 0x0000007c),
4767 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,		 9, 0x0000004e),
4768 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,		 9, 0x0000004e),
4769 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,		10, 0x0000004e),
4770 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,		11, 0x0000004e),
4771 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,		12, 0x0000004e),
4772 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,		10, 0x0000004e),
4773 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,		11, 0x0000004e),
4774 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,		12, 0x0000004e),
4775 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,		13, 0x0000004e),
4776 	{}
4777 };
4778 
4779 static void intel_check_pebs_isolation(void)
4780 {
4781 	x86_pmu.pebs_no_isolation = !x86_cpu_has_min_microcode_rev(isolation_ucodes);
4782 }
4783 
4784 static __init void intel_pebs_isolation_quirk(void)
4785 {
4786 	WARN_ON_ONCE(x86_pmu.check_microcode);
4787 	x86_pmu.check_microcode = intel_check_pebs_isolation;
4788 	intel_check_pebs_isolation();
4789 }
4790 
4791 static const struct x86_cpu_desc pebs_ucodes[] = {
4792 	INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE,		7, 0x00000028),
4793 	INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X,	6, 0x00000618),
4794 	INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X,	7, 0x0000070c),
4795 	{}
4796 };
4797 
4798 static bool intel_snb_pebs_broken(void)
4799 {
4800 	return !x86_cpu_has_min_microcode_rev(pebs_ucodes);
4801 }
4802 
4803 static void intel_snb_check_microcode(void)
4804 {
4805 	if (intel_snb_pebs_broken() == x86_pmu.pebs_broken)
4806 		return;
4807 
4808 	/*
4809 	 * Serialized by the microcode lock..
4810 	 */
4811 	if (x86_pmu.pebs_broken) {
4812 		pr_info("PEBS enabled due to microcode update\n");
4813 		x86_pmu.pebs_broken = 0;
4814 	} else {
4815 		pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
4816 		x86_pmu.pebs_broken = 1;
4817 	}
4818 }
4819 
4820 static bool is_lbr_from(unsigned long msr)
4821 {
4822 	unsigned long lbr_from_nr = x86_pmu.lbr_from + x86_pmu.lbr_nr;
4823 
4824 	return x86_pmu.lbr_from <= msr && msr < lbr_from_nr;
4825 }
4826 
4827 /*
4828  * Under certain circumstances, access certain MSR may cause #GP.
4829  * The function tests if the input MSR can be safely accessed.
4830  */
4831 static bool check_msr(unsigned long msr, u64 mask)
4832 {
4833 	u64 val_old, val_new, val_tmp;
4834 
4835 	/*
4836 	 * Disable the check for real HW, so we don't
4837 	 * mess with potentially enabled registers:
4838 	 */
4839 	if (!boot_cpu_has(X86_FEATURE_HYPERVISOR))
4840 		return true;
4841 
4842 	/*
4843 	 * Read the current value, change it and read it back to see if it
4844 	 * matches, this is needed to detect certain hardware emulators
4845 	 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
4846 	 */
4847 	if (rdmsrl_safe(msr, &val_old))
4848 		return false;
4849 
4850 	/*
4851 	 * Only change the bits which can be updated by wrmsrl.
4852 	 */
4853 	val_tmp = val_old ^ mask;
4854 
4855 	if (is_lbr_from(msr))
4856 		val_tmp = lbr_from_signext_quirk_wr(val_tmp);
4857 
4858 	if (wrmsrl_safe(msr, val_tmp) ||
4859 	    rdmsrl_safe(msr, &val_new))
4860 		return false;
4861 
4862 	/*
4863 	 * Quirk only affects validation in wrmsr(), so wrmsrl()'s value
4864 	 * should equal rdmsrl()'s even with the quirk.
4865 	 */
4866 	if (val_new != val_tmp)
4867 		return false;
4868 
4869 	if (is_lbr_from(msr))
4870 		val_old = lbr_from_signext_quirk_wr(val_old);
4871 
4872 	/* Here it's sure that the MSR can be safely accessed.
4873 	 * Restore the old value and return.
4874 	 */
4875 	wrmsrl(msr, val_old);
4876 
4877 	return true;
4878 }
4879 
4880 static __init void intel_sandybridge_quirk(void)
4881 {
4882 	x86_pmu.check_microcode = intel_snb_check_microcode;
4883 	cpus_read_lock();
4884 	intel_snb_check_microcode();
4885 	cpus_read_unlock();
4886 }
4887 
4888 static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
4889 	{ PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
4890 	{ PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
4891 	{ PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
4892 	{ PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
4893 	{ PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
4894 	{ PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
4895 	{ PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
4896 };
4897 
4898 static __init void intel_arch_events_quirk(void)
4899 {
4900 	int bit;
4901 
4902 	/* disable event that reported as not present by cpuid */
4903 	for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
4904 		intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
4905 		pr_warn("CPUID marked event: \'%s\' unavailable\n",
4906 			intel_arch_events_map[bit].name);
4907 	}
4908 }
4909 
4910 static __init void intel_nehalem_quirk(void)
4911 {
4912 	union cpuid10_ebx ebx;
4913 
4914 	ebx.full = x86_pmu.events_maskl;
4915 	if (ebx.split.no_branch_misses_retired) {
4916 		/*
4917 		 * Erratum AAJ80 detected, we work it around by using
4918 		 * the BR_MISP_EXEC.ANY event. This will over-count
4919 		 * branch-misses, but it's still much better than the
4920 		 * architectural event which is often completely bogus:
4921 		 */
4922 		intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
4923 		ebx.split.no_branch_misses_retired = 0;
4924 		x86_pmu.events_maskl = ebx.full;
4925 		pr_info("CPU erratum AAJ80 worked around\n");
4926 	}
4927 }
4928 
4929 /*
4930  * enable software workaround for errata:
4931  * SNB: BJ122
4932  * IVB: BV98
4933  * HSW: HSD29
4934  *
4935  * Only needed when HT is enabled. However detecting
4936  * if HT is enabled is difficult (model specific). So instead,
4937  * we enable the workaround in the early boot, and verify if
4938  * it is needed in a later initcall phase once we have valid
4939  * topology information to check if HT is actually enabled
4940  */
4941 static __init void intel_ht_bug(void)
4942 {
4943 	x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED;
4944 
4945 	x86_pmu.start_scheduling = intel_start_scheduling;
4946 	x86_pmu.commit_scheduling = intel_commit_scheduling;
4947 	x86_pmu.stop_scheduling = intel_stop_scheduling;
4948 }
4949 
4950 EVENT_ATTR_STR(mem-loads,	mem_ld_hsw,	"event=0xcd,umask=0x1,ldlat=3");
4951 EVENT_ATTR_STR(mem-stores,	mem_st_hsw,	"event=0xd0,umask=0x82")
4952 
4953 /* Haswell special events */
4954 EVENT_ATTR_STR(tx-start,	tx_start,	"event=0xc9,umask=0x1");
4955 EVENT_ATTR_STR(tx-commit,	tx_commit,	"event=0xc9,umask=0x2");
4956 EVENT_ATTR_STR(tx-abort,	tx_abort,	"event=0xc9,umask=0x4");
4957 EVENT_ATTR_STR(tx-capacity,	tx_capacity,	"event=0x54,umask=0x2");
4958 EVENT_ATTR_STR(tx-conflict,	tx_conflict,	"event=0x54,umask=0x1");
4959 EVENT_ATTR_STR(el-start,	el_start,	"event=0xc8,umask=0x1");
4960 EVENT_ATTR_STR(el-commit,	el_commit,	"event=0xc8,umask=0x2");
