1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Per core/cpu state 4 * 5 * Used to coordinate shared registers between HT threads or 6 * among events on a single PMU. 7 */ 8 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/stddef.h> 12 #include <linux/types.h> 13 #include <linux/init.h> 14 #include <linux/slab.h> 15 #include <linux/export.h> 16 #include <linux/nmi.h> 17 #include <linux/kvm_host.h> 18 19 #include <asm/cpufeature.h> 20 #include <asm/hardirq.h> 21 #include <asm/intel-family.h> 22 #include <asm/intel_pt.h> 23 #include <asm/apic.h> 24 #include <asm/cpu_device_id.h> 25 26 #include "../perf_event.h" 27 28 /* 29 * Intel PerfMon, used on Core and later. 30 */ 31 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly = 32 { 33 [PERF_COUNT_HW_CPU_CYCLES] = 0x003c, 34 [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0, 35 [PERF_COUNT_HW_CACHE_REFERENCES] = 0x4f2e, 36 [PERF_COUNT_HW_CACHE_MISSES] = 0x412e, 37 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4, 38 [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5, 39 [PERF_COUNT_HW_BUS_CYCLES] = 0x013c, 40 [PERF_COUNT_HW_REF_CPU_CYCLES] = 0x0300, /* pseudo-encoding */ 41 }; 42 43 static struct event_constraint intel_core_event_constraints[] __read_mostly = 44 { 45 INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */ 46 INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */ 47 INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */ 48 INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */ 49 INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */ 50 INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */ 51 EVENT_CONSTRAINT_END 52 }; 53 54 static struct event_constraint intel_core2_event_constraints[] __read_mostly = 55 { 56 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ 57 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ 58 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ 59 INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */ 60 INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */ 61 INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */ 62 INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */ 63 INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */ 64 INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */ 65 INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */ 66 INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */ 67 INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */ 68 INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */ 69 EVENT_CONSTRAINT_END 70 }; 71 72 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly = 73 { 74 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ 75 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ 76 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ 77 INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */ 78 INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */ 79 INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */ 80 INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */ 81 INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */ 82 INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */ 83 INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */ 84 INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */ 85 EVENT_CONSTRAINT_END 86 }; 87 88 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly = 89 { 90 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */ 91 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0), 92 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b), 93 EVENT_EXTRA_END 94 }; 95 96 static struct event_constraint intel_westmere_event_constraints[] __read_mostly = 97 { 98 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ 99 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ 100 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ 101 INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */ 102 INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */ 103 INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */ 104 INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */ 105 EVENT_CONSTRAINT_END 106 }; 107 108 static struct event_constraint intel_snb_event_constraints[] __read_mostly = 109 { 110 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ 111 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ 112 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ 113 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */ 114 INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */ 115 INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */ 116 INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */ 117 INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */ 118 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */ 119 INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */ 120 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */ 121 INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */ 122 123 /* 124 * When HT is off these events can only run on the bottom 4 counters 125 * When HT is on, they are impacted by the HT bug and require EXCL access 126 */ 127 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */ 128 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */ 129 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */ 130 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */ 131 132 EVENT_CONSTRAINT_END 133 }; 134 135 static struct event_constraint intel_ivb_event_constraints[] __read_mostly = 136 { 137 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ 138 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ 139 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ 140 INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */ 141 INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMPTY */ 142 INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */ 143 INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */ 144 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */ 145 INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */ 146 INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */ 147 INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */ 148 INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */ 149 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */ 150 151 /* 152 * When HT is off these events can only run on the bottom 4 counters 153 * When HT is on, they are impacted by the HT bug and require EXCL access 154 */ 155 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */ 156 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */ 157 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */ 158 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */ 159 160 EVENT_CONSTRAINT_END 161 }; 162 163 static struct extra_reg intel_westmere_extra_regs[] __read_mostly = 164 { 165 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */ 166 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0), 167 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1), 168 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b), 169 EVENT_EXTRA_END 170 }; 171 172 static struct event_constraint intel_v1_event_constraints[] __read_mostly = 173 { 174 EVENT_CONSTRAINT_END 175 }; 176 177 static struct event_constraint intel_gen_event_constraints[] __read_mostly = 178 { 179 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ 180 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ 181 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ 182 EVENT_CONSTRAINT_END 183 }; 184 185 static struct event_constraint intel_v5_gen_event_constraints[] __read_mostly = 186 { 187 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ 188 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ 189 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ 190 FIXED_EVENT_CONSTRAINT(0x0400, 3), /* SLOTS */ 191 FIXED_EVENT_CONSTRAINT(0x0500, 4), 192 FIXED_EVENT_CONSTRAINT(0x0600, 5), 193 FIXED_EVENT_CONSTRAINT(0x0700, 6), 194 FIXED_EVENT_CONSTRAINT(0x0800, 7), 195 FIXED_EVENT_CONSTRAINT(0x0900, 8), 196 FIXED_EVENT_CONSTRAINT(0x0a00, 9), 197 FIXED_EVENT_CONSTRAINT(0x0b00, 10), 198 FIXED_EVENT_CONSTRAINT(0x0c00, 11), 199 FIXED_EVENT_CONSTRAINT(0x0d00, 12), 200 FIXED_EVENT_CONSTRAINT(0x0e00, 13), 201 FIXED_EVENT_CONSTRAINT(0x0f00, 14), 202 FIXED_EVENT_CONSTRAINT(0x1000, 15), 203 EVENT_CONSTRAINT_END 204 }; 205 206 static struct event_constraint intel_slm_event_constraints[] __read_mostly = 207 { 208 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ 209 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ 210 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */ 211 EVENT_CONSTRAINT_END 212 }; 213 214 static struct event_constraint intel_skl_event_constraints[] = { 215 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ 216 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ 217 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ 218 INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2), /* INST_RETIRED.PREC_DIST */ 219 220 /* 221 * when HT is off, these can only run on the bottom 4 counters 222 */ 223 INTEL_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_INST_RETIRED.* */ 224 INTEL_EVENT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */ 225 INTEL_EVENT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */ 226 INTEL_EVENT_CONSTRAINT(0xcd, 0xf), /* MEM_TRANS_RETIRED.* */ 227 INTEL_EVENT_CONSTRAINT(0xc6, 0xf), /* FRONTEND_RETIRED.* */ 228 229 EVENT_CONSTRAINT_END 230 }; 231 232 static struct extra_reg intel_knl_extra_regs[] __read_mostly = { 233 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x799ffbb6e7ull, RSP_0), 234 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x399ffbffe7ull, RSP_1), 235 EVENT_EXTRA_END 236 }; 237 238 static struct extra_reg intel_snb_extra_regs[] __read_mostly = { 239 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */ 240 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0), 241 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1), 242 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd), 243 EVENT_EXTRA_END 244 }; 245 246 static struct extra_reg intel_snbep_extra_regs[] __read_mostly = { 247 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */ 248 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0), 249 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1), 250 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd), 251 EVENT_EXTRA_END 252 }; 253 254 static struct extra_reg intel_skl_extra_regs[] __read_mostly = { 255 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0), 256 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1), 257 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd), 258 /* 259 * Note the low 8 bits eventsel code is not a continuous field, containing 260 * some #GPing bits. These are masked out. 261 */ 262 INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE), 263 EVENT_EXTRA_END 264 }; 265 266 static struct event_constraint intel_icl_event_constraints[] = { 267 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ 268 FIXED_EVENT_CONSTRAINT(0x01c0, 0), /* old INST_RETIRED.PREC_DIST */ 269 FIXED_EVENT_CONSTRAINT(0x0100, 0), /* INST_RETIRED.PREC_DIST */ 270 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ 271 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ 272 FIXED_EVENT_CONSTRAINT(0x0400, 3), /* SLOTS */ 273 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_RETIRING, 0), 274 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BAD_SPEC, 1), 275 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FE_BOUND, 2), 276 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BE_BOUND, 3), 277 INTEL_EVENT_CONSTRAINT_RANGE(0x03, 0x0a, 0xf), 278 INTEL_EVENT_CONSTRAINT_RANGE(0x1f, 0x28, 0xf), 279 INTEL_EVENT_CONSTRAINT(0x32, 0xf), /* SW_PREFETCH_ACCESS.* */ 280 INTEL_EVENT_CONSTRAINT_RANGE(0x48, 0x56, 0xf), 281 INTEL_EVENT_CONSTRAINT_RANGE(0x60, 0x8b, 0xf), 282 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xff), /* CYCLE_ACTIVITY.STALLS_TOTAL */ 283 INTEL_UEVENT_CONSTRAINT(0x10a3, 0xff), /* CYCLE_ACTIVITY.CYCLES_MEM_ANY */ 284 INTEL_UEVENT_CONSTRAINT(0x14a3, 0xff), /* CYCLE_ACTIVITY.STALLS_MEM_ANY */ 285 INTEL_EVENT_CONSTRAINT(0xa3, 0xf), /* CYCLE_ACTIVITY.* */ 286 INTEL_EVENT_CONSTRAINT_RANGE(0xa8, 0xb0, 0xf), 287 INTEL_EVENT_CONSTRAINT_RANGE(0xb7, 0xbd, 0xf), 288 INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xe6, 0xf), 289 INTEL_EVENT_CONSTRAINT(0xef, 0xf), 290 INTEL_EVENT_CONSTRAINT_RANGE(0xf0, 0xf4, 0xf), 291 EVENT_CONSTRAINT_END 292 }; 293 294 static struct extra_reg intel_icl_extra_regs[] __read_mostly = { 295 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffffbfffull, RSP_0), 296 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffffbfffull, RSP_1), 297 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd), 298 INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE), 299 EVENT_EXTRA_END 300 }; 301 302 static struct extra_reg intel_spr_extra_regs[] __read_mostly = { 303 INTEL_UEVENT_EXTRA_REG(0x012a, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0), 304 INTEL_UEVENT_EXTRA_REG(0x012b, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1), 305 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd), 306 INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff1f, FE), 307 INTEL_UEVENT_EXTRA_REG(0x40ad, MSR_PEBS_FRONTEND, 0x7, FE), 308 INTEL_UEVENT_EXTRA_REG(0x04c2, MSR_PEBS_FRONTEND, 0x8, FE), 309 EVENT_EXTRA_END 310 }; 311 312 static struct event_constraint intel_spr_event_constraints[] = { 313 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ 314 FIXED_EVENT_CONSTRAINT(0x0100, 0), /* INST_RETIRED.PREC_DIST */ 315 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ 316 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ 317 FIXED_EVENT_CONSTRAINT(0x0400, 3), /* SLOTS */ 318 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_RETIRING, 0), 319 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BAD_SPEC, 1), 320 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FE_BOUND, 2), 321 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BE_BOUND, 3), 322 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_HEAVY_OPS, 4), 323 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BR_MISPREDICT, 5), 324 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FETCH_LAT, 6), 325 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_MEM_BOUND, 7), 326 327 INTEL_EVENT_CONSTRAINT(0x2e, 0xff), 328 INTEL_EVENT_CONSTRAINT(0x3c, 0xff), 329 /* 330 * Generally event codes < 0x90 are restricted to counters 0-3. 331 * The 0x2E and 0x3C are exception, which has no restriction. 332 */ 333 INTEL_EVENT_CONSTRAINT_RANGE(0x01, 0x8f, 0xf), 334 335 INTEL_UEVENT_CONSTRAINT(0x01a3, 0xf), 336 INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), 337 INTEL_UEVENT_CONSTRAINT(0x08a3, 0xf), 338 INTEL_UEVENT_CONSTRAINT(0x04a4, 0x1), 339 INTEL_UEVENT_CONSTRAINT(0x08a4, 0x1), 340 INTEL_UEVENT_CONSTRAINT(0x02cd, 0x1), 341 INTEL_EVENT_CONSTRAINT(0xce, 0x1), 342 INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xdf, 0xf), 343 /* 344 * Generally event codes >= 0x90 are likely to have no restrictions. 345 * The exception are defined as above. 346 */ 347 INTEL_EVENT_CONSTRAINT_RANGE(0x90, 0xfe, 0xff), 348 349 EVENT_CONSTRAINT_END 350 }; 351 352 353 EVENT_ATTR_STR(mem-loads, mem_ld_nhm, "event=0x0b,umask=0x10,ldlat=3"); 354 EVENT_ATTR_STR(mem-loads, mem_ld_snb, "event=0xcd,umask=0x1,ldlat=3"); 355 EVENT_ATTR_STR(mem-stores, mem_st_snb, "event=0xcd,umask=0x2"); 356 357 static struct attribute *nhm_mem_events_attrs[] = { 358 EVENT_PTR(mem_ld_nhm), 359 NULL, 360 }; 361 362 /* 363 * topdown events for Intel Core CPUs. 364 * 365 * The events are all in slots, which is a free slot in a 4 wide 366 * pipeline. Some events are already reported in slots, for cycle 367 * events we multiply by the pipeline width (4). 368 * 369 * With Hyper Threading on, topdown metrics are either summed or averaged 370 * between the threads of a core: (count_t0 + count_t1). 371 * 372 * For the average case the metric is always scaled to pipeline width, 373 * so we use factor 2 ((count_t0 + count_t1) / 2 * 4) 374 */ 375 376 EVENT_ATTR_STR_HT(topdown-total-slots, td_total_slots, 377 "event=0x3c,umask=0x0", /* cpu_clk_unhalted.thread */ 378 "event=0x3c,umask=0x0,any=1"); /* cpu_clk_unhalted.thread_any */ 379 EVENT_ATTR_STR_HT(topdown-total-slots.scale, td_total_slots_scale, "4", "2"); 380 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued, 381 "event=0xe,umask=0x1"); /* uops_issued.any */ 382 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired, 383 "event=0xc2,umask=0x2"); /* uops_retired.retire_slots */ 384 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles, 385 "event=0x9c,umask=0x1"); /* idq_uops_not_delivered_core */ 386 EVENT_ATTR_STR_HT(topdown-recovery-bubbles, td_recovery_bubbles, 387 "event=0xd,umask=0x3,cmask=1", /* int_misc.recovery_cycles */ 388 "event=0xd,umask=0x3,cmask=1,any=1"); /* int_misc.recovery_cycles_any */ 389 EVENT_ATTR_STR_HT(topdown-recovery-bubbles.scale, td_recovery_bubbles_scale, 390 "4", "2"); 391 392 EVENT_ATTR_STR(slots, slots, "event=0x00,umask=0x4"); 393 EVENT_ATTR_STR(topdown-retiring, td_retiring, "event=0x00,umask=0x80"); 394 EVENT_ATTR_STR(topdown-bad-spec, td_bad_spec, "event=0x00,umask=0x81"); 395 EVENT_ATTR_STR(topdown-fe-bound, td_fe_bound, "event=0x00,umask=0x82"); 396 EVENT_ATTR_STR(topdown-be-bound, td_be_bound, "event=0x00,umask=0x83"); 397 EVENT_ATTR_STR(topdown-heavy-ops, td_heavy_ops, "event=0x00,umask=0x84"); 398 EVENT_ATTR_STR(topdown-br-mispredict, td_br_mispredict, "event=0x00,umask=0x85"); 399 EVENT_ATTR_STR(topdown-fetch-lat, td_fetch_lat, "event=0x00,umask=0x86"); 400 EVENT_ATTR_STR(topdown-mem-bound, td_mem_bound, "event=0x00,umask=0x87"); 401 402 static struct attribute *snb_events_attrs[] = { 403 EVENT_PTR(td_slots_issued), 404 EVENT_PTR(td_slots_retired), 405 EVENT_PTR(td_fetch_bubbles), 406 EVENT_PTR(td_total_slots), 407 EVENT_PTR(td_total_slots_scale), 408 EVENT_PTR(td_recovery_bubbles), 409 EVENT_PTR(td_recovery_bubbles_scale), 410 NULL, 411 }; 412 413 static struct attribute *snb_mem_events_attrs[] = { 414 EVENT_PTR(mem_ld_snb), 415 EVENT_PTR(mem_st_snb), 416 NULL, 417 }; 418 419 static struct event_constraint intel_hsw_event_constraints[] = { 420 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ 421 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ 422 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ 423 INTEL_UEVENT_CONSTRAINT(0x148, 0x4), /* L1D_PEND_MISS.PENDING */ 424 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */ 425 INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */ 426 /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */ 427 INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), 428 /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */ 429 INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), 430 /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */ 431 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), 432 433 /* 434 * When HT is off these events can only run on the bottom 4 counters 435 * When HT is on, they are impacted by the HT bug and require EXCL access 436 */ 437 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */ 438 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */ 439 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */ 440 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */ 441 442 EVENT_CONSTRAINT_END 443 }; 444 445 static struct event_constraint intel_bdw_event_constraints[] = { 446 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ 447 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ 448 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ 449 INTEL_UEVENT_CONSTRAINT(0x148, 0x4), /* L1D_PEND_MISS.PENDING */ 450 INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_MISS */ 451 /* 452 * when HT is off, these can only run on the bottom 4 counters 453 */ 454 INTEL_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_INST_RETIRED.* */ 455 INTEL_EVENT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */ 456 INTEL_EVENT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */ 457 INTEL_EVENT_CONSTRAINT(0xcd, 0xf), /* MEM_TRANS_RETIRED.* */ 458 EVENT_CONSTRAINT_END 459 }; 460 461 static u64 intel_pmu_event_map(int hw_event) 462 { 463 return intel_perfmon_event_map[hw_event]; 464 } 465 466 static __initconst const u64 spr_hw_cache_event_ids 467 [PERF_COUNT_HW_CACHE_MAX] 468 [PERF_COUNT_HW_CACHE_OP_MAX] 469 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 470 { 471 [ C(L1D ) ] = { 472 [ C(OP_READ) ] = { 473 [ C(RESULT_ACCESS) ] = 0x81d0, 474 [ C(RESULT_MISS) ] = 0xe124, 475 }, 476 [ C(OP_WRITE) ] = { 477 [ C(RESULT_ACCESS) ] = 0x82d0, 478 }, 479 }, 480 [ C(L1I ) ] = { 481 [ C(OP_READ) ] = { 482 [ C(RESULT_MISS) ] = 0xe424, 483 }, 484 [ C(OP_WRITE) ] = { 485 [ C(RESULT_ACCESS) ] = -1, 486 [ C(RESULT_MISS) ] = -1, 487 }, 488 }, 489 [ C(LL ) ] = { 490 [ C(OP_READ) ] = { 491 [ C(RESULT_ACCESS) ] = 0x12a, 492 [ C(RESULT_MISS) ] = 0x12a, 493 }, 494 [ C(OP_WRITE) ] = { 495 [ C(RESULT_ACCESS) ] = 0x12a, 496 [ C(RESULT_MISS) ] = 0x12a, 497 }, 498 }, 499 [ C(DTLB) ] = { 500 [ C(OP_READ) ] = { 501 [ C(RESULT_ACCESS) ] = 0x81d0, 502 [ C(RESULT_MISS) ] = 0xe12, 503 }, 504 [ C(OP_WRITE) ] = { 505 [ C(RESULT_ACCESS) ] = 0x82d0, 506 [ C(RESULT_MISS) ] = 0xe13, 507 }, 508 }, 509 [ C(ITLB) ] = { 510 [ C(OP_READ) ] = { 511 [ C(RESULT_ACCESS) ] = -1, 512 [ C(RESULT_MISS) ] = 0xe11, 513 }, 514 [ C(OP_WRITE) ] = { 515 [ C(RESULT_ACCESS) ] = -1, 516 [ C(RESULT_MISS) ] = -1, 517 }, 518 [ C(OP_PREFETCH) ] = { 519 [ C(RESULT_ACCESS) ] = -1, 520 [ C(RESULT_MISS) ] = -1, 521 }, 522 }, 523 [ C(BPU ) ] = { 524 [ C(OP_READ) ] = { 525 [ C(RESULT_ACCESS) ] = 0x4c4, 526 [ C(RESULT_MISS) ] = 0x4c5, 527 }, 528 [ C(OP_WRITE) ] = { 529 [ C(RESULT_ACCESS) ] = -1, 530 [ C(RESULT_MISS) ] = -1, 531 }, 532 [ C(OP_PREFETCH) ] = { 533 [ C(RESULT_ACCESS) ] = -1, 534 [ C(RESULT_MISS) ] = -1, 535 }, 536 }, 537 [ C(NODE) ] = { 538 [ C(OP_READ) ] = { 539 [ C(RESULT_ACCESS) ] = 0x12a, 540 [ C(RESULT_MISS) ] = 0x12a, 541 }, 542 }, 543 }; 544 545 static __initconst const u64 spr_hw_cache_extra_regs 546 [PERF_COUNT_HW_CACHE_MAX] 547 [PERF_COUNT_HW_CACHE_OP_MAX] 548 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 549 { 550 [ C(LL ) ] = { 551 [ C(OP_READ) ] = { 552 [ C(RESULT_ACCESS) ] = 0x10001, 553 [ C(RESULT_MISS) ] = 0x3fbfc00001, 554 }, 555 [ C(OP_WRITE) ] = { 556 [ C(RESULT_ACCESS) ] = 0x3f3ffc0002, 557 [ C(RESULT_MISS) ] = 0x3f3fc00002, 558 }, 559 }, 560 [ C(NODE) ] = { 561 [ C(OP_READ) ] = { 562 [ C(RESULT_ACCESS) ] = 0x10c000001, 563 [ C(RESULT_MISS) ] = 0x3fb3000001, 564 }, 565 }, 566 }; 567 568 /* 569 * Notes on the events: 570 * - data reads do not include code reads (comparable to earlier tables) 571 * - data counts include speculative execution (except L1 write, dtlb, bpu) 572 * - remote node access includes remote memory, remote cache, remote mmio. 573 * - prefetches are not included in the counts. 