xref: /linux/arch/x86/events/intel/core.c (revision b6ebbac51bedf9e98e837688bc838f400196da5e)
1 /*
2  * Per core/cpu state
3  *
4  * Used to coordinate shared registers between HT threads or
5  * among events on a single PMU.
6  */
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/stddef.h>
11 #include <linux/types.h>
12 #include <linux/init.h>
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/nmi.h>
16 
17 #include <asm/cpufeature.h>
18 #include <asm/hardirq.h>
19 #include <asm/intel-family.h>
20 #include <asm/apic.h>
21 
22 #include "../perf_event.h"
23 
24 /*
25  * Intel PerfMon, used on Core and later.
26  */
27 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
28 {
29 	[PERF_COUNT_HW_CPU_CYCLES]		= 0x003c,
30 	[PERF_COUNT_HW_INSTRUCTIONS]		= 0x00c0,
31 	[PERF_COUNT_HW_CACHE_REFERENCES]	= 0x4f2e,
32 	[PERF_COUNT_HW_CACHE_MISSES]		= 0x412e,
33 	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS]	= 0x00c4,
34 	[PERF_COUNT_HW_BRANCH_MISSES]		= 0x00c5,
35 	[PERF_COUNT_HW_BUS_CYCLES]		= 0x013c,
36 	[PERF_COUNT_HW_REF_CPU_CYCLES]		= 0x0300, /* pseudo-encoding */
37 };
38 
39 static struct event_constraint intel_core_event_constraints[] __read_mostly =
40 {
41 	INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
42 	INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
43 	INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
44 	INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
45 	INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
46 	INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
47 	EVENT_CONSTRAINT_END
48 };
49 
50 static struct event_constraint intel_core2_event_constraints[] __read_mostly =
51 {
52 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
53 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
54 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
55 	INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
56 	INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
57 	INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
58 	INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
59 	INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
60 	INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
61 	INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
62 	INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
63 	INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
64 	INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
65 	EVENT_CONSTRAINT_END
66 };
67 
68 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
69 {
70 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
71 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
72 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
73 	INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
74 	INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
75 	INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
76 	INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
77 	INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
78 	INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
79 	INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
80 	INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
81 	EVENT_CONSTRAINT_END
82 };
83 
84 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
85 {
86 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
87 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
88 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
89 	EVENT_EXTRA_END
90 };
91 
92 static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
93 {
94 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
95 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
96 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
97 	INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
98 	INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
99 	INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
100 	INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
101 	EVENT_CONSTRAINT_END
102 };
103 
104 static struct event_constraint intel_snb_event_constraints[] __read_mostly =
105 {
106 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
107 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
108 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
109 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
110 	INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
111 	INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
112 	INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
113 	INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
114 	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
115 	INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
116 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
117 	INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
118 
119 	/*
120 	 * When HT is off these events can only run on the bottom 4 counters
121 	 * When HT is on, they are impacted by the HT bug and require EXCL access
122 	 */
123 	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
124 	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
125 	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
126 	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
127 
128 	EVENT_CONSTRAINT_END
129 };
130 
131 static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
132 {
133 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
134 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
135 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
136 	INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
137 	INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMTPY */
138 	INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
139 	INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
140 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
141 	INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
142 	INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
143 	INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
144 	INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
145 	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
146 
147 	/*
148 	 * When HT is off these events can only run on the bottom 4 counters
149 	 * When HT is on, they are impacted by the HT bug and require EXCL access
150 	 */
151 	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
152 	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
153 	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
154 	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
155 
156 	EVENT_CONSTRAINT_END
157 };
158 
159 static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
160 {
161 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
162 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
163 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
164 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
165 	EVENT_EXTRA_END
166 };
167 
168 static struct event_constraint intel_v1_event_constraints[] __read_mostly =
169 {
170 	EVENT_CONSTRAINT_END
171 };
172 
173 static struct event_constraint intel_gen_event_constraints[] __read_mostly =
174 {
175 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
176 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
177 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
178 	EVENT_CONSTRAINT_END
179 };
180 
181 static struct event_constraint intel_slm_event_constraints[] __read_mostly =
182 {
183 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
184 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
185 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
186 	EVENT_CONSTRAINT_END
187 };
188 
189 static struct event_constraint intel_skl_event_constraints[] = {
190 	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
191 	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
192 	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
193 	INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2),	/* INST_RETIRED.PREC_DIST */
194 
195 	/*
196 	 * when HT is off, these can only run on the bottom 4 counters
197 	 */
198 	INTEL_EVENT_CONSTRAINT(0xd0, 0xf),	/* MEM_INST_RETIRED.* */
199 	INTEL_EVENT_CONSTRAINT(0xd1, 0xf),	/* MEM_LOAD_RETIRED.* */
200 	INTEL_EVENT_CONSTRAINT(0xd2, 0xf),	/* MEM_LOAD_L3_HIT_RETIRED.* */
201 	INTEL_EVENT_CONSTRAINT(0xcd, 0xf),	/* MEM_TRANS_RETIRED.* */
202 	INTEL_EVENT_CONSTRAINT(0xc6, 0xf),	/* FRONTEND_RETIRED.* */
203 
204 	EVENT_CONSTRAINT_END
205 };
206 
207 static struct extra_reg intel_knl_extra_regs[] __read_mostly = {
208 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x799ffbb6e7ull, RSP_0),
209 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x399ffbffe7ull, RSP_1),
210 	EVENT_EXTRA_END
211 };
212 
213 static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
214 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
215 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
216 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
217 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
218 	EVENT_EXTRA_END
219 };
220 
221 static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
222 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
223 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
224 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
225 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
226 	EVENT_EXTRA_END
227 };
228 
229 static struct extra_reg intel_skl_extra_regs[] __read_mostly = {
230 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
231 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
232 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
233 	/*
234 	 * Note the low 8 bits eventsel code is not a continuous field, containing
235 	 * some #GPing bits. These are masked out.
236 	 */
237 	INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
238 	EVENT_EXTRA_END
239 };
240 
241 EVENT_ATTR_STR(mem-loads,	mem_ld_nhm,	"event=0x0b,umask=0x10,ldlat=3");
242 EVENT_ATTR_STR(mem-loads,	mem_ld_snb,	"event=0xcd,umask=0x1,ldlat=3");
243 EVENT_ATTR_STR(mem-stores,	mem_st_snb,	"event=0xcd,umask=0x2");
244 
245 static struct attribute *nhm_events_attrs[] = {
246 	EVENT_PTR(mem_ld_nhm),
247 	NULL,
248 };
249 
250 /*
251  * topdown events for Intel Core CPUs.
252  *
253  * The events are all in slots, which is a free slot in a 4 wide
254  * pipeline. Some events are already reported in slots, for cycle
255  * events we multiply by the pipeline width (4).
256  *
257  * With Hyper Threading on, topdown metrics are either summed or averaged
258  * between the threads of a core: (count_t0 + count_t1).
259  *
260  * For the average case the metric is always scaled to pipeline width,
261  * so we use factor 2 ((count_t0 + count_t1) / 2 * 4)
262  */
263 
264 EVENT_ATTR_STR_HT(topdown-total-slots, td_total_slots,
265 	"event=0x3c,umask=0x0",			/* cpu_clk_unhalted.thread */
266 	"event=0x3c,umask=0x0,any=1");		/* cpu_clk_unhalted.thread_any */
267 EVENT_ATTR_STR_HT(topdown-total-slots.scale, td_total_slots_scale, "4", "2");
268 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued,
269 	"event=0xe,umask=0x1");			/* uops_issued.any */
270 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired,
271 	"event=0xc2,umask=0x2");		/* uops_retired.retire_slots */
272 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles,
273 	"event=0x9c,umask=0x1");		/* idq_uops_not_delivered_core */
274 EVENT_ATTR_STR_HT(topdown-recovery-bubbles, td_recovery_bubbles,
275 	"event=0xd,umask=0x3,cmask=1",		/* int_misc.recovery_cycles */
276 	"event=0xd,umask=0x3,cmask=1,any=1");	/* int_misc.recovery_cycles_any */
277 EVENT_ATTR_STR_HT(topdown-recovery-bubbles.scale, td_recovery_bubbles_scale,
278 	"4", "2");
279 
280 static struct attribute *snb_events_attrs[] = {
281 	EVENT_PTR(mem_ld_snb),
282 	EVENT_PTR(mem_st_snb),
283 	EVENT_PTR(td_slots_issued),
284 	EVENT_PTR(td_slots_retired),
285 	EVENT_PTR(td_fetch_bubbles),
286 	EVENT_PTR(td_total_slots),
287 	EVENT_PTR(td_total_slots_scale),
288 	EVENT_PTR(td_recovery_bubbles),
289 	EVENT_PTR(td_recovery_bubbles_scale),
290 	NULL,
291 };
292 
293 static struct event_constraint intel_hsw_event_constraints[] = {
294 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
295 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
296 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
297 	INTEL_UEVENT_CONSTRAINT(0x148, 0x4),	/* L1D_PEND_MISS.PENDING */
298 	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
299 	INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
300 	/* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
301 	INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
302 	/* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
303 	INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
304 	/* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
305 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
306 
307 	/*
308 	 * When HT is off these events can only run on the bottom 4 counters
309 	 * When HT is on, they are impacted by the HT bug and require EXCL access
310 	 */
311 	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
312 	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
313 	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
314 	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
315 
316 	EVENT_CONSTRAINT_END
317 };
318 
319 static struct event_constraint intel_bdw_event_constraints[] = {
320 	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
321 	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
322 	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
323 	INTEL_UEVENT_CONSTRAINT(0x148, 0x4),	/* L1D_PEND_MISS.PENDING */
324 	INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4),	/* CYCLE_ACTIVITY.CYCLES_L1D_MISS */
325 	/*
326 	 * when HT is off, these can only run on the bottom 4 counters
327 	 */
328 	INTEL_EVENT_CONSTRAINT(0xd0, 0xf),	/* MEM_INST_RETIRED.* */
329 	INTEL_EVENT_CONSTRAINT(0xd1, 0xf),	/* MEM_LOAD_RETIRED.* */
330 	INTEL_EVENT_CONSTRAINT(0xd2, 0xf),	/* MEM_LOAD_L3_HIT_RETIRED.* */
331 	INTEL_EVENT_CONSTRAINT(0xcd, 0xf),	/* MEM_TRANS_RETIRED.* */
332 	EVENT_CONSTRAINT_END
333 };
334 
335 static u64 intel_pmu_event_map(int hw_event)
336 {
337 	return intel_perfmon_event_map[hw_event];
338 }
339 
340 /*
341  * Notes on the events:
342  * - data reads do not include code reads (comparable to earlier tables)
343  * - data counts include speculative execution (except L1 write, dtlb, bpu)
344  * - remote node access includes remote memory, remote cache, remote mmio.
345  * - prefetches are not included in the counts.
