1 /* 2 * Per core/cpu state 3 * 4 * Used to coordinate shared registers between HT threads or 5 * among events on a single PMU. 6 */ 7 8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 9 10 #include <linux/stddef.h> 11 #include <linux/types.h> 12 #include <linux/init.h> 13 #include <linux/slab.h> 14 #include <linux/export.h> 15 #include <linux/nmi.h> 16 17 #include <asm/cpufeature.h> 18 #include <asm/hardirq.h> 19 #include <asm/intel-family.h> 20 #include <asm/apic.h> 21 22 #include "../perf_event.h" 23 24 /* 25 * Intel PerfMon, used on Core and later. 26 */ 27 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly = 28 { 29 [PERF_COUNT_HW_CPU_CYCLES] = 0x003c, 30 [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0, 31 [PERF_COUNT_HW_CACHE_REFERENCES] = 0x4f2e, 32 [PERF_COUNT_HW_CACHE_MISSES] = 0x412e, 33 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4, 34 [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5, 35 [PERF_COUNT_HW_BUS_CYCLES] = 0x013c, 36 [PERF_COUNT_HW_REF_CPU_CYCLES] = 0x0300, /* pseudo-encoding */ 37 }; 38 39 static struct event_constraint intel_core_event_constraints[] __read_mostly = 40 { 41 INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */ 42 INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */ 43 INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */ 44 INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */ 45 INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */ 46 INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */ 47 EVENT_CONSTRAINT_END 48 }; 49 50 static struct event_constraint intel_core2_event_constraints[] __read_mostly = 51 { 52 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ 53 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ 54 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ 55 INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */ 56 INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */ 57 INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */ 58 INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */ 59 INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */ 60 INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */ 61 INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */ 62 INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */ 63 INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */ 64 INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */ 65 EVENT_CONSTRAINT_END 66 }; 67 68 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly = 69 { 70 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ 71 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ 72 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ 73 INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */ 74 INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */ 75 INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */ 76 INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */ 77 INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */ 78 INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */ 79 INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */ 80 INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */ 81 EVENT_CONSTRAINT_END 82 }; 83 84 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly = 85 { 86 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */ 87 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0), 88 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b), 89 EVENT_EXTRA_END 90 }; 91 92 static struct event_constraint intel_westmere_event_constraints[] __read_mostly = 93 { 94 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ 95 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ 96 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ 97 INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */ 98 INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */ 99 INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */ 100 INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */ 101 EVENT_CONSTRAINT_END 102 }; 103 104 static struct event_constraint intel_snb_event_constraints[] __read_mostly = 105 { 106 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ 107 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ 108 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ 109 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */ 110 INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */ 111 INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */ 112 INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */ 113 INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */ 114 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */ 115 INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */ 116 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */ 117 INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */ 118 119 /* 120 * When HT is off these events can only run on the bottom 4 counters 121 * When HT is on, they are impacted by the HT bug and require EXCL access 122 */ 123 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */ 124 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */ 125 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */ 126 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */ 127 128 EVENT_CONSTRAINT_END 129 }; 130 131 static struct event_constraint intel_ivb_event_constraints[] __read_mostly = 132 { 133 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ 134 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ 135 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ 136 INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */ 137 INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMTPY */ 138 INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */ 139 INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */ 140 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */ 141 INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */ 142 INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */ 143 INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */ 144 INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */ 145 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */ 146 147 /* 148 * When HT is off these events can only run on the bottom 4 counters 149 * When HT is on, they are impacted by the HT bug and require EXCL access 150 */ 151 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */ 152 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */ 153 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */ 154 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */ 155 156 EVENT_CONSTRAINT_END 157 }; 158 159 static struct extra_reg intel_westmere_extra_regs[] __read_mostly = 160 { 161 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */ 162 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0), 163 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1), 164 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b), 165 EVENT_EXTRA_END 166 }; 167 168 static struct event_constraint intel_v1_event_constraints[] __read_mostly = 169 { 170 EVENT_CONSTRAINT_END 171 }; 172 173 static struct event_constraint intel_gen_event_constraints[] __read_mostly = 174 { 175 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ 176 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ 177 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ 178 EVENT_CONSTRAINT_END 179 }; 180 181 static struct event_constraint intel_slm_event_constraints[] __read_mostly = 182 { 183 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ 184 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ 185 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */ 186 EVENT_CONSTRAINT_END 187 }; 188 189 static struct event_constraint intel_skl_event_constraints[] = { 190 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ 191 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ 192 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ 193 INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2), /* INST_RETIRED.PREC_DIST */ 194 195 /* 196 * when HT is off, these can only run on the bottom 4 counters 197 */ 198 INTEL_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_INST_RETIRED.* */ 199 INTEL_EVENT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */ 200 INTEL_EVENT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */ 201 INTEL_EVENT_CONSTRAINT(0xcd, 0xf), /* MEM_TRANS_RETIRED.* */ 202 INTEL_EVENT_CONSTRAINT(0xc6, 0xf), /* FRONTEND_RETIRED.* */ 203 204 EVENT_CONSTRAINT_END 205 }; 206 207 static struct extra_reg intel_knl_extra_regs[] __read_mostly = { 208 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x799ffbb6e7ull, RSP_0), 209 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x399ffbffe7ull, RSP_1), 210 EVENT_EXTRA_END 211 }; 212 213 static struct extra_reg intel_snb_extra_regs[] __read_mostly = { 214 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */ 215 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0), 216 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1), 217 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd), 218 EVENT_EXTRA_END 219 }; 220 221 static struct extra_reg intel_snbep_extra_regs[] __read_mostly = { 222 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */ 223 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0), 224 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1), 225 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd), 226 EVENT_EXTRA_END 227 }; 228 229 static struct extra_reg intel_skl_extra_regs[] __read_mostly = { 230 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0), 231 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1), 232 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd), 233 /* 234 * Note the low 8 bits eventsel code is not a continuous field, containing 235 * some #GPing bits. These are masked out. 236 */ 237 INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE), 238 EVENT_EXTRA_END 239 }; 240 241 EVENT_ATTR_STR(mem-loads, mem_ld_nhm, "event=0x0b,umask=0x10,ldlat=3"); 242 EVENT_ATTR_STR(mem-loads, mem_ld_snb, "event=0xcd,umask=0x1,ldlat=3"); 243 EVENT_ATTR_STR(mem-stores, mem_st_snb, "event=0xcd,umask=0x2"); 244 245 static struct attribute *nhm_events_attrs[] = { 246 EVENT_PTR(mem_ld_nhm), 247 NULL, 248 }; 249 250 /* 251 * topdown events for Intel Core CPUs. 252 * 253 * The events are all in slots, which is a free slot in a 4 wide 254 * pipeline. Some events are already reported in slots, for cycle 255 * events we multiply by the pipeline width (4). 256 * 257 * With Hyper Threading on, topdown metrics are either summed or averaged 258 * between the threads of a core: (count_t0 + count_t1). 259 * 260 * For the average case the metric is always scaled to pipeline width, 261 * so we use factor 2 ((count_t0 + count_t1) / 2 * 4) 262 */ 263 264 EVENT_ATTR_STR_HT(topdown-total-slots, td_total_slots, 265 "event=0x3c,umask=0x0", /* cpu_clk_unhalted.thread */ 266 "event=0x3c,umask=0x0,any=1"); /* cpu_clk_unhalted.thread_any */ 267 EVENT_ATTR_STR_HT(topdown-total-slots.scale, td_total_slots_scale, "4", "2"); 268 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued, 269 "event=0xe,umask=0x1"); /* uops_issued.any */ 270 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired, 271 "event=0xc2,umask=0x2"); /* uops_retired.retire_slots */ 272 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles, 273 "event=0x9c,umask=0x1"); /* idq_uops_not_delivered_core */ 274 EVENT_ATTR_STR_HT(topdown-recovery-bubbles, td_recovery_bubbles, 275 "event=0xd,umask=0x3,cmask=1", /* int_misc.recovery_cycles */ 276 "event=0xd,umask=0x3,cmask=1,any=1"); /* int_misc.recovery_cycles_any */ 277 EVENT_ATTR_STR_HT(topdown-recovery-bubbles.scale, td_recovery_bubbles_scale, 278 "4", "2"); 279 280 static struct attribute *snb_events_attrs[] = { 281 EVENT_PTR(mem_ld_snb), 282 EVENT_PTR(mem_st_snb), 283 EVENT_PTR(td_slots_issued), 284 EVENT_PTR(td_slots_retired), 285 EVENT_PTR(td_fetch_bubbles), 286 EVENT_PTR(td_total_slots), 287 EVENT_PTR(td_total_slots_scale), 288 EVENT_PTR(td_recovery_bubbles), 289 EVENT_PTR(td_recovery_bubbles_scale), 290 NULL, 291 }; 292 293 static struct event_constraint intel_hsw_event_constraints[] = { 294 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ 295 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ 296 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ 297 INTEL_UEVENT_CONSTRAINT(0x148, 0x4), /* L1D_PEND_MISS.PENDING */ 298 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */ 299 INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */ 300 /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */ 301 INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), 302 /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */ 303 INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), 304 /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */ 305 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), 306 307 /* 308 * When HT is off these events can only run on the bottom 4 counters 309 * When HT is on, they are impacted by the HT bug and require EXCL access 310 */ 311 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */ 312 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */ 313 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */ 314 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */ 315 316 EVENT_CONSTRAINT_END 317 }; 318 319 static struct event_constraint intel_bdw_event_constraints[] = { 320 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ 321 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ 322 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ 323 INTEL_UEVENT_CONSTRAINT(0x148, 0x4), /* L1D_PEND_MISS.PENDING */ 324 INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_MISS */ 325 /* 326 * when HT is off, these can only run on the bottom 4 counters 327 */ 328 INTEL_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_INST_RETIRED.* */ 329 INTEL_EVENT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */ 330 INTEL_EVENT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */ 331 INTEL_EVENT_CONSTRAINT(0xcd, 0xf), /* MEM_TRANS_RETIRED.* */ 332 EVENT_CONSTRAINT_END 333 }; 334 335 static u64 intel_pmu_event_map(int hw_event) 336 { 337 return intel_perfmon_event_map[hw_event]; 338 } 339 340 /* 341 * Notes on the events: 342 * - data reads do not include code reads (comparable to earlier tables) 343 * - data counts include speculative execution (except L1 write, dtlb, bpu) 344 * - remote node access includes remote memory, remote cache, remote mmio. 345 * - prefetches are not included in the counts. 