xref: /linux/arch/x86/events/intel/core.c (revision d09560435cb712c9ec1e62b8a43a79b0af69fe77)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Per core/cpu state
4  *
5  * Used to coordinate shared registers between HT threads or
6  * among events on a single PMU.
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/stddef.h>
12 #include <linux/types.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/nmi.h>
17 
18 #include <asm/cpufeature.h>
19 #include <asm/hardirq.h>
20 #include <asm/intel-family.h>
21 #include <asm/intel_pt.h>
22 #include <asm/apic.h>
23 #include <asm/cpu_device_id.h>
24 
25 #include "../perf_event.h"
26 
27 /*
28  * Intel PerfMon, used on Core and later.
29  */
30 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
31 {
32 	[PERF_COUNT_HW_CPU_CYCLES]		= 0x003c,
33 	[PERF_COUNT_HW_INSTRUCTIONS]		= 0x00c0,
34 	[PERF_COUNT_HW_CACHE_REFERENCES]	= 0x4f2e,
35 	[PERF_COUNT_HW_CACHE_MISSES]		= 0x412e,
36 	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS]	= 0x00c4,
37 	[PERF_COUNT_HW_BRANCH_MISSES]		= 0x00c5,
38 	[PERF_COUNT_HW_BUS_CYCLES]		= 0x013c,
39 	[PERF_COUNT_HW_REF_CPU_CYCLES]		= 0x0300, /* pseudo-encoding */
40 };
41 
42 static struct event_constraint intel_core_event_constraints[] __read_mostly =
43 {
44 	INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
45 	INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
46 	INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
47 	INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
48 	INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
49 	INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
50 	EVENT_CONSTRAINT_END
51 };
52 
53 static struct event_constraint intel_core2_event_constraints[] __read_mostly =
54 {
55 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
56 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
57 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
58 	INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
59 	INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
60 	INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
61 	INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
62 	INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
63 	INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
64 	INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
65 	INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
66 	INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
67 	INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
68 	EVENT_CONSTRAINT_END
69 };
70 
71 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
72 {
73 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
74 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
75 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
76 	INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
77 	INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
78 	INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
79 	INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
80 	INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
81 	INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
82 	INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
83 	INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
84 	EVENT_CONSTRAINT_END
85 };
86 
87 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
88 {
89 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
90 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
91 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
92 	EVENT_EXTRA_END
93 };
94 
95 static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
96 {
97 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
98 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
99 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
100 	INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
101 	INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
102 	INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
103 	INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
104 	EVENT_CONSTRAINT_END
105 };
106 
107 static struct event_constraint intel_snb_event_constraints[] __read_mostly =
108 {
109 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
110 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
111 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
112 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
113 	INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
114 	INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
115 	INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
116 	INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
117 	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
118 	INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
119 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
120 	INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
121 
122 	/*
123 	 * When HT is off these events can only run on the bottom 4 counters
124 	 * When HT is on, they are impacted by the HT bug and require EXCL access
125 	 */
126 	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
127 	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
128 	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
129 	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
130 
131 	EVENT_CONSTRAINT_END
132 };
133 
134 static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
135 {
136 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
137 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
138 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
139 	INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
140 	INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMPTY */
141 	INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
142 	INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
143 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
144 	INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
145 	INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
146 	INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
147 	INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
148 	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
149 
150 	/*
151 	 * When HT is off these events can only run on the bottom 4 counters
152 	 * When HT is on, they are impacted by the HT bug and require EXCL access
153 	 */
154 	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
155 	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
156 	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
157 	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
158 
159 	EVENT_CONSTRAINT_END
160 };
161 
162 static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
163 {
164 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
165 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
166 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
167 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
168 	EVENT_EXTRA_END
169 };
170 
171 static struct event_constraint intel_v1_event_constraints[] __read_mostly =
172 {
173 	EVENT_CONSTRAINT_END
174 };
175 
176 static struct event_constraint intel_gen_event_constraints[] __read_mostly =
177 {
178 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
179 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
180 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
181 	EVENT_CONSTRAINT_END
182 };
183 
184 static struct event_constraint intel_slm_event_constraints[] __read_mostly =
185 {
186 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
187 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
188 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
189 	EVENT_CONSTRAINT_END
190 };
191 
192 static struct event_constraint intel_skl_event_constraints[] = {
193 	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
194 	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
195 	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
196 	INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2),	/* INST_RETIRED.PREC_DIST */
197 
198 	/*
199 	 * when HT is off, these can only run on the bottom 4 counters
200 	 */
201 	INTEL_EVENT_CONSTRAINT(0xd0, 0xf),	/* MEM_INST_RETIRED.* */
202 	INTEL_EVENT_CONSTRAINT(0xd1, 0xf),	/* MEM_LOAD_RETIRED.* */
203 	INTEL_EVENT_CONSTRAINT(0xd2, 0xf),	/* MEM_LOAD_L3_HIT_RETIRED.* */
204 	INTEL_EVENT_CONSTRAINT(0xcd, 0xf),	/* MEM_TRANS_RETIRED.* */
205 	INTEL_EVENT_CONSTRAINT(0xc6, 0xf),	/* FRONTEND_RETIRED.* */
206 
207 	EVENT_CONSTRAINT_END
208 };
209 
210 static struct extra_reg intel_knl_extra_regs[] __read_mostly = {
211 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x799ffbb6e7ull, RSP_0),
212 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x399ffbffe7ull, RSP_1),
213 	EVENT_EXTRA_END
214 };
215 
216 static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
217 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
218 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
219 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
220 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
221 	EVENT_EXTRA_END
222 };
223 
224 static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
225 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
226 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
227 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
228 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
229 	EVENT_EXTRA_END
230 };
231 
232 static struct extra_reg intel_skl_extra_regs[] __read_mostly = {
233 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
234 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
235 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
236 	/*
237 	 * Note the low 8 bits eventsel code is not a continuous field, containing
238 	 * some #GPing bits. These are masked out.
239 	 */
240 	INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
241 	EVENT_EXTRA_END
242 };
243 
244 static struct event_constraint intel_icl_event_constraints[] = {
245 	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
246 	FIXED_EVENT_CONSTRAINT(0x01c0, 0),	/* INST_RETIRED.PREC_DIST */
247 	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
248 	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
249 	FIXED_EVENT_CONSTRAINT(0x0400, 3),	/* SLOTS */
250 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_RETIRING, 0),
251 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BAD_SPEC, 1),
252 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FE_BOUND, 2),
253 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BE_BOUND, 3),
254 	INTEL_EVENT_CONSTRAINT_RANGE(0x03, 0x0a, 0xf),
255 	INTEL_EVENT_CONSTRAINT_RANGE(0x1f, 0x28, 0xf),
256 	INTEL_EVENT_CONSTRAINT(0x32, 0xf),	/* SW_PREFETCH_ACCESS.* */
257 	INTEL_EVENT_CONSTRAINT_RANGE(0x48, 0x54, 0xf),
258 	INTEL_EVENT_CONSTRAINT_RANGE(0x60, 0x8b, 0xf),
259 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xff),  /* CYCLE_ACTIVITY.STALLS_TOTAL */
260 	INTEL_UEVENT_CONSTRAINT(0x10a3, 0xff),  /* CYCLE_ACTIVITY.CYCLES_MEM_ANY */
261 	INTEL_UEVENT_CONSTRAINT(0x14a3, 0xff),  /* CYCLE_ACTIVITY.STALLS_MEM_ANY */
262 	INTEL_EVENT_CONSTRAINT(0xa3, 0xf),      /* CYCLE_ACTIVITY.* */
263 	INTEL_EVENT_CONSTRAINT_RANGE(0xa8, 0xb0, 0xf),
264 	INTEL_EVENT_CONSTRAINT_RANGE(0xb7, 0xbd, 0xf),
265 	INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xe6, 0xf),
266 	INTEL_EVENT_CONSTRAINT_RANGE(0xf0, 0xf4, 0xf),
267 	EVENT_CONSTRAINT_END
268 };
269 
270 static struct extra_reg intel_icl_extra_regs[] __read_mostly = {
271 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffffbfffull, RSP_0),
272 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffffbfffull, RSP_1),
273 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
274 	INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
275 	EVENT_EXTRA_END
276 };
277 
278 static struct extra_reg intel_spr_extra_regs[] __read_mostly = {
279 	INTEL_UEVENT_EXTRA_REG(0x012a, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
280 	INTEL_UEVENT_EXTRA_REG(0x012b, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
281 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
282 	INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
283 	INTEL_UEVENT_EXTRA_REG(0x40ad, MSR_PEBS_FRONTEND, 0x7, FE),
284 	INTEL_UEVENT_EXTRA_REG(0x04c2, MSR_PEBS_FRONTEND, 0x8, FE),
285 	EVENT_EXTRA_END
286 };
287 
288 static struct event_constraint intel_spr_event_constraints[] = {
289 	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
290 	FIXED_EVENT_CONSTRAINT(0x01c0, 0),	/* INST_RETIRED.PREC_DIST */
291 	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
292 	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
293 	FIXED_EVENT_CONSTRAINT(0x0400, 3),	/* SLOTS */
294 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_RETIRING, 0),
295 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BAD_SPEC, 1),
296 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FE_BOUND, 2),
297 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BE_BOUND, 3),
298 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_HEAVY_OPS, 4),
299 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BR_MISPREDICT, 5),
300 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FETCH_LAT, 6),
301 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_MEM_BOUND, 7),
302 
303 	INTEL_EVENT_CONSTRAINT(0x2e, 0xff),
304 	INTEL_EVENT_CONSTRAINT(0x3c, 0xff),
305 	/*
306 	 * Generally event codes < 0x90 are restricted to counters 0-3.
307 	 * The 0x2E and 0x3C are exception, which has no restriction.
308 	 */
309 	INTEL_EVENT_CONSTRAINT_RANGE(0x01, 0x8f, 0xf),
310 
311 	INTEL_UEVENT_CONSTRAINT(0x01a3, 0xf),
312 	INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf),
313 	INTEL_UEVENT_CONSTRAINT(0x08a3, 0xf),
314 	INTEL_UEVENT_CONSTRAINT(0x04a4, 0x1),
315 	INTEL_UEVENT_CONSTRAINT(0x08a4, 0x1),
316 	INTEL_UEVENT_CONSTRAINT(0x02cd, 0x1),
317 	INTEL_EVENT_CONSTRAINT(0xce, 0x1),
318 	INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xdf, 0xf),
319 	/*
320 	 * Generally event codes >= 0x90 are likely to have no restrictions.
321 	 * The exception are defined as above.
322 	 */
323 	INTEL_EVENT_CONSTRAINT_RANGE(0x90, 0xfe, 0xff),
324 
325 	EVENT_CONSTRAINT_END
326 };
327 
328 
329 EVENT_ATTR_STR(mem-loads,	mem_ld_nhm,	"event=0x0b,umask=0x10,ldlat=3");
330 EVENT_ATTR_STR(mem-loads,	mem_ld_snb,	"event=0xcd,umask=0x1,ldlat=3");
331 EVENT_ATTR_STR(mem-stores,	mem_st_snb,	"event=0xcd,umask=0x2");
332 
333 static struct attribute *nhm_mem_events_attrs[] = {
334 	EVENT_PTR(mem_ld_nhm),
335 	NULL,
336 };
337 
338 /*
339  * topdown events for Intel Core CPUs.
340  *
341  * The events are all in slots, which is a free slot in a 4 wide
342  * pipeline. Some events are already reported in slots, for cycle
343  * events we multiply by the pipeline width (4).
344  *
345  * With Hyper Threading on, topdown metrics are either summed or averaged
346  * between the threads of a core: (count_t0 + count_t1).
347  *
348  * For the average case the metric is always scaled to pipeline width,
349  * so we use factor 2 ((count_t0 + count_t1) / 2 * 4)
350  */
351 
352 EVENT_ATTR_STR_HT(topdown-total-slots, td_total_slots,
353 	"event=0x3c,umask=0x0",			/* cpu_clk_unhalted.thread */
354 	"event=0x3c,umask=0x0,any=1");		/* cpu_clk_unhalted.thread_any */
355 EVENT_ATTR_STR_HT(topdown-total-slots.scale, td_total_slots_scale, "4", "2");
356 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued,
357 	"event=0xe,umask=0x1");			/* uops_issued.any */
358 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired,
359 	"event=0xc2,umask=0x2");		/* uops_retired.retire_slots */
360 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles,
361 	"event=0x9c,umask=0x1");		/* idq_uops_not_delivered_core */
362 EVENT_ATTR_STR_HT(topdown-recovery-bubbles, td_recovery_bubbles,
363 	"event=0xd,umask=0x3,cmask=1",		/* int_misc.recovery_cycles */
364 	"event=0xd,umask=0x3,cmask=1,any=1");	/* int_misc.recovery_cycles_any */
365 EVENT_ATTR_STR_HT(topdown-recovery-bubbles.scale, td_recovery_bubbles_scale,
366 	"4", "2");
367 
368 EVENT_ATTR_STR(slots,			slots,			"event=0x00,umask=0x4");
369 EVENT_ATTR_STR(topdown-retiring,	td_retiring,		"event=0x00,umask=0x80");
370 EVENT_ATTR_STR(topdown-bad-spec,	td_bad_spec,		"event=0x00,umask=0x81");
371 EVENT_ATTR_STR(topdown-fe-bound,	td_fe_bound,		"event=0x00,umask=0x82");
372 EVENT_ATTR_STR(topdown-be-bound,	td_be_bound,		"event=0x00,umask=0x83");
373 EVENT_ATTR_STR(topdown-heavy-ops,	td_heavy_ops,		"event=0x00,umask=0x84");
374 EVENT_ATTR_STR(topdown-br-mispredict,	td_br_mispredict,	"event=0x00,umask=0x85");
375 EVENT_ATTR_STR(topdown-fetch-lat,	td_fetch_lat,		"event=0x00,umask=0x86");
376 EVENT_ATTR_STR(topdown-mem-bound,	td_mem_bound,		"event=0x00,umask=0x87");
377 
378 static struct attribute *snb_events_attrs[] = {
379 	EVENT_PTR(td_slots_issued),
380 	EVENT_PTR(td_slots_retired),
381 	EVENT_PTR(td_fetch_bubbles),
382 	EVENT_PTR(td_total_slots),
383 	EVENT_PTR(td_total_slots_scale),
384 	EVENT_PTR(td_recovery_bubbles),
385 	EVENT_PTR(td_recovery_bubbles_scale),
386 	NULL,
387 };
388 
389 static struct attribute *snb_mem_events_attrs[] = {
390 	EVENT_PTR(mem_ld_snb),
391 	EVENT_PTR(mem_st_snb),
392 	NULL,
393 };
394 
395 static struct event_constraint intel_hsw_event_constraints[] = {
396 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
397 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
398 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
399 	INTEL_UEVENT_CONSTRAINT(0x148, 0x4),	/* L1D_PEND_MISS.PENDING */
400 	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
401 	INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
402 	/* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
403 	INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
404 	/* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
405 	INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
406 	/* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
407 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
408 
409 	/*
410 	 * When HT is off these events can only run on the bottom 4 counters
411 	 * When HT is on, they are impacted by the HT bug and require EXCL access
412 	 */
413 	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
414 	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
415 	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
416 	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
417 
418 	EVENT_CONSTRAINT_END
419 };
420 
421 static struct event_constraint intel_bdw_event_constraints[] = {
422 	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
423 	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
424 	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
425 	INTEL_UEVENT_CONSTRAINT(0x148, 0x4),	/* L1D_PEND_MISS.PENDING */
426 	INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4),	/* CYCLE_ACTIVITY.CYCLES_L1D_MISS */
427 	/*
428 	 * when HT is off, these can only run on the bottom 4 counters
429 	 */
430 	INTEL_EVENT_CONSTRAINT(0xd0, 0xf),	/* MEM_INST_RETIRED.* */
431 	INTEL_EVENT_CONSTRAINT(0xd1, 0xf),	/* MEM_LOAD_RETIRED.* */
432 	INTEL_EVENT_CONSTRAINT(0xd2, 0xf),	/* MEM_LOAD_L3_HIT_RETIRED.* */
433 	INTEL_EVENT_CONSTRAINT(0xcd, 0xf),	/* MEM_TRANS_RETIRED.* */
434 	EVENT_CONSTRAINT_END
435 };
436 
437 static u64 intel_pmu_event_map(int hw_event)
438 {
439 	return intel_perfmon_event_map[hw_event];
440 }
441 
442 static __initconst const u64 spr_hw_cache_event_ids
443 				[PERF_COUNT_HW_CACHE_MAX]
444 				[PERF_COUNT_HW_CACHE_OP_MAX]
445 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
446 {
447  [ C(L1D ) ] = {
448 	[ C(OP_READ) ] = {
449 		[ C(RESULT_ACCESS) ] = 0x81d0,
450 		[ C(RESULT_MISS)   ] = 0xe124,
451 	},
452 	[ C(OP_WRITE) ] = {
453 		[ C(RESULT_ACCESS) ] = 0x82d0,
454 	},
455  },
456  [ C(L1I ) ] = {
457 	[ C(OP_READ) ] = {
458 		[ C(RESULT_MISS)   ] = 0xe424,
459 	},
460 	[ C(OP_WRITE) ] = {
461 		[ C(RESULT_ACCESS) ] = -1,
462 		[ C(RESULT_MISS)   ] = -1,
463 	},
464  },
465  [ C(LL  ) ] = {
466 	[ C(OP_READ) ] = {
467 		[ C(RESULT_ACCESS) ] = 0x12a,
468 		[ C(RESULT_MISS)   ] = 0x12a,
469 	},
470 	[ C(OP_WRITE) ] = {
471 		[ C(RESULT_ACCESS) ] = 0x12a,
472 		[ C(RESULT_MISS)   ] = 0x12a,
473 	},
474  },
475  [ C(DTLB) ] = {
476 	[ C(OP_READ) ] = {
477 		[ C(RESULT_ACCESS) ] = 0x81d0,
478 		[ C(RESULT_MISS)   ] = 0xe12,
479 	},
480 	[ C(OP_WRITE) ] = {
481 		[ C(RESULT_ACCESS) ] = 0x82d0,
482 		[ C(RESULT_MISS)   ] = 0xe13,
483 	},
484  },
485  [ C(ITLB) ] = {
486 	[ C(OP_READ) ] = {
487 		[ C(RESULT_ACCESS) ] = -1,
488 		[ C(RESULT_MISS)   ] = 0xe11,
489 	},
490 	[ C(OP_WRITE) ] = {
491 		[ C(RESULT_ACCESS) ] = -1,
492 		[ C(RESULT_MISS)   ] = -1,
493 	},
494 	[ C(OP_PREFETCH) ] = {
495 		[ C(RESULT_ACCESS) ] = -1,
496 		[ C(RESULT_MISS)   ] = -1,
497 	},
498  },
499  [ C(BPU ) ] = {
500 	[ C(OP_READ) ] = {
501 		[ C(RESULT_ACCESS) ] = 0x4c4,
502 		[ C(RESULT_MISS)   ] = 0x4c5,
503 	},
504 	[ C(OP_WRITE) ] = {
505 		[ C(RESULT_ACCESS) ] = -1,
506 		[ C(RESULT_MISS)   ] = -1,
507 	},
508 	[ C(OP_PREFETCH) ] = {
509 		[ C(RESULT_ACCESS) ] = -1,
510 		[ C(RESULT_MISS)   ] = -1,
511 	},
512  },
513  [ C(NODE) ] = {
514 	[ C(OP_READ) ] = {
515 		[ C(RESULT_ACCESS) ] = 0x12a,
516 		[ C(RESULT_MISS)   ] = 0x12a,
517 	},
518  },
519 };
520 
521 static __initconst const u64 spr_hw_cache_extra_regs
522 				[PERF_COUNT_HW_CACHE_MAX]
523 				[PERF_COUNT_HW_CACHE_OP_MAX]
524 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
525 {
526  [ C(LL  ) ] = {
527 	[ C(OP_READ) ] = {
528 		[ C(RESULT_ACCESS) ] = 0x10001,
529 		[ C(RESULT_MISS)   ] = 0x3fbfc00001,
530 	},
531 	[ C(OP_WRITE) ] = {
532 		[ C(RESULT_ACCESS) ] = 0x3f3ffc0002,
533 		[ C(RESULT_MISS)   ] = 0x3f3fc00002,
534 	},
535  },
536  [ C(NODE) ] = {
537 	[ C(OP_READ) ] = {
538 		[ C(RESULT_ACCESS) ] = 0x10c000001,
539 		[ C(RESULT_MISS)   ] = 0x3fb3000001,
540 	},
541  },
542 };
543 
544 /*
545  * Notes on the events:
546  * - data reads do not include code reads (comparable to earlier tables)
547  * - data counts include speculative execution (except L1 write, dtlb, bpu)
548  * - remote node access includes remote memory, remote cache, remote mmio.
549  * - prefetches are not included in the counts.
550  * - icache miss does not include decoded icache
551  */
552 
553 #define SKL_DEMAND_DATA_RD		BIT_ULL(0)
554 #define SKL_DEMAND_RFO			BIT_ULL(1)
555 #define SKL_ANY_RESPONSE		BIT_ULL(16)
556 #define SKL_SUPPLIER_NONE		BIT_ULL(17)
557 #define SKL_L3_MISS_LOCAL_DRAM		BIT_ULL(26)
558 #define SKL_L3_MISS_REMOTE_HOP0_DRAM	BIT_ULL(27)
559 #define SKL_L3_MISS_REMOTE_HOP1_DRAM	BIT_ULL(28)
560 #define SKL_L3_MISS_REMOTE_HOP2P_DRAM	BIT_ULL(29)
561 #define SKL_L3_MISS			(SKL_L3_MISS_LOCAL_DRAM| \
562 					 SKL_L3_MISS_REMOTE_HOP0_DRAM| \
563 					 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
564 					 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
565 #define SKL_SPL_HIT			BIT_ULL(30)
566 #define SKL_SNOOP_NONE			BIT_ULL(31)
567 #define SKL_SNOOP_NOT_NEEDED		BIT_ULL(32)
568 #define SKL_SNOOP_MISS			BIT_ULL(33)
569 #define SKL_SNOOP_HIT_NO_FWD		BIT_ULL(34)
570 #define SKL_SNOOP_HIT_WITH_FWD		BIT_ULL(35)
571 #define SKL_SNOOP_HITM			BIT_ULL(36)
572 #define SKL_SNOOP_NON_DRAM		BIT_ULL(37)
573 #define SKL_ANY_SNOOP			(SKL_SPL_HIT|SKL_SNOOP_NONE| \
574 					 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
575 					 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
576 					 SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM)
577 #define SKL_DEMAND_READ			SKL_DEMAND_DATA_RD
578 #define SKL_SNOOP_DRAM			(SKL_SNOOP_NONE| \
579 					 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
580 					 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
581 					 SKL_SNOOP_HITM|SKL_SPL_HIT)
582 #define SKL_DEMAND_WRITE		SKL_DEMAND_RFO
583 #define SKL_LLC_ACCESS			SKL_ANY_RESPONSE
584 #define SKL_L3_MISS_REMOTE		(SKL_L3_MISS_REMOTE_HOP0_DRAM| \
585 					 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
586 					 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
587 
588 static __initconst const u64 skl_hw_cache_event_ids
589 				[PERF_COUNT_HW_CACHE_MAX]
590 				[PERF_COUNT_HW_CACHE_OP_MAX]
591 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
592 {
593  [ C(L1D ) ] = {
594 	[ C(OP_READ) ] = {
595 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_INST_RETIRED.ALL_LOADS */
596 		[ C(RESULT_MISS)   ] = 0x151,	/* L1D.REPLACEMENT */
597 	},
598 	[ C(OP_WRITE) ] = {
599 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_INST_RETIRED.ALL_STORES */
600 		[ C(RESULT_MISS)   ] = 0x0,
601 	},
602 	[ C(OP_PREFETCH) ] = {
603 		[ C(RESULT_ACCESS) ] = 0x0,
604 		[ C(RESULT_MISS)   ] = 0x0,
605 	},
606  },
607  [ C(L1I ) ] = {
608 	[ C(OP_READ) ] = {
609 		[ C(RESULT_ACCESS) ] = 0x0,
610 		[ C(RESULT_MISS)   ] = 0x283,	/* ICACHE_64B.MISS */
611 	},
612 	[ C(OP_WRITE) ] = {
613 		[ C(RESULT_ACCESS) ] = -1,
614 		[ C(RESULT_MISS)   ] = -1,
615 	},
616 	[ C(OP_PREFETCH) ] = {
617 		[ C(RESULT_ACCESS) ] = 0x0,
618 		[ C(RESULT_MISS)   ] = 0x0,
619 	},
620  },
621  [ C(LL  ) ] = {
622 	[ C(OP_READ) ] = {
623 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
624 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
625 	},
626 	[ C(OP_WRITE) ] = {
627 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
628 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
629 	},
630 	[ C(OP_PREFETCH) ] = {
631 		[ C(RESULT_ACCESS) ] = 0x0,
632 		[ C(RESULT_MISS)   ] = 0x0,
633 	},
634  },
635  [ C(DTLB) ] = {
636 	[ C(OP_READ) ] = {
637 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_INST_RETIRED.ALL_LOADS */
638 		[ C(RESULT_MISS)   ] = 0xe08,	/* DTLB_LOAD_MISSES.WALK_COMPLETED */
639 	},
640 	[ C(OP_WRITE) ] = {
641 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_INST_RETIRED.ALL_STORES */
642 		[ C(RESULT_MISS)   ] = 0xe49,	/* DTLB_STORE_MISSES.WALK_COMPLETED */
643 	},
644 	[ C(OP_PREFETCH) ] = {
645 		[ C(RESULT_ACCESS) ] = 0x0,
646 		[ C(RESULT_MISS)   ] = 0x0,
647 	},
648  },
649  [ C(ITLB) ] = {
650 	[ C(OP_READ) ] = {
651 		[ C(RESULT_ACCESS) ] = 0x2085,	/* ITLB_MISSES.STLB_HIT */
652 		[ C(RESULT_MISS)   ] = 0xe85,	/* ITLB_MISSES.WALK_COMPLETED */
653 	},
654 	[ C(OP_WRITE) ] = {
655 		[ C(RESULT_ACCESS) ] = -1,
656 		[ C(RESULT_MISS)   ] = -1,
657 	},
658 	[ C(OP_PREFETCH) ] = {
659 		[ C(RESULT_ACCESS) ] = -1,
660 		[ C(RESULT_MISS)   ] = -1,
661 	},
662  },
663  [ C(BPU ) ] = {
664 	[ C(OP_READ) ] = {
665 		[ C(RESULT_ACCESS) ] = 0xc4,	/* BR_INST_RETIRED.ALL_BRANCHES */
666 		[ C(RESULT_MISS)   ] = 0xc5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
667 	},
668 	[ C(OP_WRITE) ] = {
669 		[ C(RESULT_ACCESS) ] = -1,
670 		[ C(RESULT_MISS)   ] = -1,
671 	},
672 	[ C(OP_PREFETCH) ] = {
673 		[ C(RESULT_ACCESS) ] = -1,
674 		[ C(RESULT_MISS)   ] = -1,
675 	},
676  },
677  [ C(NODE) ] = {
678 	[ C(OP_READ) ] = {
679 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
680 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
681 	},
682 	[ C(OP_WRITE) ] = {
683 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
684 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
685 	},
686 	[ C(OP_PREFETCH) ] = {
687 		[ C(RESULT_ACCESS) ] = 0x0,
688 		[ C(RESULT_MISS)   ] = 0x0,
689 	},
690  },
691 };
692 
693 static __initconst const u64 skl_hw_cache_extra_regs
694 				[PERF_COUNT_HW_CACHE_MAX]
695 				[PERF_COUNT_HW_CACHE_OP_MAX]
696 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
697 {
698  [ C(LL  ) ] = {
699 	[ C(OP_READ) ] = {
700 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
701 				       SKL_LLC_ACCESS|SKL_ANY_SNOOP,
702 		[ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
703 				       SKL_L3_MISS|SKL_ANY_SNOOP|
704 				       SKL_SUPPLIER_NONE,
705 	},
706 	[ C(OP_WRITE) ] = {
707 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
708 				       SKL_LLC_ACCESS|SKL_ANY_SNOOP,
709 		[ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
710 				       SKL_L3_MISS|SKL_ANY_SNOOP|
711 				       SKL_SUPPLIER_NONE,
712 	},
713 	[ C(OP_PREFETCH) ] = {
714 		[ C(RESULT_ACCESS) ] = 0x0,
715 		[ C(RESULT_MISS)   ] = 0x0,
716 	},
717  },
718  [ C(NODE) ] = {
719 	[ C(OP_READ) ] = {
720 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
721 				       SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
722 		[ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
723 				       SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
724 	},
725 	[ C(OP_WRITE) ] = {
726 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
727 				       SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
728 		[ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
729 				       SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
730 	},
731 	[ C(OP_PREFETCH) ] = {
732 		[ C(RESULT_ACCESS) ] = 0x0,
733 		[ C(RESULT_MISS)   ] = 0x0,
734 	},
735  },
736 };
737 
738 #define SNB_DMND_DATA_RD	(1ULL << 0)
739 #define SNB_DMND_RFO		(1ULL << 1)
740 #define SNB_DMND_IFETCH		(1ULL << 2)
741 #define SNB_DMND_WB		(1ULL << 3)
742 #define SNB_PF_DATA_RD		(1ULL << 4)
743 #define SNB_PF_RFO		(1ULL << 5)
744 #define SNB_PF_IFETCH		(1ULL << 6)
745 #define SNB_LLC_DATA_RD		(1ULL << 7)
746 #define SNB_LLC_RFO		(1ULL << 8)
747 #define SNB_LLC_IFETCH		(1ULL << 9)
748 #define SNB_BUS_LOCKS		(1ULL << 10)
749 #define SNB_STRM_ST		(1ULL << 11)
750 #define SNB_OTHER		(1ULL << 15)
751 #define SNB_RESP_ANY		(1ULL << 16)
752 #define SNB_NO_SUPP		(1ULL << 17)
753 #define SNB_LLC_HITM		(1ULL << 18)
754 #define SNB_LLC_HITE		(1ULL << 19)
755 #define SNB_LLC_HITS		(1ULL << 20)
756 #define SNB_LLC_HITF		(1ULL << 21)
757 #define SNB_LOCAL		(1ULL << 22)
758 #define SNB_REMOTE		(0xffULL << 23)
759 #define SNB_SNP_NONE		(1ULL << 31)
760 #define SNB_SNP_NOT_NEEDED	(1ULL << 32)
761 #define SNB_SNP_MISS		(1ULL << 33)
762 #define SNB_NO_FWD		(1ULL << 34)
763 #define SNB_SNP_FWD		(1ULL << 35)
764 #define SNB_HITM		(1ULL << 36)
765 #define SNB_NON_DRAM		(1ULL << 37)
766 
767 #define SNB_DMND_READ		(SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
768 #define SNB_DMND_WRITE		(SNB_DMND_RFO|SNB_LLC_RFO)
769 #define SNB_DMND_PREFETCH	(SNB_PF_DATA_RD|SNB_PF_RFO)
770 
771 #define SNB_SNP_ANY		(SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
772 				 SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
773 				 SNB_HITM)
774 
775 #define SNB_DRAM_ANY		(SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
776 #define SNB_DRAM_REMOTE		(SNB_REMOTE|SNB_SNP_ANY)
777 
778 #define SNB_L3_ACCESS		SNB_RESP_ANY
779 #define SNB_L3_MISS		(SNB_DRAM_ANY|SNB_NON_DRAM)
780 
781 static __initconst const u64 snb_hw_cache_extra_regs
782 				[PERF_COUNT_HW_CACHE_MAX]
783 				[PERF_COUNT_HW_CACHE_OP_MAX]
784 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
785 {
786  [ C(LL  ) ] = {
787 	[ C(OP_READ) ] = {
788 		[ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
789 		[ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_L3_MISS,
790 	},
791 	[ C(OP_WRITE) ] = {
792 		[ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
793 		[ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_L3_MISS,
794 	},
795 	[ C(OP_PREFETCH) ] = {
796 		[ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
797 		[ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
798 	},
799  },
800  [ C(NODE) ] = {
801 	[ C(OP_READ) ] = {
802 		[ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
803 		[ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
804 	},
805 	[ C(OP_WRITE) ] = {
806 		[ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
807 		[ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
808 	},
809 	[ C(OP_PREFETCH) ] = {
810 		[ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
811 		[ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
812 	},
813  },
814 };
815 
816 static __initconst const u64 snb_hw_cache_event_ids
817 				[PERF_COUNT_HW_CACHE_MAX]
818 				[PERF_COUNT_HW_CACHE_OP_MAX]
819 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
820 {
821  [ C(L1D) ] = {
822 	[ C(OP_READ) ] = {
823 		[ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS        */
824 		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPLACEMENT              */
825 	},
826 	[ C(OP_WRITE) ] = {
827 		[ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES       */
828 		[ C(RESULT_MISS)   ] = 0x0851, /* L1D.ALL_M_REPLACEMENT        */
829 	},
830 	[ C(OP_PREFETCH) ] = {
831 		[ C(RESULT_ACCESS) ] = 0x0,
832 		[ C(RESULT_MISS)   ] = 0x024e, /* HW_PRE_REQ.DL1_MISS          */
833 	},
834  },
835  [ C(L1I ) ] = {
836 	[ C(OP_READ) ] = {
837 		[ C(RESULT_ACCESS) ] = 0x0,
838 		[ C(RESULT_MISS)   ] = 0x0280, /* ICACHE.MISSES */
839 	},
840 	[ C(OP_WRITE) ] = {
841 		[ C(RESULT_ACCESS) ] = -1,
842 		[ C(RESULT_MISS)   ] = -1,
843 	},
844 	[ C(OP_PREFETCH) ] = {
845 		[ C(RESULT_ACCESS) ] = 0x0,
846 		[ C(RESULT_MISS)   ] = 0x0,
847 	},
848  },
849  [ C(LL  ) ] = {
850 	[ C(OP_READ) ] = {
851 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
852 		[ C(RESULT_ACCESS) ] = 0x01b7,
853 		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
854 		[ C(RESULT_MISS)   ] = 0x01b7,
855 	},
856 	[ C(OP_WRITE) ] = {
857 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
858 		[ C(RESULT_ACCESS) ] = 0x01b7,
859 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
860 		[ C(RESULT_MISS)   ] = 0x01b7,
861 	},
862 	[ C(OP_PREFETCH) ] = {
863 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
864 		[ C(RESULT_ACCESS) ] = 0x01b7,
865 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
866 		[ C(RESULT_MISS)   ] = 0x01b7,
867 	},
868  },
869  [ C(DTLB) ] = {
870 	[ C(OP_READ) ] = {
871 		[ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
872 		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
873 	},
874 	[ C(OP_WRITE) ] = {
875 		[ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
876 		[ C(RESULT_MISS)   ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
877 	},
878 	[ C(OP_PREFETCH) ] = {
879 		[ C(RESULT_ACCESS) ] = 0x0,
880 		[ C(RESULT_MISS)   ] = 0x0,
881 	},
882  },
883  [ C(ITLB) ] = {
884 	[ C(OP_READ) ] = {
885 		[ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT         */
886 		[ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK    */
887 	},
888 	[ C(OP_WRITE) ] = {
889 		[ C(RESULT_ACCESS) ] = -1,
890 		[ C(RESULT_MISS)   ] = -1,
891 	},
892 	[ C(OP_PREFETCH) ] = {
893 		[ C(RESULT_ACCESS) ] = -1,
894 		[ C(RESULT_MISS)   ] = -1,
895 	},
896  },
897  [ C(BPU ) ] = {
898 	[ C(OP_READ) ] = {
899 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
900 		[ C(RESULT_MISS)   ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
901 	},
902 	[ C(OP_WRITE) ] = {
903 		[ C(RESULT_ACCESS) ] = -1,
904 		[ C(RESULT_MISS)   ] = -1,
905 	},
906 	[ C(OP_PREFETCH) ] = {
907 		[ C(RESULT_ACCESS) ] = -1,
908 		[ C(RESULT_MISS)   ] = -1,
909 	},
910  },
911  [ C(NODE) ] = {
912 	[ C(OP_READ) ] = {
913 		[ C(RESULT_ACCESS) ] = 0x01b7,
914 		[ C(RESULT_MISS)   ] = 0x01b7,
915 	},
916 	[ C(OP_WRITE) ] = {
917 		[ C(RESULT_ACCESS) ] = 0x01b7,
918 		[ C(RESULT_MISS)   ] = 0x01b7,
919 	},
920 	[ C(OP_PREFETCH) ] = {
921 		[ C(RESULT_ACCESS) ] = 0x01b7,
922 		[ C(RESULT_MISS)   ] = 0x01b7,
923 	},
924  },
925 
926 };
927 
928 /*
929  * Notes on the events:
930  * - data reads do not include code reads (comparable to earlier tables)
931  * - data counts include speculative execution (except L1 write, dtlb, bpu)
932  * - remote node access includes remote memory, remote cache, remote mmio.