346  * - icache miss does not include decoded icache
347  */
348 
349 #define SKL_DEMAND_DATA_RD		BIT_ULL(0)
350 #define SKL_DEMAND_RFO			BIT_ULL(1)
351 #define SKL_ANY_RESPONSE		BIT_ULL(16)
352 #define SKL_SUPPLIER_NONE		BIT_ULL(17)
353 #define SKL_L3_MISS_LOCAL_DRAM		BIT_ULL(26)
354 #define SKL_L3_MISS_REMOTE_HOP0_DRAM	BIT_ULL(27)
355 #define SKL_L3_MISS_REMOTE_HOP1_DRAM	BIT_ULL(28)
356 #define SKL_L3_MISS_REMOTE_HOP2P_DRAM	BIT_ULL(29)
357 #define SKL_L3_MISS			(SKL_L3_MISS_LOCAL_DRAM| \
358 					 SKL_L3_MISS_REMOTE_HOP0_DRAM| \
359 					 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
360 					 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
361 #define SKL_SPL_HIT			BIT_ULL(30)
362 #define SKL_SNOOP_NONE			BIT_ULL(31)
363 #define SKL_SNOOP_NOT_NEEDED		BIT_ULL(32)
364 #define SKL_SNOOP_MISS			BIT_ULL(33)
365 #define SKL_SNOOP_HIT_NO_FWD		BIT_ULL(34)
366 #define SKL_SNOOP_HIT_WITH_FWD		BIT_ULL(35)
367 #define SKL_SNOOP_HITM			BIT_ULL(36)
368 #define SKL_SNOOP_NON_DRAM		BIT_ULL(37)
369 #define SKL_ANY_SNOOP			(SKL_SPL_HIT|SKL_SNOOP_NONE| \
370 					 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
371 					 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
372 					 SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM)
373 #define SKL_DEMAND_READ			SKL_DEMAND_DATA_RD
374 #define SKL_SNOOP_DRAM			(SKL_SNOOP_NONE| \
375 					 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
376 					 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
377 					 SKL_SNOOP_HITM|SKL_SPL_HIT)
378 #define SKL_DEMAND_WRITE		SKL_DEMAND_RFO
379 #define SKL_LLC_ACCESS			SKL_ANY_RESPONSE
380 #define SKL_L3_MISS_REMOTE		(SKL_L3_MISS_REMOTE_HOP0_DRAM| \
381 					 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
382 					 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
383 
384 static __initconst const u64 skl_hw_cache_event_ids
385 				[PERF_COUNT_HW_CACHE_MAX]
386 				[PERF_COUNT_HW_CACHE_OP_MAX]
387 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
388 {
389  [ C(L1D ) ] = {
390 	[ C(OP_READ) ] = {
391 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_INST_RETIRED.ALL_LOADS */
392 		[ C(RESULT_MISS)   ] = 0x151,	/* L1D.REPLACEMENT */
393 	},
394 	[ C(OP_WRITE) ] = {
395 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_INST_RETIRED.ALL_STORES */
396 		[ C(RESULT_MISS)   ] = 0x0,
397 	},
398 	[ C(OP_PREFETCH) ] = {
399 		[ C(RESULT_ACCESS) ] = 0x0,
400 		[ C(RESULT_MISS)   ] = 0x0,
401 	},
402  },
403  [ C(L1I ) ] = {
404 	[ C(OP_READ) ] = {
405 		[ C(RESULT_ACCESS) ] = 0x0,
406 		[ C(RESULT_MISS)   ] = 0x283,	/* ICACHE_64B.MISS */
407 	},
408 	[ C(OP_WRITE) ] = {
409 		[ C(RESULT_ACCESS) ] = -1,
410 		[ C(RESULT_MISS)   ] = -1,
411 	},
412 	[ C(OP_PREFETCH) ] = {
413 		[ C(RESULT_ACCESS) ] = 0x0,
414 		[ C(RESULT_MISS)   ] = 0x0,
415 	},
416  },
417  [ C(LL  ) ] = {
418 	[ C(OP_READ) ] = {
419 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
420 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
421 	},
422 	[ C(OP_WRITE) ] = {
423 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
424 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
425 	},
426 	[ C(OP_PREFETCH) ] = {
427 		[ C(RESULT_ACCESS) ] = 0x0,
428 		[ C(RESULT_MISS)   ] = 0x0,
429 	},
430  },
431  [ C(DTLB) ] = {
432 	[ C(OP_READ) ] = {
433 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_INST_RETIRED.ALL_LOADS */
434 		[ C(RESULT_MISS)   ] = 0x608,	/* DTLB_LOAD_MISSES.WALK_COMPLETED */
435 	},
436 	[ C(OP_WRITE) ] = {
437 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_INST_RETIRED.ALL_STORES */
438 		[ C(RESULT_MISS)   ] = 0x649,	/* DTLB_STORE_MISSES.WALK_COMPLETED */
439 	},
440 	[ C(OP_PREFETCH) ] = {
441 		[ C(RESULT_ACCESS) ] = 0x0,
442 		[ C(RESULT_MISS)   ] = 0x0,
443 	},
444  },
445  [ C(ITLB) ] = {
446 	[ C(OP_READ) ] = {
447 		[ C(RESULT_ACCESS) ] = 0x2085,	/* ITLB_MISSES.STLB_HIT */
448 		[ C(RESULT_MISS)   ] = 0xe85,	/* ITLB_MISSES.WALK_COMPLETED */
449 	},
450 	[ C(OP_WRITE) ] = {
451 		[ C(RESULT_ACCESS) ] = -1,
452 		[ C(RESULT_MISS)   ] = -1,
453 	},
454 	[ C(OP_PREFETCH) ] = {
455 		[ C(RESULT_ACCESS) ] = -1,
456 		[ C(RESULT_MISS)   ] = -1,
457 	},
458  },
459  [ C(BPU ) ] = {
460 	[ C(OP_READ) ] = {
461 		[ C(RESULT_ACCESS) ] = 0xc4,	/* BR_INST_RETIRED.ALL_BRANCHES */
462 		[ C(RESULT_MISS)   ] = 0xc5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
463 	},
464 	[ C(OP_WRITE) ] = {
465 		[ C(RESULT_ACCESS) ] = -1,
466 		[ C(RESULT_MISS)   ] = -1,
467 	},
468 	[ C(OP_PREFETCH) ] = {
469 		[ C(RESULT_ACCESS) ] = -1,
470 		[ C(RESULT_MISS)   ] = -1,
471 	},
472  },
473  [ C(NODE) ] = {
474 	[ C(OP_READ) ] = {
475 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
476 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
477 	},
478 	[ C(OP_WRITE) ] = {
479 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
480 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
481 	},
482 	[ C(OP_PREFETCH) ] = {
483 		[ C(RESULT_ACCESS) ] = 0x0,
484 		[ C(RESULT_MISS)   ] = 0x0,
485 	},
486  },
487 };
488 
489 static __initconst const u64 skl_hw_cache_extra_regs
490 				[PERF_COUNT_HW_CACHE_MAX]
491 				[PERF_COUNT_HW_CACHE_OP_MAX]
492 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
493 {
494  [ C(LL  ) ] = {
495 	[ C(OP_READ) ] = {
496 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
497 				       SKL_LLC_ACCESS|SKL_ANY_SNOOP,
498 		[ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
499 				       SKL_L3_MISS|SKL_ANY_SNOOP|
500 				       SKL_SUPPLIER_NONE,
501 	},
502 	[ C(OP_WRITE) ] = {
503 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
504 				       SKL_LLC_ACCESS|SKL_ANY_SNOOP,
505 		[ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
506 				       SKL_L3_MISS|SKL_ANY_SNOOP|
507 				       SKL_SUPPLIER_NONE,
508 	},
509 	[ C(OP_PREFETCH) ] = {
510 		[ C(RESULT_ACCESS) ] = 0x0,
511 		[ C(RESULT_MISS)   ] = 0x0,
512 	},
513  },
514  [ C(NODE) ] = {
515 	[ C(OP_READ) ] = {
516 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
517 				       SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
518 		[ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
519 				       SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
520 	},
521 	[ C(OP_WRITE) ] = {
522 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
523 				       SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
524 		[ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
525 				       SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
526 	},
527 	[ C(OP_PREFETCH) ] = {
528 		[ C(RESULT_ACCESS) ] = 0x0,
529 		[ C(RESULT_MISS)   ] = 0x0,
530 	},
531  },
532 };
533 
534 #define SNB_DMND_DATA_RD	(1ULL << 0)
535 #define SNB_DMND_RFO		(1ULL << 1)
536 #define SNB_DMND_IFETCH		(1ULL << 2)
537 #define SNB_DMND_WB		(1ULL << 3)
538 #define SNB_PF_DATA_RD		(1ULL << 4)
539 #define SNB_PF_RFO		(1ULL << 5)
540 #define SNB_PF_IFETCH		(1ULL << 6)
541 #define SNB_LLC_DATA_RD		(1ULL << 7)
542 #define SNB_LLC_RFO		(1ULL << 8)
543 #define SNB_LLC_IFETCH		(1ULL << 9)
544 #define SNB_BUS_LOCKS		(1ULL << 10)
545 #define SNB_STRM_ST		(1ULL << 11)
546 #define SNB_OTHER		(1ULL << 15)
547 #define SNB_RESP_ANY		(1ULL << 16)
548 #define SNB_NO_SUPP		(1ULL << 17)
549 #define SNB_LLC_HITM		(1ULL << 18)
550 #define SNB_LLC_HITE		(1ULL << 19)
551 #define SNB_LLC_HITS		(1ULL << 20)
552 #define SNB_LLC_HITF		(1ULL << 21)
553 #define SNB_LOCAL		(1ULL << 22)
554 #define SNB_REMOTE		(0xffULL << 23)
555 #define SNB_SNP_NONE		(1ULL << 31)
556 #define SNB_SNP_NOT_NEEDED	(1ULL << 32)
557 #define SNB_SNP_MISS		(1ULL << 33)
558 #define SNB_NO_FWD		(1ULL << 34)
559 #define SNB_SNP_FWD		(1ULL << 35)
560 #define SNB_HITM		(1ULL << 36)
561 #define SNB_NON_DRAM		(1ULL << 37)
562 
563 #define SNB_DMND_READ		(SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
564 #define SNB_DMND_WRITE		(SNB_DMND_RFO|SNB_LLC_RFO)
565 #define SNB_DMND_PREFETCH	(SNB_PF_DATA_RD|SNB_PF_RFO)
566 
567 #define SNB_SNP_ANY		(SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
568 				 SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
569 				 SNB_HITM)
570 
571 #define SNB_DRAM_ANY		(SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
572 #define SNB_DRAM_REMOTE		(SNB_REMOTE|SNB_SNP_ANY)
573 
574 #define SNB_L3_ACCESS		SNB_RESP_ANY
575 #define SNB_L3_MISS		(SNB_DRAM_ANY|SNB_NON_DRAM)
576 
577 static __initconst const u64 snb_hw_cache_extra_regs
578 				[PERF_COUNT_HW_CACHE_MAX]
579 				[PERF_COUNT_HW_CACHE_OP_MAX]
580 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
581 {
582  [ C(LL  ) ] = {
583 	[ C(OP_READ) ] = {
584 		[ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
585 		[ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_L3_MISS,
586 	},
587 	[ C(OP_WRITE) ] = {
588 		[ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
589 		[ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_L3_MISS,
590 	},
591 	[ C(OP_PREFETCH) ] = {
592 		[ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
593 		[ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
594 	},
595  },
596  [ C(NODE) ] = {
597 	[ C(OP_READ) ] = {
598 		[ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
599 		[ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
600 	},
601 	[ C(OP_WRITE) ] = {
602 		[ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
603 		[ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
604 	},
605 	[ C(OP_PREFETCH) ] = {
606 		[ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
607 		[ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
608 	},
609  },
610 };
611 
612 static __initconst const u64 snb_hw_cache_event_ids
613 				[PERF_COUNT_HW_CACHE_MAX]
614 				[PERF_COUNT_HW_CACHE_OP_MAX]
615 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
616 {
617  [ C(L1D) ] = {
618 	[ C(OP_READ) ] = {
619 		[ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS        */
620 		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPLACEMENT              */
621 	},
622 	[ C(OP_WRITE) ] = {
623 		[ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES       */
624 		[ C(RESULT_MISS)   ] = 0x0851, /* L1D.ALL_M_REPLACEMENT        */
625 	},
626 	[ C(OP_PREFETCH) ] = {
627 		[ C(RESULT_ACCESS) ] = 0x0,
628 		[ C(RESULT_MISS)   ] = 0x024e, /* HW_PRE_REQ.DL1_MISS          */
629 	},
630  },
631  [ C(L1I ) ] = {
632 	[ C(OP_READ) ] = {
633 		[ C(RESULT_ACCESS) ] = 0x0,
634 		[ C(RESULT_MISS)   ] = 0x0280, /* ICACHE.MISSES */
635 	},
636 	[ C(OP_WRITE) ] = {
637 		[ C(RESULT_ACCESS) ] = -1,
638 		[ C(RESULT_MISS)   ] = -1,
639 	},
640 	[ C(OP_PREFETCH) ] = {
641 		[ C(RESULT_ACCESS) ] = 0x0,
642 		[ C(RESULT_MISS)   ] = 0x0,
643 	},
644  },
645  [ C(LL  ) ] = {
646 	[ C(OP_READ) ] = {
647 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
648 		[ C(RESULT_ACCESS) ] = 0x01b7,
649 		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
650 		[ C(RESULT_MISS)   ] = 0x01b7,
651 	},
652 	[ C(OP_WRITE) ] = {
653 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
654 		[ C(RESULT_ACCESS) ] = 0x01b7,
655 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
656 		[ C(RESULT_MISS)   ] = 0x01b7,
657 	},
658 	[ C(OP_PREFETCH) ] = {
659 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
660 		[ C(RESULT_ACCESS) ] = 0x01b7,
661 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
662 		[ C(RESULT_MISS)   ] = 0x01b7,
663 	},
664  },
665  [ C(DTLB) ] = {
666 	[ C(OP_READ) ] = {
667 		[ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
668 		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
669 	},
670 	[ C(OP_WRITE) ] = {
671 		[ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
672 		[ C(RESULT_MISS)   ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
673 	},
674 	[ C(OP_PREFETCH) ] = {
675 		[ C(RESULT_ACCESS) ] = 0x0,
676 		[ C(RESULT_MISS)   ] = 0x0,
677 	},
678  },
679  [ C(ITLB) ] = {
680 	[ C(OP_READ) ] = {
681 		[ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT         */
682 		[ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK    */
683 	},
684 	[ C(OP_WRITE) ] = {
685 		[ C(RESULT_ACCESS) ] = -1,
686 		[ C(RESULT_MISS)   ] = -1,
687 	},
688 	[ C(OP_PREFETCH) ] = {
689 		[ C(RESULT_ACCESS) ] = -1,
690 		[ C(RESULT_MISS)   ] = -1,
691 	},
692  },
693  [ C(BPU ) ] = {
694 	[ C(OP_READ) ] = {
695 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
696 		[ C(RESULT_MISS)   ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
697 	},
698 	[ C(OP_WRITE) ] = {
699 		[ C(RESULT_ACCESS) ] = -1,
700 		[ C(RESULT_MISS)   ] = -1,
701 	},
702 	[ C(OP_PREFETCH) ] = {
703 		[ C(RESULT_ACCESS) ] = -1,
704 		[ C(RESULT_MISS)   ] = -1,
705 	},
706  },
707  [ C(NODE) ] = {
708 	[ C(OP_READ) ] = {
709 		[ C(RESULT_ACCESS) ] = 0x01b7,
710 		[ C(RESULT_MISS)   ] = 0x01b7,
711 	},
712 	[ C(OP_WRITE) ] = {
713 		[ C(RESULT_ACCESS) ] = 0x01b7,
714 		[ C(RESULT_MISS)   ] = 0x01b7,
715 	},
716 	[ C(OP_PREFETCH) ] = {
717 		[ C(RESULT_ACCESS) ] = 0x01b7,
718 		[ C(RESULT_MISS)   ] = 0x01b7,
719 	},
720  },
721 
722 };
723 
724 /*
725  * Notes on the events:
726  * - data reads do not include code reads (comparable to earlier tables)
727  * - data counts include speculative execution (except L1 write, dtlb, bpu)
728  * - remote node access includes remote memory, remote cache, remote mmio.
729  * - prefetches are not included in the counts because they are not
730  *   reliably counted.