574 * - icache miss does not include decoded icache 575 */ 576 577 #define SKL_DEMAND_DATA_RD BIT_ULL(0) 578 #define SKL_DEMAND_RFO BIT_ULL(1) 579 #define SKL_ANY_RESPONSE BIT_ULL(16) 580 #define SKL_SUPPLIER_NONE BIT_ULL(17) 581 #define SKL_L3_MISS_LOCAL_DRAM BIT_ULL(26) 582 #define SKL_L3_MISS_REMOTE_HOP0_DRAM BIT_ULL(27) 583 #define SKL_L3_MISS_REMOTE_HOP1_DRAM BIT_ULL(28) 584 #define SKL_L3_MISS_REMOTE_HOP2P_DRAM BIT_ULL(29) 585 #define SKL_L3_MISS (SKL_L3_MISS_LOCAL_DRAM| \ 586 SKL_L3_MISS_REMOTE_HOP0_DRAM| \ 587 SKL_L3_MISS_REMOTE_HOP1_DRAM| \ 588 SKL_L3_MISS_REMOTE_HOP2P_DRAM) 589 #define SKL_SPL_HIT BIT_ULL(30) 590 #define SKL_SNOOP_NONE BIT_ULL(31) 591 #define SKL_SNOOP_NOT_NEEDED BIT_ULL(32) 592 #define SKL_SNOOP_MISS BIT_ULL(33) 593 #define SKL_SNOOP_HIT_NO_FWD BIT_ULL(34) 594 #define SKL_SNOOP_HIT_WITH_FWD BIT_ULL(35) 595 #define SKL_SNOOP_HITM BIT_ULL(36) 596 #define SKL_SNOOP_NON_DRAM BIT_ULL(37) 597 #define SKL_ANY_SNOOP (SKL_SPL_HIT|SKL_SNOOP_NONE| \ 598 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \ 599 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \ 600 SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM) 601 #define SKL_DEMAND_READ SKL_DEMAND_DATA_RD 602 #define SKL_SNOOP_DRAM (SKL_SNOOP_NONE| \ 603 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \ 604 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \ 605 SKL_SNOOP_HITM|SKL_SPL_HIT) 606 #define SKL_DEMAND_WRITE SKL_DEMAND_RFO 607 #define SKL_LLC_ACCESS SKL_ANY_RESPONSE 608 #define SKL_L3_MISS_REMOTE (SKL_L3_MISS_REMOTE_HOP0_DRAM| \ 609 SKL_L3_MISS_REMOTE_HOP1_DRAM| \ 610 SKL_L3_MISS_REMOTE_HOP2P_DRAM) 611 612 static __initconst const u64 skl_hw_cache_event_ids 613 [PERF_COUNT_HW_CACHE_MAX] 614 [PERF_COUNT_HW_CACHE_OP_MAX] 615 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 616 { 617 [ C(L1D ) ] = { 618 [ C(OP_READ) ] = { 619 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_INST_RETIRED.ALL_LOADS */ 620 [ C(RESULT_MISS) ] = 0x151, /* L1D.REPLACEMENT */ 621 }, 622 [ C(OP_WRITE) ] = { 623 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_INST_RETIRED.ALL_STORES */ 624 [ C(RESULT_MISS) ] = 0x0, 625 }, 626 [ C(OP_PREFETCH) ] = { 627 [ C(RESULT_ACCESS) ] = 0x0, 628 [ C(RESULT_MISS) ] = 0x0, 629 }, 630 }, 631 [ C(L1I ) ] = { 632 [ C(OP_READ) ] = { 633 [ C(RESULT_ACCESS) ] = 0x0, 634 [ C(RESULT_MISS) ] = 0x283, /* ICACHE_64B.MISS */ 635 }, 636 [ C(OP_WRITE) ] = { 637 [ C(RESULT_ACCESS) ] = -1, 638 [ C(RESULT_MISS) ] = -1, 639 }, 640 [ C(OP_PREFETCH) ] = { 641 [ C(RESULT_ACCESS) ] = 0x0, 642 [ C(RESULT_MISS) ] = 0x0, 643 }, 644 }, 645 [ C(LL ) ] = { 646 [ C(OP_READ) ] = { 647 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 648 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 649 }, 650 [ C(OP_WRITE) ] = { 651 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 652 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 653 }, 654 [ C(OP_PREFETCH) ] = { 655 [ C(RESULT_ACCESS) ] = 0x0, 656 [ C(RESULT_MISS) ] = 0x0, 657 }, 658 }, 659 [ C(DTLB) ] = { 660 [ C(OP_READ) ] = { 661 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_INST_RETIRED.ALL_LOADS */ 662 [ C(RESULT_MISS) ] = 0xe08, /* DTLB_LOAD_MISSES.WALK_COMPLETED */ 663 }, 664 [ C(OP_WRITE) ] = { 665 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_INST_RETIRED.ALL_STORES */ 666 [ C(RESULT_MISS) ] = 0xe49, /* DTLB_STORE_MISSES.WALK_COMPLETED */ 667 }, 668 [ C(OP_PREFETCH) ] = { 669 [ C(RESULT_ACCESS) ] = 0x0, 670 [ C(RESULT_MISS) ] = 0x0, 671 }, 672 }, 673 [ C(ITLB) ] = { 674 [ C(OP_READ) ] = { 675 [ C(RESULT_ACCESS) ] = 0x2085, /* ITLB_MISSES.STLB_HIT */ 676 [ C(RESULT_MISS) ] = 0xe85, /* ITLB_MISSES.WALK_COMPLETED */ 677 }, 678 [ C(OP_WRITE) ] = { 679 [ C(RESULT_ACCESS) ] = -1, 680 [ C(RESULT_MISS) ] = -1, 681 }, 682 [ C(OP_PREFETCH) ] = { 683 [ C(RESULT_ACCESS) ] = -1, 684 [ C(RESULT_MISS) ] = -1, 685 }, 686 }, 687 [ C(BPU ) ] = { 688 [ C(OP_READ) ] = { 689 [ C(RESULT_ACCESS) ] = 0xc4, /* BR_INST_RETIRED.ALL_BRANCHES */ 690 [ C(RESULT_MISS) ] = 0xc5, /* BR_MISP_RETIRED.ALL_BRANCHES */ 691 }, 692 [ C(OP_WRITE) ] = { 693 [ C(RESULT_ACCESS) ] = -1, 694 [ C(RESULT_MISS) ] = -1, 695 }, 696 [ C(OP_PREFETCH) ] = { 697 [ C(RESULT_ACCESS) ] = -1, 698 [ C(RESULT_MISS) ] = -1, 699 }, 700 }, 701 [ C(NODE) ] = { 702 [ C(OP_READ) ] = { 703 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 704 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 705 }, 706 [ C(OP_WRITE) ] = { 707 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 708 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 709 }, 710 [ C(OP_PREFETCH) ] = { 711 [ C(RESULT_ACCESS) ] = 0x0, 712 [ C(RESULT_MISS) ] = 0x0, 713 }, 714 }, 715 }; 716 717 static __initconst const u64 skl_hw_cache_extra_regs 718 [PERF_COUNT_HW_CACHE_MAX] 719 [PERF_COUNT_HW_CACHE_OP_MAX] 720 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 721 { 722 [ C(LL ) ] = { 723 [ C(OP_READ) ] = { 724 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ| 725 SKL_LLC_ACCESS|SKL_ANY_SNOOP, 726 [ C(RESULT_MISS) ] = SKL_DEMAND_READ| 727 SKL_L3_MISS|SKL_ANY_SNOOP| 728 SKL_SUPPLIER_NONE, 729 }, 730 [ C(OP_WRITE) ] = { 731 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE| 732 SKL_LLC_ACCESS|SKL_ANY_SNOOP, 733 [ C(RESULT_MISS) ] = SKL_DEMAND_WRITE| 734 SKL_L3_MISS|SKL_ANY_SNOOP| 735 SKL_SUPPLIER_NONE, 736 }, 737 [ C(OP_PREFETCH) ] = { 738 [ C(RESULT_ACCESS) ] = 0x0, 739 [ C(RESULT_MISS) ] = 0x0, 740 }, 741 }, 742 [ C(NODE) ] = { 743 [ C(OP_READ) ] = { 744 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ| 745 SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM, 746 [ C(RESULT_MISS) ] = SKL_DEMAND_READ| 747 SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM, 748 }, 749 [ C(OP_WRITE) ] = { 750 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE| 751 SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM, 752 [ C(RESULT_MISS) ] = SKL_DEMAND_WRITE| 753 SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM, 754 }, 755 [ C(OP_PREFETCH) ] = { 756 [ C(RESULT_ACCESS) ] = 0x0, 757 [ C(RESULT_MISS) ] = 0x0, 758 }, 759 }, 760 }; 761 762 #define SNB_DMND_DATA_RD (1ULL << 0) 763 #define SNB_DMND_RFO (1ULL << 1) 764 #define SNB_DMND_IFETCH (1ULL << 2) 765 #define SNB_DMND_WB (1ULL << 3) 766 #define SNB_PF_DATA_RD (1ULL << 4) 767 #define SNB_PF_RFO (1ULL << 5) 768 #define SNB_PF_IFETCH (1ULL << 6) 769 #define SNB_LLC_DATA_RD (1ULL << 7) 770 #define SNB_LLC_RFO (1ULL << 8) 771 #define SNB_LLC_IFETCH (1ULL << 9) 772 #define SNB_BUS_LOCKS (1ULL << 10) 773 #define SNB_STRM_ST (1ULL << 11) 774 #define SNB_OTHER (1ULL << 15) 775 #define SNB_RESP_ANY (1ULL << 16) 776 #define SNB_NO_SUPP (1ULL << 17) 777 #define SNB_LLC_HITM (1ULL << 18) 778 #define SNB_LLC_HITE (1ULL << 19) 779 #define SNB_LLC_HITS (1ULL << 20) 780 #define SNB_LLC_HITF (1ULL << 21) 781 #define SNB_LOCAL (1ULL << 22) 782 #define SNB_REMOTE (0xffULL << 23) 783 #define SNB_SNP_NONE (1ULL << 31) 784 #define SNB_SNP_NOT_NEEDED (1ULL << 32) 785 #define SNB_SNP_MISS (1ULL << 33) 786 #define SNB_NO_FWD (1ULL << 34) 787 #define SNB_SNP_FWD (1ULL << 35) 788 #define SNB_HITM (1ULL << 36) 789 #define SNB_NON_DRAM (1ULL << 37) 790 791 #define SNB_DMND_READ (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD) 792 #define SNB_DMND_WRITE (SNB_DMND_RFO|SNB_LLC_RFO) 793 #define SNB_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO) 794 795 #define SNB_SNP_ANY (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \ 796 SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \ 797 SNB_HITM) 798 799 #define SNB_DRAM_ANY (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY) 800 #define SNB_DRAM_REMOTE (SNB_REMOTE|SNB_SNP_ANY) 801 802 #define SNB_L3_ACCESS SNB_RESP_ANY 803 #define SNB_L3_MISS (SNB_DRAM_ANY|SNB_NON_DRAM) 804 805 static __initconst const u64 snb_hw_cache_extra_regs 806 [PERF_COUNT_HW_CACHE_MAX] 807 [PERF_COUNT_HW_CACHE_OP_MAX] 808 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 809 { 810 [ C(LL ) ] = { 811 [ C(OP_READ) ] = { 812 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS, 813 [ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_L3_MISS, 814 }, 815 [ C(OP_WRITE) ] = { 816 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS, 817 [ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_L3_MISS, 818 }, 819 [ C(OP_PREFETCH) ] = { 820 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS, 821 [ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_L3_MISS, 822 }, 823 }, 824 [ C(NODE) ] = { 825 [ C(OP_READ) ] = { 826 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY, 827 [ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_DRAM_REMOTE, 828 }, 829 [ C(OP_WRITE) ] = { 830 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY, 831 [ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE, 832 }, 833 [ C(OP_PREFETCH) ] = { 834 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY, 835 [ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE, 836 }, 837 }, 838 }; 839 840 static __initconst const u64 snb_hw_cache_event_ids 841 [PERF_COUNT_HW_CACHE_MAX] 842 [PERF_COUNT_HW_CACHE_OP_MAX] 843 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 844 { 845 [ C(L1D) ] = { 846 [ C(OP_READ) ] = { 847 [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS */ 848 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPLACEMENT */ 849 }, 850 [ C(OP_WRITE) ] = { 851 [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES */ 852 [ C(RESULT_MISS) ] = 0x0851, /* L1D.ALL_M_REPLACEMENT */ 853 }, 854 [ C(OP_PREFETCH) ] = { 855 [ C(RESULT_ACCESS) ] = 0x0, 856 [ C(RESULT_MISS) ] = 0x024e, /* HW_PRE_REQ.DL1_MISS */ 857 }, 858 }, 859 [ C(L1I ) ] = { 860 [ C(OP_READ) ] = { 861 [ C(RESULT_ACCESS) ] = 0x0, 862 [ C(RESULT_MISS) ] = 0x0280, /* ICACHE.MISSES */ 863 }, 864 [ C(OP_WRITE) ] = { 865 [ C(RESULT_ACCESS) ] = -1, 866 [ C(RESULT_MISS) ] = -1, 867 }, 868 [ C(OP_PREFETCH) ] = { 869 [ C(RESULT_ACCESS) ] = 0x0, 870 [ C(RESULT_MISS) ] = 0x0, 871 }, 872 }, 873 [ C(LL ) ] = { 874 [ C(OP_READ) ] = { 875 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */ 876 [ C(RESULT_ACCESS) ] = 0x01b7, 877 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */ 878 [ C(RESULT_MISS) ] = 0x01b7, 879 }, 880 [ C(OP_WRITE) ] = { 881 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */ 882 [ C(RESULT_ACCESS) ] = 0x01b7, 883 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */ 884 [ C(RESULT_MISS) ] = 0x01b7, 885 }, 886 [ C(OP_PREFETCH) ] = { 887 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */ 888 [ C(RESULT_ACCESS) ] = 0x01b7, 889 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */ 890 [ C(RESULT_MISS) ] = 0x01b7, 891 }, 892 }, 893 [ C(DTLB) ] = { 894 [ C(OP_READ) ] = { 895 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */ 896 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */ 897 }, 898 [ C(OP_WRITE) ] = { 899 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */ 900 [ C(RESULT_MISS) ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */ 901 }, 902 [ C(OP_PREFETCH) ] = { 903 [ C(RESULT_ACCESS) ] = 0x0, 904 [ C(RESULT_MISS) ] = 0x0, 905 }, 906 }, 907 [ C(ITLB) ] = { 908 [ C(OP_READ) ] = { 909 [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT */ 910 [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK */ 911 }, 912 [ C(OP_WRITE) ] = { 913 [ C(RESULT_ACCESS) ] = -1, 914 [ C(RESULT_MISS) ] = -1, 915 }, 916 [ C(OP_PREFETCH) ] = { 917 [ C(RESULT_ACCESS) ] = -1, 918 [ C(RESULT_MISS) ] = -1, 919 }, 920 }, 921 [ C(BPU ) ] = { 922 [ C(OP_READ) ] = { 923 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */ 924 [ C(RESULT_MISS) ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */ 925 }, 926 [ C(OP_WRITE) ] = { 927 [ C(RESULT_ACCESS) ] = -1, 928 [ C(RESULT_MISS) ] = -1, 929 }, 930 [ C(OP_PREFETCH) ] = { 931 [ C(RESULT_ACCESS) ] = -1, 932 [ C(RESULT_MISS) ] = -1, 933 }, 934 }, 935 [ C(NODE) ] = { 936 [ C(OP_READ) ] = { 937 [ C(RESULT_ACCESS) ] = 0x01b7, 938 [ C(RESULT_MISS) ] = 0x01b7, 939 }, 940 [ C(OP_WRITE) ] = { 941 [ C(RESULT_ACCESS) ] = 0x01b7, 942 [ C(RESULT_MISS) ] = 0x01b7, 943 }, 944 [ C(OP_PREFETCH) ] = { 945 [ C(RESULT_ACCESS) ] = 0x01b7, 946 [ C(RESULT_MISS) ] = 0x01b7, 947 }, 948 }, 949 950 }; 951 952 /* 953 * Notes on the events: 954 * - data reads do not include code reads (comparable to earlier tables) 955 * - data counts include speculative execution (except L1 write, dtlb, bpu) 956 * - remote node access includes remote memory, remote cache, remote mmio. 957 * - prefetches are not included in the counts because they are not 958 * reliably counted. 959 */ 960 961 #define HSW_DEMAND_DATA_RD BIT_ULL(0) 962 #define HSW_DEMAND_RFO BIT_ULL(1) 963 #define HSW_ANY_RESPONSE BIT_ULL(16) 964 #define HSW_SUPPLIER_NONE BIT_ULL(17) 965 #define HSW_L3_MISS_LOCAL_DRAM BIT_ULL(22) 966 #define HSW_L3_MISS_REMOTE_HOP0 BIT_ULL(27) 967 #define HSW_L3_MISS_REMOTE_HOP1 BIT_ULL(28) 968 #define HSW_L3_MISS_REMOTE_HOP2P BIT_ULL(29) 969 #define HSW_L3_MISS (HSW_L3_MISS_LOCAL_DRAM| \ 970 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \ 971 HSW_L3_MISS_REMOTE_HOP2P) 972 #define HSW_SNOOP_NONE BIT_ULL(31) 973 #define HSW_SNOOP_NOT_NEEDED BIT_ULL(32) 974 #define HSW_SNOOP_MISS BIT_ULL(33) 975 #define HSW_SNOOP_HIT_NO_FWD BIT_ULL(34) 976 #define HSW_SNOOP_HIT_WITH_FWD BIT_ULL(35) 977 #define HSW_SNOOP_HITM BIT_ULL(36) 978 #define HSW_SNOOP_NON_DRAM BIT_ULL(37) 979 #define HSW_ANY_SNOOP (HSW_SNOOP_NONE| \ 980 HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \ 981 HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \ 982 HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM) 983 #define HSW_SNOOP_DRAM (HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM) 984 #define HSW_DEMAND_READ HSW_DEMAND_DATA_RD 985 #define HSW_DEMAND_WRITE HSW_DEMAND_RFO 986 #define HSW_L3_MISS_REMOTE (HSW_L3_MISS_REMOTE_HOP0|\ 987 HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P) 988 #define HSW_LLC_ACCESS HSW_ANY_RESPONSE 989 990 #define BDW_L3_MISS_LOCAL BIT(26) 991 #define BDW_L3_MISS (BDW_L3_MISS_LOCAL| \ 992 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \ 993 HSW_L3_MISS_REMOTE_HOP2P) 994 995 996 static __initconst const u64 hsw_hw_cache_event_ids 997 [PERF_COUNT_HW_CACHE_MAX] 998 [PERF_COUNT_HW_CACHE_OP_MAX] 999 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 1000 { 1001 [ C(L1D ) ] = { 1002 [ C(OP_READ) ] = { 1003 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */ 1004 [ C(RESULT_MISS) ] = 0x151, /* L1D.REPLACEMENT */ 1005 }, 1006 [ C(OP_WRITE) ] = { 1007 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */ 1008 [ C(RESULT_MISS) ] = 0x0, 1009 }, 1010 [ C(OP_PREFETCH) ] = { 1011 [ C(RESULT_ACCESS) ] = 0x0, 1012 [ C(RESULT_MISS) ] = 0x0, 1013 }, 1014 }, 1015 [ C(L1I ) ] = { 1016 [ C(OP_READ) ] = { 1017 [ C(RESULT_ACCESS) ] = 0x0, 1018 [ C(RESULT_MISS) ] = 0x280, /* ICACHE.MISSES */ 1019 }, 1020 [ C(OP_WRITE) ] = { 1021 [ C(RESULT_ACCESS) ] = -1, 1022 [ C(RESULT_MISS) ] = -1, 1023 }, 1024 [ C(OP_PREFETCH) ] = { 1025 [ C(RESULT_ACCESS) ] = 0x0, 1026 [ C(RESULT_MISS) ] = 0x0, 1027 }, 1028 }, 1029 [ C(LL ) ] = { 1030 [ C(OP_READ) ] = { 1031 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 1032 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 1033 }, 1034 [ C(OP_WRITE) ] = { 1035 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 1036 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 1037 }, 1038 [ C(OP_PREFETCH) ] = { 1039 [ C(RESULT_ACCESS) ] = 0x0, 1040 [ C(RESULT_MISS) ] = 0x0, 1041 }, 1042 }, 1043 [ C(DTLB) ] = { 1044 [ C(OP_READ) ] = { 1045 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */ 1046 [ C(RESULT_MISS) ] = 0x108, /* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */ 1047 }, 1048 [ C(OP_WRITE) ] = { 1049 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */ 1050 [ C(RESULT_MISS) ] = 0x149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */ 1051 }, 1052 [ C(OP_PREFETCH) ] = { 1053 [ C(RESULT_ACCESS) ] = 0x0, 1054 [ C(RESULT_MISS) ] = 0x0, 1055 }, 1056 }, 1057 [ C(ITLB) ] = { 1058 [ C(OP_READ) ] = { 1059 [ C(RESULT_ACCESS) ] = 0x6085, /* ITLB_MISSES.STLB_HIT */ 1060 [ C(RESULT_MISS) ] = 0x185, /* ITLB_MISSES.MISS_CAUSES_A_WALK */ 1061 }, 1062 [ C(OP_WRITE) ] = { 1063 [ C(RESULT_ACCESS) ] = -1, 1064 [ C(RESULT_MISS) ] = -1, 1065 }, 1066 [ C(OP_PREFETCH) ] = { 1067 [ C(RESULT_ACCESS) ] = -1, 1068 [ C(RESULT_MISS) ] = -1, 1069 }, 1070 }, 1071 [ C(BPU ) ] = { 1072 [ C(OP_READ) ] = { 1073 [ C(RESULT_ACCESS) ] = 0xc4, /* BR_INST_RETIRED.ALL_BRANCHES */ 1074 [ C(RESULT_MISS) ] = 0xc5, /* BR_MISP_RETIRED.ALL_BRANCHES */ 1075 }, 1076 [ C(OP_WRITE) ] = { 1077 [ C(RESULT_ACCESS) ] = -1, 1078 [ C(RESULT_MISS) ] = -1, 1079 }, 1080 [ C(OP_PREFETCH) ] = { 1081 [ C(RESULT_ACCESS) ] = -1, 1082 [ C(RESULT_MISS) ] = -1, 1083 }, 1084 }, 1085 [ C(NODE) ] = { 1086 [ C(OP_READ) ] = { 1087 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 1088 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 1089 }, 1090 [ C(OP_WRITE) ] = { 1091 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 1092 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 1093 }, 1094 [ C(OP_PREFETCH) ] = { 1095 [ C(RESULT_ACCESS) ] = 0x0, 1096 [ C(RESULT_MISS) ] = 0x0, 1097 }, 1098 }, 1099 }; 1100 1101 static __initconst const u64 hsw_hw_cache_extra_regs 1102 [PERF_COUNT_HW_CACHE_MAX] 1103 [PERF_COUNT_HW_CACHE_OP_MAX] 1104 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 1105 { 1106 [ C(LL ) ] = { 1107 [ C(OP_READ) ] = { 1108 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ| 1109 HSW_LLC_ACCESS, 1110 [ C(RESULT_MISS) ] = HSW_DEMAND_READ| 1111 HSW_L3_MISS|HSW_ANY_SNOOP, 1112 }, 1113 [ C(OP_WRITE) ] = { 1114 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE| 1115 HSW_LLC_ACCESS, 1116 [ C(RESULT_MISS) ] = HSW_DEMAND_WRITE| 1117 HSW_L3_MISS|HSW_ANY_SNOOP, 1118 }, 1119 [ C(OP_PREFETCH) ] = { 1120 [ C(RESULT_ACCESS) ] = 0x0, 1121 [ C(RESULT_MISS) ] = 0x0, 1122 }, 1123 }, 1124 [ C(NODE) ] = { 1125 [ C(OP_READ) ] = { 1126 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ| 1127 HSW_L3_MISS_LOCAL_DRAM| 1128 HSW_SNOOP_DRAM, 1129 [ C(RESULT_MISS) ] = HSW_DEMAND_READ| 1130 HSW_L3_MISS_REMOTE| 1131 HSW_SNOOP_DRAM, 1132 }, 1133 [ C(OP_WRITE) ] = { 1134 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE| 1135 HSW_L3_MISS_LOCAL_DRAM| 1136 HSW_SNOOP_DRAM, 1137 [ C(RESULT_MISS) ] = HSW_DEMAND_WRITE| 1138 HSW_L3_MISS_REMOTE| 1139 HSW_SNOOP_DRAM, 1140 }, 1141 [ C(OP_PREFETCH) ] = { 1142 [ C(RESULT_ACCESS) ] = 0x0, 1143 [ C(RESULT_MISS) ] = 0x0, 1144 }, 1145 }, 1146 }; 1147 1148 static __initconst const u64 westmere_hw_cache_event_ids 1149 [PERF_COUNT_HW_CACHE_MAX] 1150 [PERF_COUNT_HW_CACHE_OP_MAX] 1151 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 1152 { 1153 [ C(L1D) ] = { 1154 [ C(OP_READ) ] = { 1155 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */ 1156 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */ 1157 }, 1158 [ C(OP_WRITE) ] = { 1159 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */ 1160 [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */ 1161 }, 1162 [ C(OP_PREFETCH) ] = { 1163 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */ 1164 [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */ 1165 }, 1166 }, 1167 [ C(L1I ) ] = { 1168 [ C(OP_READ) ] = { 1169 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */ 1170 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */ 1171 }, 1172 [ C(OP_WRITE) ] = { 1173 [ C(RESULT_ACCESS) ] = -1, 1174 [ C(RESULT_MISS) ] = -1, 1175 }, 1176 [ C(OP_PREFETCH) ] = { 1177 [ C(RESULT_ACCESS) ] = 0x0, 1178 [ C(RESULT_MISS) ] = 0x0, 1179 }, 1180 }, 1181 [ C(LL ) ] = { 1182 [ C(OP_READ) ] = { 1183 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */ 1184 [ C(RESULT_ACCESS) ] = 0x01b7, 1185 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */ 1186 [ C(RESULT_MISS) ] = 0x01b7, 1187 }, 1188 /* 1189 * Use RFO, not WRITEBACK, because a write miss would typically occur 1190 * on RFO. 1191 */ 1192 [ C(OP_WRITE) ] = { 1193 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */ 1194 [ C(RESULT_ACCESS) ] = 0x01b7, 1195 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */ 1196 [ C(RESULT_MISS) ] = 0x01b7, 1197 }, 1198 [ C(OP_PREFETCH) ] = { 1199 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */ 1200 [ C(RESULT_ACCESS) ] = 0x01b7, 1201 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */ 1202 [ C(RESULT_MISS) ] = 0x01b7, 1203 }, 1204 }, 1205 [ C(DTLB) ] = { 1206 [ C(OP_READ) ] = { 1207 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */ 1208 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */ 1209 }, 1210 [ C(OP_WRITE) ] = { 1211 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */ 1212 [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */ 1213 }, 1214 [ C(OP_PREFETCH) ] = { 1215 [ C(RESULT_ACCESS) ] = 0x0, 1216 [ C(RESULT_MISS) ] = 0x0, 1217 }, 1218 }, 1219 [ C(ITLB) ] = { 1220 [ C(OP_READ) ] = { 1221 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */ 1222 [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.ANY */ 1223 }, 1224 [ C(OP_WRITE) ] = { 1225 [ C(RESULT_ACCESS) ] = -1, 1226 [ C(RESULT_MISS) ] = -1, 1227 }, 1228 [ C(OP_PREFETCH) ] = { 1229 [ C(RESULT_ACCESS) ] = -1, 1230 [ C(RESULT_MISS) ] = -1, 1231 }, 1232 }, 1233 [ C(BPU ) ] = { 1234 [ C(OP_READ) ] = { 1235 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */ 1236 [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */ 1237 }, 1238 [ C(OP_WRITE) ] = { 1239 [ C(RESULT_ACCESS) ] = -1, 1240 [ C(RESULT_MISS) ] = -1, 1241 }, 1242 [ C(OP_PREFETCH) ] = { 1243 [ C(RESULT_ACCESS) ] = -1, 1244 [ C(RESULT_MISS) ] = -1, 1245 }, 1246 }, 1247 [ C(NODE) ] = { 1248 [ C(OP_READ) ] = { 1249 [ C(RESULT_ACCESS) ] = 0x01b7, 1250 [ C(RESULT_MISS) ] = 0x01b7, 1251 }, 1252 [ C(OP_WRITE) ] = { 1253 [ C(RESULT_ACCESS) ] = 0x01b7, 1254 [ C(RESULT_MISS) ] = 0x01b7, 1255 }, 1256 [ C(OP_PREFETCH) ] = { 1257 [ C(RESULT_ACCESS) ] = 0x01b7, 1258 [ C(RESULT_MISS) ] = 0x01b7, 1259 }, 1260 }, 1261 }; 1262 1263 /* 1264 * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits; 1265 * See IA32 SDM Vol 3B 30.6.1.3 1266 */ 1267 1268 #define NHM_DMND_DATA_RD (1 << 0) 1269 #define NHM_DMND_RFO (1 << 1) 1270 #define NHM_DMND_IFETCH (1 << 2) 1271 #define NHM_DMND_WB (1 << 3) 1272 #define NHM_PF_DATA_RD (1 << 4) 1273 #define NHM_PF_DATA_RFO (1 << 5) 1274 #define NHM_PF_IFETCH (1 << 6) 1275 #define NHM_OFFCORE_OTHER (1 << 7) 1276 #define NHM_UNCORE_HIT (1 << 8) 1277 #define NHM_OTHER_CORE_HIT_SNP (1 << 9) 1278 #define NHM_OTHER_CORE_HITM (1 << 10) 1279 /* reserved */ 1280 #define NHM_REMOTE_CACHE_FWD (1 << 12) 1281 #define NHM_REMOTE_DRAM (1 << 13) 1282 #define NHM_LOCAL_DRAM (1 << 14) 1283 #define NHM_NON_DRAM (1 << 15) 1284 1285 #define NHM_LOCAL (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD) 1286 #define NHM_REMOTE (NHM_REMOTE_DRAM) 1287 1288 #define NHM_DMND_READ (NHM_DMND_DATA_RD) 1289 #define NHM_DMND_WRITE (NHM_DMND_RFO|NHM_DMND_WB) 1290 #define NHM_DMND_PREFETCH (NHM_PF_DATA_RD|NHM_PF_DATA_RFO) 1291 1292 #define NHM_L3_HIT (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM) 1293 #define NHM_L3_MISS (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD) 1294 #define NHM_L3_ACCESS (NHM_L3_HIT|NHM_L3_MISS) 1295 1296 static __initconst const u64 nehalem_hw_cache_extra_regs 1297 [PERF_COUNT_HW_CACHE_MAX] 1298 [PERF_COUNT_HW_CACHE_OP_MAX] 1299 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 1300 { 1301 [ C(LL ) ] = { 1302 [ C(OP_READ) ] = { 1303 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS, 1304 [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_L3_MISS, 1305 }, 1306 [ C(OP_WRITE) ] = { 1307 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS, 1308 [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_L3_MISS, 1309 }, 1310 [ C(OP_PREFETCH) ] = { 1311 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS, 1312 [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_L3_MISS, 1313 }, 1314 }, 1315 [ C(NODE) ] = { 1316 [ C(OP_READ) ] = { 1317 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE, 1318 [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_REMOTE, 1319 }, 1320 [ C(OP_WRITE) ] = { 1321 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE, 1322 [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_REMOTE, 1323 }, 1324 [ C(OP_PREFETCH) ] = { 1325 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE, 1326 [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_REMOTE, 1327 }, 1328 }, 1329 }; 1330 1331 static __initconst const u64 nehalem_hw_cache_event_ids 1332 [PERF_COUNT_HW_CACHE_MAX] 1333 [PERF_COUNT_HW_CACHE_OP_MAX] 1334 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 1335 { 1336 [ C(L1D) ] = { 1337 [ C(OP_READ) ] = { 1338 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */ 1339 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */ 1340 }, 1341 [ C(OP_WRITE) ] = { 1342 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */ 1343 [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */ 1344 }, 1345 [ C(OP_PREFETCH) ] = { 1346 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */ 1347 [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */ 1348 }, 1349 }, 1350 [ C(L1I ) ] = { 1351 [ C(OP_READ) ] = { 1352 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */ 1353 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */ 1354 }, 1355 [ C(OP_WRITE) ] = { 1356 [ C(RESULT_ACCESS) ] = -1, 1357 [ C(RESULT_MISS) ] = -1, 1358 }, 1359 [ C(OP_PREFETCH) ] = { 1360 [ C(RESULT_ACCESS) ] = 0x0, 1361 [ C(RESULT_MISS) ] = 0x0, 1362 }, 1363 }, 1364 [ C(LL ) ] = { 1365 [ C(OP_READ) ] = { 1366 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */ 1367 [ C(RESULT_ACCESS) ] = 0x01b7, 1368 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */ 1369 [ C(RESULT_MISS) ] = 0x01b7, 1370 }, 1371 /* 1372 * Use RFO, not WRITEBACK, because a write miss would typically occur 1373 * on RFO. 1374 */ 1375 [ C(OP_WRITE) ] = { 1376 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */ 1377 [ C(RESULT_ACCESS) ] = 0x01b7, 1378 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */ 1379 [ C(RESULT_MISS) ] = 0x01b7, 1380 }, 1381 [ C(OP_PREFETCH) ] = { 1382 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */ 1383 [ C(RESULT_ACCESS) ] = 0x01b7, 1384 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */ 1385 [ C(RESULT_MISS) ] = 0x01b7, 1386 }, 1387 }, 1388 [ C(DTLB) ] = { 1389 [ C(OP_READ) ] = { 1390 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */ 1391 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */ 1392 }, 1393 [ C(OP_WRITE) ] = { 1394 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */ 1395 [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */ 1396 }, 1397 [ C(OP_PREFETCH) ] = { 1398 [ C(RESULT_ACCESS) ] = 0x0, 1399 [ C(RESULT_MISS) ] = 0x0, 1400 }, 1401 }, 1402 [ C(ITLB) ] = { 1403 [ C(OP_READ) ] = { 1404 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */ 1405 [ C(RESULT_MISS) ] = 0x20c8, /* ITLB_MISS_RETIRED */ 1406 }, 1407 [ C(OP_WRITE) ] = { 1408 [ C(RESULT_ACCESS) ] = -1, 1409 [ C(RESULT_MISS) ] = -1, 1410 }, 1411 [ C(OP_PREFETCH) ] = { 1412 [ C(RESULT_ACCESS) ] = -1, 1413 [ C(RESULT_MISS) ] = -1, 1414 }, 1415 }, 1416 [ C(BPU ) ] = { 1417 [ C(OP_READ) ] = { 1418 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */ 1419 [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */ 1420 }, 1421 [ C(OP_WRITE) ] = { 1422 [ C(RESULT_ACCESS) ] = -1, 1423 [ C(RESULT_MISS) ] = -1, 1424 }, 1425 [ C(OP_PREFETCH) ] = { 1426 [ C(RESULT_ACCESS) ] = -1, 1427 [ C(RESULT_MISS) ] = -1, 1428 }, 1429 }, 1430 [ C(NODE) ] = { 1431 [ C(OP_READ) ] = { 1432 [ C(RESULT_ACCESS) ] = 0x01b7, 1433 [ C(RESULT_MISS) ] = 0x01b7, 1434 }, 1435 [ C(OP_WRITE) ] = { 1436 [ C(RESULT_ACCESS) ] = 0x01b7, 1437 [ C(RESULT_MISS) ] = 0x01b7, 1438 }, 1439 [ C(OP_PREFETCH) ] = { 1440 [ C(RESULT_ACCESS) ] = 0x01b7, 1441 [ C(RESULT_MISS) ] = 0x01b7, 1442 }, 1443 }, 1444 }; 1445 1446 static __initconst const u64 core2_hw_cache_event_ids 1447 [PERF_COUNT_HW_CACHE_MAX] 1448 [PERF_COUNT_HW_CACHE_OP_MAX] 1449 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 1450 { 1451 [ C(L1D) ] = { 1452 [ C(OP_READ) ] = { 1453 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */ 1454 [ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */ 1455 }, 1456 [ C(OP_WRITE) ] = { 1457 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */ 1458 [ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */ 1459 }, 1460 [ C(OP_PREFETCH) ] = { 1461 [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS */ 1462 [ C(RESULT_MISS) ] = 0, 1463 }, 1464 }, 1465 [ C(L1I ) ] = { 1466 [ C(OP_READ) ] = { 1467 [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS */ 1468 [ C(RESULT_MISS) ] = 0x0081, /* L1I.MISSES */ 1469 }, 1470 [ C(OP_WRITE) ] = { 1471 [ C(RESULT_ACCESS) ] = -1, 1472 [ C(RESULT_MISS) ] = -1, 1473 }, 1474 [ C(OP_PREFETCH) ] = { 1475 [ C(RESULT_ACCESS) ] = 0, 1476 [ C(RESULT_MISS) ] = 0, 1477 }, 1478 }, 1479 [ C(LL ) ] = { 1480 [ C(OP_READ) ] = { 1481 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */ 1482 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */ 1483 }, 1484 [ C(OP_WRITE) ] = { 1485 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */ 1486 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */ 1487 }, 1488 [ C(OP_PREFETCH) ] = { 1489 [ C(RESULT_ACCESS) ] = 0, 1490 [ C(RESULT_MISS) ] = 0, 1491 }, 1492 }, 1493 [ C(DTLB) ] = { 1494 [ C(OP_READ) ] = { 1495 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */ 1496 [ C(RESULT_MISS) ] = 0x0208, /* DTLB_MISSES.MISS_LD */ 1497 }, 1498 [ C(OP_WRITE) ] = { 1499 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */ 1500 [ C(RESULT_MISS) ] = 0x0808, /* DTLB_MISSES.MISS_ST */ 1501 }, 1502 [ C(OP_PREFETCH) ] = { 1503 [ C(RESULT_ACCESS) ] = 0, 1504 [ C(RESULT_MISS) ] = 0, 1505 }, 1506 }, 1507 [ C(ITLB) ] = { 1508 [ C(OP_READ) ] = { 1509 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */ 1510 [ C(RESULT_MISS) ] = 0x1282, /* ITLBMISSES */ 1511 }, 1512 [ C(OP_WRITE) ] = { 1513 [ C(RESULT_ACCESS) ] = -1, 1514 [ C(RESULT_MISS) ] = -1, 1515 }, 1516 [ C(OP_PREFETCH) ] = { 1517 [ C(RESULT_ACCESS) ] = -1, 1518 [ C(RESULT_MISS) ] = -1, 1519 }, 1520 }, 1521 [ C(BPU ) ] = { 1522 [ C(OP_READ) ] = { 1523 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */ 1524 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */ 1525 }, 1526 [ C(OP_WRITE) ] = { 1527 [ C(RESULT_ACCESS) ] = -1, 1528 [ C(RESULT_MISS) ] = -1, 1529 }, 1530 [ C(OP_PREFETCH) ] = { 1531 [ C(RESULT_ACCESS) ] = -1, 1532 [ C(RESULT_MISS) ] = -1, 1533 }, 1534 }, 1535 }; 1536 1537 static __initconst const u64 