4961 EVENT_ATTR_STR(el-abort,	el_abort,	"event=0xc8,umask=0x4");
4962 EVENT_ATTR_STR(el-capacity,	el_capacity,	"event=0x54,umask=0x2");
4963 EVENT_ATTR_STR(el-conflict,	el_conflict,	"event=0x54,umask=0x1");
4964 EVENT_ATTR_STR(cycles-t,	cycles_t,	"event=0x3c,in_tx=1");
4965 EVENT_ATTR_STR(cycles-ct,	cycles_ct,	"event=0x3c,in_tx=1,in_tx_cp=1");
4966 
4967 static struct attribute *hsw_events_attrs[] = {
4968 	EVENT_PTR(td_slots_issued),
4969 	EVENT_PTR(td_slots_retired),
4970 	EVENT_PTR(td_fetch_bubbles),
4971 	EVENT_PTR(td_total_slots),
4972 	EVENT_PTR(td_total_slots_scale),
4973 	EVENT_PTR(td_recovery_bubbles),
4974 	EVENT_PTR(td_recovery_bubbles_scale),
4975 	NULL
4976 };
4977 
4978 static struct attribute *hsw_mem_events_attrs[] = {
4979 	EVENT_PTR(mem_ld_hsw),
4980 	EVENT_PTR(mem_st_hsw),
4981 	NULL,
4982 };
4983 
4984 static struct attribute *hsw_tsx_events_attrs[] = {
4985 	EVENT_PTR(tx_start),
4986 	EVENT_PTR(tx_commit),
4987 	EVENT_PTR(tx_abort),
4988 	EVENT_PTR(tx_capacity),
4989 	EVENT_PTR(tx_conflict),
4990 	EVENT_PTR(el_start),
4991 	EVENT_PTR(el_commit),
4992 	EVENT_PTR(el_abort),
4993 	EVENT_PTR(el_capacity),
4994 	EVENT_PTR(el_conflict),
4995 	EVENT_PTR(cycles_t),
4996 	EVENT_PTR(cycles_ct),
4997 	NULL
4998 };
4999 
5000 EVENT_ATTR_STR(tx-capacity-read,  tx_capacity_read,  "event=0x54,umask=0x80");
5001 EVENT_ATTR_STR(tx-capacity-write, tx_capacity_write, "event=0x54,umask=0x2");
5002 EVENT_ATTR_STR(el-capacity-read,  el_capacity_read,  "event=0x54,umask=0x80");
5003 EVENT_ATTR_STR(el-capacity-write, el_capacity_write, "event=0x54,umask=0x2");
5004 
5005 static struct attribute *icl_events_attrs[] = {
5006 	EVENT_PTR(mem_ld_hsw),
5007 	EVENT_PTR(mem_st_hsw),
5008 	NULL,
5009 };
5010 
5011 static struct attribute *icl_td_events_attrs[] = {
5012 	EVENT_PTR(slots),
5013 	EVENT_PTR(td_retiring),
5014 	EVENT_PTR(td_bad_spec),
5015 	EVENT_PTR(td_fe_bound),
5016 	EVENT_PTR(td_be_bound),
5017 	NULL,
5018 };
5019 
5020 static struct attribute *icl_tsx_events_attrs[] = {
5021 	EVENT_PTR(tx_start),
5022 	EVENT_PTR(tx_abort),
5023 	EVENT_PTR(tx_commit),
5024 	EVENT_PTR(tx_capacity_read),
5025 	EVENT_PTR(tx_capacity_write),
5026 	EVENT_PTR(tx_conflict),
5027 	EVENT_PTR(el_start),
5028 	EVENT_PTR(el_abort),
5029 	EVENT_PTR(el_commit),
5030 	EVENT_PTR(el_capacity_read),
5031 	EVENT_PTR(el_capacity_write),
5032 	EVENT_PTR(el_conflict),
5033 	EVENT_PTR(cycles_t),
5034 	EVENT_PTR(cycles_ct),
5035 	NULL,
5036 };
5037 
5038 
5039 EVENT_ATTR_STR(mem-stores,	mem_st_spr,	"event=0xcd,umask=0x2");
5040 EVENT_ATTR_STR(mem-loads-aux,	mem_ld_aux,	"event=0x03,umask=0x82");
5041 
5042 static struct attribute *spr_events_attrs[] = {
5043 	EVENT_PTR(mem_ld_hsw),
5044 	EVENT_PTR(mem_st_spr),
5045 	EVENT_PTR(mem_ld_aux),
5046 	NULL,
5047 };
5048 
5049 static struct attribute *spr_td_events_attrs[] = {
5050 	EVENT_PTR(slots),
5051 	EVENT_PTR(td_retiring),
5052 	EVENT_PTR(td_bad_spec),
5053 	EVENT_PTR(td_fe_bound),
5054 	EVENT_PTR(td_be_bound),
5055 	EVENT_PTR(td_heavy_ops),
5056 	EVENT_PTR(td_br_mispredict),
5057 	EVENT_PTR(td_fetch_lat),
5058 	EVENT_PTR(td_mem_bound),
5059 	NULL,
5060 };
5061 
5062 static struct attribute *spr_tsx_events_attrs[] = {
5063 	EVENT_PTR(tx_start),
5064 	EVENT_PTR(tx_abort),
5065 	EVENT_PTR(tx_commit),
5066 	EVENT_PTR(tx_capacity_read),
5067 	EVENT_PTR(tx_capacity_write),
5068 	EVENT_PTR(tx_conflict),
5069 	EVENT_PTR(cycles_t),
5070 	EVENT_PTR(cycles_ct),
5071 	NULL,
5072 };
5073 
5074 static ssize_t freeze_on_smi_show(struct device *cdev,
5075 				  struct device_attribute *attr,
5076 				  char *buf)
5077 {
5078 	return sprintf(buf, "%lu\n", x86_pmu.attr_freeze_on_smi);
5079 }
5080 
5081 static DEFINE_MUTEX(freeze_on_smi_mutex);
5082 
5083 static ssize_t freeze_on_smi_store(struct device *cdev,
5084 				   struct device_attribute *attr,
5085 				   const char *buf, size_t count)
5086 {
5087 	unsigned long val;
5088 	ssize_t ret;
5089 
5090 	ret = kstrtoul(buf, 0, &val);
5091 	if (ret)
5092 		return ret;
5093 
5094 	if (val > 1)
5095 		return -EINVAL;
5096 
5097 	mutex_lock(&freeze_on_smi_mutex);
5098 
5099 	if (x86_pmu.attr_freeze_on_smi == val)
5100 		goto done;
5101 
5102 	x86_pmu.attr_freeze_on_smi = val;
5103 
5104 	cpus_read_lock();
5105 	on_each_cpu(flip_smm_bit, &val, 1);
5106 	cpus_read_unlock();
5107 done:
5108 	mutex_unlock(&freeze_on_smi_mutex);
5109 
5110 	return count;
5111 }
5112 
5113 static void update_tfa_sched(void *ignored)
5114 {
5115 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
5116 
5117 	/*
5118 	 * check if PMC3 is used
5119 	 * and if so force schedule out for all event types all contexts
5120 	 */
5121 	if (test_bit(3, cpuc->active_mask))
5122 		perf_pmu_resched(x86_get_pmu(smp_processor_id()));
5123 }
5124 
5125 static ssize_t show_sysctl_tfa(struct device *cdev,
5126 			      struct device_attribute *attr,
5127 			      char *buf)
5128 {
5129 	return snprintf(buf, 40, "%d\n", allow_tsx_force_abort);
5130 }
5131 
5132 static ssize_t set_sysctl_tfa(struct device *cdev,
5133 			      struct device_attribute *attr,
5134 			      const char *buf, size_t count)
5135 {
5136 	bool val;
5137 	ssize_t ret;
5138 
5139 	ret = kstrtobool(buf, &val);
5140 	if (ret)
5141 		return ret;
5142 
5143 	/* no change */
5144 	if (val == allow_tsx_force_abort)
5145 		return count;
5146 
5147 	allow_tsx_force_abort = val;
5148 
5149 	cpus_read_lock();
5150 	on_each_cpu(update_tfa_sched, NULL, 1);
5151 	cpus_read_unlock();
5152 
5153 	return count;
5154 }
5155 
5156 
5157 static DEVICE_ATTR_RW(freeze_on_smi);
5158 
5159 static ssize_t branches_show(struct device *cdev,
5160 			     struct device_attribute *attr,
5161 			     char *buf)
5162 {
5163 	return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu.lbr_nr);
5164 }
5165 
5166 static DEVICE_ATTR_RO(branches);
5167 
5168 static struct attribute *lbr_attrs[] = {
5169 	&dev_attr_branches.attr,
5170 	NULL
5171 };
5172 
5173 static char pmu_name_str[30];
5174 
5175 static ssize_t pmu_name_show(struct device *cdev,
5176 			     struct device_attribute *attr,
5177 			     char *buf)
5178 {
5179 	return snprintf(buf, PAGE_SIZE, "%s\n", pmu_name_str);
5180 }
5181 
5182 static DEVICE_ATTR_RO(pmu_name);
5183 
5184 static struct attribute *intel_pmu_caps_attrs[] = {
5185        &dev_attr_pmu_name.attr,
5186        NULL
5187 };
5188 
5189 static DEVICE_ATTR(allow_tsx_force_abort, 0644,
5190 		   show_sysctl_tfa,
5191 		   set_sysctl_tfa);
5192 
5193 static struct attribute *intel_pmu_attrs[] = {
5194 	&dev_attr_freeze_on_smi.attr,
5195 	&dev_attr_allow_tsx_force_abort.attr,
5196 	NULL,
5197 };
5198 
5199 static umode_t
5200 tsx_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5201 {
5202 	return boot_cpu_has(X86_FEATURE_RTM) ? attr->mode : 0;
5203 }
5204 
5205 static umode_t
5206 pebs_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5207 {
5208 	return x86_pmu.pebs ? attr->mode : 0;
5209 }
5210 
5211 static umode_t
5212 lbr_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5213 {