731  */
732 
733 #define HSW_DEMAND_DATA_RD		BIT_ULL(0)
734 #define HSW_DEMAND_RFO			BIT_ULL(1)
735 #define HSW_ANY_RESPONSE		BIT_ULL(16)
736 #define HSW_SUPPLIER_NONE		BIT_ULL(17)
737 #define HSW_L3_MISS_LOCAL_DRAM		BIT_ULL(22)
738 #define HSW_L3_MISS_REMOTE_HOP0		BIT_ULL(27)
739 #define HSW_L3_MISS_REMOTE_HOP1		BIT_ULL(28)
740 #define HSW_L3_MISS_REMOTE_HOP2P	BIT_ULL(29)
741 #define HSW_L3_MISS			(HSW_L3_MISS_LOCAL_DRAM| \
742 					 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
743 					 HSW_L3_MISS_REMOTE_HOP2P)
744 #define HSW_SNOOP_NONE			BIT_ULL(31)
745 #define HSW_SNOOP_NOT_NEEDED		BIT_ULL(32)
746 #define HSW_SNOOP_MISS			BIT_ULL(33)
747 #define HSW_SNOOP_HIT_NO_FWD		BIT_ULL(34)
748 #define HSW_SNOOP_HIT_WITH_FWD		BIT_ULL(35)
749 #define HSW_SNOOP_HITM			BIT_ULL(36)
750 #define HSW_SNOOP_NON_DRAM		BIT_ULL(37)
751 #define HSW_ANY_SNOOP			(HSW_SNOOP_NONE| \
752 					 HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
753 					 HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
754 					 HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
755 #define HSW_SNOOP_DRAM			(HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
756 #define HSW_DEMAND_READ			HSW_DEMAND_DATA_RD
757 #define HSW_DEMAND_WRITE		HSW_DEMAND_RFO
758 #define HSW_L3_MISS_REMOTE		(HSW_L3_MISS_REMOTE_HOP0|\
759 					 HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
760 #define HSW_LLC_ACCESS			HSW_ANY_RESPONSE
761 
762 #define BDW_L3_MISS_LOCAL		BIT(26)
763 #define BDW_L3_MISS			(BDW_L3_MISS_LOCAL| \
764 					 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
765 					 HSW_L3_MISS_REMOTE_HOP2P)
766 
767 
768 static __initconst const u64 hsw_hw_cache_event_ids
769 				[PERF_COUNT_HW_CACHE_MAX]
770 				[PERF_COUNT_HW_CACHE_OP_MAX]
771 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
772 {
773  [ C(L1D ) ] = {
774 	[ C(OP_READ) ] = {
775 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
776 		[ C(RESULT_MISS)   ] = 0x151,	/* L1D.REPLACEMENT */
777 	},
778 	[ C(OP_WRITE) ] = {
779 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
780 		[ C(RESULT_MISS)   ] = 0x0,
781 	},
782 	[ C(OP_PREFETCH) ] = {
783 		[ C(RESULT_ACCESS) ] = 0x0,
784 		[ C(RESULT_MISS)   ] = 0x0,
785 	},
786  },
787  [ C(L1I ) ] = {
788 	[ C(OP_READ) ] = {
789 		[ C(RESULT_ACCESS) ] = 0x0,
790 		[ C(RESULT_MISS)   ] = 0x280,	/* ICACHE.MISSES */
791 	},
792 	[ C(OP_WRITE) ] = {
793 		[ C(RESULT_ACCESS) ] = -1,
794 		[ C(RESULT_MISS)   ] = -1,
795 	},
796 	[ C(OP_PREFETCH) ] = {
797 		[ C(RESULT_ACCESS) ] = 0x0,
798 		[ C(RESULT_MISS)   ] = 0x0,
799 	},
800  },
801  [ C(LL  ) ] = {
802 	[ C(OP_READ) ] = {
803 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
804 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
805 	},
806 	[ C(OP_WRITE) ] = {
807 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
808 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
809 	},
810 	[ C(OP_PREFETCH) ] = {
811 		[ C(RESULT_ACCESS) ] = 0x0,
812 		[ C(RESULT_MISS)   ] = 0x0,
813 	},
814  },
815  [ C(DTLB) ] = {
816 	[ C(OP_READ) ] = {
817 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
818 		[ C(RESULT_MISS)   ] = 0x108,	/* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
819 	},
820 	[ C(OP_WRITE) ] = {
821 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
822 		[ C(RESULT_MISS)   ] = 0x149,	/* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
823 	},
824 	[ C(OP_PREFETCH) ] = {
825 		[ C(RESULT_ACCESS) ] = 0x0,
826 		[ C(RESULT_MISS)   ] = 0x0,
827 	},
828  },
829  [ C(ITLB) ] = {
830 	[ C(OP_READ) ] = {
831 		[ C(RESULT_ACCESS) ] = 0x6085,	/* ITLB_MISSES.STLB_HIT */
832 		[ C(RESULT_MISS)   ] = 0x185,	/* ITLB_MISSES.MISS_CAUSES_A_WALK */
833 	},
834 	[ C(OP_WRITE) ] = {
835 		[ C(RESULT_ACCESS) ] = -1,
836 		[ C(RESULT_MISS)   ] = -1,
837 	},
838 	[ C(OP_PREFETCH) ] = {
839 		[ C(RESULT_ACCESS) ] = -1,
840 		[ C(RESULT_MISS)   ] = -1,
841 	},
842  },
843  [ C(BPU ) ] = {
844 	[ C(OP_READ) ] = {
845 		[ C(RESULT_ACCESS) ] = 0xc4,	/* BR_INST_RETIRED.ALL_BRANCHES */
846 		[ C(RESULT_MISS)   ] = 0xc5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
847 	},
848 	[ C(OP_WRITE) ] = {
849 		[ C(RESULT_ACCESS) ] = -1,
850 		[ C(RESULT_MISS)   ] = -1,
851 	},
852 	[ C(OP_PREFETCH) ] = {
853 		[ C(RESULT_ACCESS) ] = -1,
854 		[ C(RESULT_MISS)   ] = -1,
855 	},
856  },
857  [ C(NODE) ] = {
858 	[ C(OP_READ) ] = {
859 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
860 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
861 	},
862 	[ C(OP_WRITE) ] = {
863 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
864 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
865 	},
866 	[ C(OP_PREFETCH) ] = {
867 		[ C(RESULT_ACCESS) ] = 0x0,
868 		[ C(RESULT_MISS)   ] = 0x0,
869 	},
870  },
871 };
872 
873 static __initconst const u64 hsw_hw_cache_extra_regs
874 				[PERF_COUNT_HW_CACHE_MAX]
875 				[PERF_COUNT_HW_CACHE_OP_MAX]
876 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
877 {
878  [ C(LL  ) ] = {
879 	[ C(OP_READ) ] = {
880 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
881 				       HSW_LLC_ACCESS,
882 		[ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
883 				       HSW_L3_MISS|HSW_ANY_SNOOP,
884 	},
885 	[ C(OP_WRITE) ] = {
886 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
887 				       HSW_LLC_ACCESS,
888 		[ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
889 				       HSW_L3_MISS|HSW_ANY_SNOOP,
890 	},
891 	[ C(OP_PREFETCH) ] = {
892 		[ C(RESULT_ACCESS) ] = 0x0,
893 		[ C(RESULT_MISS)   ] = 0x0,
894 	},
895  },
896  [ C(NODE) ] = {
897 	[ C(OP_READ) ] = {
898 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
899 				       HSW_L3_MISS_LOCAL_DRAM|
900 				       HSW_SNOOP_DRAM,
901 		[ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
902 				       HSW_L3_MISS_REMOTE|
903 				       HSW_SNOOP_DRAM,
904 	},
905 	[ C(OP_WRITE) ] = {
906 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
907 				       HSW_L3_MISS_LOCAL_DRAM|
908 				       HSW_SNOOP_DRAM,
909 		[ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
910 				       HSW_L3_MISS_REMOTE|
911 				       HSW_SNOOP_DRAM,
912 	},
913 	[ C(OP_PREFETCH) ] = {
914 		[ C(RESULT_ACCESS) ] = 0x0,
915 		[ C(RESULT_MISS)   ] = 0x0,
916 	},
917  },
918 };
919 
920 static __initconst const u64 westmere_hw_cache_event_ids
921 				[PERF_COUNT_HW_CACHE_MAX]
922 				[PERF_COUNT_HW_CACHE_OP_MAX]
923 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
924 {
925  [ C(L1D) ] = {
926 	[ C(OP_READ) ] = {
927 		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
928 		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
929 	},
930 	[ C(OP_WRITE) ] = {
931 		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
932 		[ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
933 	},
934 	[ C(OP_PREFETCH) ] = {
935 		[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
936 		[ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
937 	},
938  },
939  [ C(L1I ) ] = {
940 	[ C(OP_READ) ] = {
941 		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
942 		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
943 	},
944 	[ C(OP_WRITE) ] = {
945 		[ C(RESULT_ACCESS) ] = -1,
946 		[ C(RESULT_MISS)   ] = -1,
947 	},
948 	[ C(OP_PREFETCH) ] = {
949 		[ C(RESULT_ACCESS) ] = 0x0,
950 		[ C(RESULT_MISS)   ] = 0x0,
951 	},
952  },
953  [ C(LL  ) ] = {
954 	[ C(OP_READ) ] = {
955 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
956 		[ C(RESULT_ACCESS) ] = 0x01b7,
957 		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
958 		[ C(RESULT_MISS)   ] = 0x01b7,
959 	},
960 	/*
961 	 * Use RFO, not WRITEBACK, because a write miss would typically occur
962 	 * on RFO.
963 	 */
964 	[ C(OP_WRITE) ] = {
965 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
966 		[ C(RESULT_ACCESS) ] = 0x01b7,
967 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
968 		[ C(RESULT_MISS)   ] = 0x01b7,
969 	},
970 	[ C(OP_PREFETCH) ] = {
971 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
972 		[ C(RESULT_ACCESS) ] = 0x01b7,
973 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
974 		[ C(RESULT_MISS)   ] = 0x01b7,
975 	},
976  },
977  [ C(DTLB) ] = {
978 	[ C(OP_READ) ] = {
979 		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
980 		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
981 	},
982 	[ C(OP_WRITE) ] = {
983 		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
984 		[ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
985 	},
986 	[ C(OP_PREFETCH) ] = {
987 		[ C(RESULT_ACCESS) ] = 0x0,
988 		[ C(RESULT_MISS)   ] = 0x0,
989 	},
990  },
991  [ C(ITLB) ] = {
992 	[ C(OP_READ) ] = {
993 		[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
994 		[ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.ANY              */
995 	},
996 	[ C(OP_WRITE) ] = {
997 		[ C(RESULT_ACCESS) ] = -1,
998 		[ C(RESULT_MISS)   ] = -1,
999 	},
1000 	[ C(OP_PREFETCH) ] = {
1001 		[ C(RESULT_ACCESS) ] = -1,
1002 		[ C(RESULT_MISS)   ] = -1,
1003 	},
1004  },
1005  [ C(BPU ) ] = {
1006 	[ C(OP_READ) ] = {
1007 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1008 		[ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1009 	},
1010 	[ C(OP_WRITE) ] = {
1011 		[ C(RESULT_ACCESS) ] = -1,
1012 		[ C(RESULT_MISS)   ] = -1,
1013 	},
1014 	[ C(OP_PREFETCH) ] = {
1015 		[ C(RESULT_ACCESS) ] = -1,
1016 		[ C(RESULT_MISS)   ] = -1,
1017 	},
1018  },
1019  [ C(NODE) ] = {
1020 	[ C(OP_READ) ] = {
1021 		[ C(RESULT_ACCESS) ] = 0x01b7,
1022 		[ C(RESULT_MISS)   ] = 0x01b7,
1023 	},
1024 	[ C(OP_WRITE) ] = {
1025 		[ C(RESULT_ACCESS) ] = 0x01b7,
1026 		[ C(RESULT_MISS)   ] = 0x01b7,
1027 	},
1028 	[ C(OP_PREFETCH) ] = {
1029 		[ C(RESULT_ACCESS) ] = 0x01b7,
1030 		[ C(RESULT_MISS)   ] = 0x01b7,
1031 	},
1032  },
1033 };
1034 
1035 /*
1036  * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
1037  * See IA32 SDM Vol 3B 30.6.1.3
1038  */
1039 
1040 #define NHM_DMND_DATA_RD	(1 << 0)
1041 #define NHM_DMND_RFO		(1 << 1)
1042 #define NHM_DMND_IFETCH		(1 << 2)
1043 #define NHM_DMND_WB		(1 << 3)
1044 #define NHM_PF_DATA_RD		(1 << 4)
1045 #define NHM_PF_DATA_RFO		(1 << 5)
1046 #define NHM_PF_IFETCH		(1 << 6)
1047 #define NHM_OFFCORE_OTHER	(1 << 7)
1048 #define NHM_UNCORE_HIT		(1 << 8)
1049 #define NHM_OTHER_CORE_HIT_SNP	(1 << 9)
1050 #define NHM_OTHER_CORE_HITM	(1 << 10)
1051         			/* reserved */
1052 #define NHM_REMOTE_CACHE_FWD	(1 << 12)
1053 #define NHM_REMOTE_DRAM		(1 << 13)
1054 #define NHM_LOCAL_DRAM		(1 << 14)
1055 #define NHM_NON_DRAM		(1 << 15)
1056 
1057 #define NHM_LOCAL		(NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
1058 #define NHM_REMOTE		(NHM_REMOTE_DRAM)
1059 
1060 #define NHM_DMND_READ		(NHM_DMND_DATA_RD)
1061 #define NHM_DMND_WRITE		(NHM_DMND_RFO|NHM_DMND_WB)
1062 #define NHM_DMND_PREFETCH	(NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
1063 
1064 #define NHM_L3_HIT	(NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
1065 #define NHM_L3_MISS	(NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
1066 #define NHM_L3_ACCESS	(NHM_L3_HIT|NHM_L3_MISS)
1067 
1068 static __initconst const u64 nehalem_hw_cache_extra_regs
1069 				[PERF_COUNT_HW_CACHE_MAX]
1070 				[PERF_COUNT_HW_CACHE_OP_MAX]
1071 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1072 {
1073  [ C(LL  ) ] = {
1074 	[ C(OP_READ) ] = {
1075 		[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
1076 		[ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_L3_MISS,
1077 	},
1078 	[ C(OP_WRITE) ] = {
1079 		[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
1080 		[ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_L3_MISS,
1081 	},
1082 	[ C(OP_PREFETCH) ] = {
1083 		[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
1084 		[ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
1085 	},
1086  },
1087  [ C(NODE) ] = {
1088 	[ C(OP_READ) ] = {
1089 		[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
1090 		[ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_REMOTE,
1091 	},
1092 	[ C(OP_WRITE) ] = {
1093 		[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
1094 		[ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_REMOTE,
1095 	},
1096 	[ C(OP_PREFETCH) ] = {
1097 		[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
1098 		[ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_REMOTE,
1099 	},
1100  },
1101 };
1102 
1103 static __initconst const u64 nehalem_hw_cache_event_ids
1104 				[PERF_COUNT_HW_CACHE_MAX]
1105 				[PERF_COUNT_HW_CACHE_OP_MAX]
1106 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1107 {
1108  [ C(L1D) ] = {
1109 	[ C(OP_READ) ] = {
1110 		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1111 		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
1112 	},
1113 	[ C(OP_WRITE) ] = {
1114 		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1115 		[ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
1116 	},
1117 	[ C(OP_PREFETCH) ] = {
1118 		[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
1119 		[ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
1120 	},
1121  },
1122  [ C(L1I ) ] = {
1123 	[ C(OP_READ) ] = {
1124 		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
1125 		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
1126 	},
1127 	[ C(OP_WRITE) ] = {
1128 		[ C(RESULT_ACCESS) ] = -1,
1129 		[ C(RESULT_MISS)   ] = -1,
1130 	},
1131 	[ C(OP_PREFETCH) ] = {
1132 		[ C(RESULT_ACCESS) ] = 0x0,
1133 		[ C(RESULT_MISS)   ] = 0x0,
1134 	},
1135  },
1136  [ C(LL  ) ] = {
1137 	[ C(OP_READ) ] = {
1138 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1139 		[ C(RESULT_ACCESS) ] = 0x01b7,
1140 		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1141 		[ C(RESULT_MISS)   ] = 0x01b7,
1142 	},
1143 	/*
1144 	 * Use RFO, not WRITEBACK, because a write miss would typically occur
1145 	 * on RFO.