933  * - prefetches are not included in the counts because they are not
934  *   reliably counted.
935  */
936 
937 #define HSW_DEMAND_DATA_RD		BIT_ULL(0)
938 #define HSW_DEMAND_RFO			BIT_ULL(1)
939 #define HSW_ANY_RESPONSE		BIT_ULL(16)
940 #define HSW_SUPPLIER_NONE		BIT_ULL(17)
941 #define HSW_L3_MISS_LOCAL_DRAM		BIT_ULL(22)
942 #define HSW_L3_MISS_REMOTE_HOP0		BIT_ULL(27)
943 #define HSW_L3_MISS_REMOTE_HOP1		BIT_ULL(28)
944 #define HSW_L3_MISS_REMOTE_HOP2P	BIT_ULL(29)
945 #define HSW_L3_MISS			(HSW_L3_MISS_LOCAL_DRAM| \
946 					 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
947 					 HSW_L3_MISS_REMOTE_HOP2P)
948 #define HSW_SNOOP_NONE			BIT_ULL(31)
949 #define HSW_SNOOP_NOT_NEEDED		BIT_ULL(32)
950 #define HSW_SNOOP_MISS			BIT_ULL(33)
951 #define HSW_SNOOP_HIT_NO_FWD		BIT_ULL(34)
952 #define HSW_SNOOP_HIT_WITH_FWD		BIT_ULL(35)
953 #define HSW_SNOOP_HITM			BIT_ULL(36)
954 #define HSW_SNOOP_NON_DRAM		BIT_ULL(37)
955 #define HSW_ANY_SNOOP			(HSW_SNOOP_NONE| \
956 					 HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
957 					 HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
958 					 HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
959 #define HSW_SNOOP_DRAM			(HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
960 #define HSW_DEMAND_READ			HSW_DEMAND_DATA_RD
961 #define HSW_DEMAND_WRITE		HSW_DEMAND_RFO
962 #define HSW_L3_MISS_REMOTE		(HSW_L3_MISS_REMOTE_HOP0|\
963 					 HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
964 #define HSW_LLC_ACCESS			HSW_ANY_RESPONSE
965 
966 #define BDW_L3_MISS_LOCAL		BIT(26)
967 #define BDW_L3_MISS			(BDW_L3_MISS_LOCAL| \
968 					 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
969 					 HSW_L3_MISS_REMOTE_HOP2P)
970 
971 
972 static __initconst const u64 hsw_hw_cache_event_ids
973 				[PERF_COUNT_HW_CACHE_MAX]
974 				[PERF_COUNT_HW_CACHE_OP_MAX]
975 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
976 {
977  [ C(L1D ) ] = {
978 	[ C(OP_READ) ] = {
979 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
980 		[ C(RESULT_MISS)   ] = 0x151,	/* L1D.REPLACEMENT */
981 	},
982 	[ C(OP_WRITE) ] = {
983 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
984 		[ C(RESULT_MISS)   ] = 0x0,
985 	},
986 	[ C(OP_PREFETCH) ] = {
987 		[ C(RESULT_ACCESS) ] = 0x0,
988 		[ C(RESULT_MISS)   ] = 0x0,
989 	},
990  },
991  [ C(L1I ) ] = {
992 	[ C(OP_READ) ] = {
993 		[ C(RESULT_ACCESS) ] = 0x0,
994 		[ C(RESULT_MISS)   ] = 0x280,	/* ICACHE.MISSES */
995 	},
996 	[ C(OP_WRITE) ] = {
997 		[ C(RESULT_ACCESS) ] = -1,
998 		[ C(RESULT_MISS)   ] = -1,
999 	},
1000 	[ C(OP_PREFETCH) ] = {
1001 		[ C(RESULT_ACCESS) ] = 0x0,
1002 		[ C(RESULT_MISS)   ] = 0x0,
1003 	},
1004  },
1005  [ C(LL  ) ] = {
1006 	[ C(OP_READ) ] = {
1007 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
1008 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
1009 	},
1010 	[ C(OP_WRITE) ] = {
1011 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
1012 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
1013 	},
1014 	[ C(OP_PREFETCH) ] = {
1015 		[ C(RESULT_ACCESS) ] = 0x0,
1016 		[ C(RESULT_MISS)   ] = 0x0,
1017 	},
1018  },
1019  [ C(DTLB) ] = {
1020 	[ C(OP_READ) ] = {
1021 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1022 		[ C(RESULT_MISS)   ] = 0x108,	/* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
1023 	},
1024 	[ C(OP_WRITE) ] = {
1025 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1026 		[ C(RESULT_MISS)   ] = 0x149,	/* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
1027 	},
1028 	[ C(OP_PREFETCH) ] = {
1029 		[ C(RESULT_ACCESS) ] = 0x0,
1030 		[ C(RESULT_MISS)   ] = 0x0,
1031 	},
1032  },
1033  [ C(ITLB) ] = {
1034 	[ C(OP_READ) ] = {
1035 		[ C(RESULT_ACCESS) ] = 0x6085,	/* ITLB_MISSES.STLB_HIT */
1036 		[ C(RESULT_MISS)   ] = 0x185,	/* ITLB_MISSES.MISS_CAUSES_A_WALK */
1037 	},
1038 	[ C(OP_WRITE) ] = {
1039 		[ C(RESULT_ACCESS) ] = -1,
1040 		[ C(RESULT_MISS)   ] = -1,
1041 	},
1042 	[ C(OP_PREFETCH) ] = {
1043 		[ C(RESULT_ACCESS) ] = -1,
1044 		[ C(RESULT_MISS)   ] = -1,
1045 	},
1046  },
1047  [ C(BPU ) ] = {
1048 	[ C(OP_READ) ] = {
1049 		[ C(RESULT_ACCESS) ] = 0xc4,	/* BR_INST_RETIRED.ALL_BRANCHES */
1050 		[ C(RESULT_MISS)   ] = 0xc5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
1051 	},
1052 	[ C(OP_WRITE) ] = {
1053 		[ C(RESULT_ACCESS) ] = -1,
1054 		[ C(RESULT_MISS)   ] = -1,
1055 	},
1056 	[ C(OP_PREFETCH) ] = {
1057 		[ C(RESULT_ACCESS) ] = -1,
1058 		[ C(RESULT_MISS)   ] = -1,
1059 	},
1060  },
1061  [ C(NODE) ] = {
1062 	[ C(OP_READ) ] = {
1063 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
1064 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
1065 	},
1066 	[ C(OP_WRITE) ] = {
1067 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
1068 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
1069 	},
1070 	[ C(OP_PREFETCH) ] = {
1071 		[ C(RESULT_ACCESS) ] = 0x0,
1072 		[ C(RESULT_MISS)   ] = 0x0,
1073 	},
1074  },
1075 };
1076 
1077 static __initconst const u64 hsw_hw_cache_extra_regs
1078 				[PERF_COUNT_HW_CACHE_MAX]
1079 				[PERF_COUNT_HW_CACHE_OP_MAX]
1080 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1081 {
1082  [ C(LL  ) ] = {
1083 	[ C(OP_READ) ] = {
1084 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
1085 				       HSW_LLC_ACCESS,
1086 		[ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
1087 				       HSW_L3_MISS|HSW_ANY_SNOOP,
1088 	},
1089 	[ C(OP_WRITE) ] = {
1090 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
1091 				       HSW_LLC_ACCESS,
1092 		[ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
1093 				       HSW_L3_MISS|HSW_ANY_SNOOP,
1094 	},
1095 	[ C(OP_PREFETCH) ] = {
1096 		[ C(RESULT_ACCESS) ] = 0x0,
1097 		[ C(RESULT_MISS)   ] = 0x0,
1098 	},
1099  },
1100  [ C(NODE) ] = {
1101 	[ C(OP_READ) ] = {
1102 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
1103 				       HSW_L3_MISS_LOCAL_DRAM|
1104 				       HSW_SNOOP_DRAM,
1105 		[ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
1106 				       HSW_L3_MISS_REMOTE|
1107 				       HSW_SNOOP_DRAM,
1108 	},
1109 	[ C(OP_WRITE) ] = {
1110 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
1111 				       HSW_L3_MISS_LOCAL_DRAM|
1112 				       HSW_SNOOP_DRAM,
1113 		[ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
1114 				       HSW_L3_MISS_REMOTE|
1115 				       HSW_SNOOP_DRAM,
1116 	},
1117 	[ C(OP_PREFETCH) ] = {
1118 		[ C(RESULT_ACCESS) ] = 0x0,
1119 		[ C(RESULT_MISS)   ] = 0x0,
1120 	},
1121  },
1122 };
1123 
1124 static __initconst const u64 westmere_hw_cache_event_ids
1125 				[PERF_COUNT_HW_CACHE_MAX]
1126 				[PERF_COUNT_HW_CACHE_OP_MAX]
1127 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1128 {
1129  [ C(L1D) ] = {
1130 	[ C(OP_READ) ] = {
1131 		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1132 		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
1133 	},
1134 	[ C(OP_WRITE) ] = {
1135 		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1136 		[ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
1137 	},
1138 	[ C(OP_PREFETCH) ] = {
1139 		[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
1140 		[ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
1141 	},
1142  },
1143  [ C(L1I ) ] = {
1144 	[ C(OP_READ) ] = {
1145 		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
1146 		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
1147 	},
1148 	[ C(OP_WRITE) ] = {
1149 		[ C(RESULT_ACCESS) ] = -1,
1150 		[ C(RESULT_MISS)   ] = -1,
1151 	},
1152 	[ C(OP_PREFETCH) ] = {
1153 		[ C(RESULT_ACCESS) ] = 0x0,
1154 		[ C(RESULT_MISS)   ] = 0x0,
1155 	},
1156  },
1157  [ C(LL  ) ] = {
1158 	[ C(OP_READ) ] = {
1159 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1160 		[ C(RESULT_ACCESS) ] = 0x01b7,
1161 		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1162 		[ C(RESULT_MISS)   ] = 0x01b7,
1163 	},
1164 	/*
1165 	 * Use RFO, not WRITEBACK, because a write miss would typically occur
1166 	 * on RFO.
1167 	 */
1168 	[ C(OP_WRITE) ] = {
1169 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1170 		[ C(RESULT_ACCESS) ] = 0x01b7,
1171 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1172 		[ C(RESULT_MISS)   ] = 0x01b7,
1173 	},
1174 	[ C(OP_PREFETCH) ] = {
1175 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1176 		[ C(RESULT_ACCESS) ] = 0x01b7,
1177 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1178 		[ C(RESULT_MISS)   ] = 0x01b7,
1179 	},
1180  },
1181  [ C(DTLB) ] = {
1182 	[ C(OP_READ) ] = {
1183 		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1184 		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
1185 	},
1186 	[ C(OP_WRITE) ] = {
1187 		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1188 		[ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
1189 	},
1190 	[ C(OP_PREFETCH) ] = {
1191 		[ C(RESULT_ACCESS) ] = 0x0,
1192 		[ C(RESULT_MISS)   ] = 0x0,
1193 	},
1194  },
1195  [ C(ITLB) ] = {
1196 	[ C(OP_READ) ] = {
1197 		[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
1198 		[ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.ANY              */
1199 	},
1200 	[ C(OP_WRITE) ] = {
1201 		[ C(RESULT_ACCESS) ] = -1,
1202 		[ C(RESULT_MISS)   ] = -1,
1203 	},
1204 	[ C(OP_PREFETCH) ] = {
1205 		[ C(RESULT_ACCESS) ] = -1,
1206 		[ C(RESULT_MISS)   ] = -1,
1207 	},
1208  },
1209  [ C(BPU ) ] = {
1210 	[ C(OP_READ) ] = {
1211 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1212 		[ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1213 	},
1214 	[ C(OP_WRITE) ] = {
1215 		[ C(RESULT_ACCESS) ] = -1,
1216 		[ C(RESULT_MISS)   ] = -1,
1217 	},
1218 	[ C(OP_PREFETCH) ] = {
1219 		[ C(RESULT_ACCESS) ] = -1,
1220 		[ C(RESULT_MISS)   ] = -1,
1221 	},
1222  },
1223  [ C(NODE) ] = {
1224 	[ C(OP_READ) ] = {
1225 		[ C(RESULT_ACCESS) ] = 0x01b7,
1226 		[ C(RESULT_MISS)   ] = 0x01b7,
1227 	},
1228 	[ C(OP_WRITE) ] = {
1229 		[ C(RESULT_ACCESS) ] = 0x01b7,
1230 		[ C(RESULT_MISS)   ] = 0x01b7,
1231 	},
1232 	[ C(OP_PREFETCH) ] = {
1233 		[ C(RESULT_ACCESS) ] = 0x01b7,
1234 		[ C(RESULT_MISS)   ] = 0x01b7,
1235 	},
1236  },
1237 };
1238 
1239 /*
1240  * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
1241  * See IA32 SDM Vol 3B 30.6.1.3
1242  */
1243 
1244 #define NHM_DMND_DATA_RD	(1 << 0)
1245 #define NHM_DMND_RFO		(1 << 1)
1246 #define NHM_DMND_IFETCH		(1 << 2)
1247 #define NHM_DMND_WB		(1 << 3)
1248 #define NHM_PF_DATA_RD		(1 << 4)
1249 #define NHM_PF_DATA_RFO		(1 << 5)
1250 #define NHM_PF_IFETCH		(1 << 6)
1251 #define NHM_OFFCORE_OTHER	(1 << 7)
1252 #define NHM_UNCORE_HIT		(1 << 8)
1253 #define NHM_OTHER_CORE_HIT_SNP	(1 << 9)
1254 #define NHM_OTHER_CORE_HITM	(1 << 10)
1255         			/* reserved */
1256 #define NHM_REMOTE_CACHE_FWD	(1 << 12)
1257 #define NHM_REMOTE_DRAM		(1 << 13)
1258 #define NHM_LOCAL_DRAM		(1 << 14)
1259 #define NHM_NON_DRAM		(1 << 15)
1260 
1261 #define NHM_LOCAL		(NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
1262 #define NHM_REMOTE		(NHM_REMOTE_DRAM)
1263 
1264 #define NHM_DMND_READ		(NHM_DMND_DATA_RD)
1265 #define NHM_DMND_WRITE		(NHM_DMND_RFO|NHM_DMND_WB)
1266 #define NHM_DMND_PREFETCH	(NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
1267 
1268 #define NHM_L3_HIT	(NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
1269 #define NHM_L3_MISS	(NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
1270 #define NHM_L3_ACCESS	(NHM_L3_HIT|NHM_L3_MISS)
1271 
1272 static __initconst const u64 nehalem_hw_cache_extra_regs
1273 				[PERF_COUNT_HW_CACHE_MAX]
1274 				[PERF_COUNT_HW_CACHE_OP_MAX]
1275 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1276 {
1277  [ C(LL  ) ] = {
1278 	[ C(OP_READ) ] = {
1279 		[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
1280 		[ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_L3_MISS,
1281 	},
1282 	[ C(OP_WRITE) ] = {
1283 		[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
1284 		[ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_L3_MISS,
1285 	},
1286 	[ C(OP_PREFETCH) ] = {
1287 		[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
1288 		[ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
1289 	},
1290  },
1291  [ C(NODE) ] = {
1292 	[ C(OP_READ) ] = {
1293 		[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
1294 		[ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_REMOTE,
1295 	},
1296 	[ C(OP_WRITE) ] = {
1297 		[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
1298 		[ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_REMOTE,
1299 	},
1300 	[ C(OP_PREFETCH) ] = {
1301 		[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
1302 		[ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_REMOTE,
1303 	},
1304  },
1305 };
1306 
1307 static __initconst const u64 nehalem_hw_cache_event_ids
1308 				[PERF_COUNT_HW_CACHE_MAX]
1309 				[PERF_COUNT_HW_CACHE_OP_MAX]
1310 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1311 {
1312  [ C(L1D) ] = {
1313 	[ C(OP_READ) ] = {
1314 		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1315 		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
1316 	},
1317 	[ C(OP_WRITE) ] = {
1318 		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1319 		[ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
1320 	},
1321 	[ C(OP_PREFETCH) ] = {
1322 		[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
1323 		[ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
1324 	},
1325  },
1326  [ C(L1I ) ] = {
1327 	[ C(OP_READ) ] = {
1328 		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
1329 		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
1330 	},
1331 	[ C(OP_WRITE) ] = {
1332 		[ C(RESULT_ACCESS) ] = -1,
1333 		[ C(RESULT_MISS)   ] = -1,
1334 	},
1335 	[ C(OP_PREFETCH) ] = {
1336 		[ C(RESULT_ACCESS) ] = 0x0,
1337 		[ C(RESULT_MISS)   ] = 0x0,
1338 	},
1339  },
1340  [ C(LL  ) ] = {
1341 	[ C(OP_READ) ] = {
1342 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1343 		[ C(RESULT_ACCESS) ] = 0x01b7,
1344 		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1345 		[ C(RESULT_MISS)   ] = 0x01b7,
1346 	},
1347 	/*
1348 	 * Use RFO, not WRITEBACK, because a write miss would typically occur
1349 	 * on RFO.