5214 	return x86_pmu.lbr_nr ? attr->mode : 0;
5215 }
5216 
5217 static umode_t
5218 exra_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5219 {
5220 	return x86_pmu.version >= 2 ? attr->mode : 0;
5221 }
5222 
5223 static umode_t
5224 default_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5225 {
5226 	if (attr == &dev_attr_allow_tsx_force_abort.attr)
5227 		return x86_pmu.flags & PMU_FL_TFA ? attr->mode : 0;
5228 
5229 	return attr->mode;
5230 }
5231 
5232 static struct attribute_group group_events_td  = {
5233 	.name = "events",
5234 };
5235 
5236 static struct attribute_group group_events_mem = {
5237 	.name       = "events",
5238 	.is_visible = pebs_is_visible,
5239 };
5240 
5241 static struct attribute_group group_events_tsx = {
5242 	.name       = "events",
5243 	.is_visible = tsx_is_visible,
5244 };
5245 
5246 static struct attribute_group group_caps_gen = {
5247 	.name  = "caps",
5248 	.attrs = intel_pmu_caps_attrs,
5249 };
5250 
5251 static struct attribute_group group_caps_lbr = {
5252 	.name       = "caps",
5253 	.attrs	    = lbr_attrs,
5254 	.is_visible = lbr_is_visible,
5255 };
5256 
5257 static struct attribute_group group_format_extra = {
5258 	.name       = "format",
5259 	.is_visible = exra_is_visible,
5260 };
5261 
5262 static struct attribute_group group_format_extra_skl = {
5263 	.name       = "format",
5264 	.is_visible = exra_is_visible,
5265 };
5266 
5267 static struct attribute_group group_default = {
5268 	.attrs      = intel_pmu_attrs,
5269 	.is_visible = default_is_visible,
5270 };
5271 
5272 static const struct attribute_group *attr_update[] = {
5273 	&group_events_td,
5274 	&group_events_mem,
5275 	&group_events_tsx,
5276 	&group_caps_gen,
5277 	&group_caps_lbr,
5278 	&group_format_extra,
5279 	&group_format_extra_skl,
5280 	&group_default,
5281 	NULL,
5282 };
5283 
5284 EVENT_ATTR_STR_HYBRID(slots,                 slots_adl,        "event=0x00,umask=0x4",                       hybrid_big);
5285 EVENT_ATTR_STR_HYBRID(topdown-retiring,      td_retiring_adl,  "event=0xc2,umask=0x0;event=0x00,umask=0x80", hybrid_big_small);
5286 EVENT_ATTR_STR_HYBRID(topdown-bad-spec,      td_bad_spec_adl,  "event=0x73,umask=0x0;event=0x00,umask=0x81", hybrid_big_small);
5287 EVENT_ATTR_STR_HYBRID(topdown-fe-bound,      td_fe_bound_adl,  "event=0x71,umask=0x0;event=0x00,umask=0x82", hybrid_big_small);
5288 EVENT_ATTR_STR_HYBRID(topdown-be-bound,      td_be_bound_adl,  "event=0x74,umask=0x0;event=0x00,umask=0x83", hybrid_big_small);
5289 EVENT_ATTR_STR_HYBRID(topdown-heavy-ops,     td_heavy_ops_adl, "event=0x00,umask=0x84",                      hybrid_big);
5290 EVENT_ATTR_STR_HYBRID(topdown-br-mispredict, td_br_mis_adl,    "event=0x00,umask=0x85",                      hybrid_big);
5291 EVENT_ATTR_STR_HYBRID(topdown-fetch-lat,     td_fetch_lat_adl, "event=0x00,umask=0x86",                      hybrid_big);
5292 EVENT_ATTR_STR_HYBRID(topdown-mem-bound,     td_mem_bound_adl, "event=0x00,umask=0x87",                      hybrid_big);
5293 
5294 static struct attribute *adl_hybrid_events_attrs[] = {
5295 	EVENT_PTR(slots_adl),
5296 	EVENT_PTR(td_retiring_adl),
5297 	EVENT_PTR(td_bad_spec_adl),
5298 	EVENT_PTR(td_fe_bound_adl),
5299 	EVENT_PTR(td_be_bound_adl),
5300 	EVENT_PTR(td_heavy_ops_adl),
5301 	EVENT_PTR(td_br_mis_adl),
5302 	EVENT_PTR(td_fetch_lat_adl),
5303 	EVENT_PTR(td_mem_bound_adl),
5304 	NULL,
5305 };
5306 
5307 /* Must be in IDX order */
5308 EVENT_ATTR_STR_HYBRID(mem-loads,     mem_ld_adl,     "event=0xd0,umask=0x5,ldlat=3;event=0xcd,umask=0x1,ldlat=3", hybrid_big_small);
5309 EVENT_ATTR_STR_HYBRID(mem-stores,    mem_st_adl,     "event=0xd0,umask=0x6;event=0xcd,umask=0x2",                 hybrid_big_small);
5310 EVENT_ATTR_STR_HYBRID(mem-loads-aux, mem_ld_aux_adl, "event=0x03,umask=0x82",                                     hybrid_big);
5311 
5312 static struct attribute *adl_hybrid_mem_attrs[] = {
5313 	EVENT_PTR(mem_ld_adl),
5314 	EVENT_PTR(mem_st_adl),
5315 	EVENT_PTR(mem_ld_aux_adl),
5316 	NULL,
5317 };
5318 
5319 EVENT_ATTR_STR_HYBRID(tx-start,          tx_start_adl,          "event=0xc9,umask=0x1",          hybrid_big);
5320 EVENT_ATTR_STR_HYBRID(tx-commit,         tx_commit_adl,         "event=0xc9,umask=0x2",          hybrid_big);
5321 EVENT_ATTR_STR_HYBRID(tx-abort,          tx_abort_adl,          "event=0xc9,umask=0x4",          hybrid_big);
5322 EVENT_ATTR_STR_HYBRID(tx-conflict,       tx_conflict_adl,       "event=0x54,umask=0x1",          hybrid_big);
5323 EVENT_ATTR_STR_HYBRID(cycles-t,          cycles_t_adl,          "event=0x3c,in_tx=1",            hybrid_big);
5324 EVENT_ATTR_STR_HYBRID(cycles-ct,         cycles_ct_adl,         "event=0x3c,in_tx=1,in_tx_cp=1", hybrid_big);
5325 EVENT_ATTR_STR_HYBRID(tx-capacity-read,  tx_capacity_read_adl,  "event=0x54,umask=0x80",         hybrid_big);
5326 EVENT_ATTR_STR_HYBRID(tx-capacity-write, tx_capacity_write_adl, "event=0x54,umask=0x2",          hybrid_big);
5327 
5328 static struct attribute *adl_hybrid_tsx_attrs[] = {
5329 	EVENT_PTR(tx_start_adl),
5330 	EVENT_PTR(tx_abort_adl),
5331 	EVENT_PTR(tx_commit_adl),
5332 	EVENT_PTR(tx_capacity_read_adl),
5333 	EVENT_PTR(tx_capacity_write_adl),
5334 	EVENT_PTR(tx_conflict_adl),
5335 	EVENT_PTR(cycles_t_adl),
5336 	EVENT_PTR(cycles_ct_adl),
5337 	NULL,
5338 };
5339 
5340 FORMAT_ATTR_HYBRID(in_tx,       hybrid_big);
5341 FORMAT_ATTR_HYBRID(in_tx_cp,    hybrid_big);
5342 FORMAT_ATTR_HYBRID(offcore_rsp, hybrid_big_small);
5343 FORMAT_ATTR_HYBRID(ldlat,       hybrid_big_small);
5344 FORMAT_ATTR_HYBRID(frontend,    hybrid_big);
5345 
5346 static struct attribute *adl_hybrid_extra_attr_rtm[] = {
5347 	FORMAT_HYBRID_PTR(in_tx),
5348 	FORMAT_HYBRID_PTR(in_tx_cp),
5349 	FORMAT_HYBRID_PTR(offcore_rsp),
5350 	FORMAT_HYBRID_PTR(ldlat),
5351 	FORMAT_HYBRID_PTR(frontend),
5352 	NULL,
5353 };
5354 
5355 static struct attribute *adl_hybrid_extra_attr[] = {
5356 	FORMAT_HYBRID_PTR(offcore_rsp),
5357 	FORMAT_HYBRID_PTR(ldlat),
5358 	FORMAT_HYBRID_PTR(frontend),
5359 	NULL,
5360 };
5361 
5362 static bool is_attr_for_this_pmu(struct kobject *kobj, struct attribute *attr)
5363 {
5364 	struct device *dev = kobj_to_dev(kobj);
5365 	struct x86_hybrid_pmu *pmu =
5366 		container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5367 	struct perf_pmu_events_hybrid_attr *pmu_attr =
5368 		container_of(attr, struct perf_pmu_events_hybrid_attr, attr.attr);
5369 
5370 	return pmu->cpu_type & pmu_attr->pmu_type;
5371 }
5372 
5373 static umode_t hybrid_events_is_visible(struct kobject *kobj,
5374 					struct attribute *attr, int i)
5375 {
5376 	return is_attr_for_this_pmu(kobj, attr) ? attr->mode : 0;
5377 }
5378 
5379 static inline int hybrid_find_supported_cpu(struct x86_hybrid_pmu *pmu)
5380 {
5381 	int cpu = cpumask_first(&pmu->supported_cpus);
5382 
5383 	return (cpu >= nr_cpu_ids) ? -1 : cpu;
5384 }
5385 
5386 static umode_t hybrid_tsx_is_visible(struct kobject *kobj,
5387 				     struct attribute *attr, int i)
5388 {
5389 	struct device *dev = kobj_to_dev(kobj);
