xref: /linux/arch/x86/events/intel/core.c (revision db6d8d5fdf9537641c76ba7f32e02b4bcc600972)
1 /*
2  * Per core/cpu state
3  *
4  * Used to coordinate shared registers between HT threads or
5  * among events on a single PMU.
6  */
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/stddef.h>
11 #include <linux/types.h>
12 #include <linux/init.h>
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/nmi.h>
16 
17 #include <asm/cpufeature.h>
18 #include <asm/hardirq.h>
19 #include <asm/intel-family.h>
20 #include <asm/apic.h>
21 
22 #include "../perf_event.h"
23 
24 /*
25  * Intel PerfMon, used on Core and later.
26  */
27 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
28 {
29 	[PERF_COUNT_HW_CPU_CYCLES]		= 0x003c,
30 	[PERF_COUNT_HW_INSTRUCTIONS]		= 0x00c0,
31 	[PERF_COUNT_HW_CACHE_REFERENCES]	= 0x4f2e,
32 	[PERF_COUNT_HW_CACHE_MISSES]		= 0x412e,
33 	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS]	= 0x00c4,
34 	[PERF_COUNT_HW_BRANCH_MISSES]		= 0x00c5,
35 	[PERF_COUNT_HW_BUS_CYCLES]		= 0x013c,
36 	[PERF_COUNT_HW_REF_CPU_CYCLES]		= 0x0300, /* pseudo-encoding */
37 };
38 
39 static struct event_constraint intel_core_event_constraints[] __read_mostly =
40 {
41 	INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
42 	INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
43 	INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
44 	INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
45 	INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
46 	INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
47 	EVENT_CONSTRAINT_END
48 };
49 
50 static struct event_constraint intel_core2_event_constraints[] __read_mostly =
51 {
52 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
53 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
54 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
55 	INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
56 	INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
57 	INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
58 	INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
59 	INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
60 	INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
61 	INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
62 	INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
63 	INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
64 	INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
65 	EVENT_CONSTRAINT_END
66 };
67 
68 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
69 {
70 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
71 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
72 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
73 	INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
74 	INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
75 	INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
76 	INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
77 	INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
78 	INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
79 	INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
80 	INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
81 	EVENT_CONSTRAINT_END
82 };
83 
84 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
85 {
86 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
87 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
88 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
89 	EVENT_EXTRA_END
90 };
91 
92 static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
93 {
94 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
95 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
96 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
97 	INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
98 	INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
99 	INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
100 	INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
101 	EVENT_CONSTRAINT_END
102 };
103 
104 static struct event_constraint intel_snb_event_constraints[] __read_mostly =
105 {
106 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
107 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
108 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
109 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
110 	INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
111 	INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
112 	INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
113 	INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
114 	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
115 	INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
116 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
117 	INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
118 
119 	/*
120 	 * When HT is off these events can only run on the bottom 4 counters
121 	 * When HT is on, they are impacted by the HT bug and require EXCL access
122 	 */
123 	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
124 	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
125 	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
126 	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
127 
128 	EVENT_CONSTRAINT_END
129 };
130 
131 static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
132 {
133 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
134 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
135 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
136 	INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
137 	INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMTPY */
138 	INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
139 	INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
140 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
141 	INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
142 	INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
143 	INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
144 	INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
145 	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
146 
147 	/*
148 	 * When HT is off these events can only run on the bottom 4 counters
149 	 * When HT is on, they are impacted by the HT bug and require EXCL access
150 	 */
151 	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
152 	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
153 	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
154 	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
155 
156 	EVENT_CONSTRAINT_END
157 };
158 
159 static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
160 {
161 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
162 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
163 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
164 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
165 	EVENT_EXTRA_END
166 };
167 
168 static struct event_constraint intel_v1_event_constraints[] __read_mostly =
169 {
170 	EVENT_CONSTRAINT_END
171 };
172 
173 static struct event_constraint intel_gen_event_constraints[] __read_mostly =
174 {
175 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
176 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
177 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
178 	EVENT_CONSTRAINT_END
179 };
180 
181 static struct event_constraint intel_slm_event_constraints[] __read_mostly =
182 {
183 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
184 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
185 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
186 	EVENT_CONSTRAINT_END
187 };
188 
189 static struct event_constraint intel_skl_event_constraints[] = {
190 	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
191 	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
192 	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
193 	INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2),	/* INST_RETIRED.PREC_DIST */
194 
195 	/*
196 	 * when HT is off, these can only run on the bottom 4 counters
197 	 */
198 	INTEL_EVENT_CONSTRAINT(0xd0, 0xf),	/* MEM_INST_RETIRED.* */
199 	INTEL_EVENT_CONSTRAINT(0xd1, 0xf),	/* MEM_LOAD_RETIRED.* */
200 	INTEL_EVENT_CONSTRAINT(0xd2, 0xf),	/* MEM_LOAD_L3_HIT_RETIRED.* */
201 	INTEL_EVENT_CONSTRAINT(0xcd, 0xf),	/* MEM_TRANS_RETIRED.* */
202 	INTEL_EVENT_CONSTRAINT(0xc6, 0xf),	/* FRONTEND_RETIRED.* */
203 
204 	EVENT_CONSTRAINT_END
205 };
206 
207 static struct extra_reg intel_knl_extra_regs[] __read_mostly = {
208 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x799ffbb6e7ull, RSP_0),
209 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x399ffbffe7ull, RSP_1),
210 	EVENT_EXTRA_END
211 };
212 
213 static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
214 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
215 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
216 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
217 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
218 	EVENT_EXTRA_END
219 };
220 
221 static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
222 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
223 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
224 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
225 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
226 	EVENT_EXTRA_END
227 };
228 
229 static struct extra_reg intel_skl_extra_regs[] __read_mostly = {
230 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
231 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
232 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
233 	/*
234 	 * Note the low 8 bits eventsel code is not a continuous field, containing
235 	 * some #GPing bits. These are masked out.
236 	 */
237 	INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
238 	EVENT_EXTRA_END
239 };
240 
241 EVENT_ATTR_STR(mem-loads,	mem_ld_nhm,	"event=0x0b,umask=0x10,ldlat=3");
242 EVENT_ATTR_STR(mem-loads,	mem_ld_snb,	"event=0xcd,umask=0x1,ldlat=3");
243 EVENT_ATTR_STR(mem-stores,	mem_st_snb,	"event=0xcd,umask=0x2");
244 
245 static struct attribute *nhm_events_attrs[] = {
246 	EVENT_PTR(mem_ld_nhm),
247 	NULL,
248 };
249 
250 /*
251  * topdown events for Intel Core CPUs.
252  *
253  * The events are all in slots, which is a free slot in a 4 wide
254  * pipeline. Some events are already reported in slots, for cycle
255  * events we multiply by the pipeline width (4).
256  *
257  * With Hyper Threading on, topdown metrics are either summed or averaged
258  * between the threads of a core: (count_t0 + count_t1).
259  *
260  * For the average case the metric is always scaled to pipeline width,
261  * so we use factor 2 ((count_t0 + count_t1) / 2 * 4)
262  */
263 
264 EVENT_ATTR_STR_HT(topdown-total-slots, td_total_slots,
265 	"event=0x3c,umask=0x0",			/* cpu_clk_unhalted.thread */
266 	"event=0x3c,umask=0x0,any=1");		/* cpu_clk_unhalted.thread_any */
267 EVENT_ATTR_STR_HT(topdown-total-slots.scale, td_total_slots_scale, "4", "2");
268 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued,
269 	"event=0xe,umask=0x1");			/* uops_issued.any */
270 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired,
271 	"event=0xc2,umask=0x2");		/* uops_retired.retire_slots */
272 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles,
273 	"event=0x9c,umask=0x1");		/* idq_uops_not_delivered_core */
274 EVENT_ATTR_STR_HT(topdown-recovery-bubbles, td_recovery_bubbles,
275 	"event=0xd,umask=0x3,cmask=1",		/* int_misc.recovery_cycles */
276 	"event=0xd,umask=0x3,cmask=1,any=1");	/* int_misc.recovery_cycles_any */
277 EVENT_ATTR_STR_HT(topdown-recovery-bubbles.scale, td_recovery_bubbles_scale,
278 	"4", "2");
279 
280 static struct attribute *snb_events_attrs[] = {
281 	EVENT_PTR(mem_ld_snb),
282 	EVENT_PTR(mem_st_snb),
283 	EVENT_PTR(td_slots_issued),
284 	EVENT_PTR(td_slots_retired),
285 	EVENT_PTR(td_fetch_bubbles),
286 	EVENT_PTR(td_total_slots),
287 	EVENT_PTR(td_total_slots_scale),
288 	EVENT_PTR(td_recovery_bubbles),
289 	EVENT_PTR(td_recovery_bubbles_scale),
290 	NULL,
291 };
292 
293 static struct event_constraint intel_hsw_event_constraints[] = {
294 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
295 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
296 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
297 	INTEL_UEVENT_CONSTRAINT(0x148, 0x4),	/* L1D_PEND_MISS.PENDING */
298 	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
299 	INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
300 	/* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
301 	INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
302 	/* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
303 	INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
304 	/* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
305 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
306 
307 	/*
308 	 * When HT is off these events can only run on the bottom 4 counters
309 	 * When HT is on, they are impacted by the HT bug and require EXCL access
310 	 */
311 	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
312 	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
313 	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
314 	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
315 
316 	EVENT_CONSTRAINT_END
317 };
318 
319 static struct event_constraint intel_bdw_event_constraints[] = {
320 	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
321 	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
322 	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
323 	INTEL_UEVENT_CONSTRAINT(0x148, 0x4),	/* L1D_PEND_MISS.PENDING */
324 	INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4),	/* CYCLE_ACTIVITY.CYCLES_L1D_MISS */
325 	/*
326 	 * when HT is off, these can only run on the bottom 4 counters
327 	 */
328 	INTEL_EVENT_CONSTRAINT(0xd0, 0xf),	/* MEM_INST_RETIRED.* */
329 	INTEL_EVENT_CONSTRAINT(0xd1, 0xf),	/* MEM_LOAD_RETIRED.* */
330 	INTEL_EVENT_CONSTRAINT(0xd2, 0xf),	/* MEM_LOAD_L3_HIT_RETIRED.* */
331 	INTEL_EVENT_CONSTRAINT(0xcd, 0xf),	/* MEM_TRANS_RETIRED.* */
332 	EVENT_CONSTRAINT_END
333 };
334 
335 static u64 intel_pmu_event_map(int hw_event)
336 {
337 	return intel_perfmon_event_map[hw_event];
338 }
339 
340 /*
341  * Notes on the events:
342  * - data reads do not include code reads (comparable to earlier tables)
343  * - data counts include speculative execution (except L1 write, dtlb, bpu)
344  * - remote node access includes remote memory, remote cache, remote mmio.
345  * - prefetches are not included in the counts.
346  * - icache miss does not include decoded icache
347  */
348 
349 #define SKL_DEMAND_DATA_RD		BIT_ULL(0)
350 #define SKL_DEMAND_RFO			BIT_ULL(1)
351 #define SKL_ANY_RESPONSE		BIT_ULL(16)
352 #define SKL_SUPPLIER_NONE		BIT_ULL(17)
353 #define SKL_L3_MISS_LOCAL_DRAM		BIT_ULL(26)
354 #define SKL_L3_MISS_REMOTE_HOP0_DRAM	BIT_ULL(27)
355 #define SKL_L3_MISS_REMOTE_HOP1_DRAM	BIT_ULL(28)
356 #define SKL_L3_MISS_REMOTE_HOP2P_DRAM	BIT_ULL(29)
357 #define SKL_L3_MISS			(SKL_L3_MISS_LOCAL_DRAM| \
358 					 SKL_L3_MISS_REMOTE_HOP0_DRAM| \
359 					 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
360 					 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
361 #define SKL_SPL_HIT			BIT_ULL(30)
362 #define SKL_SNOOP_NONE			BIT_ULL(31)
363 #define SKL_SNOOP_NOT_NEEDED		BIT_ULL(32)
364 #define SKL_SNOOP_MISS			BIT_ULL(33)
365 #define SKL_SNOOP_HIT_NO_FWD		BIT_ULL(34)
366 #define SKL_SNOOP_HIT_WITH_FWD		BIT_ULL(35)
367 #define SKL_SNOOP_HITM			BIT_ULL(36)
368 #define SKL_SNOOP_NON_DRAM		BIT_ULL(37)
369 #define SKL_ANY_SNOOP			(SKL_SPL_HIT|SKL_SNOOP_NONE| \
370 					 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
371 					 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
372 					 SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM)
373 #define SKL_DEMAND_READ			SKL_DEMAND_DATA_RD
374 #define SKL_SNOOP_DRAM			(SKL_SNOOP_NONE| \
375 					 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
376 					 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
377 					 SKL_SNOOP_HITM|SKL_SPL_HIT)
378 #define SKL_DEMAND_WRITE		SKL_DEMAND_RFO
379 #define SKL_LLC_ACCESS			SKL_ANY_RESPONSE
380 #define SKL_L3_MISS_REMOTE		(SKL_L3_MISS_REMOTE_HOP0_DRAM| \
381 					 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
382 					 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
383 
384 static __initconst const u64 skl_hw_cache_event_ids
385 				[PERF_COUNT_HW_CACHE_MAX]
386 				[PERF_COUNT_HW_CACHE_OP_MAX]
387 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
388 {
389  [ C(L1D ) ] = {
390 	[ C(OP_READ) ] = {
391 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_INST_RETIRED.ALL_LOADS */
392 		[ C(RESULT_MISS)   ] = 0x151,	/* L1D.REPLACEMENT */
393 	},
394 	[ C(OP_WRITE) ] = {
395 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_INST_RETIRED.ALL_STORES */
396 		[ C(RESULT_MISS)   ] = 0x0,
397 	},
398 	[ C(OP_PREFETCH) ] = {
399 		[ C(RESULT_ACCESS) ] = 0x0,
400 		[ C(RESULT_MISS)   ] = 0x0,
401 	},
402  },
403  [ C(L1I ) ] = {
404 	[ C(OP_READ) ] = {
405 		[ C(RESULT_ACCESS) ] = 0x0,
406 		[ C(RESULT_MISS)   ] = 0x283,	/* ICACHE_64B.MISS */
407 	},
408 	[ C(OP_WRITE) ] = {
409 		[ C(RESULT_ACCESS) ] = -1,
410 		[ C(RESULT_MISS)   ] = -1,
411 	},
412 	[ C(OP_PREFETCH) ] = {
413 		[ C(RESULT_ACCESS) ] = 0x0,
414 		[ C(RESULT_MISS)   ] = 0x0,
415 	},
416  },
417  [ C(LL  ) ] = {
418 	[ C(OP_READ) ] = {
419 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
420 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
421 	},
422 	[ C(OP_WRITE) ] = {
423 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
424 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
425 	},
426 	[ C(OP_PREFETCH) ] = {
427 		[ C(RESULT_ACCESS) ] = 0x0,
428 		[ C(RESULT_MISS)   ] = 0x0,