1350 	 */
1351 	[ C(OP_WRITE) ] = {
1352 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1353 		[ C(RESULT_ACCESS) ] = 0x01b7,
1354 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1355 		[ C(RESULT_MISS)   ] = 0x01b7,
1356 	},
1357 	[ C(OP_PREFETCH) ] = {
1358 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1359 		[ C(RESULT_ACCESS) ] = 0x01b7,
1360 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1361 		[ C(RESULT_MISS)   ] = 0x01b7,
1362 	},
1363  },
1364  [ C(DTLB) ] = {
1365 	[ C(OP_READ) ] = {
1366 		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI   (alias)  */
1367 		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
1368 	},
1369 	[ C(OP_WRITE) ] = {
1370 		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI   (alias)  */
1371 		[ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
1372 	},
1373 	[ C(OP_PREFETCH) ] = {
1374 		[ C(RESULT_ACCESS) ] = 0x0,
1375 		[ C(RESULT_MISS)   ] = 0x0,
1376 	},
1377  },
1378  [ C(ITLB) ] = {
1379 	[ C(OP_READ) ] = {
1380 		[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
1381 		[ C(RESULT_MISS)   ] = 0x20c8, /* ITLB_MISS_RETIRED            */
1382 	},
1383 	[ C(OP_WRITE) ] = {
1384 		[ C(RESULT_ACCESS) ] = -1,
1385 		[ C(RESULT_MISS)   ] = -1,
1386 	},
1387 	[ C(OP_PREFETCH) ] = {
1388 		[ C(RESULT_ACCESS) ] = -1,
1389 		[ C(RESULT_MISS)   ] = -1,
1390 	},
1391  },
1392  [ C(BPU ) ] = {
1393 	[ C(OP_READ) ] = {
1394 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1395 		[ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1396 	},
1397 	[ C(OP_WRITE) ] = {
1398 		[ C(RESULT_ACCESS) ] = -1,
1399 		[ C(RESULT_MISS)   ] = -1,
1400 	},
1401 	[ C(OP_PREFETCH) ] = {
1402 		[ C(RESULT_ACCESS) ] = -1,
1403 		[ C(RESULT_MISS)   ] = -1,
1404 	},
1405  },
1406  [ C(NODE) ] = {
1407 	[ C(OP_READ) ] = {
1408 		[ C(RESULT_ACCESS) ] = 0x01b7,
1409 		[ C(RESULT_MISS)   ] = 0x01b7,
1410 	},
1411 	[ C(OP_WRITE) ] = {
1412 		[ C(RESULT_ACCESS) ] = 0x01b7,
1413 		[ C(RESULT_MISS)   ] = 0x01b7,
1414 	},
1415 	[ C(OP_PREFETCH) ] = {
1416 		[ C(RESULT_ACCESS) ] = 0x01b7,
1417 		[ C(RESULT_MISS)   ] = 0x01b7,
1418 	},
1419  },
1420 };
1421 
1422 static __initconst const u64 core2_hw_cache_event_ids
1423 				[PERF_COUNT_HW_CACHE_MAX]
1424 				[PERF_COUNT_HW_CACHE_OP_MAX]
1425 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1426 {
1427  [ C(L1D) ] = {
1428 	[ C(OP_READ) ] = {
1429 		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI          */
1430 		[ C(RESULT_MISS)   ] = 0x0140, /* L1D_CACHE_LD.I_STATE       */
1431 	},
1432 	[ C(OP_WRITE) ] = {
1433 		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI          */
1434 		[ C(RESULT_MISS)   ] = 0x0141, /* L1D_CACHE_ST.I_STATE       */
1435 	},
1436 	[ C(OP_PREFETCH) ] = {
1437 		[ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS      */
1438 		[ C(RESULT_MISS)   ] = 0,
1439 	},
1440  },
1441  [ C(L1I ) ] = {
1442 	[ C(OP_READ) ] = {
1443 		[ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS                  */
1444 		[ C(RESULT_MISS)   ] = 0x0081, /* L1I.MISSES                 */
1445 	},
1446 	[ C(OP_WRITE) ] = {
1447 		[ C(RESULT_ACCESS) ] = -1,
1448 		[ C(RESULT_MISS)   ] = -1,
1449 	},
1450 	[ C(OP_PREFETCH) ] = {
1451 		[ C(RESULT_ACCESS) ] = 0,
1452 		[ C(RESULT_MISS)   ] = 0,
1453 	},
1454  },
1455  [ C(LL  ) ] = {
1456 	[ C(OP_READ) ] = {
1457 		[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1458 		[ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1459 	},
1460 	[ C(OP_WRITE) ] = {
1461 		[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1462 		[ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1463 	},
1464 	[ C(OP_PREFETCH) ] = {
1465 		[ C(RESULT_ACCESS) ] = 0,
1466 		[ C(RESULT_MISS)   ] = 0,
1467 	},
1468  },
1469  [ C(DTLB) ] = {
1470 	[ C(OP_READ) ] = {
1471 		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI  (alias) */
1472 		[ C(RESULT_MISS)   ] = 0x0208, /* DTLB_MISSES.MISS_LD        */
1473 	},
1474 	[ C(OP_WRITE) ] = {
1475 		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI  (alias) */
1476 		[ C(RESULT_MISS)   ] = 0x0808, /* DTLB_MISSES.MISS_ST        */
1477 	},
1478 	[ C(OP_PREFETCH) ] = {
1479 		[ C(RESULT_ACCESS) ] = 0,
1480 		[ C(RESULT_MISS)   ] = 0,
1481 	},
1482  },
1483  [ C(ITLB) ] = {
1484 	[ C(OP_READ) ] = {
1485 		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1486 		[ C(RESULT_MISS)   ] = 0x1282, /* ITLBMISSES                 */
1487 	},
1488 	[ C(OP_WRITE) ] = {
1489 		[ C(RESULT_ACCESS) ] = -1,
1490 		[ C(RESULT_MISS)   ] = -1,
1491 	},
1492 	[ C(OP_PREFETCH) ] = {
1493 		[ C(RESULT_ACCESS) ] = -1,
1494 		[ C(RESULT_MISS)   ] = -1,
1495 	},
1496  },
1497  [ C(BPU ) ] = {
1498 	[ C(OP_READ) ] = {
1499 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1500 		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1501 	},
1502 	[ C(OP_WRITE) ] = {
1503 		[ C(RESULT_ACCESS) ] = -1,
1504 		[ C(RESULT_MISS)   ] = -1,
1505 	},
1506 	[ C(OP_PREFETCH) ] = {
1507 		[ C(RESULT_ACCESS) ] = -1,
1508 		[ C(RESULT_MISS)   ] = -1,
1509 	},
1510  },
1511 };
1512 
1513 static __initconst const u64 atom_hw_cache_event_ids
1514 				[PERF_COUNT_HW_CACHE_MAX]
1515 				[PERF_COUNT_HW_CACHE_OP_MAX]
1516 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1517 {
1518  [ C(L1D) ] = {
1519 	[ C(OP_READ) ] = {
1520 		[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD               */
1521 		[ C(RESULT_MISS)   ] = 0,
1522 	},
1523 	[ C(OP_WRITE) ] = {
1524 		[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST               */
1525 		[ C(RESULT_MISS)   ] = 0,
1526 	},
1527 	[ C(OP_PREFETCH) ] = {
1528 		[ C(RESULT_ACCESS) ] = 0x0,
1529 		[ C(RESULT_MISS)   ] = 0,
1530 	},
1531  },
1532  [ C(L1I ) ] = {
1533 	[ C(OP_READ) ] = {
1534 		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                  */
1535 		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                 */
1536 	},
1537 	[ C(OP_WRITE) ] = {
1538 		[ C(RESULT_ACCESS) ] = -1,
1539 		[ C(RESULT_MISS)   ] = -1,
1540 	},
1541 	[ C(OP_PREFETCH) ] = {
1542 		[ C(RESULT_ACCESS) ] = 0,
1543 		[ C(RESULT_MISS)   ] = 0,
1544 	},
1545  },
1546  [ C(LL  ) ] = {
1547 	[ C(OP_READ) ] = {
1548 		[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1549 		[ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1550 	},
1551 	[ C(OP_WRITE) ] = {
1552 		[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1553 		[ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1554 	},
1555 	[ C(OP_PREFETCH) ] = {
1556 		[ C(RESULT_ACCESS) ] = 0,
1557 		[ C(RESULT_MISS)   ] = 0,
1558 	},
1559  },
1560  [ C(DTLB) ] = {
1561 	[ C(OP_READ) ] = {
1562 		[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI  (alias) */
1563 		[ C(RESULT_MISS)   ] = 0x0508, /* DTLB_MISSES.MISS_LD        */
1564 	},
1565 	[ C(OP_WRITE) ] = {
1566 		[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI  (alias) */
1567 		[ C(RESULT_MISS)   ] = 0x0608, /* DTLB_MISSES.MISS_ST        */
1568 	},
1569 	[ C(OP_PREFETCH) ] = {
1570 		[ C(RESULT_ACCESS) ] = 0,
1571 		[ C(RESULT_MISS)   ] = 0,
1572 	},
1573  },
1574  [ C(ITLB) ] = {
1575 	[ C(OP_READ) ] = {
1576 		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1577 		[ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES                */
1578 	},
1579 	[ C(OP_WRITE) ] = {
1580 		[ C(RESULT_ACCESS) ] = -1,
1581 		[ C(RESULT_MISS)   ] = -1,
1582 	},
1583 	[ C(OP_PREFETCH) ] = {
1584 		[ C(RESULT_ACCESS) ] = -1,
1585 		[ C(RESULT_MISS)   ] = -1,
1586 	},
1587  },
1588  [ C(BPU ) ] = {
1589 	[ C(OP_READ) ] = {
1590 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1591 		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1592 	},
1593 	[ C(OP_WRITE) ] = {
1594 		[ C(RESULT_ACCESS) ] = -1,
1595 		[ C(RESULT_MISS)   ] = -1,
1596 	},
1597 	[ C(OP_PREFETCH) ] = {
1598 		[ C(RESULT_ACCESS) ] = -1,
1599 		[ C(RESULT_MISS)   ] = -1,
1600 	},
1601  },
1602 };
1603 
1604 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_slm, "event=0x3c");
1605 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_slm, "2");
1606 /* no_alloc_cycles.not_delivered */
1607 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_slm,
1608 	       "event=0xca,umask=0x50");
1609 EVENT_ATTR_STR(topdown-fetch-bubbles.scale, td_fetch_bubbles_scale_slm, "2");
1610 /* uops_retired.all */
1611 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_slm,
1612 	       "event=0xc2,umask=0x10");
1613 /* uops_retired.all */
1614 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_slm,
1615 	       "event=0xc2,umask=0x10");
1616 
1617 static struct attribute *slm_events_attrs[] = {
1618 	EVENT_PTR(td_total_slots_slm),
1619 	EVENT_PTR(td_total_slots_scale_slm),
1620 	EVENT_PTR(td_fetch_bubbles_slm),
1621 	EVENT_PTR(td_fetch_bubbles_scale_slm),
1622 	EVENT_PTR(td_slots_issued_slm),
1623 	EVENT_PTR(td_slots_retired_slm),
1624 	NULL
1625 };
1626 
1627 static struct extra_reg intel_slm_extra_regs[] __read_mostly =
1628 {
1629 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1630 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
1631 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1),
1632 	EVENT_EXTRA_END
1633 };
1634 
1635 #define SLM_DMND_READ		SNB_DMND_DATA_RD
1636 #define SLM_DMND_WRITE		SNB_DMND_RFO
1637 #define SLM_DMND_PREFETCH	(SNB_PF_DATA_RD|SNB_PF_RFO)
1638 
1639 #define SLM_SNP_ANY		(SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
1640 #define SLM_LLC_ACCESS		SNB_RESP_ANY
1641 #define SLM_LLC_MISS		(SLM_SNP_ANY|SNB_NON_DRAM)
1642 
1643 static __initconst const u64 slm_hw_cache_extra_regs
1644 				[PERF_COUNT_HW_CACHE_MAX]
1645 				[PERF_COUNT_HW_CACHE_OP_MAX]
1646 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1647 {
1648  [ C(LL  ) ] = {
1649 	[ C(OP_READ) ] = {
1650 		[ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
1651 		[ C(RESULT_MISS)   ] = 0,
1652 	},
1653 	[ C(OP_WRITE) ] = {
1654 		[ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
1655 		[ C(RESULT_MISS)   ] = SLM_DMND_WRITE|SLM_LLC_MISS,
1656 	},
1657 	[ C(OP_PREFETCH) ] = {
1658 		[ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
1659 		[ C(RESULT_MISS)   ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
1660 	},
1661  },
1662 };
1663 
1664 static __initconst const u64 slm_hw_cache_event_ids
1665 				[PERF_COUNT_HW_CACHE_MAX]
1666 				[PERF_COUNT_HW_CACHE_OP_MAX]
1667 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1668 {
1669  [ C(L1D) ] = {
1670 	[ C(OP_READ) ] = {
1671 		[ C(RESULT_ACCESS) ] = 0,
1672 		[ C(RESULT_MISS)   ] = 0x0104, /* LD_DCU_MISS */
1673 	},
1674 	[ C(OP_WRITE) ] = {
1675 		[ C(RESULT_ACCESS) ] = 0,
1676 		[ C(RESULT_MISS)   ] = 0,
1677 	},
1678 	[ C(OP_PREFETCH) ] = {
1679 		[ C(RESULT_ACCESS) ] = 0,
1680 		[ C(RESULT_MISS)   ] = 0,
1681 	},
1682  },
1683  [ C(L1I ) ] = {
1684 	[ C(OP_READ) ] = {
1685 		[ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
1686 		[ C(RESULT_MISS)   ] = 0x0280, /* ICACGE.MISSES */
1687 	},
1688 	[ C(OP_WRITE) ] = {
1689 		[ C(RESULT_ACCESS) ] = -1,
1690 		[ C(RESULT_MISS)   ] = -1,
1691 	},
1692 	[ C(OP_PREFETCH) ] = {
1693 		[ C(RESULT_ACCESS) ] = 0,
1694 		[ C(RESULT_MISS)   ] = 0,
1695 	},
1696  },
1697  [ C(LL  ) ] = {
1698 	[ C(OP_READ) ] = {
1699 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1700 		[ C(RESULT_ACCESS) ] = 0x01b7,
1701 		[ C(RESULT_MISS)   ] = 0,
1702 	},
1703 	[ C(OP_WRITE) ] = {
1704 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1705 		[ C(RESULT_ACCESS) ] = 0x01b7,
1706 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1707 		[ C(RESULT_MISS)   ] = 0x01b7,
1708 	},
1709 	[ C(OP_PREFETCH) ] = {
1710 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1711 		[ C(RESULT_ACCESS) ] = 0x01b7,
1712 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1713 		[ C(RESULT_MISS)   ] = 0x01b7,
1714 	},
1715  },
1716  [ C(DTLB) ] = {
1717 	[ C(OP_READ) ] = {
1718 		[ C(RESULT_ACCESS) ] = 0,
1719 		[ C(RESULT_MISS)   ] = 0x0804, /* LD_DTLB_MISS */
1720 	},
1721 	[ C(OP_WRITE) ] = {
1722 		[ C(RESULT_ACCESS) ] = 0,
1723 		[ C(RESULT_MISS)   ] = 0,
1724 	},
1725 	[ C(OP_PREFETCH) ] = {
1726 		[ C(RESULT_ACCESS) ] = 0,
1727 		[ C(RESULT_MISS)   ] = 0,
1728 	},
1729  },
1730  [ C(ITLB) ] = {
1731 	[ C(OP_READ) ] = {
1732 		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1733 		[ C(RESULT_MISS)   ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
1734 	},
1735 	[ C(OP_WRITE) ] = {
1736 		[ C(RESULT_ACCESS) ] = -1,
1737 		[ C(RESULT_MISS)   ] = -1,
1738 	},
1739 	[ C(OP_PREFETCH) ] = {
1740 		[ C(RESULT_ACCESS) ] = -1,
1741 		[ C(RESULT_MISS)   ] = -1,
1742 	},
1743  },
1744  [ C(BPU ) ] = {
1745 	[ C(OP_READ) ] = {
1746 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1747 		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1748 	},
1749 	[ C(OP_WRITE) ] = {
1750 		[ C(RESULT_ACCESS) ] = -1,
1751 		[ C(RESULT_MISS)   ] = -1,
1752 	},
1753 	[ C(OP_PREFETCH) ] = {
1754 		[ C(RESULT_ACCESS) ] = -1,
1755 		[ C(RESULT_MISS)   ] = -1,
1756 	},
1757  },
1758 };
1759 
1760 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_glm, "event=0x3c");
1761 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_glm, "3");
1762 /* UOPS_NOT_DELIVERED.ANY */
1763 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_glm, "event=0x9c");
1764 /* ISSUE_SLOTS_NOT_CONSUMED.RECOVERY */
1765 EVENT_ATTR_STR(topdown-recovery-bubbles, td_recovery_bubbles_glm, "event=0xca,umask=0x02");
1766 /* UOPS_RETIRED.ANY */
1767 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_glm, "event=0xc2");
1768 /* UOPS_ISSUED.ANY */
1769 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_glm, "event=0x0e");
1770 
1771 static struct attribute *glm_events_attrs[] = {
1772 	EVENT_PTR(td_total_slots_glm),
1773 	EVENT_PTR(td_total_slots_scale_glm),
1774 	EVENT_PTR(td_fetch_bubbles_glm),
1775 	EVENT_PTR(td_recovery_bubbles_glm),
1776 	EVENT_PTR(td_slots_issued_glm),
1777 	EVENT_PTR(td_slots_retired_glm),
1778 	NULL
1779 };
1780 
1781 static struct extra_reg intel_glm_extra_regs[] __read_mostly = {
1782 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1783 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x760005ffbfull, RSP_0),
1784 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x360005ffbfull, RSP_1),
1785 	EVENT_EXTRA_END
1786 };
1787 
1788 #define GLM_DEMAND_DATA_RD		BIT_ULL(0)
1789 #define GLM_DEMAND_RFO			BIT_ULL(1)
1790 #define GLM_ANY_RESPONSE		BIT_ULL(16)
1791 #define GLM_SNP_NONE_OR_MISS		BIT_ULL(33)
1792 #define GLM_DEMAND_READ			GLM_DEMAND_DATA_RD
1793 #define GLM_DEMAND_WRITE		GLM_DEMAND_RFO
1794 #define GLM_DEMAND_PREFETCH		(SNB_PF_DATA_RD|SNB_PF_RFO)
1795 #define GLM_LLC_ACCESS			GLM_ANY_RESPONSE
1796 #define GLM_SNP_ANY			(GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM)
1797 #define GLM_LLC_MISS			(GLM_SNP_ANY|SNB_NON_DRAM)
1798 
1799 static __initconst const u64 glm_hw_cache_event_ids
1800 				[PERF_COUNT_HW_CACHE_MAX]
1801 				[PERF_COUNT_HW_CACHE_OP_MAX]
1802 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1803 	[C(L1D)] = {
1804 		[C(OP_READ)] = {
1805 			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1806 			[C(RESULT_MISS)]	= 0x0,
1807 		},
1808 		[C(OP_WRITE)] = {
1809 			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1810 			[C(RESULT_MISS)]	= 0x0,
1811 		},
1812 		[C(OP_PREFETCH)] = {
1813 			[C(RESULT_ACCESS)]	= 0x0,
1814 			[C(RESULT_MISS)]	= 0x0,
1815 		},
1816 	},
1817 	[C(L1I)] = {
1818 		[C(OP_READ)] = {
1819 			[C(RESULT_ACCESS)]	= 0x0380,	/* ICACHE.ACCESSES */
1820 			[C(RESULT_MISS)]	= 0x0280,	/* ICACHE.MISSES */
1821 		},
1822 		[C(OP_WRITE)] = {
1823 			[C(RESULT_ACCESS)]	= -1,
1824 			[C(RESULT_MISS)]	= -1,
1825 		},
1826 		[C(OP_PREFETCH)] = {
1827 			[C(RESULT_ACCESS)]	= 0x0,
1828 			[C(RESULT_MISS)]	= 0x0,
1829 		},
1830 	},
1831 	[C(LL)] = {
1832 		[C(OP_READ)] = {
1833 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1834 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1835 		},
1836 		[C(OP_WRITE)] = {
1837 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1838 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1839 		},
1840 		[C(OP_PREFETCH)] = {
1841 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1842 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1843 		},
1844 	},
1845 	[C(DTLB)] = {
1846 		[C(OP_READ)] = {
1847 			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1848 			[C(RESULT_MISS)]	= 0x0,
1849 		},
1850 		[C(OP_WRITE)] = {
1851 			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1852 			[C(RESULT_MISS)]	= 0x0,
1853 		},
1854 		[C(OP_PREFETCH)] = {
1855 			[C(RESULT_ACCESS)]	= 0x0,
1856 			[C(RESULT_MISS)]	= 0x0,
1857 		},
1858 	},
1859 	[C(ITLB)] = {
1860 		[C(OP_READ)] = {
1861 			[C(RESULT_ACCESS)]	= 0x00c0,	/* INST_RETIRED.ANY_P */
1862 			[C(RESULT_MISS)]	= 0x0481,	/* ITLB.MISS */
1863 		},
1864 		[C(OP_WRITE)] = {
1865 			[C(RESULT_ACCESS)]	= -1,
1866 			[C(RESULT_MISS)]	= -1,
1867 		},
1868 		[C(OP_PREFETCH)] = {
1869 			[C(RESULT_ACCESS)]	= -1,
1870 			[C(RESULT_MISS)]	= -1,
1871 		},
1872 	},
1873 	[C(BPU)] = {
1874 		[C(OP_READ)] = {
1875 			[C(RESULT_ACCESS)]	= 0x00c4,	/* BR_INST_RETIRED.ALL_BRANCHES */
1876 			[C(RESULT_MISS)]	= 0x00c5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
1877 		},
1878 		[C(OP_WRITE)] = {
1879 			[C(RESULT_ACCESS)]	= -1,
1880 			[C(RESULT_MISS)]	= -1,
1881 		},
1882 		[C(OP_PREFETCH)] = {
1883 			[C(RESULT_ACCESS)]	= -1,
1884 			[C(RESULT_MISS)]	= -1,
1885 		},
1886 	},
1887 };
1888 
1889 static __initconst const u64 glm_hw_cache_extra_regs
1890 				[PERF_COUNT_HW_CACHE_MAX]
1891 				[PERF_COUNT_HW_CACHE_OP_MAX]
1892 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1893 	[C(LL)] = {
1894 		[C(OP_READ)] = {
1895 			[C(RESULT_ACCESS)]	= GLM_DEMAND_READ|
1896 						  GLM_LLC_ACCESS,
1897 			[C(RESULT_MISS)]	= GLM_DEMAND_READ|
1898 						  GLM_LLC_MISS,
1899 		},
1900 		[C(OP_WRITE)] = {
1901 			[C(RESULT_ACCESS)]	= GLM_DEMAND_WRITE|
1902 						  GLM_LLC_ACCESS,
1903 			[C(RESULT_MISS)]	= GLM_DEMAND_WRITE|
1904 						  GLM_LLC_MISS,
1905 		},
1906 		[C(OP_PREFETCH)] = {
1907 			[C(RESULT_ACCESS)]	= GLM_DEMAND_PREFETCH|
1908 						  GLM_LLC_ACCESS,
1909 			[C(RESULT_MISS)]	= GLM_DEMAND_PREFETCH|
1910 						  GLM_LLC_MISS,
1911 		},
1912 	},
1913 };
1914 
1915 static __initconst const u64 glp_hw_cache_event_ids
1916 				[PERF_COUNT_HW_CACHE_MAX]
1917 				[PERF_COUNT_HW_CACHE_OP_MAX]
1918 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1919 	[C(L1D)] = {
1920 		[C(OP_READ)] = {
1921 			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1922 			[C(RESULT_MISS)]	= 0x0,
1923 		},
1924 		[C(OP_WRITE)] = {
1925 			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1926 			[C(RESULT_MISS)]	= 0x0,
1927 		},
1928 		[C(OP_PREFETCH)] = {
1929 			[C(RESULT_ACCESS)]	= 0x0,
1930 			[C(RESULT_MISS)]	= 0x0,
1931 		},
1932 	},
1933 	[C(L1I)] = {
1934 		[C(OP_READ)] = {
1935 			[C(RESULT_ACCESS)]	= 0x0380,	/* ICACHE.ACCESSES */
1936 			[C(RESULT_MISS)]	= 0x0280,	/* ICACHE.MISSES */
1937 		},
1938 		[C(OP_WRITE)] = {
1939 			[C(RESULT_ACCESS)]	= -1,
1940 			[C(RESULT_MISS)]	= -1,
1941 		},
1942 		[C(OP_PREFETCH)] = {
1943 			[C(RESULT_ACCESS)]	= 0x0,
1944 			[C(RESULT_MISS)]	= 0x0,
1945 		},
1946 	},
1947 	[C(LL)] = {
1948 		[C(OP_READ)] = {
1949 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1950 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1951 		},
1952 		[C(OP_WRITE)] = {
1953 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1954 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1955 		},
1956 		[C(OP_PREFETCH)] = {
1957 			[C(RESULT_ACCESS)]	= 0x0,
1958 			[C(RESULT_MISS)]	= 0x0,
1959 		},
1960 	},
1961 	[C(DTLB)] = {
1962 		[C(OP_READ)] = {
1963 			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1964 			[C(RESULT_MISS)]	= 0xe08,	/* DTLB_LOAD_MISSES.WALK_COMPLETED */
1965 		},
1966 		[C(OP_WRITE)] = {
1967 			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1968 			[C(RESULT_MISS)]	= 0xe49,	/* DTLB_STORE_MISSES.WALK_COMPLETED */
1969 		},
1970 		[C(OP_PREFETCH)] = {
1971 			[C(RESULT_ACCESS)]	= 0x0,
1972 			[C(RESULT_MISS)]	= 0x0,
1973 		},
1974 	},
1975 	[C(ITLB)] = {
1976 		[C(OP_READ)] = {
1977 			[C(RESULT_ACCESS)]	= 0x00c0,	/* INST_RETIRED.ANY_P */
1978 			[C(RESULT_MISS)]	= 0x0481,	/* ITLB.MISS */
1979 		},
1980 		[C(OP_WRITE)] = {
1981 			[C(RESULT_ACCESS)]	= -1,
1982 			[C(RESULT_MISS)]	= -1,
1983 		},
1984 		[C(OP_PREFETCH)] = {
1985 			[C(RESULT_ACCESS)]	= -1,
1986 			[C(RESULT_MISS)]	= -1,
1987 		},
1988 	},
1989 	[C(BPU)] = {
1990 		[C(OP_READ)] = {
1991 			[C(RESULT_ACCESS)]	= 0x00c4,	/* BR_INST_RETIRED.ALL_BRANCHES */
1992 			[C(RESULT_MISS)]	= 0x00c5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
1993 		},
1994 		[C(OP_WRITE)] = {
1995 			[C(RESULT_ACCESS)]	= -1,
1996 			[C(RESULT_MISS)]	= -1,
1997 		},
1998 		[C(OP_PREFETCH)] = {
1999 			[C(RESULT_ACCESS)]	= -1,
2000 			[C(RESULT_MISS)]	= -1,
2001 		},
2002 	},
2003 };
2004 
2005 static __initconst const u64 glp_hw_cache_extra_regs
2006 				[PERF_COUNT_HW_CACHE_MAX]
2007 				[PERF_COUNT_HW_CACHE_OP_MAX]
2008 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2009 	[C(LL)] = {
2010 		[C(OP_READ)] = {
2011 			[C(RESULT_ACCESS)]	= GLM_DEMAND_READ|
2012 						  GLM_LLC_ACCESS,
2013 			[C(RESULT_MISS)]	= GLM_DEMAND_READ|
2014 						  GLM_LLC_MISS,
2015 		},
2016 		[C(OP_WRITE)] = {
2017 			[C(RESULT_ACCESS)]	= GLM_DEMAND_WRITE|
2018 						  GLM_LLC_ACCESS,
2019 			[C(RESULT_MISS)]	= GLM_DEMAND_WRITE|
2020 						  GLM_LLC_MISS,
2021 		},
2022 		[C(OP_PREFETCH)] = {
2023 			[C(RESULT_ACCESS)]	= 0x0,
2024 			[C(RESULT_MISS)]	= 0x0,
2025 		},
2026 	},
2027 };
2028 
2029 #define TNT_LOCAL_DRAM			BIT_ULL(26)
2030 #define TNT_DEMAND_READ			GLM_DEMAND_DATA_RD
2031 #define TNT_DEMAND_WRITE		GLM_DEMAND_RFO
2032 #define TNT_LLC_ACCESS			GLM_ANY_RESPONSE
2033 #define TNT_SNP_ANY			(SNB_SNP_NOT_NEEDED|SNB_SNP_MISS| \
2034 					 SNB_NO_FWD|SNB_SNP_FWD|SNB_HITM)
2035 #define TNT_LLC_MISS			(TNT_SNP_ANY|SNB_NON_DRAM|TNT_LOCAL_DRAM)
2036 
2037 static __initconst const u64 tnt_hw_cache_extra_regs
2038 				[PERF_COUNT_HW_CACHE_MAX]
2039 				[PERF_COUNT_HW_CACHE_OP_MAX]
2040 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2041 	[C(LL)] = {
2042 		[C(OP_READ)] = {
2043 			[C(RESULT_ACCESS)]	= TNT_DEMAND_READ|
2044 						  TNT_LLC_ACCESS,
2045 			[C(RESULT_MISS)]	= TNT_DEMAND_READ|
2046 						  TNT_LLC_MISS,
2047 		},
2048 		[C(OP_WRITE)] = {
2049 			[C(RESULT_ACCESS)]	= TNT_DEMAND_WRITE|
2050 						  TNT_LLC_ACCESS,
2051 			[C(RESULT_MISS)]	= TNT_DEMAND_WRITE|
2052 						  TNT_LLC_MISS,
2053 		},
2054 		[C(OP_PREFETCH)] = {
2055 			[C(RESULT_ACCESS)]	= 0x0,
2056 			[C(RESULT_MISS)]	= 0x0,
2057 		},
2058 	},
2059 };
2060 
2061 EVENT_ATTR_STR(topdown-fe-bound,       td_fe_bound_tnt,        "event=0x71,umask=0x0");
2062 EVENT_ATTR_STR(topdown-retiring,       td_retiring_tnt,        "event=0xc2,umask=0x0");
2063 EVENT_ATTR_STR(topdown-bad-spec,       td_bad_spec_tnt,        "event=0x73,umask=0x6");
2064 EVENT_ATTR_STR(topdown-be-bound,       td_be_bound_tnt,        "event=0x74,umask=0x0");
2065 
2066 static struct attribute *tnt_events_attrs[] = {
2067 	EVENT_PTR(td_fe_bound_tnt),
2068 	EVENT_PTR(td_retiring_tnt),
2069 	EVENT_PTR(td_bad_spec_tnt),
2070 	EVENT_PTR(td_be_bound_tnt),
2071 	NULL,
2072 };
2073 
2074 static struct extra_reg intel_tnt_extra_regs[] __read_mostly = {
2075 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
2076 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x800ff0ffffff9fffull, RSP_0),
2077 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0xff0ffffff9fffull, RSP_1),
2078 	EVENT_EXTRA_END
2079 };
2080 
2081 static struct extra_reg intel_grt_extra_regs[] __read_mostly = {
2082 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
2083 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
2084 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
2085 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x5d0),
2086 	EVENT_EXTRA_END
2087 };
2088 
2089 #define KNL_OT_L2_HITE		BIT_ULL(19) /* Other Tile L2 Hit */
2090 #define KNL_OT_L2_HITF		BIT_ULL(20) /* Other Tile L2 Hit */
2091 #define KNL_MCDRAM_LOCAL	BIT_ULL(21)
2092 #define KNL_MCDRAM_FAR		BIT_ULL(22)
2093 #define KNL_DDR_LOCAL		BIT_ULL(23)
2094 #define KNL_DDR_FAR		BIT_ULL(24)
2095 #define KNL_DRAM_ANY		(KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \
2096 				    KNL_DDR_LOCAL | KNL_DDR_FAR)
2097 #define KNL_L2_READ		SLM_DMND_READ
2098 #define KNL_L2_WRITE		SLM_DMND_WRITE
2099 #define KNL_L2_PREFETCH		SLM_DMND_PREFETCH
2100 #define KNL_L2_ACCESS		SLM_LLC_ACCESS
2101 #define KNL_L2_MISS		(KNL_OT_L2_HITE | KNL_OT_L2_HITF | \
2102 				   KNL_DRAM_ANY | SNB_SNP_ANY | \
2103 						  SNB_NON_DRAM)
2104 
2105 static __initconst const u64 knl_hw_cache_extra_regs
2106 				[PERF_COUNT_HW_CACHE_MAX]
2107 				[PERF_COUNT_HW_CACHE_OP_MAX]
2108 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2109 	[C(LL)] = {
2110 		[C(OP_READ)] = {
2111 			[C(RESULT_ACCESS)] = KNL_L2_READ | KNL_L2_ACCESS,
2112 			[C(RESULT_MISS)]   = 0,
2113 		},
2114 		[C(OP_WRITE)] = {
2115 			[C(RESULT_ACCESS)] = KNL_L2_WRITE | KNL_L2_ACCESS,
2116 			[C(RESULT_MISS)]   = KNL_L2_WRITE | KNL_L2_MISS,
2117 		},
2118 		[C(OP_PREFETCH)] = {
2119 			[C(RESULT_ACCESS)] = KNL_L2_PREFETCH | KNL_L2_ACCESS,
2120 			[C(RESULT_MISS)]   = KNL_L2_PREFETCH | KNL_L2_MISS,
2121 		},
2122 	},
2123 };
2124 
2125 /*
2126  * Used from PMIs where the LBRs are already disabled.
2127  *
2128  * This function could be called consecutively. It is required to remain in
2129  * disabled state if called consecutively.
2130  *
2131  * During consecutive calls, the same disable value will be written to related
2132  * registers, so the PMU state remains unchanged.
2133  *
2134  * intel_bts events don't coexist with intel PMU's BTS events because of
2135  * x86_add_exclusive(x86_lbr_exclusive_lbr); there's no need to keep them
2136  * disabled around intel PMU's event batching etc, only inside the PMI handler.
2137  *
2138  * Avoid PEBS_ENABLE MSR access in PMIs.
2139  * The GLOBAL_CTRL has been disabled. All the counters do not count anymore.
2140  * It doesn't matter if the PEBS is enabled or not.
2141  * Usually, the PEBS status are not changed in PMIs. It's unnecessary to
2142  * access PEBS_ENABLE MSR in disable_all()/enable_all().
2143  * However, there are some cases which may change PEBS status, e.g. PMI
2144  * throttle. The PEBS_ENABLE should be updated where the status changes.
2145  */
2146 static void __intel_pmu_disable_all(void)
2147 {
2148 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2149 
2150 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
2151 
2152 	if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
2153 		intel_pmu_disable_bts();
2154 }
2155 
2156 static void intel_pmu_disable_all(void)
2157 {
2158 	__intel_pmu_disable_all();
2159 	intel_pmu_pebs_disable_all();
2160 	intel_pmu_lbr_disable_all();
2161 }
2162 
2163 static void __intel_pmu_enable_all(int added, bool pmi)
2164 {
2165 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2166 	u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
2167 
2168 	intel_pmu_lbr_enable_all(pmi);
2169 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
2170 	       intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
2171 
2172 	if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
2173 		struct perf_event *event =
2174 			cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
2175 
2176 		if (WARN_ON_ONCE(!event))
2177 			return;
2178 
2179 		intel_pmu_enable_bts(event->hw.config);
2180 	}
2181 }
2182 
2183 static void intel_pmu_enable_all(int added)
2184 {
2185 	intel_pmu_pebs_enable_all();
2186 	__intel_pmu_enable_all(added, false);
2187 }
2188 
2189 /*
2190  * Workaround for:
2191  *   Intel Errata AAK100 (model 26)
2192  *   Intel Errata AAP53  (model 30)
2193  *   Intel Errata BD53   (model 44)
2194  *
2195  * The official story:
2196  *   These chips need to be 'reset' when adding counters by programming the
2197  *   magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
2198  *   in sequence on the same PMC or on different PMCs.
2199  *
2200  * In practice it appears some of these events do in fact count, and
2201  * we need to program all 4 events.
2202  */
2203 static void intel_pmu_nhm_workaround(void)
2204 {
2205 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2206 	static const unsigned long nhm_magic[4] = {
2207 		0x4300B5,
2208 		0x4300D2,
2209 		0x4300B1,
2210 		0x4300B1
2211 	};
2212 	struct perf_event *event;
2213 	int i;
2214 
2215 	/*
2216 	 * The Errata requires below steps:
2217 	 * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
2218 	 * 2) Configure 4 PERFEVTSELx with the magic events and clear
2219 	 *    the corresponding PMCx;
2220 	 * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
2221 	 * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
2222 	 * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
2223 	 */
2224 
2225 	/*
2226 	 * The real steps we choose are a little different from above.
2227 	 * A) To reduce MSR operations, we don't run step 1) as they
2228 	 *    are already cleared before this function is called;
2229 	 * B) Call x86_perf_event_update to save PMCx before configuring
2230 	 *    PERFEVTSELx with magic number;
2231 	 * C) With step 5), we do clear only when the PERFEVTSELx is
2232 	 *    not used currently.
2233 	 * D) Call x86_perf_event_set_period to restore PMCx;
2234 	 */
2235 
2236 	/* We always operate 4 pairs of PERF Counters */
2237 	for (i = 0; i < 4; i++) {
2238 		event = cpuc->events[i];
2239 		if (event)
2240 			x86_perf_event_update(event);
2241 	}
2242 
2243 	for (i = 0; i < 4; i++) {
2244 		wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
2245 		wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
2246 	}
2247 
2248 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
2249 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
2250 
2251 	for (i = 0; i < 4; i++) {
2252 		event = cpuc->events[i];
2253 
2254 		if (event) {
2255 			x86_perf_event_set_period(event);
2256 			__x86_pmu_enable_event(&event->hw,
2257 					ARCH_PERFMON_EVENTSEL_ENABLE);
2258 		} else
2259 			wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
2260 	}
2261 }
2262 
2263 static void intel_pmu_nhm_enable_all(int added)
2264 {
2265 	if (added)
2266 		intel_pmu_nhm_workaround();
2267 	intel_pmu_enable_all(added);
2268 }
2269 
2270 static void intel_set_tfa(struct cpu_hw_events *cpuc, bool on)
2271 {
2272 	u64 val = on ? MSR_TFA_RTM_FORCE_ABORT : 0;
2273 
2274 	if (cpuc->tfa_shadow != val) {
2275 		cpuc->tfa_shadow = val;
2276 		wrmsrl(MSR_TSX_FORCE_ABORT, val);
2277 	}
2278 }
2279 
2280 static void intel_tfa_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
2281 {
2282 	/*
2283 	 * We're going to use PMC3, make sure TFA is set before we touch it.
2284 	 */
2285 	if (cntr == 3)
2286 		intel_set_tfa(cpuc, true);
2287 }
2288 
2289 static void intel_tfa_pmu_enable_all(int added)
2290 {
2291 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2292 
2293 	/*
2294 	 * If we find PMC3 is no longer used when we enable the PMU, we can
2295 	 * clear TFA.