346 * - icache miss does not include decoded icache 347 */ 348 349 #define SKL_DEMAND_DATA_RD BIT_ULL(0) 350 #define SKL_DEMAND_RFO BIT_ULL(1) 351 #define SKL_ANY_RESPONSE BIT_ULL(16) 352 #define SKL_SUPPLIER_NONE BIT_ULL(17) 353 #define SKL_L3_MISS_LOCAL_DRAM BIT_ULL(26) 354 #define SKL_L3_MISS_REMOTE_HOP0_DRAM BIT_ULL(27) 355 #define SKL_L3_MISS_REMOTE_HOP1_DRAM BIT_ULL(28) 356 #define SKL_L3_MISS_REMOTE_HOP2P_DRAM BIT_ULL(29) 357 #define SKL_L3_MISS (SKL_L3_MISS_LOCAL_DRAM| \ 358 SKL_L3_MISS_REMOTE_HOP0_DRAM| \ 359 SKL_L3_MISS_REMOTE_HOP1_DRAM| \ 360 SKL_L3_MISS_REMOTE_HOP2P_DRAM) 361 #define SKL_SPL_HIT BIT_ULL(30) 362 #define SKL_SNOOP_NONE BIT_ULL(31) 363 #define SKL_SNOOP_NOT_NEEDED BIT_ULL(32) 364 #define SKL_SNOOP_MISS BIT_ULL(33) 365 #define SKL_SNOOP_HIT_NO_FWD BIT_ULL(34) 366 #define SKL_SNOOP_HIT_WITH_FWD BIT_ULL(35) 367 #define SKL_SNOOP_HITM BIT_ULL(36) 368 #define SKL_SNOOP_NON_DRAM BIT_ULL(37) 369 #define SKL_ANY_SNOOP (SKL_SPL_HIT|SKL_SNOOP_NONE| \ 370 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \ 371 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \ 372 SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM) 373 #define SKL_DEMAND_READ SKL_DEMAND_DATA_RD 374 #define SKL_SNOOP_DRAM (SKL_SNOOP_NONE| \ 375 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \ 376 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \ 377 SKL_SNOOP_HITM|SKL_SPL_HIT) 378 #define SKL_DEMAND_WRITE SKL_DEMAND_RFO 379 #define SKL_LLC_ACCESS SKL_ANY_RESPONSE 380 #define SKL_L3_MISS_REMOTE (SKL_L3_MISS_REMOTE_HOP0_DRAM| \ 381 SKL_L3_MISS_REMOTE_HOP1_DRAM| \ 382 SKL_L3_MISS_REMOTE_HOP2P_DRAM) 383 384 static __initconst const u64 skl_hw_cache_event_ids 385 [PERF_COUNT_HW_CACHE_MAX] 386 [PERF_COUNT_HW_CACHE_OP_MAX] 387 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 388 { 389 [ C(L1D ) ] = { 390 [ C(OP_READ) ] = { 391 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_INST_RETIRED.ALL_LOADS */ 392 [ C(RESULT_MISS) ] = 0x151, /* L1D.REPLACEMENT */ 393 }, 394 [ C(OP_WRITE) ] = { 395 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_INST_RETIRED.ALL_STORES */ 396 [ C(RESULT_MISS) ] = 0x0, 397 }, 398 [ C(OP_PREFETCH) ] = { 399 [ C(RESULT_ACCESS) ] = 0x0, 400 [ C(RESULT_MISS) ] = 0x0, 401 }, 402 }, 403 [ C(L1I ) ] = { 404 [ C(OP_READ) ] = { 405 [ C(RESULT_ACCESS) ] = 0x0, 406 [ C(RESULT_MISS) ] = 0x283, /* ICACHE_64B.MISS */ 407 }, 408 [ C(OP_WRITE) ] = { 409 [ C(RESULT_ACCESS) ] = -1, 410 [ C(RESULT_MISS) ] = -1, 411 }, 412 [ C(OP_PREFETCH) ] = { 413 [ C(RESULT_ACCESS) ] = 0x0, 414 [ C(RESULT_MISS) ] = 0x0, 415 }, 416 }, 417 [ C(LL ) ] = { 418 [ C(OP_READ) ] = { 419 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 420 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 421 }, 422 [ C(OP_WRITE) ] = { 423 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 424 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 425 }, 426 [ C(OP_PREFETCH) ] = { 427 [ C(RESULT_ACCESS) ] = 0x0, 428 [ C(RESULT_MISS) ] = 0x0, 429 }, 430 }, 431 [ C(DTLB) ] = { 432 [ C(OP_READ) ] = { 433 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_INST_RETIRED.ALL_LOADS */ 434 [ C(RESULT_MISS) ] = 0x608, /* DTLB_LOAD_MISSES.WALK_COMPLETED */ 435 }, 436 [ C(OP_WRITE) ] = { 437 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_INST_RETIRED.ALL_STORES */ 438 [ C(RESULT_MISS) ] = 0x649, /* DTLB_STORE_MISSES.WALK_COMPLETED */ 439 }, 440 [ C(OP_PREFETCH) ] = { 441 [ C(RESULT_ACCESS) ] = 0x0, 442 [ C(RESULT_MISS) ] = 0x0, 443 }, 444 }, 445 [ C(ITLB) ] = { 446 [ C(OP_READ) ] = { 447 [ C(RESULT_ACCESS) ] = 0x2085, /* ITLB_MISSES.STLB_HIT */ 448 [ C(RESULT_MISS) ] = 0xe85, /* ITLB_MISSES.WALK_COMPLETED */ 449 }, 450 [ C(OP_WRITE) ] = { 451 [ C(RESULT_ACCESS) ] = -1, 452 [ C(RESULT_MISS) ] = -1, 453 }, 454 [ C(OP_PREFETCH) ] = { 455 [ C(RESULT_ACCESS) ] = -1, 456 [ C(RESULT_MISS) ] = -1, 457 }, 458 }, 459 [ C(BPU ) ] = { 460 [ C(OP_READ) ] = { 461 [ C(RESULT_ACCESS) ] = 0xc4, /* BR_INST_RETIRED.ALL_BRANCHES */ 462 [ C(RESULT_MISS) ] = 0xc5, /* BR_MISP_RETIRED.ALL_BRANCHES */ 463 }, 464 [ C(OP_WRITE) ] = { 465 [ C(RESULT_ACCESS) ] = -1, 466 [ C(RESULT_MISS) ] = -1, 467 }, 468 [ C(OP_PREFETCH) ] = { 469 [ C(RESULT_ACCESS) ] = -1, 470 [ C(RESULT_MISS) ] = -1, 471 }, 472 }, 473 [ C(NODE) ] = { 474 [ C(OP_READ) ] = { 475 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 476 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 477 }, 478 [ C(OP_WRITE) ] = { 479 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 480 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 481 }, 482 [ C(OP_PREFETCH) ] = { 483 [ C(RESULT_ACCESS) ] = 0x0, 484 [ C(RESULT_MISS) ] = 0x0, 485 }, 486 }, 487 }; 488 489 static __initconst const u64 skl_hw_cache_extra_regs 490 [PERF_COUNT_HW_CACHE_MAX] 491 [PERF_COUNT_HW_CACHE_OP_MAX] 492 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 493 { 494 [ C(LL ) ] = { 495 [ C(OP_READ) ] = { 496 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ| 497 SKL_LLC_ACCESS|SKL_ANY_SNOOP, 498 [ C(RESULT_MISS) ] = SKL_DEMAND_READ| 499 SKL_L3_MISS|SKL_ANY_SNOOP| 500 SKL_SUPPLIER_NONE, 501 }, 502 [ C(OP_WRITE) ] = { 503 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE| 504 SKL_LLC_ACCESS|SKL_ANY_SNOOP, 505 [ C(RESULT_MISS) ] = SKL_DEMAND_WRITE| 506 SKL_L3_MISS|SKL_ANY_SNOOP| 507 SKL_SUPPLIER_NONE, 508 }, 509 [ C(OP_PREFETCH) ] = { 510 [ C(RESULT_ACCESS) ] = 0x0, 511 [ C(RESULT_MISS) ] = 0x0, 512 }, 513 }, 514 [ C(NODE) ] = { 515 [ C(OP_READ) ] = { 516 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ| 517 SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM, 518 [ C(RESULT_MISS) ] = SKL_DEMAND_READ| 519 SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM, 520 }, 521 [ C(OP_WRITE) ] = { 522 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE| 523 SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM, 524 [ C(RESULT_MISS) ] = SKL_DEMAND_WRITE| 525 SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM, 526 }, 527 [ C(OP_PREFETCH) ] = { 528 [ C(RESULT_ACCESS) ] = 0x0, 529 [ C(RESULT_MISS) ] = 0x0, 530 }, 531 }, 532 }; 533 534 #define SNB_DMND_DATA_RD (1ULL << 0) 535 #define SNB_DMND_RFO (1ULL << 1) 536 #define SNB_DMND_IFETCH (1ULL << 2) 537 #define SNB_DMND_WB (1ULL << 3) 538 #define SNB_PF_DATA_RD (1ULL << 4) 539 #define SNB_PF_RFO (1ULL << 5) 540 #define SNB_PF_IFETCH (1ULL << 6) 541 #define SNB_LLC_DATA_RD (1ULL << 7) 542 #define SNB_LLC_RFO (1ULL << 8) 543 #define SNB_LLC_IFETCH (1ULL << 9) 544 #define SNB_BUS_LOCKS (1ULL << 10) 545 #define SNB_STRM_ST (1ULL << 11) 546 #define SNB_OTHER (1ULL << 15) 547 #define SNB_RESP_ANY (1ULL << 16) 548 #define SNB_NO_SUPP (1ULL << 17) 549 #define SNB_LLC_HITM (1ULL << 18) 550 #define SNB_LLC_HITE (1ULL << 19) 551 #define SNB_LLC_HITS (1ULL << 20) 552 #define SNB_LLC_HITF (1ULL << 21) 553 #define SNB_LOCAL (1ULL << 22) 554 #define SNB_REMOTE (0xffULL << 23) 555 #define SNB_SNP_NONE (1ULL << 31) 556 #define SNB_SNP_NOT_NEEDED (1ULL << 32) 557 #define SNB_SNP_MISS (1ULL << 33) 558 #define SNB_NO_FWD (1ULL << 34) 559 #define SNB_SNP_FWD (1ULL << 35) 560 #define SNB_HITM (1ULL << 36) 561 #define SNB_NON_DRAM (1ULL << 37) 562 563 #define SNB_DMND_READ (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD) 564 #define SNB_DMND_WRITE (SNB_DMND_RFO|SNB_LLC_RFO) 565 #define SNB_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO) 566 567 #define SNB_SNP_ANY (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \ 568 SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \ 569 SNB_HITM) 570 571 #define SNB_DRAM_ANY (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY) 572 #define SNB_DRAM_REMOTE (SNB_REMOTE|SNB_SNP_ANY) 573 574 #define SNB_L3_ACCESS SNB_RESP_ANY 575 #define SNB_L3_MISS (SNB_DRAM_ANY|SNB_NON_DRAM) 576 577 static __initconst const u64 snb_hw_cache_extra_regs 578 [PERF_COUNT_HW_CACHE_MAX] 579 [PERF_COUNT_HW_CACHE_OP_MAX] 580 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 581 { 582 [ C(LL ) ] = { 583 [ C(OP_READ) ] = { 584 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS, 585 [ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_L3_MISS, 586 }, 587 [ C(OP_WRITE) ] = { 588 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS, 589 [ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_L3_MISS, 590 }, 591 [ C(OP_PREFETCH) ] = { 592 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS, 593 [ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_L3_MISS, 594 }, 595 }, 596 [ C(NODE) ] = { 597 [ C(OP_READ) ] = { 598 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY, 599 [ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_DRAM_REMOTE, 600 }, 601 [ C(OP_WRITE) ] = { 602 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY, 603 [ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE, 604 }, 605 [ C(OP_PREFETCH) ] = { 606 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY, 607 [ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE, 608 }, 609 }, 610 }; 611 612 static __initconst const u64 snb_hw_cache_event_ids 613 [PERF_COUNT_HW_CACHE_MAX] 614 [PERF_COUNT_HW_CACHE_OP_MAX] 615 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 616 { 617 [ C(L1D) ] = { 618 [ C(OP_READ) ] = { 619 [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS */ 620 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPLACEMENT */ 621 }, 622 [ C(OP_WRITE) ] = { 623 [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES */ 624 [ C(RESULT_MISS) ] = 0x0851, /* L1D.ALL_M_REPLACEMENT */ 625 }, 626 [ C(OP_PREFETCH) ] = { 627 [ C(RESULT_ACCESS) ] = 0x0, 628 [ C(RESULT_MISS) ] = 0x024e, /* HW_PRE_REQ.DL1_MISS */ 629 }, 630 }, 631 [ C(L1I ) ] = { 632 [ C(OP_READ) ] = { 633 [ C(RESULT_ACCESS) ] = 0x0, 634 [ C(RESULT_MISS) ] = 0x0280, /* ICACHE.MISSES */ 635 }, 636 [ C(OP_WRITE) ] = { 637 [ C(RESULT_ACCESS) ] = -1, 638 [ C(RESULT_MISS) ] = -1, 639 }, 640 [ C(OP_PREFETCH) ] = { 641 [ C(RESULT_ACCESS) ] = 0x0, 642 [ C(RESULT_MISS) ] = 0x0, 643 }, 644 }, 645 [ C(LL ) ] = { 646 [ C(OP_READ) ] = { 647 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */ 648 [ C(RESULT_ACCESS) ] = 0x01b7, 649 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */ 650 [ C(RESULT_MISS) ] = 0x01b7, 651 }, 652 [ C(OP_WRITE) ] = { 653 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */ 654 [ C(RESULT_ACCESS) ] = 0x01b7, 655 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */ 656 [ C(RESULT_MISS) ] = 0x01b7, 657 }, 658 [ C(OP_PREFETCH) ] = { 659 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */ 660 [ C(RESULT_ACCESS) ] = 0x01b7, 661 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */ 662 [ C(RESULT_MISS) ] = 0x01b7, 663 }, 664 }, 665 [ C(DTLB) ] = { 666 [ C(OP_READ) ] = { 667 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */ 668 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */ 669 }, 670 [ C(OP_WRITE) ] = { 671 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */ 672 [ C(RESULT_MISS) ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */ 673 }, 674 [ C(OP_PREFETCH) ] = { 675 [ C(RESULT_ACCESS) ] = 0x0, 676 [ C(RESULT_MISS) ] = 0x0, 677 }, 678 }, 679 [ C(ITLB) ] = { 680 [ C(OP_READ) ] = { 681 [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT */ 682 [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK */ 683 }, 684 [ C(OP_WRITE) ] = { 685 [ C(RESULT_ACCESS) ] = -1, 686 [ C(RESULT_MISS) ] = -1, 687 }, 688 [ C(OP_PREFETCH) ] = { 689 [ C(RESULT_ACCESS) ] = -1, 690 [ C(RESULT_MISS) ] = -1, 691 }, 692 }, 693 [ C(BPU ) ] = { 694 [ C(OP_READ) ] = { 695 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */ 696 [ C(RESULT_MISS) ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */ 697 }, 698 [ C(OP_WRITE) ] = { 699 [ C(RESULT_ACCESS) ] = -1, 700 [ C(RESULT_MISS) ] = -1, 701 }, 702 [ C(OP_PREFETCH) ] = { 703 [ C(RESULT_ACCESS) ] = -1, 704 [ C(RESULT_MISS) ] = -1, 705 }, 706 }, 707 [ C(NODE) ] = { 708 [ C(OP_READ) ] = { 709 [ C(RESULT_ACCESS) ] = 0x01b7, 710 [ C(RESULT_MISS) ] = 0x01b7, 711 }, 712 [ C(OP_WRITE) ] = { 713 [ C(RESULT_ACCESS) ] = 0x01b7, 714 [ C(RESULT_MISS) ] = 0x01b7, 715 }, 716 [ C(OP_PREFETCH) ] = { 717 [ C(RESULT_ACCESS) ] = 0x01b7, 718 [ C(RESULT_MISS) ] = 0x01b7, 719 }, 720 }, 721 722 }; 723 724 /* 725 * Notes on the events: 726 * - data reads do not include code reads (comparable to earlier tables) 727 * - data counts include speculative execution (except L1 write, dtlb, bpu) 728 * - remote node access includes remote memory, remote cache, remote mmio. 729 * - prefetches are not included in the counts because they are not 730 * reliably counted. 731 */ 732 733 #define HSW_DEMAND_DATA_RD BIT_ULL(0) 734 #define HSW_DEMAND_RFO BIT_ULL(1) 735 #define HSW_ANY_RESPONSE BIT_ULL(16) 736 #define HSW_SUPPLIER_NONE BIT_ULL(17) 737 #define HSW_L3_MISS_LOCAL_DRAM BIT_ULL(22) 738 #define HSW_L3_MISS_REMOTE_HOP0 BIT_ULL(27) 739 #define HSW_L3_MISS_REMOTE_HOP1 BIT_ULL(28) 740 #define HSW_L3_MISS_REMOTE_HOP2P BIT_ULL(29) 741 #define HSW_L3_MISS (HSW_L3_MISS_LOCAL_DRAM| \ 742 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \ 743 HSW_L3_MISS_REMOTE_HOP2P) 744 #define HSW_SNOOP_NONE BIT_ULL(31) 745 #define HSW_SNOOP_NOT_NEEDED BIT_ULL(32) 746 #define HSW_SNOOP_MISS BIT_ULL(33) 747 #define HSW_SNOOP_HIT_NO_FWD BIT_ULL(34) 748 #define HSW_SNOOP_HIT_WITH_FWD BIT_ULL(35) 749 #define HSW_SNOOP_HITM BIT_ULL(36) 750 #define HSW_SNOOP_NON_DRAM BIT_ULL(37) 751 #define HSW_ANY_SNOOP (HSW_SNOOP_NONE| \ 752 HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \ 753 HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \ 754 HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM) 755 #define HSW_SNOOP_DRAM (HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM) 756 #define HSW_DEMAND_READ HSW_DEMAND_DATA_RD 757 #define HSW_DEMAND_WRITE HSW_DEMAND_RFO 758 #define HSW_L3_MISS_REMOTE (HSW_L3_MISS_REMOTE_HOP0|\ 759 HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P) 760 #define HSW_LLC_ACCESS HSW_ANY_RESPONSE 761 762 #define BDW_L3_MISS_LOCAL BIT(26) 763 #define BDW_L3_MISS (BDW_L3_MISS_LOCAL| \ 764 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \ 765 HSW_L3_MISS_REMOTE_HOP2P) 766 767 768 static __initconst const u64 hsw_hw_cache_event_ids 769 [PERF_COUNT_HW_CACHE_MAX] 770 [PERF_COUNT_HW_CACHE_OP_MAX] 771 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 772 { 773 [ C(L1D ) ] = { 774 [ C(OP_READ) ] = { 775 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */ 776 [ C(RESULT_MISS) ] = 0x151, /* L1D.REPLACEMENT */ 777 }, 778 [ C(OP_WRITE) ] = { 779 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */ 780 [ C(RESULT_MISS) ] = 0x0, 781 }, 782 [ C(OP_PREFETCH) ] = { 783 [ C(RESULT_ACCESS) ] = 0x0, 784 [ C(RESULT_MISS) ] = 0x0, 785 }, 786 }, 787 [ C(L1I ) ] = { 788 [ C(OP_READ) ] = { 789 [ C(RESULT_ACCESS) ] = 0x0, 790 [ C(RESULT_MISS) ] = 0x280, /* ICACHE.MISSES */ 791 }, 792 [ C(OP_WRITE) ] = { 793 [ C(RESULT_ACCESS) ] = -1, 794 [ C(RESULT_MISS) ] = -1, 795 }, 796 [ C(OP_PREFETCH) ] = { 797 [ C(RESULT_ACCESS) ] = 0x0, 798 [ C(RESULT_MISS) ] = 0x0, 799 }, 800 }, 801 [ C(LL ) ] = { 802 [ C(OP_READ) ] = { 803 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 804 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 805 }, 806 [ C(OP_WRITE) ] = { 807 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 808 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 809 }, 810 [ C(OP_PREFETCH) ] = { 811 [ C(RESULT_ACCESS) ] = 0x0, 812 [ C(RESULT_MISS) ] = 0x0, 813 }, 814 }, 815 [ C(DTLB) ] = { 816 [ C(OP_READ) ] = { 817 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */ 818 [ C(RESULT_MISS) ] = 0x108, /* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */ 819 }, 820 [ C(OP_WRITE) ] = { 821 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */ 822 [ C(RESULT_MISS) ] = 0x149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */ 823 }, 824 [ C(OP_PREFETCH) ] = { 825 [ C(RESULT_ACCESS) ] = 0x0, 826 [ C(RESULT_MISS) ] = 0x0, 827 }, 828 }, 829 [ C(ITLB) ] = { 830 [ C(OP_READ) ] = { 831 [ C(RESULT_ACCESS) ] = 0x6085, /* ITLB_MISSES.STLB_HIT */ 832 [ C(RESULT_MISS) ] = 0x185, /* ITLB_MISSES.MISS_CAUSES_A_WALK */ 833 }, 834 [ C(OP_WRITE) ] = { 835 [ C(RESULT_ACCESS) ] = -1, 836 [ C(RESULT_MISS) ] = -1, 837 }, 838 [ C(OP_PREFETCH) ] = { 839 [ C(RESULT_ACCESS) ] = -1, 840 [ C(RESULT_MISS) ] = -1, 841 }, 842 }, 843 [ C(BPU ) ] = { 844 [ C(OP_READ) ] = { 845 [ C(RESULT_ACCESS) ] = 0xc4, /* BR_INST_RETIRED.ALL_BRANCHES */ 846 [ C(RESULT_MISS) ] = 0xc5, /* BR_MISP_RETIRED.ALL_BRANCHES */ 847 }, 848 [ C(OP_WRITE) ] = { 849 [ C(RESULT_ACCESS) ] = -1, 850 [ C(RESULT_MISS) ] = -1, 851 }, 852 [ C(OP_PREFETCH) ] = { 853 [ C(RESULT_ACCESS) ] = -1, 854 [ C(RESULT_MISS) ] = -1, 855 }, 856 }, 857 [ C(NODE) ] = { 858 [ C(OP_READ) ] = { 859 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 860 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 861 }, 862 [ C(OP_WRITE) ] = { 863 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 864 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 865 }, 866 [ C(OP_PREFETCH) ] = { 867 [ C(RESULT_ACCESS) ] = 0x0, 868 [ C(RESULT_MISS) ] = 0x0, 869 }, 870 }, 871 }; 872 873 static __initconst const u64 hsw_hw_cache_extra_regs 874 [PERF_COUNT_HW_CACHE_MAX] 875 [PERF_COUNT_HW_CACHE_OP_MAX] 876 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 877 { 878 [ C(LL ) ] = { 879 [ C(OP_READ) ] = { 880 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ| 881 HSW_LLC_ACCESS, 882 [ C(RESULT_MISS) ] = HSW_DEMAND_READ| 883 HSW_L3_MISS|HSW_ANY_SNOOP, 884 }, 885 [ C(OP_WRITE) ] = { 886 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE| 887 HSW_LLC_ACCESS, 888 [ C(RESULT_MISS) ] = HSW_DEMAND_WRITE| 889 HSW_L3_MISS|HSW_ANY_SNOOP, 890 }, 891 [ C(OP_PREFETCH) ] = { 892 [ C(RESULT_ACCESS) ] = 0x0, 893 [ C(RESULT_MISS) ] = 0x0, 894 }, 895 }, 896 [ C(NODE) ] = { 897 [ C(OP_READ) ] = { 898 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ| 899 HSW_L3_MISS_LOCAL_DRAM| 900 HSW_SNOOP_DRAM, 901 [ C(RESULT_MISS) ] = HSW_DEMAND_READ| 902 HSW_L3_MISS_REMOTE| 903 HSW_SNOOP_DRAM, 904 }, 905 [ C(OP_WRITE) ] = { 