5390 	struct x86_hybrid_pmu *pmu =
5391 		 container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5392 	int cpu = hybrid_find_supported_cpu(pmu);
5393 
5394 	return (cpu >= 0) && is_attr_for_this_pmu(kobj, attr) && cpu_has(&cpu_data(cpu), X86_FEATURE_RTM) ? attr->mode : 0;
5395 }
5396 
5397 static umode_t hybrid_format_is_visible(struct kobject *kobj,
5398 					struct attribute *attr, int i)
5399 {
5400 	struct device *dev = kobj_to_dev(kobj);
5401 	struct x86_hybrid_pmu *pmu =
5402 		container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5403 	struct perf_pmu_format_hybrid_attr *pmu_attr =
5404 		container_of(attr, struct perf_pmu_format_hybrid_attr, attr.attr);
5405 	int cpu = hybrid_find_supported_cpu(pmu);
5406 
5407 	return (cpu >= 0) && (pmu->cpu_type & pmu_attr->pmu_type) ? attr->mode : 0;
5408 }
5409 
5410 static struct attribute_group hybrid_group_events_td  = {
5411 	.name		= "events",
5412 	.is_visible	= hybrid_events_is_visible,
5413 };
5414 
5415 static struct attribute_group hybrid_group_events_mem = {
5416 	.name		= "events",
5417 	.is_visible	= hybrid_events_is_visible,
5418 };
5419 
5420 static struct attribute_group hybrid_group_events_tsx = {
5421 	.name		= "events",
5422 	.is_visible	= hybrid_tsx_is_visible,
5423 };
5424 
5425 static struct attribute_group hybrid_group_format_extra = {
5426 	.name		= "format",
5427 	.is_visible	= hybrid_format_is_visible,
5428 };
5429 
5430 static ssize_t intel_hybrid_get_attr_cpus(struct device *dev,
5431 					  struct device_attribute *attr,
5432 					  char *buf)
5433 {
5434 	struct x86_hybrid_pmu *pmu =
5435 		container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5436 
5437 	return cpumap_print_to_pagebuf(true, buf, &pmu->supported_cpus);
5438 }
5439 
5440 static DEVICE_ATTR(cpus, S_IRUGO, intel_hybrid_get_attr_cpus, NULL);
5441 static struct attribute *intel_hybrid_cpus_attrs[] = {
5442 	&dev_attr_cpus.attr,
5443 	NULL,
5444 };
5445 
5446 static struct attribute_group hybrid_group_cpus = {
5447 	.attrs		= intel_hybrid_cpus_attrs,
5448 };
5449 
5450 static const struct attribute_group *hybrid_attr_update[] = {
5451 	&hybrid_group_events_td,
5452 	&hybrid_group_events_mem,
5453 	&hybrid_group_events_tsx,
5454 	&group_caps_gen,
5455 	&group_caps_lbr,
5456 	&hybrid_group_format_extra,
5457 	&group_default,
5458 	&hybrid_group_cpus,
5459 	NULL,
5460 };
5461 
5462 static struct attribute *empty_attrs;
5463 
5464 static void intel_pmu_check_num_counters(int *num_counters,
5465 					 int *num_counters_fixed,
5466 					 u64 *intel_ctrl, u64 fixed_mask)
5467 {
5468 	if (*num_counters > INTEL_PMC_MAX_GENERIC) {
5469 		WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
5470 		     *num_counters, INTEL_PMC_MAX_GENERIC);
5471 		*num_counters = INTEL_PMC_MAX_GENERIC;
5472 	}
5473 	*intel_ctrl = (1ULL << *num_counters) - 1;
5474 
5475 	if (*num_counters_fixed > INTEL_PMC_MAX_FIXED) {
5476 		WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
5477 		     *num_counters_fixed, INTEL_PMC_MAX_FIXED);
5478 		*num_counters_fixed = INTEL_PMC_MAX_FIXED;
5479 	}
5480 
5481 	*intel_ctrl |= fixed_mask << INTEL_PMC_IDX_FIXED;
5482 }
5483 
5484 static void intel_pmu_check_event_constraints(struct event_constraint *event_constraints,
5485 					      int num_counters,
5486 					      int num_counters_fixed,
5487 					      u64 intel_ctrl)
5488 {
5489 	struct event_constraint *c;
5490 
5491 	if (!event_constraints)
5492 		return;
5493 
5494 	/*
5495 	 * event on fixed counter2 (REF_CYCLES) only works on this
5496 	 * counter, so do not extend mask to generic counters
5497 	 */
5498 	for_each_event_constraint(c, event_constraints) {
5499 		/*
5500 		 * Don't extend the topdown slots and metrics
5501 		 * events to the generic counters.
5502 		 */
5503 		if (c->idxmsk64 & INTEL_PMC_MSK_TOPDOWN) {
5504 			/*
5505 			 * Disable topdown slots and metrics events,
5506 			 * if slots event is not in CPUID.
5507 			 */
5508 			if (!(INTEL_PMC_MSK_FIXED_SLOTS & intel_ctrl))
5509 				c->idxmsk64 = 0;
5510 			c->weight = hweight64(c->idxmsk64);
5511 			continue;
5512 		}
5513 
5514 		if (c->cmask == FIXED_EVENT_FLAGS) {
5515 			/* Disabled fixed counters which are not in CPUID */
5516 			c->idxmsk64 &= intel_ctrl;
5517 
5518 			if (c->idxmsk64 != INTEL_PMC_MSK_FIXED_REF_CYCLES)
5519 				c->idxmsk64 |= (1ULL << num_counters) - 1;
5520 		}
5521 		c->idxmsk64 &=
5522 			~(~0ULL << (INTEL_PMC_IDX_FIXED + num_counters_fixed));
5523 		c->weight = hweight64(c->idxmsk64);
5524 	}
5525 }
5526 
5527 static void intel_pmu_check_extra_regs(struct extra_reg *extra_regs)
5528 {
5529 	struct extra_reg *er;
5530 
5531 	/*
5532 	 * Access extra MSR may cause #GP under certain circumstances.
5533 	 * E.g. KVM doesn't support offcore event
5534 	 * Check all extra_regs here.
5535 	 */
5536 	if (!extra_regs)
5537 		return;
5538 
5539 	for (er = extra_regs; er->msr; er++) {
5540 		er->extra_msr_access = check_msr(er->msr, 0x11UL);
5541 		/* Disable LBR select mapping */
5542 		if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
5543 			x86_pmu.lbr_sel_map = NULL;
5544 	}
5545 }
5546 
5547 static void intel_pmu_check_hybrid_pmus(u64 fixed_mask)
5548 {
5549 	struct x86_hybrid_pmu *pmu;
5550 	int i;
5551 
5552 	for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
5553 		pmu = &x86_pmu.hybrid_pmu[i];
5554 
5555 		intel_pmu_check_num_counters(&pmu->num_counters,
5556 					     &pmu->num_counters_fixed,
5557 					     &pmu->intel_ctrl,
5558 					     fixed_mask);
5559 
5560 		if (pmu->intel_cap.perf_metrics) {
5561 			pmu->intel_ctrl |= 1ULL << GLOBAL_CTRL_EN_PERF_METRICS;
5562 			pmu->intel_ctrl |= INTEL_PMC_MSK_FIXED_SLOTS;
5563 		}
5564 
5565 		if (pmu->intel_cap.pebs_output_pt_available)
5566 			pmu->pmu.capabilities |= PERF_PMU_CAP_AUX_OUTPUT;
5567 
5568 		intel_pmu_check_event_constraints(pmu->event_constraints,
5569 						  pmu->num_counters,
5570 						  pmu->num_counters_fixed,
5571 						  pmu->intel_ctrl);
5572 
5573 		intel_pmu_check_extra_regs(pmu->extra_regs);
5574 	}
5575 }
5576 
5577 __init int intel_pmu_init(void)
5578 {
5579 	struct attribute **extra_skl_attr = &empty_attrs;
5580 	struct attribute **extra_attr = &empty_attrs;
5581 	struct attribute **td_attr    = &empty_attrs;
5582 	struct attribute **mem_attr   = &empty_attrs;
5583 	struct attribute **tsx_attr   = &empty_attrs;
5584 	union cpuid10_edx edx;
5585 	union cpuid10_eax eax;
5586 	union cpuid10_ebx ebx;
5587 	unsigned int fixed_mask;
5588 	bool pmem = false;
5589 	int version, i;
5590 	char *name;
5591 	struct x86_hybrid_pmu *pmu;
5592 
5593 	if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
5594 		switch (boot_cpu_data.x86) {
5595 		case 0x6:
5596 			return p6_pmu_init();
5597 		case 0xb:
5598 			return knc_pmu_init();
5599 		case 0xf:
5600 			return p4_pmu_init();
5601 		}
5602 		return -ENODEV;
5603 	}
5604 
5605 	/*
5606 	 * Check whether the Architectural PerfMon supports
5607 	 * Branch Misses Retired hw_event or not.