2296 	 */
2297 	if (!test_bit(3, cpuc->active_mask))
2298 		intel_set_tfa(cpuc, false);
2299 
2300 	intel_pmu_enable_all(added);
2301 }
2302 
2303 static inline u64 intel_pmu_get_status(void)
2304 {
2305 	u64 status;
2306 
2307 	rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
2308 
2309 	return status;
2310 }
2311 
2312 static inline void intel_pmu_ack_status(u64 ack)
2313 {
2314 	wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
2315 }
2316 
2317 static inline bool event_is_checkpointed(struct perf_event *event)
2318 {
2319 	return unlikely(event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
2320 }
2321 
2322 static inline void intel_set_masks(struct perf_event *event, int idx)
2323 {
2324 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2325 
2326 	if (event->attr.exclude_host)
2327 		__set_bit(idx, (unsigned long *)&cpuc->intel_ctrl_guest_mask);
2328 	if (event->attr.exclude_guest)
2329 		__set_bit(idx, (unsigned long *)&cpuc->intel_ctrl_host_mask);
2330 	if (event_is_checkpointed(event))
2331 		__set_bit(idx, (unsigned long *)&cpuc->intel_cp_status);
2332 }
2333 
2334 static inline void intel_clear_masks(struct perf_event *event, int idx)
2335 {
2336 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2337 
2338 	__clear_bit(idx, (unsigned long *)&cpuc->intel_ctrl_guest_mask);
2339 	__clear_bit(idx, (unsigned long *)&cpuc->intel_ctrl_host_mask);
2340 	__clear_bit(idx, (unsigned long *)&cpuc->intel_cp_status);
2341 }
2342 
2343 static void intel_pmu_disable_fixed(struct perf_event *event)
2344 {
2345 	struct hw_perf_event *hwc = &event->hw;
2346 	u64 ctrl_val, mask;
2347 	int idx = hwc->idx;
2348 
2349 	if (is_topdown_idx(idx)) {
2350 		struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2351 
2352 		/*
2353 		 * When there are other active TopDown events,
2354 		 * don't disable the fixed counter 3.
2355 		 */
2356 		if (*(u64 *)cpuc->active_mask & INTEL_PMC_OTHER_TOPDOWN_BITS(idx))
2357 			return;
2358 		idx = INTEL_PMC_IDX_FIXED_SLOTS;
2359 	}
2360 
2361 	intel_clear_masks(event, idx);
2362 
2363 	mask = 0xfULL << ((idx - INTEL_PMC_IDX_FIXED) * 4);
2364 	rdmsrl(hwc->config_base, ctrl_val);
2365 	ctrl_val &= ~mask;
2366 	wrmsrl(hwc->config_base, ctrl_val);
2367 }
2368 
2369 static void intel_pmu_disable_event(struct perf_event *event)
2370 {
2371 	struct hw_perf_event *hwc = &event->hw;
2372 	int idx = hwc->idx;
2373 
2374 	switch (idx) {
2375 	case 0 ... INTEL_PMC_IDX_FIXED - 1:
2376 		intel_clear_masks(event, idx);
2377 		x86_pmu_disable_event(event);
2378 		break;
2379 	case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS - 1:
2380 	case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
2381 		intel_pmu_disable_fixed(event);
2382 		break;
2383 	case INTEL_PMC_IDX_FIXED_BTS:
2384 		intel_pmu_disable_bts();
2385 		intel_pmu_drain_bts_buffer();
2386 		return;
2387 	case INTEL_PMC_IDX_FIXED_VLBR:
2388 		intel_clear_masks(event, idx);
2389 		break;
2390 	default:
2391 		intel_clear_masks(event, idx);
2392 		pr_warn("Failed to disable the event with invalid index %d\n",
2393 			idx);
2394 		return;
2395 	}
2396 
2397 	/*
2398 	 * Needs to be called after x86_pmu_disable_event,
2399 	 * so we don't trigger the event without PEBS bit set.
2400 	 */
2401 	if (unlikely(event->attr.precise_ip))
2402 		intel_pmu_pebs_disable(event);
2403 }
2404 
2405 static void intel_pmu_del_event(struct perf_event *event)
2406 {
2407 	if (needs_branch_stack(event))
2408 		intel_pmu_lbr_del(event);
2409 	if (event->attr.precise_ip)
2410 		intel_pmu_pebs_del(event);
2411 }
2412 
2413 static int icl_set_topdown_event_period(struct perf_event *event)
2414 {
2415 	struct hw_perf_event *hwc = &event->hw;
2416 	s64 left = local64_read(&hwc->period_left);
2417 
2418 	/*
2419 	 * The values in PERF_METRICS MSR are derived from fixed counter 3.
2420 	 * Software should start both registers, PERF_METRICS and fixed
2421 	 * counter 3, from zero.
2422 	 * Clear PERF_METRICS and Fixed counter 3 in initialization.
2423 	 * After that, both MSRs will be cleared for each read.
2424 	 * Don't need to clear them again.
2425 	 */
2426 	if (left == x86_pmu.max_period) {
2427 		wrmsrl(MSR_CORE_PERF_FIXED_CTR3, 0);
2428 		wrmsrl(MSR_PERF_METRICS, 0);
2429 		hwc->saved_slots = 0;
2430 		hwc->saved_metric = 0;
2431 	}
2432 
2433 	if ((hwc->saved_slots) && is_slots_event(event)) {
2434 		wrmsrl(MSR_CORE_PERF_FIXED_CTR3, hwc->saved_slots);
2435 		wrmsrl(MSR_PERF_METRICS, hwc->saved_metric);
2436 	}
2437 
2438 	perf_event_update_userpage(event);
2439 
2440 	return 0;
2441 }
2442 
2443 static int adl_set_topdown_event_period(struct perf_event *event)
2444 {
2445 	struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
2446 
2447 	if (pmu->cpu_type != hybrid_big)
2448 		return 0;
2449 
2450 	return icl_set_topdown_event_period(event);
2451 }
2452 
2453 static inline u64 icl_get_metrics_event_value(u64 metric, u64 slots, int idx)
2454 {
2455 	u32 val;
2456 
2457 	/*
2458 	 * The metric is reported as an 8bit integer fraction
2459 	 * summing up to 0xff.
2460 	 * slots-in-metric = (Metric / 0xff) * slots
2461 	 */
2462 	val = (metric >> ((idx - INTEL_PMC_IDX_METRIC_BASE) * 8)) & 0xff;
2463 	return  mul_u64_u32_div(slots, val, 0xff);
2464 }
2465 
2466 static u64 icl_get_topdown_value(struct perf_event *event,
2467 				       u64 slots, u64 metrics)
2468 {
2469 	int idx = event->hw.idx;
2470 	u64 delta;
2471 
2472 	if (is_metric_idx(idx))
2473 		delta = icl_get_metrics_event_value(metrics, slots, idx);
2474 	else
2475 		delta = slots;
2476 
2477 	return delta;
2478 }
2479 
2480 static void __icl_update_topdown_event(struct perf_event *event,
2481 				       u64 slots, u64 metrics,
2482 				       u64 last_slots, u64 last_metrics)
2483 {
2484 	u64 delta, last = 0;
2485 
2486 	delta = icl_get_topdown_value(event, slots, metrics);
2487 	if (last_slots)
2488 		last = icl_get_topdown_value(event, last_slots, last_metrics);
2489 
2490 	/*
2491 	 * The 8bit integer fraction of metric may be not accurate,
2492 	 * especially when the changes is very small.
2493 	 * For example, if only a few bad_spec happens, the fraction
2494 	 * may be reduced from 1 to 0. If so, the bad_spec event value
2495 	 * will be 0 which is definitely less than the last value.
2496 	 * Avoid update event->count for this case.
2497 	 */
2498 	if (delta > last) {
2499 		delta -= last;
2500 		local64_add(delta, &event->count);
2501 	}
2502 }
2503 
2504 static void update_saved_topdown_regs(struct perf_event *event, u64 slots,
2505 				      u64 metrics, int metric_end)
2506 {
2507 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2508 	struct perf_event *other;
2509 	int idx;
2510 
2511 	event->hw.saved_slots = slots;
2512 	event->hw.saved_metric = metrics;
2513 
2514 	for_each_set_bit(idx, cpuc->active_mask, metric_end + 1) {
2515 		if (!is_topdown_idx(idx))
2516 			continue;
2517 		other = cpuc->events[idx];
2518 		other->hw.saved_slots = slots;
2519 		other->hw.saved_metric = metrics;
2520 	}
2521 }
2522 
2523 /*
2524  * Update all active Topdown events.
2525  *
2526  * The PERF_METRICS and Fixed counter 3 are read separately. The values may be
2527  * modify by a NMI. PMU has to be disabled before calling this function.
2528  */
2529 
2530 static u64 intel_update_topdown_event(struct perf_event *event, int metric_end)
2531 {
2532 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2533 	struct perf_event *other;
2534 	u64 slots, metrics;
2535 	bool reset = true;
2536 	int idx;
2537 
2538 	/* read Fixed counter 3 */
2539 	rdpmcl((3 | INTEL_PMC_FIXED_RDPMC_BASE), slots);
2540 	if (!slots)
2541 		return 0;
2542 
2543 	/* read PERF_METRICS */
2544 	rdpmcl(INTEL_PMC_FIXED_RDPMC_METRICS, metrics);
2545 
2546 	for_each_set_bit(idx, cpuc->active_mask, metric_end + 1) {
2547 		if (!is_topdown_idx(idx))
2548 			continue;
2549 		other = cpuc->events[idx];
2550 		__icl_update_topdown_event(other, slots, metrics,
2551 					   event ? event->hw.saved_slots : 0,
2552 					   event ? event->hw.saved_metric : 0);
2553 	}
2554 
2555 	/*
2556 	 * Check and update this event, which may have been cleared
2557 	 * in active_mask e.g. x86_pmu_stop()
2558 	 */
2559 	if (event && !test_bit(event->hw.idx, cpuc->active_mask)) {
2560 		__icl_update_topdown_event(event, slots, metrics,
2561 					   event->hw.saved_slots,
2562 					   event->hw.saved_metric);
2563 
2564 		/*
2565 		 * In x86_pmu_stop(), the event is cleared in active_mask first,
2566 		 * then drain the delta, which indicates context switch for
2567 		 * counting.
2568 		 * Save metric and slots for context switch.
2569 		 * Don't need to reset the PERF_METRICS and Fixed counter 3.
2570 		 * Because the values will be restored in next schedule in.
2571 		 */
2572 		update_saved_topdown_regs(event, slots, metrics, metric_end);
2573 		reset = false;
2574 	}
2575 
2576 	if (reset) {
2577 		/* The fixed counter 3 has to be written before the PERF_METRICS. */
2578 		wrmsrl(MSR_CORE_PERF_FIXED_CTR3, 0);
2579 		wrmsrl(MSR_PERF_METRICS, 0);
2580 		if (event)
2581 			update_saved_topdown_regs(event, 0, 0, metric_end);
2582 	}
2583 
2584 	return slots;
2585 }
2586 
2587 static u64 icl_update_topdown_event(struct perf_event *event)
2588 {
2589 	return intel_update_topdown_event(event, INTEL_PMC_IDX_METRIC_BASE +
2590 						 x86_pmu.num_topdown_events - 1);
2591 }
2592 
2593 static u64 adl_update_topdown_event(struct perf_event *event)
2594 {
2595 	struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
2596 
2597 	if (pmu->cpu_type != hybrid_big)
2598 		return 0;
2599 
2600 	return icl_update_topdown_event(event);
2601 }
2602 
2603 
2604 static void intel_pmu_read_topdown_event(struct perf_event *event)
2605 {
2606 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2607 
2608 	/* Only need to call update_topdown_event() once for group read. */
2609 	if ((cpuc->txn_flags & PERF_PMU_TXN_READ) &&
2610 	    !is_slots_event(event))
2611 		return;
2612 
2613 	perf_pmu_disable(event->pmu);
2614 	x86_pmu.update_topdown_event(event);
2615 	perf_pmu_enable(event->pmu);
2616 }
2617 
2618 static void intel_pmu_read_event(struct perf_event *event)
2619 {
2620 	if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
2621 		intel_pmu_auto_reload_read(event);
2622 	else if (is_topdown_count(event) && x86_pmu.update_topdown_event)
2623 		intel_pmu_read_topdown_event(event);
2624 	else
2625 		x86_perf_event_update(event);
2626 }
2627 
2628 static void intel_pmu_enable_fixed(struct perf_event *event)
2629 {
2630 	struct hw_perf_event *hwc = &event->hw;
2631 	u64 ctrl_val, mask, bits = 0;
2632 	int idx = hwc->idx;
2633 
2634 	if (is_topdown_idx(idx)) {
2635 		struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2636 		/*
2637 		 * When there are other active TopDown events,
2638 		 * don't enable the fixed counter 3 again.
2639 		 */
2640 		if (*(u64 *)cpuc->active_mask & INTEL_PMC_OTHER_TOPDOWN_BITS(idx))
2641 			return;
2642 
2643 		idx = INTEL_PMC_IDX_FIXED_SLOTS;
2644 	}
2645 
2646 	intel_set_masks(event, idx);
2647 
2648 	/*
2649 	 * Enable IRQ generation (0x8), if not PEBS,
2650 	 * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
2651 	 * if requested:
2652 	 */
2653 	if (!event->attr.precise_ip)
2654 		bits |= 0x8;
2655 	if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
2656 		bits |= 0x2;
2657 	if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
2658 		bits |= 0x1;
2659 
2660 	/*
2661 	 * ANY bit is supported in v3 and up
2662 	 */
2663 	if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
2664 		bits |= 0x4;
2665 
2666 	idx -= INTEL_PMC_IDX_FIXED;
2667 	bits <<= (idx * 4);
2668 	mask = 0xfULL << (idx * 4);
2669 
2670 	if (x86_pmu.intel_cap.pebs_baseline && event->attr.precise_ip) {
2671 		bits |= ICL_FIXED_0_ADAPTIVE << (idx * 4);
2672 		mask |= ICL_FIXED_0_ADAPTIVE << (idx * 4);
2673 	}
2674 
2675 	rdmsrl(hwc->config_base, ctrl_val);
2676 	ctrl_val &= ~mask;
2677 	ctrl_val |= bits;
2678 	wrmsrl(hwc->config_base, ctrl_val);
2679 }
2680 
2681 static void intel_pmu_enable_event(struct perf_event *event)
2682 {
2683 	struct hw_perf_event *hwc = &event->hw;
2684 	int idx = hwc->idx;
2685 
2686 	if (unlikely(event->attr.precise_ip))
2687 		intel_pmu_pebs_enable(event);
2688 
2689 	switch (idx) {
2690 	case 0 ... INTEL_PMC_IDX_FIXED - 1:
2691 		intel_set_masks(event, idx);
2692 		__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
2693 		break;
2694 	case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS - 1:
2695 	case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
2696 		intel_pmu_enable_fixed(event);
2697 		break;
2698 	case INTEL_PMC_IDX_FIXED_BTS:
2699 		if (!__this_cpu_read(cpu_hw_events.enabled))
2700 			return;
2701 		intel_pmu_enable_bts(hwc->config);
2702 		break;
2703 	case INTEL_PMC_IDX_FIXED_VLBR:
2704 		intel_set_masks(event, idx);
2705 		break;
2706 	default:
2707 		pr_warn("Failed to enable the event with invalid index %d\n",
2708 			idx);
2709 	}
2710 }
2711 
2712 static void intel_pmu_add_event(struct perf_event *event)
2713 {
2714 	if (event->attr.precise_ip)
2715 		intel_pmu_pebs_add(event);
2716 	if (needs_branch_stack(event))
2717 		intel_pmu_lbr_add(event);
2718 }
2719 
2720 /*
2721  * Save and restart an expired event. Called by NMI contexts,
2722  * so it has to be careful about preempting normal event ops:
2723  */
2724 int intel_pmu_save_and_restart(struct perf_event *event)
2725 {
2726 	x86_perf_event_update(event);
2727 	/*
2728 	 * For a checkpointed counter always reset back to 0.  This
2729 	 * avoids a situation where the counter overflows, aborts the
2730 	 * transaction and is then set back to shortly before the
2731 	 * overflow, and overflows and aborts again.
2732 	 */
2733 	if (unlikely(event_is_checkpointed(event))) {
2734 		/* No race with NMIs because the counter should not be armed */
2735 		wrmsrl(event->hw.event_base, 0);
2736 		local64_set(&event->hw.prev_count, 0);
2737 	}
2738 	return x86_perf_event_set_period(event);
2739 }
2740 
2741 static void intel_pmu_reset(void)
2742 {
2743 	struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
2744 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2745 	int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
2746 	int num_counters = hybrid(cpuc->pmu, num_counters);
2747 	unsigned long flags;
2748 	int idx;
2749 
2750 	if (!num_counters)
2751 		return;
2752 
2753 	local_irq_save(flags);
2754 
2755 	pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
2756 
2757 	for (idx = 0; idx < num_counters; idx++) {
2758 		wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
2759 		wrmsrl_safe(x86_pmu_event_addr(idx),  0ull);
2760 	}
2761 	for (idx = 0; idx < num_counters_fixed; idx++) {
2762 		if (fixed_counter_disabled(idx, cpuc->pmu))
2763 			continue;
2764 		wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
2765 	}
2766 
2767 	if (ds)
2768 		ds->bts_index = ds->bts_buffer_base;
2769 
2770 	/* Ack all overflows and disable fixed counters */
2771 	if (x86_pmu.version >= 2) {
2772 		intel_pmu_ack_status(intel_pmu_get_status());
2773 		wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
2774 	}
2775 
2776 	/* Reset LBRs and LBR freezing */
2777 	if (x86_pmu.lbr_nr) {
2778 		update_debugctlmsr(get_debugctlmsr() &
2779 			~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
2780 	}
2781 
2782 	local_irq_restore(flags);
2783 }
2784 
2785 static int handle_pmi_common(struct pt_regs *regs, u64 status)
2786 {
2787 	struct perf_sample_data data;
2788 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2789 	int bit;
2790 	int handled = 0;
2791 	u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
2792 
2793 	inc_irq_stat(apic_perf_irqs);
2794 
2795 	/*
2796 	 * Ignore a range of extra bits in status that do not indicate
2797 	 * overflow by themselves.
2798 	 */
2799 	status &= ~(GLOBAL_STATUS_COND_CHG |
2800 		    GLOBAL_STATUS_ASIF |
2801 		    GLOBAL_STATUS_LBRS_FROZEN);
2802 	if (!status)
2803 		return 0;
2804 	/*
2805 	 * In case multiple PEBS events are sampled at the same time,
2806 	 * it is possible to have GLOBAL_STATUS bit 62 set indicating
2807 	 * PEBS buffer overflow and also seeing at most 3 PEBS counters
2808 	 * having their bits set in the status register. This is a sign
2809 	 * that there was at least one PEBS record pending at the time
2810 	 * of the PMU interrupt. PEBS counters must only be processed
2811 	 * via the drain_pebs() calls and not via the regular sample
2812 	 * processing loop coming after that the function, otherwise
2813 	 * phony regular samples may be generated in the sampling buffer
2814 	 * not marked with the EXACT tag. Another possibility is to have
2815 	 * one PEBS event and at least one non-PEBS event which overflows
2816 	 * while PEBS has armed. In this case, bit 62 of GLOBAL_STATUS will
2817 	 * not be set, yet the overflow status bit for the PEBS counter will
2818 	 * be on Skylake.
2819 	 *
2820 	 * To avoid this problem, we systematically ignore the PEBS-enabled
2821 	 * counters from the GLOBAL_STATUS mask and we always process PEBS
2822 	 * events via drain_pebs().
2823 	 */
2824 	if (x86_pmu.flags & PMU_FL_PEBS_ALL)
2825 		status &= ~cpuc->pebs_enabled;
2826 	else
2827 		status &= ~(cpuc->pebs_enabled & PEBS_COUNTER_MASK);
2828 
2829 	/*
2830 	 * PEBS overflow sets bit 62 in the global status register
2831 	 */
2832 	if (__test_and_clear_bit(GLOBAL_STATUS_BUFFER_OVF_BIT, (unsigned long *)&status)) {
2833 		u64 pebs_enabled = cpuc->pebs_enabled;
2834 
2835 		handled++;
2836 		x86_pmu.drain_pebs(regs, &data);
2837 		status &= intel_ctrl | GLOBAL_STATUS_TRACE_TOPAPMI;
2838 
2839 		/*
2840 		 * PMI throttle may be triggered, which stops the PEBS event.
2841 		 * Although cpuc->pebs_enabled is updated accordingly, the
2842 		 * MSR_IA32_PEBS_ENABLE is not updated. Because the
2843 		 * cpuc->enabled has been forced to 0 in PMI.
2844 		 * Update the MSR if pebs_enabled is changed.
2845 		 */
2846 		if (pebs_enabled != cpuc->pebs_enabled)
2847 			wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
2848 	}
2849 
2850 	/*
2851 	 * Intel PT
2852 	 */
2853 	if (__test_and_clear_bit(GLOBAL_STATUS_TRACE_TOPAPMI_BIT, (unsigned long *)&status)) {
2854 		handled++;
2855 		if (unlikely(perf_guest_cbs && perf_guest_cbs->is_in_guest() &&
2856 			perf_guest_cbs->handle_intel_pt_intr))
2857 			perf_guest_cbs->handle_intel_pt_intr();
2858 		else
2859 			intel_pt_interrupt();
2860 	}
2861 
2862 	/*
2863 	 * Intel Perf metrics
2864 	 */
2865 	if (__test_and_clear_bit(GLOBAL_STATUS_PERF_METRICS_OVF_BIT, (unsigned long *)&status)) {
2866 		handled++;
2867 		if (x86_pmu.update_topdown_event)
2868 			x86_pmu.update_topdown_event(NULL);
2869 	}
2870 
2871 	/*
2872 	 * Checkpointed counters can lead to 'spurious' PMIs because the
2873 	 * rollback caused by the PMI will have cleared the overflow status
2874 	 * bit. Therefore always force probe these counters.
2875 	 */
2876 	status |= cpuc->intel_cp_status;
2877 
2878 	for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
2879 		struct perf_event *event = cpuc->events[bit];
2880 
2881 		handled++;
2882 
2883 		if (!test_bit(bit, cpuc->active_mask))
2884 			continue;
2885 
2886 		if (!intel_pmu_save_and_restart(event))
2887 			continue;
2888 
2889 		perf_sample_data_init(&data, 0, event->hw.last_period);
2890 
2891 		if (has_branch_stack(event))
2892 			data.br_stack = &cpuc->lbr_stack;
2893 
2894 		if (perf_event_overflow(event, &data, regs))
2895 			x86_pmu_stop(event, 0);
2896 	}
2897 
2898 	return handled;
2899 }
2900 
2901 /*
2902  * This handler is triggered by the local APIC, so the APIC IRQ handling
2903  * rules apply:
2904  */
2905 static int intel_pmu_handle_irq(struct pt_regs *regs)
2906 {
2907 	struct cpu_hw_events *cpuc;
2908 	int loops;
2909 	u64 status;
2910 	int handled;
2911 	int pmu_enabled;
2912 
2913 	cpuc = this_cpu_ptr(&cpu_hw_events);
2914 
2915 	/*
2916 	 * Save the PMU state.
2917 	 * It needs to be restored when leaving the handler.
2918 	 */
2919 	pmu_enabled = cpuc->enabled;
2920 	/*
2921 	 * No known reason to not always do late ACK,
2922 	 * but just in case do it opt-in.
2923 	 */
2924 	if (!x86_pmu.late_ack)
2925 		apic_write(APIC_LVTPC, APIC_DM_NMI);
2926 	intel_bts_disable_local();
2927 	cpuc->enabled = 0;
2928 	__intel_pmu_disable_all();
2929 	handled = intel_pmu_drain_bts_buffer();
2930 	handled += intel_bts_interrupt();
2931 	status = intel_pmu_get_status();
2932 	if (!status)
2933 		goto done;
2934 
2935 	loops = 0;
2936 again:
2937 	intel_pmu_lbr_read();
2938 	intel_pmu_ack_status(status);
2939 	if (++loops > 100) {
2940 		static bool warned;
2941 
2942 		if (!warned) {
2943 			WARN(1, "perfevents: irq loop stuck!\n");
2944 			perf_event_print_debug();
2945 			warned = true;
2946 		}
2947 		intel_pmu_reset();
2948 		goto done;
2949 	}
2950 
2951 	handled += handle_pmi_common(regs, status);
2952 
2953 	/*
2954 	 * Repeat if there is more work to be done:
2955 	 */
2956 	status = intel_pmu_get_status();
2957 	if (status)
2958 		goto again;
2959 
2960 done:
2961 	/* Only restore PMU state when it's active. See x86_pmu_disable(). */
2962 	cpuc->enabled = pmu_enabled;
2963 	if (pmu_enabled)
2964 		__intel_pmu_enable_all(0, true);
2965 	intel_bts_enable_local();
2966 
2967 	/*
2968 	 * Only unmask the NMI after the overflow counters
2969 	 * have been reset. This avoids spurious NMIs on
2970 	 * Haswell CPUs.
2971 	 */
2972 	if (x86_pmu.late_ack)
2973 		apic_write(APIC_LVTPC, APIC_DM_NMI);
2974 	return handled;
2975 }
2976 
2977 static struct event_constraint *
2978 intel_bts_constraints(struct perf_event *event)
2979 {
2980 	if (unlikely(intel_pmu_has_bts(event)))
2981 		return &bts_constraint;
2982 
2983 	return NULL;
2984 }
2985 
2986 /*
2987  * Note: matches a fake event, like Fixed2.
2988  */
2989 static struct event_constraint *
2990 intel_vlbr_constraints(struct perf_event *event)
2991 {
2992 	struct event_constraint *c = &vlbr_constraint;
2993 
2994 	if (unlikely(constraint_match(c, event->hw.config)))
2995 		return c;
2996 
2997 	return NULL;
2998 }
2999 
3000 static int intel_alt_er(struct cpu_hw_events *cpuc,
3001 			int idx, u64 config)
3002 {
3003 	struct extra_reg *extra_regs = hybrid(cpuc->pmu, extra_regs);
3004 	int alt_idx = idx;
3005 
3006 	if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
3007 		return idx;
3008 
3009 	if (idx == EXTRA_REG_RSP_0)
3010 		alt_idx = EXTRA_REG_RSP_1;
3011 
3012 	if (idx == EXTRA_REG_RSP_1)
3013 		alt_idx = EXTRA_REG_RSP_0;
3014 
3015 	if (config & ~extra_regs[alt_idx].valid_mask)
3016 		return idx;
3017 
3018 	return alt_idx;
3019 }
3020 
3021 static void intel_fixup_er(struct perf_event *event, int idx)
3022 {
3023 	struct extra_reg *extra_regs = hybrid(event->pmu, extra_regs);
3024 	event->hw.extra_reg.idx = idx;
3025 
3026 	if (idx == EXTRA_REG_RSP_0) {
3027 		event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
3028 		event->hw.config |= extra_regs[EXTRA_REG_RSP_0].event;
3029 		event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
3030 	} else if (idx == EXTRA_REG_RSP_1) {
3031 		event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
3032 		event->hw.config |= extra_regs[EXTRA_REG_RSP_1].event;
3033 		event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
3034 	}
3035 }
3036 
3037 /*
3038  * manage allocation of shared extra msr for certain events
3039  *
3040  * sharing can be:
3041  * per-cpu: to be shared between the various events on a single PMU
3042  * per-core: per-cpu + shared by HT threads
3043  */
3044 static struct event_constraint *
3045 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
3046 				   struct perf_event *event,
3047 				   struct hw_perf_event_extra *reg)
3048 {
3049 	struct event_constraint *c = &emptyconstraint;
3050 	struct er_account *era;
3051 	unsigned long flags;
3052 	int idx = reg->idx;
3053 
3054 	/*
3055 	 * reg->alloc can be set due to existing state, so for fake cpuc we
3056 	 * need to ignore this, otherwise we might fail to allocate proper fake
3057 	 * state for this extra reg constraint. Also see the comment below.
3058 	 */
3059 	if (reg->alloc && !cpuc->is_fake)
3060 		return NULL; /* call x86_get_event_constraint() */
3061 
3062 again:
3063 	era = &cpuc->shared_regs->regs[idx];
3064 	/*
3065 	 * we use spin_lock_irqsave() to avoid lockdep issues when
3066 	 * passing a fake cpuc
3067 	 */
3068 	raw_spin_lock_irqsave(&era->lock, flags);
3069 
3070 	if (!atomic_read(&era->ref) || era->config == reg->config) {
3071 
3072 		/*
3073 		 * If its a fake cpuc -- as per validate_{group,event}() we
3074 		 * shouldn't touch event state and we can avoid doing so
3075 		 * since both will only call get_event_constraints() once
3076 		 * on each event, this avoids the need for reg->alloc.
3077 		 *
3078 		 * Not doing the ER fixup will only result in era->reg being
3079 		 * wrong, but since we won't actually try and program hardware
3080 		 * this isn't a problem either.
3081 		 */
3082 		if (!cpuc->is_fake) {
3083 			if (idx != reg->idx)
3084 				intel_fixup_er(event, idx);
3085 
3086 			/*
3087 			 * x86_schedule_events() can call get_event_constraints()
3088 			 * multiple times on events in the case of incremental
3089 			 * scheduling(). reg->alloc ensures we only do the ER
3090 			 * allocation once.
3091 			 */
3092 			reg->alloc = 1;
3093 		}
3094 
3095 		/* lock in msr value */
3096 		era->config = reg->config;
3097 		era->reg = reg->reg;
3098 
3099 		/* one more user */
3100 		atomic_inc(&era->ref);
3101 
3102 		/*
3103 		 * need to call x86_get_event_constraint()
3104 		 * to check if associated event has constraints
3105 		 */
3106 		c = NULL;
3107 	} else {
3108 		idx = intel_alt_er(cpuc, idx, reg->config);
3109 		if (idx != reg->idx) {
3110 			raw_spin_unlock_irqrestore(&era->lock, flags);
3111 			goto again;
3112 		}
3113 	}
3114 	raw_spin_unlock_irqrestore(&era->lock, flags);
3115 
3116 	return c;
3117 }
3118 
3119 static void
3120 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
3121 				   struct hw_perf_event_extra *reg)
3122 {
3123 	struct er_account *era;
3124 
3125 	/*
3126 	 * Only put constraint if extra reg was actually allocated. Also takes
3127 	 * care of event which do not use an extra shared reg.
3128 	 *
3129 	 * Also, if this is a fake cpuc we shouldn't touch any event state
3130 	 * (reg->alloc) and we don't care about leaving inconsistent cpuc state
3131 	 * either since it'll be thrown out.