1146 	 */
1147 	[ C(OP_WRITE) ] = {
1148 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1149 		[ C(RESULT_ACCESS) ] = 0x01b7,
1150 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1151 		[ C(RESULT_MISS)   ] = 0x01b7,
1152 	},
1153 	[ C(OP_PREFETCH) ] = {
1154 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1155 		[ C(RESULT_ACCESS) ] = 0x01b7,
1156 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1157 		[ C(RESULT_MISS)   ] = 0x01b7,
1158 	},
1159  },
1160  [ C(DTLB) ] = {
1161 	[ C(OP_READ) ] = {
1162 		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI   (alias)  */
1163 		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
1164 	},
1165 	[ C(OP_WRITE) ] = {
1166 		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI   (alias)  */
1167 		[ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
1168 	},
1169 	[ C(OP_PREFETCH) ] = {
1170 		[ C(RESULT_ACCESS) ] = 0x0,
1171 		[ C(RESULT_MISS)   ] = 0x0,
1172 	},
1173  },
1174  [ C(ITLB) ] = {
1175 	[ C(OP_READ) ] = {
1176 		[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
1177 		[ C(RESULT_MISS)   ] = 0x20c8, /* ITLB_MISS_RETIRED            */
1178 	},
1179 	[ C(OP_WRITE) ] = {
1180 		[ C(RESULT_ACCESS) ] = -1,
1181 		[ C(RESULT_MISS)   ] = -1,
1182 	},
1183 	[ C(OP_PREFETCH) ] = {
1184 		[ C(RESULT_ACCESS) ] = -1,
1185 		[ C(RESULT_MISS)   ] = -1,
1186 	},
1187  },
1188  [ C(BPU ) ] = {
1189 	[ C(OP_READ) ] = {
1190 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1191 		[ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1192 	},
1193 	[ C(OP_WRITE) ] = {
1194 		[ C(RESULT_ACCESS) ] = -1,
1195 		[ C(RESULT_MISS)   ] = -1,
1196 	},
1197 	[ C(OP_PREFETCH) ] = {
1198 		[ C(RESULT_ACCESS) ] = -1,
1199 		[ C(RESULT_MISS)   ] = -1,
1200 	},
1201  },
1202  [ C(NODE) ] = {
1203 	[ C(OP_READ) ] = {
1204 		[ C(RESULT_ACCESS) ] = 0x01b7,
1205 		[ C(RESULT_MISS)   ] = 0x01b7,
1206 	},
1207 	[ C(OP_WRITE) ] = {
1208 		[ C(RESULT_ACCESS) ] = 0x01b7,
1209 		[ C(RESULT_MISS)   ] = 0x01b7,
1210 	},
1211 	[ C(OP_PREFETCH) ] = {
1212 		[ C(RESULT_ACCESS) ] = 0x01b7,
1213 		[ C(RESULT_MISS)   ] = 0x01b7,
1214 	},
1215  },
1216 };
1217 
1218 static __initconst const u64 core2_hw_cache_event_ids
1219 				[PERF_COUNT_HW_CACHE_MAX]
1220 				[PERF_COUNT_HW_CACHE_OP_MAX]
1221 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1222 {
1223  [ C(L1D) ] = {
1224 	[ C(OP_READ) ] = {
1225 		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI          */
1226 		[ C(RESULT_MISS)   ] = 0x0140, /* L1D_CACHE_LD.I_STATE       */
1227 	},
1228 	[ C(OP_WRITE) ] = {
1229 		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI          */
1230 		[ C(RESULT_MISS)   ] = 0x0141, /* L1D_CACHE_ST.I_STATE       */
1231 	},
1232 	[ C(OP_PREFETCH) ] = {
1233 		[ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS      */
1234 		[ C(RESULT_MISS)   ] = 0,
1235 	},
1236  },
1237  [ C(L1I ) ] = {
1238 	[ C(OP_READ) ] = {
1239 		[ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS                  */
1240 		[ C(RESULT_MISS)   ] = 0x0081, /* L1I.MISSES                 */
1241 	},
1242 	[ C(OP_WRITE) ] = {
1243 		[ C(RESULT_ACCESS) ] = -1,
1244 		[ C(RESULT_MISS)   ] = -1,
1245 	},
1246 	[ C(OP_PREFETCH) ] = {
1247 		[ C(RESULT_ACCESS) ] = 0,
1248 		[ C(RESULT_MISS)   ] = 0,
1249 	},
1250  },
1251  [ C(LL  ) ] = {
1252 	[ C(OP_READ) ] = {
1253 		[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1254 		[ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1255 	},
1256 	[ C(OP_WRITE) ] = {
1257 		[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1258 		[ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1259 	},
1260 	[ C(OP_PREFETCH) ] = {
1261 		[ C(RESULT_ACCESS) ] = 0,
1262 		[ C(RESULT_MISS)   ] = 0,
1263 	},
1264  },
1265  [ C(DTLB) ] = {
1266 	[ C(OP_READ) ] = {
1267 		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI  (alias) */
1268 		[ C(RESULT_MISS)   ] = 0x0208, /* DTLB_MISSES.MISS_LD        */
1269 	},
1270 	[ C(OP_WRITE) ] = {
1271 		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI  (alias) */
1272 		[ C(RESULT_MISS)   ] = 0x0808, /* DTLB_MISSES.MISS_ST        */
1273 	},
1274 	[ C(OP_PREFETCH) ] = {
1275 		[ C(RESULT_ACCESS) ] = 0,
1276 		[ C(RESULT_MISS)   ] = 0,
1277 	},
1278  },
1279  [ C(ITLB) ] = {
1280 	[ C(OP_READ) ] = {
1281 		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1282 		[ C(RESULT_MISS)   ] = 0x1282, /* ITLBMISSES                 */
1283 	},
1284 	[ C(OP_WRITE) ] = {
1285 		[ C(RESULT_ACCESS) ] = -1,
1286 		[ C(RESULT_MISS)   ] = -1,
1287 	},
1288 	[ C(OP_PREFETCH) ] = {
1289 		[ C(RESULT_ACCESS) ] = -1,
1290 		[ C(RESULT_MISS)   ] = -1,
1291 	},
1292  },
1293  [ C(BPU ) ] = {
1294 	[ C(OP_READ) ] = {
1295 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1296 		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1297 	},
1298 	[ C(OP_WRITE) ] = {
1299 		[ C(RESULT_ACCESS) ] = -1,
1300 		[ C(RESULT_MISS)   ] = -1,
1301 	},
1302 	[ C(OP_PREFETCH) ] = {
1303 		[ C(RESULT_ACCESS) ] = -1,
1304 		[ C(RESULT_MISS)   ] = -1,
1305 	},
1306  },
1307 };
1308 
1309 static __initconst const u64 atom_hw_cache_event_ids
1310 				[PERF_COUNT_HW_CACHE_MAX]
1311 				[PERF_COUNT_HW_CACHE_OP_MAX]
1312 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1313 {
1314  [ C(L1D) ] = {
1315 	[ C(OP_READ) ] = {
1316 		[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD               */
1317 		[ C(RESULT_MISS)   ] = 0,
1318 	},
1319 	[ C(OP_WRITE) ] = {
1320 		[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST               */
1321 		[ C(RESULT_MISS)   ] = 0,
1322 	},
1323 	[ C(OP_PREFETCH) ] = {
1324 		[ C(RESULT_ACCESS) ] = 0x0,
1325 		[ C(RESULT_MISS)   ] = 0,
1326 	},
1327  },
1328  [ C(L1I ) ] = {
1329 	[ C(OP_READ) ] = {
1330 		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                  */
1331 		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                 */
1332 	},
1333 	[ C(OP_WRITE) ] = {
1334 		[ C(RESULT_ACCESS) ] = -1,
1335 		[ C(RESULT_MISS)   ] = -1,
1336 	},
1337 	[ C(OP_PREFETCH) ] = {
1338 		[ C(RESULT_ACCESS) ] = 0,
1339 		[ C(RESULT_MISS)   ] = 0,
1340 	},
1341  },
1342  [ C(LL  ) ] = {
1343 	[ C(OP_READ) ] = {
1344 		[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1345 		[ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1346 	},
1347 	[ C(OP_WRITE) ] = {
1348 		[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1349 		[ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1350 	},
1351 	[ C(OP_PREFETCH) ] = {
1352 		[ C(RESULT_ACCESS) ] = 0,
1353 		[ C(RESULT_MISS)   ] = 0,
1354 	},
1355  },
1356  [ C(DTLB) ] = {
1357 	[ C(OP_READ) ] = {
1358 		[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI  (alias) */
1359 		[ C(RESULT_MISS)   ] = 0x0508, /* DTLB_MISSES.MISS_LD        */
1360 	},
1361 	[ C(OP_WRITE) ] = {
1362 		[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI  (alias) */
1363 		[ C(RESULT_MISS)   ] = 0x0608, /* DTLB_MISSES.MISS_ST        */
1364 	},
1365 	[ C(OP_PREFETCH) ] = {
1366 		[ C(RESULT_ACCESS) ] = 0,
1367 		[ C(RESULT_MISS)   ] = 0,
1368 	},
1369  },
1370  [ C(ITLB) ] = {
1371 	[ C(OP_READ) ] = {
1372 		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1373 		[ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES                */
1374 	},
1375 	[ C(OP_WRITE) ] = {
1376 		[ C(RESULT_ACCESS) ] = -1,
1377 		[ C(RESULT_MISS)   ] = -1,
1378 	},
1379 	[ C(OP_PREFETCH) ] = {
1380 		[ C(RESULT_ACCESS) ] = -1,
1381 		[ C(RESULT_MISS)   ] = -1,
1382 	},
1383  },
1384  [ C(BPU ) ] = {
1385 	[ C(OP_READ) ] = {
1386 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1387 		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1388 	},
1389 	[ C(OP_WRITE) ] = {
1390 		[ C(RESULT_ACCESS) ] = -1,
1391 		[ C(RESULT_MISS)   ] = -1,
1392 	},
1393 	[ C(OP_PREFETCH) ] = {
1394 		[ C(RESULT_ACCESS) ] = -1,
1395 		[ C(RESULT_MISS)   ] = -1,
1396 	},
1397  },
1398 };
1399 
1400 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_slm, "event=0x3c");
1401 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_slm, "2");
1402 /* no_alloc_cycles.not_delivered */
1403 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_slm,
1404 	       "event=0xca,umask=0x50");
1405 EVENT_ATTR_STR(topdown-fetch-bubbles.scale, td_fetch_bubbles_scale_slm, "2");
1406 /* uops_retired.all */
1407 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_slm,
1408 	       "event=0xc2,umask=0x10");
1409 /* uops_retired.all */
1410 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_slm,
1411 	       "event=0xc2,umask=0x10");
1412 
1413 static struct attribute *slm_events_attrs[] = {
1414 	EVENT_PTR(td_total_slots_slm),
1415 	EVENT_PTR(td_total_slots_scale_slm),
1416 	EVENT_PTR(td_fetch_bubbles_slm),
1417 	EVENT_PTR(td_fetch_bubbles_scale_slm),
1418 	EVENT_PTR(td_slots_issued_slm),
1419 	EVENT_PTR(td_slots_retired_slm),
1420 	NULL
1421 };
1422 
1423 static struct extra_reg intel_slm_extra_regs[] __read_mostly =
1424 {
1425 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1426 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
1427 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1),
1428 	EVENT_EXTRA_END
1429 };
1430 
1431 #define SLM_DMND_READ		SNB_DMND_DATA_RD
1432 #define SLM_DMND_WRITE		SNB_DMND_RFO
1433 #define SLM_DMND_PREFETCH	(SNB_PF_DATA_RD|SNB_PF_RFO)
1434 
1435 #define SLM_SNP_ANY		(SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
1436 #define SLM_LLC_ACCESS		SNB_RESP_ANY
1437 #define SLM_LLC_MISS		(SLM_SNP_ANY|SNB_NON_DRAM)
1438 
1439 static __initconst const u64 slm_hw_cache_extra_regs
1440 				[PERF_COUNT_HW_CACHE_MAX]
1441 				[PERF_COUNT_HW_CACHE_OP_MAX]
1442 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1443 {
1444  [ C(LL  ) ] = {
1445 	[ C(OP_READ) ] = {
1446 		[ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
1447 		[ C(RESULT_MISS)   ] = 0,
1448 	},
1449 	[ C(OP_WRITE) ] = {
1450 		[ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
1451 		[ C(RESULT_MISS)   ] = SLM_DMND_WRITE|SLM_LLC_MISS,
1452 	},
1453 	[ C(OP_PREFETCH) ] = {
1454 		[ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
1455 		[ C(RESULT_MISS)   ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
1456 	},
1457  },
1458 };
1459 
1460 static __initconst const u64 slm_hw_cache_event_ids
1461 				[PERF_COUNT_HW_CACHE_MAX]
1462 				[PERF_COUNT_HW_CACHE_OP_MAX]
1463 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1464 {
1465  [ C(L1D) ] = {
1466 	[ C(OP_READ) ] = {
1467 		[ C(RESULT_ACCESS) ] = 0,
1468 		[ C(RESULT_MISS)   ] = 0x0104, /* LD_DCU_MISS */
1469 	},
1470 	[ C(OP_WRITE) ] = {
1471 		[ C(RESULT_ACCESS) ] = 0,
1472 		[ C(RESULT_MISS)   ] = 0,
1473 	},
1474 	[ C(OP_PREFETCH) ] = {
1475 		[ C(RESULT_ACCESS) ] = 0,
1476 		[ C(RESULT_MISS)   ] = 0,
1477 	},
1478  },
1479  [ C(L1I ) ] = {
1480 	[ C(OP_READ) ] = {
1481 		[ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
1482 		[ C(RESULT_MISS)   ] = 0x0280, /* ICACGE.MISSES */
1483 	},
1484 	[ C(OP_WRITE) ] = {
1485 		[ C(RESULT_ACCESS) ] = -1,
1486 		[ C(RESULT_MISS)   ] = -1,
1487 	},
1488 	[ C(OP_PREFETCH) ] = {
1489 		[ C(RESULT_ACCESS) ] = 0,
1490 		[ C(RESULT_MISS)   ] = 0,
1491 	},
1492  },
1493  [ C(LL  ) ] = {
1494 	[ C(OP_READ) ] = {
1495 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1496 		[ C(RESULT_ACCESS) ] = 0x01b7,
1497 		[ C(RESULT_MISS)   ] = 0,
1498 	},
1499 	[ C(OP_WRITE) ] = {
1500 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1501 		[ C(RESULT_ACCESS) ] = 0x01b7,
1502 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1503 		[ C(RESULT_MISS)   ] = 0x01b7,
1504 	},
1505 	[ C(OP_PREFETCH) ] = {
1506 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1507 		[ C(RESULT_ACCESS) ] = 0x01b7,
1508 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1509 		[ C(RESULT_MISS)   ] = 0x01b7,
1510 	},
1511  },
1512  [ C(DTLB) ] = {
1513 	[ C(OP_READ) ] = {
1514 		[ C(RESULT_ACCESS) ] = 0,
1515 		[ C(RESULT_MISS)   ] = 0x0804, /* LD_DTLB_MISS */
1516 	},
1517 	[ C(OP_WRITE) ] = {
1518 		[ C(RESULT_ACCESS) ] = 0,
1519 		[ C(RESULT_MISS)   ] = 0,
1520 	},
1521 	[ C(OP_PREFETCH) ] = {
1522 		[ C(RESULT_ACCESS) ] = 0,
1523 		[ C(RESULT_MISS)   ] = 0,
1524 	},
1525  },
1526  [ C(ITLB) ] = {
1527 	[ C(OP_READ) ] = {
1528 		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1529 		[ C(RESULT_MISS)   ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
1530 	},
1531 	[ C(OP_WRITE) ] = {
1532 		[ C(RESULT_ACCESS) ] = -1,
1533 		[ C(RESULT_MISS)   ] = -1,
1534 	},
1535 	[ C(OP_PREFETCH) ] = {
1536 		[ C(RESULT_ACCESS) ] = -1,
1537 		[ C(RESULT_MISS)   ] = -1,
1538 	},
1539  },
1540  [ C(BPU ) ] = {
1541 	[ C(OP_READ) ] = {
1542 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1543 		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1544 	},
1545 	[ C(OP_WRITE) ] = {
1546 		[ C(RESULT_ACCESS) ] = -1,
1547 		[ C(RESULT_MISS)   ] = -1,
1548 	},
1549 	[ C(OP_PREFETCH) ] = {
1550 		[ C(RESULT_ACCESS) ] = -1,
1551 		[ C(RESULT_MISS)   ] = -1,
1552 	},
1553  },
1554 };
1555 
1556 static struct extra_reg intel_glm_extra_regs[] __read_mostly = {
1557 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1558 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x760005ffbfull, RSP_0),
1559 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x360005ffbfull, RSP_1),
1560 	EVENT_EXTRA_END
1561 };
1562 
1563 #define GLM_DEMAND_DATA_RD		BIT_ULL(0)
1564 #define GLM_DEMAND_RFO			BIT_ULL(1)
1565 #define GLM_ANY_RESPONSE		BIT_ULL(16)
1566 #define GLM_SNP_NONE_OR_MISS		BIT_ULL(33)
1567 #define GLM_DEMAND_READ			GLM_DEMAND_DATA_RD
1568 #define GLM_DEMAND_WRITE		GLM_DEMAND_RFO
1569 #define GLM_DEMAND_PREFETCH		(SNB_PF_DATA_RD|SNB_PF_RFO)
1570 #define GLM_LLC_ACCESS			GLM_ANY_RESPONSE
1571 #define GLM_SNP_ANY			(GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM)