atom_hw_cache_event_ids 1538 [PERF_COUNT_HW_CACHE_MAX] 1539 [PERF_COUNT_HW_CACHE_OP_MAX] 1540 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 1541 { 1542 [ C(L1D) ] = { 1543 [ C(OP_READ) ] = { 1544 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD */ 1545 [ C(RESULT_MISS) ] = 0, 1546 }, 1547 [ C(OP_WRITE) ] = { 1548 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST */ 1549 [ C(RESULT_MISS) ] = 0, 1550 }, 1551 [ C(OP_PREFETCH) ] = { 1552 [ C(RESULT_ACCESS) ] = 0x0, 1553 [ C(RESULT_MISS) ] = 0, 1554 }, 1555 }, 1556 [ C(L1I ) ] = { 1557 [ C(OP_READ) ] = { 1558 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */ 1559 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */ 1560 }, 1561 [ C(OP_WRITE) ] = { 1562 [ C(RESULT_ACCESS) ] = -1, 1563 [ C(RESULT_MISS) ] = -1, 1564 }, 1565 [ C(OP_PREFETCH) ] = { 1566 [ C(RESULT_ACCESS) ] = 0, 1567 [ C(RESULT_MISS) ] = 0, 1568 }, 1569 }, 1570 [ C(LL ) ] = { 1571 [ C(OP_READ) ] = { 1572 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */ 1573 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */ 1574 }, 1575 [ C(OP_WRITE) ] = { 1576 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */ 1577 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */ 1578 }, 1579 [ C(OP_PREFETCH) ] = { 1580 [ C(RESULT_ACCESS) ] = 0, 1581 [ C(RESULT_MISS) ] = 0, 1582 }, 1583 }, 1584 [ C(DTLB) ] = { 1585 [ C(OP_READ) ] = { 1586 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI (alias) */ 1587 [ C(RESULT_MISS) ] = 0x0508, /* DTLB_MISSES.MISS_LD */ 1588 }, 1589 [ C(OP_WRITE) ] = { 1590 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI (alias) */ 1591 [ C(RESULT_MISS) ] = 0x0608, /* DTLB_MISSES.MISS_ST */ 1592 }, 1593 [ C(OP_PREFETCH) ] = { 1594 [ C(RESULT_ACCESS) ] = 0, 1595 [ C(RESULT_MISS) ] = 0, 1596 }, 1597 }, 1598 [ C(ITLB) ] = { 1599 [ C(OP_READ) ] = { 1600 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */ 1601 [ C(RESULT_MISS) ] = 0x0282, /* ITLB.MISSES */ 1602 }, 1603 [ C(OP_WRITE) ] = { 1604 [ C(RESULT_ACCESS) ] = -1, 1605 [ C(RESULT_MISS) ] = -1, 1606 }, 1607 [ C(OP_PREFETCH) ] = { 1608 [ C(RESULT_ACCESS) ] = -1, 1609 [ C(RESULT_MISS) ] = -1, 1610 }, 1611 }, 1612 [ C(BPU ) ] = { 1613 [ C(OP_READ) ] = { 1614 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */ 1615 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */ 1616 }, 1617 [ C(OP_WRITE) ] = { 1618 [ C(RESULT_ACCESS) ] = -1, 1619 [ C(RESULT_MISS) ] = -1, 1620 }, 1621 [ C(OP_PREFETCH) ] = { 1622 [ C(RESULT_ACCESS) ] = -1, 1623 [ C(RESULT_MISS) ] = -1, 1624 }, 1625 }, 1626 }; 1627 1628 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_slm, "event=0x3c"); 1629 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_slm, "2"); 1630 /* no_alloc_cycles.not_delivered */ 1631 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_slm, 1632 "event=0xca,umask=0x50"); 1633 EVENT_ATTR_STR(topdown-fetch-bubbles.scale, td_fetch_bubbles_scale_slm, "2"); 1634 /* uops_retired.all */ 1635 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_slm, 1636 "event=0xc2,umask=0x10"); 1637 /* uops_retired.all */ 1638 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_slm, 1639 "event=0xc2,umask=0x10"); 1640 1641 static struct attribute *slm_events_attrs[] = { 1642 EVENT_PTR(td_total_slots_slm), 1643 EVENT_PTR(td_total_slots_scale_slm), 1644 EVENT_PTR(td_fetch_bubbles_slm), 1645 EVENT_PTR(td_fetch_bubbles_scale_slm), 1646 EVENT_PTR(td_slots_issued_slm), 1647 EVENT_PTR(td_slots_retired_slm), 1648 NULL 1649 }; 1650 1651 static struct extra_reg intel_slm_extra_regs[] __read_mostly = 1652 { 1653 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */ 1654 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0), 1655 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1), 1656 EVENT_EXTRA_END 1657 }; 1658 1659 #define SLM_DMND_READ SNB_DMND_DATA_RD 1660 #define SLM_DMND_WRITE SNB_DMND_RFO 1661 #define SLM_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO) 1662 1663 #define SLM_SNP_ANY (SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM) 1664 #define SLM_LLC_ACCESS SNB_RESP_ANY 1665 #define SLM_LLC_MISS (SLM_SNP_ANY|SNB_NON_DRAM) 1666 1667 static __initconst const u64 slm_hw_cache_extra_regs 1668 [PERF_COUNT_HW_CACHE_MAX] 1669 [PERF_COUNT_HW_CACHE_OP_MAX] 1670 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 1671 { 1672 [ C(LL ) ] = { 1673 [ C(OP_READ) ] = { 1674 [ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS, 1675 [ C(RESULT_MISS) ] = 0, 1676 }, 1677 [ C(OP_WRITE) ] = { 1678 [ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS, 1679 [ C(RESULT_MISS) ] = SLM_DMND_WRITE|SLM_LLC_MISS, 1680 }, 1681 [ C(OP_PREFETCH) ] = { 1682 [ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS, 1683 [ C(RESULT_MISS) ] = SLM_DMND_PREFETCH|SLM_LLC_MISS, 1684 }, 1685 }, 1686 }; 1687 1688 static __initconst const u64 slm_hw_cache_event_ids 1689 [PERF_COUNT_HW_CACHE_MAX] 1690 [PERF_COUNT_HW_CACHE_OP_MAX] 1691 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 1692 { 1693 [ C(L1D) ] = { 1694 [ C(OP_READ) ] = { 1695 [ C(RESULT_ACCESS) ] = 0, 1696 [ C(RESULT_MISS) ] = 0x0104, /* LD_DCU_MISS */ 1697 }, 1698 [ C(OP_WRITE) ] = { 1699 [ C(RESULT_ACCESS) ] = 0, 1700 [ C(RESULT_MISS) ] = 0, 1701 }, 1702 [ C(OP_PREFETCH) ] = { 1703 [ C(RESULT_ACCESS) ] = 0, 1704 [ C(RESULT_MISS) ] = 0, 1705 }, 1706 }, 1707 [ C(L1I ) ] = { 1708 [ C(OP_READ) ] = { 1709 [ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */ 1710 [ C(RESULT_MISS) ] = 0x0280, /* ICACGE.MISSES */ 1711 }, 1712 [ C(OP_WRITE) ] = { 1713 [ C(RESULT_ACCESS) ] = -1, 1714 [ C(RESULT_MISS) ] = -1, 1715 }, 1716 [ C(OP_PREFETCH) ] = { 1717 [ C(RESULT_ACCESS) ] = 0, 1718 [ C(RESULT_MISS) ] = 0, 1719 }, 1720 }, 1721 [ C(LL ) ] = { 1722 [ C(OP_READ) ] = { 1723 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */ 1724 [ C(RESULT_ACCESS) ] = 0x01b7, 1725 [ C(RESULT_MISS) ] = 0, 1726 }, 1727 [ C(OP_WRITE) ] = { 1728 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */ 1729 [ C(RESULT_ACCESS) ] = 0x01b7, 1730 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */ 1731 [ C(RESULT_MISS) ] = 0x01b7, 1732 }, 1733 [ C(OP_PREFETCH) ] = { 1734 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */ 1735 [ C(RESULT_ACCESS) ] = 0x01b7, 1736 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */ 1737 [ C(RESULT_MISS) ] = 0x01b7, 1738 }, 1739 }, 1740 [ C(DTLB) ] = { 1741 [ C(OP_READ) ] = { 1742 [ C(RESULT_ACCESS) ] = 0, 1743 [ C(RESULT_MISS) ] = 0x0804, /* LD_DTLB_MISS */ 1744 }, 1745 [ C(OP_WRITE) ] = { 1746 [ C(RESULT_ACCESS) ] = 0, 1747 [ C(RESULT_MISS) ] = 0, 1748 }, 1749 [ C(OP_PREFETCH) ] = { 1750 [ C(RESULT_ACCESS) ] = 0, 1751 [ C(RESULT_MISS) ] = 0, 1752 }, 1753 }, 1754 [ C(ITLB) ] = { 1755 [ C(OP_READ) ] = { 1756 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */ 1757 [ C(RESULT_MISS) ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */ 1758 }, 1759 [ C(OP_WRITE) ] = { 1760 [ C(RESULT_ACCESS) ] = -1, 1761 [ C(RESULT_MISS) ] = -1, 1762 }, 1763 [ C(OP_PREFETCH) ] = { 1764 [ C(RESULT_ACCESS) ] = -1, 1765 [ C(RESULT_MISS) ] = -1, 1766 }, 1767 }, 1768 [ C(BPU ) ] = { 1769 [ C(OP_READ) ] = { 1770 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */ 1771 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */ 1772 }, 1773 [ C(OP_WRITE) ] = { 1774 [ C(RESULT_ACCESS) ] = -1, 1775 [ C(RESULT_MISS) ] = -1, 1776 }, 1777 [ C(OP_PREFETCH) ] = { 1778 [ C(RESULT_ACCESS) ] = -1, 1779 [ C(RESULT_MISS) ] = -1, 1780 }, 1781 }, 1782 }; 1783 1784 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_glm, "event=0x3c"); 1785 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_glm, "3"); 1786 /* UOPS_NOT_DELIVERED.ANY */ 1787 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_glm, "event=0x9c"); 1788 /* ISSUE_SLOTS_NOT_CONSUMED.RECOVERY */ 1789 EVENT_ATTR_STR(topdown-recovery-bubbles, td_recovery_bubbles_glm, "event=0xca,umask=0x02"); 1790 /* UOPS_RETIRED.ANY */ 1791 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_glm, "event=0xc2"); 1792 /* UOPS_ISSUED.ANY */ 1793 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_glm, "event=0x0e"); 1794 1795 static struct attribute *glm_events_attrs[] = { 1796 EVENT_PTR(td_total_slots_glm), 1797 EVENT_PTR(td_total_slots_scale_glm), 1798 EVENT_PTR(td_fetch_bubbles_glm), 1799 EVENT_PTR(td_recovery_bubbles_glm), 1800 EVENT_PTR(td_slots_issued_glm), 1801 EVENT_PTR(td_slots_retired_glm), 1802 NULL 1803 }; 1804 1805 static struct extra_reg intel_glm_extra_regs[] __read_mostly = { 1806 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */ 1807 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x760005ffbfull, RSP_0), 1808 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x360005ffbfull, RSP_1), 1809 EVENT_EXTRA_END 1810 }; 1811 1812 #define GLM_DEMAND_DATA_RD BIT_ULL(0) 1813 #define GLM_DEMAND_RFO BIT_ULL(1) 1814 #define GLM_ANY_RESPONSE BIT_ULL(16) 1815 #define GLM_SNP_NONE_OR_MISS BIT_ULL(33) 1816 #define GLM_DEMAND_READ GLM_DEMAND_DATA_RD 1817 #define GLM_DEMAND_WRITE GLM_DEMAND_RFO 1818 #define GLM_DEMAND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO) 1819 #define GLM_LLC_ACCESS GLM_ANY_RESPONSE 1820 #define GLM_SNP_ANY (GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM) 1821 #define GLM_LLC_MISS (GLM_SNP_ANY|SNB_NON_DRAM) 1822 1823 static __initconst const u64 glm_hw_cache_event_ids 1824 [PERF_COUNT_HW_CACHE_MAX] 1825 [PERF_COUNT_HW_CACHE_OP_MAX] 1826 [PERF_COUNT_HW_CACHE_RESULT_MAX] = { 1827 [C(L1D)] = { 1828 [C(OP_READ)] = { 1829 [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */ 1830 [C(RESULT_MISS)] = 0x0, 1831 }, 1832 [C(OP_WRITE)] = { 1833 [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */ 1834 [C(RESULT_MISS)] = 0x0, 1835 }, 1836 [C(OP_PREFETCH)] = { 1837 [C(RESULT_ACCESS)] = 0x0, 1838 [C(RESULT_MISS)] = 0x0, 1839 }, 1840 }, 1841 [C(L1I)] = { 1842 [C(OP_READ)] = { 1843 [C(RESULT_ACCESS)] = 0x0380, /* ICACHE.ACCESSES */ 1844 [C(RESULT_MISS)] = 0x0280, /* ICACHE.MISSES */ 1845 }, 1846 [C(OP_WRITE)] = { 1847 [C(RESULT_ACCESS)] = -1, 1848 [C(RESULT_MISS)] = -1, 1849 }, 1850 [C(OP_PREFETCH)] = { 1851 [C(RESULT_ACCESS)] = 0x0, 1852 [C(RESULT_MISS)] = 0x0, 1853 }, 1854 }, 1855 [C(LL)] = { 1856 [C(OP_READ)] = { 1857 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */ 1858 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */ 1859 }, 1860 [C(OP_WRITE)] = { 1861 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */ 1862 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */ 1863 }, 1864 [C(OP_PREFETCH)] = { 1865 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */ 1866 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */ 1867 }, 1868 }, 1869 [C(DTLB)] = { 1870 [C(OP_READ)] = { 1871 [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */ 1872 [C(RESULT_MISS)] = 0x0, 1873 }, 1874 [C(OP_WRITE)] = { 1875 [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */ 1876 [C(RESULT_MISS)] = 0x0, 1877 }, 1878 [C(OP_PREFETCH)] = { 1879 [C(RESULT_ACCESS)] = 0x0, 1880 [C(RESULT_MISS)] = 0x0, 1881 }, 1882 }, 1883 [C(ITLB)] = { 1884 [C(OP_READ)] = { 1885 [C(RESULT_ACCESS)] = 0x00c0, /* INST_RETIRED.ANY_P */ 1886 [C(RESULT_MISS)] = 0x0481, /* ITLB.MISS */ 1887 }, 1888 [C(OP_WRITE)] = { 1889 [C(RESULT_ACCESS)] = -1, 1890 [C(RESULT_MISS)] = -1, 1891 }, 1892 [C(OP_PREFETCH)] = { 1893 [C(RESULT_ACCESS)] = -1, 1894 [C(RESULT_MISS)] = -1, 1895 }, 1896 }, 1897 [C(BPU)] = { 1898 [C(OP_READ)] = { 1899 [C(RESULT_ACCESS)] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */ 1900 [C(RESULT_MISS)] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */ 1901 }, 1902 [C(OP_WRITE)] = { 1903 [C(RESULT_ACCESS)] = -1, 1904 [C(RESULT_MISS)] = -1, 1905 }, 1906 [C(OP_PREFETCH)] = { 1907 [C(RESULT_ACCESS)] = -1, 1908 [C(RESULT_MISS)] = -1, 1909 }, 1910 }, 1911 }; 1912 1913 static __initconst const u64 glm_hw_cache_extra_regs 1914 [PERF_COUNT_HW_CACHE_MAX] 1915 [PERF_COUNT_HW_CACHE_OP_MAX] 1916 [PERF_COUNT_HW_CACHE_RESULT_MAX] = { 1917 [C(LL)] = { 1918 [C(OP_READ)] = { 1919 [C(RESULT_ACCESS)] = GLM_DEMAND_READ| 1920 GLM_LLC_ACCESS, 1921 [C(RESULT_MISS)] = GLM_DEMAND_READ| 1922 GLM_LLC_MISS, 1923 }, 1924 [C(OP_WRITE)] = { 1925 [C(RESULT_ACCESS)] = GLM_DEMAND_WRITE| 1926 GLM_LLC_ACCESS, 1927 [C(RESULT_MISS)] = GLM_DEMAND_WRITE| 1928 GLM_LLC_MISS, 1929 }, 1930 [C(OP_PREFETCH)] = { 1931 [C(RESULT_ACCESS)] = GLM_DEMAND_PREFETCH| 1932 GLM_LLC_ACCESS, 1933 [C(RESULT_MISS)] = GLM_DEMAND_PREFETCH| 1934 GLM_LLC_MISS, 1935 }, 1936 }, 1937 }; 1938 1939 static __initconst const u64 glp_hw_cache_event_ids 1940 [PERF_COUNT_HW_CACHE_MAX] 1941 [PERF_COUNT_HW_CACHE_OP_MAX] 1942 [PERF_COUNT_HW_CACHE_RESULT_MAX] = { 1943 [C(L1D)] = { 1944 [C(OP_READ)] = { 1945 [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */ 1946 [C(RESULT_MISS)] = 0x0, 1947 }, 1948 [C(OP_WRITE)] = { 1949 [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */ 1950 [C(RESULT_MISS)] = 0x0, 1951 }, 1952 [C(OP_PREFETCH)] = { 1953 [C(RESULT_ACCESS)] = 0x0, 1954 [C(RESULT_MISS)] = 0x0, 1955 }, 1956 }, 1957 [C(L1I)] = { 1958 [C(OP_READ)] = { 1959 [C(RESULT_ACCESS)] = 0x0380, /* ICACHE.ACCESSES */ 1960 [C(RESULT_MISS)] = 0x0280, /* ICACHE.MISSES */ 1961 }, 1962 [C(OP_WRITE)] = { 1963 [C(RESULT_ACCESS)] = -1, 1964 [C(RESULT_MISS)] = -1, 1965 }, 1966 [C(OP_PREFETCH)] = { 1967 [C(RESULT_ACCESS)] = 0x0, 1968 [C(RESULT_MISS)] = 0x0, 1969 }, 1970 }, 1971 [C(LL)] = { 1972 [C(OP_READ)] = { 1973 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */ 1974 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */ 1975 }, 1976 [C(OP_WRITE)] = { 1977 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */ 1978 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */ 1979 }, 1980 [C(OP_PREFETCH)] = { 1981 [C(RESULT_ACCESS)] = 0x0, 1982 [C(RESULT_MISS)] = 0x0, 1983 }, 1984 }, 1985 [C(DTLB)] = { 1986 [C(OP_READ)] = { 1987 [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */ 1988 [C(RESULT_MISS)] = 0xe08, /* DTLB_LOAD_MISSES.WALK_COMPLETED */ 1989 }, 1990 [C(OP_WRITE)] = { 1991 [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */ 1992 [C(RESULT_MISS)] = 0xe49, /* DTLB_STORE_MISSES.WALK_COMPLETED */ 1993 }, 1994 [C(OP_PREFETCH)] = { 1995 [C(RESULT_ACCESS)] = 0x0, 1996 [C(RESULT_MISS)] = 0x0, 1997 }, 1998 }, 1999 [C(ITLB)] = { 2000 [C(OP_READ)] = { 2001 [C(RESULT_ACCESS)] = 0x00c0, /* INST_RETIRED.ANY_P */ 2002 [C(RESULT_MISS)] = 0x0481, /* ITLB.MISS */ 2003 }, 2004 [C(OP_WRITE)] = { 2005 [C(RESULT_ACCESS)] = -1, 2006 [C(RESULT_MISS)] = -1, 2007 }, 2008 [C(OP_PREFETCH)] = { 2009 [C(RESULT_ACCESS)] = -1, 2010 [C(RESULT_MISS)] = -1, 2011 }, 2012 }, 2013 [C(BPU)] = { 2014 [C(OP_READ)] = { 2015 [C(RESULT_ACCESS)] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */ 2016 [C(RESULT_MISS)] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */ 2017 }, 2018 [C(OP_WRITE)] = { 2019 [C(RESULT_ACCESS)] = -1, 2020 [C(RESULT_MISS)] = -1, 2021 }, 2022 [C(OP_PREFETCH)] = { 2023 [C(RESULT_ACCESS)] = -1, 2024 [C(RESULT_MISS)] = -1, 2025 }, 2026 }, 2027 }; 2028 2029 static __initconst const u64 glp_hw_cache_extra_regs 2030 [PERF_COUNT_HW_CACHE_MAX] 2031 [PERF_COUNT_HW_CACHE_OP_MAX] 2032 [PERF_COUNT_HW_CACHE_RESULT_MAX] = { 2033 [C(LL)] = { 2034 [C(OP_READ)] = { 2035 [C(RESULT_ACCESS)] = GLM_DEMAND_READ| 2036 GLM_LLC_ACCESS, 2037 [C(RESULT_MISS)] = GLM_DEMAND_READ| 2038 GLM_LLC_MISS, 2039 }, 2040 [C(OP_WRITE)] = { 2041 [C(RESULT_ACCESS)] = GLM_DEMAND_WRITE| 2042 GLM_LLC_ACCESS, 2043 [C(RESULT_MISS)] = GLM_DEMAND_WRITE| 2044 GLM_LLC_MISS, 2045 }, 2046 [C(OP_PREFETCH)] = { 2047 [C(RESULT_ACCESS)] = 0x0, 2048 [C(RESULT_MISS)] = 0x0, 2049 }, 2050 }, 2051 }; 2052 2053 #define TNT_LOCAL_DRAM BIT_ULL(26) 2054 #define TNT_DEMAND_READ GLM_DEMAND_DATA_RD 2055 #define TNT_DEMAND_WRITE GLM_DEMAND_RFO 2056 #define TNT_LLC_ACCESS GLM_ANY_RESPONSE 2057 #define TNT_SNP_ANY (SNB_SNP_NOT_NEEDED|SNB_SNP_MISS| \ 2058 SNB_NO_FWD|SNB_SNP_FWD|SNB_HITM) 2059 #define TNT_LLC_MISS (TNT_SNP_ANY|SNB_NON_DRAM|TNT_LOCAL_DRAM) 2060 2061 static __initconst const u64 tnt_hw_cache_extra_regs 2062 [PERF_COUNT_HW_CACHE_MAX] 2063 [PERF_COUNT_HW_CACHE_OP_MAX] 2064 [PERF_COUNT_HW_CACHE_RESULT_MAX] = { 2065 [C(LL)] = { 2066 [C(OP_READ)] = { 2067 [C(RESULT_ACCESS)] = TNT_DEMAND_READ| 2068 TNT_LLC_ACCESS, 2069 [C(RESULT_MISS)] = TNT_DEMAND_READ| 2070 TNT_LLC_MISS, 2071 }, 2072 [C(OP_WRITE)] = { 2073 [C(RESULT_ACCESS)] = TNT_DEMAND_WRITE| 2074 TNT_LLC_ACCESS, 2075 [C(RESULT_MISS)] = TNT_DEMAND_WRITE| 2076 TNT_LLC_MISS, 2077 }, 2078 [C(OP_PREFETCH)] = { 2079 [C(RESULT_ACCESS)] = 0x0, 2080 [C(RESULT_MISS)] = 0x0, 2081 }, 2082 }, 2083 }; 2084 2085 EVENT_ATTR_STR(topdown-fe-bound, td_fe_bound_tnt, "event=0x71,umask=0x0"); 2086 EVENT_ATTR_STR(topdown-retiring, td_retiring_tnt, "event=0xc2,umask=0x0"); 2087 EVENT_ATTR_STR(topdown-bad-spec, td_bad_spec_tnt, "event=0x73,umask=0x6"); 2088 EVENT_ATTR_STR(topdown-be-bound, td_be_bound_tnt, "event=0x74,umask=0x0"); 2089 2090 static struct attribute *tnt_events_attrs[] = { 2091 EVENT_PTR(td_fe_bound_tnt), 2092 EVENT_PTR(td_retiring_tnt), 2093 EVENT_PTR(td_bad_spec_tnt), 2094 EVENT_PTR(td_be_bound_tnt), 2095 NULL, 2096 }; 2097 2098 static struct extra_reg intel_tnt_extra_regs[] __read_mostly = { 2099 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */ 2100 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x800ff0ffffff9fffull, RSP_0), 2101 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0xff0ffffff9fffull, RSP_1), 2102 EVENT_EXTRA_END 2103 }; 2104 2105 static struct extra_reg intel_grt_extra_regs[] __read_mostly = { 2106 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */ 2107 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0), 2108 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1), 2109 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x5d0), 2110 EVENT_EXTRA_END 2111 }; 2112 2113 #define KNL_OT_L2_HITE BIT_ULL(19) /* Other Tile L2 Hit */ 2114 #define KNL_OT_L2_HITF BIT_ULL(20) /* Other Tile L2 Hit */ 2115 #define KNL_MCDRAM_LOCAL BIT_ULL(21) 2116 #define KNL_MCDRAM_FAR BIT_ULL(22) 2117 #define KNL_DDR_LOCAL BIT_ULL(23) 2118 #define KNL_DDR_FAR BIT_ULL(24) 2119 #define KNL_DRAM_ANY (KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \ 2120 KNL_DDR_LOCAL | KNL_DDR_FAR) 2121 #define KNL_L2_READ SLM_DMND_READ 2122 #define KNL_L2_WRITE SLM_DMND_WRITE 2123 #define KNL_L2_PREFETCH SLM_DMND_PREFETCH 2124 #define KNL_L2_ACCESS SLM_LLC_ACCESS 2125 #define KNL_L2_MISS (KNL_OT_L2_HITE | KNL_OT_L2_HITF | \ 2126 KNL_DRAM_ANY | SNB_SNP_ANY | \ 2127 SNB_NON_DRAM) 2128 2129 static __initconst const u64 knl_hw_cache_extra_regs 2130 [PERF_COUNT_HW_CACHE_MAX] 2131 [PERF_COUNT_HW_CACHE_OP_MAX] 2132 [PERF_COUNT_HW_CACHE_RESULT_MAX] = { 2133 [C(LL)] = { 2134 [C(OP_READ)] = { 2135 [C(RESULT_ACCESS)] = KNL_L2_READ | KNL_L2_ACCESS, 2136 [C(RESULT_MISS)] = 0, 2137 }, 2138 [C(OP_WRITE)] = { 2139 [C(RESULT_ACCESS)] = KNL_L2_WRITE | KNL_L2_ACCESS, 2140 [C(RESULT_MISS)] = KNL_L2_WRITE | KNL_L2_MISS, 2141 }, 2142 [C(OP_PREFETCH)] = { 2143 [C(RESULT_ACCESS)] = KNL_L2_PREFETCH | KNL_L2_ACCESS, 2144 [C(RESULT_MISS)] = KNL_L2_PREFETCH | KNL_L2_MISS, 2145 }, 2146 }, 2147 }; 2148 2149 /* 2150 * Used from PMIs where the LBRs are already disabled. 2151 * 2152 * This function could be called consecutively. It is required to remain in 2153 * disabled state if called consecutively. 2154 * 2155 * During consecutive calls, the same disable value will be written to related 2156 * registers, so the PMU state remains unchanged. 2157 * 2158 * intel_bts events don't coexist with intel PMU's BTS events because of 2159 * x86_add_exclusive(x86_lbr_exclusive_lbr); there's no need to keep them 2160 * disabled around intel PMU's event batching etc, only inside the PMI handler. 2161 * 2162 * Avoid PEBS_ENABLE MSR access in PMIs. 2163 * The GLOBAL_CTRL has been disabled. All the counters do not count anymore. 2164 * It doesn't matter if the PEBS is enabled or not. 2165 * Usually, the PEBS status are not changed in PMIs. It's unnecessary to 2166 * access PEBS_ENABLE MSR in disable_all()/enable_all(). 2167 * However, there are some cases which may change PEBS status, e.g. PMI 2168 * throttle. The PEBS_ENABLE should be updated where the status changes. 2169 */ 2170 static __always_inline void __intel_pmu_disable_all(bool bts) 2171 { 2172 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2173 2174 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0); 2175 2176 if (bts && test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) 2177 intel_pmu_disable_bts(); 2178 } 2179 2180 static __always_inline void intel_pmu_disable_all(void) 2181 { 2182 __intel_pmu_disable_all(true); 2183 intel_pmu_pebs_disable_all(); 2184 intel_pmu_lbr_disable_all(); 2185 } 2186 2187 static void __intel_pmu_enable_all(int added, bool pmi) 2188 { 2189 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2190 u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl); 2191 2192 intel_pmu_lbr_enable_all(pmi); 2193 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 2194 intel_ctrl & ~cpuc->intel_ctrl_guest_mask); 2195 2196 if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) { 2197 struct perf_event *event = 2198 cpuc->events[INTEL_PMC_IDX_FIXED_BTS]; 2199 2200 if (WARN_ON_ONCE(!event)) 2201 return; 2202 2203 intel_pmu_enable_bts(event->hw.config); 2204 } 2205 } 2206 2207 static void intel_pmu_enable_all(int added) 2208 { 2209 intel_pmu_pebs_enable_all(); 2210 __intel_pmu_enable_all(added, false); 2211 } 2212 2213 static noinline int 2214 __intel_pmu_snapshot_branch_stack(struct perf_branch_entry *entries, 2215 unsigned int cnt, unsigned long flags) 2216 { 2217 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2218 2219 intel_pmu_lbr_read(); 2220 cnt = min_t(unsigned int, cnt, x86_pmu.lbr_nr); 2221 2222 memcpy(entries, cpuc->lbr_entries, sizeof(struct perf_branch_entry) * cnt); 2223 intel_pmu_enable_all(0); 2224 local_irq_restore(flags); 2225 return cnt; 2226 } 2227 2228 static int 2229 intel_pmu_snapshot_branch_stack(struct perf_branch_entry *entries, unsigned int cnt) 2230 { 2231 unsigned long flags; 2232 2233 /* must not have branches... */ 2234 local_irq_save(flags); 2235 __intel_pmu_disable_all(false); /* we don't care about BTS */ 2236 __intel_pmu_lbr_disable(); 2237 /* ... until here */ 2238 return __intel_pmu_snapshot_branch_stack(entries, cnt, flags); 2239 } 2240 2241 static int 2242 intel_pmu_snapshot_arch_branch_stack(struct perf_branch_entry *entries, unsigned int cnt) 2243 { 2244 unsigned long flags; 2245 2246 /* must not have branches... */ 2247 local_irq_save(flags); 2248 __intel_pmu_disable_all(false); /* we don't care about BTS */ 2249 __intel_pmu_arch_lbr_disable(); 2250 /* ... until here */ 2251 return __intel_pmu_snapshot_branch_stack(entries, cnt, flags); 2252 } 2253 2254 /* 2255 * Workaround for: 2256 * Intel Errata AAK100 (model 26) 2257 * Intel Errata AAP53 (model 30) 2258 * Intel Errata BD53 (model 44) 2259 * 2260 * The official story: 2261 * These chips need to be 'reset' when adding counters by programming the 2262 * magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either 2263 * in sequence on the same PMC or on different PMCs. 2264 * 2265 * In practice it appears some of these events do in fact count, and 2266 * we need to program all 4 events. 2267 */ 2268 static void intel_pmu_nhm_workaround(void) 2269 { 2270 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2271 static const unsigned long nhm_magic[4] = { 2272 0x4300B5, 2273 0x4300D2, 2274 0x4300B1, 2275 0x4300B1 2276 }; 2277 struct perf_event *event; 2278 int i; 2279 2280 /* 2281 * The Errata requires below steps: 2282 * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL; 2283 * 2) Configure 4 PERFEVTSELx with the magic events and clear 2284 * the corresponding PMCx; 2285 * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL; 2286 * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL; 2287 * 5) Clear 4 pairs of ERFEVTSELx and PMCx; 2288 */ 2289 2290 /* 2291 * The real steps we choose are a little different from above. 2292 * A) To reduce MSR operations, we don't run step 1) as they 2293 * are already cleared before this function is called; 2294 * B) Call x86_perf_event_update to save PMCx before configuring 2295 * PERFEVTSELx with magic number; 2296 * C) With step 5), we do clear only when the PERFEVTSELx is 2297 * not used currently. 2298 * D) Call x86_perf_event_set_period to restore PMCx; 2299 */ 2300 2301 /* We always operate 4 pairs of PERF Counters */ 2302 for (i = 0; i < 4; i++) { 2303 event = cpuc->events[i]; 2304 if (event) 2305 x86_perf_event_update(event); 2306 } 2307 2308 for (i = 0; i < 4; i++) { 2309 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]); 2310 wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0); 2311 } 2312 2313 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf); 2314 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0); 2315 2316 for (i = 0; i < 4; i++) { 2317 event = cpuc->events[i]; 2318 2319 if (event) { 2320 x86_perf_event_set_period(event); 2321 __x86_pmu_enable_event(&event->hw, 2322 ARCH_PERFMON_EVENTSEL_ENABLE); 2323 } else 2324 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0); 2325 } 2326 } 2327 2328 static void intel_pmu_nhm_enable_all(int added) 2329 { 2330 if (added) 2331 intel_pmu_nhm_workaround(); 2332 intel_pmu_enable_all(added); 2333 } 2334 2335 static void intel_set_tfa(struct cpu_hw_events *cpuc, bool on) 2336 { 2337 u64 val = on ? MSR_TFA_RTM_FORCE_ABORT : 0; 2338 2339 if (cpuc->tfa_shadow != val) { 2340 cpuc->tfa_shadow = val; 2341 wrmsrl(MSR_TSX_FORCE_ABORT, val); 2342 } 2343 } 2344 2345 static void intel_tfa_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr) 2346 { 2347 /* 2348 * We're going to use PMC3, make sure TFA is set before we touch it. 2349 */ 2350 if (cntr == 3) 2351 intel_set_tfa(cpuc, true); 2352 } 2353 2354 static void intel_tfa_pmu_enable_all(int added) 2355 { 2356 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2357 2358 /* 2359 * If we find PMC3 is no longer used when we enable the PMU, we can 2360 * clear TFA. 2361 */ 2362 if (!test_bit(3, cpuc->active_mask)) 2363 intel_set_tfa(cpuc, false); 2364 2365 intel_pmu_enable_all(added); 2366 } 2367 2368 static inline u64 intel_pmu_get_status(void) 2369 { 2370 u64 status; 2371 2372 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status); 2373 2374 return status; 2375 } 2376 2377 static inline void intel_pmu_ack_status(u64 ack) 2378 { 2379 wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack); 2380 } 2381 2382 static inline bool event_is_checkpointed(struct perf_event *event) 2383 { 2384 return unlikely(event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0; 2385 } 2386 2387 static inline void intel_set_masks(struct perf_event *event, int idx) 2388 { 2389 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2390 2391 if (event->attr.exclude_host) 2392 __set_bit(idx, (unsigned long *)&cpuc->intel_ctrl_guest_mask); 2393 if (event->attr.exclude_guest) 2394 __set_bit(idx, (unsigned long *)&cpuc->intel_ctrl_host_mask); 2395 if (event_is_checkpointed(event)) 2396 __set_bit(idx, (unsigned long *)&cpuc->intel_cp_status); 2397 } 2398 2399 static inline void intel_clear_masks(struct perf_event *event, int idx) 2400 { 2401 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2402 2403 __clear_bit(idx, (unsigned long *)&cpuc->intel_ctrl_guest_mask); 2404 __clear_bit(idx, (unsigned long *)&cpuc->intel_ctrl_host_mask); 2405 __clear_bit(idx, (unsigned long *)&cpuc->intel_cp_status); 2406 } 2407 2408 static void intel_pmu_disable_fixed(struct perf_event *event) 2409 { 2410 struct hw_perf_event *hwc = &event->hw; 2411 u64 ctrl_val, mask; 2412 int idx = hwc->idx; 2413 2414 if (is_topdown_idx(idx)) { 2415 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2416 2417 /* 2418 * When there are other active TopDown events, 2419 * don't disable the fixed counter 3. 