3132 	 */
3133 	if (!reg->alloc || cpuc->is_fake)
3134 		return;
3135 
3136 	era = &cpuc->shared_regs->regs[reg->idx];
3137 
3138 	/* one fewer user */
3139 	atomic_dec(&era->ref);
3140 
3141 	/* allocate again next time */
3142 	reg->alloc = 0;
3143 }
3144 
3145 static struct event_constraint *
3146 intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
3147 			      struct perf_event *event)
3148 {
3149 	struct event_constraint *c = NULL, *d;
3150 	struct hw_perf_event_extra *xreg, *breg;
3151 
3152 	xreg = &event->hw.extra_reg;
3153 	if (xreg->idx != EXTRA_REG_NONE) {
3154 		c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
3155 		if (c == &emptyconstraint)
3156 			return c;
3157 	}
3158 	breg = &event->hw.branch_reg;
3159 	if (breg->idx != EXTRA_REG_NONE) {
3160 		d = __intel_shared_reg_get_constraints(cpuc, event, breg);
3161 		if (d == &emptyconstraint) {
3162 			__intel_shared_reg_put_constraints(cpuc, xreg);
3163 			c = d;
3164 		}
3165 	}
3166 	return c;
3167 }
3168 
3169 struct event_constraint *
3170 x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3171 			  struct perf_event *event)
3172 {
3173 	struct event_constraint *event_constraints = hybrid(cpuc->pmu, event_constraints);
3174 	struct event_constraint *c;
3175 
3176 	if (event_constraints) {
3177 		for_each_event_constraint(c, event_constraints) {
3178 			if (constraint_match(c, event->hw.config)) {
3179 				event->hw.flags |= c->flags;
3180 				return c;
3181 			}
3182 		}
3183 	}
3184 
3185 	return &hybrid_var(cpuc->pmu, unconstrained);
3186 }
3187 
3188 static struct event_constraint *
3189 __intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3190 			    struct perf_event *event)
3191 {
3192 	struct event_constraint *c;
3193 
3194 	c = intel_vlbr_constraints(event);
3195 	if (c)
3196 		return c;
3197 
3198 	c = intel_bts_constraints(event);
3199 	if (c)
3200 		return c;
3201 
3202 	c = intel_shared_regs_constraints(cpuc, event);
3203 	if (c)
3204 		return c;
3205 
3206 	c = intel_pebs_constraints(event);
3207 	if (c)
3208 		return c;
3209 
3210 	return x86_get_event_constraints(cpuc, idx, event);
3211 }
3212 
3213 static void
3214 intel_start_scheduling(struct cpu_hw_events *cpuc)
3215 {
3216 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3217 	struct intel_excl_states *xl;
3218 	int tid = cpuc->excl_thread_id;
3219 
3220 	/*
3221 	 * nothing needed if in group validation mode
3222 	 */
3223 	if (cpuc->is_fake || !is_ht_workaround_enabled())
3224 		return;
3225 
3226 	/*
3227 	 * no exclusion needed
3228 	 */
3229 	if (WARN_ON_ONCE(!excl_cntrs))
3230 		return;
3231 
3232 	xl = &excl_cntrs->states[tid];
3233 
3234 	xl->sched_started = true;
3235 	/*
3236 	 * lock shared state until we are done scheduling
3237 	 * in stop_event_scheduling()
3238 	 * makes scheduling appear as a transaction
3239 	 */
3240 	raw_spin_lock(&excl_cntrs->lock);
3241 }
3242 
3243 static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
3244 {
3245 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3246 	struct event_constraint *c = cpuc->event_constraint[idx];
3247 	struct intel_excl_states *xl;
3248 	int tid = cpuc->excl_thread_id;
3249 
3250 	if (cpuc->is_fake || !is_ht_workaround_enabled())
3251 		return;
3252 
3253 	if (WARN_ON_ONCE(!excl_cntrs))
3254 		return;
3255 
3256 	if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
3257 		return;
3258 
3259 	xl = &excl_cntrs->states[tid];
3260 
3261 	lockdep_assert_held(&excl_cntrs->lock);
3262 
3263 	if (c->flags & PERF_X86_EVENT_EXCL)
3264 		xl->state[cntr] = INTEL_EXCL_EXCLUSIVE;
3265 	else
3266 		xl->state[cntr] = INTEL_EXCL_SHARED;
3267 }
3268 
3269 static void
3270 intel_stop_scheduling(struct cpu_hw_events *cpuc)
3271 {
3272 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3273 	struct intel_excl_states *xl;
3274 	int tid = cpuc->excl_thread_id;
3275 
3276 	/*
3277 	 * nothing needed if in group validation mode
3278 	 */
3279 	if (cpuc->is_fake || !is_ht_workaround_enabled())
3280 		return;
3281 	/*
3282 	 * no exclusion needed
3283 	 */
3284 	if (WARN_ON_ONCE(!excl_cntrs))
3285 		return;
3286 
3287 	xl = &excl_cntrs->states[tid];
3288 
3289 	xl->sched_started = false;
3290 	/*
3291 	 * release shared state lock (acquired in intel_start_scheduling())
3292 	 */
3293 	raw_spin_unlock(&excl_cntrs->lock);
3294 }
3295 
3296 static struct event_constraint *
3297 dyn_constraint(struct cpu_hw_events *cpuc, struct event_constraint *c, int idx)
3298 {
3299 	WARN_ON_ONCE(!cpuc->constraint_list);
3300 
3301 	if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
3302 		struct event_constraint *cx;
3303 
3304 		/*
3305 		 * grab pre-allocated constraint entry
3306 		 */
3307 		cx = &cpuc->constraint_list[idx];
3308 
3309 		/*
3310 		 * initialize dynamic constraint
3311 		 * with static constraint
3312 		 */
3313 		*cx = *c;
3314 
3315 		/*
3316 		 * mark constraint as dynamic
3317 		 */
3318 		cx->flags |= PERF_X86_EVENT_DYNAMIC;
3319 		c = cx;
3320 	}
3321 
3322 	return c;
3323 }
3324 
3325 static struct event_constraint *
3326 intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
3327 			   int idx, struct event_constraint *c)
3328 {
3329 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3330 	struct intel_excl_states *xlo;
3331 	int tid = cpuc->excl_thread_id;
3332 	int is_excl, i, w;
3333 
3334 	/*
3335 	 * validating a group does not require
3336 	 * enforcing cross-thread  exclusion
3337 	 */
3338 	if (cpuc->is_fake || !is_ht_workaround_enabled())
3339 		return c;
3340 
3341 	/*
3342 	 * no exclusion needed
3343 	 */
3344 	if (WARN_ON_ONCE(!excl_cntrs))
3345 		return c;
3346 
3347 	/*
3348 	 * because we modify the constraint, we need
3349 	 * to make a copy. Static constraints come
3350 	 * from static const tables.
3351 	 *
3352 	 * only needed when constraint has not yet
3353 	 * been cloned (marked dynamic)
3354 	 */
3355 	c = dyn_constraint(cpuc, c, idx);
3356 
3357 	/*
3358 	 * From here on, the constraint is dynamic.
3359 	 * Either it was just allocated above, or it
3360 	 * was allocated during a earlier invocation
3361 	 * of this function
3362 	 */
3363 
3364 	/*
3365 	 * state of sibling HT
3366 	 */
3367 	xlo = &excl_cntrs->states[tid ^ 1];
3368 
3369 	/*
3370 	 * event requires exclusive counter access
3371 	 * across HT threads
3372 	 */
3373 	is_excl = c->flags & PERF_X86_EVENT_EXCL;
3374 	if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) {
3375 		event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT;
3376 		if (!cpuc->n_excl++)
3377 			WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1);
3378 	}
3379 
3380 	/*
3381 	 * Modify static constraint with current dynamic
3382 	 * state of thread
3383 	 *
3384 	 * EXCLUSIVE: sibling counter measuring exclusive event
3385 	 * SHARED   : sibling counter measuring non-exclusive event
3386 	 * UNUSED   : sibling counter unused
3387 	 */
3388 	w = c->weight;
3389 	for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) {
3390 		/*
3391 		 * exclusive event in sibling counter
3392 		 * our corresponding counter cannot be used
3393 		 * regardless of our event
3394 		 */
3395 		if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE) {
3396 			__clear_bit(i, c->idxmsk);
3397 			w--;
3398 			continue;
3399 		}
3400 		/*
3401 		 * if measuring an exclusive event, sibling
3402 		 * measuring non-exclusive, then counter cannot
3403 		 * be used
3404 		 */
3405 		if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED) {
3406 			__clear_bit(i, c->idxmsk);
3407 			w--;
3408 			continue;
3409 		}
3410 	}
3411 
3412 	/*
3413 	 * if we return an empty mask, then switch
3414 	 * back to static empty constraint to avoid
3415 	 * the cost of freeing later on
3416 	 */
3417 	if (!w)
3418 		c = &emptyconstraint;
3419 
3420 	c->weight = w;
3421 
3422 	return c;
3423 }
3424 
3425 static struct event_constraint *
3426 intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3427 			    struct perf_event *event)
3428 {
3429 	struct event_constraint *c1, *c2;
3430 
3431 	c1 = cpuc->event_constraint[idx];
3432 
3433 	/*
3434 	 * first time only
3435 	 * - static constraint: no change across incremental scheduling calls
3436 	 * - dynamic constraint: handled by intel_get_excl_constraints()
3437 	 */
3438 	c2 = __intel_get_event_constraints(cpuc, idx, event);
3439 	if (c1) {
3440 	        WARN_ON_ONCE(!(c1->flags & PERF_X86_EVENT_DYNAMIC));
3441 		bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
3442 		c1->weight = c2->weight;
3443 		c2 = c1;
3444 	}
3445 
3446 	if (cpuc->excl_cntrs)
3447 		return intel_get_excl_constraints(cpuc, event, idx, c2);
3448 
3449 	return c2;
3450 }
3451 
3452 static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
3453 		struct perf_event *event)
3454 {
3455 	struct hw_perf_event *hwc = &event->hw;
3456 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3457 	int tid = cpuc->excl_thread_id;
3458 	struct intel_excl_states *xl;
3459 
3460 	/*
3461 	 * nothing needed if in group validation mode
3462 	 */
3463 	if (cpuc->is_fake)
3464 		return;
3465 
3466 	if (WARN_ON_ONCE(!excl_cntrs))
3467 		return;
3468 
3469 	if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) {
3470 		hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT;
3471 		if (!--cpuc->n_excl)
3472 			WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0);
3473 	}
3474 
3475 	/*
3476 	 * If event was actually assigned, then mark the counter state as
3477 	 * unused now.
3478 	 */
3479 	if (hwc->idx >= 0) {
3480 		xl = &excl_cntrs->states[tid];
3481 
3482 		/*
3483 		 * put_constraint may be called from x86_schedule_events()
3484 		 * which already has the lock held so here make locking
3485 		 * conditional.
3486 		 */
3487 		if (!xl->sched_started)
3488 			raw_spin_lock(&excl_cntrs->lock);
3489 
3490 		xl->state[hwc->idx] = INTEL_EXCL_UNUSED;
3491 
3492 		if (!xl->sched_started)
3493 			raw_spin_unlock(&excl_cntrs->lock);
3494 	}
3495 }
3496 
3497 static void
3498 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
3499 					struct perf_event *event)
3500 {
3501 	struct hw_perf_event_extra *reg;
3502 
3503 	reg = &event->hw.extra_reg;
3504 	if (reg->idx != EXTRA_REG_NONE)
3505 		__intel_shared_reg_put_constraints(cpuc, reg);
3506 
3507 	reg = &event->hw.branch_reg;
3508 	if (reg->idx != EXTRA_REG_NONE)
3509 		__intel_shared_reg_put_constraints(cpuc, reg);
3510 }
3511 
3512 static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
3513 					struct perf_event *event)
3514 {
3515 	intel_put_shared_regs_event_constraints(cpuc, event);
3516 
3517 	/*
3518 	 * is PMU has exclusive counter restrictions, then
3519 	 * all events are subject to and must call the
3520 	 * put_excl_constraints() routine
3521 	 */
3522 	if (cpuc->excl_cntrs)
3523 		intel_put_excl_constraints(cpuc, event);
3524 }
3525 
3526 static void intel_pebs_aliases_core2(struct perf_event *event)
3527 {
3528 	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3529 		/*
3530 		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3531 		 * (0x003c) so that we can use it with PEBS.
3532 		 *
3533 		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3534 		 * PEBS capable. However we can use INST_RETIRED.ANY_P
3535 		 * (0x00c0), which is a PEBS capable event, to get the same
3536 		 * count.
3537 		 *
3538 		 * INST_RETIRED.ANY_P counts the number of cycles that retires
3539 		 * CNTMASK instructions. By setting CNTMASK to a value (16)
3540 		 * larger than the maximum number of instructions that can be
3541 		 * retired per cycle (4) and then inverting the condition, we
3542 		 * count all cycles that retire 16 or less instructions, which
3543 		 * is every cycle.
3544 		 *
3545 		 * Thereby we gain a PEBS capable cycle counter.
3546 		 */
3547 		u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
3548 
3549 		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3550 		event->hw.config = alt_config;
3551 	}
3552 }
3553 
3554 static void intel_pebs_aliases_snb(struct perf_event *event)
3555 {
3556 	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3557 		/*
3558 		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3559 		 * (0x003c) so that we can use it with PEBS.
3560 		 *
3561 		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3562 		 * PEBS capable. However we can use UOPS_RETIRED.ALL
3563 		 * (0x01c2), which is a PEBS capable event, to get the same
3564 		 * count.
3565 		 *
3566 		 * UOPS_RETIRED.ALL counts the number of cycles that retires
3567 		 * CNTMASK micro-ops. By setting CNTMASK to a value (16)
3568 		 * larger than the maximum number of micro-ops that can be
3569 		 * retired per cycle (4) and then inverting the condition, we
3570 		 * count all cycles that retire 16 or less micro-ops, which
3571 		 * is every cycle.
3572 		 *
3573 		 * Thereby we gain a PEBS capable cycle counter.
3574 		 */
3575 		u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
3576 
3577 		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3578 		event->hw.config = alt_config;
3579 	}
3580 }
3581 
3582 static void intel_pebs_aliases_precdist(struct perf_event *event)
3583 {
3584 	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3585 		/*
3586 		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3587 		 * (0x003c) so that we can use it with PEBS.
3588 		 *
3589 		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3590 		 * PEBS capable. However we can use INST_RETIRED.PREC_DIST
3591 		 * (0x01c0), which is a PEBS capable event, to get the same
3592 		 * count.
3593 		 *
3594 		 * The PREC_DIST event has special support to minimize sample
3595 		 * shadowing effects. One drawback is that it can be
3596 		 * only programmed on counter 1, but that seems like an
3597 		 * acceptable trade off.
3598 		 */
3599 		u64 alt_config = X86_CONFIG(.event=0xc0, .umask=0x01, .inv=1, .cmask=16);
3600 
3601 		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3602 		event->hw.config = alt_config;
3603 	}
3604 }
3605 
3606 static void intel_pebs_aliases_ivb(struct perf_event *event)
3607 {
3608 	if (event->attr.precise_ip < 3)
3609 		return intel_pebs_aliases_snb(event);
3610 	return intel_pebs_aliases_precdist(event);
3611 }
3612 
3613 static void intel_pebs_aliases_skl(struct perf_event *event)
3614 {
3615 	if (event->attr.precise_ip < 3)
3616 		return intel_pebs_aliases_core2(event);
3617 	return intel_pebs_aliases_precdist(event);
3618 }
3619 
3620 static unsigned long intel_pmu_large_pebs_flags(struct perf_event *event)
3621 {
3622 	unsigned long flags = x86_pmu.large_pebs_flags;
3623 
3624 	if (event->attr.use_clockid)
3625 		flags &= ~PERF_SAMPLE_TIME;
3626 	if (!event->attr.exclude_kernel)
3627 		flags &= ~PERF_SAMPLE_REGS_USER;
3628 	if (event->attr.sample_regs_user & ~PEBS_GP_REGS)
3629 		flags &= ~(PERF_SAMPLE_REGS_USER | PERF_SAMPLE_REGS_INTR);
3630 	return flags;
3631 }
3632 
3633 static int intel_pmu_bts_config(struct perf_event *event)
3634 {
3635 	struct perf_event_attr *attr = &event->attr;
3636 
3637 	if (unlikely(intel_pmu_has_bts(event))) {
3638 		/* BTS is not supported by this architecture. */
3639 		if (!x86_pmu.bts_active)
3640 			return -EOPNOTSUPP;
3641 
3642 		/* BTS is currently only allowed for user-mode. */
3643 		if (!attr->exclude_kernel)
3644 			return -EOPNOTSUPP;
3645 
3646 		/* BTS is not allowed for precise events. */
3647 		if (attr->precise_ip)
3648 			return -EOPNOTSUPP;
3649 
3650 		/* disallow bts if conflicting events are present */
3651 		if (x86_add_exclusive(x86_lbr_exclusive_lbr))
3652 			return -EBUSY;
3653 
3654 		event->destroy = hw_perf_lbr_event_destroy;
3655 	}
3656 
3657 	return 0;
3658 }
3659 
3660 static int core_pmu_hw_config(struct perf_event *event)
3661 {
3662 	int ret = x86_pmu_hw_config(event);
3663 
3664 	if (ret)
3665 		return ret;
3666 
3667 	return intel_pmu_bts_config(event);
3668 }
3669 
3670 #define INTEL_TD_METRIC_AVAILABLE_MAX	(INTEL_TD_METRIC_RETIRING + \
3671 					 ((x86_pmu.num_topdown_events - 1) << 8))
3672 
3673 static bool is_available_metric_event(struct perf_event *event)
3674 {
3675 	return is_metric_event(event) &&
3676 		event->attr.config <= INTEL_TD_METRIC_AVAILABLE_MAX;
3677 }
3678 
3679 static inline bool is_mem_loads_event(struct perf_event *event)
3680 {
3681 	return (event->attr.config & INTEL_ARCH_EVENT_MASK) == X86_CONFIG(.event=0xcd, .umask=0x01);
3682 }
3683 
3684 static inline bool is_mem_loads_aux_event(struct perf_event *event)
3685 {
3686 	return (event->attr.config & INTEL_ARCH_EVENT_MASK) == X86_CONFIG(.event=0x03, .umask=0x82);
3687 }
3688 
3689 static inline bool require_mem_loads_aux_event(struct perf_event *event)
3690 {
3691 	if (!(x86_pmu.flags & PMU_FL_MEM_LOADS_AUX))
3692 		return false;
3693 
3694 	if (is_hybrid())
3695 		return hybrid_pmu(event->pmu)->cpu_type == hybrid_big;
3696 
3697 	return true;
3698 }
3699 
3700 static inline bool intel_pmu_has_cap(struct perf_event *event, int idx)
3701 {
3702 	union perf_capabilities *intel_cap = &hybrid(event->pmu, intel_cap);
3703 
3704 	return test_bit(idx, (unsigned long *)&intel_cap->capabilities);
3705 }
3706 
3707 static int intel_pmu_hw_config(struct perf_event *event)
3708 {
3709 	int ret = x86_pmu_hw_config(event);
3710 
3711 	if (ret)
3712 		return ret;
3713 
3714 	ret = intel_pmu_bts_config(event);
3715 	if (ret)
3716 		return ret;
3717 
3718 	if (event->attr.precise_ip) {
3719 		if ((event->attr.config & INTEL_ARCH_EVENT_MASK) == INTEL_FIXED_VLBR_EVENT)
3720 			return -EINVAL;
3721 
3722 		if (!(event->attr.freq || (event->attr.wakeup_events && !event->attr.watermark))) {
3723 			event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD;
3724 			if (!(event->attr.sample_type &
3725 			      ~intel_pmu_large_pebs_flags(event))) {
3726 				event->hw.flags |= PERF_X86_EVENT_LARGE_PEBS;
3727 				event->attach_state |= PERF_ATTACH_SCHED_CB;
3728 			}
3729 		}
3730 		if (x86_pmu.pebs_aliases)
3731 			x86_pmu.pebs_aliases(event);
3732 
3733 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3734 			event->attr.sample_type |= __PERF_SAMPLE_CALLCHAIN_EARLY;
3735 	}
3736 
3737 	if (needs_branch_stack(event)) {
3738 		ret = intel_pmu_setup_lbr_filter(event);
3739 		if (ret)
3740 			return ret;
3741 		event->attach_state |= PERF_ATTACH_SCHED_CB;
3742 
3743 		/*
3744 		 * BTS is set up earlier in this path, so don't account twice
3745 		 */
3746 		if (!unlikely(intel_pmu_has_bts(event))) {
3747 			/* disallow lbr if conflicting events are present */
3748 			if (x86_add_exclusive(x86_lbr_exclusive_lbr))
3749 				return -EBUSY;
3750 
3751 			event->destroy = hw_perf_lbr_event_destroy;
3752 		}
3753 	}
3754 
3755 	if (event->attr.aux_output) {
3756 		if (!event->attr.precise_ip)
3757 			return -EINVAL;
3758 
3759 		event->hw.flags |= PERF_X86_EVENT_PEBS_VIA_PT;
3760 	}
3761 
3762 	if ((event->attr.type == PERF_TYPE_HARDWARE) ||
3763 	    (event->attr.type == PERF_TYPE_HW_CACHE))
3764 		return 0;
3765 
3766 	/*
3767 	 * Config Topdown slots and metric events
3768 	 *
3769 	 * The slots event on Fixed Counter 3 can support sampling,
3770 	 * which will be handled normally in x86_perf_event_update().
3771 	 *
3772 	 * Metric events don't support sampling and require being paired
3773 	 * with a slots event as group leader. When the slots event
3774 	 * is used in a metrics group, it too cannot support sampling.
3775 	 */
3776 	if (intel_pmu_has_cap(event, PERF_CAP_METRICS_IDX) && is_topdown_event(event)) {
3777 		if (event->attr.config1 || event->attr.config2)
3778 			return -EINVAL;
3779 
3780 		/*
3781 		 * The TopDown metrics events and slots event don't
3782 		 * support any filters.
3783 		 */
3784 		if (event->attr.config & X86_ALL_EVENT_FLAGS)
3785 			return -EINVAL;
3786 
3787 		if (is_available_metric_event(event)) {
3788 			struct perf_event *leader = event->group_leader;
3789 
3790 			/* The metric events don't support sampling. */
3791 			if (is_sampling_event(event))
3792 				return -EINVAL;
3793 
3794 			/* The metric events require a slots group leader. */
3795 			if (!is_slots_event(leader))
3796 				return -EINVAL;
3797 
3798 			/*
3799 			 * The leader/SLOTS must not be a sampling event for
3800 			 * metric use; hardware requires it starts at 0 when used
3801 			 * in conjunction with MSR_PERF_METRICS.
3802 			 */
3803 			if (is_sampling_event(leader))
3804 				return -EINVAL;
3805 
3806 			event->event_caps |= PERF_EV_CAP_SIBLING;
3807 			/*
3808 			 * Only once we have a METRICs sibling do we
3809 			 * need TopDown magic.
3810 			 */
3811 			leader->hw.flags |= PERF_X86_EVENT_TOPDOWN;
3812 			event->hw.flags  |= PERF_X86_EVENT_TOPDOWN;
3813 		}
3814 	}
3815 
3816 	/*
3817 	 * The load latency event X86_CONFIG(.event=0xcd, .umask=0x01) on SPR
3818 	 * doesn't function quite right. As a work-around it needs to always be
3819 	 * co-scheduled with a auxiliary event X86_CONFIG(.event=0x03, .umask=0x82).
3820 	 * The actual count of this second event is irrelevant it just needs
3821 	 * to be active to make the first event function correctly.
3822 	 *
3823 	 * In a group, the auxiliary event must be in front of the load latency
3824 	 * event. The rule is to simplify the implementation of the check.
3825 	 * That's because perf cannot have a complete group at the moment.
3826 	 */
3827 	if (require_mem_loads_aux_event(event) &&
3828 	    (event->attr.sample_type & PERF_SAMPLE_DATA_SRC) &&
3829 	    is_mem_loads_event(event)) {
3830 		struct perf_event *leader = event->group_leader;
3831 		struct perf_event *sibling = NULL;
3832 
3833 		if (!is_mem_loads_aux_event(leader)) {
3834 			for_each_sibling_event(sibling, leader) {
3835 				if (is_mem_loads_aux_event(sibling))
3836 					break;
3837 			}
3838 			if (list_entry_is_head(sibling, &leader->sibling_list, sibling_list))
3839 				return -ENODATA;
3840 		}
3841 	}
3842 
3843 	if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
3844 		return 0;
3845 
3846 	if (x86_pmu.version < 3)
3847 		return -EINVAL;
3848 
3849 	ret = perf_allow_cpu(&event->attr);
3850 	if (ret)
3851 		return ret;
3852 
3853 	event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
3854 
3855 	return 0;
3856 }
3857 
3858 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
3859 {
3860 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3861 	struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
3862 	u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
3863 
3864 	arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
3865 	arr[0].host = intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
3866 	arr[0].guest = intel_ctrl & ~cpuc->intel_ctrl_host_mask;
3867 	if (x86_pmu.flags & PMU_FL_PEBS_ALL)
3868 		arr[0].guest &= ~cpuc->pebs_enabled;
3869 	else
3870 		arr[0].guest &= ~(cpuc->pebs_enabled & PEBS_COUNTER_MASK);
3871 	*nr = 1;
3872 
3873 	if (x86_pmu.pebs && x86_pmu.pebs_no_isolation) {
3874 		/*
3875 		 * If PMU counter has PEBS enabled it is not enough to
3876 		 * disable counter on a guest entry since PEBS memory
3877 		 * write can overshoot guest entry and corrupt guest
3878 		 * memory. Disabling PEBS solves the problem.
3879 		 *
3880 		 * Don't do this if the CPU already enforces it.
3881 		 */
3882 		arr[1].msr = MSR_IA32_PEBS_ENABLE;
3883 		arr[1].host = cpuc->pebs_enabled;
3884 		arr[1].guest = 0;
3885 		*nr = 2;
3886 	}
3887 
3888 	return arr;
3889 }
3890 
3891 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
3892 {
3893 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3894 	struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
3895 	int idx;
3896 
3897 	for (idx = 0; idx < x86_pmu.num_counters; idx++)  {
3898 		struct perf_event *event = cpuc->events[idx];
3899 
3900 		arr[idx].msr = x86_pmu_config_addr(idx);
3901 		arr[idx].host = arr[idx].guest = 0;
3902 
3903 		if (!test_bit(idx, cpuc->active_mask))
3904 			continue;
3905 
3906 		arr[idx].host = arr[idx].guest =
3907 			event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
3908 
3909 		if (event->attr.exclude_host)
3910 			arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
3911 		else if (event->attr.exclude_guest)
3912 			arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
3913 	}
3914 
3915 	*nr = x86_pmu.num_counters;
3916 	return arr;
3917 }
3918 
3919 static void core_pmu_enable_event(struct perf_event *event)
3920 {
3921 	if (!event->attr.exclude_host)
3922 		x86_pmu_enable_event(event);
3923 }
3924 
3925 static void core_pmu_enable_all(int added)
3926 {
3927 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3928 	int idx;
3929 
3930 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
3931 		struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
3932 
3933 		if (!test_bit(idx, cpuc->active_mask) ||
3934 				cpuc->events[idx]->attr.exclude_host)
3935 			continue;
3936 
3937 		__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
3938 	}
3939 }
3940 
3941 static int hsw_hw_config(struct perf_event *event)
3942 {
3943 	int ret = intel_pmu_hw_config(event);
3944 
3945 	if (ret)
3946 		return ret;
3947 	if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
3948 		return 0;
3949 	event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
3950 
3951 	/*
3952 	 * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
3953 	 * PEBS or in ANY thread mode. Since the results are non-sensical forbid
3954 	 * this combination.
3955 	 */
3956 	if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
3957 	     ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
3958 	      event->attr.precise_ip > 0))
3959 		return -EOPNOTSUPP;
3960 
3961 	if (event_is_checkpointed(event)) {
3962 		/*
3963 		 * Sampling of checkpointed events can cause situations where
3964 		 * the CPU constantly aborts because of a overflow, which is
3965 		 * then checkpointed back and ignored. Forbid checkpointing
3966 		 * for sampling.
3967 		 *
3968 		 * But still allow a long sampling period, so that perf stat
3969 		 * from KVM works.
3970 		 */
3971 		if (event->attr.sample_period > 0 &&
3972 		    event->attr.sample_period < 0x7fffffff)
3973 			return -EOPNOTSUPP;
3974 	}
3975 	return 0;
3976 }
3977 
3978 static struct event_constraint counter0_constraint =
3979 			INTEL_ALL_EVENT_CONSTRAINT(0, 0x1);
3980 
3981 static struct event_constraint counter2_constraint =
3982 			EVENT_CONSTRAINT(0, 0x4, 0);
3983 
3984 static struct event_constraint fixed0_constraint =
3985 			FIXED_EVENT_CONSTRAINT(0x00c0, 0);
3986 
3987 static struct event_constraint fixed0_counter0_constraint =
3988 			INTEL_ALL_EVENT_CONSTRAINT(0, 0x100000001ULL);
3989 
3990 static struct event_constraint *
3991 hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3992 			  struct perf_event *event)
3993 {
3994 	struct event_constraint *c;
3995 
3996 	c = intel_get_event_constraints(cpuc, idx, event);
3997 
3998 	/* Handle special quirk on in_tx_checkpointed only in counter 2 */
3999 	if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
4000 		if (c->idxmsk64 & (1U << 2))
4001 			return &counter2_constraint;
4002 		return &emptyconstraint;
4003 	}
4004 
4005 	return c;
4006 }
4007 
4008 static struct event_constraint *
4009 icl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4010 			  struct perf_event *event)
4011 {
4012 	/*
4013 	 * Fixed counter 0 has less skid.
4014 	 * Force instruction:ppp in Fixed counter 0
4015 	 */
4016 	if ((event->attr.precise_ip == 3) &&
4017 	    constraint_match(&fixed0_constraint, event->hw.config))
4018 		return &fixed0_constraint;
4019 
4020 	return hsw_get_event_constraints(cpuc, idx, event);
4021 }
4022 
4023 static struct event_constraint *
4024 spr_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4025 			  struct perf_event *event)
4026 {
4027 	struct event_constraint *c;
4028 
4029 	c = icl_get_event_constraints(cpuc, idx, event);
4030 
4031 	/*
4032 	 * The :ppp indicates the Precise Distribution (PDist) facility, which
4033 	 * is only supported on the GP counter 0. If a :ppp event which is not
4034 	 * available on the GP counter 0, error out.
4035 	 * Exception: Instruction PDIR is only available on the fixed counter 0.
4036 	 */
4037 	if ((event->attr.precise_ip == 3) &&
4038 	    !constraint_match(&fixed0_constraint, event->hw.config)) {
4039 		if (c->idxmsk64 & BIT_ULL(0))
4040 			return &counter0_constraint;
4041 
4042 		return &emptyconstraint;
4043 	}
4044 
4045 	return c;
4046 }
4047 
4048 static struct event_constraint *
4049 glp_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4050 			  struct perf_event *event)
4051 {
4052 	struct event_constraint *c;
4053 
4054 	/* :ppp means to do reduced skid PEBS which is PMC0 only. */
4055 	if (event->attr.precise_ip == 3)
4056 		return &counter0_constraint;
4057 
4058 	c = intel_get_event_constraints(cpuc, idx, event);
4059 
4060 	return c;
4061 }
4062 
4063 static struct event_constraint *
4064 tnt_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4065 			  struct perf_event *event)
4066 {
4067 	struct event_constraint *c;
4068 
4069 	/*
4070 	 * :ppp means to do reduced skid PEBS,
4071 	 * which is available on PMC0 and fixed counter 0.
4072 	 */
4073 	if (event->attr.precise_ip == 3) {
4074 		/* Force instruction:ppp on PMC0 and Fixed counter 0 */
4075 		if (constraint_match(&fixed0_constraint, event->hw.config))
4076 			return &fixed0_counter0_constraint;
4077 
4078 		return &counter0_constraint;
4079 	}
4080 
4081 	c = intel_get_event_constraints(cpuc, idx, event);
4082 
4083 	return c;
4084 }
4085 
4086 static bool allow_tsx_force_abort = true;
4087 
4088 static struct event_constraint *
4089 tfa_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4090 			  struct perf_event *event)
4091 {
4092 	struct event_constraint *c = hsw_get_event_constraints(cpuc, idx, event);
4093 
4094 	/*
4095 	 * Without TFA we must not use PMC3.