5608 	 */
5609 	cpuid(10, &eax.full, &ebx.full, &fixed_mask, &edx.full);
5610 	if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
5611 		return -ENODEV;
5612 
5613 	version = eax.split.version_id;
5614 	if (version < 2)
5615 		x86_pmu = core_pmu;
5616 	else
5617 		x86_pmu = intel_pmu;
5618 
5619 	x86_pmu.version			= version;
5620 	x86_pmu.num_counters		= eax.split.num_counters;
5621 	x86_pmu.cntval_bits		= eax.split.bit_width;
5622 	x86_pmu.cntval_mask		= (1ULL << eax.split.bit_width) - 1;
5623 
5624 	x86_pmu.events_maskl		= ebx.full;
5625 	x86_pmu.events_mask_len		= eax.split.mask_length;
5626 
5627 	x86_pmu.max_pebs_events		= min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
5628 
5629 	/*
5630 	 * Quirk: v2 perfmon does not report fixed-purpose events, so
5631 	 * assume at least 3 events, when not running in a hypervisor:
5632 	 */
5633 	if (version > 1 && version < 5) {
5634 		int assume = 3 * !boot_cpu_has(X86_FEATURE_HYPERVISOR);
5635 
5636 		x86_pmu.num_counters_fixed =
5637 			max((int)edx.split.num_counters_fixed, assume);
5638 
5639 		fixed_mask = (1L << x86_pmu.num_counters_fixed) - 1;
5640 	} else if (version >= 5)
5641 		x86_pmu.num_counters_fixed = fls(fixed_mask);
5642 
5643 	if (boot_cpu_has(X86_FEATURE_PDCM)) {
5644 		u64 capabilities;
5645 
5646 		rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
5647 		x86_pmu.intel_cap.capabilities = capabilities;
5648 	}
5649 
5650 	if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32) {
5651 		x86_pmu.lbr_reset = intel_pmu_lbr_reset_32;
5652 		x86_pmu.lbr_read = intel_pmu_lbr_read_32;
5653 	}
5654 
5655 	if (boot_cpu_has(X86_FEATURE_ARCH_LBR))
5656 		intel_pmu_arch_lbr_init();
5657 
5658 	intel_ds_init();
5659 
5660 	x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
5661 
5662 	if (version >= 5) {
5663 		x86_pmu.intel_cap.anythread_deprecated = edx.split.anythread_deprecated;
5664 		if (x86_pmu.intel_cap.anythread_deprecated)
5665 			pr_cont(" AnyThread deprecated, ");
5666 	}
5667 
5668 	/*
5669 	 * Install the hw-cache-events table:
5670 	 */
5671 	switch (boot_cpu_data.x86_model) {
5672 	case INTEL_FAM6_CORE_YONAH:
5673 		pr_cont("Core events, ");
5674 		name = "core";
5675 		break;
5676 
5677 	case INTEL_FAM6_CORE2_MEROM:
5678 		x86_add_quirk(intel_clovertown_quirk);
5679 		fallthrough;
5680 
5681 	case INTEL_FAM6_CORE2_MEROM_L:
5682 	case INTEL_FAM6_CORE2_PENRYN:
5683 	case INTEL_FAM6_CORE2_DUNNINGTON:
5684 		memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
5685 		       sizeof(hw_cache_event_ids));
5686 
5687 		intel_pmu_lbr_init_core();
5688 
5689 		x86_pmu.event_constraints = intel_core2_event_constraints;
5690 		x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
5691 		pr_cont("Core2 events, ");
5692 		name = "core2";
5693 		break;
5694 
5695 	case INTEL_FAM6_NEHALEM:
5696 	case INTEL_FAM6_NEHALEM_EP:
5697 	case INTEL_FAM6_NEHALEM_EX:
5698 		memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
5699 		       sizeof(hw_cache_event_ids));
5700 		memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
5701 		       sizeof(hw_cache_extra_regs));
5702 
5703 		intel_pmu_lbr_init_nhm();
5704 
5705 		x86_pmu.event_constraints = intel_nehalem_event_constraints;
5706 		x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
5707 		x86_pmu.enable_all = intel_pmu_nhm_enable_all;
5708 		x86_pmu.extra_regs = intel_nehalem_extra_regs;
5709 		x86_pmu.limit_period = nhm_limit_period;
5710 
5711 		mem_attr = nhm_mem_events_attrs;
5712 
5713 		/* UOPS_ISSUED.STALLED_CYCLES */
5714 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
5715 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
5716 		/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
5717 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
5718 			X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
5719 
5720 		intel_pmu_pebs_data_source_nhm();
5721 		x86_add_quirk(intel_nehalem_quirk);
5722 		x86_pmu.pebs_no_tlb = 1;
5723 		extra_attr = nhm_format_attr;
5724 
5725 		pr_cont("Nehalem events, ");
5726 		name = "nehalem";
5727 		break;
5728 
5729 	case INTEL_FAM6_ATOM_BONNELL:
5730 	case INTEL_FAM6_ATOM_BONNELL_MID:
5731 	case INTEL_FAM6_ATOM_SALTWELL:
5732 	case INTEL_FAM6_ATOM_SALTWELL_MID:
5733 	case INTEL_FAM6_ATOM_SALTWELL_TABLET:
5734 		memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
5735 		       sizeof(hw_cache_event_ids));
5736 
5737 		intel_pmu_lbr_init_atom();
5738 
5739 		x86_pmu.event_constraints = intel_gen_event_constraints;
5740 		x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
5741 		x86_pmu.pebs_aliases = intel_pebs_aliases_core2;
5742 		pr_cont("Atom events, ");
5743 		name = "bonnell";
5744 		break;
5745 
5746 	case INTEL_FAM6_ATOM_SILVERMONT:
5747 	case INTEL_FAM6_ATOM_SILVERMONT_D:
5748 	case INTEL_FAM6_ATOM_SILVERMONT_MID:
5749 	case INTEL_FAM6_ATOM_AIRMONT:
5750 	case INTEL_FAM6_ATOM_AIRMONT_MID:
5751 		memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
5752 			sizeof(hw_cache_event_ids));
5753 		memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
5754 		       sizeof(hw_cache_extra_regs));
5755 
5756 		intel_pmu_lbr_init_slm();
5757 
5758 		x86_pmu.event_constraints = intel_slm_event_constraints;
5759 		x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
5760 		x86_pmu.extra_regs = intel_slm_extra_regs;
5761 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5762 		td_attr = slm_events_attrs;
5763 		extra_attr = slm_format_attr;
5764 		pr_cont("Silvermont events, ");
5765 		name = "silvermont";
5766 		break;
5767 
5768 	case INTEL_FAM6_ATOM_GOLDMONT:
5769 	case INTEL_FAM6_ATOM_GOLDMONT_D:
5770 		memcpy(hw_cache_event_ids, glm_hw_cache_event_ids,
5771 		       sizeof(hw_cache_event_ids));
5772 		memcpy(hw_cache_extra_regs, glm_hw_cache_extra_regs,
5773 		       sizeof(hw_cache_extra_regs));
5774 
5775 		intel_pmu_lbr_init_skl();
5776 
5777 		x86_pmu.event_constraints = intel_slm_event_constraints;
5778 		x86_pmu.pebs_constraints = intel_glm_pebs_event_constraints;
5779 		x86_pmu.extra_regs = intel_glm_extra_regs;
5780 		/*
5781 		 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
5782 		 * for precise cycles.
5783 		 * :pp is identical to :ppp
5784 		 */
5785 		x86_pmu.pebs_aliases = NULL;
5786 		x86_pmu.pebs_prec_dist = true;
5787 		x86_pmu.lbr_pt_coexist = true;
5788 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5789 		td_attr = glm_events_attrs;
5790 		extra_attr = slm_format_attr;
5791 		pr_cont("Goldmont events, ");
5792 		name = "goldmont";
5793 		break;
5794 
5795 	case INTEL_FAM6_ATOM_GOLDMONT_PLUS:
5796 		memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
5797 		       sizeof(hw_cache_event_ids));
5798 		memcpy(hw_cache_extra_regs, glp_hw_cache_extra_regs,
5799 		       sizeof(hw_cache_extra_regs));
5800 
5801 		intel_pmu_lbr_init_skl();
5802 
5803 		x86_pmu.event_constraints = intel_slm_event_constraints;
5804 		x86_pmu.extra_regs = intel_glm_extra_regs;
5805 		/*
5806 		 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
5807 		 * for precise cycles.
5808 		 */
5809 		x86_pmu.pebs_aliases = NULL;
5810 		x86_pmu.pebs_prec_dist = true;
5811 		x86_pmu.lbr_pt_coexist = true;
5812 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5813 		x86_pmu.flags |= PMU_FL_PEBS_ALL;
5814 		x86_pmu.get_event_constraints = glp_get_event_constraints;
5815 		td_attr = glm_events_attrs;
5816 		/* Goldmont Plus has 4-wide pipeline */
5817 		event_attr_td_total_slots_scale_glm.event_str = "4";
5818 		extra_attr = slm_format_attr;
5819 		pr_cont("Goldmont plus events, ");
5820 		name = "goldmont_plus";
5821 		break;
5822 
5823 	case INTEL_FAM6_ATOM_TREMONT_D:
5824 	case INTEL_FAM6_ATOM_TREMONT:
5825 	case INTEL_FAM6_ATOM_TREMONT_L:
5826 		x86_pmu.late_ack = true;
5827 		memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
5828 		       sizeof(hw_cache_event_ids));
5829 		memcpy(hw_cache_extra_regs, tnt_hw_cache_extra_regs,
5830 		       sizeof(hw_cache_extra_regs));
5831 		hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
5832 
5833 		intel_pmu_lbr_init_skl();
5834 
5835 		x86_pmu.event_constraints = intel_slm_event_constraints;
5836 		x86_pmu.extra_regs = intel_tnt_extra_regs;
5837 		/*
5838 		 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
5839 		 * for precise cycles.