2420 */ 2421 if (*(u64 *)cpuc->active_mask & INTEL_PMC_OTHER_TOPDOWN_BITS(idx)) 2422 return; 2423 idx = INTEL_PMC_IDX_FIXED_SLOTS; 2424 } 2425 2426 intel_clear_masks(event, idx); 2427 2428 mask = 0xfULL << ((idx - INTEL_PMC_IDX_FIXED) * 4); 2429 rdmsrl(hwc->config_base, ctrl_val); 2430 ctrl_val &= ~mask; 2431 wrmsrl(hwc->config_base, ctrl_val); 2432 } 2433 2434 static void intel_pmu_disable_event(struct perf_event *event) 2435 { 2436 struct hw_perf_event *hwc = &event->hw; 2437 int idx = hwc->idx; 2438 2439 switch (idx) { 2440 case 0 ... INTEL_PMC_IDX_FIXED - 1: 2441 intel_clear_masks(event, idx); 2442 x86_pmu_disable_event(event); 2443 break; 2444 case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS - 1: 2445 case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END: 2446 intel_pmu_disable_fixed(event); 2447 break; 2448 case INTEL_PMC_IDX_FIXED_BTS: 2449 intel_pmu_disable_bts(); 2450 intel_pmu_drain_bts_buffer(); 2451 return; 2452 case INTEL_PMC_IDX_FIXED_VLBR: 2453 intel_clear_masks(event, idx); 2454 break; 2455 default: 2456 intel_clear_masks(event, idx); 2457 pr_warn("Failed to disable the event with invalid index %d\n", 2458 idx); 2459 return; 2460 } 2461 2462 /* 2463 * Needs to be called after x86_pmu_disable_event, 2464 * so we don't trigger the event without PEBS bit set. 2465 */ 2466 if (unlikely(event->attr.precise_ip)) 2467 intel_pmu_pebs_disable(event); 2468 } 2469 2470 static void intel_pmu_assign_event(struct perf_event *event, int idx) 2471 { 2472 if (is_pebs_pt(event)) 2473 perf_report_aux_output_id(event, idx); 2474 } 2475 2476 static void intel_pmu_del_event(struct perf_event *event) 2477 { 2478 if (needs_branch_stack(event)) 2479 intel_pmu_lbr_del(event); 2480 if (event->attr.precise_ip) 2481 intel_pmu_pebs_del(event); 2482 } 2483 2484 static int icl_set_topdown_event_period(struct perf_event *event) 2485 { 2486 struct hw_perf_event *hwc = &event->hw; 2487 s64 left = local64_read(&hwc->period_left); 2488 2489 /* 2490 * The values in PERF_METRICS MSR are derived from fixed counter 3. 2491 * Software should start both registers, PERF_METRICS and fixed 2492 * counter 3, from zero. 2493 * Clear PERF_METRICS and Fixed counter 3 in initialization. 2494 * After that, both MSRs will be cleared for each read. 2495 * Don't need to clear them again. 2496 */ 2497 if (left == x86_pmu.max_period) { 2498 wrmsrl(MSR_CORE_PERF_FIXED_CTR3, 0); 2499 wrmsrl(MSR_PERF_METRICS, 0); 2500 hwc->saved_slots = 0; 2501 hwc->saved_metric = 0; 2502 } 2503 2504 if ((hwc->saved_slots) && is_slots_event(event)) { 2505 wrmsrl(MSR_CORE_PERF_FIXED_CTR3, hwc->saved_slots); 2506 wrmsrl(MSR_PERF_METRICS, hwc->saved_metric); 2507 } 2508 2509 perf_event_update_userpage(event); 2510 2511 return 0; 2512 } 2513 2514 static int adl_set_topdown_event_period(struct perf_event *event) 2515 { 2516 struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu); 2517 2518 if (pmu->cpu_type != hybrid_big) 2519 return 0; 2520 2521 return icl_set_topdown_event_period(event); 2522 } 2523 2524 static inline u64 icl_get_metrics_event_value(u64 metric, u64 slots, int idx) 2525 { 2526 u32 val; 2527 2528 /* 2529 * The metric is reported as an 8bit integer fraction 2530 * summing up to 0xff. 2531 * slots-in-metric = (Metric / 0xff) * slots 2532 */ 2533 val = (metric >> ((idx - INTEL_PMC_IDX_METRIC_BASE) * 8)) & 0xff; 2534 return mul_u64_u32_div(slots, val, 0xff); 2535 } 2536 2537 static u64 icl_get_topdown_value(struct perf_event *event, 2538 u64 slots, u64 metrics) 2539 { 2540 int idx = event->hw.idx; 2541 u64 delta; 2542 2543 if (is_metric_idx(idx)) 2544 delta = icl_get_metrics_event_value(metrics, slots, idx); 2545 else 2546 delta = slots; 2547 2548 return delta; 2549 } 2550 2551 static void __icl_update_topdown_event(struct perf_event *event, 2552 u64 slots, u64 metrics, 2553 u64 last_slots, u64 last_metrics) 2554 { 2555 u64 delta, last = 0; 2556 2557 delta = icl_get_topdown_value(event, slots, metrics); 2558 if (last_slots) 2559 last = icl_get_topdown_value(event, last_slots, last_metrics); 2560 2561 /* 2562 * The 8bit integer fraction of metric may be not accurate, 2563 * especially when the changes is very small. 2564 * For example, if only a few bad_spec happens, the fraction 2565 * may be reduced from 1 to 0. If so, the bad_spec event value 2566 * will be 0 which is definitely less than the last value. 2567 * Avoid update event->count for this case. 2568 */ 2569 if (delta > last) { 2570 delta -= last; 2571 local64_add(delta, &event->count); 2572 } 2573 } 2574 2575 static void update_saved_topdown_regs(struct perf_event *event, u64 slots, 2576 u64 metrics, int metric_end) 2577 { 2578 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2579 struct perf_event *other; 2580 int idx; 2581 2582 event->hw.saved_slots = slots; 2583 event->hw.saved_metric = metrics; 2584 2585 for_each_set_bit(idx, cpuc->active_mask, metric_end + 1) { 2586 if (!is_topdown_idx(idx)) 2587 continue; 2588 other = cpuc->events[idx]; 2589 other->hw.saved_slots = slots; 2590 other->hw.saved_metric = metrics; 2591 } 2592 } 2593 2594 /* 2595 * Update all active Topdown events. 2596 * 2597 * The PERF_METRICS and Fixed counter 3 are read separately. The values may be 2598 * modify by a NMI. PMU has to be disabled before calling this function. 2599 */ 2600 2601 static u64 intel_update_topdown_event(struct perf_event *event, int metric_end) 2602 { 2603 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2604 struct perf_event *other; 2605 u64 slots, metrics; 2606 bool reset = true; 2607 int idx; 2608 2609 /* read Fixed counter 3 */ 2610 rdpmcl((3 | INTEL_PMC_FIXED_RDPMC_BASE), slots); 2611 if (!slots) 2612 return 0; 2613 2614 /* read PERF_METRICS */ 2615 rdpmcl(INTEL_PMC_FIXED_RDPMC_METRICS, metrics); 2616 2617 for_each_set_bit(idx, cpuc->active_mask, metric_end + 1) { 2618 if (!is_topdown_idx(idx)) 2619 continue; 2620 other = cpuc->events[idx]; 2621 __icl_update_topdown_event(other, slots, metrics, 2622 event ? event->hw.saved_slots : 0, 2623 event ? event->hw.saved_metric : 0); 2624 } 2625 2626 /* 2627 * Check and update this event, which may have been cleared 2628 * in active_mask e.g. x86_pmu_stop() 2629 */ 2630 if (event && !test_bit(event->hw.idx, cpuc->active_mask)) { 2631 __icl_update_topdown_event(event, slots, metrics, 2632 event->hw.saved_slots, 2633 event->hw.saved_metric); 2634 2635 /* 2636 * In x86_pmu_stop(), the event is cleared in active_mask first, 2637 * then drain the delta, which indicates context switch for 2638 * counting. 2639 * Save metric and slots for context switch. 2640 * Don't need to reset the PERF_METRICS and Fixed counter 3. 2641 * Because the values will be restored in next schedule in. 2642 */ 2643 update_saved_topdown_regs(event, slots, metrics, metric_end); 2644 reset = false; 2645 } 2646 2647 if (reset) { 2648 /* The fixed counter 3 has to be written before the PERF_METRICS. */ 2649 wrmsrl(MSR_CORE_PERF_FIXED_CTR3, 0); 2650 wrmsrl(MSR_PERF_METRICS, 0); 2651 if (event) 2652 update_saved_topdown_regs(event, 0, 0, metric_end); 2653 } 2654 2655 return slots; 2656 } 2657 2658 static u64 icl_update_topdown_event(struct perf_event *event) 2659 { 2660 return intel_update_topdown_event(event, INTEL_PMC_IDX_METRIC_BASE + 2661 x86_pmu.num_topdown_events - 1); 2662 } 2663 2664 static u64 adl_update_topdown_event(struct perf_event *event) 2665 { 2666 struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu); 2667 2668 if (pmu->cpu_type != hybrid_big) 2669 return 0; 2670 2671 return icl_update_topdown_event(event); 2672 } 2673 2674 2675 static void intel_pmu_read_topdown_event(struct perf_event *event) 2676 { 2677 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2678 2679 /* Only need to call update_topdown_event() once for group read. */ 2680 if ((cpuc->txn_flags & PERF_PMU_TXN_READ) && 2681 !is_slots_event(event)) 2682 return; 2683 2684 perf_pmu_disable(event->pmu); 2685 x86_pmu.update_topdown_event(event); 2686 perf_pmu_enable(event->pmu); 2687 } 2688 2689 static void intel_pmu_read_event(struct perf_event *event) 2690 { 2691 if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD) 2692 intel_pmu_auto_reload_read(event); 2693 else if (is_topdown_count(event) && x86_pmu.update_topdown_event) 2694 intel_pmu_read_topdown_event(event); 2695 else 2696 x86_perf_event_update(event); 2697 } 2698 2699 static void intel_pmu_enable_fixed(struct perf_event *event) 2700 { 2701 struct hw_perf_event *hwc = &event->hw; 2702 u64 ctrl_val, mask, bits = 0; 2703 int idx = hwc->idx; 2704 2705 if (is_topdown_idx(idx)) { 2706 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2707 /* 2708 * When there are other active TopDown events, 2709 * don't enable the fixed counter 3 again. 2710 */ 2711 if (*(u64 *)cpuc->active_mask & INTEL_PMC_OTHER_TOPDOWN_BITS(idx)) 2712 return; 2713 2714 idx = INTEL_PMC_IDX_FIXED_SLOTS; 2715 } 2716 2717 intel_set_masks(event, idx); 2718 2719 /* 2720 * Enable IRQ generation (0x8), if not PEBS, 2721 * and enable ring-3 counting (0x2) and ring-0 counting (0x1) 2722 * if requested: 2723 */ 2724 if (!event->attr.precise_ip) 2725 bits |= 0x8; 2726 if (hwc->config & ARCH_PERFMON_EVENTSEL_USR) 2727 bits |= 0x2; 2728 if (hwc->config & ARCH_PERFMON_EVENTSEL_OS) 2729 bits |= 0x1; 2730 2731 /* 2732 * ANY bit is supported in v3 and up 2733 */ 2734 if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY) 2735 bits |= 0x4; 2736 2737 idx -= INTEL_PMC_IDX_FIXED; 2738 bits <<= (idx * 4); 2739 mask = 0xfULL << (idx * 4); 2740 2741 if (x86_pmu.intel_cap.pebs_baseline && event->attr.precise_ip) { 2742 bits |= ICL_FIXED_0_ADAPTIVE << (idx * 4); 2743 mask |= ICL_FIXED_0_ADAPTIVE << (idx * 4); 2744 } 2745 2746 rdmsrl(hwc->config_base, ctrl_val); 2747 ctrl_val &= ~mask; 2748 ctrl_val |= bits; 2749 wrmsrl(hwc->config_base, ctrl_val); 2750 } 2751 2752 static void intel_pmu_enable_event(struct perf_event *event) 2753 { 2754 struct hw_perf_event *hwc = &event->hw; 2755 int idx = hwc->idx; 2756 2757 if (unlikely(event->attr.precise_ip)) 2758 intel_pmu_pebs_enable(event); 2759 2760 switch (idx) { 2761 case 0 ... INTEL_PMC_IDX_FIXED - 1: 2762 intel_set_masks(event, idx); 2763 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE); 2764 break; 2765 case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS - 1: 2766 case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END: 2767 intel_pmu_enable_fixed(event); 2768 break; 2769 case INTEL_PMC_IDX_FIXED_BTS: 2770 if (!__this_cpu_read(cpu_hw_events.enabled)) 2771 return; 2772 intel_pmu_enable_bts(hwc->config); 2773 break; 2774 case INTEL_PMC_IDX_FIXED_VLBR: 2775 intel_set_masks(event, idx); 2776 break; 2777 default: 2778 pr_warn("Failed to enable the event with invalid index %d\n", 2779 idx); 2780 } 2781 } 2782 2783 static void intel_pmu_add_event(struct perf_event *event) 2784 { 2785 if (event->attr.precise_ip) 2786 intel_pmu_pebs_add(event); 2787 if (needs_branch_stack(event)) 2788 intel_pmu_lbr_add(event); 2789 } 2790 2791 /* 2792 * Save and restart an expired event. Called by NMI contexts, 2793 * so it has to be careful about preempting normal event ops: 2794 */ 2795 int intel_pmu_save_and_restart(struct perf_event *event) 2796 { 2797 x86_perf_event_update(event); 2798 /* 2799 * For a checkpointed counter always reset back to 0. This 2800 * avoids a situation where the counter overflows, aborts the 2801 * transaction and is then set back to shortly before the 2802 * overflow, and overflows and aborts again. 2803 */ 2804 if (unlikely(event_is_checkpointed(event))) { 2805 /* No race with NMIs because the counter should not be armed */ 2806 wrmsrl(event->hw.event_base, 0); 2807 local64_set(&event->hw.prev_count, 0); 2808 } 2809 return x86_perf_event_set_period(event); 2810 } 2811 2812 static void intel_pmu_reset(void) 2813 { 2814 struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds); 2815 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2816 int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed); 2817 int num_counters = hybrid(cpuc->pmu, num_counters); 2818 unsigned long flags; 2819 int idx; 2820 2821 if (!num_counters) 2822 return; 2823 2824 local_irq_save(flags); 2825 2826 pr_info("clearing PMU state on CPU#%d\n", smp_processor_id()); 2827 2828 for (idx = 0; idx < num_counters; idx++) { 2829 wrmsrl_safe(x86_pmu_config_addr(idx), 0ull); 2830 wrmsrl_safe(x86_pmu_event_addr(idx), 0ull); 2831 } 2832 for (idx = 0; idx < num_counters_fixed; idx++) { 2833 if (fixed_counter_disabled(idx, cpuc->pmu)) 2834 continue; 2835 wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull); 2836 } 2837 2838 if (ds) 2839 ds->bts_index = ds->bts_buffer_base; 2840 2841 /* Ack all overflows and disable fixed counters */ 2842 if (x86_pmu.version >= 2) { 2843 intel_pmu_ack_status(intel_pmu_get_status()); 2844 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0); 2845 } 2846 2847 /* Reset LBRs and LBR freezing */ 2848 if (x86_pmu.lbr_nr) { 2849 update_debugctlmsr(get_debugctlmsr() & 2850 ~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR)); 2851 } 2852 2853 local_irq_restore(flags); 2854 } 2855 2856 /* 2857 * We may be running with guest PEBS events created by KVM, and the 2858 * PEBS records are logged into the guest's DS and invisible to host. 2859 * 2860 * In the case of guest PEBS overflow, we only trigger a fake event 2861 * to emulate the PEBS overflow PMI for guest PEBS counters in KVM. 2862 * The guest will then vm-entry and check the guest DS area to read 2863 * the guest PEBS records. 2864 * 2865 * The contents and other behavior of the guest event do not matter. 2866 */ 2867 static void x86_pmu_handle_guest_pebs(struct pt_regs *regs, 2868 struct perf_sample_data *data) 2869 { 2870 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2871 u64 guest_pebs_idxs = cpuc->pebs_enabled & ~cpuc->intel_ctrl_host_mask; 2872 struct perf_event *event = NULL; 2873 int bit; 2874 2875 if (!unlikely(perf_guest_state())) 2876 return; 2877 2878 if (!x86_pmu.pebs_ept || !x86_pmu.pebs_active || 2879 !guest_pebs_idxs) 2880 return; 2881 2882 for_each_set_bit(bit, (unsigned long *)&guest_pebs_idxs, 2883 INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed) { 2884 event = cpuc->events[bit]; 2885 if (!event->attr.precise_ip) 2886 continue; 2887 2888 perf_sample_data_init(data, 0, event->hw.last_period); 2889 if (perf_event_overflow(event, data, regs)) 2890 x86_pmu_stop(event, 0); 2891 2892 /* Inject one fake event is enough. */ 2893 break; 2894 } 2895 } 2896 2897 static int handle_pmi_common(struct pt_regs *regs, u64 status) 2898 { 2899 struct perf_sample_data data; 2900 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2901 int bit; 2902 int handled = 0; 2903 u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl); 2904 2905 inc_irq_stat(apic_perf_irqs); 2906 2907 /* 2908 * Ignore a range of extra bits in status that do not indicate 2909 * overflow by themselves. 2910 */ 2911 status &= ~(GLOBAL_STATUS_COND_CHG | 2912 GLOBAL_STATUS_ASIF | 2913 GLOBAL_STATUS_LBRS_FROZEN); 2914 if (!status) 2915 return 0; 2916 /* 2917 * In case multiple PEBS events are sampled at the same time, 2918 * it is possible to have GLOBAL_STATUS bit 62 set indicating 2919 * PEBS buffer overflow and also seeing at most 3 PEBS counters 2920 * having their bits set in the status register. This is a sign 2921 * that there was at least one PEBS record pending at the time 2922 * of the PMU interrupt. PEBS counters must only be processed 2923 * via the drain_pebs() calls and not via the regular sample 2924 * processing loop coming after that the function, otherwise 2925 * phony regular samples may be generated in the sampling buffer 2926 * not marked with the EXACT tag. Another possibility is to have 2927 * one PEBS event and at least one non-PEBS event which overflows 2928 * while PEBS has armed. In this case, bit 62 of GLOBAL_STATUS will 2929 * not be set, yet the overflow status bit for the PEBS counter will 2930 * be on Skylake. 2931 * 2932 * To avoid this problem, we systematically ignore the PEBS-enabled 2933 * counters from the GLOBAL_STATUS mask and we always process PEBS 2934 * events via drain_pebs(). 2935 */ 2936 status &= ~(cpuc->pebs_enabled & x86_pmu.pebs_capable); 2937 2938 /* 2939 * PEBS overflow sets bit 62 in the global status register 2940 */ 2941 if (__test_and_clear_bit(GLOBAL_STATUS_BUFFER_OVF_BIT, (unsigned long *)&status)) { 2942 u64 pebs_enabled = cpuc->pebs_enabled; 2943 2944 handled++; 2945 x86_pmu_handle_guest_pebs(regs, &data); 2946 x86_pmu.drain_pebs(regs, &data); 2947 status &= intel_ctrl | GLOBAL_STATUS_TRACE_TOPAPMI; 2948 2949 /* 2950 * PMI throttle may be triggered, which stops the PEBS event. 2951 * Although cpuc->pebs_enabled is updated accordingly, the 2952 * MSR_IA32_PEBS_ENABLE is not updated. Because the 2953 * cpuc->enabled has been forced to 0 in PMI. 2954 * Update the MSR if pebs_enabled is changed. 2955 */ 2956 if (pebs_enabled != cpuc->pebs_enabled) 2957 wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled); 2958 } 2959 2960 /* 2961 * Intel PT 2962 */ 2963 if (__test_and_clear_bit(GLOBAL_STATUS_TRACE_TOPAPMI_BIT, (unsigned long *)&status)) { 2964 handled++; 2965 if (!perf_guest_handle_intel_pt_intr()) 2966 intel_pt_interrupt(); 2967 } 2968 2969 /* 2970 * Intel Perf metrics 2971 */ 2972 if (__test_and_clear_bit(GLOBAL_STATUS_PERF_METRICS_OVF_BIT, (unsigned long *)&status)) { 2973 handled++; 2974 if (x86_pmu.update_topdown_event) 2975 x86_pmu.update_topdown_event(NULL); 2976 } 2977 2978 /* 2979 * Checkpointed counters can lead to 'spurious' PMIs because the 2980 * rollback caused by the PMI will have cleared the overflow status 2981 * bit. Therefore always force probe these counters. 2982 */ 2983 status |= cpuc->intel_cp_status; 2984 2985 for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) { 2986 struct perf_event *event = cpuc->events[bit]; 2987 2988 handled++; 2989 2990 if (!test_bit(bit, cpuc->active_mask)) 2991 continue; 2992 2993 if (!intel_pmu_save_and_restart(event)) 2994 continue; 2995 2996 perf_sample_data_init(&data, 0, event->hw.last_period); 2997 2998 if (has_branch_stack(event)) 2999 data.br_stack = &cpuc->lbr_stack; 3000 3001 if (perf_event_overflow(event, &data, regs)) 3002 x86_pmu_stop(event, 0); 3003 } 3004 3005 return handled; 3006 } 3007 3008 /* 3009 * This handler is triggered by the local APIC, so the APIC IRQ handling 3010 * rules apply: 3011 */ 3012 static int intel_pmu_handle_irq(struct pt_regs *regs) 3013 { 3014 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 3015 bool late_ack = hybrid_bit(cpuc->pmu, late_ack); 3016 bool mid_ack = hybrid_bit(cpuc->pmu, mid_ack); 3017 int loops; 3018 u64 status; 3019 int handled; 3020 int pmu_enabled; 3021 3022 /* 3023 * Save the PMU state. 3024 * It needs to be restored when leaving the handler. 3025 */ 3026 pmu_enabled = cpuc->enabled; 3027 /* 3028 * In general, the early ACK is only applied for old platforms. 3029 * For the big core starts from Haswell, the late ACK should be 3030 * applied. 3031 * For the small core after Tremont, we have to do the ACK right 3032 * before re-enabling counters, which is in the middle of the 3033 * NMI handler. 3034 */ 3035 if (!late_ack && !mid_ack) 3036 apic_write(APIC_LVTPC, APIC_DM_NMI); 3037 intel_bts_disable_local(); 3038 cpuc->enabled = 0; 3039 __intel_pmu_disable_all(true); 3040 handled = intel_pmu_drain_bts_buffer(); 3041 handled += intel_bts_interrupt(); 3042 status = intel_pmu_get_status(); 3043 if (!status) 3044 goto done; 3045 3046 loops = 0; 3047 again: 3048 intel_pmu_lbr_read(); 3049 intel_pmu_ack_status(status); 3050 if (++loops > 100) { 3051 static bool warned; 3052 3053 if (!warned) { 3054 WARN(1, "perfevents: irq loop stuck!\n"); 3055 perf_event_print_debug(); 3056 warned = true; 3057 } 3058 intel_pmu_reset(); 3059 goto done; 3060 } 3061 3062 handled += handle_pmi_common(regs, status); 3063 3064 /* 3065 * Repeat if there is more work to be done: 3066 */ 3067 status = intel_pmu_get_status(); 3068 if (status) 3069 goto again; 3070 3071 done: 3072 if (mid_ack) 3073 apic_write(APIC_LVTPC, APIC_DM_NMI); 3074 /* Only restore PMU state when it's active. See x86_pmu_disable(). */ 3075 cpuc->enabled = pmu_enabled; 3076 if (pmu_enabled) 3077 __intel_pmu_enable_all(0, true); 3078 intel_bts_enable_local(); 3079 3080 /* 3081 * Only unmask the NMI after the overflow counters 3082 * have been reset. This avoids spurious NMIs on 3083 * Haswell CPUs. 3084 */ 3085 if (late_ack) 3086 apic_write(APIC_LVTPC, APIC_DM_NMI); 3087 return handled; 3088 } 3089 3090 static struct event_constraint * 3091 intel_bts_constraints(struct perf_event *event) 3092 { 3093 if (unlikely(intel_pmu_has_bts(event))) 3094 return &bts_constraint; 3095 3096 return NULL; 3097 } 3098 3099 /* 3100 * Note: matches a fake event, like Fixed2. 3101 */ 3102 static struct event_constraint * 3103 intel_vlbr_constraints(struct perf_event *event) 3104 { 3105 struct event_constraint *c = &vlbr_constraint; 3106 3107 if (unlikely(constraint_match(c, event->hw.config))) { 3108 event->hw.flags |= c->flags; 3109 return c; 3110 } 3111 3112 return NULL; 3113 } 3114 3115 static int intel_alt_er(struct cpu_hw_events *cpuc, 3116 int idx, u64 config) 3117 { 3118 struct extra_reg *extra_regs = hybrid(cpuc->pmu, extra_regs); 3119 int alt_idx = idx; 3120 3121 if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1)) 3122 return idx; 3123 3124 if (idx == EXTRA_REG_RSP_0) 3125 alt_idx = EXTRA_REG_RSP_1; 3126 3127 if (idx == EXTRA_REG_RSP_1) 3128 alt_idx = EXTRA_REG_RSP_0; 3129 3130 if (config & ~extra_regs[alt_idx].valid_mask) 3131 return idx; 3132 3133 return alt_idx; 3134 } 3135 3136 static void intel_fixup_er(struct perf_event *event, int idx) 3137 { 3138 struct extra_reg *extra_regs = hybrid(event->pmu, extra_regs); 3139 event->hw.extra_reg.idx = idx; 3140 3141 if (idx == EXTRA_REG_RSP_0) { 3142 event->hw.config &= ~INTEL_ARCH_EVENT_MASK; 3143 event->hw.config |= extra_regs[EXTRA_REG_RSP_0].event; 3144 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0; 3145 } else if (idx == EXTRA_REG_RSP_1) { 3146 event->hw.config &= ~INTEL_ARCH_EVENT_MASK; 3147 event->hw.config |= extra_regs[EXTRA_REG_RSP_1].event; 3148 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1; 3149 } 3150 } 3151 3152 /* 3153 * manage allocation of shared extra msr for certain events 3154 * 3155 * sharing can be: 3156 * per-cpu: to be shared between the various events on a single PMU 3157 * per-core: per-cpu + shared by HT threads 3158 */ 3159 static struct event_constraint * 3160 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc, 3161 struct perf_event *event, 3162 struct hw_perf_event_extra *reg) 3163 { 3164 struct event_constraint *c = &emptyconstraint; 3165 struct er_account *era; 3166 unsigned long flags; 3167 int idx = reg->idx; 3168 3169 /* 3170 * reg->alloc can be set due to existing state, so for fake cpuc we 3171 * need to ignore this, otherwise we might fail to allocate proper fake 3172 * state for this extra reg constraint. Also see the comment below. 3173 */ 3174 if (reg->alloc && !cpuc->is_fake) 3175 return NULL; /* call x86_get_event_constraint() */ 3176 3177 again: 3178 era = &cpuc->shared_regs->regs[idx]; 3179 /* 3180 * we use spin_lock_irqsave() to avoid lockdep issues when 3181 * passing a fake cpuc 3182 */ 3183 raw_spin_lock_irqsave(&era->lock, flags); 3184 3185 if (!atomic_read(&era->ref) || era->config == reg->config) { 3186 3187 /* 3188 * If its a fake cpuc -- as per validate_{group,event}() we 3189 * shouldn't touch event state and we can avoid doing so 3190 * since both will only call get_event_constraints() once 3191 * on each event, this avoids the need for reg->alloc. 3192 * 3193 * Not doing the ER fixup will only result in era->reg being 3194 * wrong, but since we won't actually try and program hardware 3195 * this isn't a problem either. 