429 	},
430  },
431  [ C(DTLB) ] = {
432 	[ C(OP_READ) ] = {
433 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_INST_RETIRED.ALL_LOADS */
434 		[ C(RESULT_MISS)   ] = 0x608,	/* DTLB_LOAD_MISSES.WALK_COMPLETED */
435 	},
436 	[ C(OP_WRITE) ] = {
437 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_INST_RETIRED.ALL_STORES */
438 		[ C(RESULT_MISS)   ] = 0x649,	/* DTLB_STORE_MISSES.WALK_COMPLETED */
439 	},
440 	[ C(OP_PREFETCH) ] = {
441 		[ C(RESULT_ACCESS) ] = 0x0,
442 		[ C(RESULT_MISS)   ] = 0x0,
443 	},
444  },
445  [ C(ITLB) ] = {
446 	[ C(OP_READ) ] = {
447 		[ C(RESULT_ACCESS) ] = 0x2085,	/* ITLB_MISSES.STLB_HIT */
448 		[ C(RESULT_MISS)   ] = 0xe85,	/* ITLB_MISSES.WALK_COMPLETED */
449 	},
450 	[ C(OP_WRITE) ] = {
451 		[ C(RESULT_ACCESS) ] = -1,
452 		[ C(RESULT_MISS)   ] = -1,
453 	},
454 	[ C(OP_PREFETCH) ] = {
455 		[ C(RESULT_ACCESS) ] = -1,
456 		[ C(RESULT_MISS)   ] = -1,
457 	},
458  },
459  [ C(BPU ) ] = {
460 	[ C(OP_READ) ] = {
461 		[ C(RESULT_ACCESS) ] = 0xc4,	/* BR_INST_RETIRED.ALL_BRANCHES */
462 		[ C(RESULT_MISS)   ] = 0xc5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
463 	},
464 	[ C(OP_WRITE) ] = {
465 		[ C(RESULT_ACCESS) ] = -1,
466 		[ C(RESULT_MISS)   ] = -1,
467 	},
468 	[ C(OP_PREFETCH) ] = {
469 		[ C(RESULT_ACCESS) ] = -1,
470 		[ C(RESULT_MISS)   ] = -1,
471 	},
472  },
473  [ C(NODE) ] = {
474 	[ C(OP_READ) ] = {
475 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
476 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
477 	},
478 	[ C(OP_WRITE) ] = {
479 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
480 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
481 	},
482 	[ C(OP_PREFETCH) ] = {
483 		[ C(RESULT_ACCESS) ] = 0x0,
484 		[ C(RESULT_MISS)   ] = 0x0,
485 	},
486  },
487 };
488 
489 static __initconst const u64 skl_hw_cache_extra_regs
490 				[PERF_COUNT_HW_CACHE_MAX]
491 				[PERF_COUNT_HW_CACHE_OP_MAX]
492 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
493 {
494  [ C(LL  ) ] = {
495 	[ C(OP_READ) ] = {
496 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
497 				       SKL_LLC_ACCESS|SKL_ANY_SNOOP,
498 		[ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
499 				       SKL_L3_MISS|SKL_ANY_SNOOP|
500 				       SKL_SUPPLIER_NONE,
501 	},
502 	[ C(OP_WRITE) ] = {
503 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
504 				       SKL_LLC_ACCESS|SKL_ANY_SNOOP,
505 		[ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
506 				       SKL_L3_MISS|SKL_ANY_SNOOP|
507 				       SKL_SUPPLIER_NONE,
508 	},
509 	[ C(OP_PREFETCH) ] = {
510 		[ C(RESULT_ACCESS) ] = 0x0,
511 		[ C(RESULT_MISS)   ] = 0x0,
512 	},
513  },
514  [ C(NODE) ] = {
515 	[ C(OP_READ) ] = {
516 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
517 				       SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
518 		[ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
519 				       SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
520 	},
521 	[ C(OP_WRITE) ] = {
522 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
523 				       SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
524 		[ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
525 				       SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
526 	},
527 	[ C(OP_PREFETCH) ] = {
528 		[ C(RESULT_ACCESS) ] = 0x0,
529 		[ C(RESULT_MISS)   ] = 0x0,
530 	},
531  },
532 };
533 
534 #define SNB_DMND_DATA_RD	(1ULL << 0)
535 #define SNB_DMND_RFO		(1ULL << 1)
536 #define SNB_DMND_IFETCH		(1ULL << 2)
537 #define SNB_DMND_WB		(1ULL << 3)
538 #define SNB_PF_DATA_RD		(1ULL << 4)
539 #define SNB_PF_RFO		(1ULL << 5)
540 #define SNB_PF_IFETCH		(1ULL << 6)
541 #define SNB_LLC_DATA_RD		(1ULL << 7)
542 #define SNB_LLC_RFO		(1ULL << 8)
543 #define SNB_LLC_IFETCH		(1ULL << 9)
544 #define SNB_BUS_LOCKS		(1ULL << 10)
545 #define SNB_STRM_ST		(1ULL << 11)
546 #define SNB_OTHER		(1ULL << 15)
547 #define SNB_RESP_ANY		(1ULL << 16)
548 #define SNB_NO_SUPP		(1ULL << 17)
549 #define SNB_LLC_HITM		(1ULL << 18)
550 #define SNB_LLC_HITE		(1ULL << 19)
551 #define SNB_LLC_HITS		(1ULL << 20)
552 #define SNB_LLC_HITF		(1ULL << 21)
553 #define SNB_LOCAL		(1ULL << 22)
554 #define SNB_REMOTE		(0xffULL << 23)
555 #define SNB_SNP_NONE		(1ULL << 31)
556 #define SNB_SNP_NOT_NEEDED	(1ULL << 32)
557 #define SNB_SNP_MISS		(1ULL << 33)
558 #define SNB_NO_FWD		(1ULL << 34)
559 #define SNB_SNP_FWD		(1ULL << 35)
560 #define SNB_HITM		(1ULL << 36)
561 #define SNB_NON_DRAM		(1ULL << 37)
562 
563 #define SNB_DMND_READ		(SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
564 #define SNB_DMND_WRITE		(SNB_DMND_RFO|SNB_LLC_RFO)
565 #define SNB_DMND_PREFETCH	(SNB_PF_DATA_RD|SNB_PF_RFO)
566 
567 #define SNB_SNP_ANY		(SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
568 				 SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
569 				 SNB_HITM)
570 
571 #define SNB_DRAM_ANY		(SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
572 #define SNB_DRAM_REMOTE		(SNB_REMOTE|SNB_SNP_ANY)
573 
574 #define SNB_L3_ACCESS		SNB_RESP_ANY
575 #define SNB_L3_MISS		(SNB_DRAM_ANY|SNB_NON_DRAM)
576 
577 static __initconst const u64 snb_hw_cache_extra_regs
578 				[PERF_COUNT_HW_CACHE_MAX]
579 				[PERF_COUNT_HW_CACHE_OP_MAX]
580 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
581 {
582  [ C(LL  ) ] = {
583 	[ C(OP_READ) ] = {
584 		[ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
585 		[ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_L3_MISS,
586 	},
587 	[ C(OP_WRITE) ] = {
588 		[ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
589 		[ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_L3_MISS,
590 	},
591 	[ C(OP_PREFETCH) ] = {
592 		[ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
593 		[ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
594 	},
595  },
596  [ C(NODE) ] = {
597 	[ C(OP_READ) ] = {
598 		[ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
599 		[ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
600 	},
601 	[ C(OP_WRITE) ] = {
602 		[ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
603 		[ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
604 	},
605 	[ C(OP_PREFETCH) ] = {
606 		[ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
607 		[ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
608 	},
609  },
610 };
611 
612 static __initconst const u64 snb_hw_cache_event_ids
613 				[PERF_COUNT_HW_CACHE_MAX]
614 				[PERF_COUNT_HW_CACHE_OP_MAX]
615 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
616 {
617  [ C(L1D) ] = {
618 	[ C(OP_READ) ] = {
619 		[ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS        */
620 		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPLACEMENT              */
621 	},
622 	[ C(OP_WRITE) ] = {
623 		[ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES       */
624 		[ C(RESULT_MISS)   ] = 0x0851, /* L1D.ALL_M_REPLACEMENT        */
625 	},
626 	[ C(OP_PREFETCH) ] = {
627 		[ C(RESULT_ACCESS) ] = 0x0,
628 		[ C(RESULT_MISS)   ] = 0x024e, /* HW_PRE_REQ.DL1_MISS          */
629 	},
630  },
631  [ C(L1I ) ] = {
632 	[ C(OP_READ) ] = {
633 		[ C(RESULT_ACCESS) ] = 0x0,
634 		[ C(RESULT_MISS)   ] = 0x0280, /* ICACHE.MISSES */
635 	},
636 	[ C(OP_WRITE) ] = {
637 		[ C(RESULT_ACCESS) ] = -1,
638 		[ C(RESULT_MISS)   ] = -1,
639 	},
640 	[ C(OP_PREFETCH) ] = {
641 		[ C(RESULT_ACCESS) ] = 0x0,
642 		[ C(RESULT_MISS)   ] = 0x0,
643 	},
644  },
645  [ C(LL  ) ] = {
646 	[ C(OP_READ) ] = {
647 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
648 		[ C(RESULT_ACCESS) ] = 0x01b7,
649 		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
650 		[ C(RESULT_MISS)   ] = 0x01b7,
651 	},
652 	[ C(OP_WRITE) ] = {
653 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
654 		[ C(RESULT_ACCESS) ] = 0x01b7,
655 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
656 		[ C(RESULT_MISS)   ] = 0x01b7,
657 	},
658 	[ C(OP_PREFETCH) ] = {
659 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
660 		[ C(RESULT_ACCESS) ] = 0x01b7,
661 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
662 		[ C(RESULT_MISS)   ] = 0x01b7,
663 	},
664  },
665  [ C(DTLB) ] = {
666 	[ C(OP_READ) ] = {
667 		[ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
668 		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
669 	},
670 	[ C(OP_WRITE) ] = {
671 		[ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
672 		[ C(RESULT_MISS)   ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
673 	},
674 	[ C(OP_PREFETCH) ] = {
675 		[ C(RESULT_ACCESS) ] = 0x0,
676 		[ C(RESULT_MISS)   ] = 0x0,
677 	},
678  },
679  [ C(ITLB) ] = {
680 	[ C(OP_READ) ] = {
681 		[ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT         */
682 		[ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK    */
683 	},
684 	[ C(OP_WRITE) ] = {
685 		[ C(RESULT_ACCESS) ] = -1,
686 		[ C(RESULT_MISS)   ] = -1,
687 	},
688 	[ C(OP_PREFETCH) ] = {
689 		[ C(RESULT_ACCESS) ] = -1,
690 		[ C(RESULT_MISS)   ] = -1,
691 	},
692  },
693  [ C(BPU ) ] = {
694 	[ C(OP_READ) ] = {
695 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
696 		[ C(RESULT_MISS)   ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
697 	},
698 	[ C(OP_WRITE) ] = {
699 		[ C(RESULT_ACCESS) ] = -1,
700 		[ C(RESULT_MISS)   ] = -1,
701 	},
702 	[ C(OP_PREFETCH) ] = {
703 		[ C(RESULT_ACCESS) ] = -1,
704 		[ C(RESULT_MISS)   ] = -1,
705 	},
706  },
707  [ C(NODE) ] = {
708 	[ C(OP_READ) ] = {
709 		[ C(RESULT_ACCESS) ] = 0x01b7,
710 		[ C(RESULT_MISS)   ] = 0x01b7,
711 	},
712 	[ C(OP_WRITE) ] = {
713 		[ C(RESULT_ACCESS) ] = 0x01b7,
714 		[ C(RESULT_MISS)   ] = 0x01b7,
715 	},
716 	[ C(OP_PREFETCH) ] = {
717 		[ C(RESULT_ACCESS) ] = 0x01b7,
718 		[ C(RESULT_MISS)   ] = 0x01b7,
719 	},
720  },
721 
722 };
723 
724 /*
725  * Notes on the events:
726  * - data reads do not include code reads (comparable to earlier tables)
727  * - data counts include speculative execution (except L1 write, dtlb, bpu)
728  * - remote node access includes remote memory, remote cache, remote mmio.
729  * - prefetches are not included in the counts because they are not
730  *   reliably counted.
731  */
732 
733 #define HSW_DEMAND_DATA_RD		BIT_ULL(0)
734 #define HSW_DEMAND_RFO			BIT_ULL(1)
735 #define HSW_ANY_RESPONSE		BIT_ULL(16)
736 #define HSW_SUPPLIER_NONE		BIT_ULL(17)
737 #define HSW_L3_MISS_LOCAL_DRAM		BIT_ULL(22)
738 #define HSW_L3_MISS_REMOTE_HOP0		BIT_ULL(27)
739 #define HSW_L3_MISS_REMOTE_HOP1		BIT_ULL(28)
740 #define HSW_L3_MISS_REMOTE_HOP2P	BIT_ULL(29)
741 #define HSW_L3_MISS			(HSW_L3_MISS_LOCAL_DRAM| \
742 					 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
743 					 HSW_L3_MISS_REMOTE_HOP2P)
744 #define HSW_SNOOP_NONE			BIT_ULL(31)
745 #define HSW_SNOOP_NOT_NEEDED		BIT_ULL(32)
746 #define HSW_SNOOP_MISS			BIT_ULL(33)
747 #define HSW_SNOOP_HIT_NO_FWD		BIT_ULL(34)
748 #define HSW_SNOOP_HIT_WITH_FWD		BIT_ULL(35)
749 #define HSW_SNOOP_HITM			BIT_ULL(36)
750 #define HSW_SNOOP_NON_DRAM		BIT_ULL(37)
751 #define HSW_ANY_SNOOP			(HSW_SNOOP_NONE| \
752 					 HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
753 					 HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
754 					 HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
755 #define HSW_SNOOP_DRAM			(HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
756 #define HSW_DEMAND_READ			HSW_DEMAND_DATA_RD
757 #define HSW_DEMAND_WRITE		HSW_DEMAND_RFO
758 #define HSW_L3_MISS_REMOTE		(HSW_L3_MISS_REMOTE_HOP0|\
759 					 HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
760 #define HSW_LLC_ACCESS			HSW_ANY_RESPONSE
761 
762 #define BDW_L3_MISS_LOCAL		BIT(26)
763 #define BDW_L3_MISS			(BDW_L3_MISS_LOCAL| \
764 					 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
765 					 HSW_L3_MISS_REMOTE_HOP2P)
766 
767 
768 static __initconst const u64 hsw_hw_cache_event_ids
769 				[PERF_COUNT_HW_CACHE_MAX]
770 				[PERF_COUNT_HW_CACHE_OP_MAX]
771 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
772 {
773  [ C(L1D ) ] = {
774 	[ C(OP_READ) ] = {
775 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
776 		[ C(RESULT_MISS)   ] = 0x151,	/* L1D.REPLACEMENT */
777 	},
778 	[ C(OP_WRITE) ] = {
779 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
780 		[ C(RESULT_MISS)   ] = 0x0,
781 	},
782 	[ C(OP_PREFETCH) ] = {
783 		[ C(RESULT_ACCESS) ] = 0x0,
784 		[ C(RESULT_MISS)   ] = 0x0,
785 	},
786  },
787  [ C(L1I ) ] = {
788 	[ C(OP_READ) ] = {
789 		[ C(RESULT_ACCESS) ] = 0x0,
790 		[ C(RESULT_MISS)   ] = 0x280,	/* ICACHE.MISSES */
791 	},
792 	[ C(OP_WRITE) ] = {
793 		[ C(RESULT_ACCESS) ] = -1,
794 		[ C(RESULT_MISS)   ] = -1,
795 	},
796 	[ C(OP_PREFETCH) ] = {
797 		[ C(RESULT_ACCESS) ] = 0x0,
798 		[ C(RESULT_MISS)   ] = 0x0,
799 	},
800  },
801  [ C(LL  ) ] = {
802 	[ C(OP_READ) ] = {
803 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
804 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
805 	},
806 	[ C(OP_WRITE) ] = {
807 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
808 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
809 	},
810 	[ C(OP_PREFETCH) ] = {
811 		[ C(RESULT_ACCESS) ] = 0x0,
812 		[ C(RESULT_MISS)   ] = 0x0,
813 	},
814  },
815  [ C(DTLB) ] = {
816 	[ C(OP_READ) ] = {
817 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
818 		[ C(RESULT_MISS)   ] = 0x108,	/* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
819 	},
820 	[ C(OP_WRITE) ] = {
821 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
822 		[ C(RESULT_MISS)   ] = 0x149,	/* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
823 	},
824 	[ C(OP_PREFETCH) ] = {
825 		[ C(RESULT_ACCESS) ] = 0x0,
826 		[ C(RESULT_MISS)   ] = 0x0,
827 	},
828  },
829  [ C(ITLB) ] = {
830 	[ C(OP_READ) ] = {
831 		[ C(RESULT_ACCESS) ] = 0x6085,	/* ITLB_MISSES.STLB_HIT */
832 		[ C(RESULT_MISS)   ] = 0x185,	/* ITLB_MISSES.MISS_CAUSES_A_WALK */
833 	},
834 	[ C(OP_WRITE) ] = {
835 		[ C(RESULT_ACCESS) ] = -1,
836 		[ C(RESULT_MISS)   ] = -1,
837 	},
838 	[ C(OP_PREFETCH) ] = {
839 		[ C(RESULT_ACCESS) ] = -1,
840 		[ C(RESULT_MISS)   ] = -1,
841 	},
842  },
843  [ C(BPU ) ] = {
844 	[ C(OP_READ) ] = {
845 		[ C(RESULT_ACCESS) ] = 0xc4,	/* BR_INST_RETIRED.ALL_BRANCHES */
846 		[ C(RESULT_MISS)   ] = 0xc5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
847 	},
848 	[ C(OP_WRITE) ] = {
849 		[ C(RESULT_ACCESS) ] = -1,
850 		[ C(RESULT_MISS)   ] = -1,
851 	},
852 	[ C(OP_PREFETCH) ] = {
853 		[ C(RESULT_ACCESS) ] = -1,
854 		[ C(RESULT_MISS)   ] = -1,
855 	},
856  },
857  [ C(NODE) ] = {
858 	[ C(OP_READ) ] = {
859 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
860 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
861 	},
862 	[ C(OP_WRITE) ] = {
863 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
864 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
865 	},
866 	[ C(OP_PREFETCH) ] = {
867 		[ C(RESULT_ACCESS) ] = 0x0,
868 		[ C(RESULT_MISS)   ] = 0x0,
869 	},
870  },
871 };
872 
873 static __initconst const u64 hsw_hw_cache_extra_regs
874 				[PERF_COUNT_HW_CACHE_MAX]
875 				[PERF_COUNT_HW_CACHE_OP_MAX]
876 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
877 {
878  [ C(LL  ) ] = {
879 	[ C(OP_READ) ] = {
880 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
881 				       HSW_LLC_ACCESS,
882 		[ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
883 				       HSW_L3_MISS|HSW_ANY_SNOOP,
884 	},
885 	[ C(OP_WRITE) ] = {
886 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
887 				       HSW_LLC_ACCESS,
888 		[ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
889 				       HSW_L3_MISS|HSW_ANY_SNOOP,
890 	},
891 	[ C(OP_PREFETCH) ] = {
892 		[ C(RESULT_ACCESS) ] = 0x0,
893 		[ C(RESULT_MISS)   ] = 0x0,
894 	},
895  },
896  [ C(NODE) ] = {
897 	[ C(OP_READ) ] = {
898 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
899 				       HSW_L3_MISS_LOCAL_DRAM|
900 				       HSW_SNOOP_DRAM,
901 		[ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
902 				       HSW_L3_MISS_REMOTE|
903 				       HSW_SNOOP_DRAM,
904 	},
905 	[ C(OP_WRITE) ] = {
906 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
907 				       HSW_L3_MISS_LOCAL_DRAM|
908 				       HSW_SNOOP_DRAM,
909 		[ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
910 				       HSW_L3_MISS_REMOTE|
911 				       HSW_SNOOP_DRAM,
912 	},
913 	[ C(OP_PREFETCH) ] = {
914 		[ C(RESULT_ACCESS) ] = 0x0,
915 		[ C(RESULT_MISS)   ] = 0x0,
916 	},
917  },
918 };
919 
920 static __initconst const u64 westmere_hw_cache_event_ids
921 				[PERF_COUNT_HW_CACHE_MAX]
922 				[PERF_COUNT_HW_CACHE_OP_MAX]
923 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
924 {
925  [ C(L1D) ] = {
926 	[ C(OP_READ) ] = {
927 		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
928 		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
929 	},
930 	[ C(OP_WRITE) ] = {
931 		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
932 		[ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
933 	},
934 	[ C(OP_PREFETCH) ] = {
935 		[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
936 		[ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
937 	},
938  },
939  [ C(L1I ) ] = {
940 	[ C(OP_READ) ] = {
941 		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
942 		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
943 	},
944 	[ C(OP_WRITE) ] = {
945 		[ C(RESULT_ACCESS) ] = -1,
946 		[ C(RESULT_MISS)   ] = -1,
947 	},
948 	[ C(OP_PREFETCH) ] = {
949 		[ C(RESULT_ACCESS) ] = 0x0,
950 		[ C(RESULT_MISS)   ] = 0x0,
951 	},
952  },
953  [ C(LL  ) ] = {
954 	[ C(OP_READ) ] = {
955 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
956 		[ C(RESULT_ACCESS) ] = 0x01b7,
957 		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
958 		[ C(RESULT_MISS)   ] = 0x01b7,
959 	},
960 	/*
961 	 * Use RFO, not WRITEBACK, because a write miss would typically occur
962 	 * on RFO.