4096 	 */
4097 	if (!allow_tsx_force_abort && test_bit(3, c->idxmsk)) {
4098 		c = dyn_constraint(cpuc, c, idx);
4099 		c->idxmsk64 &= ~(1ULL << 3);
4100 		c->weight--;
4101 	}
4102 
4103 	return c;
4104 }
4105 
4106 static struct event_constraint *
4107 adl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4108 			  struct perf_event *event)
4109 {
4110 	struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
4111 
4112 	if (pmu->cpu_type == hybrid_big)
4113 		return spr_get_event_constraints(cpuc, idx, event);
4114 	else if (pmu->cpu_type == hybrid_small)
4115 		return tnt_get_event_constraints(cpuc, idx, event);
4116 
4117 	WARN_ON(1);
4118 	return &emptyconstraint;
4119 }
4120 
4121 static int adl_hw_config(struct perf_event *event)
4122 {
4123 	struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
4124 
4125 	if (pmu->cpu_type == hybrid_big)
4126 		return hsw_hw_config(event);
4127 	else if (pmu->cpu_type == hybrid_small)
4128 		return intel_pmu_hw_config(event);
4129 
4130 	WARN_ON(1);
4131 	return -EOPNOTSUPP;
4132 }
4133 
4134 static u8 adl_get_hybrid_cpu_type(void)
4135 {
4136 	return hybrid_big;
4137 }
4138 
4139 /*
4140  * Broadwell:
4141  *
4142  * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
4143  * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
4144  * the two to enforce a minimum period of 128 (the smallest value that has bits
4145  * 0-5 cleared and >= 100).
4146  *
4147  * Because of how the code in x86_perf_event_set_period() works, the truncation
4148  * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
4149  * to make up for the 'lost' events due to carrying the 'error' in period_left.
4150  *
4151  * Therefore the effective (average) period matches the requested period,
4152  * despite coarser hardware granularity.
4153  */
4154 static u64 bdw_limit_period(struct perf_event *event, u64 left)
4155 {
4156 	if ((event->hw.config & INTEL_ARCH_EVENT_MASK) ==
4157 			X86_CONFIG(.event=0xc0, .umask=0x01)) {
4158 		if (left < 128)
4159 			left = 128;
4160 		left &= ~0x3fULL;
4161 	}
4162 	return left;
4163 }
4164 
4165 static u64 nhm_limit_period(struct perf_event *event, u64 left)
4166 {
4167 	return max(left, 32ULL);
4168 }
4169 
4170 static u64 spr_limit_period(struct perf_event *event, u64 left)
4171 {
4172 	if (event->attr.precise_ip == 3)
4173 		return max(left, 128ULL);
4174 
4175 	return left;
4176 }
4177 
4178 PMU_FORMAT_ATTR(event,	"config:0-7"	);
4179 PMU_FORMAT_ATTR(umask,	"config:8-15"	);
4180 PMU_FORMAT_ATTR(edge,	"config:18"	);
4181 PMU_FORMAT_ATTR(pc,	"config:19"	);
4182 PMU_FORMAT_ATTR(any,	"config:21"	); /* v3 + */
4183 PMU_FORMAT_ATTR(inv,	"config:23"	);
4184 PMU_FORMAT_ATTR(cmask,	"config:24-31"	);
4185 PMU_FORMAT_ATTR(in_tx,  "config:32");
4186 PMU_FORMAT_ATTR(in_tx_cp, "config:33");
4187 
4188 static struct attribute *intel_arch_formats_attr[] = {
4189 	&format_attr_event.attr,
4190 	&format_attr_umask.attr,
4191 	&format_attr_edge.attr,
4192 	&format_attr_pc.attr,
4193 	&format_attr_inv.attr,
4194 	&format_attr_cmask.attr,
4195 	NULL,
4196 };
4197 
4198 ssize_t intel_event_sysfs_show(char *page, u64 config)
4199 {
4200 	u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
4201 
4202 	return x86_event_sysfs_show(page, config, event);
4203 }
4204 
4205 static struct intel_shared_regs *allocate_shared_regs(int cpu)
4206 {
4207 	struct intel_shared_regs *regs;
4208 	int i;
4209 
4210 	regs = kzalloc_node(sizeof(struct intel_shared_regs),
4211 			    GFP_KERNEL, cpu_to_node(cpu));
4212 	if (regs) {
4213 		/*
4214 		 * initialize the locks to keep lockdep happy
4215 		 */
4216 		for (i = 0; i < EXTRA_REG_MAX; i++)
4217 			raw_spin_lock_init(&regs->regs[i].lock);
4218 
4219 		regs->core_id = -1;
4220 	}
4221 	return regs;
4222 }
4223 
4224 static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
4225 {
4226 	struct intel_excl_cntrs *c;
4227 
4228 	c = kzalloc_node(sizeof(struct intel_excl_cntrs),
4229 			 GFP_KERNEL, cpu_to_node(cpu));
4230 	if (c) {
4231 		raw_spin_lock_init(&c->lock);
4232 		c->core_id = -1;
4233 	}
4234 	return c;
4235 }
4236 
4237 
4238 int intel_cpuc_prepare(struct cpu_hw_events *cpuc, int cpu)
4239 {
4240 	cpuc->pebs_record_size = x86_pmu.pebs_record_size;
4241 
4242 	if (is_hybrid() || x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
4243 		cpuc->shared_regs = allocate_shared_regs(cpu);
4244 		if (!cpuc->shared_regs)
4245 			goto err;
4246 	}
4247 
4248 	if (x86_pmu.flags & (PMU_FL_EXCL_CNTRS | PMU_FL_TFA)) {
4249 		size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);
4250 
4251 		cpuc->constraint_list = kzalloc_node(sz, GFP_KERNEL, cpu_to_node(cpu));
4252 		if (!cpuc->constraint_list)
4253 			goto err_shared_regs;
4254 	}
4255 
4256 	if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
4257 		cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
4258 		if (!cpuc->excl_cntrs)
4259 			goto err_constraint_list;
4260 
4261 		cpuc->excl_thread_id = 0;
4262 	}
4263 
4264 	return 0;
4265 
4266 err_constraint_list:
4267 	kfree(cpuc->constraint_list);
4268 	cpuc->constraint_list = NULL;
4269 
4270 err_shared_regs:
4271 	kfree(cpuc->shared_regs);
4272 	cpuc->shared_regs = NULL;
4273 
4274 err:
4275 	return -ENOMEM;
4276 }
4277 
4278 static int intel_pmu_cpu_prepare(int cpu)
4279 {
4280 	return intel_cpuc_prepare(&per_cpu(cpu_hw_events, cpu), cpu);
4281 }
4282 
4283 static void flip_smm_bit(void *data)
4284 {
4285 	unsigned long set = *(unsigned long *)data;
4286 
4287 	if (set > 0) {
4288 		msr_set_bit(MSR_IA32_DEBUGCTLMSR,
4289 			    DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
4290 	} else {
4291 		msr_clear_bit(MSR_IA32_DEBUGCTLMSR,
4292 			      DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
4293 	}
4294 }
4295 
4296 static bool init_hybrid_pmu(int cpu)
4297 {
4298 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
4299 	u8 cpu_type = get_this_hybrid_cpu_type();
4300 	struct x86_hybrid_pmu *pmu = NULL;
4301 	int i;
4302 
4303 	if (!cpu_type && x86_pmu.get_hybrid_cpu_type)
4304 		cpu_type = x86_pmu.get_hybrid_cpu_type();
4305 
4306 	for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
4307 		if (x86_pmu.hybrid_pmu[i].cpu_type == cpu_type) {
4308 			pmu = &x86_pmu.hybrid_pmu[i];
4309 			break;
4310 		}
4311 	}
4312 	if (WARN_ON_ONCE(!pmu || (pmu->pmu.type == -1))) {
4313 		cpuc->pmu = NULL;
4314 		return false;
4315 	}
4316 
4317 	/* Only check and dump the PMU information for the first CPU */
4318 	if (!cpumask_empty(&pmu->supported_cpus))
4319 		goto end;
4320 
4321 	if (!check_hw_exists(&pmu->pmu, pmu->num_counters, pmu->num_counters_fixed))
4322 		return false;
4323 
4324 	pr_info("%s PMU driver: ", pmu->name);
4325 
4326 	if (pmu->intel_cap.pebs_output_pt_available)
4327 		pr_cont("PEBS-via-PT ");
4328 
4329 	pr_cont("\n");
4330 
4331 	x86_pmu_show_pmu_cap(pmu->num_counters, pmu->num_counters_fixed,
4332 			     pmu->intel_ctrl);
4333 
4334 end:
4335 	cpumask_set_cpu(cpu, &pmu->supported_cpus);
4336 	cpuc->pmu = &pmu->pmu;
4337 
4338 	x86_pmu_update_cpu_context(&pmu->pmu, cpu);
4339 
4340 	return true;
4341 }
4342 
4343 static void intel_pmu_cpu_starting(int cpu)
4344 {
4345 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
4346 	int core_id = topology_core_id(cpu);
4347 	int i;
4348 
4349 	if (is_hybrid() && !init_hybrid_pmu(cpu))
4350 		return;
4351 
4352 	init_debug_store_on_cpu(cpu);
4353 	/*
4354 	 * Deal with CPUs that don't clear their LBRs on power-up.
4355 	 */
4356 	intel_pmu_lbr_reset();
4357 
4358 	cpuc->lbr_sel = NULL;
4359 
4360 	if (x86_pmu.flags & PMU_FL_TFA) {
4361 		WARN_ON_ONCE(cpuc->tfa_shadow);
4362 		cpuc->tfa_shadow = ~0ULL;
4363 		intel_set_tfa(cpuc, false);
4364 	}
4365 
4366 	if (x86_pmu.version > 1)
4367 		flip_smm_bit(&x86_pmu.attr_freeze_on_smi);
4368 
4369 	/*
4370 	 * Disable perf metrics if any added CPU doesn't support it.
4371 	 *
4372 	 * Turn off the check for a hybrid architecture, because the
4373 	 * architecture MSR, MSR_IA32_PERF_CAPABILITIES, only indicate
4374 	 * the architecture features. The perf metrics is a model-specific
4375 	 * feature for now. The corresponding bit should always be 0 on
4376 	 * a hybrid platform, e.g., Alder Lake.
4377 	 */
4378 	if (!is_hybrid() && x86_pmu.intel_cap.perf_metrics) {
4379 		union perf_capabilities perf_cap;
4380 
4381 		rdmsrl(MSR_IA32_PERF_CAPABILITIES, perf_cap.capabilities);
4382 		if (!perf_cap.perf_metrics) {
4383 			x86_pmu.intel_cap.perf_metrics = 0;
4384 			x86_pmu.intel_ctrl &= ~(1ULL << GLOBAL_CTRL_EN_PERF_METRICS);
4385 		}
4386 	}
4387 
4388 	if (!cpuc->shared_regs)
4389 		return;
4390 
4391 	if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
4392 		for_each_cpu(i, topology_sibling_cpumask(cpu)) {
4393 			struct intel_shared_regs *pc;
4394 
4395 			pc = per_cpu(cpu_hw_events, i).shared_regs;
4396 			if (pc && pc->core_id == core_id) {
4397 				cpuc->kfree_on_online[0] = cpuc->shared_regs;
4398 				cpuc->shared_regs = pc;
4399 				break;
4400 			}
4401 		}
4402 		cpuc->shared_regs->core_id = core_id;
4403 		cpuc->shared_regs->refcnt++;
4404 	}
4405 
4406 	if (x86_pmu.lbr_sel_map)
4407 		cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
4408 
4409 	if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
4410 		for_each_cpu(i, topology_sibling_cpumask(cpu)) {
4411 			struct cpu_hw_events *sibling;
4412 			struct intel_excl_cntrs *c;
4413 
4414 			sibling = &per_cpu(cpu_hw_events, i);
4415 			c = sibling->excl_cntrs;
4416 			if (c && c->core_id == core_id) {
4417 				cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
4418 				cpuc->excl_cntrs = c;
4419 				if (!sibling->excl_thread_id)
4420 					cpuc->excl_thread_id = 1;
4421 				break;
4422 			}
4423 		}
4424 		cpuc->excl_cntrs->core_id = core_id;
4425 		cpuc->excl_cntrs->refcnt++;
4426 	}
4427 }
4428 
4429 static void free_excl_cntrs(struct cpu_hw_events *cpuc)
4430 {
4431 	struct intel_excl_cntrs *c;
4432 
4433 	c = cpuc->excl_cntrs;
4434 	if (c) {
4435 		if (c->core_id == -1 || --c->refcnt == 0)
4436 			kfree(c);
4437 		cpuc->excl_cntrs = NULL;
4438 	}
4439 
4440 	kfree(cpuc->constraint_list);
4441 	cpuc->constraint_list = NULL;
4442 }
4443 
4444 static void intel_pmu_cpu_dying(int cpu)
4445 {
4446 	fini_debug_store_on_cpu(cpu);
4447 }
4448 
4449 void intel_cpuc_finish(struct cpu_hw_events *cpuc)
4450 {
4451 	struct intel_shared_regs *pc;
4452 
4453 	pc = cpuc->shared_regs;
4454 	if (pc) {
4455 		if (pc->core_id == -1 || --pc->refcnt == 0)
4456 			kfree(pc);
4457 		cpuc->shared_regs = NULL;
4458 	}
4459 
4460 	free_excl_cntrs(cpuc);
4461 }
4462 
4463 static void intel_pmu_cpu_dead(int cpu)
4464 {
4465 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
4466 
4467 	intel_cpuc_finish(cpuc);
4468 
4469 	if (is_hybrid() && cpuc->pmu)
4470 		cpumask_clear_cpu(cpu, &hybrid_pmu(cpuc->pmu)->supported_cpus);
4471 }
4472 
4473 static void intel_pmu_sched_task(struct perf_event_context *ctx,
4474 				 bool sched_in)
4475 {
4476 	intel_pmu_pebs_sched_task(ctx, sched_in);
4477 	intel_pmu_lbr_sched_task(ctx, sched_in);
4478 }
4479 
4480 static void intel_pmu_swap_task_ctx(struct perf_event_context *prev,
4481 				    struct perf_event_context *next)
4482 {
4483 	intel_pmu_lbr_swap_task_ctx(prev, next);
4484 }
4485 
4486 static int intel_pmu_check_period(struct perf_event *event, u64 value)
4487 {
4488 	return intel_pmu_has_bts_period(event, value) ? -EINVAL : 0;
4489 }
4490 
4491 static int intel_pmu_aux_output_match(struct perf_event *event)
4492 {
4493 	if (!x86_pmu.intel_cap.pebs_output_pt_available)
4494 		return 0;
4495 
4496 	return is_intel_pt_event(event);
4497 }
4498 
4499 static int intel_pmu_filter_match(struct perf_event *event)
4500 {
4501 	struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
4502 	unsigned int cpu = smp_processor_id();
4503 
4504 	return cpumask_test_cpu(cpu, &pmu->supported_cpus);
4505 }
4506 
4507 PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
4508 
4509 PMU_FORMAT_ATTR(ldlat, "config1:0-15");
4510 
4511 PMU_FORMAT_ATTR(frontend, "config1:0-23");
4512 
4513 static struct attribute *intel_arch3_formats_attr[] = {
4514 	&format_attr_event.attr,
4515 	&format_attr_umask.attr,
4516 	&format_attr_edge.attr,
4517 	&format_attr_pc.attr,
4518 	&format_attr_any.attr,
4519 	&format_attr_inv.attr,
4520 	&format_attr_cmask.attr,
4521 	NULL,
4522 };
4523 
4524 static struct attribute *hsw_format_attr[] = {
4525 	&format_attr_in_tx.attr,
4526 	&format_attr_in_tx_cp.attr,
4527 	&format_attr_offcore_rsp.attr,
4528 	&format_attr_ldlat.attr,
4529 	NULL
4530 };
4531 
4532 static struct attribute *nhm_format_attr[] = {
4533 	&format_attr_offcore_rsp.attr,
4534 	&format_attr_ldlat.attr,
4535 	NULL
4536 };
4537 
4538 static struct attribute *slm_format_attr[] = {
4539 	&format_attr_offcore_rsp.attr,
4540 	NULL
4541 };
4542 
4543 static struct attribute *skl_format_attr[] = {
4544 	&format_attr_frontend.attr,
4545 	NULL,
4546 };
4547 
4548 static __initconst const struct x86_pmu core_pmu = {
4549 	.name			= "core",
4550 	.handle_irq		= x86_pmu_handle_irq,
4551 	.disable_all		= x86_pmu_disable_all,
4552 	.enable_all		= core_pmu_enable_all,
4553 	.enable			= core_pmu_enable_event,
4554 	.disable		= x86_pmu_disable_event,
4555 	.hw_config		= core_pmu_hw_config,
4556 	.schedule_events	= x86_schedule_events,
4557 	.eventsel		= MSR_ARCH_PERFMON_EVENTSEL0,
4558 	.perfctr		= MSR_ARCH_PERFMON_PERFCTR0,
4559 	.event_map		= intel_pmu_event_map,
4560 	.max_events		= ARRAY_SIZE(intel_perfmon_event_map),
4561 	.apic			= 1,
4562 	.large_pebs_flags	= LARGE_PEBS_FLAGS,
4563 
4564 	/*
4565 	 * Intel PMCs cannot be accessed sanely above 32-bit width,
4566 	 * so we install an artificial 1<<31 period regardless of
4567 	 * the generic event period:
4568 	 */
4569 	.max_period		= (1ULL<<31) - 1,
4570 	.get_event_constraints	= intel_get_event_constraints,
4571 	.put_event_constraints	= intel_put_event_constraints,
4572 	.event_constraints	= intel_core_event_constraints,
4573 	.guest_get_msrs		= core_guest_get_msrs,
4574 	.format_attrs		= intel_arch_formats_attr,
4575 	.events_sysfs_show	= intel_event_sysfs_show,
4576 
4577 	/*
4578 	 * Virtual (or funny metal) CPU can define x86_pmu.extra_regs
4579 	 * together with PMU version 1 and thus be using core_pmu with
4580 	 * shared_regs. We need following callbacks here to allocate
4581 	 * it properly.
4582 	 */
4583 	.cpu_prepare		= intel_pmu_cpu_prepare,
4584 	.cpu_starting		= intel_pmu_cpu_starting,
4585 	.cpu_dying		= intel_pmu_cpu_dying,
4586 	.cpu_dead		= intel_pmu_cpu_dead,
4587 
4588 	.check_period		= intel_pmu_check_period,
4589 
4590 	.lbr_reset		= intel_pmu_lbr_reset_64,
4591 	.lbr_read		= intel_pmu_lbr_read_64,
4592 	.lbr_save		= intel_pmu_lbr_save,
4593 	.lbr_restore		= intel_pmu_lbr_restore,
4594 };
4595 
4596 static __initconst const struct x86_pmu intel_pmu = {
4597 	.name			= "Intel",
4598 	.handle_irq		= intel_pmu_handle_irq,
4599 	.disable_all		= intel_pmu_disable_all,
4600 	.enable_all		= intel_pmu_enable_all,
4601 	.enable			= intel_pmu_enable_event,
4602 	.disable		= intel_pmu_disable_event,
4603 	.add			= intel_pmu_add_event,
4604 	.del			= intel_pmu_del_event,
4605 	.read			= intel_pmu_read_event,
4606 	.hw_config		= intel_pmu_hw_config,
4607 	.schedule_events	= x86_schedule_events,
4608 	.eventsel		= MSR_ARCH_PERFMON_EVENTSEL0,
4609 	.perfctr		= MSR_ARCH_PERFMON_PERFCTR0,
4610 	.event_map		= intel_pmu_event_map,
4611 	.max_events		= ARRAY_SIZE(intel_perfmon_event_map),
4612 	.apic			= 1,
4613 	.large_pebs_flags	= LARGE_PEBS_FLAGS,
4614 	/*
4615 	 * Intel PMCs cannot be accessed sanely above 32 bit width,
4616 	 * so we install an artificial 1<<31 period regardless of
4617 	 * the generic event period:
4618 	 */
4619 	.max_period		= (1ULL << 31) - 1,
4620 	.get_event_constraints	= intel_get_event_constraints,
4621 	.put_event_constraints	= intel_put_event_constraints,
4622 	.pebs_aliases		= intel_pebs_aliases_core2,
4623 
4624 	.format_attrs		= intel_arch3_formats_attr,
4625 	.events_sysfs_show	= intel_event_sysfs_show,
4626 
4627 	.cpu_prepare		= intel_pmu_cpu_prepare,
4628 	.cpu_starting		= intel_pmu_cpu_starting,
4629 	.cpu_dying		= intel_pmu_cpu_dying,
4630 	.cpu_dead		= intel_pmu_cpu_dead,
4631 
4632 	.guest_get_msrs		= intel_guest_get_msrs,
4633 	.sched_task		= intel_pmu_sched_task,
4634 	.swap_task_ctx		= intel_pmu_swap_task_ctx,
4635 
4636 	.check_period		= intel_pmu_check_period,
4637 
4638 	.aux_output_match	= intel_pmu_aux_output_match,
4639 
4640 	.lbr_reset		= intel_pmu_lbr_reset_64,
4641 	.lbr_read		= intel_pmu_lbr_read_64,
4642 	.lbr_save		= intel_pmu_lbr_save,
4643 	.lbr_restore		= intel_pmu_lbr_restore,
4644 };
4645 
4646 static __init void intel_clovertown_quirk(void)
4647 {
4648 	/*
4649 	 * PEBS is unreliable due to:
4650 	 *
4651 	 *   AJ67  - PEBS may experience CPL leaks
4652 	 *   AJ68  - PEBS PMI may be delayed by one event
4653 	 *   AJ69  - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
4654 	 *   AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
4655 	 *
4656 	 * AJ67 could be worked around by restricting the OS/USR flags.
4657 	 * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
4658 	 *
4659 	 * AJ106 could possibly be worked around by not allowing LBR
4660 	 *       usage from PEBS, including the fixup.
4661 	 * AJ68  could possibly be worked around by always programming
4662 	 *	 a pebs_event_reset[0] value and coping with the lost events.
4663 	 *
4664 	 * But taken together it might just make sense to not enable PEBS on
4665 	 * these chips.
4666 	 */
4667 	pr_warn("PEBS disabled due to CPU errata\n");
4668 	x86_pmu.pebs = 0;
4669 	x86_pmu.pebs_constraints = NULL;
4670 }
4671 
4672 static const struct x86_cpu_desc isolation_ucodes[] = {
4673 	INTEL_CPU_DESC(INTEL_FAM6_HASWELL,		 3, 0x0000001f),
4674 	INTEL_CPU_DESC(INTEL_FAM6_HASWELL_L,		 1, 0x0000001e),
4675 	INTEL_CPU_DESC(INTEL_FAM6_HASWELL_G,		 1, 0x00000015),
4676 	INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X,		 2, 0x00000037),
4677 	INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X,		 4, 0x0000000a),
4678 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL,		 4, 0x00000023),
4679 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_G,		 1, 0x00000014),
4680 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,		 2, 0x00000010),
4681 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,		 3, 0x07000009),
4682 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,		 4, 0x0f000009),
4683 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,		 5, 0x0e000002),
4684 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_X,		 1, 0x0b000014),
4685 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,		 3, 0x00000021),
4686 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,		 4, 0x00000000),
4687 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,		 5, 0x00000000),
4688 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,		 6, 0x00000000),
4689 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,		 7, 0x00000000),
4690 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_L,		 3, 0x0000007c),
4691 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE,		 3, 0x0000007c),
4692 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,		 9, 0x0000004e),
4693 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,		 9, 0x0000004e),
4694 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,		10, 0x0000004e),
4695 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,		11, 0x0000004e),
4696 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,		12, 0x0000004e),
4697 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,		10, 0x0000004e),
4698 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,		11, 0x0000004e),
4699 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,		12, 0x0000004e),
4700 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,		13, 0x0000004e),
4701 	{}
4702 };
4703 
4704 static void intel_check_pebs_isolation(void)
4705 {
4706 	x86_pmu.pebs_no_isolation = !x86_cpu_has_min_microcode_rev(isolation_ucodes);
4707 }
4708 
4709 static __init void intel_pebs_isolation_quirk(void)
4710 {
4711 	WARN_ON_ONCE(x86_pmu.check_microcode);
4712 	x86_pmu.check_microcode = intel_check_pebs_isolation;
4713 	intel_check_pebs_isolation();
4714 }
4715 
4716 static const struct x86_cpu_desc pebs_ucodes[] = {
4717 	INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE,		7, 0x00000028),
4718 	INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X,	6, 0x00000618),
4719 	INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X,	7, 0x0000070c),
4720 	{}
4721 };
4722 
4723 static bool intel_snb_pebs_broken(void)
4724 {
4725 	return !x86_cpu_has_min_microcode_rev(pebs_ucodes);
4726 }
4727 
4728 static void intel_snb_check_microcode(void)
4729 {
4730 	if (intel_snb_pebs_broken() == x86_pmu.pebs_broken)
4731 		return;
4732 
4733 	/*
4734 	 * Serialized by the microcode lock..
4735 	 */
4736 	if (x86_pmu.pebs_broken) {
4737 		pr_info("PEBS enabled due to microcode update\n");
4738 		x86_pmu.pebs_broken = 0;
4739 	} else {
4740 		pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
4741 		x86_pmu.pebs_broken = 1;
4742 	}
4743 }
4744 
4745 static bool is_lbr_from(unsigned long msr)
4746 {
4747 	unsigned long lbr_from_nr = x86_pmu.lbr_from + x86_pmu.lbr_nr;
4748 
4749 	return x86_pmu.lbr_from <= msr && msr < lbr_from_nr;
4750 }
4751 
4752 /*
4753  * Under certain circumstances, access certain MSR may cause #GP.
4754  * The function tests if the input MSR can be safely accessed.
4755  */
4756 static bool check_msr(unsigned long msr, u64 mask)
4757 {
4758 	u64 val_old, val_new, val_tmp;
4759 
4760 	/*
4761 	 * Disable the check for real HW, so we don't
4762 	 * mess with potentially enabled registers:
4763 	 */
4764 	if (!boot_cpu_has(X86_FEATURE_HYPERVISOR))
4765 		return true;
4766 
4767 	/*
4768 	 * Read the current value, change it and read it back to see if it
4769 	 * matches, this is needed to detect certain hardware emulators
4770 	 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
4771 	 */
4772 	if (rdmsrl_safe(msr, &val_old))
4773 		return false;
4774 
4775 	/*
4776 	 * Only change the bits which can be updated by wrmsrl.
4777 	 */
4778 	val_tmp = val_old ^ mask;
4779 
4780 	if (is_lbr_from(msr))
4781 		val_tmp = lbr_from_signext_quirk_wr(val_tmp);
4782 
4783 	if (wrmsrl_safe(msr, val_tmp) ||
4784 	    rdmsrl_safe(msr, &val_new))
4785 		return false;
4786 
4787 	/*
4788 	 * Quirk only affects validation in wrmsr(), so wrmsrl()'s value
4789 	 * should equal rdmsrl()'s even with the quirk.
4790 	 */
4791 	if (val_new != val_tmp)
4792 		return false;
4793 
4794 	if (is_lbr_from(msr))
4795 		val_old = lbr_from_signext_quirk_wr(val_old);
4796 
4797 	/* Here it's sure that the MSR can be safely accessed.
4798 	 * Restore the old value and return.