906 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE| 907 HSW_L3_MISS_LOCAL_DRAM| 908 HSW_SNOOP_DRAM, 909 [ C(RESULT_MISS) ] = HSW_DEMAND_WRITE| 910 HSW_L3_MISS_REMOTE| 911 HSW_SNOOP_DRAM, 912 }, 913 [ C(OP_PREFETCH) ] = { 914 [ C(RESULT_ACCESS) ] = 0x0, 915 [ C(RESULT_MISS) ] = 0x0, 916 }, 917 }, 918 }; 919 920 static __initconst const u64 westmere_hw_cache_event_ids 921 [PERF_COUNT_HW_CACHE_MAX] 922 [PERF_COUNT_HW_CACHE_OP_MAX] 923 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 924 { 925 [ C(L1D) ] = { 926 [ C(OP_READ) ] = { 927 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */ 928 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */ 929 }, 930 [ C(OP_WRITE) ] = { 931 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */ 932 [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */ 933 }, 934 [ C(OP_PREFETCH) ] = { 935 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */ 936 [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */ 937 }, 938 }, 939 [ C(L1I ) ] = { 940 [ C(OP_READ) ] = { 941 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */ 942 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */ 943 }, 944 [ C(OP_WRITE) ] = { 945 [ C(RESULT_ACCESS) ] = -1, 946 [ C(RESULT_MISS) ] = -1, 947 }, 948 [ C(OP_PREFETCH) ] = { 949 [ C(RESULT_ACCESS) ] = 0x0, 950 [ C(RESULT_MISS) ] = 0x0, 951 }, 952 }, 953 [ C(LL ) ] = { 954 [ C(OP_READ) ] = { 955 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */ 956 [ C(RESULT_ACCESS) ] = 0x01b7, 957 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */ 958 [ C(RESULT_MISS) ] = 0x01b7, 959 }, 960 /* 961 * Use RFO, not WRITEBACK, because a write miss would typically occur 962 * on RFO. 963 */ 964 [ C(OP_WRITE) ] = { 965 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */ 966 [ C(RESULT_ACCESS) ] = 0x01b7, 967 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */ 968 [ C(RESULT_MISS) ] = 0x01b7, 969 }, 970 [ C(OP_PREFETCH) ] = { 971 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */ 972 [ C(RESULT_ACCESS) ] = 0x01b7, 973 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */ 974 [ C(RESULT_MISS) ] = 0x01b7, 975 }, 976 }, 977 [ C(DTLB) ] = { 978 [ C(OP_READ) ] = { 979 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */ 980 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */ 981 }, 982 [ C(OP_WRITE) ] = { 983 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */ 984 [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */ 985 }, 986 [ C(OP_PREFETCH) ] = { 987 [ C(RESULT_ACCESS) ] = 0x0, 988 [ C(RESULT_MISS) ] = 0x0, 989 }, 990 }, 991 [ C(ITLB) ] = { 992 [ C(OP_READ) ] = { 993 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */ 994 [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.ANY */ 995 }, 996 [ C(OP_WRITE) ] = { 997 [ C(RESULT_ACCESS) ] = -1, 998 [ C(RESULT_MISS) ] = -1, 999 }, 1000 [ C(OP_PREFETCH) ] = { 1001 [ C(RESULT_ACCESS) ] = -1, 1002 [ C(RESULT_MISS) ] = -1, 1003 }, 1004 }, 1005 [ C(BPU ) ] = { 1006 [ C(OP_READ) ] = { 1007 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */ 1008 [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */ 1009 }, 1010 [ C(OP_WRITE) ] = { 1011 [ C(RESULT_ACCESS) ] = -1, 1012 [ C(RESULT_MISS) ] = -1, 1013 }, 1014 [ C(OP_PREFETCH) ] = { 1015 [ C(RESULT_ACCESS) ] = -1, 1016 [ C(RESULT_MISS) ] = -1, 1017 }, 1018 }, 1019 [ C(NODE) ] = { 1020 [ C(OP_READ) ] = { 1021 [ C(RESULT_ACCESS) ] = 0x01b7, 1022 [ C(RESULT_MISS) ] = 0x01b7, 1023 }, 1024 [ C(OP_WRITE) ] = { 1025 [ C(RESULT_ACCESS) ] = 0x01b7, 1026 [ C(RESULT_MISS) ] = 0x01b7, 1027 }, 1028 [ C(OP_PREFETCH) ] = { 1029 [ C(RESULT_ACCESS) ] = 0x01b7, 1030 [ C(RESULT_MISS) ] = 0x01b7, 1031 }, 1032 }, 1033 }; 1034 1035 /* 1036 * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits; 1037 * See IA32 SDM Vol 3B 30.6.1.3 1038 */ 1039 1040 #define NHM_DMND_DATA_RD (1 << 0) 1041 #define NHM_DMND_RFO (1 << 1) 1042 #define NHM_DMND_IFETCH (1 << 2) 1043 #define NHM_DMND_WB (1 << 3) 1044 #define NHM_PF_DATA_RD (1 << 4) 1045 #define NHM_PF_DATA_RFO (1 << 5) 1046 #define NHM_PF_IFETCH (1 << 6) 1047 #define NHM_OFFCORE_OTHER (1 << 7) 1048 #define NHM_UNCORE_HIT (1 << 8) 1049 #define NHM_OTHER_CORE_HIT_SNP (1 << 9) 1050 #define NHM_OTHER_CORE_HITM (1 << 10) 1051 /* reserved */ 1052 #define NHM_REMOTE_CACHE_FWD (1 << 12) 1053 #define NHM_REMOTE_DRAM (1 << 13) 1054 #define NHM_LOCAL_DRAM (1 << 14) 1055 #define NHM_NON_DRAM (1 << 15) 1056 1057 #define NHM_LOCAL (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD) 1058 #define NHM_REMOTE (NHM_REMOTE_DRAM) 1059 1060 #define NHM_DMND_READ (NHM_DMND_DATA_RD) 1061 #define NHM_DMND_WRITE (NHM_DMND_RFO|NHM_DMND_WB) 1062 #define NHM_DMND_PREFETCH (NHM_PF_DATA_RD|NHM_PF_DATA_RFO) 1063 1064 #define NHM_L3_HIT (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM) 1065 #define NHM_L3_MISS (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD) 1066 #define NHM_L3_ACCESS (NHM_L3_HIT|NHM_L3_MISS) 1067 1068 static __initconst const u64 nehalem_hw_cache_extra_regs 1069 [PERF_COUNT_HW_CACHE_MAX] 1070 [PERF_COUNT_HW_CACHE_OP_MAX] 1071 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 1072 { 1073 [ C(LL ) ] = { 1074 [ C(OP_READ) ] = { 1075 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS, 1076 [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_L3_MISS, 1077 }, 1078 [ C(OP_WRITE) ] = { 1079 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS, 1080 [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_L3_MISS, 1081 }, 1082 [ C(OP_PREFETCH) ] = { 1083 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS, 1084 [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_L3_MISS, 1085 }, 1086 }, 1087 [ C(NODE) ] = { 1088 [ C(OP_READ) ] = { 1089 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE, 1090 [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_REMOTE, 1091 }, 1092 [ C(OP_WRITE) ] = { 1093 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE, 1094 [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_REMOTE, 1095 }, 1096 [ C(OP_PREFETCH) ] = { 1097 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE, 1098 [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_REMOTE, 1099 }, 1100 }, 1101 }; 1102 1103 static __initconst const u64 nehalem_hw_cache_event_ids 1104 [PERF_COUNT_HW_CACHE_MAX] 1105 [PERF_COUNT_HW_CACHE_OP_MAX] 1106 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 1107 { 1108 [ C(L1D) ] = { 1109 [ C(OP_READ) ] = { 1110 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */ 1111 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */ 1112 }, 1113 [ C(OP_WRITE) ] = { 1114 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */ 1115 [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */ 1116 }, 1117 [ C(OP_PREFETCH) ] = { 1118 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */ 1119 [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */ 1120 }, 1121 }, 1122 [ C(L1I ) ] = { 1123 [ C(OP_READ) ] = { 1124 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */ 1125 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */ 1126 }, 1127 [ C(OP_WRITE) ] = { 1128 [ C(RESULT_ACCESS) ] = -1, 1129 [ C(RESULT_MISS) ] = -1, 1130 }, 1131 [ C(OP_PREFETCH) ] = { 1132 [ C(RESULT_ACCESS) ] = 0x0, 1133 [ C(RESULT_MISS) ] = 0x0, 1134 }, 1135 }, 1136 [ C(LL ) ] = { 1137 [ C(OP_READ) ] = { 1138 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */ 1139 [ C(RESULT_ACCESS) ] = 0x01b7, 1140 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */ 1141 [ C(RESULT_MISS) ] = 0x01b7, 1142 }, 1143 /* 1144 * Use RFO, not WRITEBACK, because a write miss would typically occur 1145 * on RFO. 1146 */ 1147 [ C(OP_WRITE) ] = { 1148 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */ 1149 [ C(RESULT_ACCESS) ] = 0x01b7, 1150 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */ 1151 [ C(RESULT_MISS) ] = 0x01b7, 1152 }, 1153 [ C(OP_PREFETCH) ] = { 1154 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */ 1155 [ C(RESULT_ACCESS) ] = 0x01b7, 1156 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */ 1157 [ C(RESULT_MISS) ] = 0x01b7, 1158 }, 1159 }, 1160 [ C(DTLB) ] = { 1161 [ C(OP_READ) ] = { 1162 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */ 1163 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */ 1164 }, 1165 [ C(OP_WRITE) ] = { 1166 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */ 1167 [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */ 1168 }, 1169 [ C(OP_PREFETCH) ] = { 1170 [ C(RESULT_ACCESS) ] = 0x0, 1171 [ C(RESULT_MISS) ] = 0x0, 1172 }, 1173 }, 1174 [ C(ITLB) ] = { 1175 [ C(OP_READ) ] = { 1176 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */ 1177 [ C(RESULT_MISS) ] = 0x20c8, /* ITLB_MISS_RETIRED */ 1178 }, 1179 [ C(OP_WRITE) ] = { 1180 [ C(RESULT_ACCESS) ] = -1, 1181 [ C(RESULT_MISS) ] = -1, 1182 }, 1183 [ C(OP_PREFETCH) ] = { 1184 [ C(RESULT_ACCESS) ] = -1, 1185 [ C(RESULT_MISS) ] = -1, 1186 }, 1187 }, 1188 [ C(BPU ) ] = { 1189 [ C(OP_READ) ] = { 1190 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */ 1191 [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */ 1192 }, 1193 [ C(OP_WRITE) ] = { 1194 [ C(RESULT_ACCESS) ] = -1, 1195 [ C(RESULT_MISS) ] = -1, 1196 }, 1197 [ C(OP_PREFETCH) ] = { 1198 [ C(RESULT_ACCESS) ] = -1, 1199 [ C(RESULT_MISS) ] = -1, 1200 }, 1201 }, 1202 [ C(NODE) ] = { 1203 [ C(OP_READ) ] = { 1204 [ C(RESULT_ACCESS) ] = 0x01b7, 1205 [ C(RESULT_MISS) ] = 0x01b7, 1206 }, 1207 [ C(OP_WRITE) ] = { 1208 [ C(RESULT_ACCESS) ] = 0x01b7, 1209 [ C(RESULT_MISS) ] = 0x01b7, 1210 }, 1211 [ C(OP_PREFETCH) ] = { 1212 [ C(RESULT_ACCESS) ] = 0x01b7, 1213 [ C(RESULT_MISS) ] = 0x01b7, 1214 }, 1215 }, 1216 }; 1217 1218 static __initconst const u64 core2_hw_cache_event_ids 1219 [PERF_COUNT_HW_CACHE_MAX] 1220 [PERF_COUNT_HW_CACHE_OP_MAX] 1221 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 1222 { 1223 [ C(L1D) ] = { 1224 [ C(OP_READ) ] = { 1225 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */ 1226 [ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */ 1227 }, 1228 [ C(OP_WRITE) ] = { 1229 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */ 1230 [ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */ 1231 }, 1232 [ C(OP_PREFETCH) ] = { 1233 [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS */ 1234 [ C(RESULT_MISS) ] = 0, 1235 }, 1236 }, 1237 [ C(L1I ) ] = { 1238 [ C(OP_READ) ] = { 1239 [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS */ 1240 [ C(RESULT_MISS) ] = 0x0081, /* L1I.MISSES */ 1241 }, 1242 [ C(OP_WRITE) ] = { 1243 [ C(RESULT_ACCESS) ] = -1, 1244 [ C(RESULT_MISS) ] = -1, 1245 }, 1246 [ C(OP_PREFETCH) ] = { 1247 [ C(RESULT_ACCESS) ] = 0, 1248 [ C(RESULT_MISS) ] = 0, 1249 }, 1250 }, 1251 [ C(LL ) ] = { 1252 [ C(OP_READ) ] = { 1253 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */ 1254 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */ 1255 }, 1256 [ C(OP_WRITE) ] = { 1257 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */ 1258 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */ 1259 }, 1260 [ C(OP_PREFETCH) ] = { 1261 [ C(RESULT_ACCESS) ] = 0, 1262 [ C(RESULT_MISS) ] = 0, 1263 }, 1264 }, 1265 [ C(DTLB) ] = { 1266 [ C(OP_READ) ] = { 1267 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */ 1268 [ C(RESULT_MISS) ] = 0x0208, /* DTLB_MISSES.MISS_LD */ 1269 }, 1270 [ C(OP_WRITE) ] = { 1271 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */ 1272 [ C(RESULT_MISS) ] = 0x0808, /* DTLB_MISSES.MISS_ST */ 1273 }, 1274 [ C(OP_PREFETCH) ] = { 1275 [ C(RESULT_ACCESS) ] = 0, 1276 [ C(RESULT_MISS) ] = 0, 1277 }, 1278 }, 1279 [ C(ITLB) ] = { 1280 [ C(OP_READ) ] = { 1281 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */ 1282 [ C(RESULT_MISS) ] = 0x1282, /* ITLBMISSES */ 1283 }, 1284 [ C(OP_WRITE) ] = { 1285 [ C(RESULT_ACCESS) ] = -1, 1286 [ C(RESULT_MISS) ] = -1, 1287 }, 1288 [ C(OP_PREFETCH) ] = { 1289 [ C(RESULT_ACCESS) ] = -1, 1290 [ C(RESULT_MISS) ] = -1, 1291 }, 1292 }, 1293 [ C(BPU ) ] = { 1294 [ C(OP_READ) ] = { 1295 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */ 1296 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */ 1297 }, 1298 [ C(OP_WRITE) ] = { 1299 [ C(RESULT_ACCESS) ] = -1, 1300 [ C(RESULT_MISS) ] = -1, 1301 }, 1302 [ C(OP_PREFETCH) ] = { 1303 [ C(RESULT_ACCESS) ] = -1, 1304 [ C(RESULT_MISS) ] = -1, 1305 }, 1306 }, 1307 }; 1308 1309 static __initconst const u64 atom_hw_cache_event_ids 1310 [PERF_COUNT_HW_CACHE_MAX] 1311 [PERF_COUNT_HW_CACHE_OP_MAX] 1312 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 1313 { 1314 [ C(L1D) ] = { 1315 [ C(OP_READ) ] = { 1316 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD */ 1317 [ C(RESULT_MISS) ] = 0, 1318 }, 1319 [ C(OP_WRITE) ] = { 1320 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST */ 1321 [ C(RESULT_MISS) ] = 0, 1322 }, 1323 [ C(OP_PREFETCH) ] = { 1324 [ C(RESULT_ACCESS) ] = 0x0, 1325 [ C(RESULT_MISS) ] = 0, 1326 }, 1327 }, 1328 [ C(L1I ) ] = { 1329 [ C(OP_READ) ] = { 1330 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */ 1331 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */ 1332 }, 1333 [ C(OP_WRITE) ] = { 1334 [ C(RESULT_ACCESS) ] = -1, 1335 [ C(RESULT_MISS) ] = -1, 1336 }, 1337 [ C(OP_PREFETCH) ] = { 1338 [ C(RESULT_ACCESS) ] = 0, 1339 [ C(RESULT_MISS) ] = 0, 1340 }, 1341 }, 1342 [ C(LL ) ] = { 1343 [ C(OP_READ) ] = { 1344 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */ 1345 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */ 1346 }, 1347 [ C(OP_WRITE) ] = { 1348 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */ 1349 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */ 1350 }, 1351 [ C(OP_PREFETCH) ] = { 1352 [ C(RESULT_ACCESS) ] = 0, 1353 [ C(RESULT_MISS) ] = 0, 1354 }, 1355 }, 1356 [ C(DTLB) ] = { 1357 [ C(OP_READ) ] = { 1358 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI (alias) */ 1359 [ C(RESULT_MISS) ] = 0x0508, /* DTLB_MISSES.MISS_LD */ 1360 }, 1361 [ C(OP_WRITE) ] = { 1362 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI (alias) */ 1363 [ C(RESULT_MISS) ] = 0x0608, /* DTLB_MISSES.MISS_ST */ 1364 }, 1365 [ C(OP_PREFETCH) ] = { 1366 [ C(RESULT_ACCESS) ] = 0, 1367 [ C(RESULT_MISS) ] = 0, 1368 }, 1369 }, 1370 [ C(ITLB) ] = { 1371 [ C(OP_READ) ] = { 1372 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */ 1373 [ C(RESULT_MISS) ] = 0x0282, /* ITLB.MISSES */ 1374 }, 1375 [ C(OP_WRITE) ] = { 1376 [ C(RESULT_ACCESS) ] = -1, 1377 [ C(RESULT_MISS) ] = -1, 1378 }, 1379 [ C(OP_PREFETCH) ] = { 1380 [ C(RESULT_ACCESS) ] = -1, 1381 [ C(RESULT_MISS) ] = -1, 1382 }, 1383 }, 1384 [ C(BPU ) ] = { 1385 [ C(OP_READ) ] = { 1386 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */ 1387 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */ 1388 }, 1389 [ C(OP_WRITE) ] = { 1390 [ C(RESULT_ACCESS) ] = -1, 1391 [ C(RESULT_MISS) ] = -1, 1392 }, 1393 [ C(OP_PREFETCH) ] = { 1394 [ C(RESULT_ACCESS) ] = -1, 1395 [ C(RESULT_MISS) ] = -1, 1396 }, 1397 }, 1398 }; 1399 1400 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_slm, "event=0x3c"); 1401 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_slm, "2"); 1402 /* no_alloc_cycles.not_delivered */ 1403 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_slm, 1404 "event=0xca,umask=0x50"); 1405 EVENT_ATTR_STR(topdown-fetch-bubbles.scale, td_fetch_bubbles_scale_slm, "2"); 1406 /* uops_retired.all */ 1407 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_slm, 1408 "event=0xc2,umask=0x10"); 1409 /* uops_retired.all */ 1410 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_slm, 1411 "event=0xc2,umask=0x10"); 1412 1413 static struct attribute *slm_events_attrs[] = { 1414 EVENT_PTR(td_total_slots_slm), 1415 EVENT_PTR(td_total_slots_scale_slm), 1416 EVENT_PTR(td_fetch_bubbles_slm), 1417 EVENT_PTR(td_fetch_bubbles_scale_slm), 1418 EVENT_PTR(td_slots_issued_slm), 1419 EVENT_PTR(td_slots_retired_slm), 1420 NULL 1421 }; 1422 1423 static struct extra_reg intel_slm_extra_regs[] __read_mostly = 1424 { 1425 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */ 1426 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0), 1427 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1), 1428 EVENT_EXTRA_END 1429 }; 1430 1431 #define SLM_DMND_READ SNB_DMND_DATA_RD 1432 #define SLM_DMND_WRITE SNB_DMND_RFO 1433 #define SLM_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO) 1434 1435 #define SLM_SNP_ANY (SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM) 1436 #define SLM_LLC_ACCESS SNB_RESP_ANY 1437 #define SLM_LLC_MISS (SLM_SNP_ANY|SNB_NON_DRAM) 1438 1439 static __initconst const u64 slm_hw_cache_extra_regs 1440 [PERF_COUNT_HW_CACHE_MAX] 1441 [PERF_COUNT_HW_CACHE_OP_MAX] 1442 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 1443 { 1444 [ C(LL ) ] = { 1445 [ C(OP_READ) ] = { 1446 [ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS, 1447 [ C(RESULT_MISS) ] = 0, 1448 }, 1449 [ C(OP_WRITE) ] = { 1450 [ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS, 1451 [ C(RESULT_MISS) ] = SLM_DMND_WRITE|SLM_LLC_MISS, 1452 }, 1453 [ C(OP_PREFETCH) ] = { 1454 [ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS, 1455 [ C(RESULT_MISS) ] = SLM_DMND_PREFETCH|SLM_LLC_MISS, 1456 }, 1457 }, 1458 }; 1459 1460 static __initconst const u64 slm_hw_cache_event_ids 1461 [PERF_COUNT_HW_CACHE_MAX] 1462 [PERF_COUNT_HW_CACHE_OP_MAX] 1463 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 1464 { 1465 [ C(L1D) ] = { 1466 [ C(OP_READ) ] = { 1467 [ C(RESULT_ACCESS) ] = 0, 1468 [ C(RESULT_MISS) ] = 0x0104, /* LD_DCU_MISS */ 1469 }, 1470 [ C(OP_WRITE) ] = { 1471 [ C(RESULT_ACCESS) ] = 0, 1472 [ C(RESULT_MISS) ] = 0, 1473 }, 1474 [ C(OP_PREFETCH) ] = { 1475 [ C(RESULT_ACCESS) ] = 0, 1476 [ C(RESULT_MISS) ] = 0, 1477 }, 1478 }, 1479 [ C(L1I ) ] = { 1480 [ C(OP_READ) ] = { 1481 [ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */ 1482 [ C(RESULT_MISS) ] = 0x0280, /* ICACGE.MISSES */ 1483 }, 1484 [ C(OP_WRITE) ] = { 1485 [ C(RESULT_ACCESS) ] = -1, 1486 [ C(RESULT_MISS) ] = -1, 1487 }, 1488 [ C(OP_PREFETCH) ] = { 1489 [ C(RESULT_ACCESS) ] = 0, 1490 [ C(RESULT_MISS) ] = 0, 1491 }, 1492 }, 1493 [ C(LL ) ] = { 1494 [ C(OP_READ) ] = { 1495 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */ 1496 [ C(RESULT_ACCESS) ] = 0x01b7, 1497 [ C(RESULT_MISS) ] = 0, 1498 }, 1499 [ C(OP_WRITE) ] = { 1500 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */ 1501 [ C(RESULT_ACCESS) ] = 0x01b7, 1502 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */ 1503 [ C(RESULT_MISS) ] = 0x01b7, 1504 }, 1505 [ C(OP_PREFETCH) ] = { 1506 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */ 1507 [ C(RESULT_ACCESS) ] = 0x01b7, 1508 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */ 1509 [ C(RESULT_MISS) ] = 0x01b7, 1510 }, 1511 }, 1512 [ C(DTLB) ] = { 1513 [ C(OP_READ) ] = { 1514 [ C(RESULT_ACCESS) ] = 0, 1515 [ C(RESULT_MISS) ] = 0x0804, /* LD_DTLB_MISS */ 1516 }, 1517 [ C(OP_WRITE) ] = { 1518 [ C(RESULT_ACCESS) ] = 0, 1519 [ C(RESULT_MISS) ] = 0, 1520 }, 1521 [ C(OP_PREFETCH) ] = { 1522 [ C(RESULT_ACCESS) ] = 0, 1523 [ C(RESULT_MISS) ] = 0, 1524 }, 1525 }, 1526 [ C(ITLB) ] = { 1527 [ C(OP_READ) ] = { 1528 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */ 1529 [ C(RESULT_MISS) ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */ 1530 }, 1531 [ C(OP_WRITE) ] = { 1532 [ C(RESULT_ACCESS) ] = -1, 1533 [ C(RESULT_MISS) ] = -1, 1534 }, 1535 [ C(OP_PREFETCH) ] = { 1536 [ C(RESULT_ACCESS) ] = -1, 1537 [ C(RESULT_MISS) ] = -1, 1538 }, 1539 }, 1540 [ C(BPU ) ] = { 1541 [ C(OP_READ) ] = { 1542 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */ 1543 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */ 1544 }, 1545 [ C(OP_WRITE) ] = { 1546 [ C(RESULT_ACCESS) ] = -1, 1547 [ C(RESULT_MISS) ] = -1, 1548 }, 1549 [ C(OP_PREFETCH) ] = { 1550 [ C(RESULT_ACCESS) ] = -1, 1551 [ C(RESULT_MISS) ] = -1, 1552 }, 1553 }, 1554 }; 1555 1556 static struct extra_reg intel_glm_extra_regs[] __read_mostly = { 1557 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */ 1558 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x760005ffbfull, RSP_0), 1559 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x360005ffbfull, RSP_1), 1560 EVENT_EXTRA_END 1561 }; 1562 1563 #define GLM_DEMAND_DATA_RD BIT_ULL(0) 1564 #define GLM_DEMAND_RFO BIT_ULL(1) 1565 #define GLM_ANY_RESPONSE BIT_ULL(16) 1566 #define GLM_SNP_NONE_OR_MISS BIT_ULL(33) 1567 #define GLM_DEMAND_READ GLM_DEMAND_DATA_RD 1568 #define GLM_DEMAND_WRITE GLM_DEMAND_RFO 1569 #define GLM_DEMAND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO) 1570 #define GLM_LLC_ACCESS GLM_ANY_RESPONSE 1571 #define GLM_SNP_ANY (GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM) 1572 #define GLM_LLC_MISS (GLM_SNP_ANY|SNB_NON_DRAM) 1573 1574 static __initconst const u64 glm_hw_cache_event_ids 1575 [PERF_COUNT_HW_CACHE_MAX] 1576 [PERF_COUNT_HW_CACHE_OP_MAX] 1577 [PERF_COUNT_HW_CACHE_RESULT_MAX] = { 1578 [C(L1D)] = { 1579 [C(OP_READ)] = { 1580 [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */ 1581 [C(RESULT_MISS)] = 0x0, 1582 }, 1583 [C(OP_WRITE)] = { 1584 [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */ 1585 [C(RESULT_MISS)] = 0x0, 1586 }, 1587 [C(OP_PREFETCH)] = { 1588 [C(RESULT_ACCESS)] = 0x0, 1589 [C(RESULT_MISS)] = 0x0, 1590 }, 1591 }, 1592 [C(L1I)] = { 1593 [C(OP_READ)] = { 1594 [C(RESULT_ACCESS)] = 0x0380, /* ICACHE.ACCESSES */ 1595 [C(RESULT_MISS)] = 0x0280, /* ICACHE.MISSES */ 1596 }, 1597 [C(OP_WRITE)] = { 1598 [C(RESULT_ACCESS)] = -1, 1599 [C(RESULT_MISS)] = -1, 1600 }, 1601 [C(OP_PREFETCH)] = { 1602 [C(RESULT_ACCESS)] = 0x0, 1603 [C(RESULT_MISS)] = 0x0, 1604 }, 1605 }, 1606 [C(LL)] = { 1607 [C(OP_READ)] = { 1608 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */ 1609 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */ 1610 }, 1611 [C(OP_WRITE)] = { 1612 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */ 1613 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */ 1614 }, 1615 [C(OP_PREFETCH)] = { 1616 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */ 1617 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */ 1618 }, 1619 }, 1620 [C(DTLB)] = { 1621 [C(OP_READ)] = { 1622 [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */ 1623 [C(RESULT_MISS)] = 0x0, 1624 }, 1625 [C(OP_WRITE)] = { 1626 [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */ 1627 [C(RESULT_MISS)] = 0x0, 1628 }, 1629 [C(OP_PREFETCH)] = { 1630 [C(RESULT_ACCESS)] = 0x0, 1631 [C(RESULT_MISS)] = 0x0, 1632 }, 1633 }, 1634 [C(ITLB)] = { 1635 [C(OP_READ)] = { 1636 [C(RESULT_ACCESS)] = 0x00c0, /* INST_RETIRED.ANY_P */ 1637 [C(RESULT_MISS)] = 0x0481, /* ITLB.MISS */ 1638 }, 1639 [C(OP_WRITE)] = { 1640 [C(RESULT_ACCESS)] = -1, 1641 [C(RESULT_MISS)] = -1, 1642 }, 1643 [C(OP_PREFETCH)] = { 1644 [C(RESULT_ACCESS)] = -1, 1645 [C(RESULT_MISS)] = -1, 1646 }, 1647 }, 1648 [C(BPU)] = { 1649 [C(OP_READ)] = { 1650 [C(RESULT_ACCESS)] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */ 1651 [C(RESULT_MISS)] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */ 1652 }, 1653 [C(OP_WRITE)] = { 1654 [C(RESULT_ACCESS)] = -1, 1655 [C(RESULT_MISS)] = -1, 1656 }, 1657 [C(OP_PREFETCH)] = { 1658 [C(RESULT_ACCESS)] = -1, 1659 [C(RESULT_MISS)] = -1, 1660 }, 1661 }, 1662 }; 1663 1664 static __initconst const u64 glm_hw_cache_extra_regs 1665 [PERF_COUNT_HW_CACHE_MAX] 1666 [PERF_COUNT_HW_CACHE_OP_MAX] 1667 [PERF_COUNT_HW_CACHE_RESULT_MAX] = { 1668 [C(LL)] = { 1669 [C(OP_READ)] = { 1670 [C(RESULT_ACCESS)] = GLM_DEMAND_READ| 1671 GLM_LLC_ACCESS, 1672 [C(RESULT_MISS)] = GLM_DEMAND_READ| 1673 GLM_LLC_MISS, 1674 }, 1675 [C(OP_WRITE)] = { 1676 [C(RESULT_ACCESS)] = GLM_DEMAND_WRITE| 1677 GLM_LLC_ACCESS, 1678 [C(RESULT_MISS)] = GLM_DEMAND_WRITE| 1679 GLM_LLC_MISS, 1680 }, 1681 [C(OP_PREFETCH)] = { 1682 [C(RESULT_ACCESS)] = GLM_DEMAND_PREFETCH| 1683 GLM_LLC_ACCESS, 1684 [C(RESULT_MISS)] = GLM_DEMAND_PREFETCH| 1685 GLM_LLC_MISS, 1686 }, 1687 }, 1688 }; 1689 1690 #define KNL_OT_L2_HITE BIT_ULL(19) /* Other Tile L2 Hit */ 1691 #define KNL_OT_L2_HITF BIT_ULL(20) /* Other Tile L2 Hit */ 1692 #define KNL_MCDRAM_LOCAL BIT_ULL(21) 1693 #define KNL_MCDRAM_FAR BIT_ULL(22) 1694 #define KNL_DDR_LOCAL BIT_ULL(23) 1695 #define KNL_DDR_FAR BIT_ULL(24) 1696 #define KNL_DRAM_ANY (KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \ 1697 KNL_DDR_LOCAL | KNL_DDR_FAR) 1698 #define KNL_L2_READ SLM_DMND_READ 1699 #define KNL_L2_WRITE SLM_DMND_WRITE 1700 #define KNL_L2_PREFETCH SLM_DMND_PREFETCH 1701 #define KNL_L2_ACCESS SLM_LLC_ACCESS 1702 #define KNL_L2_MISS (KNL_OT_L2_HITE | KNL_OT_L2_HITF | \ 1703 KNL_DRAM_ANY | SNB_SNP_ANY | \ 1704 SNB_NON_DRAM) 1705 1706 static __initconst const u64 knl_hw_cache_extra_regs 1707 [PERF_COUNT_HW_CACHE_MAX] 1708 [PERF_COUNT_HW_CACHE_OP_MAX] 1709 [PERF_COUNT_HW_CACHE_RESULT_MAX] = { 1710 [C(LL)] = { 1711 [C(OP_READ)] = { 1712 [C(RESULT_ACCESS)] = KNL_L2_READ | KNL_L2_ACCESS, 1713 [C(RESULT_MISS)] = 0, 1714 }, 1715 [C(OP_WRITE)] = { 1716 [C(RESULT_ACCESS)] = KNL_L2_WRITE | KNL_L2_ACCESS, 1717 [C(RESULT_MISS)] = KNL_L2_WRITE | KNL_L2_MISS, 1718 }, 1719 [C(OP_PREFETCH)] = { 1720 [C(RESULT_ACCESS)] = KNL_L2_PREFETCH | KNL_L2_ACCESS, 1721 [C(RESULT_MISS)] = KNL_L2_PREFETCH | KNL_L2_MISS, 1722 }, 1723 }, 1724 }; 1725 1726 /* 1727 * Used from PMIs where the LBRs are already disabled. 1728 * 1729 * This function could be called consecutively. It is required to remain in 1730 * disabled state if called consecutively. 1731 * 1732 * During consecutive calls, the same disable value will be written to related 1733 * registers, so the PMU state remains unchanged. 1734 * 1735 * intel_bts events don't coexist with intel PMU's BTS events because of 1736 * x86_add_exclusive(x86_lbr_exclusive_lbr); there's no need to keep them 1737 * disabled around intel PMU's event batching etc, only inside the PMI handler. 1738 */ 1739 static void __intel_pmu_disable_all(void) 1740 { 1741 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1742 1743 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0); 1744 1745 if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) 1746 intel_pmu_disable_bts(); 1747 1748 intel_pmu_pebs_disable_all(); 1749 } 1750 1751 static void intel_pmu_disable_all(void) 1752 { 1753 __intel_pmu_disable_all(); 1754 intel_pmu_lbr_disable_all(); 1755 } 1756 1757 static void __intel_pmu_enable_all(int added, bool pmi) 1758 { 1759 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1760 1761 intel_pmu_pebs_enable_all(); 1762 intel_pmu_lbr_enable_all(pmi); 1763 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 1764 x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask); 1765 1766 if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) { 1767 struct perf_event *event = 1768 cpuc->events[INTEL_PMC_IDX_FIXED_BTS]; 1769 1770 if (WARN_ON_ONCE(!event)) 1771 return; 1772 1773 intel_pmu_enable_bts(event->hw.config); 1774 } 1775 } 1776 1777 static void intel_pmu_enable_all(int added) 1778 { 1779 __intel_pmu_enable_all(added, false); 1780 } 1781 1782 /* 1783 * Workaround for: 1784 * Intel Errata AAK100 (model 26) 1785 * Intel Errata AAP53 (model 30) 1786 * Intel Errata BD53 (model 44) 1787 * 1788 * The official story: 1789 * These chips need to be 'reset' when adding counters by programming the 1790 * magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either 1791 * in sequence on the same PMC or on different PMCs. 1792 * 1793 * In practise it appears some of these events do in fact count, and 1794 * we need to programm all 4 events. 1795 */ 1796 static void intel_pmu_nhm_workaround(void) 1797 { 1798 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1799 static const unsigned long nhm_magic[4] = { 1800 0x4300B5, 1801 0x4300D2, 1802 0x4300B1, 1803 0x4300B1 1804 }; 1805 struct perf_event *event; 1806 int i; 1807 1808 /* 1809 * The Errata requires below steps: 1810 * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL; 1811 * 2) Configure 4 PERFEVTSELx with the magic events and clear 1812 * the corresponding PMCx; 1813 * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL; 1814 * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL; 1815 * 5) Clear 4 pairs of ERFEVTSELx and PMCx; 1816 */ 1817 1818 /* 1819 * The real steps we choose are a little different from above. 1820 * A) To reduce MSR operations, we don't run step 1) as they 1821 * are already cleared before this function is called; 1822 * B) Call x86_perf_event_update to save PMCx before configuring 1823 * PERFEVTSELx with magic number; 1824 * C) With step 5), we do clear only when the PERFEVTSELx is 1825 * not used currently. 1826 * D) Call x86_perf_event_set_period to restore PMCx; 1827 */ 1828 1829 /* We always operate 4 pairs of PERF Counters */ 1830 for (i = 0; i < 4; i++) { 1831 event = cpuc->events[i]; 1832 if (event) 1833 x86_perf_event_update(event); 1834 } 1835 1836 for (i = 0; i < 4; i++) { 1837 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]); 1838 wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0); 1839 } 1840 1841 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf); 1842 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0); 1843 1844 for (i = 0; i < 4; i++) { 1845 event = cpuc->events[i]; 1846 1847 if (event) { 1848 x86_perf_event_set_period(event); 1849 __x86_pmu_enable_event(&event->hw, 1850 ARCH_PERFMON_EVENTSEL_ENABLE); 1851 } else 1852 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0); 1853 } 1854 } 1855 1856 static void intel_pmu_nhm_enable_all(int added) 1857 { 1858 if (added) 1859 intel_pmu_nhm_workaround(); 1860 intel_pmu_enable_all(added); 1861 } 1862 1863 static inline u64 intel_pmu_get_status(void) 1864 { 1865 u64 status; 1866 1867 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status); 1868 1869 return status; 1870 } 1871 1872 static inline void intel_pmu_ack_status(u64 ack) 1873 { 1874 wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack); 1875 } 1876 1877 static void intel_pmu_disable_fixed(struct hw_perf_event *hwc) 1878 { 1879 int idx = hwc->idx - INTEL_PMC_IDX_FIXED; 1880 u64 ctrl_val, mask; 1881 1882 mask = 0xfULL << (idx * 4); 1883 1884 rdmsrl(hwc->config_base, ctrl_val); 1885 ctrl_val &= ~mask; 1886 wrmsrl(hwc->config_base, ctrl_val); 1887 } 1888 1889 static inline bool event_is_checkpointed(struct perf_event *event) 1890 { 1891 return (event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0; 1892 } 1893 1894 static void intel_pmu_disable_event(struct perf_event *event) 1895 { 1896 struct hw_perf_event *hwc = &event->hw; 1897 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1898 1899 if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) { 1900 intel_pmu_disable_bts(); 1901 intel_pmu_drain_bts_buffer(); 1902 return; 1903 } 1904 1905 cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx); 1906 cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx); 1907 cpuc->intel_cp_status &= ~(1ull << hwc->idx); 1908 1909 if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) { 1910 intel_pmu_disable_fixed(hwc); 1911 return; 1912 } 1913 1914 x86_pmu_disable_event(event); 1915 1916 if (unlikely(event->attr.precise_ip)) 1917 intel_pmu_pebs_disable(event); 1918 } 1919 1920 static void intel_pmu_del_event(struct perf_event *event) 1921 { 1922 if (needs_branch_stack(event)) 1923 intel_pmu_lbr_del(event); 1924 if (event->attr.precise_ip) 1925 intel_pmu_pebs_del(event); 1926 } 1927 1928 static void intel_pmu_enable_fixed(struct hw_perf_event *hwc) 1929 { 1930 int idx = hwc->idx - INTEL_PMC_IDX_FIXED; 1931 u64 ctrl_val, bits, mask; 1932 1933 /* 1934 * Enable IRQ generation (0x8), 1935 * and enable ring-3 counting (0x2) and ring-0 counting (0x1) 1936 * if requested: 1937 */ 1938 bits = 0x8ULL; 1939 if (hwc->config & ARCH_PERFMON_EVENTSEL_USR) 1940 bits |= 0x2; 1941 if (hwc->config & ARCH_PERFMON_EVENTSEL_OS) 1942 bits |= 0x1; 1943 1944 /* 1945 * ANY bit is supported in v3 and up 1946 */ 1947 if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY) 1948 bits |= 0x4; 1949 1950 bits <<= (idx * 4); 1951 mask = 0xfULL << (idx * 4); 1952 1953 rdmsrl(hwc->config_base, ctrl_val); 1954 ctrl_val &= ~mask; 1955 ctrl_val |= bits; 1956 wrmsrl(hwc->config_base, ctrl_val); 1957 } 1958 1959 static void intel_pmu_enable_event(struct perf_event *event) 1960 { 1961 struct hw_perf_event *hwc = &event->hw; 1962 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1963 1964 if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) { 1965 if (!