963 	 */
964 	[ C(OP_WRITE) ] = {
965 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
966 		[ C(RESULT_ACCESS) ] = 0x01b7,
967 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
968 		[ C(RESULT_MISS)   ] = 0x01b7,
969 	},
970 	[ C(OP_PREFETCH) ] = {
971 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
972 		[ C(RESULT_ACCESS) ] = 0x01b7,
973 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
974 		[ C(RESULT_MISS)   ] = 0x01b7,
975 	},
976  },
977  [ C(DTLB) ] = {
978 	[ C(OP_READ) ] = {
979 		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
980 		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
981 	},
982 	[ C(OP_WRITE) ] = {
983 		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
984 		[ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
985 	},
986 	[ C(OP_PREFETCH) ] = {
987 		[ C(RESULT_ACCESS) ] = 0x0,
988 		[ C(RESULT_MISS)   ] = 0x0,
989 	},
990  },
991  [ C(ITLB) ] = {
992 	[ C(OP_READ) ] = {
993 		[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
994 		[ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.ANY              */
995 	},
996 	[ C(OP_WRITE) ] = {
997 		[ C(RESULT_ACCESS) ] = -1,
998 		[ C(RESULT_MISS)   ] = -1,
999 	},
1000 	[ C(OP_PREFETCH) ] = {
1001 		[ C(RESULT_ACCESS) ] = -1,
1002 		[ C(RESULT_MISS)   ] = -1,
1003 	},
1004  },
1005  [ C(BPU ) ] = {
1006 	[ C(OP_READ) ] = {
1007 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1008 		[ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1009 	},
1010 	[ C(OP_WRITE) ] = {
1011 		[ C(RESULT_ACCESS) ] = -1,
1012 		[ C(RESULT_MISS)   ] = -1,
1013 	},
1014 	[ C(OP_PREFETCH) ] = {
1015 		[ C(RESULT_ACCESS) ] = -1,
1016 		[ C(RESULT_MISS)   ] = -1,
1017 	},
1018  },
1019  [ C(NODE) ] = {
1020 	[ C(OP_READ) ] = {
1021 		[ C(RESULT_ACCESS) ] = 0x01b7,
1022 		[ C(RESULT_MISS)   ] = 0x01b7,
1023 	},
1024 	[ C(OP_WRITE) ] = {
1025 		[ C(RESULT_ACCESS) ] = 0x01b7,
1026 		[ C(RESULT_MISS)   ] = 0x01b7,
1027 	},
1028 	[ C(OP_PREFETCH) ] = {
1029 		[ C(RESULT_ACCESS) ] = 0x01b7,
1030 		[ C(RESULT_MISS)   ] = 0x01b7,
1031 	},
1032  },
1033 };
1034 
1035 /*
1036  * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
1037  * See IA32 SDM Vol 3B 30.6.1.3
1038  */
1039 
1040 #define NHM_DMND_DATA_RD	(1 << 0)
1041 #define NHM_DMND_RFO		(1 << 1)
1042 #define NHM_DMND_IFETCH		(1 << 2)
1043 #define NHM_DMND_WB		(1 << 3)
1044 #define NHM_PF_DATA_RD		(1 << 4)
1045 #define NHM_PF_DATA_RFO		(1 << 5)
1046 #define NHM_PF_IFETCH		(1 << 6)
1047 #define NHM_OFFCORE_OTHER	(1 << 7)
1048 #define NHM_UNCORE_HIT		(1 << 8)
1049 #define NHM_OTHER_CORE_HIT_SNP	(1 << 9)
1050 #define NHM_OTHER_CORE_HITM	(1 << 10)
1051         			/* reserved */
1052 #define NHM_REMOTE_CACHE_FWD	(1 << 12)
1053 #define NHM_REMOTE_DRAM		(1 << 13)
1054 #define NHM_LOCAL_DRAM		(1 << 14)
1055 #define NHM_NON_DRAM		(1 << 15)
1056 
1057 #define NHM_LOCAL		(NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
1058 #define NHM_REMOTE		(NHM_REMOTE_DRAM)
1059 
1060 #define NHM_DMND_READ		(NHM_DMND_DATA_RD)
1061 #define NHM_DMND_WRITE		(NHM_DMND_RFO|NHM_DMND_WB)
1062 #define NHM_DMND_PREFETCH	(NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
1063 
1064 #define NHM_L3_HIT	(NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
1065 #define NHM_L3_MISS	(NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
1066 #define NHM_L3_ACCESS	(NHM_L3_HIT|NHM_L3_MISS)
1067 
1068 static __initconst const u64 nehalem_hw_cache_extra_regs
1069 				[PERF_COUNT_HW_CACHE_MAX]
1070 				[PERF_COUNT_HW_CACHE_OP_MAX]
1071 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1072 {
1073  [ C(LL  ) ] = {
1074 	[ C(OP_READ) ] = {
1075 		[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
1076 		[ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_L3_MISS,
1077 	},
1078 	[ C(OP_WRITE) ] = {
1079 		[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
1080 		[ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_L3_MISS,
1081 	},
1082 	[ C(OP_PREFETCH) ] = {
1083 		[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
1084 		[ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
1085 	},
1086  },
1087  [ C(NODE) ] = {
1088 	[ C(OP_READ) ] = {
1089 		[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
1090 		[ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_REMOTE,
1091 	},
1092 	[ C(OP_WRITE) ] = {
1093 		[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
1094 		[ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_REMOTE,
1095 	},
1096 	[ C(OP_PREFETCH) ] = {
1097 		[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
1098 		[ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_REMOTE,
1099 	},
1100  },
1101 };
1102 
1103 static __initconst const u64 nehalem_hw_cache_event_ids
1104 				[PERF_COUNT_HW_CACHE_MAX]
1105 				[PERF_COUNT_HW_CACHE_OP_MAX]
1106 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1107 {
1108  [ C(L1D) ] = {
1109 	[ C(OP_READ) ] = {
1110 		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1111 		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
1112 	},
1113 	[ C(OP_WRITE) ] = {
1114 		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1115 		[ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
1116 	},
1117 	[ C(OP_PREFETCH) ] = {
1118 		[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
1119 		[ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
1120 	},
1121  },
1122  [ C(L1I ) ] = {
1123 	[ C(OP_READ) ] = {
1124 		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
1125 		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
1126 	},
1127 	[ C(OP_WRITE) ] = {
1128 		[ C(RESULT_ACCESS) ] = -1,
1129 		[ C(RESULT_MISS)   ] = -1,
1130 	},
1131 	[ C(OP_PREFETCH) ] = {
1132 		[ C(RESULT_ACCESS) ] = 0x0,
1133 		[ C(RESULT_MISS)   ] = 0x0,
1134 	},
1135  },
1136  [ C(LL  ) ] = {
1137 	[ C(OP_READ) ] = {
1138 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1139 		[ C(RESULT_ACCESS) ] = 0x01b7,
1140 		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1141 		[ C(RESULT_MISS)   ] = 0x01b7,
1142 	},
1143 	/*
1144 	 * Use RFO, not WRITEBACK, because a write miss would typically occur
1145 	 * on RFO.
1146 	 */
1147 	[ C(OP_WRITE) ] = {
1148 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1149 		[ C(RESULT_ACCESS) ] = 0x01b7,
1150 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1151 		[ C(RESULT_MISS)   ] = 0x01b7,
1152 	},
1153 	[ C(OP_PREFETCH) ] = {
1154 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1155 		[ C(RESULT_ACCESS) ] = 0x01b7,
1156 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1157 		[ C(RESULT_MISS)   ] = 0x01b7,
1158 	},
1159  },
1160  [ C(DTLB) ] = {
1161 	[ C(OP_READ) ] = {
1162 		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI   (alias)  */
1163 		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
1164 	},
1165 	[ C(OP_WRITE) ] = {
1166 		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI   (alias)  */
1167 		[ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
1168 	},
1169 	[ C(OP_PREFETCH) ] = {
1170 		[ C(RESULT_ACCESS) ] = 0x0,
1171 		[ C(RESULT_MISS)   ] = 0x0,
1172 	},
1173  },
1174  [ C(ITLB) ] = {
1175 	[ C(OP_READ) ] = {
1176 		[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
1177 		[ C(RESULT_MISS)   ] = 0x20c8, /* ITLB_MISS_RETIRED            */
1178 	},
1179 	[ C(OP_WRITE) ] = {
1180 		[ C(RESULT_ACCESS) ] = -1,
1181 		[ C(RESULT_MISS)   ] = -1,
1182 	},
1183 	[ C(OP_PREFETCH) ] = {
1184 		[ C(RESULT_ACCESS) ] = -1,
1185 		[ C(RESULT_MISS)   ] = -1,
1186 	},
1187  },
1188  [ C(BPU ) ] = {
1189 	[ C(OP_READ) ] = {
1190 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1191 		[ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1192 	},
1193 	[ C(OP_WRITE) ] = {
1194 		[ C(RESULT_ACCESS) ] = -1,
1195 		[ C(RESULT_MISS)   ] = -1,
1196 	},
1197 	[ C(OP_PREFETCH) ] = {
1198 		[ C(RESULT_ACCESS) ] = -1,
1199 		[ C(RESULT_MISS)   ] = -1,
1200 	},
1201  },
1202  [ C(NODE) ] = {
1203 	[ C(OP_READ) ] = {
1204 		[ C(RESULT_ACCESS) ] = 0x01b7,
1205 		[ C(RESULT_MISS)   ] = 0x01b7,
1206 	},
1207 	[ C(OP_WRITE) ] = {
1208 		[ C(RESULT_ACCESS) ] = 0x01b7,
1209 		[ C(RESULT_MISS)   ] = 0x01b7,
1210 	},
1211 	[ C(OP_PREFETCH) ] = {
1212 		[ C(RESULT_ACCESS) ] = 0x01b7,
1213 		[ C(RESULT_MISS)   ] = 0x01b7,
1214 	},
1215  },
1216 };
1217 
1218 static __initconst const u64 core2_hw_cache_event_ids
1219 				[PERF_COUNT_HW_CACHE_MAX]
1220 				[PERF_COUNT_HW_CACHE_OP_MAX]
1221 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1222 {
1223  [ C(L1D) ] = {
1224 	[ C(OP_READ) ] = {
1225 		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI          */
1226 		[ C(RESULT_MISS)   ] = 0x0140, /* L1D_CACHE_LD.I_STATE       */
1227 	},
1228 	[ C(OP_WRITE) ] = {
1229 		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI          */
1230 		[ C(RESULT_MISS)   ] = 0x0141, /* L1D_CACHE_ST.I_STATE       */
1231 	},
1232 	[ C(OP_PREFETCH) ] = {
1233 		[ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS      */
1234 		[ C(RESULT_MISS)   ] = 0,
1235 	},
1236  },
1237  [ C(L1I ) ] = {
1238 	[ C(OP_READ) ] = {
1239 		[ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS                  */
1240 		[ C(RESULT_MISS)   ] = 0x0081, /* L1I.MISSES                 */
1241 	},
1242 	[ C(OP_WRITE) ] = {
1243 		[ C(RESULT_ACCESS) ] = -1,
1244 		[ C(RESULT_MISS)   ] = -1,
1245 	},
1246 	[ C(OP_PREFETCH) ] = {
1247 		[ C(RESULT_ACCESS) ] = 0,
1248 		[ C(RESULT_MISS)   ] = 0,
1249 	},
1250  },
1251  [ C(LL  ) ] = {
1252 	[ C(OP_READ) ] = {
1253 		[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1254 		[ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1255 	},
1256 	[ C(OP_WRITE) ] = {
1257 		[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1258 		[ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1259 	},
1260 	[ C(OP_PREFETCH) ] = {
1261 		[ C(RESULT_ACCESS) ] = 0,
1262 		[ C(RESULT_MISS)   ] = 0,
1263 	},
1264  },
1265  [ C(DTLB) ] = {
1266 	[ C(OP_READ) ] = {
1267 		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI  (alias) */
1268 		[ C(RESULT_MISS)   ] = 0x0208, /* DTLB_MISSES.MISS_LD        */
1269 	},
1270 	[ C(OP_WRITE) ] = {
1271 		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI  (alias) */
1272 		[ C(RESULT_MISS)   ] = 0x0808, /* DTLB_MISSES.MISS_ST        */
1273 	},
1274 	[ C(OP_PREFETCH) ] = {
1275 		[ C(RESULT_ACCESS) ] = 0,
1276 		[ C(RESULT_MISS)   ] = 0,
1277 	},
1278  },
1279  [ C(ITLB) ] = {
1280 	[ C(OP_READ) ] = {
1281 		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1282 		[ C(RESULT_MISS)   ] = 0x1282, /* ITLBMISSES                 */
1283 	},
1284 	[ C(OP_WRITE) ] = {
1285 		[ C(RESULT_ACCESS) ] = -1,
1286 		[ C(RESULT_MISS)   ] = -1,
1287 	},
1288 	[ C(OP_PREFETCH) ] = {
1289 		[ C(RESULT_ACCESS) ] = -1,
1290 		[ C(RESULT_MISS)   ] = -1,
1291 	},
1292  },
1293  [ C(BPU ) ] = {
1294 	[ C(OP_READ) ] = {
1295 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1296 		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1297 	},
1298 	[ C(OP_WRITE) ] = {
1299 		[ C(RESULT_ACCESS) ] = -1,
1300 		[ C(RESULT_MISS)   ] = -1,
1301 	},
1302 	[ C(OP_PREFETCH) ] = {
1303 		[ C(RESULT_ACCESS) ] = -1,
1304 		[ C(RESULT_MISS)   ] = -1,
1305 	},
1306  },
1307 };
1308 
1309 static __initconst const u64 atom_hw_cache_event_ids
1310 				[PERF_COUNT_HW_CACHE_MAX]
1311 				[PERF_COUNT_HW_CACHE_OP_MAX]
1312 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1313 {
1314  [ C(L1D) ] = {
1315 	[ C(OP_READ) ] = {
1316 		[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD               */
1317 		[ C(RESULT_MISS)   ] = 0,
1318 	},
1319 	[ C(OP_WRITE) ] = {
1320 		[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST               */
1321 		[ C(RESULT_MISS)   ] = 0,
1322 	},
1323 	[ C(OP_PREFETCH) ] = {
1324 		[ C(RESULT_ACCESS) ] = 0x0,
1325 		[ C(RESULT_MISS)   ] = 0,
1326 	},
1327  },
1328  [ C(L1I ) ] = {
1329 	[ C(OP_READ) ] = {
1330 		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                  */
1331 		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                 */
1332 	},
1333 	[ C(OP_WRITE) ] = {
1334 		[ C(RESULT_ACCESS) ] = -1,
1335 		[ C(RESULT_MISS)   ] = -1,
1336 	},
1337 	[ C(OP_PREFETCH) ] = {
1338 		[ C(RESULT_ACCESS) ] = 0,
1339 		[ C(RESULT_MISS)   ] = 0,
1340 	},
1341  },
1342  [ C(LL  ) ] = {
1343 	[ C(OP_READ) ] = {
1344 		[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1345 		[ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1346 	},
1347 	[ C(OP_WRITE) ] = {
1348 		[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1349 		[ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1350 	},
1351 	[ C(OP_PREFETCH) ] = {
1352 		[ C(RESULT_ACCESS) ] = 0,
1353 		[ C(RESULT_MISS)   ] = 0,
1354 	},
1355  },
1356  [ C(DTLB) ] = {
1357 	[ C(OP_READ) ] = {
1358 		[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI  (alias) */
1359 		[ C(RESULT_MISS)   ] = 0x0508, /* DTLB_MISSES.MISS_LD        */
1360 	},
1361 	[ C(OP_WRITE) ] = {
1362 		[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI  (alias) */
1363 		[ C(RESULT_MISS)   ] = 0x0608, /* DTLB_MISSES.MISS_ST        */
1364 	},
1365 	[ C(OP_PREFETCH) ] = {
1366 		[ C(RESULT_ACCESS) ] = 0,
1367 		[ C(RESULT_MISS)   ] = 0,
1368 	},
1369  },
1370  [ C(ITLB) ] = {
1371 	[ C(OP_READ) ] = {
1372 		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1373 		[ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES                */
1374 	},
1375 	[ C(OP_WRITE) ] = {
1376 		[ C(RESULT_ACCESS) ] = -1,
1377 		[ C(RESULT_MISS)   ] = -1,
1378 	},
1379 	[ C(OP_PREFETCH) ] = {
1380 		[ C(RESULT_ACCESS) ] = -1,
1381 		[ C(RESULT_MISS)   ] = -1,
1382 	},
1383  },
1384  [ C(BPU ) ] = {
1385 	[ C(OP_READ) ] = {
1386 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1387 		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1388 	},
1389 	[ C(OP_WRITE) ] = {
1390 		[ C(RESULT_ACCESS) ] = -1,
1391 		[ C(RESULT_MISS)   ] = -1,
1392 	},
1393 	[ C(OP_PREFETCH) ] = {
1394 		[ C(RESULT_ACCESS) ] = -1,
1395 		[ C(RESULT_MISS)   ] = -1,
1396 	},
1397  },
1398 };
1399 
1400 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_slm, "event=0x3c");
1401 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_slm, "2");
1402 /* no_alloc_cycles.not_delivered */
1403 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_slm,
1404 	       "event=0xca,umask=0x50");
1405 EVENT_ATTR_STR(topdown-fetch-bubbles.scale, td_fetch_bubbles_scale_slm, "2");
1406 /* uops_retired.all */
1407 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_slm,
1408 	       "event=0xc2,umask=0x10");
1409 /* uops_retired.all */
1410 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_slm,
1411 	       "event=0xc2,umask=0x10");
1412 
1413 static struct attribute *slm_events_attrs[] = {
1414 	EVENT_PTR(td_total_slots_slm),
1415 	EVENT_PTR(td_total_slots_scale_slm),
1416 	EVENT_PTR(td_fetch_bubbles_slm),
1417 	EVENT_PTR(td_fetch_bubbles_scale_slm),
1418 	EVENT_PTR(td_slots_issued_slm),
1419 	EVENT_PTR(td_slots_retired_slm),
1420 	NULL
1421 };
1422 
1423 static struct extra_reg intel_slm_extra_regs[] __read_mostly =
1424 {
1425 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1426 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
1427 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1),
1428 	EVENT_EXTRA_END
1429 };
1430 
1431 #define SLM_DMND_READ		SNB_DMND_DATA_RD
1432 #define SLM_DMND_WRITE		SNB_DMND_RFO
1433 #define SLM_DMND_PREFETCH	(SNB_PF_DATA_RD|SNB_PF_RFO)
1434 
1435 #define SLM_SNP_ANY		(SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
1436 #define SLM_LLC_ACCESS		SNB_RESP_ANY
1437 #define SLM_LLC_MISS		(SLM_SNP_ANY|SNB_NON_DRAM)
1438 
1439 static __initconst const u64 slm_hw_cache_extra_regs
1440 				[PERF_COUNT_HW_CACHE_MAX]
1441 				[PERF_COUNT_HW_CACHE_OP_MAX]
1442 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1443 {
1444  [ C(LL  ) ] = {
1445 	[ C(OP_READ) ] = {
1446 		[ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
1447 		[ C(RESULT_MISS)   ] = 0,
1448 	},
1449 	[ C(OP_WRITE) ] = {
1450 		[ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
1451 		[ C(RESULT_MISS)   ] = SLM_DMND_WRITE|SLM_LLC_MISS,
1452 	},
1453 	[ C(OP_PREFETCH) ] = {
1454 		[ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
1455 		[ C(RESULT_MISS)   ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
1456 	},
1457  },
1458 };
1459 
1460 static __initconst const u64 slm_hw_cache_event_ids
1461 				[PERF_COUNT_HW_CACHE_MAX]
1462 				[PERF_COUNT_HW_CACHE_OP_MAX]
1463 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1464 {
1465  [ C(L1D) ] = {
1466 	[ C(OP_READ) ] = {
1467 		[ C(RESULT_ACCESS) ] = 0,
1468 		[ C(RESULT_MISS)   ] = 0x0104, /* LD_DCU_MISS */
1469 	},
1470 	[ C(OP_WRITE) ] = {
1471 		[ C(RESULT_ACCESS) ] = 0,
1472 		[ C(RESULT_MISS)   ] = 0,
1473 	},
1474 	[ C(OP_PREFETCH) ] = {
1475 		[ C(RESULT_ACCESS) ] = 0,
1476 		[ C(RESULT_MISS)   ] = 0,
1477 	},
1478  },