4799 	 */
4800 	wrmsrl(msr, val_old);
4801 
4802 	return true;
4803 }
4804 
4805 static __init void intel_sandybridge_quirk(void)
4806 {
4807 	x86_pmu.check_microcode = intel_snb_check_microcode;
4808 	cpus_read_lock();
4809 	intel_snb_check_microcode();
4810 	cpus_read_unlock();
4811 }
4812 
4813 static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
4814 	{ PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
4815 	{ PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
4816 	{ PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
4817 	{ PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
4818 	{ PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
4819 	{ PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
4820 	{ PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
4821 };
4822 
4823 static __init void intel_arch_events_quirk(void)
4824 {
4825 	int bit;
4826 
4827 	/* disable event that reported as not present by cpuid */
4828 	for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
4829 		intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
4830 		pr_warn("CPUID marked event: \'%s\' unavailable\n",
4831 			intel_arch_events_map[bit].name);
4832 	}
4833 }
4834 
4835 static __init void intel_nehalem_quirk(void)
4836 {
4837 	union cpuid10_ebx ebx;
4838 
4839 	ebx.full = x86_pmu.events_maskl;
4840 	if (ebx.split.no_branch_misses_retired) {
4841 		/*
4842 		 * Erratum AAJ80 detected, we work it around by using
4843 		 * the BR_MISP_EXEC.ANY event. This will over-count
4844 		 * branch-misses, but it's still much better than the
4845 		 * architectural event which is often completely bogus:
4846 		 */
4847 		intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
4848 		ebx.split.no_branch_misses_retired = 0;
4849 		x86_pmu.events_maskl = ebx.full;
4850 		pr_info("CPU erratum AAJ80 worked around\n");
4851 	}
4852 }
4853 
4854 /*
4855  * enable software workaround for errata:
4856  * SNB: BJ122
4857  * IVB: BV98
4858  * HSW: HSD29
4859  *
4860  * Only needed when HT is enabled. However detecting
4861  * if HT is enabled is difficult (model specific). So instead,
4862  * we enable the workaround in the early boot, and verify if
4863  * it is needed in a later initcall phase once we have valid
4864  * topology information to check if HT is actually enabled
4865  */
4866 static __init void intel_ht_bug(void)
4867 {
4868 	x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED;
4869 
4870 	x86_pmu.start_scheduling = intel_start_scheduling;
4871 	x86_pmu.commit_scheduling = intel_commit_scheduling;
4872 	x86_pmu.stop_scheduling = intel_stop_scheduling;
4873 }
4874 
4875 EVENT_ATTR_STR(mem-loads,	mem_ld_hsw,	"event=0xcd,umask=0x1,ldlat=3");
4876 EVENT_ATTR_STR(mem-stores,	mem_st_hsw,	"event=0xd0,umask=0x82")
4877 
4878 /* Haswell special events */
4879 EVENT_ATTR_STR(tx-start,	tx_start,	"event=0xc9,umask=0x1");
4880 EVENT_ATTR_STR(tx-commit,	tx_commit,	"event=0xc9,umask=0x2");
4881 EVENT_ATTR_STR(tx-abort,	tx_abort,	"event=0xc9,umask=0x4");
4882 EVENT_ATTR_STR(tx-capacity,	tx_capacity,	"event=0x54,umask=0x2");
4883 EVENT_ATTR_STR(tx-conflict,	tx_conflict,	"event=0x54,umask=0x1");
4884 EVENT_ATTR_STR(el-start,	el_start,	"event=0xc8,umask=0x1");
4885 EVENT_ATTR_STR(el-commit,	el_commit,	"event=0xc8,umask=0x2");
4886 EVENT_ATTR_STR(el-abort,	el_abort,	"event=0xc8,umask=0x4");
4887 EVENT_ATTR_STR(el-capacity,	el_capacity,	"event=0x54,umask=0x2");
4888 EVENT_ATTR_STR(el-conflict,	el_conflict,	"event=0x54,umask=0x1");
4889 EVENT_ATTR_STR(cycles-t,	cycles_t,	"event=0x3c,in_tx=1");
4890 EVENT_ATTR_STR(cycles-ct,	cycles_ct,	"event=0x3c,in_tx=1,in_tx_cp=1");
4891 
4892 static struct attribute *hsw_events_attrs[] = {
4893 	EVENT_PTR(td_slots_issued),
4894 	EVENT_PTR(td_slots_retired),
4895 	EVENT_PTR(td_fetch_bubbles),
4896 	EVENT_PTR(td_total_slots),
4897 	EVENT_PTR(td_total_slots_scale),
4898 	EVENT_PTR(td_recovery_bubbles),
4899 	EVENT_PTR(td_recovery_bubbles_scale),
4900 	NULL
4901 };
4902 
4903 static struct attribute *hsw_mem_events_attrs[] = {
4904 	EVENT_PTR(mem_ld_hsw),
4905 	EVENT_PTR(mem_st_hsw),
4906 	NULL,
4907 };
4908 
4909 static struct attribute *hsw_tsx_events_attrs[] = {
4910 	EVENT_PTR(tx_start),
4911 	EVENT_PTR(tx_commit),
4912 	EVENT_PTR(tx_abort),
4913 	EVENT_PTR(tx_capacity),
4914 	EVENT_PTR(tx_conflict),
4915 	EVENT_PTR(el_start),
4916 	EVENT_PTR(el_commit),
4917 	EVENT_PTR(el_abort),
4918 	EVENT_PTR(el_capacity),
4919 	EVENT_PTR(el_conflict),
4920 	EVENT_PTR(cycles_t),
4921 	EVENT_PTR(cycles_ct),
4922 	NULL
4923 };
4924 
4925 EVENT_ATTR_STR(tx-capacity-read,  tx_capacity_read,  "event=0x54,umask=0x80");
4926 EVENT_ATTR_STR(tx-capacity-write, tx_capacity_write, "event=0x54,umask=0x2");
4927 EVENT_ATTR_STR(el-capacity-read,  el_capacity_read,  "event=0x54,umask=0x80");
4928 EVENT_ATTR_STR(el-capacity-write, el_capacity_write, "event=0x54,umask=0x2");
4929 
4930 static struct attribute *icl_events_attrs[] = {
4931 	EVENT_PTR(mem_ld_hsw),
4932 	EVENT_PTR(mem_st_hsw),
4933 	NULL,
4934 };
4935 
4936 static struct attribute *icl_td_events_attrs[] = {
4937 	EVENT_PTR(slots),
4938 	EVENT_PTR(td_retiring),
4939 	EVENT_PTR(td_bad_spec),
4940 	EVENT_PTR(td_fe_bound),
4941 	EVENT_PTR(td_be_bound),
4942 	NULL,
4943 };
4944 
4945 static struct attribute *icl_tsx_events_attrs[] = {
4946 	EVENT_PTR(tx_start),
4947 	EVENT_PTR(tx_abort),
4948 	EVENT_PTR(tx_commit),
4949 	EVENT_PTR(tx_capacity_read),
4950 	EVENT_PTR(tx_capacity_write),
4951 	EVENT_PTR(tx_conflict),
4952 	EVENT_PTR(el_start),
4953 	EVENT_PTR(el_abort),
4954 	EVENT_PTR(el_commit),
4955 	EVENT_PTR(el_capacity_read),
4956 	EVENT_PTR(el_capacity_write),
4957 	EVENT_PTR(el_conflict),
4958 	EVENT_PTR(cycles_t),
4959 	EVENT_PTR(cycles_ct),
4960 	NULL,
4961 };
4962 
4963 
4964 EVENT_ATTR_STR(mem-stores,	mem_st_spr,	"event=0xcd,umask=0x2");
4965 EVENT_ATTR_STR(mem-loads-aux,	mem_ld_aux,	"event=0x03,umask=0x82");
4966 
4967 static struct attribute *spr_events_attrs[] = {
4968 	EVENT_PTR(mem_ld_hsw),
4969 	EVENT_PTR(mem_st_spr),
4970 	EVENT_PTR(mem_ld_aux),
4971 	NULL,
4972 };
4973 
4974 static struct attribute *spr_td_events_attrs[] = {
4975 	EVENT_PTR(slots),
4976 	EVENT_PTR(td_retiring),
4977 	EVENT_PTR(td_bad_spec),
4978 	EVENT_PTR(td_fe_bound),
4979 	EVENT_PTR(td_be_bound),
4980 	EVENT_PTR(td_heavy_ops),
4981 	EVENT_PTR(td_br_mispredict),
4982 	EVENT_PTR(td_fetch_lat),
4983 	EVENT_PTR(td_mem_bound),
4984 	NULL,
4985 };
4986 
4987 static struct attribute *spr_tsx_events_attrs[] = {
4988 	EVENT_PTR(tx_start),
4989 	EVENT_PTR(tx_abort),
4990 	EVENT_PTR(tx_commit),
4991 	EVENT_PTR(tx_capacity_read),
4992 	EVENT_PTR(tx_capacity_write),
4993 	EVENT_PTR(tx_conflict),
4994 	EVENT_PTR(cycles_t),
4995 	EVENT_PTR(cycles_ct),
4996 	NULL,
4997 };
4998 
4999 static ssize_t freeze_on_smi_show(struct device *cdev,
5000 				  struct device_attribute *attr,
5001 				  char *buf)
5002 {
5003 	return sprintf(buf, "%lu\n", x86_pmu.attr_freeze_on_smi);
5004 }
5005 
5006 static DEFINE_MUTEX(freeze_on_smi_mutex);
5007 
5008 static ssize_t freeze_on_smi_store(struct device *cdev,
5009 				   struct device_attribute *attr,
5010 				   const char *buf, size_t count)
5011 {
5012 	unsigned long val;
5013 	ssize_t ret;
5014 
5015 	ret = kstrtoul(buf, 0, &val);
5016 	if (ret)
5017 		return ret;
5018 
5019 	if (val > 1)
5020 		return -EINVAL;
5021 
5022 	mutex_lock(&freeze_on_smi_mutex);
5023 
5024 	if (x86_pmu.attr_freeze_on_smi == val)
5025 		goto done;
5026 
5027 	x86_pmu.attr_freeze_on_smi = val;
5028 
5029 	get_online_cpus();
5030 	on_each_cpu(flip_smm_bit, &val, 1);
5031 	put_online_cpus();
5032 done:
5033 	mutex_unlock(&freeze_on_smi_mutex);
5034 
5035 	return count;
5036 }
5037 
5038 static void update_tfa_sched(void *ignored)
5039 {
5040 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
5041 
5042 	/*
5043 	 * check if PMC3 is used
5044 	 * and if so force schedule out for all event types all contexts
5045 	 */
5046 	if (test_bit(3, cpuc->active_mask))
5047 		perf_pmu_resched(x86_get_pmu(smp_processor_id()));
5048 }
5049 
5050 static ssize_t show_sysctl_tfa(struct device *cdev,
5051 			      struct device_attribute *attr,
5052 			      char *buf)
5053 {
5054 	return snprintf(buf, 40, "%d\n", allow_tsx_force_abort);
5055 }
5056 
5057 static ssize_t set_sysctl_tfa(struct device *cdev,
5058 			      struct device_attribute *attr,
5059 			      const char *buf, size_t count)
5060 {
5061 	bool val;
5062 	ssize_t ret;
5063 
5064 	ret = kstrtobool(buf, &val);
5065 	if (ret)
5066 		return ret;
5067 
5068 	/* no change */
5069 	if (val == allow_tsx_force_abort)
5070 		return count;
5071 
5072 	allow_tsx_force_abort = val;
5073 
5074 	get_online_cpus();
5075 	on_each_cpu(update_tfa_sched, NULL, 1);
5076 	put_online_cpus();
5077 
5078 	return count;
5079 }
5080 
5081 
5082 static DEVICE_ATTR_RW(freeze_on_smi);
5083 
5084 static ssize_t branches_show(struct device *cdev,
5085 			     struct device_attribute *attr,
5086 			     char *buf)
5087 {
5088 	return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu.lbr_nr);
5089 }
5090 
5091 static DEVICE_ATTR_RO(branches);
5092 
5093 static struct attribute *lbr_attrs[] = {
5094 	&dev_attr_branches.attr,
5095 	NULL
5096 };
5097 
5098 static char pmu_name_str[30];
5099 
5100 static ssize_t pmu_name_show(struct device *cdev,
5101 			     struct device_attribute *attr,
5102 			     char *buf)
5103 {
5104 	return snprintf(buf, PAGE_SIZE, "%s\n", pmu_name_str);
5105 }
5106 
5107 static DEVICE_ATTR_RO(pmu_name);
5108 
5109 static struct attribute *intel_pmu_caps_attrs[] = {
5110        &dev_attr_pmu_name.attr,
5111        NULL
5112 };
5113 
5114 static DEVICE_ATTR(allow_tsx_force_abort, 0644,
5115 		   show_sysctl_tfa,
5116 		   set_sysctl_tfa);
5117 
5118 static struct attribute *intel_pmu_attrs[] = {
5119 	&dev_attr_freeze_on_smi.attr,
5120 	&dev_attr_allow_tsx_force_abort.attr,
5121 	NULL,
5122 };
5123 
5124 static umode_t
5125 tsx_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5126 {
5127 	return boot_cpu_has(X86_FEATURE_RTM) ? attr->mode : 0;
5128 }
5129 
5130 static umode_t
5131 pebs_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5132 {
5133 	return x86_pmu.pebs ? attr->mode : 0;
5134 }
5135 
5136 static umode_t
5137 lbr_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5138 {
5139 	return x86_pmu.lbr_nr ? attr->mode : 0;
5140 }
5141 
5142 static umode_t
5143 exra_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5144 {
5145 	return x86_pmu.version >= 2 ? attr->mode : 0;
5146 }
5147 
5148 static umode_t
5149 default_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5150 {
5151 	if (attr == &dev_attr_allow_tsx_force_abort.attr)
5152 		return x86_pmu.flags & PMU_FL_TFA ? attr->mode : 0;
5153 
5154 	return attr->mode;
5155 }
5156 
5157 static struct attribute_group group_events_td  = {
5158 	.name = "events",
5159 };
5160 
5161 static struct attribute_group group_events_mem = {
5162 	.name       = "events",
5163 	.is_visible = pebs_is_visible,
5164 };
5165 
5166 static struct attribute_group group_events_tsx = {
5167 	.name       = "events",
5168 	.is_visible = tsx_is_visible,
5169 };
5170 
5171 static struct attribute_group group_caps_gen = {
5172 	.name  = "caps",
5173 	.attrs = intel_pmu_caps_attrs,
5174 };
5175 
5176 static struct attribute_group group_caps_lbr = {
5177 	.name       = "caps",
5178 	.attrs	    = lbr_attrs,
5179 	.is_visible = lbr_is_visible,
5180 };
5181 
5182 static struct attribute_group group_format_extra = {
5183 	.name       = "format",
5184 	.is_visible = exra_is_visible,
5185 };
5186 
5187 static struct attribute_group group_format_extra_skl = {
5188 	.name       = "format",
5189 	.is_visible = exra_is_visible,
5190 };
5191 
5192 static struct attribute_group group_default = {
5193 	.attrs      = intel_pmu_attrs,
5194 	.is_visible = default_is_visible,
5195 };
5196 
5197 static const struct attribute_group *attr_update[] = {
5198 	&group_events_td,
5199 	&group_events_mem,
5200 	&group_events_tsx,
5201 	&group_caps_gen,
5202 	&group_caps_lbr,
5203 	&group_format_extra,
5204 	&group_format_extra_skl,
5205 	&group_default,
5206 	NULL,
5207 };
5208 
5209 EVENT_ATTR_STR_HYBRID(slots,                 slots_adl,        "event=0x00,umask=0x4",                       hybrid_big);
5210 EVENT_ATTR_STR_HYBRID(topdown-retiring,      td_retiring_adl,  "event=0xc2,umask=0x0;event=0x00,umask=0x80", hybrid_big_small);
5211 EVENT_ATTR_STR_HYBRID(topdown-bad-spec,      td_bad_spec_adl,  "event=0x73,umask=0x0;event=0x00,umask=0x81", hybrid_big_small);
5212 EVENT_ATTR_STR_HYBRID(topdown-fe-bound,      td_fe_bound_adl,  "event=0x71,umask=0x0;event=0x00,umask=0x82", hybrid_big_small);
5213 EVENT_ATTR_STR_HYBRID(topdown-be-bound,      td_be_bound_adl,  "event=0x74,umask=0x0;event=0x00,umask=0x83", hybrid_big_small);
5214 EVENT_ATTR_STR_HYBRID(topdown-heavy-ops,     td_heavy_ops_adl, "event=0x00,umask=0x84",                      hybrid_big);
5215 EVENT_ATTR_STR_HYBRID(topdown-br-mispredict, td_br_mis_adl,    "event=0x00,umask=0x85",                      hybrid_big);
5216 EVENT_ATTR_STR_HYBRID(topdown-fetch-lat,     td_fetch_lat_adl, "event=0x00,umask=0x86",                      hybrid_big);
5217 EVENT_ATTR_STR_HYBRID(topdown-mem-bound,     td_mem_bound_adl, "event=0x00,umask=0x87",                      hybrid_big);
5218 
5219 static struct attribute *adl_hybrid_events_attrs[] = {
5220 	EVENT_PTR(slots_adl),
5221 	EVENT_PTR(td_retiring_adl),
5222 	EVENT_PTR(td_bad_spec_adl),
5223 	EVENT_PTR(td_fe_bound_adl),
5224 	EVENT_PTR(td_be_bound_adl),
5225 	EVENT_PTR(td_heavy_ops_adl),
5226 	EVENT_PTR(td_br_mis_adl),
5227 	EVENT_PTR(td_fetch_lat_adl),
5228 	EVENT_PTR(td_mem_bound_adl),
5229 	NULL,
5230 };
5231 
5232 /* Must be in IDX order */
5233 EVENT_ATTR_STR_HYBRID(mem-loads,     mem_ld_adl,     "event=0xd0,umask=0x5,ldlat=3;event=0xcd,umask=0x1,ldlat=3", hybrid_big_small);
5234 EVENT_ATTR_STR_HYBRID(mem-stores,    mem_st_adl,     "event=0xd0,umask=0x6;event=0xcd,umask=0x2",                 hybrid_big_small);
5235 EVENT_ATTR_STR_HYBRID(mem-loads-aux, mem_ld_aux_adl, "event=0x03,umask=0x82",                                     hybrid_big);
5236 
5237 static struct attribute *adl_hybrid_mem_attrs[] = {
5238 	EVENT_PTR(mem_ld_adl),
5239 	EVENT_PTR(mem_st_adl),
5240 	EVENT_PTR(mem_ld_aux_adl),
5241 	NULL,
5242 };
5243 
5244 EVENT_ATTR_STR_HYBRID(tx-start,          tx_start_adl,          "event=0xc9,umask=0x1",          hybrid_big);
5245 EVENT_ATTR_STR_HYBRID(tx-commit,         tx_commit_adl,         "event=0xc9,umask=0x2",          hybrid_big);
5246 EVENT_ATTR_STR_HYBRID(tx-abort,          tx_abort_adl,          "event=0xc9,umask=0x4",          hybrid_big);
5247 EVENT_ATTR_STR_HYBRID(tx-conflict,       tx_conflict_adl,       "event=0x54,umask=0x1",          hybrid_big);
5248 EVENT_ATTR_STR_HYBRID(cycles-t,          cycles_t_adl,          "event=0x3c,in_tx=1",            hybrid_big);
5249 EVENT_ATTR_STR_HYBRID(cycles-ct,         cycles_ct_adl,         "event=0x3c,in_tx=1,in_tx_cp=1", hybrid_big);
5250 EVENT_ATTR_STR_HYBRID(tx-capacity-read,  tx_capacity_read_adl,  "event=0x54,umask=0x80",         hybrid_big);
5251 EVENT_ATTR_STR_HYBRID(tx-capacity-write, tx_capacity_write_adl, "event=0x54,umask=0x2",          hybrid_big);
5252 
5253 static struct attribute *adl_hybrid_tsx_attrs[] = {
5254 	EVENT_PTR(tx_start_adl),
5255 	EVENT_PTR(tx_abort_adl),
5256 	EVENT_PTR(tx_commit_adl),
5257 	EVENT_PTR(tx_capacity_read_adl),
5258 	EVENT_PTR(tx_capacity_write_adl),
5259 	EVENT_PTR(tx_conflict_adl),
5260 	EVENT_PTR(cycles_t_adl),
5261 	EVENT_PTR(cycles_ct_adl),
5262 	NULL,
5263 };
5264 
5265 FORMAT_ATTR_HYBRID(in_tx,       hybrid_big);
5266 FORMAT_ATTR_HYBRID(in_tx_cp,    hybrid_big);
5267 FORMAT_ATTR_HYBRID(offcore_rsp, hybrid_big_small);
5268 FORMAT_ATTR_HYBRID(ldlat,       hybrid_big_small);
5269 FORMAT_ATTR_HYBRID(frontend,    hybrid_big);
5270 
5271 static struct attribute *adl_hybrid_extra_attr_rtm[] = {
5272 	FORMAT_HYBRID_PTR(in_tx),
5273 	FORMAT_HYBRID_PTR(in_tx_cp),
5274 	FORMAT_HYBRID_PTR(offcore_rsp),
5275 	FORMAT_HYBRID_PTR(ldlat),
5276 	FORMAT_HYBRID_PTR(frontend),
5277 	NULL,
5278 };
5279 
5280 static struct attribute *adl_hybrid_extra_attr[] = {
5281 	FORMAT_HYBRID_PTR(offcore_rsp),
5282 	FORMAT_HYBRID_PTR(ldlat),
5283 	FORMAT_HYBRID_PTR(frontend),
5284 	NULL,
5285 };
5286 
5287 static bool is_attr_for_this_pmu(struct kobject *kobj, struct attribute *attr)
5288 {
5289 	struct device *dev = kobj_to_dev(kobj);
5290 	struct x86_hybrid_pmu *pmu =
5291 		container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5292 	struct perf_pmu_events_hybrid_attr *pmu_attr =
5293 		container_of(attr, struct perf_pmu_events_hybrid_attr, attr.attr);
5294 
5295 	return pmu->cpu_type & pmu_attr->pmu_type;
5296 }
5297 
5298 static umode_t hybrid_events_is_visible(struct kobject *kobj,
5299 					struct attribute *attr, int i)
5300 {
5301 	return is_attr_for_this_pmu(kobj, attr) ? attr->mode : 0;
5302 }
5303 
5304 static inline int hybrid_find_supported_cpu(struct x86_hybrid_pmu *pmu)
5305 {
5306 	int cpu = cpumask_first(&pmu->supported_cpus);
5307 
5308 	return (cpu >= nr_cpu_ids) ? -1 : cpu;
5309 }
5310 
5311 static umode_t hybrid_tsx_is_visible(struct kobject *kobj,
5312 				     struct attribute *attr, int i)
5313 {
5314 	struct device *dev = kobj_to_dev(kobj);
5315 	struct x86_hybrid_pmu *pmu =
5316 		 container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5317 	int cpu = hybrid_find_supported_cpu(pmu);
5318 
5319 	return (cpu >= 0) && is_attr_for_this_pmu(kobj, attr) && cpu_has(&cpu_data(cpu), X86_FEATURE_RTM) ? attr->mode : 0;
5320 }
5321 
5322 static umode_t hybrid_format_is_visible(struct kobject *kobj,
5323 					struct attribute *attr, int i)
5324 {
5325 	struct device *dev = kobj_to_dev(kobj);
5326 	struct x86_hybrid_pmu *pmu =
5327 		container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5328 	struct perf_pmu_format_hybrid_attr *pmu_attr =
5329 		container_of(attr, struct perf_pmu_format_hybrid_attr, attr.attr);
5330 	int cpu = hybrid_find_supported_cpu(pmu);
5331 
5332 	return (cpu >= 0) && (pmu->cpu_type & pmu_attr->pmu_type) ? attr->mode : 0;
5333 }
5334 
5335 static struct attribute_group hybrid_group_events_td  = {
5336 	.name		= "events",
5337 	.is_visible	= hybrid_events_is_visible,
5338 };
5339 
5340 static struct attribute_group hybrid_group_events_mem = {
5341 	.name		= "events",
5342 	.is_visible	= hybrid_events_is_visible,
5343 };
5344 
5345 static struct attribute_group hybrid_group_events_tsx = {
5346 	.name		= "events",
5347 	.is_visible	= hybrid_tsx_is_visible,
5348 };
5349 
5350 static struct attribute_group hybrid_group_format_extra = {
5351 	.name		= "format",
5352 	.is_visible	= hybrid_format_is_visible,
5353 };
5354 
5355 static ssize_t intel_hybrid_get_attr_cpus(struct device *dev,
5356 					  struct device_attribute *attr,
5357 					  char *buf)
5358 {
5359 	struct x86_hybrid_pmu *pmu =
5360 		container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5361 
5362 	return cpumap_print_to_pagebuf(true, buf, &pmu->supported_cpus);
5363 }
5364 
5365 static DEVICE_ATTR(cpus, S_IRUGO, intel_hybrid_get_attr_cpus, NULL);
5366 static struct attribute *intel_hybrid_cpus_attrs[] = {
5367 	&dev_attr_cpus.attr,
5368 	NULL,
5369 };
5370 
5371 static struct attribute_group hybrid_group_cpus = {
5372 	.attrs		= intel_hybrid_cpus_attrs,
5373 };
5374 
5375 static const struct attribute_group *hybrid_attr_update[] = {
5376 	&hybrid_group_events_td,
5377 	&hybrid_group_events_mem,
5378 	&hybrid_group_events_tsx,
5379 	&group_caps_gen,
5380 	&group_caps_lbr,
5381 	&hybrid_group_format_extra,
5382 	&group_default,
5383 	&hybrid_group_cpus,
5384 	NULL,
5385 };
5386 
5387 static struct attribute *empty_attrs;
5388 
5389 static void intel_pmu_check_num_counters(int *num_counters,
5390 					 int *num_counters_fixed,
5391 					 u64 *intel_ctrl, u64 fixed_mask)
5392 {
5393 	if (*num_counters > INTEL_PMC_MAX_GENERIC) {
5394 		WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
5395 		     *num_counters, INTEL_PMC_MAX_GENERIC);
5396 		*num_counters = INTEL_PMC_MAX_GENERIC;
5397 	}
5398 	*intel_ctrl = (1ULL << *num_counters) - 1;
5399 
5400 	if (*num_counters_fixed > INTEL_PMC_MAX_FIXED) {
5401 		WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
5402 		     *num_counters_fixed, INTEL_PMC_MAX_FIXED);
5403 		*num_counters_fixed = INTEL_PMC_MAX_FIXED;
5404 	}
5405 
5406 	*intel_ctrl |= fixed_mask << INTEL_PMC_IDX_FIXED;
5407 }
5408 
5409 static void intel_pmu_check_event_constraints(struct event_constraint *event_constraints,
5410 					      int num_counters,
5411 					      int num_counters_fixed,
5412 					      u64 intel_ctrl)
5413 {
5414 	struct event_constraint *c;
5415 
5416 	if (!event_constraints)
5417 		return;
5418 
5419 	/*
5420 	 * event on fixed counter2 (REF_CYCLES) only works on this
5421 	 * counter, so do not extend mask to generic counters
5422 	 */
5423 	for_each_event_constraint(c, event_constraints) {
5424 		/*
5425 		 * Don't extend the topdown slots and metrics
5426 		 * events to the generic counters.
5427 		 */
5428 		if (c->idxmsk64 & INTEL_PMC_MSK_TOPDOWN) {
5429 			/*
5430 			 * Disable topdown slots and metrics events,
5431 			 * if slots event is not in CPUID.
5432 			 */
5433 			if (!(INTEL_PMC_MSK_FIXED_SLOTS & intel_ctrl))
5434 				c->idxmsk64 = 0;
5435 			c->weight = hweight64(c->idxmsk64);
5436 			continue;
5437 		}
5438 
5439 		if (c->cmask == FIXED_EVENT_FLAGS) {
5440 			/* Disabled fixed counters which are not in CPUID */
5441 			c->idxmsk64 &= intel_ctrl;
5442 
5443 			if (c->idxmsk64 != INTEL_PMC_MSK_FIXED_REF_CYCLES)
5444 				c->idxmsk64 |= (1ULL << num_counters) - 1;
5445 		}
5446 		c->idxmsk64 &=
5447 			~(~0ULL << (INTEL_PMC_IDX_FIXED + num_counters_fixed));
5448 		c->weight = hweight64(c->idxmsk64);
5449 	}
5450 }
5451 
5452 static void intel_pmu_check_extra_regs(struct extra_reg *extra_regs)
5453 {
5454 	struct extra_reg *er;
5455 
5456 	/*
5457 	 * Access extra MSR may cause #GP under certain circumstances.
5458 	 * E.g. KVM doesn't support offcore event
5459 	 * Check all extra_regs here.
5460 	 */
5461 	if (!extra_regs)
5462 		return;
5463 
5464 	for (er = extra_regs; er->msr; er++) {
5465 		er->extra_msr_access = check_msr(er->msr, 0x11UL);
5466 		/* Disable LBR select mapping */
5467 		if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
5468 			x86_pmu.lbr_sel_map = NULL;
5469 	}
5470 }
5471 
5472 static void intel_pmu_check_hybrid_pmus(u64 fixed_mask)
5473 {
5474 	struct x86_hybrid_pmu *pmu;
5475 	int i;
5476 
5477 	for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
5478 		pmu = &x86_pmu.hybrid_pmu[i];
5479 
5480 		intel_pmu_check_num_counters(&pmu->num_counters,
5481 					     &pmu->num_counters_fixed,
5482 					     &pmu->intel_ctrl,
5483 					     fixed_mask);
5484 
5485 		if (pmu->intel_cap.perf_metrics) {
5486 			pmu->intel_ctrl |= 1ULL << GLOBAL_CTRL_EN_PERF_METRICS;
5487 			pmu->intel_ctrl |= INTEL_PMC_MSK_FIXED_SLOTS;
5488 		}
5489 
5490 		if (pmu->intel_cap.pebs_output_pt_available)
5491 			pmu->pmu.capabilities |= PERF_PMU_CAP_AUX_OUTPUT;
5492 
5493 		intel_pmu_check_event_constraints(pmu->event_constraints,
5494 						  pmu->num_counters,
5495 						  pmu->num_counters_fixed,
5496 						  pmu->intel_ctrl);
5497 
5498 		intel_pmu_check_extra_regs(pmu->extra_regs);
5499 	}
5500 }
5501 
5502 __init int intel_pmu_init(void)
5503 {
5504 	struct attribute **extra_skl_attr = &empty_attrs;
5505 	struct attribute **extra_attr = &empty_attrs;
5506 	struct attribute **td_attr    = &empty_attrs;
5507 	struct attribute **mem_attr   = &empty_attrs;
5508 	struct attribute **tsx_attr   = &empty_attrs;
5509 	union cpuid10_edx edx;
5510 	union cpuid10_eax eax;
5511 	union cpuid10_ebx ebx;
5512 	unsigned int fixed_mask;
5513 	bool pmem = false;
5514 	int version, i;
5515 	char *name;
5516 	struct x86_hybrid_pmu *pmu;
5517 
5518 	if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
5519 		switch (boot_cpu_data.x86) {
5520 		case 0x6:
5521 			return p6_pmu_init();
5522 		case 0xb:
5523 			return knc_pmu_init();
5524 		case 0xf:
5525 			return p4_pmu_init();
5526 		}
5527 		return -ENODEV;
5528 	}
5529 
5530 	/*
5531 	 * Check whether the Architectural PerfMon supports
5532 	 * Branch Misses Retired hw_event or not.
5533 	 */
5534 	cpuid(10, &eax.full, &ebx.full, &fixed_mask, &edx.full);
5535 	if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
5536 		return -ENODEV;
5537 
5538 	version = eax.split.version_id;
5539 	if (version < 2)
5540 		x86_pmu = core_pmu;
5541 	else
5542 		x86_pmu = intel_pmu;
5543 
5544 	x86_pmu.version			= version;
5545 	x86_pmu.num_counters		= eax.split.num_counters;
5546 	x86_pmu.cntval_bits		= eax.split.bit_width;
5547 	x86_pmu.cntval_mask		= (1ULL << eax.split.bit_width) - 1;
5548 
5549 	x86_pmu.events_maskl		= ebx.full;
5550 	x86_pmu.events_mask_len		= eax.split.mask_length;
5551 
5552 	x86_pmu.max_pebs_events		= min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
5553 
5554 	/*
5555 	 * Quirk: v2 perfmon does not report fixed-purpose events, so
5556 	 * assume at least 3 events, when not running in a hypervisor:
5557 	 */
5558 	if (version > 1 && version < 5) {
5559 		int assume = 3 * !boot_cpu_has(X86_FEATURE_HYPERVISOR);
5560 
5561 		x86_pmu.num_counters_fixed =
5562 			max((int)edx.split.num_counters_fixed, assume);
5563 
5564 		fixed_mask = (1L << x86_pmu.num_counters_fixed) - 1;
5565 	} else if (version >= 5)
5566 		x86_pmu.num_counters_fixed = fls(fixed_mask);
5567 
5568 	if (boot_cpu_has(X86_FEATURE_PDCM)) {
5569 		u64 capabilities;
5570 
5571 		rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
5572 		x86_pmu.intel_cap.capabilities = capabilities;
5573 	}
5574 
5575 	if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32) {
5576 		x86_pmu.lbr_reset = intel_pmu_lbr_reset_32;
5577 		x86_pmu.lbr_read = intel_pmu_lbr_read_32;
5578 	}
5579 
5580 	if (boot_cpu_has(X86_FEATURE_ARCH_LBR))
5581 		intel_pmu_arch_lbr_init();
5582 
5583 	intel_ds_init();
5584 
5585 	x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
5586 
5587 	if (version >= 5) {
5588 		x86_pmu.intel_cap.anythread_deprecated = edx.split.anythread_deprecated;
5589 		if (x86_pmu.intel_cap.anythread_deprecated)
5590 			pr_cont(" AnyThread deprecated, ");
5591 	}
5592 
5593 	/*
5594 	 * Install the hw-cache-events table:
5595 	 */
5596 	switch (boot_cpu_data.x86_model) {
5597 	case INTEL_FAM6_CORE_YONAH:
5598 		pr_cont("Core events, ");
5599 		name = "core";
5600 		break;
5601 
5602 	case INTEL_FAM6_CORE2_MEROM:
5603 		x86_add_quirk(intel_clovertown_quirk);
5604 		fallthrough;
5605 
5606 	case INTEL_FAM6_CORE2_MEROM_L:
5607 	case INTEL_FAM6_CORE2_PENRYN:
5608 	case INTEL_FAM6_CORE2_DUNNINGTON:
5609 		memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
5610 		       sizeof(hw_cache_event_ids));
5611 
5612 		intel_pmu_lbr_init_core();
5613 
5614 		x86_pmu.event_constraints = intel_core2_event_constraints;
5615 		x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
5616 		pr_cont("Core2 events, ");
5617 		name = "core2";
5618 		break;
5619 
5620 	case INTEL_FAM6_NEHALEM:
5621 	case INTEL_FAM6_NEHALEM_EP:
5622 	case INTEL_FAM6_NEHALEM_EX:
5623 		memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
5624 		       sizeof(hw_cache_event_ids));
5625 		memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
5626 		       sizeof(hw_cache_extra_regs));
5627 
5628 		intel_pmu_lbr_init_nhm();
5629 
5630 		x86_pmu.event_constraints = intel_nehalem_event_constraints;
5631 		x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
5632 		x86_pmu.enable_all = intel_pmu_nhm_enable_all;
5633 		x86_pmu.extra_regs = intel_nehalem_extra_regs;
5634 		x86_pmu.limit_period = nhm_limit_period;
5635 
5636 		mem_attr = nhm_mem_events_attrs;
5637 
5638 		/* UOPS_ISSUED.STALLED_CYCLES */
5639 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
5640 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
5641 		/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
5642 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
5643 			X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
5644 
5645 		intel_pmu_pebs_data_source_nhm();
5646 		x86_add_quirk(intel_nehalem_quirk);
5647 		x86_pmu.pebs_no_tlb = 1;
5648 		extra_attr = nhm_format_attr;
5649 
5650 		pr_cont("Nehalem events, ");
5651 		name = "nehalem";
5652 		break;
5653 
5654 	case INTEL_FAM6_ATOM_BONNELL:
5655 	case INTEL_FAM6_ATOM_BONNELL_MID:
5656 	case INTEL_FAM6_ATOM_SALTWELL:
5657 	case INTEL_FAM6_ATOM_SALTWELL_MID:
5658 	case INTEL_FAM6_ATOM_SALTWELL_TABLET:
5659 		memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
5660 		       sizeof(hw_cache_event_ids));
5661 
5662 		intel_pmu_lbr_init_atom();
5663 
5664 		x86_pmu.event_constraints = intel_gen_event_constraints;
5665 		x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
5666 		x86_pmu.pebs_aliases = intel_pebs_aliases_core2;
5667 		pr_cont("Atom events, ");
5668 		name = "bonnell";
5669 		break;
5670 
5671 	case INTEL_FAM6_ATOM_SILVERMONT:
5672 	case INTEL_FAM6_ATOM_SILVERMONT_D:
5673 	case INTEL_FAM6_ATOM_SILVERMONT_MID:
5674 	case INTEL_FAM6_ATOM_AIRMONT:
5675 	case INTEL_FAM6_ATOM_AIRMONT_MID:
5676 		memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
5677 			sizeof(hw_cache_event_ids));
5678 		memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
5679 		       sizeof(hw_cache_extra_regs));
5680 
5681 		intel_pmu_lbr_init_slm();
5682 
5683 		x86_pmu.event_constraints = intel_slm_event_constraints;
5684 		x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
5685 		x86_pmu.extra_regs = intel_slm_extra_regs;
5686 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5687 		td_attr = slm_events_attrs;
5688 		extra_attr = slm_format_attr;
5689 		pr_cont("Silvermont events, ");
5690 		name = "silvermont";
5691 		break;
5692 
5693 	case INTEL_FAM6_ATOM_GOLDMONT:
5694 	case INTEL_FAM6_ATOM_GOLDMONT_D:
5695 		memcpy(hw_cache_event_ids, glm_hw_cache_event_ids,
5696 		       sizeof(hw_cache_event_ids));
5697 		memcpy(hw_cache_extra_regs, glm_hw_cache_extra_regs,
5698 		       sizeof(hw_cache_extra_regs));
5699 
5700 		intel_pmu_lbr_init_skl();
5701 
5702 		x86_pmu.event_constraints = intel_slm_event_constraints;
5703 		x86_pmu.pebs_constraints = intel_glm_pebs_event_constraints;
5704 		x86_pmu.extra_regs = intel_glm_extra_regs;
5705 		/*
5706 		 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
5707 		 * for precise cycles.