__this_cpu_read(cpu_hw_events.enabled)) 1966 return; 1967 1968 intel_pmu_enable_bts(hwc->config); 1969 return; 1970 } 1971 1972 if (event->attr.exclude_host) 1973 cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx); 1974 if (event->attr.exclude_guest) 1975 cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx); 1976 1977 if (unlikely(event_is_checkpointed(event))) 1978 cpuc->intel_cp_status |= (1ull << hwc->idx); 1979 1980 if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) { 1981 intel_pmu_enable_fixed(hwc); 1982 return; 1983 } 1984 1985 if (unlikely(event->attr.precise_ip)) 1986 intel_pmu_pebs_enable(event); 1987 1988 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE); 1989 } 1990 1991 static void intel_pmu_add_event(struct perf_event *event) 1992 { 1993 if (event->attr.precise_ip) 1994 intel_pmu_pebs_add(event); 1995 if (needs_branch_stack(event)) 1996 intel_pmu_lbr_add(event); 1997 } 1998 1999 /* 2000 * Save and restart an expired event. Called by NMI contexts, 2001 * so it has to be careful about preempting normal event ops: 2002 */ 2003 int intel_pmu_save_and_restart(struct perf_event *event) 2004 { 2005 x86_perf_event_update(event); 2006 /* 2007 * For a checkpointed counter always reset back to 0. This 2008 * avoids a situation where the counter overflows, aborts the 2009 * transaction and is then set back to shortly before the 2010 * overflow, and overflows and aborts again. 2011 */ 2012 if (unlikely(event_is_checkpointed(event))) { 2013 /* No race with NMIs because the counter should not be armed */ 2014 wrmsrl(event->hw.event_base, 0); 2015 local64_set(&event->hw.prev_count, 0); 2016 } 2017 return x86_perf_event_set_period(event); 2018 } 2019 2020 static void intel_pmu_reset(void) 2021 { 2022 struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds); 2023 unsigned long flags; 2024 int idx; 2025 2026 if (!x86_pmu.num_counters) 2027 return; 2028 2029 local_irq_save(flags); 2030 2031 pr_info("clearing PMU state on CPU#%d\n", smp_processor_id()); 2032 2033 for (idx = 0; idx < x86_pmu.num_counters; idx++) { 2034 wrmsrl_safe(x86_pmu_config_addr(idx), 0ull); 2035 wrmsrl_safe(x86_pmu_event_addr(idx), 0ull); 2036 } 2037 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) 2038 wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull); 2039 2040 if (ds) 2041 ds->bts_index = ds->bts_buffer_base; 2042 2043 /* Ack all overflows and disable fixed counters */ 2044 if (x86_pmu.version >= 2) { 2045 intel_pmu_ack_status(intel_pmu_get_status()); 2046 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0); 2047 } 2048 2049 /* Reset LBRs and LBR freezing */ 2050 if (x86_pmu.lbr_nr) { 2051 update_debugctlmsr(get_debugctlmsr() & 2052 ~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR)); 2053 } 2054 2055 local_irq_restore(flags); 2056 } 2057 2058 /* 2059 * This handler is triggered by the local APIC, so the APIC IRQ handling 2060 * rules apply: 2061 */ 2062 static int intel_pmu_handle_irq(struct pt_regs *regs) 2063 { 2064 struct perf_sample_data data; 2065 struct cpu_hw_events *cpuc; 2066 int bit, loops; 2067 u64 status; 2068 int handled; 2069 2070 cpuc = this_cpu_ptr(&cpu_hw_events); 2071 2072 /* 2073 * No known reason to not always do late ACK, 2074 * but just in case do it opt-in. 2075 */ 2076 if (!x86_pmu.late_ack) 2077 apic_write(APIC_LVTPC, APIC_DM_NMI); 2078 intel_bts_disable_local(); 2079 __intel_pmu_disable_all(); 2080 handled = intel_pmu_drain_bts_buffer(); 2081 handled += intel_bts_interrupt(); 2082 status = intel_pmu_get_status(); 2083 if (!status) 2084 goto done; 2085 2086 loops = 0; 2087 again: 2088 intel_pmu_lbr_read(); 2089 intel_pmu_ack_status(status); 2090 if (++loops > 100) { 2091 static bool warned = false; 2092 if (!warned) { 2093 WARN(1, "perfevents: irq loop stuck!\n"); 2094 perf_event_print_debug(); 2095 warned = true; 2096 } 2097 intel_pmu_reset(); 2098 goto done; 2099 } 2100 2101 inc_irq_stat(apic_perf_irqs); 2102 2103 2104 /* 2105 * Ignore a range of extra bits in status that do not indicate 2106 * overflow by themselves. 2107 */ 2108 status &= ~(GLOBAL_STATUS_COND_CHG | 2109 GLOBAL_STATUS_ASIF | 2110 GLOBAL_STATUS_LBRS_FROZEN); 2111 if (!status) 2112 goto done; 2113 2114 /* 2115 * PEBS overflow sets bit 62 in the global status register 2116 */ 2117 if (__test_and_clear_bit(62, (unsigned long *)&status)) { 2118 handled++; 2119 x86_pmu.drain_pebs(regs); 2120 /* 2121 * There are cases where, even though, the PEBS ovfl bit is set 2122 * in GLOBAL_OVF_STATUS, the PEBS events may also have their 2123 * overflow bits set for their counters. We must clear them 2124 * here because they have been processed as exact samples in 2125 * the drain_pebs() routine. They must not be processed again 2126 * in the for_each_bit_set() loop for regular samples below. 2127 */ 2128 status &= ~cpuc->pebs_enabled; 2129 status &= x86_pmu.intel_ctrl | GLOBAL_STATUS_TRACE_TOPAPMI; 2130 } 2131 2132 /* 2133 * Intel PT 2134 */ 2135 if (__test_and_clear_bit(55, (unsigned long *)&status)) { 2136 handled++; 2137 intel_pt_interrupt(); 2138 } 2139 2140 /* 2141 * Checkpointed counters can lead to 'spurious' PMIs because the 2142 * rollback caused by the PMI will have cleared the overflow status 2143 * bit. Therefore always force probe these counters. 2144 */ 2145 status |= cpuc->intel_cp_status; 2146 2147 for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) { 2148 struct perf_event *event = cpuc->events[bit]; 2149 2150 handled++; 2151 2152 if (!test_bit(bit, cpuc->active_mask)) 2153 continue; 2154 2155 if (!intel_pmu_save_and_restart(event)) 2156 continue; 2157 2158 perf_sample_data_init(&data, 0, event->hw.last_period); 2159 2160 if (has_branch_stack(event)) 2161 data.br_stack = &cpuc->lbr_stack; 2162 2163 if (perf_event_overflow(event, &data, regs)) 2164 x86_pmu_stop(event, 0); 2165 } 2166 2167 /* 2168 * Repeat if there is more work to be done: 2169 */ 2170 status = intel_pmu_get_status(); 2171 if (status) 2172 goto again; 2173 2174 done: 2175 /* Only restore PMU state when it's active. See x86_pmu_disable(). */ 2176 if (cpuc->enabled) 2177 __intel_pmu_enable_all(0, true); 2178 intel_bts_enable_local(); 2179 2180 /* 2181 * Only unmask the NMI after the overflow counters 2182 * have been reset. This avoids spurious NMIs on 2183 * Haswell CPUs. 2184 */ 2185 if (x86_pmu.late_ack) 2186 apic_write(APIC_LVTPC, APIC_DM_NMI); 2187 return handled; 2188 } 2189 2190 static struct event_constraint * 2191 intel_bts_constraints(struct perf_event *event) 2192 { 2193 struct hw_perf_event *hwc = &event->hw; 2194 unsigned int hw_event, bts_event; 2195 2196 if (event->attr.freq) 2197 return NULL; 2198 2199 hw_event = hwc->config & INTEL_ARCH_EVENT_MASK; 2200 bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS); 2201 2202 if (unlikely(hw_event == bts_event && hwc->sample_period == 1)) 2203 return &bts_constraint; 2204 2205 return NULL; 2206 } 2207 2208 static int intel_alt_er(int idx, u64 config) 2209 { 2210 int alt_idx = idx; 2211 2212 if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1)) 2213 return idx; 2214 2215 if (idx == EXTRA_REG_RSP_0) 2216 alt_idx = EXTRA_REG_RSP_1; 2217 2218 if (idx == EXTRA_REG_RSP_1) 2219 alt_idx = EXTRA_REG_RSP_0; 2220 2221 if (config & ~x86_pmu.extra_regs[alt_idx].valid_mask) 2222 return idx; 2223 2224 return alt_idx; 2225 } 2226 2227 static void intel_fixup_er(struct perf_event *event, int idx) 2228 { 2229 event->hw.extra_reg.idx = idx; 2230 2231 if (idx == EXTRA_REG_RSP_0) { 2232 event->hw.config &= ~INTEL_ARCH_EVENT_MASK; 2233 event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_0].event; 2234 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0; 2235 } else if (idx == EXTRA_REG_RSP_1) { 2236 event->hw.config &= ~INTEL_ARCH_EVENT_MASK; 2237 event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_1].event; 2238 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1; 2239 } 2240 } 2241 2242 /* 2243 * manage allocation of shared extra msr for certain events 2244 * 2245 * sharing can be: 2246 * per-cpu: to be shared between the various events on a single PMU 2247 * per-core: per-cpu + shared by HT threads 2248 */ 2249 static struct event_constraint * 2250 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc, 2251 struct perf_event *event, 2252 struct hw_perf_event_extra *reg) 2253 { 2254 struct event_constraint *c = &emptyconstraint; 2255 struct er_account *era; 2256 unsigned long flags; 2257 int idx = reg->idx; 2258 2259 /* 2260 * reg->alloc can be set due to existing state, so for fake cpuc we 2261 * need to ignore this, otherwise we might fail to allocate proper fake 2262 * state for this extra reg constraint. Also see the comment below. 2263 */ 2264 if (reg->alloc && !cpuc->is_fake) 2265 return NULL; /* call x86_get_event_constraint() */ 2266 2267 again: 2268 era = &cpuc->shared_regs->regs[idx]; 2269 /* 2270 * we use spin_lock_irqsave() to avoid lockdep issues when 2271 * passing a fake cpuc 2272 */ 2273 raw_spin_lock_irqsave(&era->lock, flags); 2274 2275 if (!atomic_read(&era->ref) || era->config == reg->config) { 2276 2277 /* 2278 * If its a fake cpuc -- as per validate_{group,event}() we 2279 * shouldn't touch event state and we can avoid doing so 2280 * since both will only call get_event_constraints() once 2281 * on each event, this avoids the need for reg->alloc. 2282 * 2283 * Not doing the ER fixup will only result in era->reg being 2284 * wrong, but since we won't actually try and program hardware 2285 * this isn't a problem either. 2286 */ 2287 if (!cpuc->is_fake) { 2288 if (idx != reg->idx) 2289 intel_fixup_er(event, idx); 2290 2291 /* 2292 * x86_schedule_events() can call get_event_constraints() 2293 * multiple times on events in the case of incremental 2294 * scheduling(). reg->alloc ensures we only do the ER 2295 * allocation once. 2296 */ 2297 reg->alloc = 1; 2298 } 2299 2300 /* lock in msr value */ 2301 era->config = reg->config; 2302 era->reg = reg->reg; 2303 2304 /* one more user */ 2305 atomic_inc(&era->ref); 2306 2307 /* 2308 * need to call x86_get_event_constraint() 2309 * to check if associated event has constraints 2310 */ 2311 c = NULL; 2312 } else { 2313 idx = intel_alt_er(idx, reg->config); 2314 if (idx != reg->idx) { 2315 raw_spin_unlock_irqrestore(&era->lock, flags); 2316 goto again; 2317 } 2318 } 2319 raw_spin_unlock_irqrestore(&era->lock, flags); 2320 2321 return c; 2322 } 2323 2324 static void 2325 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc, 2326 struct hw_perf_event_extra *reg) 2327 { 2328 struct er_account *era; 2329 2330 /* 2331 * Only put constraint if extra reg was actually allocated. Also takes 2332 * care of event which do not use an extra shared reg. 2333 * 2334 * Also, if this is a fake cpuc we shouldn't touch any event state 2335 * (reg->alloc) and we don't care about leaving inconsistent cpuc state 2336 * either since it'll be thrown out. 2337 */ 2338 if (!reg->alloc || cpuc->is_fake) 2339 return; 2340 2341 era = &cpuc->shared_regs->regs[reg->idx]; 2342 2343 /* one fewer user */ 2344 atomic_dec(&era->ref); 2345 2346 /* allocate again next time */ 2347 reg->alloc = 0; 2348 } 2349 2350 static struct event_constraint * 2351 intel_shared_regs_constraints(struct cpu_hw_events *cpuc, 2352 struct perf_event *event) 2353 { 2354 struct event_constraint *c = NULL, *d; 2355 struct hw_perf_event_extra *xreg, *breg; 2356 2357 xreg = &event->hw.extra_reg; 2358 if (xreg->idx != EXTRA_REG_NONE) { 2359 c = __intel_shared_reg_get_constraints(cpuc, event, xreg); 2360 if (c == &emptyconstraint) 2361 return c; 2362 } 2363 breg = &event->hw.branch_reg; 2364 if (breg->idx != EXTRA_REG_NONE) { 2365 d = __intel_shared_reg_get_constraints(cpuc, event, breg); 2366 if (d == &emptyconstraint) { 2367 __intel_shared_reg_put_constraints(cpuc, xreg); 2368 c = d; 2369 } 2370 } 2371 return c; 2372 } 2373 2374 struct event_constraint * 2375 x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx, 2376 struct perf_event *event) 2377 { 2378 struct event_constraint *c; 2379 2380 if (x86_pmu.event_constraints) { 2381 for_each_event_constraint(c, x86_pmu.event_constraints) { 2382 if ((event->hw.config & c->cmask) == c->code) { 2383 event->hw.flags |= c->flags; 2384 return c; 2385 } 2386 } 2387 } 2388 2389 return &unconstrained; 2390 } 2391 2392 static struct event_constraint * 2393 __intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx, 2394 struct perf_event *event) 2395 { 2396 struct event_constraint *c; 2397 2398 c = intel_bts_constraints(event); 2399 if (c) 2400 return c; 2401 2402 c = intel_shared_regs_constraints(cpuc, event); 2403 if (c) 2404 return c; 2405 2406 c = intel_pebs_constraints(event); 2407 if (c) 2408 return c; 2409 2410 return x86_get_event_constraints(cpuc, idx, event); 2411 } 2412 2413 static void 2414 intel_start_scheduling(struct cpu_hw_events *cpuc) 2415 { 2416 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs; 2417 struct intel_excl_states *xl; 2418 int tid = cpuc->excl_thread_id; 2419 2420 /* 2421 * nothing needed if in group validation mode 2422 */ 2423 if (cpuc->is_fake || !is_ht_workaround_enabled()) 2424 return; 2425 2426 /* 2427 * no exclusion needed 2428 */ 2429 if (WARN_ON_ONCE(!excl_cntrs)) 2430 return; 2431 2432 xl = &excl_cntrs->states[tid]; 2433 2434 xl->sched_started = true; 2435 /* 2436 * lock shared state until we are done scheduling 2437 * in stop_event_scheduling() 2438 * makes scheduling appear as a transaction 2439 */ 2440 raw_spin_lock(&excl_cntrs->lock); 2441 } 2442 2443 static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr) 2444 { 2445 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs; 2446 struct event_constraint *c = cpuc->event_constraint[idx]; 2447 struct intel_excl_states *xl; 2448 int tid = cpuc->excl_thread_id; 2449 2450 if (cpuc->is_fake || !is_ht_workaround_enabled()) 2451 return; 2452 2453 if (WARN_ON_ONCE(!excl_cntrs)) 2454 return; 2455 2456 if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) 2457 return; 2458 2459 xl = &excl_cntrs->states[tid]; 2460 2461 lockdep_assert_held(&excl_cntrs->lock); 2462 2463 if (c->flags & PERF_X86_EVENT_EXCL) 2464 xl->state[cntr] = INTEL_EXCL_EXCLUSIVE; 2465 else 2466 xl->state[cntr] = INTEL_EXCL_SHARED; 2467 } 2468 2469 static void 2470 intel_stop_scheduling(struct cpu_hw_events *cpuc) 2471 { 2472 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs; 2473 struct intel_excl_states *xl; 2474 int tid = cpuc->excl_thread_id; 2475 2476 /* 2477 * nothing needed if in group validation mode 2478 */ 2479 if (cpuc->is_fake || !is_ht_workaround_enabled()) 2480 return; 2481 /* 2482 * no exclusion needed 2483 */ 2484 if (WARN_ON_ONCE(!excl_cntrs)) 2485 return; 2486 2487 xl = &excl_cntrs->states[tid]; 2488 2489 xl->sched_started = false; 2490 /* 2491 * release shared state lock (acquired in intel_start_scheduling()) 2492 */ 2493 raw_spin_unlock(&excl_cntrs->lock); 2494 } 2495 2496 static struct event_constraint * 2497 intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event, 2498 int idx, struct event_constraint *c) 2499 { 2500 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs; 2501 struct intel_excl_states *xlo; 2502 int tid = cpuc->excl_thread_id; 2503 int is_excl, i; 2504 2505 /* 2506 * validating a group does not require 2507 * enforcing cross-thread exclusion 2508 */ 2509 if (cpuc->is_fake || !is_ht_workaround_enabled()) 2510 return c; 2511 2512 /* 2513 * no exclusion needed 2514 */ 2515 if (WARN_ON_ONCE(!excl_cntrs)) 2516 return c; 2517 2518 /* 2519 * because we modify the constraint, we need 2520 * to make a copy. Static constraints come 2521 * from static const tables. 2522 * 2523 * only needed when constraint has not yet 2524 * been cloned (marked dynamic) 2525 */ 2526 if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) { 2527 struct event_constraint *cx; 2528 2529 /* 2530 * grab pre-allocated constraint entry 2531 */ 2532 cx = &cpuc->constraint_list[idx]; 2533 2534 /* 2535 * initialize dynamic constraint 2536 * with static constraint 2537 */ 2538 *cx = *c; 2539 2540 /* 2541 * mark constraint as dynamic, so we 2542 * can free it later on 2543 */ 2544 cx->flags |= PERF_X86_EVENT_DYNAMIC; 2545 c = cx; 2546 } 2547 2548 /* 2549 * From here on, the constraint is dynamic. 