1572 #define GLM_LLC_MISS			(GLM_SNP_ANY|SNB_NON_DRAM)
1573 
1574 static __initconst const u64 glm_hw_cache_event_ids
1575 				[PERF_COUNT_HW_CACHE_MAX]
1576 				[PERF_COUNT_HW_CACHE_OP_MAX]
1577 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1578 	[C(L1D)] = {
1579 		[C(OP_READ)] = {
1580 			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1581 			[C(RESULT_MISS)]	= 0x0,
1582 		},
1583 		[C(OP_WRITE)] = {
1584 			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1585 			[C(RESULT_MISS)]	= 0x0,
1586 		},
1587 		[C(OP_PREFETCH)] = {
1588 			[C(RESULT_ACCESS)]	= 0x0,
1589 			[C(RESULT_MISS)]	= 0x0,
1590 		},
1591 	},
1592 	[C(L1I)] = {
1593 		[C(OP_READ)] = {
1594 			[C(RESULT_ACCESS)]	= 0x0380,	/* ICACHE.ACCESSES */
1595 			[C(RESULT_MISS)]	= 0x0280,	/* ICACHE.MISSES */
1596 		},
1597 		[C(OP_WRITE)] = {
1598 			[C(RESULT_ACCESS)]	= -1,
1599 			[C(RESULT_MISS)]	= -1,
1600 		},
1601 		[C(OP_PREFETCH)] = {
1602 			[C(RESULT_ACCESS)]	= 0x0,
1603 			[C(RESULT_MISS)]	= 0x0,
1604 		},
1605 	},
1606 	[C(LL)] = {
1607 		[C(OP_READ)] = {
1608 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1609 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1610 		},
1611 		[C(OP_WRITE)] = {
1612 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1613 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1614 		},
1615 		[C(OP_PREFETCH)] = {
1616 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1617 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1618 		},
1619 	},
1620 	[C(DTLB)] = {
1621 		[C(OP_READ)] = {
1622 			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1623 			[C(RESULT_MISS)]	= 0x0,
1624 		},
1625 		[C(OP_WRITE)] = {
1626 			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1627 			[C(RESULT_MISS)]	= 0x0,
1628 		},
1629 		[C(OP_PREFETCH)] = {
1630 			[C(RESULT_ACCESS)]	= 0x0,
1631 			[C(RESULT_MISS)]	= 0x0,
1632 		},
1633 	},
1634 	[C(ITLB)] = {
1635 		[C(OP_READ)] = {
1636 			[C(RESULT_ACCESS)]	= 0x00c0,	/* INST_RETIRED.ANY_P */
1637 			[C(RESULT_MISS)]	= 0x0481,	/* ITLB.MISS */
1638 		},
1639 		[C(OP_WRITE)] = {
1640 			[C(RESULT_ACCESS)]	= -1,
1641 			[C(RESULT_MISS)]	= -1,
1642 		},
1643 		[C(OP_PREFETCH)] = {
1644 			[C(RESULT_ACCESS)]	= -1,
1645 			[C(RESULT_MISS)]	= -1,
1646 		},
1647 	},
1648 	[C(BPU)] = {
1649 		[C(OP_READ)] = {
1650 			[C(RESULT_ACCESS)]	= 0x00c4,	/* BR_INST_RETIRED.ALL_BRANCHES */
1651 			[C(RESULT_MISS)]	= 0x00c5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
1652 		},
1653 		[C(OP_WRITE)] = {
1654 			[C(RESULT_ACCESS)]	= -1,
1655 			[C(RESULT_MISS)]	= -1,
1656 		},
1657 		[C(OP_PREFETCH)] = {
1658 			[C(RESULT_ACCESS)]	= -1,
1659 			[C(RESULT_MISS)]	= -1,
1660 		},
1661 	},
1662 };
1663 
1664 static __initconst const u64 glm_hw_cache_extra_regs
1665 				[PERF_COUNT_HW_CACHE_MAX]
1666 				[PERF_COUNT_HW_CACHE_OP_MAX]
1667 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1668 	[C(LL)] = {
1669 		[C(OP_READ)] = {
1670 			[C(RESULT_ACCESS)]	= GLM_DEMAND_READ|
1671 						  GLM_LLC_ACCESS,
1672 			[C(RESULT_MISS)]	= GLM_DEMAND_READ|
1673 						  GLM_LLC_MISS,
1674 		},
1675 		[C(OP_WRITE)] = {
1676 			[C(RESULT_ACCESS)]	= GLM_DEMAND_WRITE|
1677 						  GLM_LLC_ACCESS,
1678 			[C(RESULT_MISS)]	= GLM_DEMAND_WRITE|
1679 						  GLM_LLC_MISS,
1680 		},
1681 		[C(OP_PREFETCH)] = {
1682 			[C(RESULT_ACCESS)]	= GLM_DEMAND_PREFETCH|
1683 						  GLM_LLC_ACCESS,
1684 			[C(RESULT_MISS)]	= GLM_DEMAND_PREFETCH|
1685 						  GLM_LLC_MISS,
1686 		},
1687 	},
1688 };
1689 
1690 #define KNL_OT_L2_HITE		BIT_ULL(19) /* Other Tile L2 Hit */
1691 #define KNL_OT_L2_HITF		BIT_ULL(20) /* Other Tile L2 Hit */
1692 #define KNL_MCDRAM_LOCAL	BIT_ULL(21)
1693 #define KNL_MCDRAM_FAR		BIT_ULL(22)
1694 #define KNL_DDR_LOCAL		BIT_ULL(23)
1695 #define KNL_DDR_FAR		BIT_ULL(24)
1696 #define KNL_DRAM_ANY		(KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \
1697 				    KNL_DDR_LOCAL | KNL_DDR_FAR)
1698 #define KNL_L2_READ		SLM_DMND_READ
1699 #define KNL_L2_WRITE		SLM_DMND_WRITE
1700 #define KNL_L2_PREFETCH		SLM_DMND_PREFETCH
1701 #define KNL_L2_ACCESS		SLM_LLC_ACCESS
1702 #define KNL_L2_MISS		(KNL_OT_L2_HITE | KNL_OT_L2_HITF | \
1703 				   KNL_DRAM_ANY | SNB_SNP_ANY | \
1704 						  SNB_NON_DRAM)
1705 
1706 static __initconst const u64 knl_hw_cache_extra_regs
1707 				[PERF_COUNT_HW_CACHE_MAX]
1708 				[PERF_COUNT_HW_CACHE_OP_MAX]
1709 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1710 	[C(LL)] = {
1711 		[C(OP_READ)] = {
1712 			[C(RESULT_ACCESS)] = KNL_L2_READ | KNL_L2_ACCESS,
1713 			[C(RESULT_MISS)]   = 0,
1714 		},
1715 		[C(OP_WRITE)] = {
1716 			[C(RESULT_ACCESS)] = KNL_L2_WRITE | KNL_L2_ACCESS,
1717 			[C(RESULT_MISS)]   = KNL_L2_WRITE | KNL_L2_MISS,
1718 		},
1719 		[C(OP_PREFETCH)] = {
1720 			[C(RESULT_ACCESS)] = KNL_L2_PREFETCH | KNL_L2_ACCESS,
1721 			[C(RESULT_MISS)]   = KNL_L2_PREFETCH | KNL_L2_MISS,
1722 		},
1723 	},
1724 };
1725 
1726 /*
1727  * Used from PMIs where the LBRs are already disabled.
1728  *
1729  * This function could be called consecutively. It is required to remain in
1730  * disabled state if called consecutively.
1731  *
1732  * During consecutive calls, the same disable value will be written to related
1733  * registers, so the PMU state remains unchanged. hw.state in
1734  * intel_bts_disable_local will remain PERF_HES_STOPPED too in consecutive
1735  * calls.
1736  */
1737 static void __intel_pmu_disable_all(void)
1738 {
1739 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1740 
1741 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
1742 
1743 	if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
1744 		intel_pmu_disable_bts();
1745 	else
1746 		intel_bts_disable_local();
1747 
1748 	intel_pmu_pebs_disable_all();
1749 }
1750 
1751 static void intel_pmu_disable_all(void)
1752 {
1753 	__intel_pmu_disable_all();
1754 	intel_pmu_lbr_disable_all();
1755 }
1756 
1757 static void __intel_pmu_enable_all(int added, bool pmi)
1758 {
1759 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1760 
1761 	intel_pmu_pebs_enable_all();
1762 	intel_pmu_lbr_enable_all(pmi);
1763 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
1764 			x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
1765 
1766 	if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
1767 		struct perf_event *event =
1768 			cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
1769 
1770 		if (WARN_ON_ONCE(!event))
1771 			return;
1772 
1773 		intel_pmu_enable_bts(event->hw.config);
1774 	} else
1775 		intel_bts_enable_local();
1776 }
1777 
1778 static void intel_pmu_enable_all(int added)
1779 {
1780 	__intel_pmu_enable_all(added, false);
1781 }
1782 
1783 /*
1784  * Workaround for:
1785  *   Intel Errata AAK100 (model 26)
1786  *   Intel Errata AAP53  (model 30)
1787  *   Intel Errata BD53   (model 44)
1788  *
1789  * The official story:
1790  *   These chips need to be 'reset' when adding counters by programming the
1791  *   magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
1792  *   in sequence on the same PMC or on different PMCs.
1793  *
1794  * In practise it appears some of these events do in fact count, and
1795  * we need to programm all 4 events.
1796  */
1797 static void intel_pmu_nhm_workaround(void)
1798 {
1799 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1800 	static const unsigned long nhm_magic[4] = {
1801 		0x4300B5,
1802 		0x4300D2,
1803 		0x4300B1,
1804 		0x4300B1
1805 	};
1806 	struct perf_event *event;
1807 	int i;
1808 
1809 	/*
1810 	 * The Errata requires below steps:
1811 	 * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
1812 	 * 2) Configure 4 PERFEVTSELx with the magic events and clear
1813 	 *    the corresponding PMCx;
1814 	 * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
1815 	 * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
1816 	 * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
1817 	 */
1818 
1819 	/*
1820 	 * The real steps we choose are a little different from above.
1821 	 * A) To reduce MSR operations, we don't run step 1) as they
1822 	 *    are already cleared before this function is called;
1823 	 * B) Call x86_perf_event_update to save PMCx before configuring
1824 	 *    PERFEVTSELx with magic number;
1825 	 * C) With step 5), we do clear only when the PERFEVTSELx is
1826 	 *    not used currently.
1827 	 * D) Call x86_perf_event_set_period to restore PMCx;
1828 	 */
1829 
1830 	/* We always operate 4 pairs of PERF Counters */
1831 	for (i = 0; i < 4; i++) {
1832 		event = cpuc->events[i];
1833 		if (event)
1834 			x86_perf_event_update(event);
1835 	}
1836 
1837 	for (i = 0; i < 4; i++) {
1838 		wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
1839 		wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
1840 	}
1841 
1842 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
1843 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
1844 
1845 	for (i = 0; i < 4; i++) {
1846 		event = cpuc->events[i];
1847 
1848 		if (event) {
1849 			x86_perf_event_set_period(event);
1850 			__x86_pmu_enable_event(&event->hw,
1851 					ARCH_PERFMON_EVENTSEL_ENABLE);
1852 		} else
1853 			wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
1854 	}
1855 }
1856 
1857 static void intel_pmu_nhm_enable_all(int added)
1858 {
1859 	if (added)
1860 		intel_pmu_nhm_workaround();
1861 	intel_pmu_enable_all(added);
1862 }
1863 
1864 static inline u64 intel_pmu_get_status(void)
1865 {
1866 	u64 status;
1867 
1868 	rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1869 
1870 	return status;
1871 }
1872 
1873 static inline void intel_pmu_ack_status(u64 ack)
1874 {
1875 	wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
1876 }
1877 
1878 static void intel_pmu_disable_fixed(struct hw_perf_event *hwc)
1879 {
1880 	int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
1881 	u64 ctrl_val, mask;
1882 
1883 	mask = 0xfULL << (idx * 4);
1884 
1885 	rdmsrl(hwc->config_base, ctrl_val);
1886 	ctrl_val &= ~mask;
1887 	wrmsrl(hwc->config_base, ctrl_val);
1888 }
1889 
1890 static inline bool event_is_checkpointed(struct perf_event *event)
1891 {
1892 	return (event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
1893 }
1894 
1895 static void intel_pmu_disable_event(struct perf_event *event)
1896 {
1897 	struct hw_perf_event *hwc = &event->hw;
1898 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1899 
1900 	if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
1901 		intel_pmu_disable_bts();
1902 		intel_pmu_drain_bts_buffer();
1903 		return;
1904 	}
1905 
1906 	cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx);
1907 	cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx);
1908 	cpuc->intel_cp_status &= ~(1ull << hwc->idx);
1909 
1910 	/*
1911 	 * must disable before any actual event
1912 	 * because any event may be combined with LBR
1913 	 */
1914 	if (needs_branch_stack(event))
1915 		intel_pmu_lbr_disable(event);
1916 
1917 	if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
1918 		intel_pmu_disable_fixed(hwc);
1919 		return;
1920 	}
1921 
1922 	x86_pmu_disable_event(event);
1923 
1924 	if (unlikely(event->attr.precise_ip))
1925 		intel_pmu_pebs_disable(event);
1926 }
1927 
1928 static void intel_pmu_enable_fixed(struct hw_perf_event *hwc)
1929 {
1930 	int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
1931 	u64 ctrl_val, bits, mask;
1932 
1933 	/*
1934 	 * Enable IRQ generation (0x8),
1935 	 * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
1936 	 * if requested:
1937 	 */
1938 	bits = 0x8ULL;
1939 	if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
1940 		bits |= 0x2;
1941 	if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
1942 		bits |= 0x1;
1943 
1944 	/*
1945 	 * ANY bit is supported in v3 and up
1946 	 */
1947 	if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
1948 		bits |= 0x4;
1949 
1950 	bits <<= (idx * 4);
1951 	mask = 0xfULL << (idx * 4);
1952 
1953 	rdmsrl(hwc->config_base, ctrl_val);
1954 	ctrl_val &= ~mask;
1955 	ctrl_val |= bits;
1956 	wrmsrl(hwc->config_base, ctrl_val);
1957 }
1958 
1959 static void intel_pmu_enable_event(struct perf_event *event)
1960 {
1961 	struct hw_perf_event *hwc = &event->hw;
1962 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1963 
1964 	if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
1965 		if (!__this_cpu_read(cpu_hw_events.enabled))
1966 			return;
1967 
1968 		intel_pmu_enable_bts(hwc->config);
1969 		return;
1970 	}
1971 	/*
1972 	 * must enabled before any actual event
1973 	 * because any event may be combined with LBR
1974 	 */
1975 	if (needs_branch_stack(event))
1976 		intel_pmu_lbr_enable(event);
1977 
1978 	if (event->attr.exclude_host)
1979 		cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx);
1980 	if (event->attr.exclude_guest)
1981 		cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx);
1982 
1983 	if (unlikely(event_is_checkpointed(event)))
1984 		cpuc->intel_cp_status |= (1ull << hwc->idx);
1985 
1986 	if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
1987 		intel_pmu_enable_fixed(hwc);
1988 		return;
1989 	}
1990 
1991 	if (unlikely(event->attr.precise_ip))
1992 		intel_pmu_pebs_enable(event);
1993 
1994 	__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
1995 }
1996 
1997 /*
1998  * Save and restart an expired event. Called by NMI contexts,
1999  * so it has to be careful about preempting normal event ops:
2000  */
2001 int intel_pmu_save_and_restart(struct perf_event *event)
2002 {
2003 	x86_perf_event_update(event);
2004 	/*
2005 	 * For a checkpointed counter always reset back to 0.  This
2006 	 * avoids a situation where the counter overflows, aborts the
2007 	 * transaction and is then set back to shortly before the
2008 	 * overflow, and overflows and aborts again.