3196 */ 3197 if (!cpuc->is_fake) { 3198 if (idx != reg->idx) 3199 intel_fixup_er(event, idx); 3200 3201 /* 3202 * x86_schedule_events() can call get_event_constraints() 3203 * multiple times on events in the case of incremental 3204 * scheduling(). reg->alloc ensures we only do the ER 3205 * allocation once. 3206 */ 3207 reg->alloc = 1; 3208 } 3209 3210 /* lock in msr value */ 3211 era->config = reg->config; 3212 era->reg = reg->reg; 3213 3214 /* one more user */ 3215 atomic_inc(&era->ref); 3216 3217 /* 3218 * need to call x86_get_event_constraint() 3219 * to check if associated event has constraints 3220 */ 3221 c = NULL; 3222 } else { 3223 idx = intel_alt_er(cpuc, idx, reg->config); 3224 if (idx != reg->idx) { 3225 raw_spin_unlock_irqrestore(&era->lock, flags); 3226 goto again; 3227 } 3228 } 3229 raw_spin_unlock_irqrestore(&era->lock, flags); 3230 3231 return c; 3232 } 3233 3234 static void 3235 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc, 3236 struct hw_perf_event_extra *reg) 3237 { 3238 struct er_account *era; 3239 3240 /* 3241 * Only put constraint if extra reg was actually allocated. Also takes 3242 * care of event which do not use an extra shared reg. 3243 * 3244 * Also, if this is a fake cpuc we shouldn't touch any event state 3245 * (reg->alloc) and we don't care about leaving inconsistent cpuc state 3246 * either since it'll be thrown out. 3247 */ 3248 if (!reg->alloc || cpuc->is_fake) 3249 return; 3250 3251 era = &cpuc->shared_regs->regs[reg->idx]; 3252 3253 /* one fewer user */ 3254 atomic_dec(&era->ref); 3255 3256 /* allocate again next time */ 3257 reg->alloc = 0; 3258 } 3259 3260 static struct event_constraint * 3261 intel_shared_regs_constraints(struct cpu_hw_events *cpuc, 3262 struct perf_event *event) 3263 { 3264 struct event_constraint *c = NULL, *d; 3265 struct hw_perf_event_extra *xreg, *breg; 3266 3267 xreg = &event->hw.extra_reg; 3268 if (xreg->idx != EXTRA_REG_NONE) { 3269 c = __intel_shared_reg_get_constraints(cpuc, event, xreg); 3270 if (c == &emptyconstraint) 3271 return c; 3272 } 3273 breg = &event->hw.branch_reg; 3274 if (breg->idx != EXTRA_REG_NONE) { 3275 d = __intel_shared_reg_get_constraints(cpuc, event, breg); 3276 if (d == &emptyconstraint) { 3277 __intel_shared_reg_put_constraints(cpuc, xreg); 3278 c = d; 3279 } 3280 } 3281 return c; 3282 } 3283 3284 struct event_constraint * 3285 x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx, 3286 struct perf_event *event) 3287 { 3288 struct event_constraint *event_constraints = hybrid(cpuc->pmu, event_constraints); 3289 struct event_constraint *c; 3290 3291 if (event_constraints) { 3292 for_each_event_constraint(c, event_constraints) { 3293 if (constraint_match(c, event->hw.config)) { 3294 event->hw.flags |= c->flags; 3295 return c; 3296 } 3297 } 3298 } 3299 3300 return &hybrid_var(cpuc->pmu, unconstrained); 3301 } 3302 3303 static struct event_constraint * 3304 __intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx, 3305 struct perf_event *event) 3306 { 3307 struct event_constraint *c; 3308 3309 c = intel_vlbr_constraints(event); 3310 if (c) 3311 return c; 3312 3313 c = intel_bts_constraints(event); 3314 if (c) 3315 return c; 3316 3317 c = intel_shared_regs_constraints(cpuc, event); 3318 if (c) 3319 return c; 3320 3321 c = intel_pebs_constraints(event); 3322 if (c) 3323 return c; 3324 3325 return x86_get_event_constraints(cpuc, idx, event); 3326 } 3327 3328 static void 3329 intel_start_scheduling(struct cpu_hw_events *cpuc) 3330 { 3331 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs; 3332 struct intel_excl_states *xl; 3333 int tid = cpuc->excl_thread_id; 3334 3335 /* 3336 * nothing needed if in group validation mode 3337 */ 3338 if (cpuc->is_fake || !is_ht_workaround_enabled()) 3339 return; 3340 3341 /* 3342 * no exclusion needed 3343 */ 3344 if (WARN_ON_ONCE(!excl_cntrs)) 3345 return; 3346 3347 xl = &excl_cntrs->states[tid]; 3348 3349 xl->sched_started = true; 3350 /* 3351 * lock shared state until we are done scheduling 3352 * in stop_event_scheduling() 3353 * makes scheduling appear as a transaction 3354 */ 3355 raw_spin_lock(&excl_cntrs->lock); 3356 } 3357 3358 static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr) 3359 { 3360 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs; 3361 struct event_constraint *c = cpuc->event_constraint[idx]; 3362 struct intel_excl_states *xl; 3363 int tid = cpuc->excl_thread_id; 3364 3365 if (cpuc->is_fake || !is_ht_workaround_enabled()) 3366 return; 3367 3368 if (WARN_ON_ONCE(!excl_cntrs)) 3369 return; 3370 3371 if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) 3372 return; 3373 3374 xl = &excl_cntrs->states[tid]; 3375 3376 lockdep_assert_held(&excl_cntrs->lock); 3377 3378 if (c->flags & PERF_X86_EVENT_EXCL) 3379 xl->state[cntr] = INTEL_EXCL_EXCLUSIVE; 3380 else 3381 xl->state[cntr] = INTEL_EXCL_SHARED; 3382 } 3383 3384 static void 3385 intel_stop_scheduling(struct cpu_hw_events *cpuc) 3386 { 3387 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs; 3388 struct intel_excl_states *xl; 3389 int tid = cpuc->excl_thread_id; 3390 3391 /* 3392 * nothing needed if in group validation mode 3393 */ 3394 if (cpuc->is_fake || !is_ht_workaround_enabled()) 3395 return; 3396 /* 3397 * no exclusion needed 3398 */ 3399 if (WARN_ON_ONCE(!excl_cntrs)) 3400 return; 3401 3402 xl = &excl_cntrs->states[tid]; 3403 3404 xl->sched_started = false; 3405 /* 3406 * release shared state lock (acquired in intel_start_scheduling()) 3407 */ 3408 raw_spin_unlock(&excl_cntrs->lock); 3409 } 3410 3411 static struct event_constraint * 3412 dyn_constraint(struct cpu_hw_events *cpuc, struct event_constraint *c, int idx) 3413 { 3414 WARN_ON_ONCE(!cpuc->constraint_list); 3415 3416 if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) { 3417 struct event_constraint *cx; 3418 3419 /* 3420 * grab pre-allocated constraint entry 3421 */ 3422 cx = &cpuc->constraint_list[idx]; 3423 3424 /* 3425 * initialize dynamic constraint 3426 * with static constraint 3427 */ 3428 *cx = *c; 3429 3430 /* 3431 * mark constraint as dynamic 3432 */ 3433 cx->flags |= PERF_X86_EVENT_DYNAMIC; 3434 c = cx; 3435 } 3436 3437 return c; 3438 } 3439 3440 static struct event_constraint * 3441 intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event, 3442 int idx, struct event_constraint *c) 3443 { 3444 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs; 3445 struct intel_excl_states *xlo; 3446 int tid = cpuc->excl_thread_id; 3447 int is_excl, i, w; 3448 3449 /* 3450 * validating a group does not require 3451 * enforcing cross-thread exclusion 3452 */ 3453 if (cpuc->is_fake || !is_ht_workaround_enabled()) 3454 return c; 3455 3456 /* 3457 * no exclusion needed 3458 */ 3459 if (WARN_ON_ONCE(!excl_cntrs)) 3460 return c; 3461 3462 /* 3463 * because we modify the constraint, we need 3464 * to make a copy. Static constraints come 3465 * from static const tables. 3466 * 3467 * only needed when constraint has not yet 3468 * been cloned (marked dynamic) 3469 */ 3470 c = dyn_constraint(cpuc, c, idx); 3471 3472 /* 3473 * From here on, the constraint is dynamic. 3474 * Either it was just allocated above, or it 3475 * was allocated during a earlier invocation 3476 * of this function 3477 */ 3478 3479 /* 3480 * state of sibling HT 3481 */ 3482 xlo = &excl_cntrs->states[tid ^ 1]; 3483 3484 /* 3485 * event requires exclusive counter access 3486 * across HT threads 3487 */ 3488 is_excl = c->flags & PERF_X86_EVENT_EXCL; 3489 if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) { 3490 event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT; 3491 if (!cpuc->n_excl++) 3492 WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1); 3493 } 3494 3495 /* 3496 * Modify static constraint with current dynamic 3497 * state of thread 3498 * 3499 * EXCLUSIVE: sibling counter measuring exclusive event 3500 * SHARED : sibling counter measuring non-exclusive event 3501 * UNUSED : sibling counter unused 3502 */ 3503 w = c->weight; 3504 for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) { 3505 /* 3506 * exclusive event in sibling counter 3507 * our corresponding counter cannot be used 3508 * regardless of our event 3509 */ 3510 if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE) { 3511 __clear_bit(i, c->idxmsk); 3512 w--; 3513 continue; 3514 } 3515 /* 3516 * if measuring an exclusive event, sibling 3517 * measuring non-exclusive, then counter cannot 3518 * be used 3519 */ 3520 if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED) { 3521 __clear_bit(i, c->idxmsk); 3522 w--; 3523 continue; 3524 } 3525 } 3526 3527 /* 3528 * if we return an empty mask, then switch 3529 * back to static empty constraint to avoid 3530 * the cost of freeing later on 3531 */ 3532 if (!w) 3533 c = &emptyconstraint; 3534 3535 c->weight = w; 3536 3537 return c; 3538 } 3539 3540 static struct event_constraint * 3541 intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx, 3542 struct perf_event *event) 3543 { 3544 struct event_constraint *c1, *c2; 3545 3546 c1 = cpuc->event_constraint[idx]; 3547 3548 /* 3549 * first time only 3550 * - static constraint: no change across incremental scheduling calls 3551 * - dynamic constraint: handled by intel_get_excl_constraints() 3552 */ 3553 c2 = __intel_get_event_constraints(cpuc, idx, event); 3554 if (c1) { 3555 WARN_ON_ONCE(!(c1->flags & PERF_X86_EVENT_DYNAMIC)); 3556 bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX); 3557 c1->weight = c2->weight; 3558 c2 = c1; 3559 } 3560 3561 if (cpuc->excl_cntrs) 3562 return intel_get_excl_constraints(cpuc, event, idx, c2); 3563 3564 return c2; 3565 } 3566 3567 static void intel_put_excl_constraints(struct cpu_hw_events *cpuc, 3568 struct perf_event *event) 3569 { 3570 struct hw_perf_event *hwc = &event->hw; 3571 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs; 3572 int tid = cpuc->excl_thread_id; 3573 struct intel_excl_states *xl; 3574 3575 /* 3576 * nothing needed if in group validation mode 3577 */ 3578 if (cpuc->is_fake) 3579 return; 3580 3581 if (WARN_ON_ONCE(!excl_cntrs)) 3582 return; 3583 3584 if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) { 3585 hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT; 3586 if (!--cpuc->n_excl) 3587 WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0); 3588 } 3589 3590 /* 3591 * If event was actually assigned, then mark the counter state as 3592 * unused now. 3593 */ 3594 if (hwc->idx >= 0) { 3595 xl = &excl_cntrs->states[tid]; 3596 3597 /* 3598 * put_constraint may be called from x86_schedule_events() 3599 * which already has the lock held so here make locking 3600 * conditional. 3601 */ 3602 if (!xl->sched_started) 3603 raw_spin_lock(&excl_cntrs->lock); 3604 3605 xl->state[hwc->idx] = INTEL_EXCL_UNUSED; 3606 3607 if (!xl->sched_started) 3608 raw_spin_unlock(&excl_cntrs->lock); 3609 } 3610 } 3611 3612 static void 3613 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc, 3614 struct perf_event *event) 3615 { 3616 struct hw_perf_event_extra *reg; 3617 3618 reg = &event->hw.extra_reg; 3619 if (reg->idx != EXTRA_REG_NONE) 3620 __intel_shared_reg_put_constraints(cpuc, reg); 3621 3622 reg = &event->hw.branch_reg; 3623 if (reg->idx != EXTRA_REG_NONE) 3624 __intel_shared_reg_put_constraints(cpuc, reg); 3625 } 3626 3627 static void intel_put_event_constraints(struct cpu_hw_events *cpuc, 3628 struct perf_event *event) 3629 { 3630 intel_put_shared_regs_event_constraints(cpuc, event); 3631 3632 /* 3633 * is PMU has exclusive counter restrictions, then 3634 * all events are subject to and must call the 3635 * put_excl_constraints() routine 3636 */ 3637 if (cpuc->excl_cntrs) 3638 intel_put_excl_constraints(cpuc, event); 3639 } 3640 3641 static void intel_pebs_aliases_core2(struct perf_event *event) 3642 { 3643 if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) { 3644 /* 3645 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P 3646 * (0x003c) so that we can use it with PEBS. 3647 * 3648 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't 3649 * PEBS capable. However we can use INST_RETIRED.ANY_P 3650 * (0x00c0), which is a PEBS capable event, to get the same 3651 * count. 3652 * 3653 * INST_RETIRED.ANY_P counts the number of cycles that retires 3654 * CNTMASK instructions. By setting CNTMASK to a value (16) 3655 * larger than the maximum number of instructions that can be 3656 * retired per cycle (4) and then inverting the condition, we 3657 * count all cycles that retire 16 or less instructions, which 3658 * is every cycle. 3659 * 3660 * Thereby we gain a PEBS capable cycle counter. 3661 */ 3662 u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16); 3663 3664 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK); 3665 event->hw.config = alt_config; 3666 } 3667 } 3668 3669 static void intel_pebs_aliases_snb(struct perf_event *event) 3670 { 3671 if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) { 3672 /* 3673 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P 3674 * (0x003c) so that we can use it with PEBS. 3675 * 3676 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't 3677 * PEBS capable. However we can use UOPS_RETIRED.ALL 3678 * (0x01c2), which is a PEBS capable event, to get the same 3679 * count. 3680 * 3681 * UOPS_RETIRED.ALL counts the number of cycles that retires 3682 * CNTMASK micro-ops. By setting CNTMASK to a value (16) 3683 * larger than the maximum number of micro-ops that can be 3684 * retired per cycle (4) and then inverting the condition, we 3685 * count all cycles that retire 16 or less micro-ops, which 3686 * is every cycle. 3687 * 3688 * Thereby we gain a PEBS capable cycle counter. 3689 */ 3690 u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16); 3691 3692 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK); 3693 event->hw.config = alt_config; 3694 } 3695 } 3696 3697 static void intel_pebs_aliases_precdist(struct perf_event *event) 3698 { 3699 if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) { 3700 /* 3701 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P 3702 * (0x003c) so that we can use it with PEBS. 3703 * 3704 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't 3705 * PEBS capable. However we can use INST_RETIRED.PREC_DIST 3706 * (0x01c0), which is a PEBS capable event, to get the same 3707 * count. 3708 * 3709 * The PREC_DIST event has special support to minimize sample 3710 * shadowing effects. One drawback is that it can be 3711 * only programmed on counter 1, but that seems like an 3712 * acceptable trade off. 3713 */ 3714 u64 alt_config = X86_CONFIG(.event=0xc0, .umask=0x01, .inv=1, .cmask=16); 3715 3716 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK); 3717 event->hw.config = alt_config; 3718 } 3719 } 3720 3721 static void intel_pebs_aliases_ivb(struct perf_event *event) 3722 { 3723 if (event->attr.precise_ip < 3) 3724 return intel_pebs_aliases_snb(event); 3725 return intel_pebs_aliases_precdist(event); 3726 } 3727 3728 static void intel_pebs_aliases_skl(struct perf_event *event) 3729 { 3730 if (event->attr.precise_ip < 3) 3731 return intel_pebs_aliases_core2(event); 3732 return intel_pebs_aliases_precdist(event); 3733 } 3734 3735 static unsigned long intel_pmu_large_pebs_flags(struct perf_event *event) 3736 { 3737 unsigned long flags = x86_pmu.large_pebs_flags; 3738 3739 if (event->attr.use_clockid) 3740 flags &= ~PERF_SAMPLE_TIME; 3741 if (!event->attr.exclude_kernel) 3742 flags &= ~PERF_SAMPLE_REGS_USER; 3743 if (event->attr.sample_regs_user & ~PEBS_GP_REGS) 3744 flags &= ~(PERF_SAMPLE_REGS_USER | PERF_SAMPLE_REGS_INTR); 3745 return flags; 3746 } 3747 3748 static int intel_pmu_bts_config(struct perf_event *event) 3749 { 3750 struct perf_event_attr *attr = &event->attr; 3751 3752 if (unlikely(intel_pmu_has_bts(event))) { 3753 /* BTS is not supported by this architecture. */ 3754 if (!x86_pmu.bts_active) 3755 return -EOPNOTSUPP; 3756 3757 /* BTS is currently only allowed for user-mode. */ 3758 if (!attr->exclude_kernel) 3759 return -EOPNOTSUPP; 3760 3761 /* BTS is not allowed for precise events. */ 3762 if (attr->precise_ip) 3763 return -EOPNOTSUPP; 3764 3765 /* disallow bts if conflicting events are present */ 3766 if (x86_add_exclusive(x86_lbr_exclusive_lbr)) 3767 return -EBUSY; 3768 3769 event->destroy = hw_perf_lbr_event_destroy; 3770 } 3771 3772 return 0; 3773 } 3774 3775 static int core_pmu_hw_config(struct perf_event *event) 3776 { 3777 int ret = x86_pmu_hw_config(event); 3778 3779 if (ret) 3780 return ret; 3781 3782 return intel_pmu_bts_config(event); 3783 } 3784 3785 #define INTEL_TD_METRIC_AVAILABLE_MAX (INTEL_TD_METRIC_RETIRING + \ 3786 ((x86_pmu.num_topdown_events - 1) << 8)) 3787 3788 static bool is_available_metric_event(struct perf_event *event) 3789 { 3790 return is_metric_event(event) && 3791 event->attr.config <= INTEL_TD_METRIC_AVAILABLE_MAX; 3792 } 3793 3794 static inline bool is_mem_loads_event(struct perf_event *event) 3795 { 3796 return (event->attr.config & INTEL_ARCH_EVENT_MASK) == X86_CONFIG(.event=0xcd, .umask=0x01); 3797 } 3798 3799 static inline bool is_mem_loads_aux_event(struct perf_event *event) 3800 { 3801 return (event->attr.config & INTEL_ARCH_EVENT_MASK) == X86_CONFIG(.event=0x03, .umask=0x82); 3802 } 3803 3804 static inline bool require_mem_loads_aux_event(struct perf_event *event) 3805 { 3806 if (!(x86_pmu.flags & PMU_FL_MEM_LOADS_AUX)) 3807 return false; 3808 3809 if (is_hybrid()) 3810 return hybrid_pmu(event->pmu)->cpu_type == hybrid_big; 3811 3812 return true; 3813 } 3814 3815 static inline bool intel_pmu_has_cap(struct perf_event *event, int idx) 3816 { 3817 union perf_capabilities *intel_cap = &hybrid(event->pmu, intel_cap); 3818 3819 return test_bit(idx, (unsigned long *)&intel_cap->capabilities); 3820 } 3821 3822 static int intel_pmu_hw_config(struct perf_event *event) 3823 { 3824 int ret = x86_pmu_hw_config(event); 3825 3826 if (ret) 3827 return ret; 3828 3829 ret = intel_pmu_bts_config(event); 3830 if (ret) 3831 return ret; 3832 3833 if (event->attr.precise_ip) { 3834 if ((event->attr.config & INTEL_ARCH_EVENT_MASK) == INTEL_FIXED_VLBR_EVENT) 3835 return -EINVAL; 3836 3837 if (!(event->attr.freq || (event->attr.wakeup_events && !event->attr.watermark))) { 3838 event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD; 3839 if (!(event->attr.sample_type & 3840 ~intel_pmu_large_pebs_flags(event))) { 3841 event->hw.flags |= PERF_X86_EVENT_LARGE_PEBS; 3842 event->attach_state |= PERF_ATTACH_SCHED_CB; 3843 } 3844 } 3845 if (x86_pmu.pebs_aliases) 3846 x86_pmu.pebs_aliases(event); 3847 3848 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 3849 event->attr.sample_type |= __PERF_SAMPLE_CALLCHAIN_EARLY; 3850 } 3851 3852 if (needs_branch_stack(event)) { 3853 ret = intel_pmu_setup_lbr_filter(event); 3854 if (ret) 3855 return ret; 3856 event->attach_state |= PERF_ATTACH_SCHED_CB; 3857 3858 /* 3859 * BTS is set up earlier in this path, so don't account twice 3860 */ 3861 if (!unlikely(intel_pmu_has_bts(event))) { 3862 /* disallow lbr if conflicting events are present */ 3863 if (x86_add_exclusive(x86_lbr_exclusive_lbr)) 3864 return -EBUSY; 3865 3866 event->destroy = hw_perf_lbr_event_destroy; 3867 } 3868 } 3869 3870 if (event->attr.aux_output) { 3871 if (!event->attr.precise_ip) 3872 return -EINVAL; 3873 3874 event->hw.flags |= PERF_X86_EVENT_PEBS_VIA_PT; 3875 } 3876 3877 if ((event->attr.type == PERF_TYPE_HARDWARE) || 3878 (event->attr.type == PERF_TYPE_HW_CACHE)) 3879 return 0; 3880 3881 /* 3882 * Config Topdown slots and metric events 3883 * 3884 * The slots event on Fixed Counter 3 can support sampling, 3885 * which will be handled normally in x86_perf_event_update(). 3886 * 3887 * Metric events don't support sampling and require being paired 3888 * with a slots event as group leader. When the slots event 3889 * is used in a metrics group, it too cannot support sampling. 3890 */ 3891 if (intel_pmu_has_cap(event, PERF_CAP_METRICS_IDX) && is_topdown_event(event)) { 3892 if (event->attr.config1 || event->attr.config2) 3893 return -EINVAL; 3894 3895 /* 3896 * The TopDown metrics events and slots event don't 3897 * support any filters. 3898 */ 3899 if (event->attr.config & X86_ALL_EVENT_FLAGS) 3900 return -EINVAL; 3901 3902 if (is_available_metric_event(event)) { 3903 struct perf_event *leader = event->group_leader; 3904 3905 /* The metric events don't support sampling. */ 3906 if (is_sampling_event(event)) 3907 return -EINVAL; 3908 3909 /* The metric events require a slots group leader. */ 3910 if (!is_slots_event(leader)) 3911 return -EINVAL; 3912 3913 /* 3914 * The leader/SLOTS must not be a sampling event for 3915 * metric use; hardware requires it starts at 0 when used 3916 * in conjunction with MSR_PERF_METRICS. 3917 */ 3918 if (is_sampling_event(leader)) 3919 return -EINVAL; 3920 3921 event->event_caps |= PERF_EV_CAP_SIBLING; 3922 /* 3923 * Only once we have a METRICs sibling do we 3924 * need TopDown magic. 3925 */ 3926 leader->hw.flags |= PERF_X86_EVENT_TOPDOWN; 3927 event->hw.flags |= PERF_X86_EVENT_TOPDOWN; 3928 } 3929 } 3930 3931 /* 3932 * The load latency event X86_CONFIG(.event=0xcd, .umask=0x01) on SPR 3933 * doesn't function quite right. As a work-around it needs to always be 3934 * co-scheduled with a auxiliary event X86_CONFIG(.event=0x03, .umask=0x82). 3935 * The actual count of this second event is irrelevant it just needs 3936 * to be active to make the first event function correctly. 3937 * 3938 * In a group, the auxiliary event must be in front of the load latency 3939 * event. The rule is to simplify the implementation of the check. 3940 * That's because perf cannot have a complete group at the moment. 3941 */ 3942 if (require_mem_loads_aux_event(event) && 3943 (event->attr.sample_type & PERF_SAMPLE_DATA_SRC) && 3944 is_mem_loads_event(event)) { 3945 struct perf_event *leader = event->group_leader; 3946 struct perf_event *sibling = NULL; 3947 3948 if (!is_mem_loads_aux_event(leader)) { 3949 for_each_sibling_event(sibling, leader) { 3950 if (is_mem_loads_aux_event(sibling)) 3951 break; 3952 } 3953 if (list_entry_is_head(sibling, &leader->sibling_list, sibling_list)) 3954 return -ENODATA; 3955 } 3956 } 3957 3958 if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY)) 3959 return 0; 3960 3961 if (x86_pmu.version < 3) 3962 return -EINVAL; 3963 3964 ret = perf_allow_cpu(&event->attr); 3965 if (ret) 3966 return ret; 3967 3968 event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY; 3969 3970 return 0; 3971 } 3972 3973 /* 3974 * Currently, the only caller of this function is the atomic_switch_perf_msrs(). 3975 * The host perf conext helps to prepare the values of the real hardware for 3976 * a set of msrs that need to be switched atomically in a vmx transaction. 3977 * 3978 * For example, the pseudocode needed to add a new msr should look like: 3979 * 3980 * arr[(*nr)++] = (struct perf_guest_switch_msr){ 3981 * .msr = the hardware msr address, 3982 * .host = the value the hardware has when it doesn't run a guest, 3983 * .guest = the value the hardware has when it runs a guest, 3984 * }; 3985 * 3986 * These values have nothing to do with the emulated values the guest sees 3987 * when it uses {RD,WR}MSR, which should be handled by the KVM context, 3988 * specifically in the intel_pmu_{get,set}_msr(). 3989 */ 3990 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr, void *data) 3991 { 3992 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 3993 struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs; 3994 struct kvm_pmu *kvm_pmu = (struct kvm_pmu *)data; 3995 u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl); 3996 u64 pebs_mask = cpuc->pebs_enabled & x86_pmu.pebs_capable; 3997 int global_ctrl, pebs_enable; 3998 3999 *nr = 0; 4000 global_ctrl = (*nr)++; 4001 arr[global_ctrl] = (struct perf_guest_switch_msr){ 4002 .msr = MSR_CORE_PERF_GLOBAL_CTRL, 4003 .host = intel_ctrl & ~cpuc->intel_ctrl_guest_mask, 4004 .guest = intel_ctrl & (~cpuc->intel_ctrl_host_mask | ~pebs_mask), 4005 }; 4006 4007 if (!x86_pmu.pebs) 4008 return arr; 4009 4010 /* 4011 * If PMU counter has PEBS enabled it is not enough to 4012 * disable counter on a guest entry since PEBS memory 4013 * write can overshoot guest entry and corrupt guest 4014 * memory. Disabling PEBS solves the problem. 4015 * 4016 * Don't do this if the CPU already enforces it. 4017 */ 4018 if (x86_pmu.pebs_no_isolation) { 4019 arr[(*nr)++] = (struct perf_guest_switch_msr){ 4020 .msr = MSR_IA32_PEBS_ENABLE, 4021 .host = cpuc->pebs_enabled, 4022 .guest = 0, 4023 }; 4024 return arr; 4025 } 4026 4027 if (!kvm_pmu || !x86_pmu.pebs_ept) 4028 return arr; 4029 4030 arr[(*nr)++] = (struct perf_guest_switch_msr){ 4031 .msr = MSR_IA32_DS_AREA, 4032 .host = (unsigned long)cpuc->ds, 4033 .guest = kvm_pmu->ds_area, 4034 }; 4035 4036 if (x86_pmu.intel_cap.pebs_baseline) { 4037 arr[(*nr)++] = (struct perf_guest_switch_msr){ 4038 .msr = MSR_PEBS_DATA_CFG, 4039 .host = cpuc->pebs_data_cfg, 4040 .guest = kvm_pmu->pebs_data_cfg, 4041 }; 4042 } 4043 4044 pebs_enable = (*nr)++; 4045 arr[pebs_enable] = (struct perf_guest_switch_msr){ 4046 .msr = MSR_IA32_PEBS_ENABLE, 4047 .host = cpuc->pebs_enabled & ~cpuc->intel_ctrl_guest_mask, 4048 .guest = pebs_mask & ~cpuc->intel_ctrl_host_mask, 4049 }; 4050 4051 if (arr[pebs_enable].host) { 4052 /* Disable guest PEBS if host PEBS is enabled. */ 4053 arr[pebs_enable].guest = 0; 4054 } else { 4055 /* Disable guest PEBS for cross-mapped PEBS counters. */ 4056 arr[pebs_enable].guest &= ~kvm_pmu->host_cross_mapped_mask; 4057 /* Set hw GLOBAL_CTRL bits for PEBS counter when it runs for guest */ 4058 arr[global_ctrl].guest |= arr[pebs_enable].guest; 4059 } 4060 4061 return arr; 4062 } 4063 4064 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr, void *data) 4065 { 4066 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 4067 struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs; 4068 int idx; 4069 4070 for (idx = 0; idx < x86_pmu.num_counters; idx++) { 4071 struct perf_event *event = cpuc->events[idx]; 4072 4073 arr[idx].msr = x86_pmu_config_addr(idx); 4074 arr[idx].host = arr[idx].guest = 0; 4075 4076 if (!test_bit(idx, cpuc->active_mask)) 4077 continue; 4078 4079 arr[idx].host = arr[idx].guest = 4080 event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE; 4081 4082 if (event->attr.exclude_host) 4083 arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE; 4084 else if (event->attr.exclude_guest) 4085 arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE; 4086 } 4087 4088 *nr = x86_pmu.num_counters; 4089 return arr; 4090 } 4091 4092 static void core_pmu_enable_event(struct perf_event *event) 4093 { 4094 if (!event->attr.exclude_host) 4095 x86_pmu_enable_event(event); 4096 } 4097 4098 static void core_pmu_enable_all(int added) 4099 { 4100 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 4101 int idx; 4102 4103 for (idx = 0; idx < x86_pmu.num_counters; idx++) { 4104 struct hw_perf_event *hwc = &cpuc->events[idx]->hw; 4105 4106 if (!test_bit(idx, cpuc->active_mask) || 4107 cpuc->events[idx]->attr.exclude_host) 4108 continue; 4109 4110 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE); 4111 } 4112 } 4113 4114 static int hsw_hw_config(struct perf_event *event) 4115 { 4116 int ret = intel_pmu_hw_config(event); 4117 4118 if (ret) 4119 return ret; 4120 if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE)) 4121 return 0; 4122 event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED); 4123 4124 /* 4125 * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with 4126 * PEBS or in ANY thread mode. Since the results are non-sensical forbid 4127 * this combination. 4128 */ 4129 if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) && 4130 ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) || 4131 event->attr.precise_ip > 0)) 4132 return -EOPNOTSUPP; 4133 4134 if (event_is_checkpointed(event)) { 4135 /* 4136 * Sampling of checkpointed events can cause situations where 4137 * the CPU constantly aborts because of a overflow, which is 4138 * then checkpointed back and ignored. Forbid checkpointing 4139 * for sampling. 4140 * 4141 * But still allow a long sampling period, so that perf stat 4142 * from KVM works. 