2550 * Either it was just allocated above, or it 2551 * was allocated during a earlier invocation 2552 * of this function 2553 */ 2554 2555 /* 2556 * state of sibling HT 2557 */ 2558 xlo = &excl_cntrs->states[tid ^ 1]; 2559 2560 /* 2561 * event requires exclusive counter access 2562 * across HT threads 2563 */ 2564 is_excl = c->flags & PERF_X86_EVENT_EXCL; 2565 if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) { 2566 event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT; 2567 if (!cpuc->n_excl++) 2568 WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1); 2569 } 2570 2571 /* 2572 * Modify static constraint with current dynamic 2573 * state of thread 2574 * 2575 * EXCLUSIVE: sibling counter measuring exclusive event 2576 * SHARED : sibling counter measuring non-exclusive event 2577 * UNUSED : sibling counter unused 2578 */ 2579 for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) { 2580 /* 2581 * exclusive event in sibling counter 2582 * our corresponding counter cannot be used 2583 * regardless of our event 2584 */ 2585 if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE) 2586 __clear_bit(i, c->idxmsk); 2587 /* 2588 * if measuring an exclusive event, sibling 2589 * measuring non-exclusive, then counter cannot 2590 * be used 2591 */ 2592 if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED) 2593 __clear_bit(i, c->idxmsk); 2594 } 2595 2596 /* 2597 * recompute actual bit weight for scheduling algorithm 2598 */ 2599 c->weight = hweight64(c->idxmsk64); 2600 2601 /* 2602 * if we return an empty mask, then switch 2603 * back to static empty constraint to avoid 2604 * the cost of freeing later on 2605 */ 2606 if (c->weight == 0) 2607 c = &emptyconstraint; 2608 2609 return c; 2610 } 2611 2612 static struct event_constraint * 2613 intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx, 2614 struct perf_event *event) 2615 { 2616 struct event_constraint *c1 = NULL; 2617 struct event_constraint *c2; 2618 2619 if (idx >= 0) /* fake does < 0 */ 2620 c1 = cpuc->event_constraint[idx]; 2621 2622 /* 2623 * first time only 2624 * - static constraint: no change across incremental scheduling calls 2625 * - dynamic constraint: handled by intel_get_excl_constraints() 2626 */ 2627 c2 = __intel_get_event_constraints(cpuc, idx, event); 2628 if (c1 && (c1->flags & PERF_X86_EVENT_DYNAMIC)) { 2629 bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX); 2630 c1->weight = c2->weight; 2631 c2 = c1; 2632 } 2633 2634 if (cpuc->excl_cntrs) 2635 return intel_get_excl_constraints(cpuc, event, idx, c2); 2636 2637 return c2; 2638 } 2639 2640 static void intel_put_excl_constraints(struct cpu_hw_events *cpuc, 2641 struct perf_event *event) 2642 { 2643 struct hw_perf_event *hwc = &event->hw; 2644 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs; 2645 int tid = cpuc->excl_thread_id; 2646 struct intel_excl_states *xl; 2647 2648 /* 2649 * nothing needed if in group validation mode 2650 */ 2651 if (cpuc->is_fake) 2652 return; 2653 2654 if (WARN_ON_ONCE(!excl_cntrs)) 2655 return; 2656 2657 if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) { 2658 hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT; 2659 if (!--cpuc->n_excl) 2660 WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0); 2661 } 2662 2663 /* 2664 * If event was actually assigned, then mark the counter state as 2665 * unused now. 2666 */ 2667 if (hwc->idx >= 0) { 2668 xl = &excl_cntrs->states[tid]; 2669 2670 /* 2671 * put_constraint may be called from x86_schedule_events() 2672 * which already has the lock held so here make locking 2673 * conditional. 2674 */ 2675 if (!xl->sched_started) 2676 raw_spin_lock(&excl_cntrs->lock); 2677 2678 xl->state[hwc->idx] = INTEL_EXCL_UNUSED; 2679 2680 if (!xl->sched_started) 2681 raw_spin_unlock(&excl_cntrs->lock); 2682 } 2683 } 2684 2685 static void 2686 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc, 2687 struct perf_event *event) 2688 { 2689 struct hw_perf_event_extra *reg; 2690 2691 reg = &event->hw.extra_reg; 2692 if (reg->idx != EXTRA_REG_NONE) 2693 __intel_shared_reg_put_constraints(cpuc, reg); 2694 2695 reg = &event->hw.branch_reg; 2696 if (reg->idx != EXTRA_REG_NONE) 2697 __intel_shared_reg_put_constraints(cpuc, reg); 2698 } 2699 2700 static void intel_put_event_constraints(struct cpu_hw_events *cpuc, 2701 struct perf_event *event) 2702 { 2703 intel_put_shared_regs_event_constraints(cpuc, event); 2704 2705 /* 2706 * is PMU has exclusive counter restrictions, then 2707 * all events are subject to and must call the 2708 * put_excl_constraints() routine 2709 */ 2710 if (cpuc->excl_cntrs) 2711 intel_put_excl_constraints(cpuc, event); 2712 } 2713 2714 static void intel_pebs_aliases_core2(struct perf_event *event) 2715 { 2716 if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) { 2717 /* 2718 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P 2719 * (0x003c) so that we can use it with PEBS. 2720 * 2721 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't 2722 * PEBS capable. However we can use INST_RETIRED.ANY_P 2723 * (0x00c0), which is a PEBS capable event, to get the same 2724 * count. 2725 * 2726 * INST_RETIRED.ANY_P counts the number of cycles that retires 2727 * CNTMASK instructions. By setting CNTMASK to a value (16) 2728 * larger than the maximum number of instructions that can be 2729 * retired per cycle (4) and then inverting the condition, we 2730 * count all cycles that retire 16 or less instructions, which 2731 * is every cycle. 2732 * 2733 * Thereby we gain a PEBS capable cycle counter. 2734 */ 2735 u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16); 2736 2737 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK); 2738 event->hw.config = alt_config; 2739 } 2740 } 2741 2742 static void intel_pebs_aliases_snb(struct perf_event *event) 2743 { 2744 if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) { 2745 /* 2746 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P 2747 * (0x003c) so that we can use it with PEBS. 2748 * 2749 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't 2750 * PEBS capable. However we can use UOPS_RETIRED.ALL 2751 * (0x01c2), which is a PEBS capable event, to get the same 2752 * count. 2753 * 2754 * UOPS_RETIRED.ALL counts the number of cycles that retires 2755 * CNTMASK micro-ops. By setting CNTMASK to a value (16) 2756 * larger than the maximum number of micro-ops that can be 2757 * retired per cycle (4) and then inverting the condition, we 2758 * count all cycles that retire 16 or less micro-ops, which 2759 * is every cycle. 2760 * 2761 * Thereby we gain a PEBS capable cycle counter. 2762 */ 2763 u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16); 2764 2765 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK); 2766 event->hw.config = alt_config; 2767 } 2768 } 2769 2770 static void intel_pebs_aliases_precdist(struct perf_event *event) 2771 { 2772 if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) { 2773 /* 2774 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P 2775 * (0x003c) so that we can use it with PEBS. 2776 * 2777 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't 2778 * PEBS capable. However we can use INST_RETIRED.PREC_DIST 2779 * (0x01c0), which is a PEBS capable event, to get the same 2780 * count. 2781 * 2782 * The PREC_DIST event has special support to minimize sample 2783 * shadowing effects. One drawback is that it can be 2784 * only programmed on counter 1, but that seems like an 2785 * acceptable trade off. 2786 */ 2787 u64 alt_config = X86_CONFIG(.event=0xc0, .umask=0x01, .inv=1, .cmask=16); 2788 2789 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK); 2790 event->hw.config = alt_config; 2791 } 2792 } 2793 2794 static void intel_pebs_aliases_ivb(struct perf_event *event) 2795 { 2796 if (event->attr.precise_ip < 3) 2797 return intel_pebs_aliases_snb(event); 2798 return intel_pebs_aliases_precdist(event); 2799 } 2800 2801 static void intel_pebs_aliases_skl(struct perf_event *event) 2802 { 2803 if (event->attr.precise_ip < 3) 2804 return intel_pebs_aliases_core2(event); 2805 return intel_pebs_aliases_precdist(event); 2806 } 2807 2808 static unsigned long intel_pmu_free_running_flags(struct perf_event *event) 2809 { 2810 unsigned long flags = x86_pmu.free_running_flags; 2811 2812 if (event->attr.use_clockid) 2813 flags &= ~PERF_SAMPLE_TIME; 2814 return flags; 2815 } 2816 2817 static int intel_pmu_hw_config(struct perf_event *event) 2818 { 2819 int ret = x86_pmu_hw_config(event); 2820 2821 if (ret) 2822 return ret; 2823 2824 if (event->attr.precise_ip) { 2825 if (!event->attr.freq) { 2826 event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD; 2827 if (!(event->attr.sample_type & 2828 ~intel_pmu_free_running_flags(event))) 2829 event->hw.flags |= PERF_X86_EVENT_FREERUNNING; 2830 } 2831 if (x86_pmu.pebs_aliases) 2832 x86_pmu.pebs_aliases(event); 2833 } 2834 2835 if (needs_branch_stack(event)) { 2836 ret = intel_pmu_setup_lbr_filter(event); 2837 if (ret) 2838 return ret; 2839 2840 /* 2841 * BTS is set up earlier in this path, so don't account twice 2842 */ 2843 if (!intel_pmu_has_bts(event)) { 2844 /* disallow lbr if conflicting events are present */ 2845 if (x86_add_exclusive(x86_lbr_exclusive_lbr)) 2846 return -EBUSY; 2847 2848 event->destroy = hw_perf_lbr_event_destroy; 2849 } 2850 } 2851 2852 if (event->attr.type != PERF_TYPE_RAW) 2853 return 0; 2854 2855 if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY)) 2856 return 0; 2857 2858 if (x86_pmu.version < 3) 2859 return -EINVAL; 2860 2861 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) 2862 return -EACCES; 2863 2864 event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY; 2865 2866 return 0; 2867 } 2868 2869 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr) 2870 { 2871 if (x86_pmu.guest_get_msrs) 2872 return x86_pmu.guest_get_msrs(nr); 2873 *nr = 0; 2874 return NULL; 2875 } 2876 EXPORT_SYMBOL_GPL(perf_guest_get_msrs); 2877 2878 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr) 2879 { 2880 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2881 struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs; 2882 2883 arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL; 2884 arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask; 2885 arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask; 2886 /* 2887 * If PMU counter has PEBS enabled it is not enough to disable counter 2888 * on a guest entry since PEBS memory write can overshoot guest entry 2889 * and corrupt guest memory. Disabling PEBS solves the problem. 2890 */ 2891 arr[1].msr = MSR_IA32_PEBS_ENABLE; 2892 arr[1].host = cpuc->pebs_enabled; 2893 arr[1].guest = 0; 2894 2895 *nr = 2; 2896 return arr; 2897 } 2898 2899 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr) 2900 { 2901 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2902 struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs; 2903 int idx; 2904 2905 for (idx = 0; idx < x86_pmu.num_counters; idx++) { 2906 struct perf_event *event = cpuc->events[idx]; 2907 2908 arr[idx].msr = x86_pmu_config_addr(idx); 2909 arr[idx].host = arr[idx].guest = 0; 2910 2911 if (!test_bit(idx, cpuc->active_mask)) 2912 continue; 2913 2914 arr[idx].host = arr[idx].guest = 2915 event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE; 2916 2917 if (event->attr.exclude_host) 2918 arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE; 2919 else if (event->attr.exclude_guest) 2920 arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE; 2921 } 2922 2923 *nr = x86_pmu.num_counters; 2924 return arr; 2925 } 2926 2927 static void core_pmu_enable_event(struct perf_event *event) 2928 { 2929 if (!event->attr.exclude_host) 2930 x86_pmu_enable_event(event); 2931 } 2932 2933 static void core_pmu_enable_all(int added) 2934 { 2935 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2936 int idx; 2937 2938 for (idx = 0; idx < x86_pmu.num_counters; idx++) { 2939 struct hw_perf_event *hwc = &cpuc->events[idx]->hw; 2940 2941 if (!test_bit(idx, cpuc->active_mask) || 2942 cpuc->events[idx]->attr.exclude_host) 2943 continue; 2944 2945 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE); 2946 } 2947 } 2948 2949 static int hsw_hw_config(struct perf_event *event) 2950 { 2951 int ret = intel_pmu_hw_config(event); 2952 2953 if (ret) 2954 return ret; 2955 if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE)) 2956 return 0; 2957 event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED); 2958 2959 /* 2960 * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with 2961 * PEBS or in ANY thread mode. Since the results are non-sensical forbid 2962 * this combination. 2963 */ 2964 if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) && 2965 ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) || 2966 event->attr.precise_ip > 0)) 2967 return -EOPNOTSUPP; 2968 2969 if (event_is_checkpointed(event)) { 2970 /* 2971 * Sampling of checkpointed events can cause situations where 2972 * the CPU constantly aborts because of a overflow, which is 2973 * then checkpointed back and ignored. Forbid checkpointing 2974 * for sampling. 2975 * 2976 * But still allow a long sampling period, so that perf stat 2977 * from KVM works. 2978 */ 2979 if (event->attr.sample_period > 0 && 2980 event->attr.sample_period < 0x7fffffff) 2981 return -EOPNOTSUPP; 2982 } 2983 return 0; 2984 } 2985 2986 static struct event_constraint counter2_constraint = 2987 EVENT_CONSTRAINT(0, 0x4, 0); 2988 2989 static struct event_constraint * 2990 hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx, 2991 struct perf_event *event) 2992 { 2993 struct event_constraint *c; 2994 2995 c = intel_get_event_constraints(cpuc, idx, event); 2996 2997 /* Handle special quirk on in_tx_checkpointed only in counter 2 */ 2998 if (event->hw.config & HSW_IN_TX_CHECKPOINTED) { 2999 if (c->idxmsk64 & (1U << 2)) 3000 return &counter2_constraint; 3001 return &emptyconstraint; 3002 } 3003 3004 return c; 3005 } 3006 3007 /* 3008 * Broadwell: 3009 * 3010 * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared 3011 * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine 3012 * the two to enforce a minimum period of 128 (the smallest value that has bits 3013 * 0-5 cleared and >= 100). 3014 * 3015 * Because of how the code in x86_perf_event_set_period() works, the truncation 3016 * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period 3017 * to make up for the 'lost' events due to carrying the 'error' in period_left. 3018 * 3019 * Therefore the effective (average) period matches the requested period, 3020 * despite coarser hardware granularity. 