2009 	 */
2010 	if (unlikely(event_is_checkpointed(event))) {
2011 		/* No race with NMIs because the counter should not be armed */
2012 		wrmsrl(event->hw.event_base, 0);
2013 		local64_set(&event->hw.prev_count, 0);
2014 	}
2015 	return x86_perf_event_set_period(event);
2016 }
2017 
2018 static void intel_pmu_reset(void)
2019 {
2020 	struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
2021 	unsigned long flags;
2022 	int idx;
2023 
2024 	if (!x86_pmu.num_counters)
2025 		return;
2026 
2027 	local_irq_save(flags);
2028 
2029 	pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
2030 
2031 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
2032 		wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
2033 		wrmsrl_safe(x86_pmu_event_addr(idx),  0ull);
2034 	}
2035 	for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
2036 		wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
2037 
2038 	if (ds)
2039 		ds->bts_index = ds->bts_buffer_base;
2040 
2041 	/* Ack all overflows and disable fixed counters */
2042 	if (x86_pmu.version >= 2) {
2043 		intel_pmu_ack_status(intel_pmu_get_status());
2044 		wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
2045 	}
2046 
2047 	/* Reset LBRs and LBR freezing */
2048 	if (x86_pmu.lbr_nr) {
2049 		update_debugctlmsr(get_debugctlmsr() &
2050 			~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
2051 	}
2052 
2053 	local_irq_restore(flags);
2054 }
2055 
2056 /*
2057  * This handler is triggered by the local APIC, so the APIC IRQ handling
2058  * rules apply:
2059  */
2060 static int intel_pmu_handle_irq(struct pt_regs *regs)
2061 {
2062 	struct perf_sample_data data;
2063 	struct cpu_hw_events *cpuc;
2064 	int bit, loops;
2065 	u64 status;
2066 	int handled;
2067 
2068 	cpuc = this_cpu_ptr(&cpu_hw_events);
2069 
2070 	/*
2071 	 * No known reason to not always do late ACK,
2072 	 * but just in case do it opt-in.
2073 	 */
2074 	if (!x86_pmu.late_ack)
2075 		apic_write(APIC_LVTPC, APIC_DM_NMI);
2076 	__intel_pmu_disable_all();
2077 	handled = intel_pmu_drain_bts_buffer();
2078 	handled += intel_bts_interrupt();
2079 	status = intel_pmu_get_status();
2080 	if (!status)
2081 		goto done;
2082 
2083 	loops = 0;
2084 again:
2085 	intel_pmu_lbr_read();
2086 	intel_pmu_ack_status(status);
2087 	if (++loops > 100) {
2088 		static bool warned = false;
2089 		if (!warned) {
2090 			WARN(1, "perfevents: irq loop stuck!\n");
2091 			perf_event_print_debug();
2092 			warned = true;
2093 		}
2094 		intel_pmu_reset();
2095 		goto done;
2096 	}
2097 
2098 	inc_irq_stat(apic_perf_irqs);
2099 
2100 
2101 	/*
2102 	 * Ignore a range of extra bits in status that do not indicate
2103 	 * overflow by themselves.
2104 	 */
2105 	status &= ~(GLOBAL_STATUS_COND_CHG |
2106 		    GLOBAL_STATUS_ASIF |
2107 		    GLOBAL_STATUS_LBRS_FROZEN);
2108 	if (!status)
2109 		goto done;
2110 
2111 	/*
2112 	 * PEBS overflow sets bit 62 in the global status register
2113 	 */
2114 	if (__test_and_clear_bit(62, (unsigned long *)&status)) {
2115 		handled++;
2116 		x86_pmu.drain_pebs(regs);
2117 		/*
2118 		 * There are cases where, even though, the PEBS ovfl bit is set
2119 		 * in GLOBAL_OVF_STATUS, the PEBS events may also have their
2120 		 * overflow bits set for their counters. We must clear them
2121 		 * here because they have been processed as exact samples in
2122 		 * the drain_pebs() routine. They must not be processed again
2123 		 * in the for_each_bit_set() loop for regular samples below.
2124 		 */
2125 		status &= ~cpuc->pebs_enabled;
2126 		status &= x86_pmu.intel_ctrl | GLOBAL_STATUS_TRACE_TOPAPMI;
2127 	}
2128 
2129 	/*
2130 	 * Intel PT
2131 	 */
2132 	if (__test_and_clear_bit(55, (unsigned long *)&status)) {
2133 		handled++;
2134 		intel_pt_interrupt();
2135 	}
2136 
2137 	/*
2138 	 * Checkpointed counters can lead to 'spurious' PMIs because the
2139 	 * rollback caused by the PMI will have cleared the overflow status
2140 	 * bit. Therefore always force probe these counters.
2141 	 */
2142 	status |= cpuc->intel_cp_status;
2143 
2144 	for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
2145 		struct perf_event *event = cpuc->events[bit];
2146 
2147 		handled++;
2148 
2149 		if (!test_bit(bit, cpuc->active_mask))
2150 			continue;
2151 
2152 		if (!intel_pmu_save_and_restart(event))
2153 			continue;
2154 
2155 		perf_sample_data_init(&data, 0, event->hw.last_period);
2156 
2157 		if (has_branch_stack(event))
2158 			data.br_stack = &cpuc->lbr_stack;
2159 
2160 		if (perf_event_overflow(event, &data, regs))
2161 			x86_pmu_stop(event, 0);
2162 	}
2163 
2164 	/*
2165 	 * Repeat if there is more work to be done:
2166 	 */
2167 	status = intel_pmu_get_status();
2168 	if (status)
2169 		goto again;
2170 
2171 done:
2172 	/* Only restore PMU state when it's active. See x86_pmu_disable(). */
2173 	if (cpuc->enabled)
2174 		__intel_pmu_enable_all(0, true);
2175 
2176 	/*
2177 	 * Only unmask the NMI after the overflow counters
2178 	 * have been reset. This avoids spurious NMIs on
2179 	 * Haswell CPUs.
2180 	 */
2181 	if (x86_pmu.late_ack)
2182 		apic_write(APIC_LVTPC, APIC_DM_NMI);
2183 	return handled;
2184 }
2185 
2186 static struct event_constraint *
2187 intel_bts_constraints(struct perf_event *event)
2188 {
2189 	struct hw_perf_event *hwc = &event->hw;
2190 	unsigned int hw_event, bts_event;
2191 
2192 	if (event->attr.freq)
2193 		return NULL;
2194 
2195 	hw_event = hwc->config & INTEL_ARCH_EVENT_MASK;
2196 	bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
2197 
2198 	if (unlikely(hw_event == bts_event && hwc->sample_period == 1))
2199 		return &bts_constraint;
2200 
2201 	return NULL;
2202 }
2203 
2204 static int intel_alt_er(int idx, u64 config)
2205 {
2206 	int alt_idx = idx;
2207 
2208 	if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
2209 		return idx;
2210 
2211 	if (idx == EXTRA_REG_RSP_0)
2212 		alt_idx = EXTRA_REG_RSP_1;
2213 
2214 	if (idx == EXTRA_REG_RSP_1)
2215 		alt_idx = EXTRA_REG_RSP_0;
2216 
2217 	if (config & ~x86_pmu.extra_regs[alt_idx].valid_mask)
2218 		return idx;
2219 
2220 	return alt_idx;
2221 }
2222 
2223 static void intel_fixup_er(struct perf_event *event, int idx)
2224 {
2225 	event->hw.extra_reg.idx = idx;
2226 
2227 	if (idx == EXTRA_REG_RSP_0) {
2228 		event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
2229 		event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_0].event;
2230 		event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
2231 	} else if (idx == EXTRA_REG_RSP_1) {
2232 		event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
2233 		event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_1].event;
2234 		event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
2235 	}
2236 }
2237 
2238 /*
2239  * manage allocation of shared extra msr for certain events
2240  *
2241  * sharing can be:
2242  * per-cpu: to be shared between the various events on a single PMU
2243  * per-core: per-cpu + shared by HT threads
2244  */
2245 static struct event_constraint *
2246 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
2247 				   struct perf_event *event,
2248 				   struct hw_perf_event_extra *reg)
2249 {
2250 	struct event_constraint *c = &emptyconstraint;
2251 	struct er_account *era;
2252 	unsigned long flags;
2253 	int idx = reg->idx;
2254 
2255 	/*
2256 	 * reg->alloc can be set due to existing state, so for fake cpuc we
2257 	 * need to ignore this, otherwise we might fail to allocate proper fake
2258 	 * state for this extra reg constraint. Also see the comment below.
2259 	 */
2260 	if (reg->alloc && !cpuc->is_fake)
2261 		return NULL; /* call x86_get_event_constraint() */
2262 
2263 again:
2264 	era = &cpuc->shared_regs->regs[idx];
2265 	/*
2266 	 * we use spin_lock_irqsave() to avoid lockdep issues when
2267 	 * passing a fake cpuc
2268 	 */
2269 	raw_spin_lock_irqsave(&era->lock, flags);
2270 
2271 	if (!atomic_read(&era->ref) || era->config == reg->config) {
2272 
2273 		/*
2274 		 * If its a fake cpuc -- as per validate_{group,event}() we
2275 		 * shouldn't touch event state and we can avoid doing so
2276 		 * since both will only call get_event_constraints() once
2277 		 * on each event, this avoids the need for reg->alloc.
2278 		 *
2279 		 * Not doing the ER fixup will only result in era->reg being
2280 		 * wrong, but since we won't actually try and program hardware
2281 		 * this isn't a problem either.
2282 		 */
2283 		if (!cpuc->is_fake) {
2284 			if (idx != reg->idx)
2285 				intel_fixup_er(event, idx);
2286 
2287 			/*
2288 			 * x86_schedule_events() can call get_event_constraints()
2289 			 * multiple times on events in the case of incremental
2290 			 * scheduling(). reg->alloc ensures we only do the ER
2291 			 * allocation once.
2292 			 */
2293 			reg->alloc = 1;
2294 		}
2295 
2296 		/* lock in msr value */
2297 		era->config = reg->config;
2298 		era->reg = reg->reg;
2299 
2300 		/* one more user */
2301 		atomic_inc(&era->ref);
2302 
2303 		/*
2304 		 * need to call x86_get_event_constraint()
2305 		 * to check if associated event has constraints
2306 		 */
2307 		c = NULL;
2308 	} else {
2309 		idx = intel_alt_er(idx, reg->config);
2310 		if (idx != reg->idx) {
2311 			raw_spin_unlock_irqrestore(&era->lock, flags);
2312 			goto again;
2313 		}
2314 	}
2315 	raw_spin_unlock_irqrestore(&era->lock, flags);
2316 
2317 	return c;
2318 }
2319 
2320 static void
2321 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
2322 				   struct hw_perf_event_extra *reg)
2323 {
2324 	struct er_account *era;
2325 
2326 	/*
2327 	 * Only put constraint if extra reg was actually allocated. Also takes
2328 	 * care of event which do not use an extra shared reg.
2329 	 *
2330 	 * Also, if this is a fake cpuc we shouldn't touch any event state
2331 	 * (reg->alloc) and we don't care about leaving inconsistent cpuc state
2332 	 * either since it'll be thrown out.
2333 	 */
2334 	if (!reg->alloc || cpuc->is_fake)
2335 		return;
2336 
2337 	era = &cpuc->shared_regs->regs[reg->idx];
2338 
2339 	/* one fewer user */
2340 	atomic_dec(&era->ref);
2341 
2342 	/* allocate again next time */
2343 	reg->alloc = 0;
2344 }
2345 
2346 static struct event_constraint *
2347 intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
2348 			      struct perf_event *event)
2349 {
2350 	struct event_constraint *c = NULL, *d;
2351 	struct hw_perf_event_extra *xreg, *breg;
2352 
2353 	xreg = &event->hw.extra_reg;
2354 	if (xreg->idx != EXTRA_REG_NONE) {
2355 		c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
2356 		if (c == &emptyconstraint)
2357 			return c;
2358 	}
2359 	breg = &event->hw.branch_reg;
2360 	if (breg->idx != EXTRA_REG_NONE) {
2361 		d = __intel_shared_reg_get_constraints(cpuc, event, breg);
2362 		if (d == &emptyconstraint) {
2363 			__intel_shared_reg_put_constraints(cpuc, xreg);
2364 			c = d;
2365 		}
2366 	}
2367 	return c;
2368 }
2369 
2370 struct event_constraint *
2371 x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2372 			  struct perf_event *event)
2373 {
2374 	struct event_constraint *c;
2375 
2376 	if (x86_pmu.event_constraints) {
2377 		for_each_event_constraint(c, x86_pmu.event_constraints) {
2378 			if ((event->hw.config & c->cmask) == c->code) {
2379 				event->hw.flags |= c->flags;
2380 				return c;
2381 			}
2382 		}
2383 	}
2384 
2385 	return &unconstrained;
2386 }
2387 
2388 static struct event_constraint *
2389 __intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2390 			    struct perf_event *event)
2391 {
2392 	struct event_constraint *c;
2393 
2394 	c = intel_bts_constraints(event);
2395 	if (c)
2396 		return c;
2397 
2398 	c = intel_shared_regs_constraints(cpuc, event);
2399 	if (c)
2400 		return c;
2401 
2402 	c = intel_pebs_constraints(event);
2403 	if (c)
2404 		return c;
2405 
2406 	return x86_get_event_constraints(cpuc, idx, event);
2407 }
2408 
2409 static void
2410 intel_start_scheduling(struct cpu_hw_events *cpuc)
2411 {
2412 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2413 	struct intel_excl_states *xl;
2414 	int tid = cpuc->excl_thread_id;
2415 
2416 	/*
2417 	 * nothing needed if in group validation mode
2418 	 */
2419 	if (cpuc->is_fake || !is_ht_workaround_enabled())
2420 		return;
2421 
2422 	/*
2423 	 * no exclusion needed
2424 	 */
2425 	if (WARN_ON_ONCE(!excl_cntrs))
2426 		return;
2427 
2428 	xl = &excl_cntrs->states[tid];
2429 
2430 	xl->sched_started = true;
2431 	/*
2432 	 * lock shared state until we are done scheduling
2433 	 * in stop_event_scheduling()
2434 	 * makes scheduling appear as a transaction
2435 	 */
2436 	raw_spin_lock(&excl_cntrs->lock);
2437 }
2438 
2439 static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
2440 {
2441 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2442 	struct event_constraint *c = cpuc->event_constraint[idx];
2443 	struct intel_excl_states *xl;
2444 	int tid = cpuc->excl_thread_id;
2445 
2446 	if (cpuc->is_fake || !is_ht_workaround_enabled())
2447 		return;
2448 
2449 	if (WARN_ON_ONCE(!excl_cntrs))
2450 		return;
2451 
2452 	if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
2453 		return;
2454 
2455 	xl = &excl_cntrs->states[tid];
2456 
2457 	lockdep_assert_held(&excl_cntrs->lock);
2458 
2459 	if (c->flags & PERF_X86_EVENT_EXCL)
2460 		xl->state[cntr] = INTEL_EXCL_EXCLUSIVE;
2461 	else
2462 		xl->state[cntr] = INTEL_EXCL_SHARED;
2463 }
2464 
2465 static void
2466 intel_stop_scheduling(struct cpu_hw_events *cpuc)
2467 {
2468 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2469 	struct intel_excl_states *xl;
2470 	int tid = cpuc->excl_thread_id;
2471 
2472 	/*
2473 	 * nothing needed if in group validation mode
2474 	 */
2475 	if (cpuc->is_fake || !is_ht_workaround_enabled())
2476 		return;
2477 	/*
2478 	 * no exclusion needed
2479 	 */
2480 	if (WARN_ON_ONCE(!excl_cntrs))
2481 		return;
2482 
2483 	xl = &excl_cntrs->states[tid];
2484 
2485 	xl->sched_started = false;
2486 	/*
2487 	 * release shared state lock (acquired in intel_start_scheduling())
2488 	 */
2489 	raw_spin_unlock(&excl_cntrs->lock);
2490 }
2491 
2492 static struct event_constraint *
2493 intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
2494 			   int idx, struct event_constraint *c)
2495 {
2496 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2497 	struct intel_excl_states *xlo;
2498 	int tid = cpuc->excl_thread_id;
2499 	int is_excl, i;
2500 
2501 	/*
2502 	 * validating a group does not require
2503 	 * enforcing cross-thread  exclusion
2504 	 */
2505 	if (cpuc->is_fake || !is_ht_workaround_enabled())
2506 		return c;
2507 
2508 	/*
2509 	 * no exclusion needed
2510 	 */
2511 	if (WARN_ON_ONCE(!excl_cntrs))
2512 		return c;
2513 
2514 	/*
2515 	 * because we modify the constraint, we need
2516 	 * to make a copy. Static constraints come
2517 	 * from static const tables.