4143 */ 4144 if (event->attr.sample_period > 0 && 4145 event->attr.sample_period < 0x7fffffff) 4146 return -EOPNOTSUPP; 4147 } 4148 return 0; 4149 } 4150 4151 static struct event_constraint counter0_constraint = 4152 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1); 4153 4154 static struct event_constraint counter2_constraint = 4155 EVENT_CONSTRAINT(0, 0x4, 0); 4156 4157 static struct event_constraint fixed0_constraint = 4158 FIXED_EVENT_CONSTRAINT(0x00c0, 0); 4159 4160 static struct event_constraint fixed0_counter0_constraint = 4161 INTEL_ALL_EVENT_CONSTRAINT(0, 0x100000001ULL); 4162 4163 static struct event_constraint * 4164 hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx, 4165 struct perf_event *event) 4166 { 4167 struct event_constraint *c; 4168 4169 c = intel_get_event_constraints(cpuc, idx, event); 4170 4171 /* Handle special quirk on in_tx_checkpointed only in counter 2 */ 4172 if (event->hw.config & HSW_IN_TX_CHECKPOINTED) { 4173 if (c->idxmsk64 & (1U << 2)) 4174 return &counter2_constraint; 4175 return &emptyconstraint; 4176 } 4177 4178 return c; 4179 } 4180 4181 static struct event_constraint * 4182 icl_get_event_constraints(struct cpu_hw_events *cpuc, int idx, 4183 struct perf_event *event) 4184 { 4185 /* 4186 * Fixed counter 0 has less skid. 4187 * Force instruction:ppp in Fixed counter 0 4188 */ 4189 if ((event->attr.precise_ip == 3) && 4190 constraint_match(&fixed0_constraint, event->hw.config)) 4191 return &fixed0_constraint; 4192 4193 return hsw_get_event_constraints(cpuc, idx, event); 4194 } 4195 4196 static struct event_constraint * 4197 spr_get_event_constraints(struct cpu_hw_events *cpuc, int idx, 4198 struct perf_event *event) 4199 { 4200 struct event_constraint *c; 4201 4202 c = icl_get_event_constraints(cpuc, idx, event); 4203 4204 /* 4205 * The :ppp indicates the Precise Distribution (PDist) facility, which 4206 * is only supported on the GP counter 0. If a :ppp event which is not 4207 * available on the GP counter 0, error out. 4208 * Exception: Instruction PDIR is only available on the fixed counter 0. 4209 */ 4210 if ((event->attr.precise_ip == 3) && 4211 !constraint_match(&fixed0_constraint, event->hw.config)) { 4212 if (c->idxmsk64 & BIT_ULL(0)) 4213 return &counter0_constraint; 4214 4215 return &emptyconstraint; 4216 } 4217 4218 return c; 4219 } 4220 4221 static struct event_constraint * 4222 glp_get_event_constraints(struct cpu_hw_events *cpuc, int idx, 4223 struct perf_event *event) 4224 { 4225 struct event_constraint *c; 4226 4227 /* :ppp means to do reduced skid PEBS which is PMC0 only. */ 4228 if (event->attr.precise_ip == 3) 4229 return &counter0_constraint; 4230 4231 c = intel_get_event_constraints(cpuc, idx, event); 4232 4233 return c; 4234 } 4235 4236 static struct event_constraint * 4237 tnt_get_event_constraints(struct cpu_hw_events *cpuc, int idx, 4238 struct perf_event *event) 4239 { 4240 struct event_constraint *c; 4241 4242 c = intel_get_event_constraints(cpuc, idx, event); 4243 4244 /* 4245 * :ppp means to do reduced skid PEBS, 4246 * which is available on PMC0 and fixed counter 0. 4247 */ 4248 if (event->attr.precise_ip == 3) { 4249 /* Force instruction:ppp on PMC0 and Fixed counter 0 */ 4250 if (constraint_match(&fixed0_constraint, event->hw.config)) 4251 return &fixed0_counter0_constraint; 4252 4253 return &counter0_constraint; 4254 } 4255 4256 return c; 4257 } 4258 4259 static bool allow_tsx_force_abort = true; 4260 4261 static struct event_constraint * 4262 tfa_get_event_constraints(struct cpu_hw_events *cpuc, int idx, 4263 struct perf_event *event) 4264 { 4265 struct event_constraint *c = hsw_get_event_constraints(cpuc, idx, event); 4266 4267 /* 4268 * Without TFA we must not use PMC3. 4269 */ 4270 if (!allow_tsx_force_abort && test_bit(3, c->idxmsk)) { 4271 c = dyn_constraint(cpuc, c, idx); 4272 c->idxmsk64 &= ~(1ULL << 3); 4273 c->weight--; 4274 } 4275 4276 return c; 4277 } 4278 4279 static struct event_constraint * 4280 adl_get_event_constraints(struct cpu_hw_events *cpuc, int idx, 4281 struct perf_event *event) 4282 { 4283 struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu); 4284 4285 if (pmu->cpu_type == hybrid_big) 4286 return spr_get_event_constraints(cpuc, idx, event); 4287 else if (pmu->cpu_type == hybrid_small) 4288 return tnt_get_event_constraints(cpuc, idx, event); 4289 4290 WARN_ON(1); 4291 return &emptyconstraint; 4292 } 4293 4294 static int adl_hw_config(struct perf_event *event) 4295 { 4296 struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu); 4297 4298 if (pmu->cpu_type == hybrid_big) 4299 return hsw_hw_config(event); 4300 else if (pmu->cpu_type == hybrid_small) 4301 return intel_pmu_hw_config(event); 4302 4303 WARN_ON(1); 4304 return -EOPNOTSUPP; 4305 } 4306 4307 static u8 adl_get_hybrid_cpu_type(void) 4308 { 4309 return hybrid_big; 4310 } 4311 4312 /* 4313 * Broadwell: 4314 * 4315 * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared 4316 * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine 4317 * the two to enforce a minimum period of 128 (the smallest value that has bits 4318 * 0-5 cleared and >= 100). 4319 * 4320 * Because of how the code in x86_perf_event_set_period() works, the truncation 4321 * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period 4322 * to make up for the 'lost' events due to carrying the 'error' in period_left. 4323 * 4324 * Therefore the effective (average) period matches the requested period, 4325 * despite coarser hardware granularity. 4326 */ 4327 static u64 bdw_limit_period(struct perf_event *event, u64 left) 4328 { 4329 if ((event->hw.config & INTEL_ARCH_EVENT_MASK) == 4330 X86_CONFIG(.event=0xc0, .umask=0x01)) { 4331 if (left < 128) 4332 left = 128; 4333 left &= ~0x3fULL; 4334 } 4335 return left; 4336 } 4337 4338 static u64 nhm_limit_period(struct perf_event *event, u64 left) 4339 { 4340 return max(left, 32ULL); 4341 } 4342 4343 static u64 spr_limit_period(struct perf_event *event, u64 left) 4344 { 4345 if (event->attr.precise_ip == 3) 4346 return max(left, 128ULL); 4347 4348 return left; 4349 } 4350 4351 PMU_FORMAT_ATTR(event, "config:0-7" ); 4352 PMU_FORMAT_ATTR(umask, "config:8-15" ); 4353 PMU_FORMAT_ATTR(edge, "config:18" ); 4354 PMU_FORMAT_ATTR(pc, "config:19" ); 4355 PMU_FORMAT_ATTR(any, "config:21" ); /* v3 + */ 4356 PMU_FORMAT_ATTR(inv, "config:23" ); 4357 PMU_FORMAT_ATTR(cmask, "config:24-31" ); 4358 PMU_FORMAT_ATTR(in_tx, "config:32"); 4359 PMU_FORMAT_ATTR(in_tx_cp, "config:33"); 4360 4361 static struct attribute *intel_arch_formats_attr[] = { 4362 &format_attr_event.attr, 4363 &format_attr_umask.attr, 4364 &format_attr_edge.attr, 4365 &format_attr_pc.attr, 4366 &format_attr_inv.attr, 4367 &format_attr_cmask.attr, 4368 NULL, 4369 }; 4370 4371 ssize_t intel_event_sysfs_show(char *page, u64 config) 4372 { 4373 u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT); 4374 4375 return x86_event_sysfs_show(page, config, event); 4376 } 4377 4378 static struct intel_shared_regs *allocate_shared_regs(int cpu) 4379 { 4380 struct intel_shared_regs *regs; 4381 int i; 4382 4383 regs = kzalloc_node(sizeof(struct intel_shared_regs), 4384 GFP_KERNEL, cpu_to_node(cpu)); 4385 if (regs) { 4386 /* 4387 * initialize the locks to keep lockdep happy 4388 */ 4389 for (i = 0; i < EXTRA_REG_MAX; i++) 4390 raw_spin_lock_init(®s->regs[i].lock); 4391 4392 regs->core_id = -1; 4393 } 4394 return regs; 4395 } 4396 4397 static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu) 4398 { 4399 struct intel_excl_cntrs *c; 4400 4401 c = kzalloc_node(sizeof(struct intel_excl_cntrs), 4402 GFP_KERNEL, cpu_to_node(cpu)); 4403 if (c) { 4404 raw_spin_lock_init(&c->lock); 4405 c->core_id = -1; 4406 } 4407 return c; 4408 } 4409 4410 4411 int intel_cpuc_prepare(struct cpu_hw_events *cpuc, int cpu) 4412 { 4413 cpuc->pebs_record_size = x86_pmu.pebs_record_size; 4414 4415 if (is_hybrid() || x86_pmu.extra_regs || x86_pmu.lbr_sel_map) { 4416 cpuc->shared_regs = allocate_shared_regs(cpu); 4417 if (!cpuc->shared_regs) 4418 goto err; 4419 } 4420 4421 if (x86_pmu.flags & (PMU_FL_EXCL_CNTRS | PMU_FL_TFA)) { 4422 size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint); 4423 4424 cpuc->constraint_list = kzalloc_node(sz, GFP_KERNEL, cpu_to_node(cpu)); 4425 if (!cpuc->constraint_list) 4426 goto err_shared_regs; 4427 } 4428 4429 if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) { 4430 cpuc->excl_cntrs = allocate_excl_cntrs(cpu); 4431 if (!cpuc->excl_cntrs) 4432 goto err_constraint_list; 4433 4434 cpuc->excl_thread_id = 0; 4435 } 4436 4437 return 0; 4438 4439 err_constraint_list: 4440 kfree(cpuc->constraint_list); 4441 cpuc->constraint_list = NULL; 4442 4443 err_shared_regs: 4444 kfree(cpuc->shared_regs); 4445 cpuc->shared_regs = NULL; 4446 4447 err: 4448 return -ENOMEM; 4449 } 4450 4451 static int intel_pmu_cpu_prepare(int cpu) 4452 { 4453 return intel_cpuc_prepare(&per_cpu(cpu_hw_events, cpu), cpu); 4454 } 4455 4456 static void flip_smm_bit(void *data) 4457 { 4458 unsigned long set = *(unsigned long *)data; 4459 4460 if (set > 0) { 4461 msr_set_bit(MSR_IA32_DEBUGCTLMSR, 4462 DEBUGCTLMSR_FREEZE_IN_SMM_BIT); 4463 } else { 4464 msr_clear_bit(MSR_IA32_DEBUGCTLMSR, 4465 DEBUGCTLMSR_FREEZE_IN_SMM_BIT); 4466 } 4467 } 4468 4469 static bool init_hybrid_pmu(int cpu) 4470 { 4471 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu); 4472 u8 cpu_type = get_this_hybrid_cpu_type(); 4473 struct x86_hybrid_pmu *pmu = NULL; 4474 int i; 4475 4476 if (!cpu_type && x86_pmu.get_hybrid_cpu_type) 4477 cpu_type = x86_pmu.get_hybrid_cpu_type(); 4478 4479 for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) { 4480 if (x86_pmu.hybrid_pmu[i].cpu_type == cpu_type) { 4481 pmu = &x86_pmu.hybrid_pmu[i]; 4482 break; 4483 } 4484 } 4485 if (WARN_ON_ONCE(!pmu || (pmu->pmu.type == -1))) { 4486 cpuc->pmu = NULL; 4487 return false; 4488 } 4489 4490 /* Only check and dump the PMU information for the first CPU */ 4491 if (!cpumask_empty(&pmu->supported_cpus)) 4492 goto end; 4493 4494 if (!check_hw_exists(&pmu->pmu, pmu->num_counters, pmu->num_counters_fixed)) 4495 return false; 4496 4497 pr_info("%s PMU driver: ", pmu->name); 4498 4499 if (pmu->intel_cap.pebs_output_pt_available) 4500 pr_cont("PEBS-via-PT "); 4501 4502 pr_cont("\n"); 4503 4504 x86_pmu_show_pmu_cap(pmu->num_counters, pmu->num_counters_fixed, 4505 pmu->intel_ctrl); 4506 4507 end: 4508 cpumask_set_cpu(cpu, &pmu->supported_cpus); 4509 cpuc->pmu = &pmu->pmu; 4510 4511 x86_pmu_update_cpu_context(&pmu->pmu, cpu); 4512 4513 return true; 4514 } 4515 4516 static void intel_pmu_cpu_starting(int cpu) 4517 { 4518 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu); 4519 int core_id = topology_core_id(cpu); 4520 int i; 4521 4522 if (is_hybrid() && !init_hybrid_pmu(cpu)) 4523 return; 4524 4525 init_debug_store_on_cpu(cpu); 4526 /* 4527 * Deal with CPUs that don't clear their LBRs on power-up. 4528 */ 4529 intel_pmu_lbr_reset(); 4530 4531 cpuc->lbr_sel = NULL; 4532 4533 if (x86_pmu.flags & PMU_FL_TFA) { 4534 WARN_ON_ONCE(cpuc->tfa_shadow); 4535 cpuc->tfa_shadow = ~0ULL; 4536 intel_set_tfa(cpuc, false); 4537 } 4538 4539 if (x86_pmu.version > 1) 4540 flip_smm_bit(&x86_pmu.attr_freeze_on_smi); 4541 4542 /* 4543 * Disable perf metrics if any added CPU doesn't support it. 4544 * 4545 * Turn off the check for a hybrid architecture, because the 4546 * architecture MSR, MSR_IA32_PERF_CAPABILITIES, only indicate 4547 * the architecture features. The perf metrics is a model-specific 4548 * feature for now. The corresponding bit should always be 0 on 4549 * a hybrid platform, e.g., Alder Lake. 4550 */ 4551 if (!is_hybrid() && x86_pmu.intel_cap.perf_metrics) { 4552 union perf_capabilities perf_cap; 4553 4554 rdmsrl(MSR_IA32_PERF_CAPABILITIES, perf_cap.capabilities); 4555 if (!perf_cap.perf_metrics) { 4556 x86_pmu.intel_cap.perf_metrics = 0; 4557 x86_pmu.intel_ctrl &= ~(1ULL << GLOBAL_CTRL_EN_PERF_METRICS); 4558 } 4559 } 4560 4561 if (!cpuc->shared_regs) 4562 return; 4563 4564 if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) { 4565 for_each_cpu(i, topology_sibling_cpumask(cpu)) { 4566 struct intel_shared_regs *pc; 4567 4568 pc = per_cpu(cpu_hw_events, i).shared_regs; 4569 if (pc && pc->core_id == core_id) { 4570 cpuc->kfree_on_online[0] = cpuc->shared_regs; 4571 cpuc->shared_regs = pc; 4572 break; 4573 } 4574 } 4575 cpuc->shared_regs->core_id = core_id; 4576 cpuc->shared_regs->refcnt++; 4577 } 4578 4579 if (x86_pmu.lbr_sel_map) 4580 cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR]; 4581 4582 if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) { 4583 for_each_cpu(i, topology_sibling_cpumask(cpu)) { 4584 struct cpu_hw_events *sibling; 4585 struct intel_excl_cntrs *c; 4586 4587 sibling = &per_cpu(cpu_hw_events, i); 4588 c = sibling->excl_cntrs; 4589 if (c && c->core_id == core_id) { 4590 cpuc->kfree_on_online[1] = cpuc->excl_cntrs; 4591 cpuc->excl_cntrs = c; 4592 if (!sibling->excl_thread_id) 4593 cpuc->excl_thread_id = 1; 4594 break; 4595 } 4596 } 4597 cpuc->excl_cntrs->core_id = core_id; 4598 cpuc->excl_cntrs->refcnt++; 4599 } 4600 } 4601 4602 static void free_excl_cntrs(struct cpu_hw_events *cpuc) 4603 { 4604 struct intel_excl_cntrs *c; 4605 4606 c = cpuc->excl_cntrs; 4607 if (c) { 4608 if (c->core_id == -1 || --c->refcnt == 0) 4609 kfree(c); 4610 cpuc->excl_cntrs = NULL; 4611 } 4612 4613 kfree(cpuc->constraint_list); 4614 cpuc->constraint_list = NULL; 4615 } 4616 4617 static void intel_pmu_cpu_dying(int cpu) 4618 { 4619 fini_debug_store_on_cpu(cpu); 4620 } 4621 4622 void intel_cpuc_finish(struct cpu_hw_events *cpuc) 4623 { 4624 struct intel_shared_regs *pc; 4625 4626 pc = cpuc->shared_regs; 4627 if (pc) { 4628 if (pc->core_id == -1 || --pc->refcnt == 0) 4629 kfree(pc); 4630 cpuc->shared_regs = NULL; 4631 } 4632 4633 free_excl_cntrs(cpuc); 4634 } 4635 4636 static void intel_pmu_cpu_dead(int cpu) 4637 { 4638 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu); 4639 4640 intel_cpuc_finish(cpuc); 4641 4642 if (is_hybrid() && cpuc->pmu) 4643 cpumask_clear_cpu(cpu, &hybrid_pmu(cpuc->pmu)->supported_cpus); 4644 } 4645 4646 static void intel_pmu_sched_task(struct perf_event_context *ctx, 4647 bool sched_in) 4648 { 4649 intel_pmu_pebs_sched_task(ctx, sched_in); 4650 intel_pmu_lbr_sched_task(ctx, sched_in); 4651 } 4652 4653 static void intel_pmu_swap_task_ctx(struct perf_event_context *prev, 4654 struct perf_event_context *next) 4655 { 4656 intel_pmu_lbr_swap_task_ctx(prev, next); 4657 } 4658 4659 static int intel_pmu_check_period(struct perf_event *event, u64 value) 4660 { 4661 return intel_pmu_has_bts_period(event, value) ? -EINVAL : 0; 4662 } 4663 4664 static void intel_aux_output_init(void) 4665 { 4666 /* Refer also intel_pmu_aux_output_match() */ 4667 if (x86_pmu.intel_cap.pebs_output_pt_available) 4668 x86_pmu.assign = intel_pmu_assign_event; 4669 } 4670 4671 static int intel_pmu_aux_output_match(struct perf_event *event) 4672 { 4673 /* intel_pmu_assign_event() is needed, refer intel_aux_output_init() */ 4674 if (!x86_pmu.intel_cap.pebs_output_pt_available) 4675 return 0; 4676 4677 return is_intel_pt_event(event); 4678 } 4679 4680 static int intel_pmu_filter_match(struct perf_event *event) 4681 { 4682 struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu); 4683 unsigned int cpu = smp_processor_id(); 4684 4685 return cpumask_test_cpu(cpu, &pmu->supported_cpus); 4686 } 4687 4688 PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63"); 4689 4690 PMU_FORMAT_ATTR(ldlat, "config1:0-15"); 4691 4692 PMU_FORMAT_ATTR(frontend, "config1:0-23"); 4693 4694 static struct attribute *intel_arch3_formats_attr[] = { 4695 &format_attr_event.attr, 4696 &format_attr_umask.attr, 4697 &format_attr_edge.attr, 4698 &format_attr_pc.attr, 4699 &format_attr_any.attr, 4700 &format_attr_inv.attr, 4701 &format_attr_cmask.attr, 4702 NULL, 4703 }; 4704 4705 static struct attribute *hsw_format_attr[] = { 4706 &format_attr_in_tx.attr, 4707 &format_attr_in_tx_cp.attr, 4708 &format_attr_offcore_rsp.attr, 4709 &format_attr_ldlat.attr, 4710 NULL 4711 }; 4712 4713 static struct attribute *nhm_format_attr[] = { 4714 &format_attr_offcore_rsp.attr, 4715 &format_attr_ldlat.attr, 4716 NULL 4717 }; 4718 4719 static struct attribute *slm_format_attr[] = { 4720 &format_attr_offcore_rsp.attr, 4721 NULL 4722 }; 4723 4724 static struct attribute *skl_format_attr[] = { 4725 &format_attr_frontend.attr, 4726 NULL, 4727 }; 4728 4729 static __initconst const struct x86_pmu core_pmu = { 4730 .name = "core", 4731 .handle_irq = x86_pmu_handle_irq, 4732 .disable_all = x86_pmu_disable_all, 4733 .enable_all = core_pmu_enable_all, 4734 .enable = core_pmu_enable_event, 4735 .disable = x86_pmu_disable_event, 4736 .hw_config = core_pmu_hw_config, 4737 .schedule_events = x86_schedule_events, 4738 .eventsel = MSR_ARCH_PERFMON_EVENTSEL0, 4739 .perfctr = MSR_ARCH_PERFMON_PERFCTR0, 4740 .event_map = intel_pmu_event_map, 4741 .max_events = ARRAY_SIZE(intel_perfmon_event_map), 4742 .apic = 1, 4743 .large_pebs_flags = LARGE_PEBS_FLAGS, 4744 4745 /* 4746 * Intel PMCs cannot be accessed sanely above 32-bit width, 4747 * so we install an artificial 1<<31 period regardless of 4748 * the generic event period: 4749 */ 4750 .max_period = (1ULL<<31) - 1, 4751 .get_event_constraints = intel_get_event_constraints, 4752 .put_event_constraints = intel_put_event_constraints, 4753 .event_constraints = intel_core_event_constraints, 4754 .guest_get_msrs = core_guest_get_msrs, 4755 .format_attrs = intel_arch_formats_attr, 4756 .events_sysfs_show = intel_event_sysfs_show, 4757 4758 /* 4759 * Virtual (or funny metal) CPU can define x86_pmu.extra_regs 4760 * together with PMU version 1 and thus be using core_pmu with 4761 * shared_regs. We need following callbacks here to allocate 4762 * it properly. 4763 */ 4764 .cpu_prepare = intel_pmu_cpu_prepare, 4765 .cpu_starting = intel_pmu_cpu_starting, 4766 .cpu_dying = intel_pmu_cpu_dying, 4767 .cpu_dead = intel_pmu_cpu_dead, 4768 4769 .check_period = intel_pmu_check_period, 4770 4771 .lbr_reset = intel_pmu_lbr_reset_64, 4772 .lbr_read = intel_pmu_lbr_read_64, 4773 .lbr_save = intel_pmu_lbr_save, 4774 .lbr_restore = intel_pmu_lbr_restore, 4775 }; 4776 4777 static __initconst const struct x86_pmu intel_pmu = { 4778 .name = "Intel", 4779 .handle_irq = intel_pmu_handle_irq, 4780 .disable_all = intel_pmu_disable_all, 4781 .enable_all = intel_pmu_enable_all, 4782 .enable = intel_pmu_enable_event, 4783 .disable = intel_pmu_disable_event, 4784 .add = intel_pmu_add_event, 4785 .del = intel_pmu_del_event, 4786 .read = intel_pmu_read_event, 4787 .hw_config = intel_pmu_hw_config, 4788 .schedule_events = x86_schedule_events, 4789 .eventsel = MSR_ARCH_PERFMON_EVENTSEL0, 4790 .perfctr = MSR_ARCH_PERFMON_PERFCTR0, 4791 .event_map = intel_pmu_event_map, 4792 .max_events = ARRAY_SIZE(intel_perfmon_event_map), 4793 .apic = 1, 4794 .large_pebs_flags = LARGE_PEBS_FLAGS, 4795 /* 4796 * Intel PMCs cannot be accessed sanely above 32 bit width, 4797 * so we install an artificial 1<<31 period regardless of 4798 * the generic event period: 4799 */ 4800 .max_period = (1ULL << 31) - 1, 4801 .get_event_constraints = intel_get_event_constraints, 4802 .put_event_constraints = intel_put_event_constraints, 4803 .pebs_aliases = intel_pebs_aliases_core2, 4804 4805 .format_attrs = intel_arch3_formats_attr, 4806 .events_sysfs_show = intel_event_sysfs_show, 4807 4808 .cpu_prepare = intel_pmu_cpu_prepare, 4809 .cpu_starting = intel_pmu_cpu_starting, 4810 .cpu_dying = intel_pmu_cpu_dying, 4811 .cpu_dead = intel_pmu_cpu_dead, 4812 4813 .guest_get_msrs = intel_guest_get_msrs, 4814 .sched_task = intel_pmu_sched_task, 4815 .swap_task_ctx = intel_pmu_swap_task_ctx, 4816 4817 .check_period = intel_pmu_check_period, 4818 4819 .aux_output_match = intel_pmu_aux_output_match, 4820 4821 .lbr_reset = intel_pmu_lbr_reset_64, 4822 .lbr_read = intel_pmu_lbr_read_64, 4823 .lbr_save = intel_pmu_lbr_save, 4824 .lbr_restore = intel_pmu_lbr_restore, 4825 4826 /* 4827 * SMM has access to all 4 rings and while traditionally SMM code only 4828 * ran in CPL0, 2021-era firmware is starting to make use of CPL3 in SMM. 4829 * 4830 * Since the EVENTSEL.{USR,OS} CPL filtering makes no distinction 4831 * between SMM or not, this results in what should be pure userspace 4832 * counters including SMM data. 4833 * 4834 * This is a clear privilege issue, therefore globally disable 4835 * counting SMM by default. 4836 */ 4837 .attr_freeze_on_smi = 1, 4838 }; 4839 4840 static __init void intel_clovertown_quirk(void) 4841 { 4842 /* 4843 * PEBS is unreliable due to: 4844 * 4845 * AJ67 - PEBS may experience CPL leaks 4846 * AJ68 - PEBS PMI may be delayed by one event 4847 * AJ69 - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12] 4848 * AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS 4849 * 4850 * AJ67 could be worked around by restricting the OS/USR flags. 4851 * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI. 4852 * 4853 * AJ106 could possibly be worked around by not allowing LBR 4854 * usage from PEBS, including the fixup. 4855 * AJ68 could possibly be worked around by always programming 4856 * a pebs_event_reset[0] value and coping with the lost events. 4857 * 4858 * But taken together it might just make sense to not enable PEBS on 4859 * these chips. 4860 */ 4861 pr_warn("PEBS disabled due to CPU errata\n"); 4862 x86_pmu.pebs = 0; 4863 x86_pmu.pebs_constraints = NULL; 4864 } 4865 4866 static const struct x86_cpu_desc isolation_ucodes[] = { 4867 INTEL_CPU_DESC(INTEL_FAM6_HASWELL, 3, 0x0000001f), 4868 INTEL_CPU_DESC(INTEL_FAM6_HASWELL_L, 1, 0x0000001e), 4869 INTEL_CPU_DESC(INTEL_FAM6_HASWELL_G, 1, 0x00000015), 4870 INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X, 2, 0x00000037), 4871 INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X, 4, 0x0000000a), 4872 INTEL_CPU_DESC(INTEL_FAM6_BROADWELL, 4, 0x00000023), 4873 INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_G, 1, 0x00000014), 4874 INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D, 2, 0x00000010), 4875 INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D, 3, 0x07000009), 4876 INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D, 4, 0x0f000009), 4877 INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D, 5, 0x0e000002), 4878 INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_X, 1, 0x0b000014), 4879 INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X, 3, 0x00000021), 4880 INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X, 4, 0x00000000), 4881 INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X, 5, 0x00000000), 4882 INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X, 6, 0x00000000), 4883 INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X, 7, 0x00000000), 4884 INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_L, 3, 0x0000007c), 4885 INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE, 3, 0x0000007c), 4886 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE, 9, 0x0000004e), 4887 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L, 9, 0x0000004e), 4888 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L, 10, 0x0000004e), 4889 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L, 11, 0x0000004e), 4890 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L, 12, 0x0000004e), 4891 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE, 10, 0x0000004e), 4892 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE, 11, 0x0000004e), 4893 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE, 12, 0x0000004e), 4894 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE, 13, 0x0000004e), 4895 {} 4896 }; 4897 4898 static void intel_check_pebs_isolation(void) 4899 { 4900 x86_pmu.pebs_no_isolation = !x86_cpu_has_min_microcode_rev(isolation_ucodes); 4901 } 4902 4903 static __init void intel_pebs_isolation_quirk(void) 4904 { 4905 WARN_ON_ONCE(x86_pmu.check_microcode); 4906 x86_pmu.check_microcode = intel_check_pebs_isolation; 4907 intel_check_pebs_isolation(); 4908 } 4909 4910 static const struct x86_cpu_desc pebs_ucodes[] = { 4911 INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE, 7, 0x00000028), 4912 INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X, 6, 0x00000618), 4913 INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X, 7, 0x0000070c), 4914 {} 4915 }; 4916 4917 static bool intel_snb_pebs_broken(void) 4918 { 4919 return !x86_cpu_has_min_microcode_rev(pebs_ucodes); 4920 } 4921 4922 static void intel_snb_check_microcode(void) 4923 { 4924 if (intel_snb_pebs_broken() == x86_pmu.pebs_broken) 4925 return; 4926 4927 /* 4928 * Serialized by the microcode lock.. 4929 */ 4930 if (x86_pmu.pebs_broken) { 4931 pr_info("PEBS enabled due to microcode update\n"); 4932 x86_pmu.pebs_broken = 0; 4933 } else { 4934 pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n"); 4935 x86_pmu.pebs_broken = 1; 4936 } 4937 } 4938 4939 static bool is_lbr_from(unsigned long msr) 4940 { 4941 unsigned long lbr_from_nr = x86_pmu.lbr_from + x86_pmu.lbr_nr; 4942 4943 return x86_pmu.lbr_from <= msr && msr < lbr_from_nr; 4944 } 4945 4946 /* 4947 * Under certain circumstances, access certain MSR may cause #GP. 4948 * The function tests if the input MSR can be safely accessed. 4949 */ 4950 static bool check_msr(unsigned long msr, u64 mask) 4951 { 4952 u64 val_old, val_new, val_tmp; 4953 4954 /* 4955 * Disable the check for real HW, so we don't 4956 * mess with potentially enabled registers: 4957 */ 4958 if (!boot_cpu_has(X86_FEATURE_HYPERVISOR)) 4959 return true; 4960 4961 /* 4962 * Read the current value, change it and read it back to see if it 4963 * matches, this is needed to detect certain hardware emulators 4964 * (qemu/kvm) that don't trap on the MSR access and always return 0s. 4965 */ 4966 if (rdmsrl_safe(msr, &val_old)) 4967 return false; 4968 4969 /* 4970 * Only change the bits which can be updated by wrmsrl. 4971 */ 4972 val_tmp = val_old ^ mask; 4973 4974 if (is_lbr_from(msr)) 4975 val_tmp = lbr_from_signext_quirk_wr(val_tmp); 4976 4977 if (wrmsrl_safe(msr, val_tmp) || 4978 rdmsrl_safe(msr, &val_new)) 4979 return false; 4980 4981 /* 4982 * Quirk only affects validation in wrmsr(), so wrmsrl()'s value 4983 * should equal rdmsrl()'s even with the quirk. 4984 */ 4985 if (val_new != val_tmp) 4986 return false; 4987 4988 if (is_lbr_from(msr)) 4989 val_old = lbr_from_signext_quirk_wr(val_old); 4990 4991 /* Here it's sure that the MSR can be safely accessed. 4992 * Restore the old value and return. 