3021 */ 3022 static unsigned bdw_limit_period(struct perf_event *event, unsigned left) 3023 { 3024 if ((event->hw.config & INTEL_ARCH_EVENT_MASK) == 3025 X86_CONFIG(.event=0xc0, .umask=0x01)) { 3026 if (left < 128) 3027 left = 128; 3028 left &= ~0x3fu; 3029 } 3030 return left; 3031 } 3032 3033 PMU_FORMAT_ATTR(event, "config:0-7" ); 3034 PMU_FORMAT_ATTR(umask, "config:8-15" ); 3035 PMU_FORMAT_ATTR(edge, "config:18" ); 3036 PMU_FORMAT_ATTR(pc, "config:19" ); 3037 PMU_FORMAT_ATTR(any, "config:21" ); /* v3 + */ 3038 PMU_FORMAT_ATTR(inv, "config:23" ); 3039 PMU_FORMAT_ATTR(cmask, "config:24-31" ); 3040 PMU_FORMAT_ATTR(in_tx, "config:32"); 3041 PMU_FORMAT_ATTR(in_tx_cp, "config:33"); 3042 3043 static struct attribute *intel_arch_formats_attr[] = { 3044 &format_attr_event.attr, 3045 &format_attr_umask.attr, 3046 &format_attr_edge.attr, 3047 &format_attr_pc.attr, 3048 &format_attr_inv.attr, 3049 &format_attr_cmask.attr, 3050 NULL, 3051 }; 3052 3053 ssize_t intel_event_sysfs_show(char *page, u64 config) 3054 { 3055 u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT); 3056 3057 return x86_event_sysfs_show(page, config, event); 3058 } 3059 3060 struct intel_shared_regs *allocate_shared_regs(int cpu) 3061 { 3062 struct intel_shared_regs *regs; 3063 int i; 3064 3065 regs = kzalloc_node(sizeof(struct intel_shared_regs), 3066 GFP_KERNEL, cpu_to_node(cpu)); 3067 if (regs) { 3068 /* 3069 * initialize the locks to keep lockdep happy 3070 */ 3071 for (i = 0; i < EXTRA_REG_MAX; i++) 3072 raw_spin_lock_init(®s->regs[i].lock); 3073 3074 regs->core_id = -1; 3075 } 3076 return regs; 3077 } 3078 3079 static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu) 3080 { 3081 struct intel_excl_cntrs *c; 3082 3083 c = kzalloc_node(sizeof(struct intel_excl_cntrs), 3084 GFP_KERNEL, cpu_to_node(cpu)); 3085 if (c) { 3086 raw_spin_lock_init(&c->lock); 3087 c->core_id = -1; 3088 } 3089 return c; 3090 } 3091 3092 static int intel_pmu_cpu_prepare(int cpu) 3093 { 3094 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu); 3095 3096 if (x86_pmu.extra_regs || x86_pmu.lbr_sel_map) { 3097 cpuc->shared_regs = allocate_shared_regs(cpu); 3098 if (!cpuc->shared_regs) 3099 goto err; 3100 } 3101 3102 if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) { 3103 size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint); 3104 3105 cpuc->constraint_list = kzalloc(sz, GFP_KERNEL); 3106 if (!cpuc->constraint_list) 3107 goto err_shared_regs; 3108 3109 cpuc->excl_cntrs = allocate_excl_cntrs(cpu); 3110 if (!cpuc->excl_cntrs) 3111 goto err_constraint_list; 3112 3113 cpuc->excl_thread_id = 0; 3114 } 3115 3116 return 0; 3117 3118 err_constraint_list: 3119 kfree(cpuc->constraint_list); 3120 cpuc->constraint_list = NULL; 3121 3122 err_shared_regs: 3123 kfree(cpuc->shared_regs); 3124 cpuc->shared_regs = NULL; 3125 3126 err: 3127 return -ENOMEM; 3128 } 3129 3130 static void intel_pmu_cpu_starting(int cpu) 3131 { 3132 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu); 3133 int core_id = topology_core_id(cpu); 3134 int i; 3135 3136 init_debug_store_on_cpu(cpu); 3137 /* 3138 * Deal with CPUs that don't clear their LBRs on power-up. 3139 */ 3140 intel_pmu_lbr_reset(); 3141 3142 cpuc->lbr_sel = NULL; 3143 3144 if (!cpuc->shared_regs) 3145 return; 3146 3147 if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) { 3148 for_each_cpu(i, topology_sibling_cpumask(cpu)) { 3149 struct intel_shared_regs *pc; 3150 3151 pc = per_cpu(cpu_hw_events, i).shared_regs; 3152 if (pc && pc->core_id == core_id) { 3153 cpuc->kfree_on_online[0] = cpuc->shared_regs; 3154 cpuc->shared_regs = pc; 3155 break; 3156 } 3157 } 3158 cpuc->shared_regs->core_id = core_id; 3159 cpuc->shared_regs->refcnt++; 3160 } 3161 3162 if (x86_pmu.lbr_sel_map) 3163 cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR]; 3164 3165 if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) { 3166 for_each_cpu(i, topology_sibling_cpumask(cpu)) { 3167 struct intel_excl_cntrs *c; 3168 3169 c = per_cpu(cpu_hw_events, i).excl_cntrs; 3170 if (c && c->core_id == core_id) { 3171 cpuc->kfree_on_online[1] = cpuc->excl_cntrs; 3172 cpuc->excl_cntrs = c; 3173 cpuc->excl_thread_id = 1; 3174 break; 3175 } 3176 } 3177 cpuc->excl_cntrs->core_id = core_id; 3178 cpuc->excl_cntrs->refcnt++; 3179 } 3180 } 3181 3182 static void free_excl_cntrs(int cpu) 3183 { 3184 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu); 3185 struct intel_excl_cntrs *c; 3186 3187 c = cpuc->excl_cntrs; 3188 if (c) { 3189 if (c->core_id == -1 || --c->refcnt == 0) 3190 kfree(c); 3191 cpuc->excl_cntrs = NULL; 3192 kfree(cpuc->constraint_list); 3193 cpuc->constraint_list = NULL; 3194 } 3195 } 3196 3197 static void intel_pmu_cpu_dying(int cpu) 3198 { 3199 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu); 3200 struct intel_shared_regs *pc; 3201 3202 pc = cpuc->shared_regs; 3203 if (pc) { 3204 if (pc->core_id == -1 || --pc->refcnt == 0) 3205 kfree(pc); 3206 cpuc->shared_regs = NULL; 3207 } 3208 3209 free_excl_cntrs(cpu); 3210 3211 fini_debug_store_on_cpu(cpu); 3212 } 3213 3214 static void intel_pmu_sched_task(struct perf_event_context *ctx, 3215 bool sched_in) 3216 { 3217 if (x86_pmu.pebs_active) 3218 intel_pmu_pebs_sched_task(ctx, sched_in); 3219 if (x86_pmu.lbr_nr) 3220 intel_pmu_lbr_sched_task(ctx, sched_in); 3221 } 3222 3223 PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63"); 3224 3225 PMU_FORMAT_ATTR(ldlat, "config1:0-15"); 3226 3227 PMU_FORMAT_ATTR(frontend, "config1:0-23"); 3228 3229 static struct attribute *intel_arch3_formats_attr[] = { 3230 &format_attr_event.attr, 3231 &format_attr_umask.attr, 3232 &format_attr_edge.attr, 3233 &format_attr_pc.attr, 3234 &format_attr_any.attr, 3235 &format_attr_inv.attr, 3236 &format_attr_cmask.attr, 3237 &format_attr_in_tx.attr, 3238 &format_attr_in_tx_cp.attr, 3239 3240 &format_attr_offcore_rsp.attr, /* XXX do NHM/WSM + SNB breakout */ 3241 &format_attr_ldlat.attr, /* PEBS load latency */ 3242 NULL, 3243 }; 3244 3245 static struct attribute *skl_format_attr[] = { 3246 &format_attr_frontend.attr, 3247 NULL, 3248 }; 3249 3250 static __initconst const struct x86_pmu core_pmu = { 3251 .name = "core", 3252 .handle_irq = x86_pmu_handle_irq, 3253 .disable_all = x86_pmu_disable_all, 3254 .enable_all = core_pmu_enable_all, 3255 .enable = core_pmu_enable_event, 3256 .disable = x86_pmu_disable_event, 3257 .hw_config = x86_pmu_hw_config, 3258 .schedule_events = x86_schedule_events, 3259 .eventsel = MSR_ARCH_PERFMON_EVENTSEL0, 3260 .perfctr = MSR_ARCH_PERFMON_PERFCTR0, 3261 .event_map = intel_pmu_event_map, 3262 .max_events = ARRAY_SIZE(intel_perfmon_event_map), 3263 .apic = 1, 3264 .free_running_flags = PEBS_FREERUNNING_FLAGS, 3265 3266 /* 3267 * Intel PMCs cannot be accessed sanely above 32-bit width, 3268 * so we install an artificial 1<<31 period regardless of 3269 * the generic event period: 3270 */ 3271 .max_period = (1ULL<<31) - 1, 3272 .get_event_constraints = intel_get_event_constraints, 3273 .put_event_constraints = intel_put_event_constraints, 3274 .event_constraints = intel_core_event_constraints, 3275 .guest_get_msrs = core_guest_get_msrs, 3276 .format_attrs = intel_arch_formats_attr, 3277 .events_sysfs_show = intel_event_sysfs_show, 3278 3279 /* 3280 * Virtual (or funny metal) CPU can define x86_pmu.extra_regs 3281 * together with PMU version 1 and thus be using core_pmu with 3282 * shared_regs. We need following callbacks here to allocate 3283 * it properly. 3284 */ 3285 .cpu_prepare = intel_pmu_cpu_prepare, 3286 .cpu_starting = intel_pmu_cpu_starting, 3287 .cpu_dying = intel_pmu_cpu_dying, 3288 }; 3289 3290 static __initconst const struct x86_pmu intel_pmu = { 3291 .name = "Intel", 3292 .handle_irq = intel_pmu_handle_irq, 3293 .disable_all = intel_pmu_disable_all, 3294 .enable_all = intel_pmu_enable_all, 3295 .enable = intel_pmu_enable_event, 3296 .disable = intel_pmu_disable_event, 3297 .add = intel_pmu_add_event, 3298 .del = intel_pmu_del_event, 3299 .hw_config = intel_pmu_hw_config, 3300 .schedule_events = x86_schedule_events, 3301 .eventsel = MSR_ARCH_PERFMON_EVENTSEL0, 3302 .perfctr = MSR_ARCH_PERFMON_PERFCTR0, 3303 .event_map = intel_pmu_event_map, 3304 .max_events = ARRAY_SIZE(intel_perfmon_event_map), 3305 .apic = 1, 3306 .free_running_flags = PEBS_FREERUNNING_FLAGS, 3307 /* 3308 * Intel PMCs cannot be accessed sanely above 32 bit width, 3309 * so we install an artificial 1<<31 period regardless of 3310 * the generic event period: 3311 */ 3312 .max_period = (1ULL << 31) - 1, 3313 .get_event_constraints = intel_get_event_constraints, 3314 .put_event_constraints = intel_put_event_constraints, 3315 .pebs_aliases = intel_pebs_aliases_core2, 3316 3317 .format_attrs = intel_arch3_formats_attr, 3318 .events_sysfs_show = intel_event_sysfs_show, 3319 3320 .cpu_prepare = intel_pmu_cpu_prepare, 3321 .cpu_starting = intel_pmu_cpu_starting, 3322 .cpu_dying = intel_pmu_cpu_dying, 3323 .guest_get_msrs = intel_guest_get_msrs, 3324 .sched_task = intel_pmu_sched_task, 3325 }; 3326 3327 static __init void intel_clovertown_quirk(void) 3328 { 3329 /* 3330 * PEBS is unreliable due to: 3331 * 3332 * AJ67 - PEBS may experience CPL leaks 3333 * AJ68 - PEBS PMI may be delayed by one event 3334 * AJ69 - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12] 3335 * AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS 3336 * 3337 * AJ67 could be worked around by restricting the OS/USR flags. 3338 * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI. 3339 * 3340 * AJ106 could possibly be worked around by not allowing LBR 3341 * usage from PEBS, including the fixup. 3342 * AJ68 could possibly be worked around by always programming 3343 * a pebs_event_reset[0] value and coping with the lost events. 3344 * 3345 * But taken together it might just make sense to not enable PEBS on 3346 * these chips. 3347 */ 3348 pr_warn("PEBS disabled due to CPU errata\n"); 3349 x86_pmu.pebs = 0; 3350 x86_pmu.pebs_constraints = NULL; 3351 } 3352 3353 static int intel_snb_pebs_broken(int cpu) 3354 { 3355 u32 rev = UINT_MAX; /* default to broken for unknown models */ 3356 3357 switch (cpu_data(cpu).x86_model) { 3358 case INTEL_FAM6_SANDYBRIDGE: 3359 rev = 0x28; 3360 break; 3361 3362 case INTEL_FAM6_SANDYBRIDGE_X: 3363 switch (cpu_data(cpu).x86_mask) { 3364 case 6: rev = 0x618; break; 3365 case 7: rev = 0x70c; break; 3366 } 3367 } 3368 3369 return (cpu_data(cpu).microcode < rev); 3370 } 3371 3372 static void intel_snb_check_microcode(void) 3373 { 3374 int pebs_broken = 0; 3375 int cpu; 3376 3377 get_online_cpus(); 3378 for_each_online_cpu(cpu) { 3379 if ((pebs_broken = intel_snb_pebs_broken(cpu))) 3380 break; 3381 } 3382 put_online_cpus(); 3383 3384 if (pebs_broken == x86_pmu.pebs_broken) 3385 return; 3386 3387 /* 3388 * Serialized by the microcode lock.. 3389 */ 3390 if (x86_pmu.pebs_broken) { 3391 pr_info("PEBS enabled due to microcode update\n"); 3392 x86_pmu.pebs_broken = 0; 3393 } else { 3394 pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n"); 3395 x86_pmu.pebs_broken = 1; 3396 } 3397 } 3398 3399 static bool is_lbr_from(unsigned long msr) 3400 { 3401 unsigned long lbr_from_nr = x86_pmu.lbr_from + x86_pmu.lbr_nr; 3402 3403 return x86_pmu.lbr_from <= msr && msr < lbr_from_nr; 3404 } 3405 3406 /* 3407 * Under certain circumstances, access certain MSR may cause #GP. 3408 * The function tests if the input MSR can be safely accessed. 3409 */ 3410 static bool check_msr(unsigned long msr, u64 mask) 3411 { 3412 u64 val_old, val_new, val_tmp; 3413 3414 /* 3415 * Read the current value, change it and read it back to see if it 3416 * matches, this is needed to detect certain hardware emulators 3417 * (qemu/kvm) that don't trap on the MSR access and always return 0s. 3418 */ 3419 if (rdmsrl_safe(msr, &val_old)) 3420 return false; 3421 3422 /* 3423 * Only change the bits which can be updated by wrmsrl. 3424 */ 3425 val_tmp = val_old ^ mask; 3426 3427 if (is_lbr_from(msr)) 3428 val_tmp = lbr_from_signext_quirk_wr(val_tmp); 3429 3430 if (wrmsrl_safe(msr, val_tmp) || 3431 rdmsrl_safe(msr, &val_new)) 3432 return false; 3433 3434 /* 3435 * Quirk only affects validation in wrmsr(), so wrmsrl()'s value 3436 * should equal rdmsrl()'s even with the quirk. 3437 */ 3438 if (val_new != val_tmp) 3439 return false; 3440 3441 if (is_lbr_from(msr)) 3442 val_old = lbr_from_signext_quirk_wr(val_old); 3443 3444 /* Here it's sure that the MSR can be safely accessed. 3445 * Restore the old value and return. 3446 */ 3447 wrmsrl(msr, val_old); 3448 3449 return true; 3450 } 3451 3452 static __init void intel_sandybridge_quirk(void) 3453 { 3454 x86_pmu.check_microcode = intel_snb_check_microcode; 3455 intel_snb_check_microcode(); 3456 } 3457 3458 static const struct { int id; char *name; } intel_arch_events_map[] __initconst = { 3459 { PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" }, 3460 { PERF_COUNT_HW_INSTRUCTIONS, "instructions" }, 3461 { PERF_COUNT_HW_BUS_CYCLES, "bus cycles" }, 3462 { PERF_COUNT_HW_CACHE_REFERENCES, "cache references" }, 3463 { PERF_COUNT_HW_CACHE_MISSES, "cache misses" }, 3464 { PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" }, 3465 { PERF_COUNT_HW_BRANCH_MISSES, "branch misses" }, 3466 }; 3467 3468 static __init void intel_arch_events_quirk(void) 3469 { 3470 int bit; 3471 3472 /* disable event that reported as not presend by cpuid */ 3473 for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) { 3474 intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0; 3475 pr_warn("CPUID marked event: \'%s\' unavailable\n", 3476 intel_arch_events_map[bit].name); 3477 } 3478 } 3479 3480 static __init void intel_nehalem_quirk(void) 3481 { 3482 union cpuid10_ebx ebx; 3483 3484 ebx.full = x86_pmu.events_maskl; 3485 if (ebx.split.no_branch_misses_retired) { 3486 /* 3487 * Erratum AAJ80 detected, we work it around by using 3488 * the BR_MISP_EXEC.ANY event. This will over-count 3489 * branch-misses, but it's still much better than the 3490 * architectural event which is often completely bogus: 3491 */ 3492 intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89; 3493 ebx.split.no_branch_misses_retired = 0; 3494 x86_pmu.events_maskl = ebx.full; 3495 pr_info("CPU erratum AAJ80 worked around\n"); 3496 } 3497 } 3498 3499 /* 3500 * enable software workaround for errata: 3501 * SNB: BJ122 3502 * IVB: BV98 3503 * HSW: HSD29 3504 * 3505 * Only needed when HT is enabled. However detecting 3506 * if HT is enabled is difficult (model specific). So instead, 3507 * we enable the workaround in the early boot, and verify if 3508 * it is needed in a later initcall phase once we have valid 3509 * topology information to check if HT is actually enabled 3510 */ 3511 static __init void intel_ht_bug(void) 3512 { 3513 x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED; 3514 3515 x86_pmu.start_scheduling = intel_start_scheduling; 3516 x86_pmu.commit_scheduling = intel_commit_scheduling; 3517 x86_pmu.stop_scheduling = intel_stop_scheduling; 3518 } 3519 3520 EVENT_ATTR_STR(mem-loads, mem_ld_hsw, "event=0xcd,umask=0x1,ldlat=3"); 3521 EVENT_ATTR_STR(mem-stores, mem_st_hsw, "event=0xd0,umask=0x82") 3522 3523 /* Haswell special events */ 3524 EVENT_ATTR_STR(tx-start, tx_start, "event=0xc9,umask=0x1"); 3525 EVENT_ATTR_STR(tx-commit, tx_commit, "event=0xc9,umask=0x2"); 3526 EVENT_ATTR_STR(tx-abort, tx_abort, "event=0xc9,umask=0x4"); 3527 EVENT_ATTR_STR(tx-capacity, tx_capacity, "event=0x54,umask=0x2"); 3528 EVENT_ATTR_STR(tx-conflict, tx_conflict, "event=0x54,umask=0x1"); 3529 EVENT_ATTR_STR(el-start, el_start, "event=0xc8,umask=0x1"); 3530 EVENT_ATTR_STR(el-commit, el_commit, "event=0xc8,umask=0x2"); 3531 EVENT_ATTR_STR(el-abort, el_abort, "event=0xc8,umask=0x4"); 3532 EVENT_ATTR_STR(el-capacity, el_capacity, "event=0x54,umask=0x2"); 3533 EVENT_ATTR_STR(el-conflict, el_conflict, "event=0x54,umask=0x1"); 3534 EVENT_ATTR_STR(cycles-t, cycles_t, "event=0x3c,in_tx=1"); 3535 EVENT_ATTR_STR(cycles-ct, cycles_ct, "event=0x3c,in_tx=1,in_tx_cp=1"); 3536 3537 static struct attribute *hsw_events_attrs[] = { 3538 EVENT_PTR(tx_start), 3539 EVENT_PTR(tx_commit), 3540 EVENT_PTR(tx_abort), 3541 EVENT_PTR(tx_capacity), 3542 EVENT_PTR(tx_conflict), 3543 EVENT_PTR(el_start), 3544 EVENT_PTR(el_commit), 3545 EVENT_PTR(el_abort), 3546 EVENT_PTR(el_capacity), 3547 EVENT_PTR(el_conflict), 3548 EVENT_PTR(cycles_t), 3549 EVENT_PTR(cycles_ct), 3550 EVENT_PTR(mem_ld_hsw), 3551 EVENT_PTR(mem_st_hsw), 3552 EVENT_PTR(td_slots_issued), 3553 EVENT_PTR(td_slots_retired), 3554 EVENT_PTR(td_fetch_bubbles), 3555 EVENT_PTR(td_total_slots), 3556 EVENT_PTR(td_total_slots_scale), 3557 EVENT_PTR(td_recovery_bubbles), 3558 EVENT_PTR(td_recovery_bubbles_scale), 3559 NULL 3560 }; 3561 3562 __init int intel_pmu_init(void) 3563 { 3564 union cpuid10_edx edx; 3565 union cpuid10_eax eax; 3566 union cpuid10_ebx ebx; 3567 struct event_constraint *c; 3568 unsigned int unused; 3569 struct extra_reg *er; 3570 int version, i; 3571 3572 if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) { 3573 switch (boot_cpu_data.x86) { 3574 case 0x6: 3575 return p6_pmu_init(); 3576 case 0xb: 3577 return knc_pmu_init(); 3578 case 0xf: 3579 return p4_pmu_init(); 3580 } 3581 return -ENODEV; 3582 } 3583 3584 /* 3585 * Check whether the Architectural PerfMon supports 3586 * Branch Misses Retired hw_event or not. 3587 */ 3588 cpuid(10, &eax.full, &ebx.full, &unused, &edx.full); 3589 if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT) 3590 return -ENODEV; 3591 3592 version = eax.split.version_id; 3593 if (version < 2) 3594 x86_pmu = core_pmu; 3595 else 3596 x86_pmu = intel_pmu; 3597 3598 x86_pmu.version = version; 3599 x86_pmu.num_counters = eax.split.num_counters; 3600 x86_pmu.cntval_bits = eax.split.bit_width; 3601 x86_pmu.cntval_mask = (1ULL << eax.split.bit_width) - 1; 3602 3603 x86_pmu.events_maskl = ebx.full; 3604 x86_pmu.events_mask_len = eax.split.mask_length; 3605 3606 x86_pmu.max_pebs_events = min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters); 3607 3608 /* 3609 * Quirk: v2 perfmon does not report fixed-purpose events, so 3610 * assume at least 3 events: 3611 */ 3612 if (version > 1) 3613 x86_pmu.num_counters_fixed = max((int)edx.split.num_counters_fixed, 3); 3614 3615 if (boot_cpu_has(X86_FEATURE_PDCM)) { 3616 u64 capabilities; 3617 3618 rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities); 3619 x86_pmu.intel_cap.capabilities = capabilities; 3620 } 