1479  [ C(L1I ) ] = {
1480 	[ C(OP_READ) ] = {
1481 		[ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
1482 		[ C(RESULT_MISS)   ] = 0x0280, /* ICACGE.MISSES */
1483 	},
1484 	[ C(OP_WRITE) ] = {
1485 		[ C(RESULT_ACCESS) ] = -1,
1486 		[ C(RESULT_MISS)   ] = -1,
1487 	},
1488 	[ C(OP_PREFETCH) ] = {
1489 		[ C(RESULT_ACCESS) ] = 0,
1490 		[ C(RESULT_MISS)   ] = 0,
1491 	},
1492  },
1493  [ C(LL  ) ] = {
1494 	[ C(OP_READ) ] = {
1495 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1496 		[ C(RESULT_ACCESS) ] = 0x01b7,
1497 		[ C(RESULT_MISS)   ] = 0,
1498 	},
1499 	[ C(OP_WRITE) ] = {
1500 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1501 		[ C(RESULT_ACCESS) ] = 0x01b7,
1502 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1503 		[ C(RESULT_MISS)   ] = 0x01b7,
1504 	},
1505 	[ C(OP_PREFETCH) ] = {
1506 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1507 		[ C(RESULT_ACCESS) ] = 0x01b7,
1508 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1509 		[ C(RESULT_MISS)   ] = 0x01b7,
1510 	},
1511  },
1512  [ C(DTLB) ] = {
1513 	[ C(OP_READ) ] = {
1514 		[ C(RESULT_ACCESS) ] = 0,
1515 		[ C(RESULT_MISS)   ] = 0x0804, /* LD_DTLB_MISS */
1516 	},
1517 	[ C(OP_WRITE) ] = {
1518 		[ C(RESULT_ACCESS) ] = 0,
1519 		[ C(RESULT_MISS)   ] = 0,
1520 	},
1521 	[ C(OP_PREFETCH) ] = {
1522 		[ C(RESULT_ACCESS) ] = 0,
1523 		[ C(RESULT_MISS)   ] = 0,
1524 	},
1525  },
1526  [ C(ITLB) ] = {
1527 	[ C(OP_READ) ] = {
1528 		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1529 		[ C(RESULT_MISS)   ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
1530 	},
1531 	[ C(OP_WRITE) ] = {
1532 		[ C(RESULT_ACCESS) ] = -1,
1533 		[ C(RESULT_MISS)   ] = -1,
1534 	},
1535 	[ C(OP_PREFETCH) ] = {
1536 		[ C(RESULT_ACCESS) ] = -1,
1537 		[ C(RESULT_MISS)   ] = -1,
1538 	},
1539  },
1540  [ C(BPU ) ] = {
1541 	[ C(OP_READ) ] = {
1542 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1543 		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1544 	},
1545 	[ C(OP_WRITE) ] = {
1546 		[ C(RESULT_ACCESS) ] = -1,
1547 		[ C(RESULT_MISS)   ] = -1,
1548 	},
1549 	[ C(OP_PREFETCH) ] = {
1550 		[ C(RESULT_ACCESS) ] = -1,
1551 		[ C(RESULT_MISS)   ] = -1,
1552 	},
1553  },
1554 };
1555 
1556 static struct extra_reg intel_glm_extra_regs[] __read_mostly = {
1557 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1558 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x760005ffbfull, RSP_0),
1559 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x360005ffbfull, RSP_1),
1560 	EVENT_EXTRA_END
1561 };
1562 
1563 #define GLM_DEMAND_DATA_RD		BIT_ULL(0)
1564 #define GLM_DEMAND_RFO			BIT_ULL(1)
1565 #define GLM_ANY_RESPONSE		BIT_ULL(16)
1566 #define GLM_SNP_NONE_OR_MISS		BIT_ULL(33)
1567 #define GLM_DEMAND_READ			GLM_DEMAND_DATA_RD
1568 #define GLM_DEMAND_WRITE		GLM_DEMAND_RFO
1569 #define GLM_DEMAND_PREFETCH		(SNB_PF_DATA_RD|SNB_PF_RFO)
1570 #define GLM_LLC_ACCESS			GLM_ANY_RESPONSE
1571 #define GLM_SNP_ANY			(GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM)
1572 #define GLM_LLC_MISS			(GLM_SNP_ANY|SNB_NON_DRAM)
1573 
1574 static __initconst const u64 glm_hw_cache_event_ids
1575 				[PERF_COUNT_HW_CACHE_MAX]
1576 				[PERF_COUNT_HW_CACHE_OP_MAX]
1577 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1578 	[C(L1D)] = {
1579 		[C(OP_READ)] = {
1580 			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1581 			[C(RESULT_MISS)]	= 0x0,
1582 		},
1583 		[C(OP_WRITE)] = {
1584 			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1585 			[C(RESULT_MISS)]	= 0x0,
1586 		},
1587 		[C(OP_PREFETCH)] = {
1588 			[C(RESULT_ACCESS)]	= 0x0,
1589 			[C(RESULT_MISS)]	= 0x0,
1590 		},
1591 	},
1592 	[C(L1I)] = {
1593 		[C(OP_READ)] = {
1594 			[C(RESULT_ACCESS)]	= 0x0380,	/* ICACHE.ACCESSES */
1595 			[C(RESULT_MISS)]	= 0x0280,	/* ICACHE.MISSES */
1596 		},
1597 		[C(OP_WRITE)] = {
1598 			[C(RESULT_ACCESS)]	= -1,
1599 			[C(RESULT_MISS)]	= -1,
1600 		},
1601 		[C(OP_PREFETCH)] = {
1602 			[C(RESULT_ACCESS)]	= 0x0,
1603 			[C(RESULT_MISS)]	= 0x0,
1604 		},
1605 	},
1606 	[C(LL)] = {
1607 		[C(OP_READ)] = {
1608 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1609 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1610 		},
1611 		[C(OP_WRITE)] = {
1612 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1613 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1614 		},
1615 		[C(OP_PREFETCH)] = {
1616 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1617 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1618 		},
1619 	},
1620 	[C(DTLB)] = {
1621 		[C(OP_READ)] = {
1622 			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1623 			[C(RESULT_MISS)]	= 0x0,
1624 		},
1625 		[C(OP_WRITE)] = {
1626 			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1627 			[C(RESULT_MISS)]	= 0x0,
1628 		},
1629 		[C(OP_PREFETCH)] = {
1630 			[C(RESULT_ACCESS)]	= 0x0,
1631 			[C(RESULT_MISS)]	= 0x0,
1632 		},
1633 	},
1634 	[C(ITLB)] = {
1635 		[C(OP_READ)] = {
1636 			[C(RESULT_ACCESS)]	= 0x00c0,	/* INST_RETIRED.ANY_P */
1637 			[C(RESULT_MISS)]	= 0x0481,	/* ITLB.MISS */
1638 		},
1639 		[C(OP_WRITE)] = {
1640 			[C(RESULT_ACCESS)]	= -1,
1641 			[C(RESULT_MISS)]	= -1,
1642 		},
1643 		[C(OP_PREFETCH)] = {
1644 			[C(RESULT_ACCESS)]	= -1,
1645 			[C(RESULT_MISS)]	= -1,
1646 		},
1647 	},
1648 	[C(BPU)] = {
1649 		[C(OP_READ)] = {
1650 			[C(RESULT_ACCESS)]	= 0x00c4,	/* BR_INST_RETIRED.ALL_BRANCHES */
1651 			[C(RESULT_MISS)]	= 0x00c5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
1652 		},
1653 		[C(OP_WRITE)] = {
1654 			[C(RESULT_ACCESS)]	= -1,
1655 			[C(RESULT_MISS)]	= -1,
1656 		},
1657 		[C(OP_PREFETCH)] = {
1658 			[C(RESULT_ACCESS)]	= -1,
1659 			[C(RESULT_MISS)]	= -1,
1660 		},
1661 	},
1662 };
1663 
1664 static __initconst const u64 glm_hw_cache_extra_regs
1665 				[PERF_COUNT_HW_CACHE_MAX]
1666 				[PERF_COUNT_HW_CACHE_OP_MAX]
1667 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1668 	[C(LL)] = {
1669 		[C(OP_READ)] = {
1670 			[C(RESULT_ACCESS)]	= GLM_DEMAND_READ|
1671 						  GLM_LLC_ACCESS,
1672 			[C(RESULT_MISS)]	= GLM_DEMAND_READ|
1673 						  GLM_LLC_MISS,
1674 		},
1675 		[C(OP_WRITE)] = {
1676 			[C(RESULT_ACCESS)]	= GLM_DEMAND_WRITE|
1677 						  GLM_LLC_ACCESS,
1678 			[C(RESULT_MISS)]	= GLM_DEMAND_WRITE|
1679 						  GLM_LLC_MISS,
1680 		},
1681 		[C(OP_PREFETCH)] = {
1682 			[C(RESULT_ACCESS)]	= GLM_DEMAND_PREFETCH|
1683 						  GLM_LLC_ACCESS,
1684 			[C(RESULT_MISS)]	= GLM_DEMAND_PREFETCH|
1685 						  GLM_LLC_MISS,
1686 		},
1687 	},
1688 };
1689 
1690 #define KNL_OT_L2_HITE		BIT_ULL(19) /* Other Tile L2 Hit */
1691 #define KNL_OT_L2_HITF		BIT_ULL(20) /* Other Tile L2 Hit */
1692 #define KNL_MCDRAM_LOCAL	BIT_ULL(21)
1693 #define KNL_MCDRAM_FAR		BIT_ULL(22)
1694 #define KNL_DDR_LOCAL		BIT_ULL(23)
1695 #define KNL_DDR_FAR		BIT_ULL(24)
1696 #define KNL_DRAM_ANY		(KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \
1697 				    KNL_DDR_LOCAL | KNL_DDR_FAR)
1698 #define KNL_L2_READ		SLM_DMND_READ
1699 #define KNL_L2_WRITE		SLM_DMND_WRITE
1700 #define KNL_L2_PREFETCH		SLM_DMND_PREFETCH
1701 #define KNL_L2_ACCESS		SLM_LLC_ACCESS
1702 #define KNL_L2_MISS		(KNL_OT_L2_HITE | KNL_OT_L2_HITF | \
1703 				   KNL_DRAM_ANY | SNB_SNP_ANY | \
1704 						  SNB_NON_DRAM)
1705 
1706 static __initconst const u64 knl_hw_cache_extra_regs
1707 				[PERF_COUNT_HW_CACHE_MAX]
1708 				[PERF_COUNT_HW_CACHE_OP_MAX]
1709 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1710 	[C(LL)] = {
1711 		[C(OP_READ)] = {
1712 			[C(RESULT_ACCESS)] = KNL_L2_READ | KNL_L2_ACCESS,
1713 			[C(RESULT_MISS)]   = 0,
1714 		},
1715 		[C(OP_WRITE)] = {
1716 			[C(RESULT_ACCESS)] = KNL_L2_WRITE | KNL_L2_ACCESS,
1717 			[C(RESULT_MISS)]   = KNL_L2_WRITE | KNL_L2_MISS,
1718 		},
1719 		[C(OP_PREFETCH)] = {
1720 			[C(RESULT_ACCESS)] = KNL_L2_PREFETCH | KNL_L2_ACCESS,
1721 			[C(RESULT_MISS)]   = KNL_L2_PREFETCH | KNL_L2_MISS,
1722 		},
1723 	},
1724 };
1725 
1726 /*
1727  * Used from PMIs where the LBRs are already disabled.
1728  *
1729  * This function could be called consecutively. It is required to remain in
1730  * disabled state if called consecutively.
1731  *
1732  * During consecutive calls, the same disable value will be written to related
1733  * registers, so the PMU state remains unchanged.
1734  *
1735  * intel_bts events don't coexist with intel PMU's BTS events because of
1736  * x86_add_exclusive(x86_lbr_exclusive_lbr); there's no need to keep them
1737  * disabled around intel PMU's event batching etc, only inside the PMI handler.
1738  */
1739 static void __intel_pmu_disable_all(void)
1740 {
1741 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1742 
1743 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
1744 
1745 	if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
1746 		intel_pmu_disable_bts();
1747 
1748 	intel_pmu_pebs_disable_all();
1749 }
1750 
1751 static void intel_pmu_disable_all(void)
1752 {
1753 	__intel_pmu_disable_all();
1754 	intel_pmu_lbr_disable_all();
1755 }
1756 
1757 static void __intel_pmu_enable_all(int added, bool pmi)
1758 {
1759 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1760 
1761 	intel_pmu_pebs_enable_all();
1762 	intel_pmu_lbr_enable_all(pmi);
1763 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
1764 			x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
1765 
1766 	if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
1767 		struct perf_event *event =
1768 			cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
1769 
1770 		if (WARN_ON_ONCE(!event))
1771 			return;
1772 
1773 		intel_pmu_enable_bts(event->hw.config);
1774 	}
1775 }
1776 
1777 static void intel_pmu_enable_all(int added)
1778 {
1779 	__intel_pmu_enable_all(added, false);
1780 }
1781 
1782 /*
1783  * Workaround for:
1784  *   Intel Errata AAK100 (model 26)
1785  *   Intel Errata AAP53  (model 30)
1786  *   Intel Errata BD53   (model 44)
1787  *
1788  * The official story:
1789  *   These chips need to be 'reset' when adding counters by programming the
1790  *   magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
1791  *   in sequence on the same PMC or on different PMCs.
1792  *
1793  * In practise it appears some of these events do in fact count, and
1794  * we need to programm all 4 events.
1795  */
1796 static void intel_pmu_nhm_workaround(void)
1797 {
1798 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1799 	static const unsigned long nhm_magic[4] = {
1800 		0x4300B5,
1801 		0x4300D2,
1802 		0x4300B1,
1803 		0x4300B1
1804 	};
1805 	struct perf_event *event;
1806 	int i;
1807 
1808 	/*
1809 	 * The Errata requires below steps:
1810 	 * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
1811 	 * 2) Configure 4 PERFEVTSELx with the magic events and clear
1812 	 *    the corresponding PMCx;
1813 	 * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
1814 	 * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
1815 	 * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
1816 	 */
1817 
1818 	/*
1819 	 * The real steps we choose are a little different from above.
1820 	 * A) To reduce MSR operations, we don't run step 1) as they
1821 	 *    are already cleared before this function is called;
1822 	 * B) Call x86_perf_event_update to save PMCx before configuring
1823 	 *    PERFEVTSELx with magic number;
1824 	 * C) With step 5), we do clear only when the PERFEVTSELx is
1825 	 *    not used currently.
1826 	 * D) Call x86_perf_event_set_period to restore PMCx;
1827 	 */
1828 
1829 	/* We always operate 4 pairs of PERF Counters */
1830 	for (i = 0; i < 4; i++) {
1831 		event = cpuc->events[i];
1832 		if (event)
1833 			x86_perf_event_update(event);
1834 	}
1835 
1836 	for (i = 0; i < 4; i++) {
1837 		wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
1838 		wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
1839 	}
1840 
1841 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
1842 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
1843 
1844 	for (i = 0; i < 4; i++) {
1845 		event = cpuc->events[i];
1846 
1847 		if (event) {
1848 			x86_perf_event_set_period(event);
1849 			__x86_pmu_enable_event(&event->hw,
1850 					ARCH_PERFMON_EVENTSEL_ENABLE);
1851 		} else
1852 			wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
1853 	}
1854 }
1855 
1856 static void intel_pmu_nhm_enable_all(int added)
1857 {
1858 	if (added)
1859 		intel_pmu_nhm_workaround();
1860 	intel_pmu_enable_all(added);
1861 }
1862 
1863 static inline u64 intel_pmu_get_status(void)
1864 {
1865 	u64 status;
1866 
1867 	rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1868 
1869 	return status;
1870 }
1871 
1872 static inline void intel_pmu_ack_status(u64 ack)
1873 {
1874 	wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
1875 }
1876 
1877 static void intel_pmu_disable_fixed(struct hw_perf_event *hwc)
1878 {
1879 	int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
1880 	u64 ctrl_val, mask;
1881 
1882 	mask = 0xfULL << (idx * 4);
1883 
1884 	rdmsrl(hwc->config_base, ctrl_val);
1885 	ctrl_val &= ~mask;
1886 	wrmsrl(hwc->config_base, ctrl_val);
1887 }
1888 
1889 static inline bool event_is_checkpointed(struct perf_event *event)
1890 {
1891 	return (event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
1892 }
1893 
1894 static void intel_pmu_disable_event(struct perf_event *event)
1895 {
1896 	struct hw_perf_event *hwc = &event->hw;
1897 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1898 
1899 	if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
1900 		intel_pmu_disable_bts();
1901 		intel_pmu_drain_bts_buffer();
1902 		return;
1903 	}
1904 
1905 	cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx);
1906 	cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx);
1907 	cpuc->intel_cp_status &= ~(1ull << hwc->idx);
1908 
1909 	if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
1910 		intel_pmu_disable_fixed(hwc);
1911 		return;
1912 	}
1913 
1914 	x86_pmu_disable_event(event);
1915 
1916 	if (unlikely(event->attr.precise_ip))
1917 		intel_pmu_pebs_disable(event);
1918 }
1919 
1920 static void intel_pmu_del_event(struct perf_event *event)
1921 {
1922 	if (needs_branch_stack(event))
1923 		intel_pmu_lbr_del(event);
1924 	if (event->attr.precise_ip)
1925 		intel_pmu_pebs_del(event);
1926 }
1927 
1928 static void intel_pmu_enable_fixed(struct hw_perf_event *hwc)
1929 {
1930 	int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
1931 	u64 ctrl_val, bits, mask;
1932 
1933 	/*
1934 	 * Enable IRQ generation (0x8),
1935 	 * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
1936 	 * if requested:
1937 	 */
1938 	bits = 0x8ULL;
1939 	if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
1940 		bits |= 0x2;
1941 	if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
1942 		bits |= 0x1;
1943 
1944 	/*
1945 	 * ANY bit is supported in v3 and up
1946 	 */
1947 	if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
1948 		bits |= 0x4;
1949 
1950 	bits <<= (idx * 4);
1951 	mask = 0xfULL << (idx * 4);
1952 
1953 	rdmsrl(hwc->config_base, ctrl_val);
1954 	ctrl_val &= ~mask;
1955 	ctrl_val |= bits;
1956 	wrmsrl(hwc->config_base, ctrl_val);
1957 }
1958 
1959 static void intel_pmu_enable_event(struct perf_event *event)
1960 {
1961 	struct hw_perf_event *hwc = &event->hw;
1962 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1963 
1964 	if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
1965 		if (!__this_cpu_read(cpu_hw_events.enabled))
1966 			return;
1967 
1968 		intel_pmu_enable_bts(hwc->config);
1969 		return;
1970 	}
1971 
1972 	if (event->attr.exclude_host)
1973 		cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx);
1974 	if (event->attr.exclude_guest)
1975 		cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx);
1976 
1977 	if (unlikely(event_is_checkpointed(event)))
1978 		cpuc->intel_cp_status |= (1ull << hwc->idx);
1979 
1980 	if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
1981 		intel_pmu_enable_fixed(hwc);
1982 		return;
1983 	}
1984 
1985 	if (unlikely(event->attr.precise_ip))
1986 		intel_pmu_pebs_enable(event);
1987 
1988 	__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
1989 }
1990 
1991 static void intel_pmu_add_event(struct perf_event *event)
1992 {
1993 	if (event->attr.precise_ip)
1994 		intel_pmu_pebs_add(event);
1995 	if (needs_branch_stack(event))
1996 		intel_pmu_lbr_add(event);
1997 }
1998 
1999 /*
2000  * Save and restart an expired event. Called by NMI contexts,
2001  * so it has to be careful about preempting normal event ops:
2002  */
2003 int intel_pmu_save_and_restart(struct perf_event *event)
2004 {
2005 	x86_perf_event_update(event);
2006 	/*
2007 	 * For a checkpointed counter always reset back to 0.  This
2008 	 * avoids a situation where the counter overflows, aborts the
2009 	 * transaction and is then set back to shortly before the
2010 	 * overflow, and overflows and aborts again.