4993 */ 4994 wrmsrl(msr, val_old); 4995 4996 return true; 4997 } 4998 4999 static __init void intel_sandybridge_quirk(void) 5000 { 5001 x86_pmu.check_microcode = intel_snb_check_microcode; 5002 cpus_read_lock(); 5003 intel_snb_check_microcode(); 5004 cpus_read_unlock(); 5005 } 5006 5007 static const struct { int id; char *name; } intel_arch_events_map[] __initconst = { 5008 { PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" }, 5009 { PERF_COUNT_HW_INSTRUCTIONS, "instructions" }, 5010 { PERF_COUNT_HW_BUS_CYCLES, "bus cycles" }, 5011 { PERF_COUNT_HW_CACHE_REFERENCES, "cache references" }, 5012 { PERF_COUNT_HW_CACHE_MISSES, "cache misses" }, 5013 { PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" }, 5014 { PERF_COUNT_HW_BRANCH_MISSES, "branch misses" }, 5015 }; 5016 5017 static __init void intel_arch_events_quirk(void) 5018 { 5019 int bit; 5020 5021 /* disable event that reported as not present by cpuid */ 5022 for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) { 5023 intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0; 5024 pr_warn("CPUID marked event: \'%s\' unavailable\n", 5025 intel_arch_events_map[bit].name); 5026 } 5027 } 5028 5029 static __init void intel_nehalem_quirk(void) 5030 { 5031 union cpuid10_ebx ebx; 5032 5033 ebx.full = x86_pmu.events_maskl; 5034 if (ebx.split.no_branch_misses_retired) { 5035 /* 5036 * Erratum AAJ80 detected, we work it around by using 5037 * the BR_MISP_EXEC.ANY event. This will over-count 5038 * branch-misses, but it's still much better than the 5039 * architectural event which is often completely bogus: 5040 */ 5041 intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89; 5042 ebx.split.no_branch_misses_retired = 0; 5043 x86_pmu.events_maskl = ebx.full; 5044 pr_info("CPU erratum AAJ80 worked around\n"); 5045 } 5046 } 5047 5048 /* 5049 * enable software workaround for errata: 5050 * SNB: BJ122 5051 * IVB: BV98 5052 * HSW: HSD29 5053 * 5054 * Only needed when HT is enabled. However detecting 5055 * if HT is enabled is difficult (model specific). So instead, 5056 * we enable the workaround in the early boot, and verify if 5057 * it is needed in a later initcall phase once we have valid 5058 * topology information to check if HT is actually enabled 5059 */ 5060 static __init void intel_ht_bug(void) 5061 { 5062 x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED; 5063 5064 x86_pmu.start_scheduling = intel_start_scheduling; 5065 x86_pmu.commit_scheduling = intel_commit_scheduling; 5066 x86_pmu.stop_scheduling = intel_stop_scheduling; 5067 } 5068 5069 EVENT_ATTR_STR(mem-loads, mem_ld_hsw, "event=0xcd,umask=0x1,ldlat=3"); 5070 EVENT_ATTR_STR(mem-stores, mem_st_hsw, "event=0xd0,umask=0x82") 5071 5072 /* Haswell special events */ 5073 EVENT_ATTR_STR(tx-start, tx_start, "event=0xc9,umask=0x1"); 5074 EVENT_ATTR_STR(tx-commit, tx_commit, "event=0xc9,umask=0x2"); 5075 EVENT_ATTR_STR(tx-abort, tx_abort, "event=0xc9,umask=0x4"); 5076 EVENT_ATTR_STR(tx-capacity, tx_capacity, "event=0x54,umask=0x2"); 5077 EVENT_ATTR_STR(tx-conflict, tx_conflict, "event=0x54,umask=0x1"); 5078 EVENT_ATTR_STR(el-start, el_start, "event=0xc8,umask=0x1"); 5079 EVENT_ATTR_STR(el-commit, el_commit, "event=0xc8,umask=0x2"); 5080 EVENT_ATTR_STR(el-abort, el_abort, "event=0xc8,umask=0x4"); 5081 EVENT_ATTR_STR(el-capacity, el_capacity, "event=0x54,umask=0x2"); 5082 EVENT_ATTR_STR(el-conflict, el_conflict, "event=0x54,umask=0x1"); 5083 EVENT_ATTR_STR(cycles-t, cycles_t, "event=0x3c,in_tx=1"); 5084 EVENT_ATTR_STR(cycles-ct, cycles_ct, "event=0x3c,in_tx=1,in_tx_cp=1"); 5085 5086 static struct attribute *hsw_events_attrs[] = { 5087 EVENT_PTR(td_slots_issued), 5088 EVENT_PTR(td_slots_retired), 5089 EVENT_PTR(td_fetch_bubbles), 5090 EVENT_PTR(td_total_slots), 5091 EVENT_PTR(td_total_slots_scale), 5092 EVENT_PTR(td_recovery_bubbles), 5093 EVENT_PTR(td_recovery_bubbles_scale), 5094 NULL 5095 }; 5096 5097 static struct attribute *hsw_mem_events_attrs[] = { 5098 EVENT_PTR(mem_ld_hsw), 5099 EVENT_PTR(mem_st_hsw), 5100 NULL, 5101 }; 5102 5103 static struct attribute *hsw_tsx_events_attrs[] = { 5104 EVENT_PTR(tx_start), 5105 EVENT_PTR(tx_commit), 5106 EVENT_PTR(tx_abort), 5107 EVENT_PTR(tx_capacity), 5108 EVENT_PTR(tx_conflict), 5109 EVENT_PTR(el_start), 5110 EVENT_PTR(el_commit), 5111 EVENT_PTR(el_abort), 5112 EVENT_PTR(el_capacity), 5113 EVENT_PTR(el_conflict), 5114 EVENT_PTR(cycles_t), 5115 EVENT_PTR(cycles_ct), 5116 NULL 5117 }; 5118 5119 EVENT_ATTR_STR(tx-capacity-read, tx_capacity_read, "event=0x54,umask=0x80"); 5120 EVENT_ATTR_STR(tx-capacity-write, tx_capacity_write, "event=0x54,umask=0x2"); 5121 EVENT_ATTR_STR(el-capacity-read, el_capacity_read, "event=0x54,umask=0x80"); 5122 EVENT_ATTR_STR(el-capacity-write, el_capacity_write, "event=0x54,umask=0x2"); 5123 5124 static struct attribute *icl_events_attrs[] = { 5125 EVENT_PTR(mem_ld_hsw), 5126 EVENT_PTR(mem_st_hsw), 5127 NULL, 5128 }; 5129 5130 static struct attribute *icl_td_events_attrs[] = { 5131 EVENT_PTR(slots), 5132 EVENT_PTR(td_retiring), 5133 EVENT_PTR(td_bad_spec), 5134 EVENT_PTR(td_fe_bound), 5135 EVENT_PTR(td_be_bound), 5136 NULL, 5137 }; 5138 5139 static struct attribute *icl_tsx_events_attrs[] = { 5140 EVENT_PTR(tx_start), 5141 EVENT_PTR(tx_abort), 5142 EVENT_PTR(tx_commit), 5143 EVENT_PTR(tx_capacity_read), 5144 EVENT_PTR(tx_capacity_write), 5145 EVENT_PTR(tx_conflict), 5146 EVENT_PTR(el_start), 5147 EVENT_PTR(el_abort), 5148 EVENT_PTR(el_commit), 5149 EVENT_PTR(el_capacity_read), 5150 EVENT_PTR(el_capacity_write), 5151 EVENT_PTR(el_conflict), 5152 EVENT_PTR(cycles_t), 5153 EVENT_PTR(cycles_ct), 5154 NULL, 5155 }; 5156 5157 5158 EVENT_ATTR_STR(mem-stores, mem_st_spr, "event=0xcd,umask=0x2"); 5159 EVENT_ATTR_STR(mem-loads-aux, mem_ld_aux, "event=0x03,umask=0x82"); 5160 5161 static struct attribute *spr_events_attrs[] = { 5162 EVENT_PTR(mem_ld_hsw), 5163 EVENT_PTR(mem_st_spr), 5164 EVENT_PTR(mem_ld_aux), 5165 NULL, 5166 }; 5167 5168 static struct attribute *spr_td_events_attrs[] = { 5169 EVENT_PTR(slots), 5170 EVENT_PTR(td_retiring), 5171 EVENT_PTR(td_bad_spec), 5172 EVENT_PTR(td_fe_bound), 5173 EVENT_PTR(td_be_bound), 5174 EVENT_PTR(td_heavy_ops), 5175 EVENT_PTR(td_br_mispredict), 5176 EVENT_PTR(td_fetch_lat), 5177 EVENT_PTR(td_mem_bound), 5178 NULL, 5179 }; 5180 5181 static struct attribute *spr_tsx_events_attrs[] = { 5182 EVENT_PTR(tx_start), 5183 EVENT_PTR(tx_abort), 5184 EVENT_PTR(tx_commit), 5185 EVENT_PTR(tx_capacity_read), 5186 EVENT_PTR(tx_capacity_write), 5187 EVENT_PTR(tx_conflict), 5188 EVENT_PTR(cycles_t), 5189 EVENT_PTR(cycles_ct), 5190 NULL, 5191 }; 5192 5193 static ssize_t freeze_on_smi_show(struct device *cdev, 5194 struct device_attribute *attr, 5195 char *buf) 5196 { 5197 return sprintf(buf, "%lu\n", x86_pmu.attr_freeze_on_smi); 5198 } 5199 5200 static DEFINE_MUTEX(freeze_on_smi_mutex); 5201 5202 static ssize_t freeze_on_smi_store(struct device *cdev, 5203 struct device_attribute *attr, 5204 const char *buf, size_t count) 5205 { 5206 unsigned long val; 5207 ssize_t ret; 5208 5209 ret = kstrtoul(buf, 0, &val); 5210 if (ret) 5211 return ret; 5212 5213 if (val > 1) 5214 return -EINVAL; 5215 5216 mutex_lock(&freeze_on_smi_mutex); 5217 5218 if (x86_pmu.attr_freeze_on_smi == val) 5219 goto done; 5220 5221 x86_pmu.attr_freeze_on_smi = val; 5222 5223 cpus_read_lock(); 5224 on_each_cpu(flip_smm_bit, &val, 1); 5225 cpus_read_unlock(); 5226 done: 5227 mutex_unlock(&freeze_on_smi_mutex); 5228 5229 return count; 5230 } 5231 5232 static void update_tfa_sched(void *ignored) 5233 { 5234 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 5235 5236 /* 5237 * check if PMC3 is used 5238 * and if so force schedule out for all event types all contexts 5239 */ 5240 if (test_bit(3, cpuc->active_mask)) 5241 perf_pmu_resched(x86_get_pmu(smp_processor_id())); 5242 } 5243 5244 static ssize_t show_sysctl_tfa(struct device *cdev, 5245 struct device_attribute *attr, 5246 char *buf) 5247 { 5248 return snprintf(buf, 40, "%d\n", allow_tsx_force_abort); 5249 } 5250 5251 static ssize_t set_sysctl_tfa(struct device *cdev, 5252 struct device_attribute *attr, 5253 const char *buf, size_t count) 5254 { 5255 bool val; 5256 ssize_t ret; 5257 5258 ret = kstrtobool(buf, &val); 5259 if (ret) 5260 return ret; 5261 5262 /* no change */ 5263 if (val == allow_tsx_force_abort) 5264 return count; 5265 5266 allow_tsx_force_abort = val; 5267 5268 cpus_read_lock(); 5269 on_each_cpu(update_tfa_sched, NULL, 1); 5270 cpus_read_unlock(); 5271 5272 return count; 5273 } 5274 5275 5276 static DEVICE_ATTR_RW(freeze_on_smi); 5277 5278 static ssize_t branches_show(struct device *cdev, 5279 struct device_attribute *attr, 5280 char *buf) 5281 { 5282 return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu.lbr_nr); 5283 } 5284 5285 static DEVICE_ATTR_RO(branches); 5286 5287 static struct attribute *lbr_attrs[] = { 5288 &dev_attr_branches.attr, 5289 NULL 5290 }; 5291 5292 static char pmu_name_str[30]; 5293 5294 static ssize_t pmu_name_show(struct device *cdev, 5295 struct device_attribute *attr, 5296 char *buf) 5297 { 5298 return snprintf(buf, PAGE_SIZE, "%s\n", pmu_name_str); 5299 } 5300 5301 static DEVICE_ATTR_RO(pmu_name); 5302 5303 static struct attribute *intel_pmu_caps_attrs[] = { 5304 &dev_attr_pmu_name.attr, 5305 NULL 5306 }; 5307 5308 static DEVICE_ATTR(allow_tsx_force_abort, 0644, 5309 show_sysctl_tfa, 5310 set_sysctl_tfa); 5311 5312 static struct attribute *intel_pmu_attrs[] = { 5313 &dev_attr_freeze_on_smi.attr, 5314 &dev_attr_allow_tsx_force_abort.attr, 5315 NULL, 5316 }; 5317 5318 static umode_t 5319 tsx_is_visible(struct kobject *kobj, struct attribute *attr, int i) 5320 { 5321 return boot_cpu_has(X86_FEATURE_RTM) ? attr->mode : 0; 5322 } 5323 5324 static umode_t 5325 pebs_is_visible(struct kobject *kobj, struct attribute *attr, int i) 5326 { 5327 return x86_pmu.pebs ? attr->mode : 0; 5328 } 5329 5330 static umode_t 5331 lbr_is_visible(struct kobject *kobj, struct attribute *attr, int i) 5332 { 5333 return x86_pmu.lbr_nr ? attr->mode : 0; 5334 } 5335 5336 static umode_t 5337 exra_is_visible(struct kobject *kobj, struct attribute *attr, int i) 5338 { 5339 return x86_pmu.version >= 2 ? attr->mode : 0; 5340 } 5341 5342 static umode_t 5343 default_is_visible(struct kobject *kobj, struct attribute *attr, int i) 5344 { 5345 if (attr == &dev_attr_allow_tsx_force_abort.attr) 5346 return x86_pmu.flags & PMU_FL_TFA ? attr->mode : 0; 5347 5348 return attr->mode; 5349 } 5350 5351 static struct attribute_group group_events_td = { 5352 .name = "events", 5353 }; 5354 5355 static struct attribute_group group_events_mem = { 5356 .name = "events", 5357 .is_visible = pebs_is_visible, 5358 }; 5359 5360 static struct attribute_group group_events_tsx = { 5361 .name = "events", 5362 .is_visible = tsx_is_visible, 5363 }; 5364 5365 static struct attribute_group group_caps_gen = { 5366 .name = "caps", 5367 .attrs = intel_pmu_caps_attrs, 5368 }; 5369 5370 static struct attribute_group group_caps_lbr = { 5371 .name = "caps", 5372 .attrs = lbr_attrs, 5373 .is_visible = lbr_is_visible, 5374 }; 5375 5376 static struct attribute_group group_format_extra = { 5377 .name = "format", 5378 .is_visible = exra_is_visible, 5379 }; 5380 5381 static struct attribute_group group_format_extra_skl = { 5382 .name = "format", 5383 .is_visible = exra_is_visible, 5384 }; 5385 5386 static struct attribute_group group_default = { 5387 .attrs = intel_pmu_attrs, 5388 .is_visible = default_is_visible, 5389 }; 5390 5391 static const struct attribute_group *attr_update[] = { 5392 &group_events_td, 5393 &group_events_mem, 5394 &group_events_tsx, 5395 &group_caps_gen, 5396 &group_caps_lbr, 5397 &group_format_extra, 5398 &group_format_extra_skl, 5399 &group_default, 5400 NULL, 5401 }; 5402 5403 EVENT_ATTR_STR_HYBRID(slots, slots_adl, "event=0x00,umask=0x4", hybrid_big); 5404 EVENT_ATTR_STR_HYBRID(topdown-retiring, td_retiring_adl, "event=0xc2,umask=0x0;event=0x00,umask=0x80", hybrid_big_small); 5405 EVENT_ATTR_STR_HYBRID(topdown-bad-spec, td_bad_spec_adl, "event=0x73,umask=0x0;event=0x00,umask=0x81", hybrid_big_small); 5406 EVENT_ATTR_STR_HYBRID(topdown-fe-bound, td_fe_bound_adl, "event=0x71,umask=0x0;event=0x00,umask=0x82", hybrid_big_small); 5407 EVENT_ATTR_STR_HYBRID(topdown-be-bound, td_be_bound_adl, "event=0x74,umask=0x0;event=0x00,umask=0x83", hybrid_big_small); 5408 EVENT_ATTR_STR_HYBRID(topdown-heavy-ops, td_heavy_ops_adl, "event=0x00,umask=0x84", hybrid_big); 5409 EVENT_ATTR_STR_HYBRID(topdown-br-mispredict, td_br_mis_adl, "event=0x00,umask=0x85", hybrid_big); 5410 EVENT_ATTR_STR_HYBRID(topdown-fetch-lat, td_fetch_lat_adl, "event=0x00,umask=0x86", hybrid_big); 5411 EVENT_ATTR_STR_HYBRID(topdown-mem-bound, td_mem_bound_adl, "event=0x00,umask=0x87", hybrid_big); 5412 5413 static struct attribute *adl_hybrid_events_attrs[] = { 5414 EVENT_PTR(slots_adl), 5415 EVENT_PTR(td_retiring_adl), 5416 EVENT_PTR(td_bad_spec_adl), 5417 EVENT_PTR(td_fe_bound_adl), 5418 EVENT_PTR(td_be_bound_adl), 5419 EVENT_PTR(td_heavy_ops_adl), 5420 EVENT_PTR(td_br_mis_adl), 5421 EVENT_PTR(td_fetch_lat_adl), 5422 EVENT_PTR(td_mem_bound_adl), 5423 NULL, 5424 }; 5425 5426 /* Must be in IDX order */ 5427 EVENT_ATTR_STR_HYBRID(mem-loads, mem_ld_adl, "event=0xd0,umask=0x5,ldlat=3;event=0xcd,umask=0x1,ldlat=3", hybrid_big_small); 5428 EVENT_ATTR_STR_HYBRID(mem-stores, mem_st_adl, "event=0xd0,umask=0x6;event=0xcd,umask=0x2", hybrid_big_small); 5429 EVENT_ATTR_STR_HYBRID(mem-loads-aux, mem_ld_aux_adl, "event=0x03,umask=0x82", hybrid_big); 5430 5431 static struct attribute *adl_hybrid_mem_attrs[] = { 5432 EVENT_PTR(mem_ld_adl), 5433 EVENT_PTR(mem_st_adl), 5434 EVENT_PTR(mem_ld_aux_adl), 5435 NULL, 5436 }; 5437 5438 EVENT_ATTR_STR_HYBRID(tx-start, tx_start_adl, "event=0xc9,umask=0x1", hybrid_big); 5439 EVENT_ATTR_STR_HYBRID(tx-commit, tx_commit_adl, "event=0xc9,umask=0x2", hybrid_big); 5440 EVENT_ATTR_STR_HYBRID(tx-abort, tx_abort_adl, "event=0xc9,umask=0x4", hybrid_big); 5441 EVENT_ATTR_STR_HYBRID(tx-conflict, tx_conflict_adl, "event=0x54,umask=0x1", hybrid_big); 5442 EVENT_ATTR_STR_HYBRID(cycles-t, cycles_t_adl, "event=0x3c,in_tx=1", hybrid_big); 5443 EVENT_ATTR_STR_HYBRID(cycles-ct, cycles_ct_adl, "event=0x3c,in_tx=1,in_tx_cp=1", hybrid_big); 5444 EVENT_ATTR_STR_HYBRID(tx-capacity-read, tx_capacity_read_adl, "event=0x54,umask=0x80", hybrid_big); 5445 EVENT_ATTR_STR_HYBRID(tx-capacity-write, tx_capacity_write_adl, "event=0x54,umask=0x2", hybrid_big); 5446 5447 static struct attribute *adl_hybrid_tsx_attrs[] = { 5448 EVENT_PTR(tx_start_adl), 5449 EVENT_PTR(tx_abort_adl), 5450 EVENT_PTR(tx_commit_adl), 5451 EVENT_PTR(tx_capacity_read_adl), 5452 EVENT_PTR(tx_capacity_write_adl), 5453 EVENT_PTR(tx_conflict_adl), 5454 EVENT_PTR(cycles_t_adl), 5455 EVENT_PTR(cycles_ct_adl), 5456 NULL, 5457 }; 5458 5459 FORMAT_ATTR_HYBRID(in_tx, hybrid_big); 5460 FORMAT_ATTR_HYBRID(in_tx_cp, hybrid_big); 5461 FORMAT_ATTR_HYBRID(offcore_rsp, hybrid_big_small); 5462 FORMAT_ATTR_HYBRID(ldlat, hybrid_big_small); 5463 FORMAT_ATTR_HYBRID(frontend, hybrid_big); 5464 5465 static struct attribute *adl_hybrid_extra_attr_rtm[] = { 5466 FORMAT_HYBRID_PTR(in_tx), 5467 FORMAT_HYBRID_PTR(in_tx_cp), 5468 FORMAT_HYBRID_PTR(offcore_rsp), 5469 FORMAT_HYBRID_PTR(ldlat), 5470 FORMAT_HYBRID_PTR(frontend), 5471 NULL, 5472 }; 5473 5474 static struct attribute *adl_hybrid_extra_attr[] = { 5475 FORMAT_HYBRID_PTR(offcore_rsp), 5476 FORMAT_HYBRID_PTR(ldlat), 5477 FORMAT_HYBRID_PTR(frontend), 5478 NULL, 5479 }; 5480 5481 static bool is_attr_for_this_pmu(struct kobject *kobj, struct attribute *attr) 5482 { 5483 struct device *dev = kobj_to_dev(kobj); 5484 struct x86_hybrid_pmu *pmu = 5485 container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu); 5486 struct perf_pmu_events_hybrid_attr *pmu_attr = 5487 container_of(attr, struct perf_pmu_events_hybrid_attr, attr.attr); 5488 5489 return pmu->cpu_type & pmu_attr->pmu_type; 5490 } 5491 5492 static umode_t hybrid_events_is_visible(struct kobject *kobj, 5493 struct attribute *attr, int i) 5494 { 5495 return is_attr_for_this_pmu(kobj, attr) ? attr->mode : 0; 5496 } 5497 5498 static inline int hybrid_find_supported_cpu(struct x86_hybrid_pmu *pmu) 5499 { 5500 int cpu = cpumask_first(&pmu->supported_cpus); 5501 5502 return (cpu >= nr_cpu_ids) ? -1 : cpu; 5503 } 5504 5505 static umode_t hybrid_tsx_is_visible(struct kobject *kobj, 5506 struct attribute *attr, int i) 5507 { 5508 struct device *dev = kobj_to_dev(kobj); 5509 struct x86_hybrid_pmu *pmu = 5510 container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu); 5511 int cpu = hybrid_find_supported_cpu(pmu); 5512 5513 return (cpu >= 0) && is_attr_for_this_pmu(kobj, attr) && cpu_has(&cpu_data(cpu), X86_FEATURE_RTM) ? attr->mode : 0; 5514 } 5515 5516 static umode_t hybrid_format_is_visible(struct kobject *kobj, 5517 struct attribute *attr, int i) 5518 { 5519 struct device *dev = kobj_to_dev(kobj); 5520 struct x86_hybrid_pmu *pmu = 5521 container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu); 5522 struct perf_pmu_format_hybrid_attr *pmu_attr = 5523 container_of(attr, struct perf_pmu_format_hybrid_attr, attr.attr); 5524 int cpu = hybrid_find_supported_cpu(pmu); 5525 5526 return (cpu >= 0) && (pmu->cpu_type & pmu_attr->pmu_type) ? attr->mode : 0; 5527 } 5528 5529 static struct attribute_group hybrid_group_events_td = { 5530 .name = "events", 5531 .is_visible = hybrid_events_is_visible, 5532 }; 5533 5534 static struct attribute_group hybrid_group_events_mem = { 5535 .name = "events", 5536 .is_visible = hybrid_events_is_visible, 5537 }; 5538 5539 static struct attribute_group hybrid_group_events_tsx = { 5540 .name = "events", 5541 .is_visible = hybrid_tsx_is_visible, 5542 }; 5543 5544 static struct attribute_group hybrid_group_format_extra = { 5545 .name = "format", 5546 .is_visible = hybrid_format_is_visible, 5547 }; 5548 5549 static ssize_t intel_hybrid_get_attr_cpus(struct device *dev, 5550 struct device_attribute *attr, 5551 char *buf) 5552 { 5553 struct x86_hybrid_pmu *pmu = 5554 container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu); 5555 5556 return cpumap_print_to_pagebuf(true, buf, &pmu->supported_cpus); 5557 } 5558 5559 static DEVICE_ATTR(cpus, S_IRUGO, intel_hybrid_get_attr_cpus, NULL); 5560 static struct attribute *intel_hybrid_cpus_attrs[] = { 5561 &dev_attr_cpus.attr, 5562 NULL, 5563 }; 5564 5565 static struct attribute_group hybrid_group_cpus = { 5566 .attrs = intel_hybrid_cpus_attrs, 5567 }; 5568 5569 static const struct attribute_group *hybrid_attr_update[] = { 5570 &hybrid_group_events_td, 5571 &hybrid_group_events_mem, 5572 &hybrid_group_events_tsx, 5573 &group_caps_gen, 5574 &group_caps_lbr, 5575 &hybrid_group_format_extra, 5576 &group_default, 5577 &hybrid_group_cpus, 5578 NULL, 5579 }; 5580 5581 static struct attribute *empty_attrs; 5582 5583 static void intel_pmu_check_num_counters(int *num_counters, 5584 int *num_counters_fixed, 5585 u64 *intel_ctrl, u64 fixed_mask) 5586 { 5587 if (*num_counters > INTEL_PMC_MAX_GENERIC) { 5588 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!", 5589 *num_counters, INTEL_PMC_MAX_GENERIC); 5590 *num_counters = INTEL_PMC_MAX_GENERIC; 5591 } 5592 *intel_ctrl = (1ULL << *num_counters) - 1; 5593 5594 if (*num_counters_fixed > INTEL_PMC_MAX_FIXED) { 5595 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!", 5596 *num_counters_fixed, INTEL_PMC_MAX_FIXED); 5597 *num_counters_fixed = INTEL_PMC_MAX_FIXED; 5598 } 5599 5600 *intel_ctrl |= fixed_mask << INTEL_PMC_IDX_FIXED; 5601 } 5602 5603 static void intel_pmu_check_event_constraints(struct event_constraint *event_constraints, 5604 int num_counters, 5605 int num_counters_fixed, 5606 u64 intel_ctrl) 5607 { 5608 struct event_constraint *c; 5609 5610 if (!event_constraints) 5611 return; 5612 5613 /* 5614 * event on fixed counter2 (REF_CYCLES) only works on this 5615 * counter, so do not extend mask to generic counters 5616 */ 5617 for_each_event_constraint(c, event_constraints) { 5618 /* 5619 * Don't extend the topdown slots and metrics 5620 * events to the generic counters. 5621 */ 5622 if (c->idxmsk64 & INTEL_PMC_MSK_TOPDOWN) { 5623 /* 5624 * Disable topdown slots and metrics events, 5625 * if slots event is not in CPUID. 5626 */ 5627 if (!(INTEL_PMC_MSK_FIXED_SLOTS & intel_ctrl)) 5628 c->idxmsk64 = 0; 5629 c->weight = hweight64(c->idxmsk64); 5630 continue; 5631 } 5632 5633 if (c->cmask == FIXED_EVENT_FLAGS) { 5634 /* Disabled fixed counters which are not in CPUID */ 5635 c->idxmsk64 &= intel_ctrl; 5636 5637 /* 5638 * Don't extend the pseudo-encoding to the 5639 * generic counters 5640 */ 5641 if (!use_fixed_pseudo_encoding(c->code)) 5642 c->idxmsk64 |= (1ULL << num_counters) - 1; 5643 } 5644 c->idxmsk64 &= 5645 ~(~0ULL << (INTEL_PMC_IDX_FIXED + num_counters_fixed)); 5646 c->weight = hweight64(c->idxmsk64); 5647 } 5648 } 5649 5650 static void intel_pmu_check_extra_regs(struct extra_reg *extra_regs) 5651 { 5652 struct extra_reg *er; 5653 5654 /* 5655 * Access extra MSR may cause #GP under certain circumstances. 5656 * E.g. KVM doesn't support offcore event 5657 * Check all extra_regs here. 5658 */ 5659 if (!extra_regs) 5660 return; 5661 5662 for (er = extra_regs; er->msr; er++) { 5663 er->extra_msr_access = check_msr(er->msr, 0x11UL); 5664 /* Disable LBR select mapping */ 5665 if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access) 5666 x86_pmu.lbr_sel_map = NULL; 5667 } 5668 } 5669 5670 static void intel_pmu_check_hybrid_pmus(u64 fixed_mask) 5671 { 5672 struct x86_hybrid_pmu *pmu; 5673 int i; 5674 5675 for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) { 5676 pmu = &x86_pmu.hybrid_pmu[i]; 5677 5678 intel_pmu_check_num_counters(&pmu->num_counters, 5679 &pmu->num_counters_fixed, 5680 &pmu->intel_ctrl, 5681 fixed_mask); 5682 5683 if (pmu->intel_cap.perf_metrics) { 5684 pmu->intel_ctrl |= 1ULL << GLOBAL_CTRL_EN_PERF_METRICS; 5685 pmu->intel_ctrl |= INTEL_PMC_MSK_FIXED_SLOTS; 5686 } 5687 5688 if (pmu->intel_cap.pebs_output_pt_available) 5689 pmu->pmu.capabilities |= PERF_PMU_CAP_AUX_OUTPUT; 5690 5691 intel_pmu_check_event_constraints(pmu->event_constraints, 5692 pmu->num_counters, 5693 pmu->num_counters_fixed, 5694 pmu->intel_ctrl); 5695 5696 intel_pmu_check_extra_regs(pmu->extra_regs); 5697 } 5698 } 5699 5700 __init int intel_pmu_init(void) 5701 { 5702 struct attribute **extra_skl_attr = &empty_attrs; 5703 struct attribute **extra_attr = &empty_attrs; 5704 struct attribute **td_attr = &empty_attrs; 5705 struct attribute **mem_attr = &empty_attrs; 5706 struct attribute **tsx_attr = &empty_attrs; 5707 union cpuid10_edx edx; 5708 union cpuid10_eax eax; 5709 union cpuid10_ebx ebx; 5710 unsigned int fixed_mask; 5711 bool pmem = false; 5712 int version, i; 5713 char *name; 5714 struct x86_hybrid_pmu *pmu; 5715 5716 if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) { 5717 switch (boot_cpu_data.x86) { 5718 case 0x6: 5719 return p6_pmu_init(); 5720 case 0xb: 5721 return knc_pmu_init(); 5722 case 0xf: 5723 return p4_pmu_init(); 5724 } 5725 return -ENODEV; 5726 } 5727 5728 /* 5729 * Check whether the Architectural PerfMon supports 5730 * Branch Misses Retired hw_event or not. 5731 */ 5732 cpuid(10, &eax.full, &ebx.full, &fixed_mask, &edx.full); 5733 if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT) 5734 return -ENODEV; 5735 5736 version = eax.split.version_id; 5737 if (version < 2) 5738 x86_pmu = core_pmu; 5739 else 5740 x86_pmu = intel_pmu; 5741 5742 x86_pmu.version = version; 5743 x86_pmu.num_counters = eax.split.num_counters; 5744 x86_pmu.cntval_bits = eax.split.bit_width; 5745 x86_pmu.cntval_mask = (1ULL << eax.split.bit_width) - 1; 5746 5747 x86_pmu.events_maskl = ebx.full; 5748 x86_pmu.events_mask_len = eax.split.mask_length; 5749 5750 x86_pmu.max_pebs_events = min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters); 5751 x86_pmu.pebs_capable = PEBS_COUNTER_MASK; 5752 5753 /* 5754 * Quirk: v2 perfmon does not report fixed-purpose events, so 5755 * assume at least 3 events, when not running in a hypervisor: 5756 */ 5757 if (version > 1 && version < 5) { 5758 int assume = 3 * !boot_cpu_has(X86_FEATURE_HYPERVISOR); 5759 5760 x86_pmu.num_counters_fixed = 5761 max((int)edx.split.num_counters_fixed, assume); 5762 5763 fixed_mask = (1L << x86_pmu.num_counters_fixed) - 1; 5764 } else if (version >= 5) 5765 x86_pmu.num_counters_fixed = fls(fixed_mask); 5766 5767 if (boot_cpu_has(X86_FEATURE_PDCM)) { 5768 u64 capabilities; 5769 5770 rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities); 5771 x86_pmu.intel_cap.capabilities = capabilities; 5772 } 5773 5774 if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32) { 5775 x86_pmu.lbr_reset = intel_pmu_lbr_reset_32; 5776 x86_pmu.lbr_read = intel_pmu_lbr_read_32; 5777 } 5778 5779 if (boot_cpu_has(X86_FEATURE_ARCH_LBR)) 5780 intel_pmu_arch_lbr_init(); 5781 5782 intel_ds_init(); 5783 5784 x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */ 5785 5786 if (version >= 5) { 5787 x86_pmu.intel_cap.anythread_deprecated = edx.split.anythread_deprecated; 5788 if (x86_pmu.intel_cap.anythread_deprecated) 5789 pr_cont(" AnyThread deprecated, "); 5790 } 5791 5792 /* 5793 * Install the hw-cache-events table: 5794 */ 5795 switch (boot_cpu_data.x86_model) { 5796 case INTEL_FAM6_CORE_YONAH: 5797 pr_cont("Core events, "); 5798 name = "core"; 5799 break; 5800 5801 case INTEL_FAM6_CORE2_MEROM: 5802 x86_add_quirk(intel_clovertown_quirk); 5803 fallthrough; 5804 5805 case INTEL_FAM6_CORE2_MEROM_L: 5806 case INTEL_FAM6_CORE2_PENRYN: 5807 case INTEL_FAM6_CORE2_DUNNINGTON: 5808 memcpy(hw_cache_event_ids, core2_hw_cache_event_ids, 5809 sizeof(hw_cache_event_ids)); 5810 5811 intel_pmu_lbr_init_core(); 5812 5813 x86_pmu.event_constraints = intel_core2_event_constraints; 5814 x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints; 5815 pr_cont("Core2 events, "); 5816 name = "core2"; 5817 break; 5818 5819 case INTEL_FAM6_NEHALEM: 5820 case INTEL_FAM6_NEHALEM_EP: 5821 case INTEL_FAM6_NEHALEM_EX: 5822 memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids, 5823 sizeof(hw_cache_event_ids)); 5824 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs, 5825 sizeof(hw_cache_extra_regs)); 5826 5827 intel_pmu_lbr_init_nhm(); 5828 5829 x86_pmu.event_constraints = intel_nehalem_event_constraints; 5830 x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints; 5831 x86_pmu.enable_all = intel_pmu_nhm_enable_all; 5832 x86_pmu.extra_regs = intel_nehalem_extra_regs; 5833 x86_pmu.limit_period = nhm_limit_period; 5834 5835 mem_attr = nhm_mem_events_attrs; 5836 5837 /* UOPS_ISSUED.STALLED_CYCLES */ 5838 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 5839 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1); 5840 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */ 5841 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = 5842 X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1); 5843 5844 intel_pmu_pebs_data_source_nhm(); 5845 x86_add_quirk(intel_nehalem_quirk); 5846 x86_pmu.pebs_no_tlb = 1; 5847 extra_attr = nhm_format_attr; 5848 5849 pr_cont("Nehalem events, "); 5850 name = "nehalem"; 5851 break; 5852 5853 case INTEL_FAM6_ATOM_BONNELL: 5854 case INTEL_FAM6_ATOM_BONNELL_MID: 5855 case INTEL_FAM6_ATOM_SALTWELL: 5856 case INTEL_FAM6_ATOM_SALTWELL_MID: 5857 case INTEL_FAM6_ATOM_SALTWELL_TABLET: 5858 memcpy(hw_cache_event_ids, atom_hw_cache_event_ids, 5859 sizeof(hw_cache_event_ids)); 5860 5861 intel_pmu_lbr_init_atom(); 5862 5863 x86_pmu.event_constraints = intel_gen_event_constraints; 5864 x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints; 5865 x86_pmu.pebs_aliases = intel_pebs_aliases_core2; 5866 pr_cont("Atom events, "); 5867 name = "bonnell"; 5868 break; 5869 5870 case INTEL_FAM6_ATOM_SILVERMONT: 5871 case INTEL_FAM6_ATOM_SILVERMONT_D: 5872 case INTEL_FAM6_ATOM_SILVERMONT_MID: 5873 case INTEL_FAM6_ATOM_AIRMONT: 5874 case INTEL_FAM6_ATOM_AIRMONT_MID: 5875 memcpy(hw_cache_event_ids, slm_hw_cache_event_ids, 5876 sizeof(hw_cache_event_ids)); 5877 memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs, 5878 sizeof(hw_cache_extra_regs)); 5879 5880 intel_pmu_lbr_init_slm(); 5881 5882 x86_pmu.event_constraints = intel_slm_event_constraints; 5883 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints; 5884 x86_pmu.extra_regs = intel_slm_extra_regs; 5885 x86_pmu.flags |= PMU_FL_HAS_RSP_1; 5886 td_attr = slm_events_attrs; 5887 extra_attr = slm_format_attr; 5888 pr_cont("Silvermont events, "); 5889 name = "silvermont"; 5890 break; 5891 5892 case INTEL_FAM6_ATOM_GOLDMONT: 5893 case INTEL_FAM6_ATOM_GOLDMONT_D: 5894 memcpy(hw_cache_event_ids, glm_hw_cache_event_ids, 5895 sizeof(hw_cache_event_ids)); 5896 memcpy(hw_cache_extra_regs, glm_hw_cache_extra_regs, 5897 sizeof(hw_cache_extra_regs)); 5898 5899 intel_pmu_lbr_init_skl(); 5900 5901 x86_pmu.event_constraints = intel_slm_event_constraints; 5902 x86_pmu.pebs_constraints = intel_glm_pebs_event_constraints; 5903 x86_pmu.extra_regs = intel_glm_extra_regs; 5904 /* 5905 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS 5906 * for precise cycles. 