5708 		 * :pp is identical to :ppp
5709 		 */
5710 		x86_pmu.pebs_aliases = NULL;
5711 		x86_pmu.pebs_prec_dist = true;
5712 		x86_pmu.lbr_pt_coexist = true;
5713 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5714 		td_attr = glm_events_attrs;
5715 		extra_attr = slm_format_attr;
5716 		pr_cont("Goldmont events, ");
5717 		name = "goldmont";
5718 		break;
5719 
5720 	case INTEL_FAM6_ATOM_GOLDMONT_PLUS:
5721 		memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
5722 		       sizeof(hw_cache_event_ids));
5723 		memcpy(hw_cache_extra_regs, glp_hw_cache_extra_regs,
5724 		       sizeof(hw_cache_extra_regs));
5725 
5726 		intel_pmu_lbr_init_skl();
5727 
5728 		x86_pmu.event_constraints = intel_slm_event_constraints;
5729 		x86_pmu.extra_regs = intel_glm_extra_regs;
5730 		/*
5731 		 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
5732 		 * for precise cycles.
5733 		 */
5734 		x86_pmu.pebs_aliases = NULL;
5735 		x86_pmu.pebs_prec_dist = true;
5736 		x86_pmu.lbr_pt_coexist = true;
5737 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5738 		x86_pmu.flags |= PMU_FL_PEBS_ALL;
5739 		x86_pmu.get_event_constraints = glp_get_event_constraints;
5740 		td_attr = glm_events_attrs;
5741 		/* Goldmont Plus has 4-wide pipeline */
5742 		event_attr_td_total_slots_scale_glm.event_str = "4";
5743 		extra_attr = slm_format_attr;
5744 		pr_cont("Goldmont plus events, ");
5745 		name = "goldmont_plus";
5746 		break;
5747 
5748 	case INTEL_FAM6_ATOM_TREMONT_D:
5749 	case INTEL_FAM6_ATOM_TREMONT:
5750 	case INTEL_FAM6_ATOM_TREMONT_L:
5751 		x86_pmu.late_ack = true;
5752 		memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
5753 		       sizeof(hw_cache_event_ids));
5754 		memcpy(hw_cache_extra_regs, tnt_hw_cache_extra_regs,
5755 		       sizeof(hw_cache_extra_regs));
5756 		hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
5757 
5758 		intel_pmu_lbr_init_skl();
5759 
5760 		x86_pmu.event_constraints = intel_slm_event_constraints;
5761 		x86_pmu.extra_regs = intel_tnt_extra_regs;
5762 		/*
5763 		 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
5764 		 * for precise cycles.
5765 		 */
5766 		x86_pmu.pebs_aliases = NULL;
5767 		x86_pmu.pebs_prec_dist = true;
5768 		x86_pmu.lbr_pt_coexist = true;
5769 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5770 		x86_pmu.get_event_constraints = tnt_get_event_constraints;
5771 		td_attr = tnt_events_attrs;
5772 		extra_attr = slm_format_attr;
5773 		pr_cont("Tremont events, ");
5774 		name = "Tremont";
5775 		break;
5776 
5777 	case INTEL_FAM6_WESTMERE:
5778 	case INTEL_FAM6_WESTMERE_EP:
5779 	case INTEL_FAM6_WESTMERE_EX:
5780 		memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
5781 		       sizeof(hw_cache_event_ids));
5782 		memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
5783 		       sizeof(hw_cache_extra_regs));
5784 
5785 		intel_pmu_lbr_init_nhm();
5786 
5787 		x86_pmu.event_constraints = intel_westmere_event_constraints;
5788 		x86_pmu.enable_all = intel_pmu_nhm_enable_all;
5789 		x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
5790 		x86_pmu.extra_regs = intel_westmere_extra_regs;
5791 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5792 
5793 		mem_attr = nhm_mem_events_attrs;
5794 
5795 		/* UOPS_ISSUED.STALLED_CYCLES */
5796 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
5797 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
5798 		/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
5799 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
5800 			X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
5801 
5802 		intel_pmu_pebs_data_source_nhm();
5803 		extra_attr = nhm_format_attr;
5804 		pr_cont("Westmere events, ");
5805 		name = "westmere";
5806 		break;
5807 
5808 	case INTEL_FAM6_SANDYBRIDGE:
5809 	case INTEL_FAM6_SANDYBRIDGE_X:
5810 		x86_add_quirk(intel_sandybridge_quirk);
5811 		x86_add_quirk(intel_ht_bug);
5812 		memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
5813 		       sizeof(hw_cache_event_ids));
5814 		memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
5815 		       sizeof(hw_cache_extra_regs));
5816 
5817 		intel_pmu_lbr_init_snb();
5818 
5819 		x86_pmu.event_constraints = intel_snb_event_constraints;
5820 		x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
5821 		x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
5822 		if (boot_cpu_data.x86_model == INTEL_FAM6_SANDYBRIDGE_X)
5823 			x86_pmu.extra_regs = intel_snbep_extra_regs;
5824 		else
5825 			x86_pmu.extra_regs = intel_snb_extra_regs;
5826 
5827 
5828 		/* all extra regs are per-cpu when HT is on */
5829 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5830 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5831 
5832 		td_attr  = snb_events_attrs;
5833 		mem_attr = snb_mem_events_attrs;
5834 
5835 		/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
5836 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
5837 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
5838 		/* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
5839 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
5840 			X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
5841 
5842 		extra_attr = nhm_format_attr;
5843 
5844 		pr_cont("SandyBridge events, ");
5845 		name = "sandybridge";
5846 		break;
5847 
5848 	case INTEL_FAM6_IVYBRIDGE:
5849 	case INTEL_FAM6_IVYBRIDGE_X:
5850 		x86_add_quirk(intel_ht_bug);
5851 		memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
5852 		       sizeof(hw_cache_event_ids));
5853 		/* dTLB-load-misses on IVB is different than SNB */
5854 		hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
5855 
5856 		memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
5857 		       sizeof(hw_cache_extra_regs));
5858 
5859 		intel_pmu_lbr_init_snb();
5860 
5861 		x86_pmu.event_constraints = intel_ivb_event_constraints;
5862 		x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
5863 		x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
5864 		x86_pmu.pebs_prec_dist = true;
5865 		if (boot_cpu_data.x86_model == INTEL_FAM6_IVYBRIDGE_X)
5866 			x86_pmu.extra_regs = intel_snbep_extra_regs;
5867 		else
5868 			x86_pmu.extra_regs = intel_snb_extra_regs;
5869 		/* all extra regs are per-cpu when HT is on */
5870 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5871 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5872 
5873 		td_attr  = snb_events_attrs;
5874 		mem_attr = snb_mem_events_attrs;
5875 
5876 		/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
5877 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
5878 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
5879 
5880 		extra_attr = nhm_format_attr;
5881 
5882 		pr_cont("IvyBridge events, ");
5883 		name = "ivybridge";
5884 		break;
5885 
5886 
5887 	case INTEL_FAM6_HASWELL:
5888 	case INTEL_FAM6_HASWELL_X:
5889 	case INTEL_FAM6_HASWELL_L:
5890 	case INTEL_FAM6_HASWELL_G:
5891 		x86_add_quirk(intel_ht_bug);
5892 		x86_add_quirk(intel_pebs_isolation_quirk);
5893 		x86_pmu.late_ack = true;
5894 		memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
5895 		memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
5896 
5897 		intel_pmu_lbr_init_hsw();
5898 
5899 		x86_pmu.event_constraints = intel_hsw_event_constraints;
5900 		x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
5901 		x86_pmu.extra_regs = intel_snbep_extra_regs;
5902 		x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
5903 		x86_pmu.pebs_prec_dist = true;
5904 		/* all extra regs are per-cpu when HT is on */
5905 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5906 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5907 
5908 		x86_pmu.hw_config = hsw_hw_config;
5909 		x86_pmu.get_event_constraints = hsw_get_event_constraints;
5910 		x86_pmu.lbr_double_abort = true;
5911 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
5912 			hsw_format_attr : nhm_format_attr;
5913 		td_attr  = hsw_events_attrs;
5914 		mem_attr = hsw_mem_events_attrs;
5915 		tsx_attr = hsw_tsx_events_attrs;
5916 		pr_cont("Haswell events, ");
5917 		name = "haswell";
5918 		break;
5919 
5920 	case INTEL_FAM6_BROADWELL:
5921 	case INTEL_FAM6_BROADWELL_D:
5922 	case INTEL_FAM6_BROADWELL_G:
5923 	case INTEL_FAM6_BROADWELL_X:
5924 		x86_add_quirk(intel_pebs_isolation_quirk);
5925 		x86_pmu.late_ack = true;
5926 		memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
5927 		memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
5928 
5929 		/* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
5930 		hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
5931 									 BDW_L3_MISS|HSW_SNOOP_DRAM;
5932 		hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
5933 									  HSW_SNOOP_DRAM;
5934 		hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
5935 									     BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
5936 		hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
5937 									      BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
5938 
5939 		intel_pmu_lbr_init_hsw();
5940 
5941 		x86_pmu.event_constraints = intel_bdw_event_constraints;
5942 		x86_pmu.pebs_constraints = intel_bdw_pebs_event_constraints;
5943 		x86_pmu.extra_regs = intel_snbep_extra_regs;
5944 		x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
5945 		x86_pmu.pebs_prec_dist = true;
5946 		/* all extra regs are per-cpu when HT is on */
5947 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5948 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5949 
5950 		x86_pmu.hw_config = hsw_hw_config;
5951 		x86_pmu.get_event_constraints = hsw_get_event_constraints;
5952 		x86_pmu.limit_period = bdw_limit_period;
5953 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
5954 			hsw_format_attr : nhm_format_attr;
5955 		td_attr  = hsw_events_attrs;
5956 		mem_attr = hsw_mem_events_attrs;
5957 		tsx_attr = hsw_tsx_events_attrs;
5958 		pr_cont("Broadwell events, ");
5959 		name = "broadwell";
5960 		break;
5961 
5962 	case INTEL_FAM6_XEON_PHI_KNL:
5963 	case INTEL_FAM6_XEON_PHI_KNM:
5964 		memcpy(hw_cache_event_ids,
5965 		       slm_hw_cache_event_ids, sizeof(hw_cache_event_ids));
5966 		memcpy(hw_cache_extra_regs,
5967 		       knl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
5968 		intel_pmu_lbr_init_knl();
5969 
5970 		x86_pmu.event_constraints = intel_slm_event_constraints;
5971 		x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
5972 		x86_pmu.extra_regs = intel_knl_extra_regs;
5973 
5974 		/* all extra regs are per-cpu when HT is on */
5975 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5976 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5977 		extra_attr = slm_format_attr;
5978 		pr_cont("Knights Landing/Mill events, ");
5979 		name = "knights-landing";
5980 		break;
5981 
5982 	case INTEL_FAM6_SKYLAKE_X:
5983 		pmem = true;
5984 		fallthrough;
5985 	case INTEL_FAM6_SKYLAKE_L:
5986 	case INTEL_FAM6_SKYLAKE:
5987 	case INTEL_FAM6_KABYLAKE_L:
5988 	case INTEL_FAM6_KABYLAKE:
5989 	case INTEL_FAM6_COMETLAKE_L:
5990 	case INTEL_FAM6_COMETLAKE:
5991 		x86_add_quirk(intel_pebs_isolation_quirk);
5992 		x86_pmu.late_ack = true;
5993 		memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
5994 		memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
5995 		intel_pmu_lbr_init_skl();
5996 
5997 		/* INT_MISC.RECOVERY_CYCLES has umask 1 in Skylake */
5998 		event_attr_td_recovery_bubbles.event_str_noht =
5999 			"event=0xd,umask=0x1,cmask=1";
6000 		event_attr_td_recovery_bubbles.event_str_ht =
6001 			"event=0xd,umask=0x1,cmask=1,any=1";
6002 
6003 		x86_pmu.event_constraints = intel_skl_event_constraints;
6004 		x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints;
6005 		x86_pmu.extra_regs = intel_skl_extra_regs;
6006 		x86_pmu.pebs_aliases = intel_pebs_aliases_skl;
6007 		x86_pmu.pebs_prec_dist = true;
6008 		/* all extra regs are per-cpu when HT is on */
6009 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6010 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6011 
6012 		x86_pmu.hw_config = hsw_hw_config;
6013 		x86_pmu.get_event_constraints = hsw_get_event_constraints;
6014 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6015 			hsw_format_attr : nhm_format_attr;
6016 		extra_skl_attr = skl_format_attr;
6017 		td_attr  = hsw_events_attrs;
6018 		mem_attr = hsw_mem_events_attrs;
6019 		tsx_attr = hsw_tsx_events_attrs;
6020 		intel_pmu_pebs_data_source_skl(pmem);
6021 
6022 		/*
6023 		 * Processors with CPUID.RTM_ALWAYS_ABORT have TSX deprecated by default.
6024 		 * TSX force abort hooks are not required on these systems. Only deploy
6025 		 * workaround when microcode has not enabled X86_FEATURE_RTM_ALWAYS_ABORT.
6026 		 */
6027 		if (boot_cpu_has(X86_FEATURE_TSX_FORCE_ABORT) &&
6028 		   !boot_cpu_has(X86_FEATURE_RTM_ALWAYS_ABORT)) {
6029 			x86_pmu.flags |= PMU_FL_TFA;
6030 			x86_pmu.get_event_constraints = tfa_get_event_constraints;
6031 			x86_pmu.enable_all = intel_tfa_pmu_enable_all;
6032 			x86_pmu.commit_scheduling = intel_tfa_commit_scheduling;
6033 		}
6034 
6035 		pr_cont("Skylake events, ");
6036 		name = "skylake";
6037 		break;
6038 
6039 	case INTEL_FAM6_ICELAKE_X:
6040 	case INTEL_FAM6_ICELAKE_D:
6041 		pmem = true;
6042 		fallthrough;
6043 	case INTEL_FAM6_ICELAKE_L:
6044 	case INTEL_FAM6_ICELAKE:
6045 	case INTEL_FAM6_TIGERLAKE_L:
6046 	case INTEL_FAM6_TIGERLAKE:
6047 	case INTEL_FAM6_ROCKETLAKE:
6048 		x86_pmu.late_ack = true;
6049 		memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6050 		memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6051 		hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
6052 		intel_pmu_lbr_init_skl();
6053 
6054 		x86_pmu.event_constraints = intel_icl_event_constraints;
6055 		x86_pmu.pebs_constraints = intel_icl_pebs_event_constraints;
6056 		x86_pmu.extra_regs = intel_icl_extra_regs;
6057 		x86_pmu.pebs_aliases = NULL;
6058 		x86_pmu.pebs_prec_dist = true;
6059 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6060 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6061 
6062 		x86_pmu.hw_config = hsw_hw_config;
6063 		x86_pmu.get_event_constraints = icl_get_event_constraints;
6064 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6065 			hsw_format_attr : nhm_format_attr;
6066 		extra_skl_attr = skl_format_attr;
6067 		mem_attr = icl_events_attrs;
6068 		td_attr = icl_td_events_attrs;
6069 		tsx_attr = icl_tsx_events_attrs;
6070 		x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
6071 		x86_pmu.lbr_pt_coexist = true;
6072 		intel_pmu_pebs_data_source_skl(pmem);
6073 		x86_pmu.num_topdown_events = 4;
6074 		x86_pmu.update_topdown_event = icl_update_topdown_event;
6075 		x86_pmu.set_topdown_event_period = icl_set_topdown_event_period;
6076 		pr_cont("Icelake events, ");
6077 		name = "icelake";
6078 		break;
6079 
6080 	case INTEL_FAM6_SAPPHIRERAPIDS_X:
6081 		pmem = true;
6082 		x86_pmu.late_ack = true;
6083 		memcpy(hw_cache_event_ids, spr_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6084 		memcpy(hw_cache_extra_regs, spr_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6085 
6086 		x86_pmu.event_constraints = intel_spr_event_constraints;
6087 		x86_pmu.pebs_constraints = intel_spr_pebs_event_constraints;
6088 		x86_pmu.extra_regs = intel_spr_extra_regs;
6089 		x86_pmu.limit_period = spr_limit_period;
6090 		x86_pmu.pebs_aliases = NULL;
6091 		x86_pmu.pebs_prec_dist = true;
6092 		x86_pmu.pebs_block = true;
6093 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6094 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6095 		x86_pmu.flags |= PMU_FL_PEBS_ALL;
6096 		x86_pmu.flags |= PMU_FL_INSTR_LATENCY;
6097 		x86_pmu.flags |= PMU_FL_MEM_LOADS_AUX;
6098 
6099 		x86_pmu.hw_config = hsw_hw_config;
6100 		x86_pmu.get_event_constraints = spr_get_event_constraints;
6101 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6102 			hsw_format_attr : nhm_format_attr;
6103 		extra_skl_attr = skl_format_attr;
6104 		mem_attr = spr_events_attrs;
6105 		td_attr = spr_td_events_attrs;
6106 		tsx_attr = spr_tsx_events_attrs;
6107 		x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
6108 		x86_pmu.lbr_pt_coexist = true;
6109 		intel_pmu_pebs_data_source_skl(pmem);
6110 		x86_pmu.num_topdown_events = 8;
6111 		x86_pmu.update_topdown_event = icl_update_topdown_event;
6112 		x86_pmu.set_topdown_event_period = icl_set_topdown_event_period;
6113 		pr_cont("Sapphire Rapids events, ");
6114 		name = "sapphire_rapids";
6115 		break;
6116 
6117 	case INTEL_FAM6_ALDERLAKE:
6118 	case INTEL_FAM6_ALDERLAKE_L:
6119 		/*
6120 		 * Alder Lake has 2 types of CPU, core and atom.
6121 		 *
6122 		 * Initialize the common PerfMon capabilities here.
6123 		 */
6124 		x86_pmu.hybrid_pmu = kcalloc(X86_HYBRID_NUM_PMUS,
6125 					     sizeof(struct x86_hybrid_pmu),
6126 					     GFP_KERNEL);
6127 		if (!x86_pmu.hybrid_pmu)
6128 			return -ENOMEM;
6129 		static_branch_enable(&perf_is_hybrid);
6130 		x86_pmu.num_hybrid_pmus = X86_HYBRID_NUM_PMUS;
6131 
6132 		x86_pmu.late_ack = true;
6133 		x86_pmu.pebs_aliases = NULL;
6134 		x86_pmu.pebs_prec_dist = true;
6135 		x86_pmu.pebs_block = true;
6136 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6137 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6138 		x86_pmu.flags |= PMU_FL_PEBS_ALL;
6139 		x86_pmu.flags |= PMU_FL_INSTR_LATENCY;
6140 		x86_pmu.flags |= PMU_FL_MEM_LOADS_AUX;
6141 		x86_pmu.lbr_pt_coexist = true;
6142 		intel_pmu_pebs_data_source_skl(false);
6143 		x86_pmu.num_topdown_events = 8;
6144 		x86_pmu.update_topdown_event = adl_update_topdown_event;
6145 		x86_pmu.set_topdown_event_period = adl_set_topdown_event_period;
6146 
6147 		x86_pmu.filter_match = intel_pmu_filter_match;
6148 		x86_pmu.get_event_constraints = adl_get_event_constraints;
6149 		x86_pmu.hw_config = adl_hw_config;
6150 		x86_pmu.limit_period = spr_limit_period;
6151 		x86_pmu.get_hybrid_cpu_type = adl_get_hybrid_cpu_type;
6152 		/*
6153 		 * The rtm_abort_event is used to check whether to enable GPRs
6154 		 * for the RTM abort event. Atom doesn't have the RTM abort
6155 		 * event. There is no harmful to set it in the common
6156 		 * x86_pmu.rtm_abort_event.
6157 		 */
6158 		x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
6159 
6160 		td_attr = adl_hybrid_events_attrs;
6161 		mem_attr = adl_hybrid_mem_attrs;
6162 		tsx_attr = adl_hybrid_tsx_attrs;
6163 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6164 			adl_hybrid_extra_attr_rtm : adl_hybrid_extra_attr;
6165 
6166 		/* Initialize big core specific PerfMon capabilities.*/
6167 		pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX];
6168 		pmu->name = "cpu_core";
6169 		pmu->cpu_type = hybrid_big;
6170 		if (cpu_feature_enabled(X86_FEATURE_HYBRID_CPU)) {
6171 			pmu->num_counters = x86_pmu.num_counters + 2;
6172 			pmu->num_counters_fixed = x86_pmu.num_counters_fixed + 1;
6173 		} else {
6174 			pmu->num_counters = x86_pmu.num_counters;
6175 			pmu->num_counters_fixed = x86_pmu.num_counters_fixed;
6176 		}
6177 		pmu->max_pebs_events = min_t(unsigned, MAX_PEBS_EVENTS, pmu->num_counters);
6178 		pmu->unconstrained = (struct event_constraint)
6179 					__EVENT_CONSTRAINT(0, (1ULL << pmu->num_counters) - 1,
6180 							   0, pmu->num_counters, 0, 0);
6181 		pmu->intel_cap.capabilities = x86_pmu.intel_cap.capabilities;
6182 		pmu->intel_cap.perf_metrics = 1;
6183 		pmu->intel_cap.pebs_output_pt_available = 0;
6184 
6185 		memcpy(pmu->hw_cache_event_ids, spr_hw_cache_event_ids, sizeof(pmu->hw_cache_event_ids));
6186 		memcpy(pmu->hw_cache_extra_regs, spr_hw_cache_extra_regs, sizeof(pmu->hw_cache_extra_regs));
6187 		pmu->event_constraints = intel_spr_event_constraints;
6188 		pmu->pebs_constraints = intel_spr_pebs_event_constraints;
6189 		pmu->extra_regs = intel_spr_extra_regs;
6190 
6191 		/* Initialize Atom core specific PerfMon capabilities.*/
6192 		pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX];
6193 		pmu->name = "cpu_atom";
6194 		pmu->cpu_type = hybrid_small;
6195 		pmu->num_counters = x86_pmu.num_counters;
6196 		pmu->num_counters_fixed = x86_pmu.num_counters_fixed;
6197 		pmu->max_pebs_events = x86_pmu.max_pebs_events;
6198 		pmu->unconstrained = (struct event_constraint)
6199 					__EVENT_CONSTRAINT(0, (1ULL << pmu->num_counters) - 1,
6200 							   0, pmu->num_counters, 0, 0);
6201 		pmu->intel_cap.capabilities = x86_pmu.intel_cap.capabilities;
6202 		pmu->intel_cap.perf_metrics = 0;
6203 		pmu->intel_cap.pebs_output_pt_available = 1;
6204 
6205 		memcpy(pmu->hw_cache_event_ids, glp_hw_cache_event_ids, sizeof(pmu->hw_cache_event_ids));
6206 		memcpy(pmu->hw_cache_extra_regs, tnt_hw_cache_extra_regs, sizeof(pmu->hw_cache_extra_regs));
6207 		pmu->hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
6208 		pmu->event_constraints = intel_slm_event_constraints;
6209 		pmu->pebs_constraints = intel_grt_pebs_event_constraints;
6210 		pmu->extra_regs = intel_grt_extra_regs;
6211 		pr_cont("Alderlake Hybrid events, ");
6212 		name = "alderlake_hybrid";
6213 		break;
6214 
6215 	default:
6216 		switch (x86_pmu.version) {
6217 		case 1:
6218 			x86_pmu.event_constraints = intel_v1_event_constraints;
6219 			pr_cont("generic architected perfmon v1, ");
6220 			name = "generic_arch_v1";
6221 			break;
6222 		default:
6223 			/*
6224 			 * default constraints for v2 and up
6225 			 */
6226 			x86_pmu.event_constraints = intel_gen_event_constraints;
6227 			pr_cont("generic architected perfmon, ");
6228 			name = "generic_arch_v2+";
6229 			break;
6230 		}
6231 	}
6232 
6233 	snprintf(pmu_name_str, sizeof(pmu_name_str), "%s", name);
6234 
6235 	if (!is_hybrid()) {
6236 		group_events_td.attrs  = td_attr;
6237 		group_events_mem.attrs = mem_attr;
6238 		group_events_tsx.attrs = tsx_attr;
6239 		group_format_extra.attrs = extra_attr;
6240 		group_format_extra_skl.attrs = extra_skl_attr;
6241 
6242 		x86_pmu.attr_update = attr_update;
6243 	} else {
6244 		hybrid_group_events_td.attrs  = td_attr;
6245 		hybrid_group_events_mem.attrs = mem_attr;
6246 		hybrid_group_events_tsx.attrs = tsx_attr;
6247 		hybrid_group_format_extra.attrs = extra_attr;
6248 
6249 		x86_pmu.attr_update = hybrid_attr_update;
6250 	}
6251 
6252 	intel_pmu_check_num_counters(&x86_pmu.num_counters,
6253 				     &x86_pmu.num_counters_fixed,
6254 				     &x86_pmu.intel_ctrl,
6255 				     (u64)fixed_mask);
6256 
6257 	/* AnyThread may be deprecated on arch perfmon v5 or later */
6258 	if (x86_pmu.intel_cap.anythread_deprecated)
6259 		x86_pmu.format_attrs = intel_arch_formats_attr;
6260 
6261 	intel_pmu_check_event_constraints(x86_pmu.event_constraints,
6262 					  x86_pmu.num_counters,
6263 					  x86_pmu.num_counters_fixed,
6264 					  x86_pmu.intel_ctrl);
6265 	/*
6266 	 * Access LBR MSR may cause #GP under certain circumstances.
6267 	 * E.g. KVM doesn't support LBR MSR
6268 	 * Check all LBT MSR here.
6269 	 * Disable LBR access if any LBR MSRs can not be accessed.
6270 	 */
6271 	if (x86_pmu.lbr_tos && !check_msr(x86_pmu.lbr_tos, 0x3UL))
6272 		x86_pmu.lbr_nr = 0;
6273 	for (i = 0; i < x86_pmu.lbr_nr; i++) {
6274 		if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
6275 		      check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
6276 			x86_pmu.lbr_nr = 0;
6277 	}
6278 
6279 	if (x86_pmu.lbr_nr)
6280 		pr_cont("%d-deep LBR, ", x86_pmu.lbr_nr);
6281 
6282 	intel_pmu_check_extra_regs(x86_pmu.extra_regs);
6283 
6284 	/* Support full width counters using alternative MSR range */
6285 	if (x86_pmu.intel_cap.full_width_write) {
6286 		x86_pmu.max_period = x86_pmu.cntval_mask >> 1;
6287 		x86_pmu.perfctr = MSR_IA32_PMC0;
6288 		pr_cont("full-width counters, ");
6289 	}
6290 
6291 	if (!is_hybrid() && x86_pmu.intel_cap.perf_metrics)
6292 		x86_pmu.intel_ctrl |= 1ULL << GLOBAL_CTRL_EN_PERF_METRICS;
6293 
6294 	if (is_hybrid())
6295 		intel_pmu_check_hybrid_pmus((u64)fixed_mask);
6296 
6297 	return 0;
6298 }
6299 
6300 /*
6301  * HT bug: phase 2 init
6302  * Called once we have valid topology information to check
6303  * whether or not HT is enabled
6304  * If HT is off, then we disable the workaround
6305  */
6306 static __init int fixup_ht_bug(void)
6307 {
6308 	int c;
6309 	/*
6310 	 * problem not present on this CPU model, nothing to do
6311 	 */
6312 	if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED))
6313 		return 0;
6314 
6315 	if (topology_max_smt_threads() > 1) {
6316 		pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
6317 		return 0;
6318 	}
6319 
6320 	cpus_read_lock();
6321 
6322 	hardlockup_detector_perf_stop();
6323 
6324 	x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED);
6325 
6326 	x86_pmu.start_scheduling = NULL;
6327 	x86_pmu.commit_scheduling = NULL;
6328 	x86_pmu.stop_scheduling = NULL;
6329 
6330 	hardlockup_detector_perf_restart();
6331 
6332 	for_each_online_cpu(c)
6333 		free_excl_cntrs(&per_cpu(cpu_hw_events, c));
6334 
6335 	cpus_read_unlock();
6336 	pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
6337 	return 0;
6338 }
6339 subsys_initcall(fixup_ht_bug)
6340