2011 	 */
2012 	if (unlikely(event_is_checkpointed(event))) {
2013 		/* No race with NMIs because the counter should not be armed */
2014 		wrmsrl(event->hw.event_base, 0);
2015 		local64_set(&event->hw.prev_count, 0);
2016 	}
2017 	return x86_perf_event_set_period(event);
2018 }
2019 
2020 static void intel_pmu_reset(void)
2021 {
2022 	struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
2023 	unsigned long flags;
2024 	int idx;
2025 
2026 	if (!x86_pmu.num_counters)
2027 		return;
2028 
2029 	local_irq_save(flags);
2030 
2031 	pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
2032 
2033 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
2034 		wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
2035 		wrmsrl_safe(x86_pmu_event_addr(idx),  0ull);
2036 	}
2037 	for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
2038 		wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
2039 
2040 	if (ds)
2041 		ds->bts_index = ds->bts_buffer_base;
2042 
2043 	/* Ack all overflows and disable fixed counters */
2044 	if (x86_pmu.version >= 2) {
2045 		intel_pmu_ack_status(intel_pmu_get_status());
2046 		wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
2047 	}
2048 
2049 	/* Reset LBRs and LBR freezing */
2050 	if (x86_pmu.lbr_nr) {
2051 		update_debugctlmsr(get_debugctlmsr() &
2052 			~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
2053 	}
2054 
2055 	local_irq_restore(flags);
2056 }
2057 
2058 /*
2059  * This handler is triggered by the local APIC, so the APIC IRQ handling
2060  * rules apply:
2061  */
2062 static int intel_pmu_handle_irq(struct pt_regs *regs)
2063 {
2064 	struct perf_sample_data data;
2065 	struct cpu_hw_events *cpuc;
2066 	int bit, loops;
2067 	u64 status;
2068 	int handled;
2069 
2070 	cpuc = this_cpu_ptr(&cpu_hw_events);
2071 
2072 	/*
2073 	 * No known reason to not always do late ACK,
2074 	 * but just in case do it opt-in.
2075 	 */
2076 	if (!x86_pmu.late_ack)
2077 		apic_write(APIC_LVTPC, APIC_DM_NMI);
2078 	intel_bts_disable_local();
2079 	__intel_pmu_disable_all();
2080 	handled = intel_pmu_drain_bts_buffer();
2081 	handled += intel_bts_interrupt();
2082 	status = intel_pmu_get_status();
2083 	if (!status)
2084 		goto done;
2085 
2086 	loops = 0;
2087 again:
2088 	intel_pmu_lbr_read();
2089 	intel_pmu_ack_status(status);
2090 	if (++loops > 100) {
2091 		static bool warned = false;
2092 		if (!warned) {
2093 			WARN(1, "perfevents: irq loop stuck!\n");
2094 			perf_event_print_debug();
2095 			warned = true;
2096 		}
2097 		intel_pmu_reset();
2098 		goto done;
2099 	}
2100 
2101 	inc_irq_stat(apic_perf_irqs);
2102 
2103 
2104 	/*
2105 	 * Ignore a range of extra bits in status that do not indicate
2106 	 * overflow by themselves.
2107 	 */
2108 	status &= ~(GLOBAL_STATUS_COND_CHG |
2109 		    GLOBAL_STATUS_ASIF |
2110 		    GLOBAL_STATUS_LBRS_FROZEN);
2111 	if (!status)
2112 		goto done;
2113 
2114 	/*
2115 	 * PEBS overflow sets bit 62 in the global status register
2116 	 */
2117 	if (__test_and_clear_bit(62, (unsigned long *)&status)) {
2118 		handled++;
2119 		x86_pmu.drain_pebs(regs);
2120 		/*
2121 		 * There are cases where, even though, the PEBS ovfl bit is set
2122 		 * in GLOBAL_OVF_STATUS, the PEBS events may also have their
2123 		 * overflow bits set for their counters. We must clear them
2124 		 * here because they have been processed as exact samples in
2125 		 * the drain_pebs() routine. They must not be processed again
2126 		 * in the for_each_bit_set() loop for regular samples below.
2127 		 */
2128 		status &= ~cpuc->pebs_enabled;
2129 		status &= x86_pmu.intel_ctrl | GLOBAL_STATUS_TRACE_TOPAPMI;
2130 	}
2131 
2132 	/*
2133 	 * Intel PT
2134 	 */
2135 	if (__test_and_clear_bit(55, (unsigned long *)&status)) {
2136 		handled++;
2137 		intel_pt_interrupt();
2138 	}
2139 
2140 	/*
2141 	 * Checkpointed counters can lead to 'spurious' PMIs because the
2142 	 * rollback caused by the PMI will have cleared the overflow status
2143 	 * bit. Therefore always force probe these counters.
2144 	 */
2145 	status |= cpuc->intel_cp_status;
2146 
2147 	for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
2148 		struct perf_event *event = cpuc->events[bit];
2149 
2150 		handled++;
2151 
2152 		if (!test_bit(bit, cpuc->active_mask))
2153 			continue;
2154 
2155 		if (!intel_pmu_save_and_restart(event))
2156 			continue;
2157 
2158 		perf_sample_data_init(&data, 0, event->hw.last_period);
2159 
2160 		if (has_branch_stack(event))
2161 			data.br_stack = &cpuc->lbr_stack;
2162 
2163 		if (perf_event_overflow(event, &data, regs))
2164 			x86_pmu_stop(event, 0);
2165 	}
2166 
2167 	/*
2168 	 * Repeat if there is more work to be done:
2169 	 */
2170 	status = intel_pmu_get_status();
2171 	if (status)
2172 		goto again;
2173 
2174 done:
2175 	/* Only restore PMU state when it's active. See x86_pmu_disable(). */
2176 	if (cpuc->enabled)
2177 		__intel_pmu_enable_all(0, true);
2178 	intel_bts_enable_local();
2179 
2180 	/*
2181 	 * Only unmask the NMI after the overflow counters
2182 	 * have been reset. This avoids spurious NMIs on
2183 	 * Haswell CPUs.
2184 	 */
2185 	if (x86_pmu.late_ack)
2186 		apic_write(APIC_LVTPC, APIC_DM_NMI);
2187 	return handled;
2188 }
2189 
2190 static struct event_constraint *
2191 intel_bts_constraints(struct perf_event *event)
2192 {
2193 	struct hw_perf_event *hwc = &event->hw;
2194 	unsigned int hw_event, bts_event;
2195 
2196 	if (event->attr.freq)
2197 		return NULL;
2198 
2199 	hw_event = hwc->config & INTEL_ARCH_EVENT_MASK;
2200 	bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
2201 
2202 	if (unlikely(hw_event == bts_event && hwc->sample_period == 1))
2203 		return &bts_constraint;
2204 
2205 	return NULL;
2206 }
2207 
2208 static int intel_alt_er(int idx, u64 config)
2209 {
2210 	int alt_idx = idx;
2211 
2212 	if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
2213 		return idx;
2214 
2215 	if (idx == EXTRA_REG_RSP_0)
2216 		alt_idx = EXTRA_REG_RSP_1;
2217 
2218 	if (idx == EXTRA_REG_RSP_1)
2219 		alt_idx = EXTRA_REG_RSP_0;
2220 
2221 	if (config & ~x86_pmu.extra_regs[alt_idx].valid_mask)
2222 		return idx;
2223 
2224 	return alt_idx;
2225 }
2226 
2227 static void intel_fixup_er(struct perf_event *event, int idx)
2228 {
2229 	event->hw.extra_reg.idx = idx;
2230 
2231 	if (idx == EXTRA_REG_RSP_0) {
2232 		event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
2233 		event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_0].event;
2234 		event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
2235 	} else if (idx == EXTRA_REG_RSP_1) {
2236 		event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
2237 		event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_1].event;
2238 		event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
2239 	}
2240 }
2241 
2242 /*
2243  * manage allocation of shared extra msr for certain events
2244  *
2245  * sharing can be:
2246  * per-cpu: to be shared between the various events on a single PMU
2247  * per-core: per-cpu + shared by HT threads
2248  */
2249 static struct event_constraint *
2250 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
2251 				   struct perf_event *event,
2252 				   struct hw_perf_event_extra *reg)
2253 {
2254 	struct event_constraint *c = &emptyconstraint;
2255 	struct er_account *era;
2256 	unsigned long flags;
2257 	int idx = reg->idx;
2258 
2259 	/*
2260 	 * reg->alloc can be set due to existing state, so for fake cpuc we
2261 	 * need to ignore this, otherwise we might fail to allocate proper fake
2262 	 * state for this extra reg constraint. Also see the comment below.
2263 	 */
2264 	if (reg->alloc && !cpuc->is_fake)
2265 		return NULL; /* call x86_get_event_constraint() */
2266 
2267 again:
2268 	era = &cpuc->shared_regs->regs[idx];
2269 	/*
2270 	 * we use spin_lock_irqsave() to avoid lockdep issues when
2271 	 * passing a fake cpuc
2272 	 */
2273 	raw_spin_lock_irqsave(&era->lock, flags);
2274 
2275 	if (!atomic_read(&era->ref) || era->config == reg->config) {
2276 
2277 		/*
2278 		 * If its a fake cpuc -- as per validate_{group,event}() we
2279 		 * shouldn't touch event state and we can avoid doing so
2280 		 * since both will only call get_event_constraints() once
2281 		 * on each event, this avoids the need for reg->alloc.
2282 		 *
2283 		 * Not doing the ER fixup will only result in era->reg being
2284 		 * wrong, but since we won't actually try and program hardware
2285 		 * this isn't a problem either.
2286 		 */
2287 		if (!cpuc->is_fake) {
2288 			if (idx != reg->idx)
2289 				intel_fixup_er(event, idx);
2290 
2291 			/*
2292 			 * x86_schedule_events() can call get_event_constraints()
2293 			 * multiple times on events in the case of incremental
2294 			 * scheduling(). reg->alloc ensures we only do the ER
2295 			 * allocation once.
2296 			 */
2297 			reg->alloc = 1;
2298 		}
2299 
2300 		/* lock in msr value */
2301 		era->config = reg->config;
2302 		era->reg = reg->reg;
2303 
2304 		/* one more user */
2305 		atomic_inc(&era->ref);
2306 
2307 		/*
2308 		 * need to call x86_get_event_constraint()
2309 		 * to check if associated event has constraints
2310 		 */
2311 		c = NULL;
2312 	} else {
2313 		idx = intel_alt_er(idx, reg->config);
2314 		if (idx != reg->idx) {
2315 			raw_spin_unlock_irqrestore(&era->lock, flags);
2316 			goto again;
2317 		}
2318 	}
2319 	raw_spin_unlock_irqrestore(&era->lock, flags);
2320 
2321 	return c;
2322 }
2323 
2324 static void
2325 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
2326 				   struct hw_perf_event_extra *reg)
2327 {
2328 	struct er_account *era;
2329 
2330 	/*
2331 	 * Only put constraint if extra reg was actually allocated. Also takes
2332 	 * care of event which do not use an extra shared reg.
2333 	 *
2334 	 * Also, if this is a fake cpuc we shouldn't touch any event state
2335 	 * (reg->alloc) and we don't care about leaving inconsistent cpuc state
2336 	 * either since it'll be thrown out.
2337 	 */
2338 	if (!reg->alloc || cpuc->is_fake)
2339 		return;
2340 
2341 	era = &cpuc->shared_regs->regs[reg->idx];
2342 
2343 	/* one fewer user */
2344 	atomic_dec(&era->ref);
2345 
2346 	/* allocate again next time */
2347 	reg->alloc = 0;
2348 }
2349 
2350 static struct event_constraint *
2351 intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
2352 			      struct perf_event *event)
2353 {
2354 	struct event_constraint *c = NULL, *d;
2355 	struct hw_perf_event_extra *xreg, *breg;
2356 
2357 	xreg = &event->hw.extra_reg;
2358 	if (xreg->idx != EXTRA_REG_NONE) {
2359 		c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
2360 		if (c == &emptyconstraint)
2361 			return c;
2362 	}
2363 	breg = &event->hw.branch_reg;
2364 	if (breg->idx != EXTRA_REG_NONE) {
2365 		d = __intel_shared_reg_get_constraints(cpuc, event, breg);
2366 		if (d == &emptyconstraint) {
2367 			__intel_shared_reg_put_constraints(cpuc, xreg);
2368 			c = d;
2369 		}
2370 	}
2371 	return c;
2372 }
2373 
2374 struct event_constraint *
2375 x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2376 			  struct perf_event *event)
2377 {
2378 	struct event_constraint *c;
2379 
2380 	if (x86_pmu.event_constraints) {
2381 		for_each_event_constraint(c, x86_pmu.event_constraints) {
2382 			if ((event->hw.config & c->cmask) == c->code) {
2383 				event->hw.flags |= c->flags;
2384 				return c;
2385 			}
2386 		}
2387 	}
2388 
2389 	return &unconstrained;
2390 }
2391 
2392 static struct event_constraint *
2393 __intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2394 			    struct perf_event *event)
2395 {
2396 	struct event_constraint *c;
2397 
2398 	c = intel_bts_constraints(event);
2399 	if (c)
2400 		return c;
2401 
2402 	c = intel_shared_regs_constraints(cpuc, event);
2403 	if (c)
2404 		return c;
2405 
2406 	c = intel_pebs_constraints(event);
2407 	if (c)
2408 		return c;
2409 
2410 	return x86_get_event_constraints(cpuc, idx, event);
2411 }
2412 
2413 static void
2414 intel_start_scheduling(struct cpu_hw_events *cpuc)
2415 {
2416 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2417 	struct intel_excl_states *xl;
2418 	int tid = cpuc->excl_thread_id;
2419 
2420 	/*
2421 	 * nothing needed if in group validation mode
2422 	 */
2423 	if (cpuc->is_fake || !is_ht_workaround_enabled())
2424 		return;
2425 
2426 	/*
2427 	 * no exclusion needed
2428 	 */
2429 	if (WARN_ON_ONCE(!excl_cntrs))
2430 		return;
2431 
2432 	xl = &excl_cntrs->states[tid];
2433 
2434 	xl->sched_started = true;
2435 	/*
2436 	 * lock shared state until we are done scheduling
2437 	 * in stop_event_scheduling()
2438 	 * makes scheduling appear as a transaction
2439 	 */
2440 	raw_spin_lock(&excl_cntrs->lock);
2441 }
2442 
2443 static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
2444 {
2445 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2446 	struct event_constraint *c = cpuc->event_constraint[idx];
2447 	struct intel_excl_states *xl;
2448 	int tid = cpuc->excl_thread_id;
2449 
2450 	if (cpuc->is_fake || !is_ht_workaround_enabled())
2451 		return;
2452 
2453 	if (WARN_ON_ONCE(!excl_cntrs))
2454 		return;
2455 
2456 	if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
2457 		return;
2458 
2459 	xl = &excl_cntrs->states[tid];
2460 
2461 	lockdep_assert_held(&excl_cntrs->lock);
2462 
2463 	if (c->flags & PERF_X86_EVENT_EXCL)
2464 		xl->state[cntr] = INTEL_EXCL_EXCLUSIVE;
2465 	else
2466 		xl->state[cntr] = INTEL_EXCL_SHARED;
2467 }
2468 
2469 static void
2470 intel_stop_scheduling(struct cpu_hw_events *cpuc)
2471 {
2472 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2473 	struct intel_excl_states *xl;
2474 	int tid = cpuc->excl_thread_id;
2475 
2476 	/*
2477 	 * nothing needed if in group validation mode
2478 	 */
2479 	if (cpuc->is_fake || !is_ht_workaround_enabled())
2480 		return;
2481 	/*
2482 	 * no exclusion needed
2483 	 */
2484 	if (WARN_ON_ONCE(!excl_cntrs))
2485 		return;
2486 
2487 	xl = &excl_cntrs->states[tid];
2488 
2489 	xl->sched_started = false;
2490 	/*
2491 	 * release shared state lock (acquired in intel_start_scheduling())
2492 	 */
2493 	raw_spin_unlock(&excl_cntrs->lock);
2494 }
2495 
2496 static struct event_constraint *
2497 intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
2498 			   int idx, struct event_constraint *c)
2499 {
2500 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2501 	struct intel_excl_states *xlo;
2502 	int tid = cpuc->excl_thread_id;
2503 	int is_excl, i;
2504 
2505 	/*
2506 	 * validating a group does not require
2507 	 * enforcing cross-thread  exclusion
2508 	 */
2509 	if (cpuc->is_fake || !is_ht_workaround_enabled())
2510 		return c;
2511 
2512 	/*
2513 	 * no exclusion needed
2514 	 */
2515 	if (WARN_ON_ONCE(!excl_cntrs))
2516 		return c;
2517 
2518 	/*
2519 	 * because we modify the constraint, we need
2520 	 * to make a copy. Static constraints come
2521 	 * from static const tables.
2522 	 *
2523 	 * only needed when constraint has not yet
2524 	 * been cloned (marked dynamic)
2525 	 */
2526 	if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
2527 		struct event_constraint *cx;
2528 
2529 		/*
2530 		 * grab pre-allocated constraint entry
2531 		 */
2532 		cx = &cpuc->constraint_list[idx];
2533 
2534 		/*
2535 		 * initialize dynamic constraint
2536 		 * with static constraint
2537 		 */
2538 		*cx = *c;
2539 
2540 		/*
2541 		 * mark constraint as dynamic, so we
2542 		 * can free it later on
2543 		 */
2544 		cx->flags |= PERF_X86_EVENT_DYNAMIC;
2545 		c = cx;
2546 	}
2547 
2548 	/*
2549 	 * From here on, the constraint is dynamic.