2518 	 *
2519 	 * only needed when constraint has not yet
2520 	 * been cloned (marked dynamic)
2521 	 */
2522 	if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
2523 		struct event_constraint *cx;
2524 
2525 		/*
2526 		 * grab pre-allocated constraint entry
2527 		 */
2528 		cx = &cpuc->constraint_list[idx];
2529 
2530 		/*
2531 		 * initialize dynamic constraint
2532 		 * with static constraint
2533 		 */
2534 		*cx = *c;
2535 
2536 		/*
2537 		 * mark constraint as dynamic, so we
2538 		 * can free it later on
2539 		 */
2540 		cx->flags |= PERF_X86_EVENT_DYNAMIC;
2541 		c = cx;
2542 	}
2543 
2544 	/*
2545 	 * From here on, the constraint is dynamic.
2546 	 * Either it was just allocated above, or it
2547 	 * was allocated during a earlier invocation
2548 	 * of this function
2549 	 */
2550 
2551 	/*
2552 	 * state of sibling HT
2553 	 */
2554 	xlo = &excl_cntrs->states[tid ^ 1];
2555 
2556 	/*
2557 	 * event requires exclusive counter access
2558 	 * across HT threads
2559 	 */
2560 	is_excl = c->flags & PERF_X86_EVENT_EXCL;
2561 	if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) {
2562 		event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT;
2563 		if (!cpuc->n_excl++)
2564 			WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1);
2565 	}
2566 
2567 	/*
2568 	 * Modify static constraint with current dynamic
2569 	 * state of thread
2570 	 *
2571 	 * EXCLUSIVE: sibling counter measuring exclusive event
2572 	 * SHARED   : sibling counter measuring non-exclusive event
2573 	 * UNUSED   : sibling counter unused
2574 	 */
2575 	for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) {
2576 		/*
2577 		 * exclusive event in sibling counter
2578 		 * our corresponding counter cannot be used
2579 		 * regardless of our event
2580 		 */
2581 		if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE)
2582 			__clear_bit(i, c->idxmsk);
2583 		/*
2584 		 * if measuring an exclusive event, sibling
2585 		 * measuring non-exclusive, then counter cannot
2586 		 * be used
2587 		 */
2588 		if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED)
2589 			__clear_bit(i, c->idxmsk);
2590 	}
2591 
2592 	/*
2593 	 * recompute actual bit weight for scheduling algorithm
2594 	 */
2595 	c->weight = hweight64(c->idxmsk64);
2596 
2597 	/*
2598 	 * if we return an empty mask, then switch
2599 	 * back to static empty constraint to avoid
2600 	 * the cost of freeing later on
2601 	 */
2602 	if (c->weight == 0)
2603 		c = &emptyconstraint;
2604 
2605 	return c;
2606 }
2607 
2608 static struct event_constraint *
2609 intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2610 			    struct perf_event *event)
2611 {
2612 	struct event_constraint *c1 = NULL;
2613 	struct event_constraint *c2;
2614 
2615 	if (idx >= 0) /* fake does < 0 */
2616 		c1 = cpuc->event_constraint[idx];
2617 
2618 	/*
2619 	 * first time only
2620 	 * - static constraint: no change across incremental scheduling calls
2621 	 * - dynamic constraint: handled by intel_get_excl_constraints()
2622 	 */
2623 	c2 = __intel_get_event_constraints(cpuc, idx, event);
2624 	if (c1 && (c1->flags & PERF_X86_EVENT_DYNAMIC)) {
2625 		bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
2626 		c1->weight = c2->weight;
2627 		c2 = c1;
2628 	}
2629 
2630 	if (cpuc->excl_cntrs)
2631 		return intel_get_excl_constraints(cpuc, event, idx, c2);
2632 
2633 	return c2;
2634 }
2635 
2636 static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
2637 		struct perf_event *event)
2638 {
2639 	struct hw_perf_event *hwc = &event->hw;
2640 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2641 	int tid = cpuc->excl_thread_id;
2642 	struct intel_excl_states *xl;
2643 
2644 	/*
2645 	 * nothing needed if in group validation mode
2646 	 */
2647 	if (cpuc->is_fake)
2648 		return;
2649 
2650 	if (WARN_ON_ONCE(!excl_cntrs))
2651 		return;
2652 
2653 	if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) {
2654 		hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT;
2655 		if (!--cpuc->n_excl)
2656 			WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0);
2657 	}
2658 
2659 	/*
2660 	 * If event was actually assigned, then mark the counter state as
2661 	 * unused now.
2662 	 */
2663 	if (hwc->idx >= 0) {
2664 		xl = &excl_cntrs->states[tid];
2665 
2666 		/*
2667 		 * put_constraint may be called from x86_schedule_events()
2668 		 * which already has the lock held so here make locking
2669 		 * conditional.
2670 		 */
2671 		if (!xl->sched_started)
2672 			raw_spin_lock(&excl_cntrs->lock);
2673 
2674 		xl->state[hwc->idx] = INTEL_EXCL_UNUSED;
2675 
2676 		if (!xl->sched_started)
2677 			raw_spin_unlock(&excl_cntrs->lock);
2678 	}
2679 }
2680 
2681 static void
2682 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
2683 					struct perf_event *event)
2684 {
2685 	struct hw_perf_event_extra *reg;
2686 
2687 	reg = &event->hw.extra_reg;
2688 	if (reg->idx != EXTRA_REG_NONE)
2689 		__intel_shared_reg_put_constraints(cpuc, reg);
2690 
2691 	reg = &event->hw.branch_reg;
2692 	if (reg->idx != EXTRA_REG_NONE)
2693 		__intel_shared_reg_put_constraints(cpuc, reg);
2694 }
2695 
2696 static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
2697 					struct perf_event *event)
2698 {
2699 	intel_put_shared_regs_event_constraints(cpuc, event);
2700 
2701 	/*
2702 	 * is PMU has exclusive counter restrictions, then
2703 	 * all events are subject to and must call the
2704 	 * put_excl_constraints() routine
2705 	 */
2706 	if (cpuc->excl_cntrs)
2707 		intel_put_excl_constraints(cpuc, event);
2708 }
2709 
2710 static void intel_pebs_aliases_core2(struct perf_event *event)
2711 {
2712 	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
2713 		/*
2714 		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
2715 		 * (0x003c) so that we can use it with PEBS.
2716 		 *
2717 		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
2718 		 * PEBS capable. However we can use INST_RETIRED.ANY_P
2719 		 * (0x00c0), which is a PEBS capable event, to get the same
2720 		 * count.
2721 		 *
2722 		 * INST_RETIRED.ANY_P counts the number of cycles that retires
2723 		 * CNTMASK instructions. By setting CNTMASK to a value (16)
2724 		 * larger than the maximum number of instructions that can be
2725 		 * retired per cycle (4) and then inverting the condition, we
2726 		 * count all cycles that retire 16 or less instructions, which
2727 		 * is every cycle.
2728 		 *
2729 		 * Thereby we gain a PEBS capable cycle counter.
2730 		 */
2731 		u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
2732 
2733 		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
2734 		event->hw.config = alt_config;
2735 	}
2736 }
2737 
2738 static void intel_pebs_aliases_snb(struct perf_event *event)
2739 {
2740 	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
2741 		/*
2742 		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
2743 		 * (0x003c) so that we can use it with PEBS.
2744 		 *
2745 		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
2746 		 * PEBS capable. However we can use UOPS_RETIRED.ALL
2747 		 * (0x01c2), which is a PEBS capable event, to get the same
2748 		 * count.
2749 		 *
2750 		 * UOPS_RETIRED.ALL counts the number of cycles that retires
2751 		 * CNTMASK micro-ops. By setting CNTMASK to a value (16)
2752 		 * larger than the maximum number of micro-ops that can be
2753 		 * retired per cycle (4) and then inverting the condition, we
2754 		 * count all cycles that retire 16 or less micro-ops, which
2755 		 * is every cycle.
2756 		 *
2757 		 * Thereby we gain a PEBS capable cycle counter.
2758 		 */
2759 		u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
2760 
2761 		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
2762 		event->hw.config = alt_config;
2763 	}
2764 }
2765 
2766 static void intel_pebs_aliases_precdist(struct perf_event *event)
2767 {
2768 	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
2769 		/*
2770 		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
2771 		 * (0x003c) so that we can use it with PEBS.
2772 		 *
2773 		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
2774 		 * PEBS capable. However we can use INST_RETIRED.PREC_DIST
2775 		 * (0x01c0), which is a PEBS capable event, to get the same
2776 		 * count.
2777 		 *
2778 		 * The PREC_DIST event has special support to minimize sample
2779 		 * shadowing effects. One drawback is that it can be
2780 		 * only programmed on counter 1, but that seems like an
2781 		 * acceptable trade off.
2782 		 */
2783 		u64 alt_config = X86_CONFIG(.event=0xc0, .umask=0x01, .inv=1, .cmask=16);
2784 
2785 		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
2786 		event->hw.config = alt_config;
2787 	}
2788 }
2789 
2790 static void intel_pebs_aliases_ivb(struct perf_event *event)
2791 {
2792 	if (event->attr.precise_ip < 3)
2793 		return intel_pebs_aliases_snb(event);
2794 	return intel_pebs_aliases_precdist(event);
2795 }
2796 
2797 static void intel_pebs_aliases_skl(struct perf_event *event)
2798 {
2799 	if (event->attr.precise_ip < 3)
2800 		return intel_pebs_aliases_core2(event);
2801 	return intel_pebs_aliases_precdist(event);
2802 }
2803 
2804 static unsigned long intel_pmu_free_running_flags(struct perf_event *event)
2805 {
2806 	unsigned long flags = x86_pmu.free_running_flags;
2807 
2808 	if (event->attr.use_clockid)
2809 		flags &= ~PERF_SAMPLE_TIME;
2810 	return flags;
2811 }
2812 
2813 static int intel_pmu_hw_config(struct perf_event *event)
2814 {
2815 	int ret = x86_pmu_hw_config(event);
2816 
2817 	if (ret)
2818 		return ret;
2819 
2820 	if (event->attr.precise_ip) {
2821 		if (!event->attr.freq) {
2822 			event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD;
2823 			if (!(event->attr.sample_type &
2824 			      ~intel_pmu_free_running_flags(event)))
2825 				event->hw.flags |= PERF_X86_EVENT_FREERUNNING;
2826 		}
2827 		if (x86_pmu.pebs_aliases)
2828 			x86_pmu.pebs_aliases(event);
2829 	}
2830 
2831 	if (needs_branch_stack(event)) {
2832 		ret = intel_pmu_setup_lbr_filter(event);
2833 		if (ret)
2834 			return ret;
2835 
2836 		/*
2837 		 * BTS is set up earlier in this path, so don't account twice
2838 		 */
2839 		if (!intel_pmu_has_bts(event)) {
2840 			/* disallow lbr if conflicting events are present */
2841 			if (x86_add_exclusive(x86_lbr_exclusive_lbr))
2842 				return -EBUSY;
2843 
2844 			event->destroy = hw_perf_lbr_event_destroy;
2845 		}
2846 	}
2847 
2848 	if (event->attr.type != PERF_TYPE_RAW)
2849 		return 0;
2850 
2851 	if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
2852 		return 0;
2853 
2854 	if (x86_pmu.version < 3)
2855 		return -EINVAL;
2856 
2857 	if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2858 		return -EACCES;
2859 
2860 	event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
2861 
2862 	return 0;
2863 }
2864 
2865 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
2866 {
2867 	if (x86_pmu.guest_get_msrs)
2868 		return x86_pmu.guest_get_msrs(nr);
2869 	*nr = 0;
2870 	return NULL;
2871 }
2872 EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
2873 
2874 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
2875 {
2876 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2877 	struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
2878 
2879 	arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
2880 	arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
2881 	arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;
2882 	/*
2883 	 * If PMU counter has PEBS enabled it is not enough to disable counter
2884 	 * on a guest entry since PEBS memory write can overshoot guest entry
2885 	 * and corrupt guest memory. Disabling PEBS solves the problem.
2886 	 */
2887 	arr[1].msr = MSR_IA32_PEBS_ENABLE;
2888 	arr[1].host = cpuc->pebs_enabled;
2889 	arr[1].guest = 0;
2890 
2891 	*nr = 2;
2892 	return arr;
2893 }
2894 
2895 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
2896 {
2897 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2898 	struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
2899 	int idx;
2900 
2901 	for (idx = 0; idx < x86_pmu.num_counters; idx++)  {
2902 		struct perf_event *event = cpuc->events[idx];
2903 
2904 		arr[idx].msr = x86_pmu_config_addr(idx);
2905 		arr[idx].host = arr[idx].guest = 0;
2906 
2907 		if (!test_bit(idx, cpuc->active_mask))
2908 			continue;
2909 
2910 		arr[idx].host = arr[idx].guest =
2911 			event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
2912 
2913 		if (event->attr.exclude_host)
2914 			arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
2915 		else if (event->attr.exclude_guest)
2916 			arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
2917 	}
2918 
2919 	*nr = x86_pmu.num_counters;
2920 	return arr;
2921 }
2922 
2923 static void core_pmu_enable_event(struct perf_event *event)
2924 {
2925 	if (!event->attr.exclude_host)
2926 		x86_pmu_enable_event(event);
2927 }
2928 
2929 static void core_pmu_enable_all(int added)
2930 {
2931 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2932 	int idx;
2933 
2934 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
2935 		struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
2936 
2937 		if (!test_bit(idx, cpuc->active_mask) ||
2938 				cpuc->events[idx]->attr.exclude_host)
2939 			continue;
2940 
2941 		__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
2942 	}
2943 }
2944 
2945 static int hsw_hw_config(struct perf_event *event)
2946 {
2947 	int ret = intel_pmu_hw_config(event);
2948 
2949 	if (ret)
2950 		return ret;
2951 	if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
2952 		return 0;
2953 	event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
2954 
2955 	/*
2956 	 * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
2957 	 * PEBS or in ANY thread mode. Since the results are non-sensical forbid
2958 	 * this combination.
2959 	 */
2960 	if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
2961 	     ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
2962 	      event->attr.precise_ip > 0))
2963 		return -EOPNOTSUPP;
2964 
2965 	if (event_is_checkpointed(event)) {
2966 		/*
2967 		 * Sampling of checkpointed events can cause situations where
2968 		 * the CPU constantly aborts because of a overflow, which is
2969 		 * then checkpointed back and ignored. Forbid checkpointing
2970 		 * for sampling.
2971 		 *
2972 		 * But still allow a long sampling period, so that perf stat
2973 		 * from KVM works.