3621 3622 intel_ds_init(); 3623 3624 x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */ 3625 3626 /* 3627 * Install the hw-cache-events table: 3628 */ 3629 switch (boot_cpu_data.x86_model) { 3630 case INTEL_FAM6_CORE_YONAH: 3631 pr_cont("Core events, "); 3632 break; 3633 3634 case INTEL_FAM6_CORE2_MEROM: 3635 x86_add_quirk(intel_clovertown_quirk); 3636 case INTEL_FAM6_CORE2_MEROM_L: 3637 case INTEL_FAM6_CORE2_PENRYN: 3638 case INTEL_FAM6_CORE2_DUNNINGTON: 3639 memcpy(hw_cache_event_ids, core2_hw_cache_event_ids, 3640 sizeof(hw_cache_event_ids)); 3641 3642 intel_pmu_lbr_init_core(); 3643 3644 x86_pmu.event_constraints = intel_core2_event_constraints; 3645 x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints; 3646 pr_cont("Core2 events, "); 3647 break; 3648 3649 case INTEL_FAM6_NEHALEM: 3650 case INTEL_FAM6_NEHALEM_EP: 3651 case INTEL_FAM6_NEHALEM_EX: 3652 memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids, 3653 sizeof(hw_cache_event_ids)); 3654 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs, 3655 sizeof(hw_cache_extra_regs)); 3656 3657 intel_pmu_lbr_init_nhm(); 3658 3659 x86_pmu.event_constraints = intel_nehalem_event_constraints; 3660 x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints; 3661 x86_pmu.enable_all = intel_pmu_nhm_enable_all; 3662 x86_pmu.extra_regs = intel_nehalem_extra_regs; 3663 3664 x86_pmu.cpu_events = nhm_events_attrs; 3665 3666 /* UOPS_ISSUED.STALLED_CYCLES */ 3667 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 3668 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1); 3669 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */ 3670 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = 3671 X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1); 3672 3673 intel_pmu_pebs_data_source_nhm(); 3674 x86_add_quirk(intel_nehalem_quirk); 3675 3676 pr_cont("Nehalem events, "); 3677 break; 3678 3679 case INTEL_FAM6_ATOM_PINEVIEW: 3680 case INTEL_FAM6_ATOM_LINCROFT: 3681 case INTEL_FAM6_ATOM_PENWELL: 3682 case INTEL_FAM6_ATOM_CLOVERVIEW: 3683 case INTEL_FAM6_ATOM_CEDARVIEW: 3684 memcpy(hw_cache_event_ids, atom_hw_cache_event_ids, 3685 sizeof(hw_cache_event_ids)); 3686 3687 intel_pmu_lbr_init_atom(); 3688 3689 x86_pmu.event_constraints = intel_gen_event_constraints; 3690 x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints; 3691 x86_pmu.pebs_aliases = intel_pebs_aliases_core2; 3692 pr_cont("Atom events, "); 3693 break; 3694 3695 case INTEL_FAM6_ATOM_SILVERMONT1: 3696 case INTEL_FAM6_ATOM_SILVERMONT2: 3697 case INTEL_FAM6_ATOM_AIRMONT: 3698 memcpy(hw_cache_event_ids, slm_hw_cache_event_ids, 3699 sizeof(hw_cache_event_ids)); 3700 memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs, 3701 sizeof(hw_cache_extra_regs)); 3702 3703 intel_pmu_lbr_init_slm(); 3704 3705 x86_pmu.event_constraints = intel_slm_event_constraints; 3706 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints; 3707 x86_pmu.extra_regs = intel_slm_extra_regs; 3708 x86_pmu.flags |= PMU_FL_HAS_RSP_1; 3709 x86_pmu.cpu_events = slm_events_attrs; 3710 pr_cont("Silvermont events, "); 3711 break; 3712 3713 case INTEL_FAM6_ATOM_GOLDMONT: 3714 case INTEL_FAM6_ATOM_DENVERTON: 3715 memcpy(hw_cache_event_ids, glm_hw_cache_event_ids, 3716 sizeof(hw_cache_event_ids)); 3717 memcpy(hw_cache_extra_regs, glm_hw_cache_extra_regs, 3718 sizeof(hw_cache_extra_regs)); 3719 3720 intel_pmu_lbr_init_skl(); 3721 3722 x86_pmu.event_constraints = intel_slm_event_constraints; 3723 x86_pmu.pebs_constraints = intel_glm_pebs_event_constraints; 3724 x86_pmu.extra_regs = intel_glm_extra_regs; 3725 /* 3726 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS 3727 * for precise cycles. 3728 * :pp is identical to :ppp 3729 */ 3730 x86_pmu.pebs_aliases = NULL; 3731 x86_pmu.pebs_prec_dist = true; 3732 x86_pmu.lbr_pt_coexist = true; 3733 x86_pmu.flags |= PMU_FL_HAS_RSP_1; 3734 pr_cont("Goldmont events, "); 3735 break; 3736 3737 case INTEL_FAM6_WESTMERE: 3738 case INTEL_FAM6_WESTMERE_EP: 3739 case INTEL_FAM6_WESTMERE_EX: 3740 memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids, 3741 sizeof(hw_cache_event_ids)); 3742 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs, 3743 sizeof(hw_cache_extra_regs)); 3744 3745 intel_pmu_lbr_init_nhm(); 3746 3747 x86_pmu.event_constraints = intel_westmere_event_constraints; 3748 x86_pmu.enable_all = intel_pmu_nhm_enable_all; 3749 x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints; 3750 x86_pmu.extra_regs = intel_westmere_extra_regs; 3751 x86_pmu.flags |= PMU_FL_HAS_RSP_1; 3752 3753 x86_pmu.cpu_events = nhm_events_attrs; 3754 3755 /* UOPS_ISSUED.STALLED_CYCLES */ 3756 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 3757 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1); 3758 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */ 3759 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = 3760 X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1); 3761 3762 intel_pmu_pebs_data_source_nhm(); 3763 pr_cont("Westmere events, "); 3764 break; 3765 3766 case INTEL_FAM6_SANDYBRIDGE: 3767 case INTEL_FAM6_SANDYBRIDGE_X: 3768 x86_add_quirk(intel_sandybridge_quirk); 3769 x86_add_quirk(intel_ht_bug); 3770 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids, 3771 sizeof(hw_cache_event_ids)); 3772 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs, 3773 sizeof(hw_cache_extra_regs)); 3774 3775 intel_pmu_lbr_init_snb(); 3776 3777 x86_pmu.event_constraints = intel_snb_event_constraints; 3778 x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints; 3779 x86_pmu.pebs_aliases = intel_pebs_aliases_snb; 3780 if (boot_cpu_data.x86_model == INTEL_FAM6_SANDYBRIDGE_X) 3781 x86_pmu.extra_regs = intel_snbep_extra_regs; 3782 else 3783 x86_pmu.extra_regs = intel_snb_extra_regs; 3784 3785 3786 /* all extra regs are per-cpu when HT is on */ 3787 x86_pmu.flags |= PMU_FL_HAS_RSP_1; 3788 x86_pmu.flags |= PMU_FL_NO_HT_SHARING; 3789 3790 x86_pmu.cpu_events = snb_events_attrs; 3791 3792 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */ 3793 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 3794 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1); 3795 /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/ 3796 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = 3797 X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1); 3798 3799 pr_cont("SandyBridge events, "); 3800 break; 3801 3802 case INTEL_FAM6_IVYBRIDGE: 3803 case INTEL_FAM6_IVYBRIDGE_X: 3804 x86_add_quirk(intel_ht_bug); 3805 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids, 3806 sizeof(hw_cache_event_ids)); 3807 /* dTLB-load-misses on IVB is different than SNB */ 3808 hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */ 3809 3810 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs, 3811 sizeof(hw_cache_extra_regs)); 3812 3813 intel_pmu_lbr_init_snb(); 3814 3815 x86_pmu.event_constraints = intel_ivb_event_constraints; 3816 x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints; 3817 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb; 3818 x86_pmu.pebs_prec_dist = true; 3819 if (boot_cpu_data.x86_model == INTEL_FAM6_IVYBRIDGE_X) 3820 x86_pmu.extra_regs = intel_snbep_extra_regs; 3821 else 3822 x86_pmu.extra_regs = intel_snb_extra_regs; 3823 /* all extra regs are per-cpu when HT is on */ 3824 x86_pmu.flags |= PMU_FL_HAS_RSP_1; 3825 x86_pmu.flags |= PMU_FL_NO_HT_SHARING; 3826 3827 x86_pmu.cpu_events = snb_events_attrs; 3828 3829 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */ 3830 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 3831 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1); 3832 3833 pr_cont("IvyBridge events, "); 3834 break; 3835 3836 3837 case INTEL_FAM6_HASWELL_CORE: 3838 case INTEL_FAM6_HASWELL_X: 3839 case INTEL_FAM6_HASWELL_ULT: 3840 case INTEL_FAM6_HASWELL_GT3E: 3841 x86_add_quirk(intel_ht_bug); 3842 x86_pmu.late_ack = true; 3843 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids)); 3844 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs)); 3845 3846 intel_pmu_lbr_init_hsw(); 3847 3848 x86_pmu.event_constraints = intel_hsw_event_constraints; 3849 x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints; 3850 x86_pmu.extra_regs = intel_snbep_extra_regs; 3851 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb; 3852 x86_pmu.pebs_prec_dist = true; 3853 /* all extra regs are per-cpu when HT is on */ 3854 x86_pmu.flags |= PMU_FL_HAS_RSP_1; 3855 x86_pmu.flags |= PMU_FL_NO_HT_SHARING; 3856 3857 x86_pmu.hw_config = hsw_hw_config; 3858 x86_pmu.get_event_constraints = hsw_get_event_constraints; 3859 x86_pmu.cpu_events = hsw_events_attrs; 3860 x86_pmu.lbr_double_abort = true; 3861 pr_cont("Haswell events, "); 3862 break; 3863 3864 case INTEL_FAM6_BROADWELL_CORE: 3865 case INTEL_FAM6_BROADWELL_XEON_D: 3866 case INTEL_FAM6_BROADWELL_GT3E: 3867 case INTEL_FAM6_BROADWELL_X: 3868 x86_pmu.late_ack = true; 3869 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids)); 3870 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs)); 3871 3872 /* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */ 3873 hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ | 3874 BDW_L3_MISS|HSW_SNOOP_DRAM; 3875 hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS| 3876 HSW_SNOOP_DRAM; 3877 hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ| 3878 BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM; 3879 hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE| 3880 BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM; 3881 3882 intel_pmu_lbr_init_hsw(); 3883 3884 x86_pmu.event_constraints = intel_bdw_event_constraints; 3885 x86_pmu.pebs_constraints = intel_bdw_pebs_event_constraints; 3886 x86_pmu.extra_regs = intel_snbep_extra_regs; 3887 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb; 3888 x86_pmu.pebs_prec_dist = true; 3889 /* all extra regs are per-cpu when HT is on */ 3890 x86_pmu.flags |= PMU_FL_HAS_RSP_1; 3891 x86_pmu.flags |= PMU_FL_NO_HT_SHARING; 3892 3893 x86_pmu.hw_config = hsw_hw_config; 3894 x86_pmu.get_event_constraints = hsw_get_event_constraints; 3895 x86_pmu.cpu_events = hsw_events_attrs; 3896 x86_pmu.limit_period = bdw_limit_period; 3897 pr_cont("Broadwell events, "); 3898 break; 3899 3900 case INTEL_FAM6_XEON_PHI_KNL: 3901 memcpy(hw_cache_event_ids, 3902 slm_hw_cache_event_ids, sizeof(hw_cache_event_ids)); 3903 memcpy(hw_cache_extra_regs, 3904 knl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs)); 3905 intel_pmu_lbr_init_knl(); 3906 3907 x86_pmu.event_constraints = intel_slm_event_constraints; 3908 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints; 3909 x86_pmu.extra_regs = intel_knl_extra_regs; 3910 3911 /* all extra regs are per-cpu when HT is on */ 3912 x86_pmu.flags |= PMU_FL_HAS_RSP_1; 3913 x86_pmu.flags |= PMU_FL_NO_HT_SHARING; 3914 3915 pr_cont("Knights Landing events, "); 3916 break; 3917 3918 case INTEL_FAM6_SKYLAKE_MOBILE: 3919 case INTEL_FAM6_SKYLAKE_DESKTOP: 3920 case INTEL_FAM6_SKYLAKE_X: 3921 case INTEL_FAM6_KABYLAKE_MOBILE: 3922 case INTEL_FAM6_KABYLAKE_DESKTOP: 3923 x86_pmu.late_ack = true; 3924 memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids)); 3925 memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs)); 3926 intel_pmu_lbr_init_skl(); 3927 3928 /* INT_MISC.RECOVERY_CYCLES has umask 1 in Skylake */ 3929 event_attr_td_recovery_bubbles.event_str_noht = 3930 "event=0xd,umask=0x1,cmask=1"; 3931 event_attr_td_recovery_bubbles.event_str_ht = 3932 "event=0xd,umask=0x1,cmask=1,any=1"; 3933 3934 x86_pmu.event_constraints = intel_skl_event_constraints; 3935 x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints; 3936 x86_pmu.extra_regs = intel_skl_extra_regs; 3937 x86_pmu.pebs_aliases = intel_pebs_aliases_skl; 3938 x86_pmu.pebs_prec_dist = true; 3939 /* all extra regs are per-cpu when HT is on */ 3940 x86_pmu.flags |= PMU_FL_HAS_RSP_1; 3941 x86_pmu.flags |= PMU_FL_NO_HT_SHARING; 3942 3943 x86_pmu.hw_config = hsw_hw_config; 3944 x86_pmu.get_event_constraints = hsw_get_event_constraints; 3945 x86_pmu.format_attrs = merge_attr(intel_arch3_formats_attr, 3946 skl_format_attr); 3947 WARN_ON(!x86_pmu.format_attrs); 3948 x86_pmu.cpu_events = hsw_events_attrs; 3949 pr_cont("Skylake events, "); 3950 break; 3951 3952 default: 3953 switch (x86_pmu.version) { 3954 case 1: 3955 x86_pmu.event_constraints = intel_v1_event_constraints; 3956 pr_cont("generic architected perfmon v1, "); 3957 break; 3958 default: 3959 /* 3960 * default constraints for v2 and up 3961 */ 3962 x86_pmu.event_constraints = intel_gen_event_constraints; 3963 pr_cont("generic architected perfmon, "); 3964 break; 3965 } 3966 } 3967 3968 if (x86_pmu.num_counters > INTEL_PMC_MAX_GENERIC) { 3969 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!", 3970 x86_pmu.num_counters, INTEL_PMC_MAX_GENERIC); 3971 x86_pmu.num_counters = INTEL_PMC_MAX_GENERIC; 3972 } 3973 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1; 3974 3975 if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED) { 3976 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!", 3977 x86_pmu.num_counters_fixed, INTEL_PMC_MAX_FIXED); 3978 x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED; 3979 } 3980 3981 x86_pmu.intel_ctrl |= 3982 ((1LL << x86_pmu.num_counters_fixed)-1) << INTEL_PMC_IDX_FIXED; 3983 3984 if (x86_pmu.event_constraints) { 3985 /* 3986 * event on fixed counter2 (REF_CYCLES) only works on this 3987 * counter, so do not extend mask to generic counters 3988 */ 3989 for_each_event_constraint(c, x86_pmu.event_constraints) { 3990 if (c->cmask == FIXED_EVENT_FLAGS 3991 && c->idxmsk64 != INTEL_PMC_MSK_FIXED_REF_CYCLES) { 3992 c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1; 3993 } 3994 c->idxmsk64 &= 3995 ~(~0ULL << (INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed)); 3996 c->weight = hweight64(c->idxmsk64); 3997 } 3998 } 3999 4000 /* 4001 * Access LBR MSR may cause #GP under certain circumstances. 4002 * E.g. KVM doesn't support LBR MSR 4003 * Check all LBT MSR here. 4004 * Disable LBR access if any LBR MSRs can not be accessed. 4005 */ 4006 if (x86_pmu.lbr_nr && !check_msr(x86_pmu.lbr_tos, 0x3UL)) 4007 x86_pmu.lbr_nr = 0; 4008 for (i = 0; i < x86_pmu.lbr_nr; i++) { 4009 if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) && 4010 check_msr(x86_pmu.lbr_to + i, 0xffffUL))) 4011 x86_pmu.lbr_nr = 0; 4012 } 4013 4014 if (x86_pmu.lbr_nr) 4015 pr_cont("%d-deep LBR, ", x86_pmu.lbr_nr); 4016 /* 4017 * Access extra MSR may cause #GP under certain circumstances. 4018 * E.g. KVM doesn't support offcore event 4019 * Check all extra_regs here. 4020 */ 4021 if (x86_pmu.extra_regs) { 4022 for (er = x86_pmu.extra_regs; er->msr; er++) { 4023 er->extra_msr_access = check_msr(er->msr, 0x11UL); 4024 /* Disable LBR select mapping */ 4025 if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access) 4026 x86_pmu.lbr_sel_map = NULL; 4027 } 4028 } 4029 4030 /* Support full width counters using alternative MSR range */ 4031 if (x86_pmu.intel_cap.full_width_write) { 4032 x86_pmu.max_period = x86_pmu.cntval_mask; 4033 x86_pmu.perfctr = MSR_IA32_PMC0; 4034 pr_cont("full-width counters, "); 4035 } 4036 4037 return 0; 4038 } 4039 4040 /* 4041 * HT bug: phase 2 init 4042 * Called once we have valid topology information to check 4043 * whether or not HT is enabled 4044 * If HT is off, then we disable the workaround 4045 */ 4046 static __init int fixup_ht_bug(void) 4047 { 4048 int c; 4049 /* 4050 * problem not present on this CPU model, nothing to do 4051 */ 4052 if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED)) 4053 return 0; 4054 4055 if (topology_max_smt_threads() > 1) { 4056 pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n"); 4057 return 0; 4058 } 4059 4060 if (lockup_detector_suspend() != 0) { 4061 pr_debug("failed to disable PMU erratum BJ122, BV98, HSD29 workaround\n"); 4062 return 0; 4063 } 4064 4065 x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED); 4066 4067 x86_pmu.start_scheduling = NULL; 4068 x86_pmu.commit_scheduling = NULL; 4069 x86_pmu.stop_scheduling = NULL; 4070 4071 lockup_detector_resume(); 4072 4073 get_online_cpus(); 4074 4075 for_each_online_cpu(c) { 4076 free_excl_cntrs(c); 4077 } 4078 4079 put_online_cpus(); 4080 pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n"); 4081 return 0; 4082 } 4083 subsys_initcall(fixup_ht_bug) 4084