2550 	 * Either it was just allocated above, or it
2551 	 * was allocated during a earlier invocation
2552 	 * of this function
2553 	 */
2554 
2555 	/*
2556 	 * state of sibling HT
2557 	 */
2558 	xlo = &excl_cntrs->states[tid ^ 1];
2559 
2560 	/*
2561 	 * event requires exclusive counter access
2562 	 * across HT threads
2563 	 */
2564 	is_excl = c->flags & PERF_X86_EVENT_EXCL;
2565 	if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) {
2566 		event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT;
2567 		if (!cpuc->n_excl++)
2568 			WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1);
2569 	}
2570 
2571 	/*
2572 	 * Modify static constraint with current dynamic
2573 	 * state of thread
2574 	 *
2575 	 * EXCLUSIVE: sibling counter measuring exclusive event
2576 	 * SHARED   : sibling counter measuring non-exclusive event
2577 	 * UNUSED   : sibling counter unused
2578 	 */
2579 	for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) {
2580 		/*
2581 		 * exclusive event in sibling counter
2582 		 * our corresponding counter cannot be used
2583 		 * regardless of our event
2584 		 */
2585 		if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE)
2586 			__clear_bit(i, c->idxmsk);
2587 		/*
2588 		 * if measuring an exclusive event, sibling
2589 		 * measuring non-exclusive, then counter cannot
2590 		 * be used
2591 		 */
2592 		if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED)
2593 			__clear_bit(i, c->idxmsk);
2594 	}
2595 
2596 	/*
2597 	 * recompute actual bit weight for scheduling algorithm
2598 	 */
2599 	c->weight = hweight64(c->idxmsk64);
2600 
2601 	/*
2602 	 * if we return an empty mask, then switch
2603 	 * back to static empty constraint to avoid
2604 	 * the cost of freeing later on
2605 	 */
2606 	if (c->weight == 0)
2607 		c = &emptyconstraint;
2608 
2609 	return c;
2610 }
2611 
2612 static struct event_constraint *
2613 intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2614 			    struct perf_event *event)
2615 {
2616 	struct event_constraint *c1 = NULL;
2617 	struct event_constraint *c2;
2618 
2619 	if (idx >= 0) /* fake does < 0 */
2620 		c1 = cpuc->event_constraint[idx];
2621 
2622 	/*
2623 	 * first time only
2624 	 * - static constraint: no change across incremental scheduling calls
2625 	 * - dynamic constraint: handled by intel_get_excl_constraints()
2626 	 */
2627 	c2 = __intel_get_event_constraints(cpuc, idx, event);
2628 	if (c1 && (c1->flags & PERF_X86_EVENT_DYNAMIC)) {
2629 		bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
2630 		c1->weight = c2->weight;
2631 		c2 = c1;
2632 	}
2633 
2634 	if (cpuc->excl_cntrs)
2635 		return intel_get_excl_constraints(cpuc, event, idx, c2);
2636 
2637 	return c2;
2638 }
2639 
2640 static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
2641 		struct perf_event *event)
2642 {
2643 	struct hw_perf_event *hwc = &event->hw;
2644 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2645 	int tid = cpuc->excl_thread_id;
2646 	struct intel_excl_states *xl;
2647 
2648 	/*
2649 	 * nothing needed if in group validation mode
2650 	 */
2651 	if (cpuc->is_fake)
2652 		return;
2653 
2654 	if (WARN_ON_ONCE(!excl_cntrs))
2655 		return;
2656 
2657 	if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) {
2658 		hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT;
2659 		if (!--cpuc->n_excl)
2660 			WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0);
2661 	}
2662 
2663 	/*
2664 	 * If event was actually assigned, then mark the counter state as
2665 	 * unused now.
2666 	 */
2667 	if (hwc->idx >= 0) {
2668 		xl = &excl_cntrs->states[tid];
2669 
2670 		/*
2671 		 * put_constraint may be called from x86_schedule_events()
2672 		 * which already has the lock held so here make locking
2673 		 * conditional.
2674 		 */
2675 		if (!xl->sched_started)
2676 			raw_spin_lock(&excl_cntrs->lock);
2677 
2678 		xl->state[hwc->idx] = INTEL_EXCL_UNUSED;
2679 
2680 		if (!xl->sched_started)
2681 			raw_spin_unlock(&excl_cntrs->lock);
2682 	}
2683 }
2684 
2685 static void
2686 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
2687 					struct perf_event *event)
2688 {
2689 	struct hw_perf_event_extra *reg;
2690 
2691 	reg = &event->hw.extra_reg;
2692 	if (reg->idx != EXTRA_REG_NONE)
2693 		__intel_shared_reg_put_constraints(cpuc, reg);
2694 
2695 	reg = &event->hw.branch_reg;
2696 	if (reg->idx != EXTRA_REG_NONE)
2697 		__intel_shared_reg_put_constraints(cpuc, reg);
2698 }
2699 
2700 static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
2701 					struct perf_event *event)
2702 {
2703 	intel_put_shared_regs_event_constraints(cpuc, event);
2704 
2705 	/*
2706 	 * is PMU has exclusive counter restrictions, then
2707 	 * all events are subject to and must call the
2708 	 * put_excl_constraints() routine
2709 	 */
2710 	if (cpuc->excl_cntrs)
2711 		intel_put_excl_constraints(cpuc, event);
2712 }
2713 
2714 static void intel_pebs_aliases_core2(struct perf_event *event)
2715 {
2716 	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
2717 		/*
2718 		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
2719 		 * (0x003c) so that we can use it with PEBS.
2720 		 *
2721 		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
2722 		 * PEBS capable. However we can use INST_RETIRED.ANY_P
2723 		 * (0x00c0), which is a PEBS capable event, to get the same
2724 		 * count.
2725 		 *
2726 		 * INST_RETIRED.ANY_P counts the number of cycles that retires
2727 		 * CNTMASK instructions. By setting CNTMASK to a value (16)
2728 		 * larger than the maximum number of instructions that can be
2729 		 * retired per cycle (4) and then inverting the condition, we
2730 		 * count all cycles that retire 16 or less instructions, which
2731 		 * is every cycle.
2732 		 *
2733 		 * Thereby we gain a PEBS capable cycle counter.
2734 		 */
2735 		u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
2736 
2737 		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
2738 		event->hw.config = alt_config;
2739 	}
2740 }
2741 
2742 static void intel_pebs_aliases_snb(struct perf_event *event)
2743 {
2744 	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
2745 		/*
2746 		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
2747 		 * (0x003c) so that we can use it with PEBS.
2748 		 *
2749 		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
2750 		 * PEBS capable. However we can use UOPS_RETIRED.ALL
2751 		 * (0x01c2), which is a PEBS capable event, to get the same
2752 		 * count.
2753 		 *
2754 		 * UOPS_RETIRED.ALL counts the number of cycles that retires
2755 		 * CNTMASK micro-ops. By setting CNTMASK to a value (16)
2756 		 * larger than the maximum number of micro-ops that can be
2757 		 * retired per cycle (4) and then inverting the condition, we
2758 		 * count all cycles that retire 16 or less micro-ops, which
2759 		 * is every cycle.
2760 		 *
2761 		 * Thereby we gain a PEBS capable cycle counter.
2762 		 */
2763 		u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
2764 
2765 		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
2766 		event->hw.config = alt_config;
2767 	}
2768 }
2769 
2770 static void intel_pebs_aliases_precdist(struct perf_event *event)
2771 {
2772 	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
2773 		/*
2774 		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
2775 		 * (0x003c) so that we can use it with PEBS.
2776 		 *
2777 		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
2778 		 * PEBS capable. However we can use INST_RETIRED.PREC_DIST
2779 		 * (0x01c0), which is a PEBS capable event, to get the same
2780 		 * count.
2781 		 *
2782 		 * The PREC_DIST event has special support to minimize sample
2783 		 * shadowing effects. One drawback is that it can be
2784 		 * only programmed on counter 1, but that seems like an
2785 		 * acceptable trade off.
2786 		 */
2787 		u64 alt_config = X86_CONFIG(.event=0xc0, .umask=0x01, .inv=1, .cmask=16);
2788 
2789 		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
2790 		event->hw.config = alt_config;
2791 	}
2792 }
2793 
2794 static void intel_pebs_aliases_ivb(struct perf_event *event)
2795 {
2796 	if (event->attr.precise_ip < 3)
2797 		return intel_pebs_aliases_snb(event);
2798 	return intel_pebs_aliases_precdist(event);
2799 }
2800 
2801 static void intel_pebs_aliases_skl(struct perf_event *event)
2802 {
2803 	if (event->attr.precise_ip < 3)
2804 		return intel_pebs_aliases_core2(event);
2805 	return intel_pebs_aliases_precdist(event);
2806 }
2807 
2808 static unsigned long intel_pmu_free_running_flags(struct perf_event *event)
2809 {
2810 	unsigned long flags = x86_pmu.free_running_flags;
2811 
2812 	if (event->attr.use_clockid)
2813 		flags &= ~PERF_SAMPLE_TIME;
2814 	return flags;
2815 }
2816 
2817 static int intel_pmu_hw_config(struct perf_event *event)
2818 {
2819 	int ret = x86_pmu_hw_config(event);
2820 
2821 	if (ret)
2822 		return ret;
2823 
2824 	if (event->attr.precise_ip) {
2825 		if (!event->attr.freq) {
2826 			event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD;
2827 			if (!(event->attr.sample_type &
2828 			      ~intel_pmu_free_running_flags(event)))
2829 				event->hw.flags |= PERF_X86_EVENT_FREERUNNING;
2830 		}
2831 		if (x86_pmu.pebs_aliases)
2832 			x86_pmu.pebs_aliases(event);
2833 	}
2834 
2835 	if (needs_branch_stack(event)) {
2836 		ret = intel_pmu_setup_lbr_filter(event);
2837 		if (ret)
2838 			return ret;
2839 
2840 		/*
2841 		 * BTS is set up earlier in this path, so don't account twice
2842 		 */
2843 		if (!intel_pmu_has_bts(event)) {
2844 			/* disallow lbr if conflicting events are present */
2845 			if (x86_add_exclusive(x86_lbr_exclusive_lbr))
2846 				return -EBUSY;
2847 
2848 			event->destroy = hw_perf_lbr_event_destroy;
2849 		}
2850 	}
2851 
2852 	if (event->attr.type != PERF_TYPE_RAW)
2853 		return 0;
2854 
2855 	if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
2856 		return 0;
2857 
2858 	if (x86_pmu.version < 3)
2859 		return -EINVAL;
2860 
2861 	if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2862 		return -EACCES;
2863 
2864 	event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
2865 
2866 	return 0;
2867 }
2868 
2869 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
2870 {
2871 	if (x86_pmu.guest_get_msrs)
2872 		return x86_pmu.guest_get_msrs(nr);
2873 	*nr = 0;
2874 	return NULL;
2875 }
2876 EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
2877 
2878 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
2879 {
2880 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2881 	struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
2882 
2883 	arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
2884 	arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
2885 	arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;
2886 	/*
2887 	 * If PMU counter has PEBS enabled it is not enough to disable counter
2888 	 * on a guest entry since PEBS memory write can overshoot guest entry
2889 	 * and corrupt guest memory. Disabling PEBS solves the problem.
2890 	 */
2891 	arr[1].msr = MSR_IA32_PEBS_ENABLE;
2892 	arr[1].host = cpuc->pebs_enabled;
2893 	arr[1].guest = 0;
2894 
2895 	*nr = 2;
2896 	return arr;
2897 }
2898 
2899 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
2900 {
2901 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2902 	struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
2903 	int idx;
2904 
2905 	for (idx = 0; idx < x86_pmu.num_counters; idx++)  {
2906 		struct perf_event *event = cpuc->events[idx];
2907 
2908 		arr[idx].msr = x86_pmu_config_addr(idx);
2909 		arr[idx].host = arr[idx].guest = 0;
2910 
2911 		if (!test_bit(idx, cpuc->active_mask))
2912 			continue;
2913 
2914 		arr[idx].host = arr[idx].guest =
2915 			event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
2916 
2917 		if (event->attr.exclude_host)
2918 			arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
2919 		else if (event->attr.exclude_guest)
2920 			arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
2921 	}
2922 
2923 	*nr = x86_pmu.num_counters;
2924 	return arr;
2925 }
2926 
2927 static void core_pmu_enable_event(struct perf_event *event)
2928 {
2929 	if (!event->attr.exclude_host)
2930 		x86_pmu_enable_event(event);
2931 }
2932 
2933 static void core_pmu_enable_all(int added)
2934 {
2935 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2936 	int idx;
2937 
2938 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
2939 		struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
2940 
2941 		if (!test_bit(idx, cpuc->active_mask) ||
2942 				cpuc->events[idx]->attr.exclude_host)
2943 			continue;
2944 
2945 		__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
2946 	}
2947 }
2948 
2949 static int hsw_hw_config(struct perf_event *event)
2950 {
2951 	int ret = intel_pmu_hw_config(event);
2952 
2953 	if (ret)
2954 		return ret;
2955 	if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
2956 		return 0;
2957 	event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
2958 
2959 	/*
2960 	 * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
2961 	 * PEBS or in ANY thread mode. Since the results are non-sensical forbid
2962 	 * this combination.
2963 	 */
2964 	if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
2965 	     ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
2966 	      event->attr.precise_ip > 0))
2967 		return -EOPNOTSUPP;
2968 
2969 	if (event_is_checkpointed(event)) {
2970 		/*
2971 		 * Sampling of checkpointed events can cause situations where
2972 		 * the CPU constantly aborts because of a overflow, which is
2973 		 * then checkpointed back and ignored. Forbid checkpointing
2974 		 * for sampling.
2975 		 *
2976 		 * But still allow a long sampling period, so that perf stat
2977 		 * from KVM works.
2978 		 */
2979 		if (event->attr.sample_period > 0 &&
2980 		    event->attr.sample_period < 0x7fffffff)
2981 			return -EOPNOTSUPP;
2982 	}
2983 	return 0;
2984 }
2985 
2986 static struct event_constraint counter2_constraint =
2987 			EVENT_CONSTRAINT(0, 0x4, 0);
2988 
2989 static struct event_constraint *
2990 hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2991 			  struct perf_event *event)
2992 {
2993 	struct event_constraint *c;
2994 
2995 	c = intel_get_event_constraints(cpuc, idx, event);
2996 
2997 	/* Handle special quirk on in_tx_checkpointed only in counter 2 */
2998 	if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
2999 		if (c->idxmsk64 & (1U << 2))
3000 			return &counter2_constraint;
3001 		return &emptyconstraint;
3002 	}
3003 
3004 	return c;
3005 }
3006 
3007 /*
3008  * Broadwell:
3009  *
3010  * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
3011  * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
3012  * the two to enforce a minimum period of 128 (the smallest value that has bits
3013  * 0-5 cleared and >= 100).
3014  *
3015  * Because of how the code in x86_perf_event_set_period() works, the truncation
3016  * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
3017  * to make up for the 'lost' events due to carrying the 'error' in period_left.
3018  *
3019  * Therefore the effective (average) period matches the requested period,
3020  * despite coarser hardware granularity.
3021  */
3022 static unsigned bdw_limit_period(struct perf_event *event, unsigned left)
3023 {
3024 	if ((event->hw.config & INTEL_ARCH_EVENT_MASK) ==
3025 			X86_CONFIG(.event=0xc0, .umask=0x01)) {
3026 		if (left < 128)
3027 			left = 128;
3028 		left &= ~0x3fu;
3029 	}
3030 	return left;
3031 }
3032 
3033 PMU_FORMAT_ATTR(event,	"config:0-7"	);
3034 PMU_FORMAT_ATTR(umask,	"config:8-15"	);
3035 PMU_FORMAT_ATTR(edge,	"config:18"	);
3036 PMU_FORMAT_ATTR(pc,	"config:19"	);
3037 PMU_FORMAT_ATTR(any,	"config:21"	); /* v3 + */
3038 PMU_FORMAT_ATTR(inv,	"config:23"	);
3039 PMU_FORMAT_ATTR(cmask,	"config:24-31"	);
3040 PMU_FORMAT_ATTR(in_tx,  "config:32");
3041 PMU_FORMAT_ATTR(in_tx_cp, "config:33");
3042 
3043 static struct attribute *intel_arch_formats_attr[] = {
3044 	&format_attr_event.attr,
3045 	&format_attr_umask.attr,
3046 	&format_attr_edge.attr,
3047 	&format_attr_pc.attr,
3048 	&format_attr_inv.attr,
3049 	&format_attr_cmask.attr,
3050 	NULL,
3051 };
3052 
3053 ssize_t intel_event_sysfs_show(char *page, u64 config)
3054 {
3055 	u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
3056 
3057 	return x86_event_sysfs_show(page, config, event);
3058 }
3059 
3060 struct intel_shared_regs *allocate_shared_regs(int cpu)
3061 {
3062 	struct intel_shared_regs *regs;
3063 	int i;
3064 
3065 	regs = kzalloc_node(sizeof(struct intel_shared_regs),
3066 			    GFP_KERNEL, cpu_to_node(cpu));
3067 	if (regs) {
3068 		/*
3069 		 * initialize the locks to keep lockdep happy
3070 		 */
3071 		for (i = 0; i < EXTRA_REG_MAX; i++)
3072 			raw_spin_lock_init(&regs->regs[i].lock);
3073 
3074 		regs->core_id = -1;
3075 	}
3076 	return regs;
3077 }
3078 
3079 static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
3080 {
3081 	struct intel_excl_cntrs *c;
3082 
3083 	c = kzalloc_node(sizeof(struct intel_excl_cntrs),
3084 			 GFP_KERNEL, cpu_to_node(cpu));
3085 	if (c) {
3086 		raw_spin_lock_init(&c->lock);
3087 		c->core_id = -1;
3088 	}
3089 	return c;
3090 }
3091 
3092 static int intel_pmu_cpu_prepare(int cpu)
3093 {
3094 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
3095 
3096 	if (x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
3097 		cpuc->shared_regs = allocate_shared_regs(cpu);
3098 		if (!cpuc->shared_regs)
3099 			goto err;
3100 	}
3101 
3102 	if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
3103 		size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);
3104 
3105 		cpuc->constraint_list = kzalloc(sz, GFP_KERNEL);
3106 		if (!cpuc->constraint_list)
3107 			goto err_shared_regs;
3108 
3109 		cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
3110 		if (!cpuc->excl_cntrs)
3111 			goto err_constraint_list;
3112 
3113 		cpuc->excl_thread_id = 0;
3114 	}
3115 
3116 	return 0;
3117 
3118 err_constraint_list:
3119 	kfree(cpuc->constraint_list);
3120 	cpuc->constraint_list = NULL;
3121 
3122 err_shared_regs:
3123 	kfree(cpuc->shared_regs);
3124 	cpuc->shared_regs = NULL;
3125 
3126 err:
3127 	return -ENOMEM;
3128 }
3129 
3130 static void intel_pmu_cpu_starting(int cpu)
3131 {
3132 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
3133 	int core_id = topology_core_id(cpu);
3134 	int i;
3135 
3136 	init_debug_store_on_cpu(cpu);
3137 	/*
3138 	 * Deal with CPUs that don't clear their LBRs on power-up.