5840 		 */
5841 		x86_pmu.pebs_aliases = NULL;
5842 		x86_pmu.pebs_prec_dist = true;
5843 		x86_pmu.lbr_pt_coexist = true;
5844 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5845 		x86_pmu.get_event_constraints = tnt_get_event_constraints;
5846 		td_attr = tnt_events_attrs;
5847 		extra_attr = slm_format_attr;
5848 		pr_cont("Tremont events, ");
5849 		name = "Tremont";
5850 		break;
5851 
5852 	case INTEL_FAM6_WESTMERE:
5853 	case INTEL_FAM6_WESTMERE_EP:
5854 	case INTEL_FAM6_WESTMERE_EX:
5855 		memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
5856 		       sizeof(hw_cache_event_ids));
5857 		memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
5858 		       sizeof(hw_cache_extra_regs));
5859 
5860 		intel_pmu_lbr_init_nhm();
5861 
5862 		x86_pmu.event_constraints = intel_westmere_event_constraints;
5863 		x86_pmu.enable_all = intel_pmu_nhm_enable_all;
5864 		x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
5865 		x86_pmu.extra_regs = intel_westmere_extra_regs;
5866 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5867 
5868 		mem_attr = nhm_mem_events_attrs;
5869 
5870 		/* UOPS_ISSUED.STALLED_CYCLES */
5871 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
5872 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
5873 		/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
5874 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
5875 			X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
5876 
5877 		intel_pmu_pebs_data_source_nhm();
5878 		extra_attr = nhm_format_attr;
5879 		pr_cont("Westmere events, ");
5880 		name = "westmere";
5881 		break;
5882 
5883 	case INTEL_FAM6_SANDYBRIDGE:
5884 	case INTEL_FAM6_SANDYBRIDGE_X:
5885 		x86_add_quirk(intel_sandybridge_quirk);
5886 		x86_add_quirk(intel_ht_bug);
5887 		memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
5888 		       sizeof(hw_cache_event_ids));
5889 		memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
5890 		       sizeof(hw_cache_extra_regs));
5891 
5892 		intel_pmu_lbr_init_snb();
5893 
5894 		x86_pmu.event_constraints = intel_snb_event_constraints;
5895 		x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
5896 		x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
5897 		if (boot_cpu_data.x86_model == INTEL_FAM6_SANDYBRIDGE_X)
5898 			x86_pmu.extra_regs = intel_snbep_extra_regs;
5899 		else
5900 			x86_pmu.extra_regs = intel_snb_extra_regs;
5901 
5902 
5903 		/* all extra regs are per-cpu when HT is on */
5904 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5905 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5906 
5907 		td_attr  = snb_events_attrs;
5908 		mem_attr = snb_mem_events_attrs;
5909 
5910 		/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
5911 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
5912 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
5913 		/* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
5914 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
5915 			X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
5916 
5917 		extra_attr = nhm_format_attr;
5918 
5919 		pr_cont("SandyBridge events, ");
5920 		name = "sandybridge";
5921 		break;
5922 
5923 	case INTEL_FAM6_IVYBRIDGE:
5924 	case INTEL_FAM6_IVYBRIDGE_X:
5925 		x86_add_quirk(intel_ht_bug);
5926 		memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
5927 		       sizeof(hw_cache_event_ids));
5928 		/* dTLB-load-misses on IVB is different than SNB */
5929 		hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
5930 
5931 		memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
5932 		       sizeof(hw_cache_extra_regs));
5933 
5934 		intel_pmu_lbr_init_snb();
5935 
5936 		x86_pmu.event_constraints = intel_ivb_event_constraints;
5937 		x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
5938 		x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
5939 		x86_pmu.pebs_prec_dist = true;
5940 		if (boot_cpu_data.x86_model == INTEL_FAM6_IVYBRIDGE_X)
5941 			x86_pmu.extra_regs = intel_snbep_extra_regs;
5942 		else
5943 			x86_pmu.extra_regs = intel_snb_extra_regs;
5944 		/* all extra regs are per-cpu when HT is on */
5945 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5946 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5947 
5948 		td_attr  = snb_events_attrs;
5949 		mem_attr = snb_mem_events_attrs;
5950 
5951 		/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
5952 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
5953 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
5954 
5955 		extra_attr = nhm_format_attr;
5956 
5957 		pr_cont("IvyBridge events, ");
5958 		name = "ivybridge";
5959 		break;
5960 
5961 
5962 	case INTEL_FAM6_HASWELL:
5963 	case INTEL_FAM6_HASWELL_X:
5964 	case INTEL_FAM6_HASWELL_L:
5965 	case INTEL_FAM6_HASWELL_G:
5966 		x86_add_quirk(intel_ht_bug);
5967 		x86_add_quirk(intel_pebs_isolation_quirk);
5968 		x86_pmu.late_ack = true;
5969 		memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
5970 		memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
5971 
5972 		intel_pmu_lbr_init_hsw();
5973 
5974 		x86_pmu.event_constraints = intel_hsw_event_constraints;
5975 		x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
5976 		x86_pmu.extra_regs = intel_snbep_extra_regs;
5977 		x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
5978 		x86_pmu.pebs_prec_dist = true;
5979 		/* all extra regs are per-cpu when HT is on */
5980 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5981 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5982 
5983 		x86_pmu.hw_config = hsw_hw_config;
5984 		x86_pmu.get_event_constraints = hsw_get_event_constraints;
5985 		x86_pmu.lbr_double_abort = true;
5986 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
5987 			hsw_format_attr : nhm_format_attr;
5988 		td_attr  = hsw_events_attrs;
5989 		mem_attr = hsw_mem_events_attrs;
5990 		tsx_attr = hsw_tsx_events_attrs;
5991 		pr_cont("Haswell events, ");
5992 		name = "haswell";
5993 		break;
5994 
5995 	case INTEL_FAM6_BROADWELL:
5996 	case INTEL_FAM6_BROADWELL_D:
5997 	case INTEL_FAM6_BROADWELL_G:
5998 	case INTEL_FAM6_BROADWELL_X:
5999 		x86_add_quirk(intel_pebs_isolation_quirk);
6000 		x86_pmu.late_ack = true;
6001 		memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6002 		memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6003 
6004 		/* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
6005 		hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
6006 									 BDW_L3_MISS|HSW_SNOOP_DRAM;
6007 		hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
6008 									  HSW_SNOOP_DRAM;
6009 		hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
6010 									     BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
6011 		hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
6012 									      BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
6013 
6014 		intel_pmu_lbr_init_hsw();
6015 
6016 		x86_pmu.event_constraints = intel_bdw_event_constraints;
6017 		x86_pmu.pebs_constraints = intel_bdw_pebs_event_constraints;
6018 		x86_pmu.extra_regs = intel_snbep_extra_regs;
6019 		x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
6020 		x86_pmu.pebs_prec_dist = true;
6021 		/* all extra regs are per-cpu when HT is on */
6022 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6023 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6024 
6025 		x86_pmu.hw_config = hsw_hw_config;
6026 		x86_pmu.get_event_constraints = hsw_get_event_constraints;
6027 		x86_pmu.limit_period = bdw_limit_period;
6028 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6029 			hsw_format_attr : nhm_format_attr;
6030 		td_attr  = hsw_events_attrs;
6031 		mem_attr = hsw_mem_events_attrs;
6032 		tsx_attr = hsw_tsx_events_attrs;
6033 		pr_cont("Broadwell events, ");
6034 		name = "broadwell";
6035 		break;
6036 
6037 	case INTEL_FAM6_XEON_PHI_KNL:
6038 	case INTEL_FAM6_XEON_PHI_KNM:
6039 		memcpy(hw_cache_event_ids,
6040 		       slm_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6041 		memcpy(hw_cache_extra_regs,
6042 		       knl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6043 		intel_pmu_lbr_init_knl();
6044 
6045 		x86_pmu.event_constraints = intel_slm_event_constraints;
6046 		x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
6047 		x86_pmu.extra_regs = intel_knl_extra_regs;
6048 
6049 		/* all extra regs are per-cpu when HT is on */
6050 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6051 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6052 		extra_attr = slm_format_attr;
6053 		pr_cont("Knights Landing/Mill events, ");
6054 		name = "knights-landing";
6055 		break;
6056 
6057 	case INTEL_FAM6_SKYLAKE_X:
6058 		pmem = true;
6059 		fallthrough;
6060 	case INTEL_FAM6_SKYLAKE_L:
6061 	case INTEL_FAM6_SKYLAKE:
6062 	case INTEL_FAM6_KABYLAKE_L:
6063 	case INTEL_FAM6_KABYLAKE:
6064 	case INTEL_FAM6_COMETLAKE_L:
6065 	case INTEL_FAM6_COMETLAKE:
6066 		x86_add_quirk(intel_pebs_isolation_quirk);
6067 		x86_pmu.late_ack = true;
6068 		memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6069 		memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6070 		intel_pmu_lbr_init_skl();
6071 
6072 		/* INT_MISC.RECOVERY_CYCLES has umask 1 in Skylake */
6073 		event_attr_td_recovery_bubbles.event_str_noht =
6074 			"event=0xd,umask=0x1,cmask=1";
6075 		event_attr_td_recovery_bubbles.event_str_ht =
6076 			"event=0xd,umask=0x1,cmask=1,any=1";
6077 
6078 		x86_pmu.event_constraints = intel_skl_event_constraints;
6079 		x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints;
6080 		x86_pmu.extra_regs = intel_skl_extra_regs;
6081 		x86_pmu.pebs_aliases = intel_pebs_aliases_skl;
6082 		x86_pmu.pebs_prec_dist = true;
6083 		/* all extra regs are per-cpu when HT is on */
6084 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6085 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6086 
6087 		x86_pmu.hw_config = hsw_hw_config;
6088 		x86_pmu.get_event_constraints = hsw_get_event_constraints;
6089 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6090 			hsw_format_attr : nhm_format_attr;
6091 		extra_skl_attr = skl_format_attr;
6092 		td_attr  = hsw_events_attrs;
6093 		mem_attr = hsw_mem_events_attrs;
6094 		tsx_attr = hsw_tsx_events_attrs;
6095 		intel_pmu_pebs_data_source_skl(pmem);
6096 
6097 		/*
6098 		 * Processors with CPUID.RTM_ALWAYS_ABORT have TSX deprecated by default.