5907 * :pp is identical to :ppp 5908 */ 5909 x86_pmu.pebs_aliases = NULL; 5910 x86_pmu.pebs_prec_dist = true; 5911 x86_pmu.lbr_pt_coexist = true; 5912 x86_pmu.flags |= PMU_FL_HAS_RSP_1; 5913 td_attr = glm_events_attrs; 5914 extra_attr = slm_format_attr; 5915 pr_cont("Goldmont events, "); 5916 name = "goldmont"; 5917 break; 5918 5919 case INTEL_FAM6_ATOM_GOLDMONT_PLUS: 5920 memcpy(hw_cache_event_ids, glp_hw_cache_event_ids, 5921 sizeof(hw_cache_event_ids)); 5922 memcpy(hw_cache_extra_regs, glp_hw_cache_extra_regs, 5923 sizeof(hw_cache_extra_regs)); 5924 5925 intel_pmu_lbr_init_skl(); 5926 5927 x86_pmu.event_constraints = intel_slm_event_constraints; 5928 x86_pmu.extra_regs = intel_glm_extra_regs; 5929 /* 5930 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS 5931 * for precise cycles. 5932 */ 5933 x86_pmu.pebs_aliases = NULL; 5934 x86_pmu.pebs_prec_dist = true; 5935 x86_pmu.lbr_pt_coexist = true; 5936 x86_pmu.pebs_capable = ~0ULL; 5937 x86_pmu.flags |= PMU_FL_HAS_RSP_1; 5938 x86_pmu.flags |= PMU_FL_PEBS_ALL; 5939 x86_pmu.get_event_constraints = glp_get_event_constraints; 5940 td_attr = glm_events_attrs; 5941 /* Goldmont Plus has 4-wide pipeline */ 5942 event_attr_td_total_slots_scale_glm.event_str = "4"; 5943 extra_attr = slm_format_attr; 5944 pr_cont("Goldmont plus events, "); 5945 name = "goldmont_plus"; 5946 break; 5947 5948 case INTEL_FAM6_ATOM_TREMONT_D: 5949 case INTEL_FAM6_ATOM_TREMONT: 5950 case INTEL_FAM6_ATOM_TREMONT_L: 5951 x86_pmu.late_ack = true; 5952 memcpy(hw_cache_event_ids, glp_hw_cache_event_ids, 5953 sizeof(hw_cache_event_ids)); 5954 memcpy(hw_cache_extra_regs, tnt_hw_cache_extra_regs, 5955 sizeof(hw_cache_extra_regs)); 5956 hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1; 5957 5958 intel_pmu_lbr_init_skl(); 5959 5960 x86_pmu.event_constraints = intel_slm_event_constraints; 5961 x86_pmu.extra_regs = intel_tnt_extra_regs; 5962 /* 5963 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS 5964 * for precise cycles. 5965 */ 5966 x86_pmu.pebs_aliases = NULL; 5967 x86_pmu.pebs_prec_dist = true; 5968 x86_pmu.lbr_pt_coexist = true; 5969 x86_pmu.flags |= PMU_FL_HAS_RSP_1; 5970 x86_pmu.get_event_constraints = tnt_get_event_constraints; 5971 td_attr = tnt_events_attrs; 5972 extra_attr = slm_format_attr; 5973 pr_cont("Tremont events, "); 5974 name = "Tremont"; 5975 break; 5976 5977 case INTEL_FAM6_WESTMERE: 5978 case INTEL_FAM6_WESTMERE_EP: 5979 case INTEL_FAM6_WESTMERE_EX: 5980 memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids, 5981 sizeof(hw_cache_event_ids)); 5982 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs, 5983 sizeof(hw_cache_extra_regs)); 5984 5985 intel_pmu_lbr_init_nhm(); 5986 5987 x86_pmu.event_constraints = intel_westmere_event_constraints; 5988 x86_pmu.enable_all = intel_pmu_nhm_enable_all; 5989 x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints; 5990 x86_pmu.extra_regs = intel_westmere_extra_regs; 5991 x86_pmu.flags |= PMU_FL_HAS_RSP_1; 5992 5993 mem_attr = nhm_mem_events_attrs; 5994 5995 /* UOPS_ISSUED.STALLED_CYCLES */ 5996 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 5997 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1); 5998 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */ 5999 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = 6000 X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1); 6001 6002 intel_pmu_pebs_data_source_nhm(); 6003 extra_attr = nhm_format_attr; 6004 pr_cont("Westmere events, "); 6005 name = "westmere"; 6006 break; 6007 6008 case INTEL_FAM6_SANDYBRIDGE: 6009 case INTEL_FAM6_SANDYBRIDGE_X: 6010 x86_add_quirk(intel_sandybridge_quirk); 6011 x86_add_quirk(intel_ht_bug); 6012 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids, 6013 sizeof(hw_cache_event_ids)); 6014 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs, 6015 sizeof(hw_cache_extra_regs)); 6016 6017 intel_pmu_lbr_init_snb(); 6018 6019 x86_pmu.event_constraints = intel_snb_event_constraints; 6020 x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints; 6021 x86_pmu.pebs_aliases = intel_pebs_aliases_snb; 6022 if (boot_cpu_data.x86_model == INTEL_FAM6_SANDYBRIDGE_X) 6023 x86_pmu.extra_regs = intel_snbep_extra_regs; 6024 else 6025 x86_pmu.extra_regs = intel_snb_extra_regs; 6026 6027 6028 /* all extra regs are per-cpu when HT is on */ 6029 x86_pmu.flags |= PMU_FL_HAS_RSP_1; 6030 x86_pmu.flags |= PMU_FL_NO_HT_SHARING; 6031 6032 td_attr = snb_events_attrs; 6033 mem_attr = snb_mem_events_attrs; 6034 6035 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */ 6036 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 6037 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1); 6038 /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/ 6039 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = 6040 X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1); 6041 6042 extra_attr = nhm_format_attr; 6043 6044 pr_cont("SandyBridge events, "); 6045 name = "sandybridge"; 6046 break; 6047 6048 case INTEL_FAM6_IVYBRIDGE: 6049 case INTEL_FAM6_IVYBRIDGE_X: 6050 x86_add_quirk(intel_ht_bug); 6051 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids, 6052 sizeof(hw_cache_event_ids)); 6053 /* dTLB-load-misses on IVB is different than SNB */ 6054 hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */ 6055 6056 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs, 6057 sizeof(hw_cache_extra_regs)); 6058 6059 intel_pmu_lbr_init_snb(); 6060 6061 x86_pmu.event_constraints = intel_ivb_event_constraints; 6062 x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints; 6063 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb; 6064 x86_pmu.pebs_prec_dist = true; 6065 if (boot_cpu_data.x86_model == INTEL_FAM6_IVYBRIDGE_X) 6066 x86_pmu.extra_regs = intel_snbep_extra_regs; 6067 else 6068 x86_pmu.extra_regs = intel_snb_extra_regs; 6069 /* all extra regs are per-cpu when HT is on */ 6070 x86_pmu.flags |= PMU_FL_HAS_RSP_1; 6071 x86_pmu.flags |= PMU_FL_NO_HT_SHARING; 6072 6073 td_attr = snb_events_attrs; 6074 mem_attr = snb_mem_events_attrs; 6075 6076 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */ 6077 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 6078 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1); 6079 6080 extra_attr = nhm_format_attr; 6081 6082 pr_cont("IvyBridge events, "); 6083 name = "ivybridge"; 6084 break; 6085 6086 6087 case INTEL_FAM6_HASWELL: 6088 case INTEL_FAM6_HASWELL_X: 6089 case INTEL_FAM6_HASWELL_L: 6090 case INTEL_FAM6_HASWELL_G: 6091 x86_add_quirk(intel_ht_bug); 6092 x86_add_quirk(intel_pebs_isolation_quirk); 6093 x86_pmu.late_ack = true; 6094 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids)); 6095 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs)); 6096 6097 intel_pmu_lbr_init_hsw(); 6098 6099 x86_pmu.event_constraints = intel_hsw_event_constraints; 6100 x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints; 6101 x86_pmu.extra_regs = intel_snbep_extra_regs; 6102 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb; 6103 x86_pmu.pebs_prec_dist = true; 6104 /* all extra regs are per-cpu when HT is on */ 6105 x86_pmu.flags |= PMU_FL_HAS_RSP_1; 6106 x86_pmu.flags |= PMU_FL_NO_HT_SHARING; 6107 6108 x86_pmu.hw_config = hsw_hw_config; 6109 x86_pmu.get_event_constraints = hsw_get_event_constraints; 6110 x86_pmu.lbr_double_abort = true; 6111 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ? 6112 hsw_format_attr : nhm_format_attr; 6113 td_attr = hsw_events_attrs; 6114 mem_attr = hsw_mem_events_attrs; 6115 tsx_attr = hsw_tsx_events_attrs; 6116 pr_cont("Haswell events, "); 6117 name = "haswell"; 6118 break; 6119 6120 case INTEL_FAM6_BROADWELL: 6121 case INTEL_FAM6_BROADWELL_D: 6122 case INTEL_FAM6_BROADWELL_G: 6123 case INTEL_FAM6_BROADWELL_X: 6124 x86_add_quirk(intel_pebs_isolation_quirk); 6125 x86_pmu.late_ack = true; 6126 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids)); 6127 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs)); 6128 6129 /* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */ 6130 hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ | 6131 BDW_L3_MISS|HSW_SNOOP_DRAM; 6132 hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS| 6133 HSW_SNOOP_DRAM; 6134 hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ| 6135 BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM; 6136 hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE| 6137 BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM; 6138 6139 intel_pmu_lbr_init_hsw(); 6140 6141 x86_pmu.event_constraints = intel_bdw_event_constraints; 6142 x86_pmu.pebs_constraints = intel_bdw_pebs_event_constraints; 6143 x86_pmu.extra_regs = intel_snbep_extra_regs; 6144 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb; 6145 x86_pmu.pebs_prec_dist = true; 6146 /* all extra regs are per-cpu when HT is on */ 6147 x86_pmu.flags |= PMU_FL_HAS_RSP_1; 6148 x86_pmu.flags |= PMU_FL_NO_HT_SHARING; 6149 6150 x86_pmu.hw_config = hsw_hw_config; 6151 x86_pmu.get_event_constraints = hsw_get_event_constraints; 6152 x86_pmu.limit_period = bdw_limit_period; 6153 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ? 6154 hsw_format_attr : nhm_format_attr; 6155 td_attr = hsw_events_attrs; 6156 mem_attr = hsw_mem_events_attrs; 6157 tsx_attr = hsw_tsx_events_attrs; 6158 pr_cont("Broadwell events, "); 6159 name = "broadwell"; 6160 break; 6161 6162 case INTEL_FAM6_XEON_PHI_KNL: 6163 case INTEL_FAM6_XEON_PHI_KNM: 6164 memcpy(hw_cache_event_ids, 6165 slm_hw_cache_event_ids, sizeof(hw_cache_event_ids)); 6166 memcpy(hw_cache_extra_regs, 6167 knl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs)); 6168 intel_pmu_lbr_init_knl(); 6169 6170 x86_pmu.event_constraints = intel_slm_event_constraints; 6171 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints; 6172 x86_pmu.extra_regs = intel_knl_extra_regs; 6173 6174 /* all extra regs are per-cpu when HT is on */ 6175 x86_pmu.flags |= PMU_FL_HAS_RSP_1; 6176 x86_pmu.flags |= PMU_FL_NO_HT_SHARING; 6177 extra_attr = slm_format_attr; 6178 pr_cont("Knights Landing/Mill events, "); 6179 name = "knights-landing"; 6180 break; 6181 6182 case INTEL_FAM6_SKYLAKE_X: 6183 pmem = true; 6184 fallthrough; 6185 case INTEL_FAM6_SKYLAKE_L: 6186 case INTEL_FAM6_SKYLAKE: 6187 case INTEL_FAM6_KABYLAKE_L: 6188 case INTEL_FAM6_KABYLAKE: 6189 case INTEL_FAM6_COMETLAKE_L: 6190 case INTEL_FAM6_COMETLAKE: 6191 x86_add_quirk(intel_pebs_isolation_quirk); 6192 x86_pmu.late_ack = true; 6193 memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids)); 6194 memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs)); 6195 intel_pmu_lbr_init_skl(); 6196 6197 /* INT_MISC.RECOVERY_CYCLES has umask 1 in Skylake */ 6198 event_attr_td_recovery_bubbles.event_str_noht = 6199 "event=0xd,umask=0x1,cmask=1"; 6200 event_attr_td_recovery_bubbles.event_str_ht = 6201 "event=0xd,umask=0x1,cmask=1,any=1"; 6202 6203 x86_pmu.event_constraints = intel_skl_event_constraints; 6204 x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints; 6205 x86_pmu.extra_regs = intel_skl_extra_regs; 6206 x86_pmu.pebs_aliases = intel_pebs_aliases_skl; 6207 x86_pmu.pebs_prec_dist = true; 6208 /* all extra regs are per-cpu when HT is on */ 6209 x86_pmu.flags |= PMU_FL_HAS_RSP_1; 6210 x86_pmu.flags |= PMU_FL_NO_HT_SHARING; 6211 6212 x86_pmu.hw_config = hsw_hw_config; 6213 x86_pmu.get_event_constraints = hsw_get_event_constraints; 6214 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ? 6215 hsw_format_attr : nhm_format_attr; 6216 extra_skl_attr = skl_format_attr; 6217 td_attr = hsw_events_attrs; 6218 mem_attr = hsw_mem_events_attrs; 6219 tsx_attr = hsw_tsx_events_attrs; 6220 intel_pmu_pebs_data_source_skl(pmem); 6221 6222 /* 6223 * Processors with CPUID.RTM_ALWAYS_ABORT have TSX deprecated by default. 6224 * TSX force abort hooks are not required on these systems. Only deploy 6225 * workaround when microcode has not enabled X86_FEATURE_RTM_ALWAYS_ABORT. 6226 */ 6227 if (boot_cpu_has(X86_FEATURE_TSX_FORCE_ABORT) && 6228 !boot_cpu_has(X86_FEATURE_RTM_ALWAYS_ABORT)) { 6229 x86_pmu.flags |= PMU_FL_TFA; 6230 x86_pmu.get_event_constraints = tfa_get_event_constraints; 6231 x86_pmu.enable_all = intel_tfa_pmu_enable_all; 6232 x86_pmu.commit_scheduling = intel_tfa_commit_scheduling; 6233 } 6234 6235 pr_cont("Skylake events, "); 6236 name = "skylake"; 6237 break; 6238 6239 case INTEL_FAM6_ICELAKE_X: 6240 case INTEL_FAM6_ICELAKE_D: 6241 x86_pmu.pebs_ept = 1; 6242 pmem = true; 6243 fallthrough; 6244 case INTEL_FAM6_ICELAKE_L: 6245 case INTEL_FAM6_ICELAKE: 6246 case INTEL_FAM6_TIGERLAKE_L: 6247 case INTEL_FAM6_TIGERLAKE: 6248 case INTEL_FAM6_ROCKETLAKE: 6249 x86_pmu.late_ack = true; 6250 memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids)); 6251 memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs)); 6252 hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1; 6253 intel_pmu_lbr_init_skl(); 6254 6255 x86_pmu.event_constraints = intel_icl_event_constraints; 6256 x86_pmu.pebs_constraints = intel_icl_pebs_event_constraints; 6257 x86_pmu.extra_regs = intel_icl_extra_regs; 6258 x86_pmu.pebs_aliases = NULL; 6259 x86_pmu.pebs_prec_dist = true; 6260 x86_pmu.flags |= PMU_FL_HAS_RSP_1; 6261 x86_pmu.flags |= PMU_FL_NO_HT_SHARING; 6262 6263 x86_pmu.hw_config = hsw_hw_config; 6264 x86_pmu.get_event_constraints = icl_get_event_constraints; 6265 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ? 6266 hsw_format_attr : nhm_format_attr; 6267 extra_skl_attr = skl_format_attr; 6268 mem_attr = icl_events_attrs; 6269 td_attr = icl_td_events_attrs; 6270 tsx_attr = icl_tsx_events_attrs; 6271 x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04); 6272 x86_pmu.lbr_pt_coexist = true; 6273 intel_pmu_pebs_data_source_skl(pmem); 6274 x86_pmu.num_topdown_events = 4; 6275 x86_pmu.update_topdown_event = icl_update_topdown_event; 6276 x86_pmu.set_topdown_event_period = icl_set_topdown_event_period; 6277 pr_cont("Icelake events, "); 6278 name = "icelake"; 6279 break; 6280 6281 case INTEL_FAM6_SAPPHIRERAPIDS_X: 6282 pmem = true; 6283 x86_pmu.late_ack = true; 6284 memcpy(hw_cache_event_ids, spr_hw_cache_event_ids, sizeof(hw_cache_event_ids)); 6285 memcpy(hw_cache_extra_regs, spr_hw_cache_extra_regs, sizeof(hw_cache_extra_regs)); 6286 6287 x86_pmu.event_constraints = intel_spr_event_constraints; 6288 x86_pmu.pebs_constraints = intel_spr_pebs_event_constraints; 6289 x86_pmu.extra_regs = intel_spr_extra_regs; 6290 x86_pmu.limit_period = spr_limit_period; 6291 x86_pmu.pebs_aliases = NULL; 6292 x86_pmu.pebs_prec_dist = true; 6293 x86_pmu.pebs_block = true; 6294 x86_pmu.flags |= PMU_FL_HAS_RSP_1; 6295 x86_pmu.flags |= PMU_FL_NO_HT_SHARING; 6296 x86_pmu.flags |= PMU_FL_INSTR_LATENCY; 6297 x86_pmu.flags |= PMU_FL_MEM_LOADS_AUX; 6298 6299 x86_pmu.hw_config = hsw_hw_config; 6300 x86_pmu.get_event_constraints = spr_get_event_constraints; 6301 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ? 6302 hsw_format_attr : nhm_format_attr; 6303 extra_skl_attr = skl_format_attr; 6304 mem_attr = spr_events_attrs; 6305 td_attr = spr_td_events_attrs; 6306 tsx_attr = spr_tsx_events_attrs; 6307 x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04); 6308 x86_pmu.lbr_pt_coexist = true; 6309 intel_pmu_pebs_data_source_skl(pmem); 6310 x86_pmu.num_topdown_events = 8; 6311 x86_pmu.update_topdown_event = icl_update_topdown_event; 6312 x86_pmu.set_topdown_event_period = icl_set_topdown_event_period; 6313 pr_cont("Sapphire Rapids events, "); 6314 name = "sapphire_rapids"; 6315 break; 6316 6317 case INTEL_FAM6_ALDERLAKE: 6318 case INTEL_FAM6_ALDERLAKE_L: 6319 case INTEL_FAM6_ALDERLAKE_N: 6320 case INTEL_FAM6_RAPTORLAKE: 6321 case INTEL_FAM6_RAPTORLAKE_P: 6322 /* 6323 * Alder Lake has 2 types of CPU, core and atom. 6324 * 6325 * Initialize the common PerfMon capabilities here. 6326 */ 6327 x86_pmu.hybrid_pmu = kcalloc(X86_HYBRID_NUM_PMUS, 6328 sizeof(struct x86_hybrid_pmu), 6329 GFP_KERNEL); 6330 if (!x86_pmu.hybrid_pmu) 6331 return -ENOMEM; 6332 static_branch_enable(&perf_is_hybrid); 6333 x86_pmu.num_hybrid_pmus = X86_HYBRID_NUM_PMUS; 6334 6335 x86_pmu.pebs_aliases = NULL; 6336 x86_pmu.pebs_prec_dist = true; 6337 x86_pmu.pebs_block = true; 6338 x86_pmu.flags |= PMU_FL_HAS_RSP_1; 6339 x86_pmu.flags |= PMU_FL_NO_HT_SHARING; 6340 x86_pmu.flags |= PMU_FL_INSTR_LATENCY; 6341 x86_pmu.flags |= PMU_FL_MEM_LOADS_AUX; 6342 x86_pmu.lbr_pt_coexist = true; 6343 intel_pmu_pebs_data_source_adl(); 6344 x86_pmu.pebs_latency_data = adl_latency_data_small; 6345 x86_pmu.num_topdown_events = 8; 6346 x86_pmu.update_topdown_event = adl_update_topdown_event; 6347 x86_pmu.set_topdown_event_period = adl_set_topdown_event_period; 6348 6349 x86_pmu.filter_match = intel_pmu_filter_match; 6350 x86_pmu.get_event_constraints = adl_get_event_constraints; 6351 x86_pmu.hw_config = adl_hw_config; 6352 x86_pmu.limit_period = spr_limit_period; 6353 x86_pmu.get_hybrid_cpu_type = adl_get_hybrid_cpu_type; 6354 /* 6355 * The rtm_abort_event is used to check whether to enable GPRs 6356 * for the RTM abort event. Atom doesn't have the RTM abort 6357 * event. There is no harmful to set it in the common 6358 * x86_pmu.rtm_abort_event. 6359 */ 6360 x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04); 6361 6362 td_attr = adl_hybrid_events_attrs; 6363 mem_attr = adl_hybrid_mem_attrs; 6364 tsx_attr = adl_hybrid_tsx_attrs; 6365 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ? 6366 adl_hybrid_extra_attr_rtm : adl_hybrid_extra_attr; 6367 6368 /* Initialize big core specific PerfMon capabilities.*/ 6369 pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX]; 6370 pmu->name = "cpu_core"; 6371 pmu->cpu_type = hybrid_big; 6372 pmu->late_ack = true; 6373 if (cpu_feature_enabled(X86_FEATURE_HYBRID_CPU)) { 6374 pmu->num_counters = x86_pmu.num_counters + 2; 6375 pmu->num_counters_fixed = x86_pmu.num_counters_fixed + 1; 6376 } else { 6377 pmu->num_counters = x86_pmu.num_counters; 6378 pmu->num_counters_fixed = x86_pmu.num_counters_fixed; 6379 } 6380 6381 /* 6382 * Quirk: For some Alder Lake machine, when all E-cores are disabled in 6383 * a BIOS, the leaf 0xA will enumerate all counters of P-cores. However, 6384 * the X86_FEATURE_HYBRID_CPU is still set. The above codes will 6385 * mistakenly add extra counters for P-cores. Correct the number of 6386 * counters here. 6387 */ 6388 if ((pmu->num_counters > 8) || (pmu->num_counters_fixed > 4)) { 6389 pmu->num_counters = x86_pmu.num_counters; 6390 pmu->num_counters_fixed = x86_pmu.num_counters_fixed; 6391 } 6392 6393 pmu->max_pebs_events = min_t(unsigned, MAX_PEBS_EVENTS, pmu->num_counters); 6394 pmu->unconstrained = (struct event_constraint) 6395 __EVENT_CONSTRAINT(0, (1ULL << pmu->num_counters) - 1, 6396 0, pmu->num_counters, 0, 0); 6397 pmu->intel_cap.capabilities = x86_pmu.intel_cap.capabilities; 6398 pmu->intel_cap.perf_metrics = 1; 6399 pmu->intel_cap.pebs_output_pt_available = 0; 6400 6401 memcpy(pmu->hw_cache_event_ids, spr_hw_cache_event_ids, sizeof(pmu->hw_cache_event_ids)); 6402 memcpy(pmu->hw_cache_extra_regs, spr_hw_cache_extra_regs, sizeof(pmu->hw_cache_extra_regs)); 6403 pmu->event_constraints = intel_spr_event_constraints; 6404 pmu->pebs_constraints = intel_spr_pebs_event_constraints; 6405 pmu->extra_regs = intel_spr_extra_regs; 6406 6407 /* Initialize Atom core specific PerfMon capabilities.*/ 6408 pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX]; 6409 pmu->name = "cpu_atom"; 6410 pmu->cpu_type = hybrid_small; 6411 pmu->mid_ack = true; 6412 pmu->num_counters = x86_pmu.num_counters; 6413 pmu->num_counters_fixed = x86_pmu.num_counters_fixed; 6414 pmu->max_pebs_events = x86_pmu.max_pebs_events; 6415 pmu->unconstrained = (struct event_constraint) 6416 __EVENT_CONSTRAINT(0, (1ULL << pmu->num_counters) - 1, 6417 0, pmu->num_counters, 0, 0); 6418 pmu->intel_cap.capabilities = x86_pmu.intel_cap.capabilities; 6419 pmu->intel_cap.perf_metrics = 0; 6420 pmu->intel_cap.pebs_output_pt_available = 1; 6421 6422 memcpy(pmu->hw_cache_event_ids, glp_hw_cache_event_ids, sizeof(pmu->hw_cache_event_ids)); 6423 memcpy(pmu->hw_cache_extra_regs, tnt_hw_cache_extra_regs, sizeof(pmu->hw_cache_extra_regs)); 6424 pmu->hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1; 6425 pmu->event_constraints = intel_slm_event_constraints; 6426 pmu->pebs_constraints = intel_grt_pebs_event_constraints; 6427 pmu->extra_regs = intel_grt_extra_regs; 6428 pr_cont("Alderlake Hybrid events, "); 6429 name = "alderlake_hybrid"; 6430 break; 6431 6432 default: 6433 switch (x86_pmu.version) { 6434 case 1: 6435 x86_pmu.event_constraints = intel_v1_event_constraints; 6436 pr_cont("generic architected perfmon v1, "); 6437 name = "generic_arch_v1"; 6438 break; 6439 case 2: 6440 case 3: 6441 case 4: 6442 /* 6443 * default constraints for v2 and up 6444 */ 6445 x86_pmu.event_constraints = intel_gen_event_constraints; 6446 pr_cont("generic architected perfmon, "); 6447 name = "generic_arch_v2+"; 6448 break; 6449 default: 6450 /* 6451 * The default constraints for v5 and up can support up to 6452 * 16 fixed counters. For the fixed counters 4 and later, 6453 * the pseudo-encoding is applied. 6454 * The constraints may be cut according to the CPUID enumeration 6455 * by inserting the EVENT_CONSTRAINT_END. 6456 */ 6457 if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED) 6458 x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED; 6459 intel_v5_gen_event_constraints[x86_pmu.num_counters_fixed].weight = -1; 6460 x86_pmu.event_constraints = intel_v5_gen_event_constraints; 6461 pr_cont("generic architected perfmon, "); 6462 name = "generic_arch_v5+"; 6463 break; 6464 } 6465 } 6466 6467 snprintf(pmu_name_str, sizeof(pmu_name_str), "%s", name); 6468 6469 if (!is_hybrid()) { 6470 group_events_td.attrs = td_attr; 6471 group_events_mem.attrs = mem_attr; 6472 group_events_tsx.attrs = tsx_attr; 6473 group_format_extra.attrs = extra_attr; 6474 group_format_extra_skl.attrs = extra_skl_attr; 6475 6476 x86_pmu.attr_update = attr_update; 6477 } else { 6478 hybrid_group_events_td.attrs = td_attr; 6479 hybrid_group_events_mem.attrs = mem_attr; 6480 hybrid_group_events_tsx.attrs = tsx_attr; 6481 hybrid_group_format_extra.attrs = extra_attr; 6482 6483 x86_pmu.attr_update = hybrid_attr_update; 6484 } 6485 6486 intel_pmu_check_num_counters(&x86_pmu.num_counters, 6487 &x86_pmu.num_counters_fixed, 6488 &x86_pmu.intel_ctrl, 6489 (u64)fixed_mask); 6490 6491 /* AnyThread may be deprecated on arch perfmon v5 or later */ 6492 if (x86_pmu.intel_cap.anythread_deprecated) 6493 x86_pmu.format_attrs = intel_arch_formats_attr; 6494 6495 intel_pmu_check_event_constraints(x86_pmu.event_constraints, 6496 x86_pmu.num_counters, 6497 x86_pmu.num_counters_fixed, 6498 x86_pmu.intel_ctrl); 6499 /* 6500 * Access LBR MSR may cause #GP under certain circumstances. 6501 * Check all LBR MSR here. 6502 * Disable LBR access if any LBR MSRs can not be accessed. 6503 */ 6504 if (x86_pmu.lbr_tos && !check_msr(x86_pmu.lbr_tos, 0x3UL)) 6505 x86_pmu.lbr_nr = 0; 6506 for (i = 0; i < x86_pmu.lbr_nr; i++) { 6507 if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) && 6508 check_msr(x86_pmu.lbr_to + i, 0xffffUL))) 6509 x86_pmu.lbr_nr = 0; 6510 } 6511 6512 if (x86_pmu.lbr_nr) { 6513 intel_pmu_lbr_init(); 6514 6515 pr_cont("%d-deep LBR, ", x86_pmu.lbr_nr); 6516 6517 /* only support branch_stack snapshot for perfmon >= v2 */ 6518 if (x86_pmu.disable_all == intel_pmu_disable_all) { 6519 if (boot_cpu_has(X86_FEATURE_ARCH_LBR)) { 6520 static_call_update(perf_snapshot_branch_stack, 6521 intel_pmu_snapshot_arch_branch_stack); 6522 } else { 6523 static_call_update(perf_snapshot_branch_stack, 6524 intel_pmu_snapshot_branch_stack); 6525 } 6526 } 6527 } 6528 6529 intel_pmu_check_extra_regs(x86_pmu.extra_regs); 6530 6531 /* Support full width counters using alternative MSR range */ 6532 if (x86_pmu.intel_cap.full_width_write) { 6533 x86_pmu.max_period = x86_pmu.cntval_mask >> 1; 6534 x86_pmu.perfctr = MSR_IA32_PMC0; 6535 pr_cont("full-width counters, "); 6536 } 6537 6538 if (!is_hybrid() && x86_pmu.intel_cap.perf_metrics) 6539 x86_pmu.intel_ctrl |= 1ULL << GLOBAL_CTRL_EN_PERF_METRICS; 6540 6541 if (is_hybrid()) 6542 intel_pmu_check_hybrid_pmus((u64)fixed_mask); 6543 6544 intel_aux_output_init(); 6545 6546 return 0; 6547 } 6548 6549 /* 6550 * HT bug: phase 2 init 6551 * Called once we have valid topology information to check 6552 * whether or not HT is enabled 6553 * If HT is off, then we disable the workaround 6554 */ 6555 static __init int fixup_ht_bug(void) 6556 { 6557 int c; 6558 /* 6559 * problem not present on this CPU model, nothing to do 6560 */ 6561 if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED)) 6562 return 0; 6563 6564 if (topology_max_smt_threads() > 1) { 6565 pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n"); 6566 return 0; 6567 } 6568 6569 cpus_read_lock(); 6570 6571 hardlockup_detector_perf_stop(); 6572 6573 x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED); 6574 6575 x86_pmu.start_scheduling = NULL; 6576 x86_pmu.commit_scheduling = NULL; 6577 x86_pmu.stop_scheduling = NULL; 6578 6579 hardlockup_detector_perf_restart(); 6580 6581 for_each_online_cpu(c) 6582 free_excl_cntrs(&per_cpu(cpu_hw_events, c)); 6583 6584 cpus_read_unlock(); 6585 pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n"); 6586 return 0; 6587 } 6588 subsys_initcall(fixup_ht_bug) 6589