3139 	 */
3140 	intel_pmu_lbr_reset();
3141 
3142 	cpuc->lbr_sel = NULL;
3143 
3144 	if (!cpuc->shared_regs)
3145 		return;
3146 
3147 	if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
3148 		for_each_cpu(i, topology_sibling_cpumask(cpu)) {
3149 			struct intel_shared_regs *pc;
3150 
3151 			pc = per_cpu(cpu_hw_events, i).shared_regs;
3152 			if (pc && pc->core_id == core_id) {
3153 				cpuc->kfree_on_online[0] = cpuc->shared_regs;
3154 				cpuc->shared_regs = pc;
3155 				break;
3156 			}
3157 		}
3158 		cpuc->shared_regs->core_id = core_id;
3159 		cpuc->shared_regs->refcnt++;
3160 	}
3161 
3162 	if (x86_pmu.lbr_sel_map)
3163 		cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
3164 
3165 	if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
3166 		for_each_cpu(i, topology_sibling_cpumask(cpu)) {
3167 			struct intel_excl_cntrs *c;
3168 
3169 			c = per_cpu(cpu_hw_events, i).excl_cntrs;
3170 			if (c && c->core_id == core_id) {
3171 				cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
3172 				cpuc->excl_cntrs = c;
3173 				cpuc->excl_thread_id = 1;
3174 				break;
3175 			}
3176 		}
3177 		cpuc->excl_cntrs->core_id = core_id;
3178 		cpuc->excl_cntrs->refcnt++;
3179 	}
3180 }
3181 
3182 static void free_excl_cntrs(int cpu)
3183 {
3184 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
3185 	struct intel_excl_cntrs *c;
3186 
3187 	c = cpuc->excl_cntrs;
3188 	if (c) {
3189 		if (c->core_id == -1 || --c->refcnt == 0)
3190 			kfree(c);
3191 		cpuc->excl_cntrs = NULL;
3192 		kfree(cpuc->constraint_list);
3193 		cpuc->constraint_list = NULL;
3194 	}
3195 }
3196 
3197 static void intel_pmu_cpu_dying(int cpu)
3198 {
3199 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
3200 	struct intel_shared_regs *pc;
3201 
3202 	pc = cpuc->shared_regs;
3203 	if (pc) {
3204 		if (pc->core_id == -1 || --pc->refcnt == 0)
3205 			kfree(pc);
3206 		cpuc->shared_regs = NULL;
3207 	}
3208 
3209 	free_excl_cntrs(cpu);
3210 
3211 	fini_debug_store_on_cpu(cpu);
3212 }
3213 
3214 static void intel_pmu_sched_task(struct perf_event_context *ctx,
3215 				 bool sched_in)
3216 {
3217 	if (x86_pmu.pebs_active)
3218 		intel_pmu_pebs_sched_task(ctx, sched_in);
3219 	if (x86_pmu.lbr_nr)
3220 		intel_pmu_lbr_sched_task(ctx, sched_in);
3221 }
3222 
3223 PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
3224 
3225 PMU_FORMAT_ATTR(ldlat, "config1:0-15");
3226 
3227 PMU_FORMAT_ATTR(frontend, "config1:0-23");
3228 
3229 static struct attribute *intel_arch3_formats_attr[] = {
3230 	&format_attr_event.attr,
3231 	&format_attr_umask.attr,
3232 	&format_attr_edge.attr,
3233 	&format_attr_pc.attr,
3234 	&format_attr_any.attr,
3235 	&format_attr_inv.attr,
3236 	&format_attr_cmask.attr,
3237 	&format_attr_in_tx.attr,
3238 	&format_attr_in_tx_cp.attr,
3239 
3240 	&format_attr_offcore_rsp.attr, /* XXX do NHM/WSM + SNB breakout */
3241 	&format_attr_ldlat.attr, /* PEBS load latency */
3242 	NULL,
3243 };
3244 
3245 static struct attribute *skl_format_attr[] = {
3246 	&format_attr_frontend.attr,
3247 	NULL,
3248 };
3249 
3250 static __initconst const struct x86_pmu core_pmu = {
3251 	.name			= "core",
3252 	.handle_irq		= x86_pmu_handle_irq,
3253 	.disable_all		= x86_pmu_disable_all,
3254 	.enable_all		= core_pmu_enable_all,
3255 	.enable			= core_pmu_enable_event,
3256 	.disable		= x86_pmu_disable_event,
3257 	.hw_config		= x86_pmu_hw_config,
3258 	.schedule_events	= x86_schedule_events,
3259 	.eventsel		= MSR_ARCH_PERFMON_EVENTSEL0,
3260 	.perfctr		= MSR_ARCH_PERFMON_PERFCTR0,
3261 	.event_map		= intel_pmu_event_map,
3262 	.max_events		= ARRAY_SIZE(intel_perfmon_event_map),
3263 	.apic			= 1,
3264 	.free_running_flags	= PEBS_FREERUNNING_FLAGS,
3265 
3266 	/*
3267 	 * Intel PMCs cannot be accessed sanely above 32-bit width,
3268 	 * so we install an artificial 1<<31 period regardless of
3269 	 * the generic event period:
3270 	 */
3271 	.max_period		= (1ULL<<31) - 1,
3272 	.get_event_constraints	= intel_get_event_constraints,
3273 	.put_event_constraints	= intel_put_event_constraints,
3274 	.event_constraints	= intel_core_event_constraints,
3275 	.guest_get_msrs		= core_guest_get_msrs,
3276 	.format_attrs		= intel_arch_formats_attr,
3277 	.events_sysfs_show	= intel_event_sysfs_show,
3278 
3279 	/*
3280 	 * Virtual (or funny metal) CPU can define x86_pmu.extra_regs
3281 	 * together with PMU version 1 and thus be using core_pmu with
3282 	 * shared_regs. We need following callbacks here to allocate
3283 	 * it properly.
3284 	 */
3285 	.cpu_prepare		= intel_pmu_cpu_prepare,
3286 	.cpu_starting		= intel_pmu_cpu_starting,
3287 	.cpu_dying		= intel_pmu_cpu_dying,
3288 };
3289 
3290 static __initconst const struct x86_pmu intel_pmu = {
3291 	.name			= "Intel",
3292 	.handle_irq		= intel_pmu_handle_irq,
3293 	.disable_all		= intel_pmu_disable_all,
3294 	.enable_all		= intel_pmu_enable_all,
3295 	.enable			= intel_pmu_enable_event,
3296 	.disable		= intel_pmu_disable_event,
3297 	.add			= intel_pmu_add_event,
3298 	.del			= intel_pmu_del_event,
3299 	.hw_config		= intel_pmu_hw_config,
3300 	.schedule_events	= x86_schedule_events,
3301 	.eventsel		= MSR_ARCH_PERFMON_EVENTSEL0,
3302 	.perfctr		= MSR_ARCH_PERFMON_PERFCTR0,
3303 	.event_map		= intel_pmu_event_map,
3304 	.max_events		= ARRAY_SIZE(intel_perfmon_event_map),
3305 	.apic			= 1,
3306 	.free_running_flags	= PEBS_FREERUNNING_FLAGS,
3307 	/*
3308 	 * Intel PMCs cannot be accessed sanely above 32 bit width,
3309 	 * so we install an artificial 1<<31 period regardless of
3310 	 * the generic event period:
3311 	 */
3312 	.max_period		= (1ULL << 31) - 1,
3313 	.get_event_constraints	= intel_get_event_constraints,
3314 	.put_event_constraints	= intel_put_event_constraints,
3315 	.pebs_aliases		= intel_pebs_aliases_core2,
3316 
3317 	.format_attrs		= intel_arch3_formats_attr,
3318 	.events_sysfs_show	= intel_event_sysfs_show,
3319 
3320 	.cpu_prepare		= intel_pmu_cpu_prepare,
3321 	.cpu_starting		= intel_pmu_cpu_starting,
3322 	.cpu_dying		= intel_pmu_cpu_dying,
3323 	.guest_get_msrs		= intel_guest_get_msrs,
3324 	.sched_task		= intel_pmu_sched_task,
3325 };
3326 
3327 static __init void intel_clovertown_quirk(void)
3328 {
3329 	/*
3330 	 * PEBS is unreliable due to:
3331 	 *
3332 	 *   AJ67  - PEBS may experience CPL leaks
3333 	 *   AJ68  - PEBS PMI may be delayed by one event
3334 	 *   AJ69  - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
3335 	 *   AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
3336 	 *
3337 	 * AJ67 could be worked around by restricting the OS/USR flags.
3338 	 * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
3339 	 *
3340 	 * AJ106 could possibly be worked around by not allowing LBR
3341 	 *       usage from PEBS, including the fixup.
3342 	 * AJ68  could possibly be worked around by always programming
3343 	 *	 a pebs_event_reset[0] value and coping with the lost events.
3344 	 *
3345 	 * But taken together it might just make sense to not enable PEBS on
3346 	 * these chips.
3347 	 */
3348 	pr_warn("PEBS disabled due to CPU errata\n");
3349 	x86_pmu.pebs = 0;
3350 	x86_pmu.pebs_constraints = NULL;
3351 }
3352 
3353 static int intel_snb_pebs_broken(int cpu)
3354 {
3355 	u32 rev = UINT_MAX; /* default to broken for unknown models */
3356 
3357 	switch (cpu_data(cpu).x86_model) {
3358 	case INTEL_FAM6_SANDYBRIDGE:
3359 		rev = 0x28;
3360 		break;
3361 
3362 	case INTEL_FAM6_SANDYBRIDGE_X:
3363 		switch (cpu_data(cpu).x86_mask) {
3364 		case 6: rev = 0x618; break;
3365 		case 7: rev = 0x70c; break;
3366 		}
3367 	}
3368 
3369 	return (cpu_data(cpu).microcode < rev);
3370 }
3371 
3372 static void intel_snb_check_microcode(void)
3373 {
3374 	int pebs_broken = 0;
3375 	int cpu;
3376 
3377 	get_online_cpus();
3378 	for_each_online_cpu(cpu) {
3379 		if ((pebs_broken = intel_snb_pebs_broken(cpu)))
3380 			break;
3381 	}
3382 	put_online_cpus();
3383 
3384 	if (pebs_broken == x86_pmu.pebs_broken)
3385 		return;
3386 
3387 	/*
3388 	 * Serialized by the microcode lock..
3389 	 */
3390 	if (x86_pmu.pebs_broken) {
3391 		pr_info("PEBS enabled due to microcode update\n");
3392 		x86_pmu.pebs_broken = 0;
3393 	} else {
3394 		pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
3395 		x86_pmu.pebs_broken = 1;
3396 	}
3397 }
3398 
3399 static bool is_lbr_from(unsigned long msr)
3400 {
3401 	unsigned long lbr_from_nr = x86_pmu.lbr_from + x86_pmu.lbr_nr;
3402 
3403 	return x86_pmu.lbr_from <= msr && msr < lbr_from_nr;
3404 }
3405 
3406 /*
3407  * Under certain circumstances, access certain MSR may cause #GP.
3408  * The function tests if the input MSR can be safely accessed.
3409  */
3410 static bool check_msr(unsigned long msr, u64 mask)
3411 {
3412 	u64 val_old, val_new, val_tmp;
3413 
3414 	/*
3415 	 * Read the current value, change it and read it back to see if it
3416 	 * matches, this is needed to detect certain hardware emulators
3417 	 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
3418 	 */
3419 	if (rdmsrl_safe(msr, &val_old))
3420 		return false;
3421 
3422 	/*
3423 	 * Only change the bits which can be updated by wrmsrl.
3424 	 */
3425 	val_tmp = val_old ^ mask;
3426 
3427 	if (is_lbr_from(msr))
3428 		val_tmp = lbr_from_signext_quirk_wr(val_tmp);
3429 
3430 	if (wrmsrl_safe(msr, val_tmp) ||
3431 	    rdmsrl_safe(msr, &val_new))
3432 		return false;
3433 
3434 	/*
3435 	 * Quirk only affects validation in wrmsr(), so wrmsrl()'s value
3436 	 * should equal rdmsrl()'s even with the quirk.
3437 	 */
3438 	if (val_new != val_tmp)
3439 		return false;
3440 
3441 	if (is_lbr_from(msr))
3442 		val_old = lbr_from_signext_quirk_wr(val_old);
3443 
3444 	/* Here it's sure that the MSR can be safely accessed.
3445 	 * Restore the old value and return.
3446 	 */
3447 	wrmsrl(msr, val_old);
3448 
3449 	return true;
3450 }
3451 
3452 static __init void intel_sandybridge_quirk(void)
3453 {
3454 	x86_pmu.check_microcode = intel_snb_check_microcode;
3455 	intel_snb_check_microcode();
3456 }
3457 
3458 static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
3459 	{ PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
3460 	{ PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
3461 	{ PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
3462 	{ PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
3463 	{ PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
3464 	{ PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
3465 	{ PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
3466 };
3467 
3468 static __init void intel_arch_events_quirk(void)
3469 {
3470 	int bit;
3471 
3472 	/* disable event that reported as not presend by cpuid */
3473 	for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
3474 		intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
3475 		pr_warn("CPUID marked event: \'%s\' unavailable\n",
3476 			intel_arch_events_map[bit].name);
3477 	}
3478 }
3479 
3480 static __init void intel_nehalem_quirk(void)
3481 {
3482 	union cpuid10_ebx ebx;
3483 
3484 	ebx.full = x86_pmu.events_maskl;
3485 	if (ebx.split.no_branch_misses_retired) {
3486 		/*
3487 		 * Erratum AAJ80 detected, we work it around by using
3488 		 * the BR_MISP_EXEC.ANY event. This will over-count
3489 		 * branch-misses, but it's still much better than the
3490 		 * architectural event which is often completely bogus:
3491 		 */
3492 		intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
3493 		ebx.split.no_branch_misses_retired = 0;
3494 		x86_pmu.events_maskl = ebx.full;
3495 		pr_info("CPU erratum AAJ80 worked around\n");
3496 	}
3497 }
3498 
3499 /*
3500  * enable software workaround for errata:
3501  * SNB: BJ122
3502  * IVB: BV98
3503  * HSW: HSD29
3504  *
3505  * Only needed when HT is enabled. However detecting
3506  * if HT is enabled is difficult (model specific). So instead,
3507  * we enable the workaround in the early boot, and verify if
3508  * it is needed in a later initcall phase once we have valid
3509  * topology information to check if HT is actually enabled
3510  */
3511 static __init void intel_ht_bug(void)
3512 {
3513 	x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED;
3514 
3515 	x86_pmu.start_scheduling = intel_start_scheduling;
3516 	x86_pmu.commit_scheduling = intel_commit_scheduling;
3517 	x86_pmu.stop_scheduling = intel_stop_scheduling;
3518 }
3519 
3520 EVENT_ATTR_STR(mem-loads,	mem_ld_hsw,	"event=0xcd,umask=0x1,ldlat=3");
3521 EVENT_ATTR_STR(mem-stores,	mem_st_hsw,	"event=0xd0,umask=0x82")
3522 
3523 /* Haswell special events */
3524 EVENT_ATTR_STR(tx-start,	tx_start,	"event=0xc9,umask=0x1");
3525 EVENT_ATTR_STR(tx-commit,	tx_commit,	"event=0xc9,umask=0x2");
3526 EVENT_ATTR_STR(tx-abort,	tx_abort,	"event=0xc9,umask=0x4");
3527 EVENT_ATTR_STR(tx-capacity,	tx_capacity,	"event=0x54,umask=0x2");
3528 EVENT_ATTR_STR(tx-conflict,	tx_conflict,	"event=0x54,umask=0x1");
3529 EVENT_ATTR_STR(el-start,	el_start,	"event=0xc8,umask=0x1");
3530 EVENT_ATTR_STR(el-commit,	el_commit,	"event=0xc8,umask=0x2");
3531 EVENT_ATTR_STR(el-abort,	el_abort,	"event=0xc8,umask=0x4");
3532 EVENT_ATTR_STR(el-capacity,	el_capacity,	"event=0x54,umask=0x2");
3533 EVENT_ATTR_STR(el-conflict,	el_conflict,	"event=0x54,umask=0x1");
3534 EVENT_ATTR_STR(cycles-t,	cycles_t,	"event=0x3c,in_tx=1");
3535 EVENT_ATTR_STR(cycles-ct,	cycles_ct,	"event=0x3c,in_tx=1,in_tx_cp=1");
3536 
3537 static struct attribute *hsw_events_attrs[] = {
3538 	EVENT_PTR(tx_start),
3539 	EVENT_PTR(tx_commit),
3540 	EVENT_PTR(tx_abort),
3541 	EVENT_PTR(tx_capacity),
3542 	EVENT_PTR(tx_conflict),
3543 	EVENT_PTR(el_start),
3544 	EVENT_PTR(el_commit),
3545 	EVENT_PTR(el_abort),
3546 	EVENT_PTR(el_capacity),
3547 	EVENT_PTR(el_conflict),
3548 	EVENT_PTR(cycles_t),
3549 	EVENT_PTR(cycles_ct),
3550 	EVENT_PTR(mem_ld_hsw),
3551 	EVENT_PTR(mem_st_hsw),
3552 	EVENT_PTR(td_slots_issued),
3553 	EVENT_PTR(td_slots_retired),
3554 	EVENT_PTR(td_fetch_bubbles),
3555 	EVENT_PTR(td_total_slots),
3556 	EVENT_PTR(td_total_slots_scale),
3557 	EVENT_PTR(td_recovery_bubbles),
3558 	EVENT_PTR(td_recovery_bubbles_scale),
3559 	NULL
3560 };
3561 
3562 __init int intel_pmu_init(void)
3563 {
3564 	union cpuid10_edx edx;
3565 	union cpuid10_eax eax;
3566 	union cpuid10_ebx ebx;
3567 	struct event_constraint *c;
3568 	unsigned int unused;
3569 	struct extra_reg *er;
3570 	int version, i;
3571 
3572 	if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
3573 		switch (boot_cpu_data.x86) {
3574 		case 0x6:
3575 			return p6_pmu_init();
3576 		case 0xb:
3577 			return knc_pmu_init();
3578 		case 0xf:
3579 			return p4_pmu_init();
3580 		}
3581 		return -ENODEV;
3582 	}
3583 
3584 	/*
3585 	 * Check whether the Architectural PerfMon supports
3586 	 * Branch Misses Retired hw_event or not.