6099 		 * TSX force abort hooks are not required on these systems. Only deploy
6100 		 * workaround when microcode has not enabled X86_FEATURE_RTM_ALWAYS_ABORT.
6101 		 */
6102 		if (boot_cpu_has(X86_FEATURE_TSX_FORCE_ABORT) &&
6103 		   !boot_cpu_has(X86_FEATURE_RTM_ALWAYS_ABORT)) {
6104 			x86_pmu.flags |= PMU_FL_TFA;
6105 			x86_pmu.get_event_constraints = tfa_get_event_constraints;
6106 			x86_pmu.enable_all = intel_tfa_pmu_enable_all;
6107 			x86_pmu.commit_scheduling = intel_tfa_commit_scheduling;
6108 		}
6109 
6110 		pr_cont("Skylake events, ");
6111 		name = "skylake";
6112 		break;
6113 
6114 	case INTEL_FAM6_ICELAKE_X:
6115 	case INTEL_FAM6_ICELAKE_D:
6116 		pmem = true;
6117 		fallthrough;
6118 	case INTEL_FAM6_ICELAKE_L:
6119 	case INTEL_FAM6_ICELAKE:
6120 	case INTEL_FAM6_TIGERLAKE_L:
6121 	case INTEL_FAM6_TIGERLAKE:
6122 	case INTEL_FAM6_ROCKETLAKE:
6123 		x86_pmu.late_ack = true;
6124 		memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6125 		memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6126 		hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
6127 		intel_pmu_lbr_init_skl();
6128 
6129 		x86_pmu.event_constraints = intel_icl_event_constraints;
6130 		x86_pmu.pebs_constraints = intel_icl_pebs_event_constraints;
6131 		x86_pmu.extra_regs = intel_icl_extra_regs;
6132 		x86_pmu.pebs_aliases = NULL;
6133 		x86_pmu.pebs_prec_dist = true;
6134 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6135 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6136 
6137 		x86_pmu.hw_config = hsw_hw_config;
6138 		x86_pmu.get_event_constraints = icl_get_event_constraints;
6139 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6140 			hsw_format_attr : nhm_format_attr;
6141 		extra_skl_attr = skl_format_attr;
6142 		mem_attr = icl_events_attrs;
6143 		td_attr = icl_td_events_attrs;
6144 		tsx_attr = icl_tsx_events_attrs;
6145 		x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
6146 		x86_pmu.lbr_pt_coexist = true;
6147 		intel_pmu_pebs_data_source_skl(pmem);
6148 		x86_pmu.num_topdown_events = 4;
6149 		x86_pmu.update_topdown_event = icl_update_topdown_event;
6150 		x86_pmu.set_topdown_event_period = icl_set_topdown_event_period;
6151 		pr_cont("Icelake events, ");
6152 		name = "icelake";
6153 		break;
6154 
6155 	case INTEL_FAM6_SAPPHIRERAPIDS_X:
6156 		pmem = true;
6157 		x86_pmu.late_ack = true;
6158 		memcpy(hw_cache_event_ids, spr_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6159 		memcpy(hw_cache_extra_regs, spr_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6160 
6161 		x86_pmu.event_constraints = intel_spr_event_constraints;
6162 		x86_pmu.pebs_constraints = intel_spr_pebs_event_constraints;
6163 		x86_pmu.extra_regs = intel_spr_extra_regs;
6164 		x86_pmu.limit_period = spr_limit_period;
6165 		x86_pmu.pebs_aliases = NULL;
6166 		x86_pmu.pebs_prec_dist = true;
6167 		x86_pmu.pebs_block = true;
6168 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6169 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6170 		x86_pmu.flags |= PMU_FL_PEBS_ALL;
6171 		x86_pmu.flags |= PMU_FL_INSTR_LATENCY;
6172 		x86_pmu.flags |= PMU_FL_MEM_LOADS_AUX;
6173 
6174 		x86_pmu.hw_config = hsw_hw_config;
6175 		x86_pmu.get_event_constraints = spr_get_event_constraints;
6176 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6177 			hsw_format_attr : nhm_format_attr;
6178 		extra_skl_attr = skl_format_attr;
6179 		mem_attr = spr_events_attrs;
6180 		td_attr = spr_td_events_attrs;
6181 		tsx_attr = spr_tsx_events_attrs;
6182 		x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
6183 		x86_pmu.lbr_pt_coexist = true;
6184 		intel_pmu_pebs_data_source_skl(pmem);
6185 		x86_pmu.num_topdown_events = 8;
6186 		x86_pmu.update_topdown_event = icl_update_topdown_event;
6187 		x86_pmu.set_topdown_event_period = icl_set_topdown_event_period;
6188 		pr_cont("Sapphire Rapids events, ");
6189 		name = "sapphire_rapids";
6190 		break;
6191 
6192 	case INTEL_FAM6_ALDERLAKE:
6193 	case INTEL_FAM6_ALDERLAKE_L:
6194 		/*
6195 		 * Alder Lake has 2 types of CPU, core and atom.
6196 		 *
6197 		 * Initialize the common PerfMon capabilities here.
6198 		 */
6199 		x86_pmu.hybrid_pmu = kcalloc(X86_HYBRID_NUM_PMUS,
6200 					     sizeof(struct x86_hybrid_pmu),
6201 					     GFP_KERNEL);
6202 		if (!x86_pmu.hybrid_pmu)
6203 			return -ENOMEM;
6204 		static_branch_enable(&perf_is_hybrid);
6205 		x86_pmu.num_hybrid_pmus = X86_HYBRID_NUM_PMUS;
6206 
6207 		x86_pmu.pebs_aliases = NULL;
6208 		x86_pmu.pebs_prec_dist = true;
6209 		x86_pmu.pebs_block = true;
6210 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6211 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6212 		x86_pmu.flags |= PMU_FL_PEBS_ALL;
6213 		x86_pmu.flags |= PMU_FL_INSTR_LATENCY;
6214 		x86_pmu.flags |= PMU_FL_MEM_LOADS_AUX;
6215 		x86_pmu.lbr_pt_coexist = true;
6216 		intel_pmu_pebs_data_source_skl(false);
6217 		x86_pmu.num_topdown_events = 8;
6218 		x86_pmu.update_topdown_event = adl_update_topdown_event;
6219 		x86_pmu.set_topdown_event_period = adl_set_topdown_event_period;
6220 
6221 		x86_pmu.filter_match = intel_pmu_filter_match;
6222 		x86_pmu.get_event_constraints = adl_get_event_constraints;
6223 		x86_pmu.hw_config = adl_hw_config;
6224 		x86_pmu.limit_period = spr_limit_period;
6225 		x86_pmu.get_hybrid_cpu_type = adl_get_hybrid_cpu_type;
6226 		/*
6227 		 * The rtm_abort_event is used to check whether to enable GPRs
6228 		 * for the RTM abort event. Atom doesn't have the RTM abort
6229 		 * event. There is no harmful to set it in the common
6230 		 * x86_pmu.rtm_abort_event.
6231 		 */
6232 		x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
6233 
6234 		td_attr = adl_hybrid_events_attrs;
6235 		mem_attr = adl_hybrid_mem_attrs;
6236 		tsx_attr = adl_hybrid_tsx_attrs;
6237 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6238 			adl_hybrid_extra_attr_rtm : adl_hybrid_extra_attr;
6239 
6240 		/* Initialize big core specific PerfMon capabilities.*/
6241 		pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX];
6242 		pmu->name = "cpu_core";
6243 		pmu->cpu_type = hybrid_big;
6244 		pmu->late_ack = true;
6245 		if (cpu_feature_enabled(X86_FEATURE_HYBRID_CPU)) {
6246 			pmu->num_counters = x86_pmu.num_counters + 2;
6247 			pmu->num_counters_fixed = x86_pmu.num_counters_fixed + 1;
6248 		} else {
6249 			pmu->num_counters = x86_pmu.num_counters;
6250 			pmu->num_counters_fixed = x86_pmu.num_counters_fixed;
6251 		}
6252 
6253 		/*
6254 		 * Quirk: For some Alder Lake machine, when all E-cores are disabled in
6255 		 * a BIOS, the leaf 0xA will enumerate all counters of P-cores. However,
6256 		 * the X86_FEATURE_HYBRID_CPU is still set. The above codes will
6257 		 * mistakenly add extra counters for P-cores. Correct the number of
6258 		 * counters here.