3587 	 */
3588 	cpuid(10, &eax.full, &ebx.full, &unused, &edx.full);
3589 	if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
3590 		return -ENODEV;
3591 
3592 	version = eax.split.version_id;
3593 	if (version < 2)
3594 		x86_pmu = core_pmu;
3595 	else
3596 		x86_pmu = intel_pmu;
3597 
3598 	x86_pmu.version			= version;
3599 	x86_pmu.num_counters		= eax.split.num_counters;
3600 	x86_pmu.cntval_bits		= eax.split.bit_width;
3601 	x86_pmu.cntval_mask		= (1ULL << eax.split.bit_width) - 1;
3602 
3603 	x86_pmu.events_maskl		= ebx.full;
3604 	x86_pmu.events_mask_len		= eax.split.mask_length;
3605 
3606 	x86_pmu.max_pebs_events		= min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
3607 
3608 	/*
3609 	 * Quirk: v2 perfmon does not report fixed-purpose events, so
3610 	 * assume at least 3 events:
3611 	 */
3612 	if (version > 1)
3613 		x86_pmu.num_counters_fixed = max((int)edx.split.num_counters_fixed, 3);
3614 
3615 	if (boot_cpu_has(X86_FEATURE_PDCM)) {
3616 		u64 capabilities;
3617 
3618 		rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
3619 		x86_pmu.intel_cap.capabilities = capabilities;
3620 	}
3621 
3622 	intel_ds_init();
3623 
3624 	x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
3625 
3626 	/*
3627 	 * Install the hw-cache-events table:
3628 	 */
3629 	switch (boot_cpu_data.x86_model) {
3630 	case INTEL_FAM6_CORE_YONAH:
3631 		pr_cont("Core events, ");
3632 		break;
3633 
3634 	case INTEL_FAM6_CORE2_MEROM:
3635 		x86_add_quirk(intel_clovertown_quirk);
3636 	case INTEL_FAM6_CORE2_MEROM_L:
3637 	case INTEL_FAM6_CORE2_PENRYN:
3638 	case INTEL_FAM6_CORE2_DUNNINGTON:
3639 		memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
3640 		       sizeof(hw_cache_event_ids));
3641 
3642 		intel_pmu_lbr_init_core();
3643 
3644 		x86_pmu.event_constraints = intel_core2_event_constraints;
3645 		x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
3646 		pr_cont("Core2 events, ");
3647 		break;
3648 
3649 	case INTEL_FAM6_NEHALEM:
3650 	case INTEL_FAM6_NEHALEM_EP:
3651 	case INTEL_FAM6_NEHALEM_EX:
3652 		memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
3653 		       sizeof(hw_cache_event_ids));
3654 		memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
3655 		       sizeof(hw_cache_extra_regs));
3656 
3657 		intel_pmu_lbr_init_nhm();
3658 
3659 		x86_pmu.event_constraints = intel_nehalem_event_constraints;
3660 		x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
3661 		x86_pmu.enable_all = intel_pmu_nhm_enable_all;
3662 		x86_pmu.extra_regs = intel_nehalem_extra_regs;
3663 
3664 		x86_pmu.cpu_events = nhm_events_attrs;
3665 
3666 		/* UOPS_ISSUED.STALLED_CYCLES */
3667 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3668 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
3669 		/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
3670 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
3671 			X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
3672 
3673 		intel_pmu_pebs_data_source_nhm();
3674 		x86_add_quirk(intel_nehalem_quirk);
3675 
3676 		pr_cont("Nehalem events, ");
3677 		break;
3678 
3679 	case INTEL_FAM6_ATOM_PINEVIEW:
3680 	case INTEL_FAM6_ATOM_LINCROFT:
3681 	case INTEL_FAM6_ATOM_PENWELL:
3682 	case INTEL_FAM6_ATOM_CLOVERVIEW:
3683 	case INTEL_FAM6_ATOM_CEDARVIEW:
3684 		memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
3685 		       sizeof(hw_cache_event_ids));
3686 
3687 		intel_pmu_lbr_init_atom();
3688 
3689 		x86_pmu.event_constraints = intel_gen_event_constraints;
3690 		x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
3691 		x86_pmu.pebs_aliases = intel_pebs_aliases_core2;
3692 		pr_cont("Atom events, ");
3693 		break;
3694 
3695 	case INTEL_FAM6_ATOM_SILVERMONT1:
3696 	case INTEL_FAM6_ATOM_SILVERMONT2:
3697 	case INTEL_FAM6_ATOM_AIRMONT:
3698 		memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
3699 			sizeof(hw_cache_event_ids));
3700 		memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
3701 		       sizeof(hw_cache_extra_regs));
3702 
3703 		intel_pmu_lbr_init_slm();
3704 
3705 		x86_pmu.event_constraints = intel_slm_event_constraints;
3706 		x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
3707 		x86_pmu.extra_regs = intel_slm_extra_regs;
3708 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3709 		x86_pmu.cpu_events = slm_events_attrs;
3710 		pr_cont("Silvermont events, ");
3711 		break;
3712 
3713 	case INTEL_FAM6_ATOM_GOLDMONT:
3714 	case INTEL_FAM6_ATOM_DENVERTON:
3715 		memcpy(hw_cache_event_ids, glm_hw_cache_event_ids,
3716 		       sizeof(hw_cache_event_ids));
3717 		memcpy(hw_cache_extra_regs, glm_hw_cache_extra_regs,
3718 		       sizeof(hw_cache_extra_regs));
3719 
3720 		intel_pmu_lbr_init_skl();
3721 
3722 		x86_pmu.event_constraints = intel_slm_event_constraints;
3723 		x86_pmu.pebs_constraints = intel_glm_pebs_event_constraints;
3724 		x86_pmu.extra_regs = intel_glm_extra_regs;
3725 		/*
3726 		 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
3727 		 * for precise cycles.
3728 		 * :pp is identical to :ppp
3729 		 */
3730 		x86_pmu.pebs_aliases = NULL;
3731 		x86_pmu.pebs_prec_dist = true;
3732 		x86_pmu.lbr_pt_coexist = true;
3733 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3734 		pr_cont("Goldmont events, ");
3735 		break;
3736 
3737 	case INTEL_FAM6_WESTMERE:
3738 	case INTEL_FAM6_WESTMERE_EP:
3739 	case INTEL_FAM6_WESTMERE_EX:
3740 		memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
3741 		       sizeof(hw_cache_event_ids));
3742 		memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
3743 		       sizeof(hw_cache_extra_regs));
3744 
3745 		intel_pmu_lbr_init_nhm();
3746 
3747 		x86_pmu.event_constraints = intel_westmere_event_constraints;
3748 		x86_pmu.enable_all = intel_pmu_nhm_enable_all;
3749 		x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
3750 		x86_pmu.extra_regs = intel_westmere_extra_regs;
3751 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3752 
3753 		x86_pmu.cpu_events = nhm_events_attrs;
3754 
3755 		/* UOPS_ISSUED.STALLED_CYCLES */
3756 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3757 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
3758 		/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
3759 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
3760 			X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
3761 
3762 		intel_pmu_pebs_data_source_nhm();
3763 		pr_cont("Westmere events, ");
3764 		break;
3765 
3766 	case INTEL_FAM6_SANDYBRIDGE:
3767 	case INTEL_FAM6_SANDYBRIDGE_X:
3768 		x86_add_quirk(intel_sandybridge_quirk);
3769 		x86_add_quirk(intel_ht_bug);
3770 		memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
3771 		       sizeof(hw_cache_event_ids));
3772 		memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
3773 		       sizeof(hw_cache_extra_regs));
3774 
3775 		intel_pmu_lbr_init_snb();
3776 
3777 		x86_pmu.event_constraints = intel_snb_event_constraints;
3778 		x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
3779 		x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
3780 		if (boot_cpu_data.x86_model == INTEL_FAM6_SANDYBRIDGE_X)
3781 			x86_pmu.extra_regs = intel_snbep_extra_regs;
3782 		else
3783 			x86_pmu.extra_regs = intel_snb_extra_regs;
3784 
3785 
3786 		/* all extra regs are per-cpu when HT is on */
3787 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3788 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3789 
3790 		x86_pmu.cpu_events = snb_events_attrs;
3791 
3792 		/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
3793 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3794 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
3795 		/* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
3796 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
3797 			X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
3798 
3799 		pr_cont("SandyBridge events, ");
3800 		break;
3801 
3802 	case INTEL_FAM6_IVYBRIDGE:
3803 	case INTEL_FAM6_IVYBRIDGE_X:
3804 		x86_add_quirk(intel_ht_bug);
3805 		memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
3806 		       sizeof(hw_cache_event_ids));
3807 		/* dTLB-load-misses on IVB is different than SNB */
3808 		hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
3809 
3810 		memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
3811 		       sizeof(hw_cache_extra_regs));
3812 
3813 		intel_pmu_lbr_init_snb();
3814 
3815 		x86_pmu.event_constraints = intel_ivb_event_constraints;
3816 		x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
3817 		x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
3818 		x86_pmu.pebs_prec_dist = true;
3819 		if (boot_cpu_data.x86_model == INTEL_FAM6_IVYBRIDGE_X)
3820 			x86_pmu.extra_regs = intel_snbep_extra_regs;
3821 		else
3822 			x86_pmu.extra_regs = intel_snb_extra_regs;
3823 		/* all extra regs are per-cpu when HT is on */
3824 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3825 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3826 
3827 		x86_pmu.cpu_events = snb_events_attrs;
3828 
3829 		/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
3830 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3831 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
3832 
3833 		pr_cont("IvyBridge events, ");
3834 		break;
3835 
3836 
3837 	case INTEL_FAM6_HASWELL_CORE:
3838 	case INTEL_FAM6_HASWELL_X:
3839 	case INTEL_FAM6_HASWELL_ULT:
3840 	case INTEL_FAM6_HASWELL_GT3E:
3841 		x86_add_quirk(intel_ht_bug);
3842 		x86_pmu.late_ack = true;
3843 		memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
3844 		memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
3845 
3846 		intel_pmu_lbr_init_hsw();
3847 
3848 		x86_pmu.event_constraints = intel_hsw_event_constraints;
3849 		x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
3850 		x86_pmu.extra_regs = intel_snbep_extra_regs;
3851 		x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
3852 		x86_pmu.pebs_prec_dist = true;
3853 		/* all extra regs are per-cpu when HT is on */
3854 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3855 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3856 
3857 		x86_pmu.hw_config = hsw_hw_config;
3858 		x86_pmu.get_event_constraints = hsw_get_event_constraints;
3859 		x86_pmu.cpu_events = hsw_events_attrs;
3860 		x86_pmu.lbr_double_abort = true;
3861 		pr_cont("Haswell events, ");
3862 		break;
3863 
3864 	case INTEL_FAM6_BROADWELL_CORE:
3865 	case INTEL_FAM6_BROADWELL_XEON_D:
3866 	case INTEL_FAM6_BROADWELL_GT3E:
3867 	case INTEL_FAM6_BROADWELL_X:
3868 		x86_pmu.late_ack = true;
3869 		memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
3870 		memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
3871 
3872 		/* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
3873 		hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
3874 									 BDW_L3_MISS|HSW_SNOOP_DRAM;
3875 		hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
3876 									  HSW_SNOOP_DRAM;
3877 		hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
3878 									     BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
3879 		hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
3880 									      BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
3881 
3882 		intel_pmu_lbr_init_hsw();
3883 
3884 		x86_pmu.event_constraints = intel_bdw_event_constraints;
3885 		x86_pmu.pebs_constraints = intel_bdw_pebs_event_constraints;
3886 		x86_pmu.extra_regs = intel_snbep_extra_regs;
3887 		x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
3888 		x86_pmu.pebs_prec_dist = true;
3889 		/* all extra regs are per-cpu when HT is on */
3890 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3891 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3892 
3893 		x86_pmu.hw_config = hsw_hw_config;
3894 		x86_pmu.get_event_constraints = hsw_get_event_constraints;
3895 		x86_pmu.cpu_events = hsw_events_attrs;
3896 		x86_pmu.limit_period = bdw_limit_period;
3897 		pr_cont("Broadwell events, ");
3898 		break;
3899 
3900 	case INTEL_FAM6_XEON_PHI_KNL:
3901 		memcpy(hw_cache_event_ids,
3902 		       slm_hw_cache_event_ids, sizeof(hw_cache_event_ids));
3903 		memcpy(hw_cache_extra_regs,
3904 		       knl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
3905 		intel_pmu_lbr_init_knl();
3906 
3907 		x86_pmu.event_constraints = intel_slm_event_constraints;
3908 		x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
3909 		x86_pmu.extra_regs = intel_knl_extra_regs;
3910 
3911 		/* all extra regs are per-cpu when HT is on */
3912 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3913 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3914 
3915 		pr_cont("Knights Landing events, ");
3916 		break;
3917 
3918 	case INTEL_FAM6_SKYLAKE_MOBILE:
3919 	case INTEL_FAM6_SKYLAKE_DESKTOP:
3920 	case INTEL_FAM6_SKYLAKE_X:
3921 	case INTEL_FAM6_KABYLAKE_MOBILE:
3922 	case INTEL_FAM6_KABYLAKE_DESKTOP:
3923 		x86_pmu.late_ack = true;
3924 		memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
3925 		memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
3926 		intel_pmu_lbr_init_skl();
3927 
3928 		/* INT_MISC.RECOVERY_CYCLES has umask 1 in Skylake */
3929 		event_attr_td_recovery_bubbles.event_str_noht =
3930 			"event=0xd,umask=0x1,cmask=1";
3931 		event_attr_td_recovery_bubbles.event_str_ht =
3932 			"event=0xd,umask=0x1,cmask=1,any=1";
3933 
3934 		x86_pmu.event_constraints = intel_skl_event_constraints;
3935 		x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints;
3936 		x86_pmu.extra_regs = intel_skl_extra_regs;
3937 		x86_pmu.pebs_aliases = intel_pebs_aliases_skl;
3938 		x86_pmu.pebs_prec_dist = true;
3939 		/* all extra regs are per-cpu when HT is on */
3940 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3941 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3942 
3943 		x86_pmu.hw_config = hsw_hw_config;
3944 		x86_pmu.get_event_constraints = hsw_get_event_constraints;
3945 		x86_pmu.format_attrs = merge_attr(intel_arch3_formats_attr,
3946 						  skl_format_attr);
3947 		WARN_ON(!x86_pmu.format_attrs);
3948 		x86_pmu.cpu_events = hsw_events_attrs;
3949 		pr_cont("Skylake events, ");
3950 		break;
3951 
3952 	default:
3953 		switch (x86_pmu.version) {
3954 		case 1:
3955 			x86_pmu.event_constraints = intel_v1_event_constraints;
3956 			pr_cont("generic architected perfmon v1, ");
3957 			break;
3958 		default:
3959 			/*
3960 			 * default constraints for v2 and up
3961 			 */
3962 			x86_pmu.event_constraints = intel_gen_event_constraints;
3963 			pr_cont("generic architected perfmon, ");
3964 			break;
3965 		}
3966 	}
3967 
3968 	if (x86_pmu.num_counters > INTEL_PMC_MAX_GENERIC) {
3969 		WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
3970 		     x86_pmu.num_counters, INTEL_PMC_MAX_GENERIC);
3971 		x86_pmu.num_counters = INTEL_PMC_MAX_GENERIC;
3972 	}
3973 	x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
3974 
3975 	if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED) {
3976 		WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
3977 		     x86_pmu.num_counters_fixed, INTEL_PMC_MAX_FIXED);
3978 		x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
3979 	}
3980 
3981 	x86_pmu.intel_ctrl |=
3982 		((1LL << x86_pmu.num_counters_fixed)-1) << INTEL_PMC_IDX_FIXED;
3983 
3984 	if (x86_pmu.event_constraints) {
3985 		/*
3986 		 * event on fixed counter2 (REF_CYCLES) only works on this
3987 		 * counter, so do not extend mask to generic counters
3988 		 */
3989 		for_each_event_constraint(c, x86_pmu.event_constraints) {
3990 			if (c->cmask == FIXED_EVENT_FLAGS
3991 			    && c->idxmsk64 != INTEL_PMC_MSK_FIXED_REF_CYCLES) {
3992 				c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
3993 			}
3994 			c->idxmsk64 &=
3995 				~(~0ULL << (INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed));
3996 			c->weight = hweight64(c->idxmsk64);
3997 		}
3998 	}
3999 
4000 	/*
4001 	 * Access LBR MSR may cause #GP under certain circumstances.
4002 	 * E.g. KVM doesn't support LBR MSR
4003 	 * Check all LBT MSR here.
4004 	 * Disable LBR access if any LBR MSRs can not be accessed.
4005 	 */
4006 	if (x86_pmu.lbr_nr && !check_msr(x86_pmu.lbr_tos, 0x3UL))
4007 		x86_pmu.lbr_nr = 0;
4008 	for (i = 0; i < x86_pmu.lbr_nr; i++) {
4009 		if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
4010 		      check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
4011 			x86_pmu.lbr_nr = 0;
4012 	}
4013 
4014 	if (x86_pmu.lbr_nr)
4015 		pr_cont("%d-deep LBR, ", x86_pmu.lbr_nr);
4016 	/*
4017 	 * Access extra MSR may cause #GP under certain circumstances.
4018 	 * E.g. KVM doesn't support offcore event
4019 	 * Check all extra_regs here.
4020 	 */
4021 	if (x86_pmu.extra_regs) {
4022 		for (er = x86_pmu.extra_regs; er->msr; er++) {
4023 			er->extra_msr_access = check_msr(er->msr, 0x11UL);
4024 			/* Disable LBR select mapping */
4025 			if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
4026 				x86_pmu.lbr_sel_map = NULL;
4027 		}
4028 	}
4029 
4030 	/* Support full width counters using alternative MSR range */
4031 	if (x86_pmu.intel_cap.full_width_write) {
4032 		x86_pmu.max_period = x86_pmu.cntval_mask;
4033 		x86_pmu.perfctr = MSR_IA32_PMC0;
4034 		pr_cont("full-width counters, ");
4035 	}
4036 
4037 	return 0;
4038 }
4039 
4040 /*
4041  * HT bug: phase 2 init
4042  * Called once we have valid topology information to check
4043  * whether or not HT is enabled
4044  * If HT is off, then we disable the workaround
4045  */
4046 static __init int fixup_ht_bug(void)
4047 {
4048 	int c;
4049 	/*
4050 	 * problem not present on this CPU model, nothing to do
4051 	 */
4052 	if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED))
4053 		return 0;
4054 
4055 	if (topology_max_smt_threads() > 1) {
4056 		pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
4057 		return 0;
4058 	}
4059 
4060 	if (lockup_detector_suspend() != 0) {
4061 		pr_debug("failed to disable PMU erratum BJ122, BV98, HSD29 workaround\n");
4062 		return 0;
4063 	}
4064 
4065 	x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED);
4066 
4067 	x86_pmu.start_scheduling = NULL;
4068 	x86_pmu.commit_scheduling = NULL;
4069 	x86_pmu.stop_scheduling = NULL;
4070 
4071 	lockup_detector_resume();
4072 
4073 	get_online_cpus();
4074 
4075 	for_each_online_cpu(c) {
4076 		free_excl_cntrs(c);
4077 	}
4078 
4079 	put_online_cpus();
4080 	pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
4081 	return 0;
4082 }
4083 subsys_initcall(fixup_ht_bug)
4084