6259 		 */
6260 		if ((pmu->num_counters > 8) || (pmu->num_counters_fixed > 4)) {
6261 			pmu->num_counters = x86_pmu.num_counters;
6262 			pmu->num_counters_fixed = x86_pmu.num_counters_fixed;
6263 		}
6264 
6265 		pmu->max_pebs_events = min_t(unsigned, MAX_PEBS_EVENTS, pmu->num_counters);
6266 		pmu->unconstrained = (struct event_constraint)
6267 					__EVENT_CONSTRAINT(0, (1ULL << pmu->num_counters) - 1,
6268 							   0, pmu->num_counters, 0, 0);
6269 		pmu->intel_cap.capabilities = x86_pmu.intel_cap.capabilities;
6270 		pmu->intel_cap.perf_metrics = 1;
6271 		pmu->intel_cap.pebs_output_pt_available = 0;
6272 
6273 		memcpy(pmu->hw_cache_event_ids, spr_hw_cache_event_ids, sizeof(pmu->hw_cache_event_ids));
6274 		memcpy(pmu->hw_cache_extra_regs, spr_hw_cache_extra_regs, sizeof(pmu->hw_cache_extra_regs));
6275 		pmu->event_constraints = intel_spr_event_constraints;
6276 		pmu->pebs_constraints = intel_spr_pebs_event_constraints;
6277 		pmu->extra_regs = intel_spr_extra_regs;
6278 
6279 		/* Initialize Atom core specific PerfMon capabilities.*/
6280 		pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX];
6281 		pmu->name = "cpu_atom";
6282 		pmu->cpu_type = hybrid_small;
6283 		pmu->mid_ack = true;
6284 		pmu->num_counters = x86_pmu.num_counters;
6285 		pmu->num_counters_fixed = x86_pmu.num_counters_fixed;
6286 		pmu->max_pebs_events = x86_pmu.max_pebs_events;
6287 		pmu->unconstrained = (struct event_constraint)
6288 					__EVENT_CONSTRAINT(0, (1ULL << pmu->num_counters) - 1,
6289 							   0, pmu->num_counters, 0, 0);
6290 		pmu->intel_cap.capabilities = x86_pmu.intel_cap.capabilities;
6291 		pmu->intel_cap.perf_metrics = 0;
6292 		pmu->intel_cap.pebs_output_pt_available = 1;
6293 
6294 		memcpy(pmu->hw_cache_event_ids, glp_hw_cache_event_ids, sizeof(pmu->hw_cache_event_ids));
6295 		memcpy(pmu->hw_cache_extra_regs, tnt_hw_cache_extra_regs, sizeof(pmu->hw_cache_extra_regs));
6296 		pmu->hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
6297 		pmu->event_constraints = intel_slm_event_constraints;
6298 		pmu->pebs_constraints = intel_grt_pebs_event_constraints;
6299 		pmu->extra_regs = intel_grt_extra_regs;
6300 		pr_cont("Alderlake Hybrid events, ");
6301 		name = "alderlake_hybrid";
6302 		break;
6303 
6304 	default:
6305 		switch (x86_pmu.version) {
6306 		case 1:
6307 			x86_pmu.event_constraints = intel_v1_event_constraints;
6308 			pr_cont("generic architected perfmon v1, ");
6309 			name = "generic_arch_v1";
6310 			break;
6311 		default:
6312 			/*
6313 			 * default constraints for v2 and up
6314 			 */
6315 			x86_pmu.event_constraints = intel_gen_event_constraints;
6316 			pr_cont("generic architected perfmon, ");
6317 			name = "generic_arch_v2+";
6318 			break;
6319 		}
6320 	}
6321 
6322 	snprintf(pmu_name_str, sizeof(pmu_name_str), "%s", name);
6323 
6324 	if (!is_hybrid()) {
6325 		group_events_td.attrs  = td_attr;
6326 		group_events_mem.attrs = mem_attr;
6327 		group_events_tsx.attrs = tsx_attr;
6328 		group_format_extra.attrs = extra_attr;
6329 		group_format_extra_skl.attrs = extra_skl_attr;
6330 
6331 		x86_pmu.attr_update = attr_update;
6332 	} else {
6333 		hybrid_group_events_td.attrs  = td_attr;
6334 		hybrid_group_events_mem.attrs = mem_attr;
6335 		hybrid_group_events_tsx.attrs = tsx_attr;
6336 		hybrid_group_format_extra.attrs = extra_attr;
6337 
6338 		x86_pmu.attr_update = hybrid_attr_update;
6339 	}
6340 
6341 	intel_pmu_check_num_counters(&x86_pmu.num_counters,
6342 				     &x86_pmu.num_counters_fixed,
6343 				     &x86_pmu.intel_ctrl,
6344 				     (u64)fixed_mask);
6345 
6346 	/* AnyThread may be deprecated on arch perfmon v5 or later */
6347 	if (x86_pmu.intel_cap.anythread_deprecated)
6348 		x86_pmu.format_attrs = intel_arch_formats_attr;
6349 
6350 	intel_pmu_check_event_constraints(x86_pmu.event_constraints,
6351 					  x86_pmu.num_counters,
6352 					  x86_pmu.num_counters_fixed,
6353 					  x86_pmu.intel_ctrl);
6354 	/*
6355 	 * Access LBR MSR may cause #GP under certain circumstances.
6356 	 * E.g. KVM doesn't support LBR MSR
6357 	 * Check all LBT MSR here.
6358 	 * Disable LBR access if any LBR MSRs can not be accessed.
6359 	 */
6360 	if (x86_pmu.lbr_tos && !check_msr(x86_pmu.lbr_tos, 0x3UL))
6361 		x86_pmu.lbr_nr = 0;
6362 	for (i = 0; i < x86_pmu.lbr_nr; i++) {
6363 		if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
6364 		      check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
6365 			x86_pmu.lbr_nr = 0;
6366 	}
6367 
6368 	if (x86_pmu.lbr_nr) {
6369 		intel_pmu_lbr_init();
6370 
6371 		pr_cont("%d-deep LBR, ", x86_pmu.lbr_nr);
6372 
6373 		/* only support branch_stack snapshot for perfmon >= v2 */
6374 		if (x86_pmu.disable_all == intel_pmu_disable_all) {
6375 			if (boot_cpu_has(X86_FEATURE_ARCH_LBR)) {
6376 				static_call_update(perf_snapshot_branch_stack,
6377 						   intel_pmu_snapshot_arch_branch_stack);
6378 			} else {
6379 				static_call_update(perf_snapshot_branch_stack,
6380 						   intel_pmu_snapshot_branch_stack);
6381 			}
6382 		}
6383 	}
6384 
6385 	intel_pmu_check_extra_regs(x86_pmu.extra_regs);
6386 
6387 	/* Support full width counters using alternative MSR range */
6388 	if (x86_pmu.intel_cap.full_width_write) {
6389 		x86_pmu.max_period = x86_pmu.cntval_mask >> 1;
6390 		x86_pmu.perfctr = MSR_IA32_PMC0;
6391 		pr_cont("full-width counters, ");
6392 	}
6393 
6394 	if (!is_hybrid() && x86_pmu.intel_cap.perf_metrics)
6395 		x86_pmu.intel_ctrl |= 1ULL << GLOBAL_CTRL_EN_PERF_METRICS;
6396 
6397 	if (is_hybrid())
6398 		intel_pmu_check_hybrid_pmus((u64)fixed_mask);
6399 
6400 	intel_aux_output_init();
6401 
6402 	return 0;
6403 }
6404 
6405 /*
6406  * HT bug: phase 2 init
6407  * Called once we have valid topology information to check
6408  * whether or not HT is enabled
6409  * If HT is off, then we disable the workaround
6410  */
6411 static __init int fixup_ht_bug(void)
6412 {
6413 	int c;
6414 	/*
6415 	 * problem not present on this CPU model, nothing to do
6416 	 */
6417 	if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED))
6418 		return 0;
6419 
6420 	if (topology_max_smt_threads() > 1) {
6421 		pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
6422 		return 0;
6423 	}
6424 
6425 	cpus_read_lock();
6426 
6427 	hardlockup_detector_perf_stop();
6428 
6429 	x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED);
6430 
6431 	x86_pmu.start_scheduling = NULL;
6432 	x86_pmu.commit_scheduling = NULL;
6433 	x86_pmu.stop_scheduling = NULL;
6434 
6435 	hardlockup_detector_perf_restart();
6436 
6437 	for_each_online_cpu(c)
6438 		free_excl_cntrs(&per_cpu(cpu_hw_events, c));
6439 
6440 	cpus_read_unlock();
6441 	pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
6442 	return 0;
6443 }
6444 subsys_initcall(fixup_ht_bug)
6445