2974 		 */
2975 		if (event->attr.sample_period > 0 &&
2976 		    event->attr.sample_period < 0x7fffffff)
2977 			return -EOPNOTSUPP;
2978 	}
2979 	return 0;
2980 }
2981 
2982 static struct event_constraint counter2_constraint =
2983 			EVENT_CONSTRAINT(0, 0x4, 0);
2984 
2985 static struct event_constraint *
2986 hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2987 			  struct perf_event *event)
2988 {
2989 	struct event_constraint *c;
2990 
2991 	c = intel_get_event_constraints(cpuc, idx, event);
2992 
2993 	/* Handle special quirk on in_tx_checkpointed only in counter 2 */
2994 	if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
2995 		if (c->idxmsk64 & (1U << 2))
2996 			return &counter2_constraint;
2997 		return &emptyconstraint;
2998 	}
2999 
3000 	return c;
3001 }
3002 
3003 /*
3004  * Broadwell:
3005  *
3006  * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
3007  * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
3008  * the two to enforce a minimum period of 128 (the smallest value that has bits
3009  * 0-5 cleared and >= 100).
3010  *
3011  * Because of how the code in x86_perf_event_set_period() works, the truncation
3012  * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
3013  * to make up for the 'lost' events due to carrying the 'error' in period_left.
3014  *
3015  * Therefore the effective (average) period matches the requested period,
3016  * despite coarser hardware granularity.
3017  */
3018 static unsigned bdw_limit_period(struct perf_event *event, unsigned left)
3019 {
3020 	if ((event->hw.config & INTEL_ARCH_EVENT_MASK) ==
3021 			X86_CONFIG(.event=0xc0, .umask=0x01)) {
3022 		if (left < 128)
3023 			left = 128;
3024 		left &= ~0x3fu;
3025 	}
3026 	return left;
3027 }
3028 
3029 PMU_FORMAT_ATTR(event,	"config:0-7"	);
3030 PMU_FORMAT_ATTR(umask,	"config:8-15"	);
3031 PMU_FORMAT_ATTR(edge,	"config:18"	);
3032 PMU_FORMAT_ATTR(pc,	"config:19"	);
3033 PMU_FORMAT_ATTR(any,	"config:21"	); /* v3 + */
3034 PMU_FORMAT_ATTR(inv,	"config:23"	);
3035 PMU_FORMAT_ATTR(cmask,	"config:24-31"	);
3036 PMU_FORMAT_ATTR(in_tx,  "config:32");
3037 PMU_FORMAT_ATTR(in_tx_cp, "config:33");
3038 
3039 static struct attribute *intel_arch_formats_attr[] = {
3040 	&format_attr_event.attr,
3041 	&format_attr_umask.attr,
3042 	&format_attr_edge.attr,
3043 	&format_attr_pc.attr,
3044 	&format_attr_inv.attr,
3045 	&format_attr_cmask.attr,
3046 	NULL,
3047 };
3048 
3049 ssize_t intel_event_sysfs_show(char *page, u64 config)
3050 {
3051 	u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
3052 
3053 	return x86_event_sysfs_show(page, config, event);
3054 }
3055 
3056 struct intel_shared_regs *allocate_shared_regs(int cpu)
3057 {
3058 	struct intel_shared_regs *regs;
3059 	int i;
3060 
3061 	regs = kzalloc_node(sizeof(struct intel_shared_regs),
3062 			    GFP_KERNEL, cpu_to_node(cpu));
3063 	if (regs) {
3064 		/*
3065 		 * initialize the locks to keep lockdep happy
3066 		 */
3067 		for (i = 0; i < EXTRA_REG_MAX; i++)
3068 			raw_spin_lock_init(&regs->regs[i].lock);
3069 
3070 		regs->core_id = -1;
3071 	}
3072 	return regs;
3073 }
3074 
3075 static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
3076 {
3077 	struct intel_excl_cntrs *c;
3078 
3079 	c = kzalloc_node(sizeof(struct intel_excl_cntrs),
3080 			 GFP_KERNEL, cpu_to_node(cpu));
3081 	if (c) {
3082 		raw_spin_lock_init(&c->lock);
3083 		c->core_id = -1;
3084 	}
3085 	return c;
3086 }
3087 
3088 static int intel_pmu_cpu_prepare(int cpu)
3089 {
3090 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
3091 
3092 	if (x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
3093 		cpuc->shared_regs = allocate_shared_regs(cpu);
3094 		if (!cpuc->shared_regs)
3095 			goto err;
3096 	}
3097 
3098 	if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
3099 		size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);
3100 
3101 		cpuc->constraint_list = kzalloc(sz, GFP_KERNEL);
3102 		if (!cpuc->constraint_list)
3103 			goto err_shared_regs;
3104 
3105 		cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
3106 		if (!cpuc->excl_cntrs)
3107 			goto err_constraint_list;
3108 
3109 		cpuc->excl_thread_id = 0;
3110 	}
3111 
3112 	return 0;
3113 
3114 err_constraint_list:
3115 	kfree(cpuc->constraint_list);
3116 	cpuc->constraint_list = NULL;
3117 
3118 err_shared_regs:
3119 	kfree(cpuc->shared_regs);
3120 	cpuc->shared_regs = NULL;
3121 
3122 err:
3123 	return -ENOMEM;
3124 }
3125 
3126 static void intel_pmu_cpu_starting(int cpu)
3127 {
3128 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
3129 	int core_id = topology_core_id(cpu);
3130 	int i;
3131 
3132 	init_debug_store_on_cpu(cpu);
3133 	/*
3134 	 * Deal with CPUs that don't clear their LBRs on power-up.
3135 	 */
3136 	intel_pmu_lbr_reset();
3137 
3138 	cpuc->lbr_sel = NULL;
3139 
3140 	if (!cpuc->shared_regs)
3141 		return;
3142 
3143 	if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
3144 		for_each_cpu(i, topology_sibling_cpumask(cpu)) {
3145 			struct intel_shared_regs *pc;
3146 
3147 			pc = per_cpu(cpu_hw_events, i).shared_regs;
3148 			if (pc && pc->core_id == core_id) {
3149 				cpuc->kfree_on_online[0] = cpuc->shared_regs;
3150 				cpuc->shared_regs = pc;
3151 				break;
3152 			}
3153 		}
3154 		cpuc->shared_regs->core_id = core_id;
3155 		cpuc->shared_regs->refcnt++;
3156 	}
3157 
3158 	if (x86_pmu.lbr_sel_map)
3159 		cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
3160 
3161 	if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
3162 		for_each_cpu(i, topology_sibling_cpumask(cpu)) {
3163 			struct intel_excl_cntrs *c;
3164 
3165 			c = per_cpu(cpu_hw_events, i).excl_cntrs;
3166 			if (c && c->core_id == core_id) {
3167 				cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
3168 				cpuc->excl_cntrs = c;
3169 				cpuc->excl_thread_id = 1;
3170 				break;
3171 			}
3172 		}
3173 		cpuc->excl_cntrs->core_id = core_id;
3174 		cpuc->excl_cntrs->refcnt++;
3175 	}
3176 }
3177 
3178 static void free_excl_cntrs(int cpu)
3179 {
3180 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
3181 	struct intel_excl_cntrs *c;
3182 
3183 	c = cpuc->excl_cntrs;
3184 	if (c) {
3185 		if (c->core_id == -1 || --c->refcnt == 0)
3186 			kfree(c);
3187 		cpuc->excl_cntrs = NULL;
3188 		kfree(cpuc->constraint_list);
3189 		cpuc->constraint_list = NULL;
3190 	}
3191 }
3192 
3193 static void intel_pmu_cpu_dying(int cpu)
3194 {
3195 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
3196 	struct intel_shared_regs *pc;
3197 
3198 	pc = cpuc->shared_regs;
3199 	if (pc) {
3200 		if (pc->core_id == -1 || --pc->refcnt == 0)
3201 			kfree(pc);
3202 		cpuc->shared_regs = NULL;
3203 	}
3204 
3205 	free_excl_cntrs(cpu);
3206 
3207 	fini_debug_store_on_cpu(cpu);
3208 }
3209 
3210 static void intel_pmu_sched_task(struct perf_event_context *ctx,
3211 				 bool sched_in)
3212 {
3213 	if (x86_pmu.pebs_active)
3214 		intel_pmu_pebs_sched_task(ctx, sched_in);
3215 	if (x86_pmu.lbr_nr)
3216 		intel_pmu_lbr_sched_task(ctx, sched_in);
3217 }
3218 
3219 PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
3220 
3221 PMU_FORMAT_ATTR(ldlat, "config1:0-15");
3222 
3223 PMU_FORMAT_ATTR(frontend, "config1:0-23");
3224 
3225 static struct attribute *intel_arch3_formats_attr[] = {
3226 	&format_attr_event.attr,
3227 	&format_attr_umask.attr,
3228 	&format_attr_edge.attr,
3229 	&format_attr_pc.attr,
3230 	&format_attr_any.attr,
3231 	&format_attr_inv.attr,
3232 	&format_attr_cmask.attr,
3233 	&format_attr_in_tx.attr,
3234 	&format_attr_in_tx_cp.attr,
3235 
3236 	&format_attr_offcore_rsp.attr, /* XXX do NHM/WSM + SNB breakout */
3237 	&format_attr_ldlat.attr, /* PEBS load latency */
3238 	NULL,
3239 };
3240 
3241 static struct attribute *skl_format_attr[] = {
3242 	&format_attr_frontend.attr,
3243 	NULL,
3244 };
3245 
3246 static __initconst const struct x86_pmu core_pmu = {
3247 	.name			= "core",
3248 	.handle_irq		= x86_pmu_handle_irq,
3249 	.disable_all		= x86_pmu_disable_all,
3250 	.enable_all		= core_pmu_enable_all,
3251 	.enable			= core_pmu_enable_event,
3252 	.disable		= x86_pmu_disable_event,
3253 	.hw_config		= x86_pmu_hw_config,
3254 	.schedule_events	= x86_schedule_events,
3255 	.eventsel		= MSR_ARCH_PERFMON_EVENTSEL0,
3256 	.perfctr		= MSR_ARCH_PERFMON_PERFCTR0,
3257 	.event_map		= intel_pmu_event_map,
3258 	.max_events		= ARRAY_SIZE(intel_perfmon_event_map),
3259 	.apic			= 1,
3260 	.free_running_flags	= PEBS_FREERUNNING_FLAGS,
3261 
3262 	/*
3263 	 * Intel PMCs cannot be accessed sanely above 32-bit width,
3264 	 * so we install an artificial 1<<31 period regardless of
3265 	 * the generic event period:
3266 	 */
3267 	.max_period		= (1ULL<<31) - 1,
3268 	.get_event_constraints	= intel_get_event_constraints,
3269 	.put_event_constraints	= intel_put_event_constraints,
3270 	.event_constraints	= intel_core_event_constraints,
3271 	.guest_get_msrs		= core_guest_get_msrs,
3272 	.format_attrs		= intel_arch_formats_attr,
3273 	.events_sysfs_show	= intel_event_sysfs_show,
3274 
3275 	/*
3276 	 * Virtual (or funny metal) CPU can define x86_pmu.extra_regs
3277 	 * together with PMU version 1 and thus be using core_pmu with
3278 	 * shared_regs. We need following callbacks here to allocate
3279 	 * it properly.
3280 	 */
3281 	.cpu_prepare		= intel_pmu_cpu_prepare,
3282 	.cpu_starting		= intel_pmu_cpu_starting,
3283 	.cpu_dying		= intel_pmu_cpu_dying,
3284 };
3285 
3286 static __initconst const struct x86_pmu intel_pmu = {
3287 	.name			= "Intel",
3288 	.handle_irq		= intel_pmu_handle_irq,
3289 	.disable_all		= intel_pmu_disable_all,
3290 	.enable_all		= intel_pmu_enable_all,
3291 	.enable			= intel_pmu_enable_event,
3292 	.disable		= intel_pmu_disable_event,
3293 	.hw_config		= intel_pmu_hw_config,
3294 	.schedule_events	= x86_schedule_events,
3295 	.eventsel		= MSR_ARCH_PERFMON_EVENTSEL0,
3296 	.perfctr		= MSR_ARCH_PERFMON_PERFCTR0,
3297 	.event_map		= intel_pmu_event_map,
3298 	.max_events		= ARRAY_SIZE(intel_perfmon_event_map),
3299 	.apic			= 1,
3300 	.free_running_flags	= PEBS_FREERUNNING_FLAGS,
3301 	/*
3302 	 * Intel PMCs cannot be accessed sanely above 32 bit width,
3303 	 * so we install an artificial 1<<31 period regardless of
3304 	 * the generic event period:
3305 	 */
3306 	.max_period		= (1ULL << 31) - 1,
3307 	.get_event_constraints	= intel_get_event_constraints,
3308 	.put_event_constraints	= intel_put_event_constraints,
3309 	.pebs_aliases		= intel_pebs_aliases_core2,
3310 
3311 	.format_attrs		= intel_arch3_formats_attr,
3312 	.events_sysfs_show	= intel_event_sysfs_show,
3313 
3314 	.cpu_prepare		= intel_pmu_cpu_prepare,
3315 	.cpu_starting		= intel_pmu_cpu_starting,
3316 	.cpu_dying		= intel_pmu_cpu_dying,
3317 	.guest_get_msrs		= intel_guest_get_msrs,
3318 	.sched_task		= intel_pmu_sched_task,
3319 };
3320 
3321 static __init void intel_clovertown_quirk(void)
3322 {
3323 	/*
3324 	 * PEBS is unreliable due to:
3325 	 *
3326 	 *   AJ67  - PEBS may experience CPL leaks
3327 	 *   AJ68  - PEBS PMI may be delayed by one event
3328 	 *   AJ69  - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
3329 	 *   AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
3330 	 *
3331 	 * AJ67 could be worked around by restricting the OS/USR flags.
3332 	 * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
3333 	 *
3334 	 * AJ106 could possibly be worked around by not allowing LBR
3335 	 *       usage from PEBS, including the fixup.
3336 	 * AJ68  could possibly be worked around by always programming
3337 	 *	 a pebs_event_reset[0] value and coping with the lost events.
3338 	 *
3339 	 * But taken together it might just make sense to not enable PEBS on
3340 	 * these chips.
3341 	 */
3342 	pr_warn("PEBS disabled due to CPU errata\n");
3343 	x86_pmu.pebs = 0;
3344 	x86_pmu.pebs_constraints = NULL;
3345 }
3346 
3347 static int intel_snb_pebs_broken(int cpu)
3348 {
3349 	u32 rev = UINT_MAX; /* default to broken for unknown models */
3350 
3351 	switch (cpu_data(cpu).x86_model) {
3352 	case INTEL_FAM6_SANDYBRIDGE:
3353 		rev = 0x28;
3354 		break;
3355 
3356 	case INTEL_FAM6_SANDYBRIDGE_X:
3357 		switch (cpu_data(cpu).x86_mask) {
3358 		case 6: rev = 0x618; break;
3359 		case 7: rev = 0x70c; break;
3360 		}
3361 	}
3362 
3363 	return (cpu_data(cpu).microcode < rev);
3364 }
3365 
3366 static void intel_snb_check_microcode(void)
3367 {
3368 	int pebs_broken = 0;
3369 	int cpu;
3370 
3371 	get_online_cpus();
3372 	for_each_online_cpu(cpu) {
3373 		if ((pebs_broken = intel_snb_pebs_broken(cpu)))
3374 			break;
3375 	}
3376 	put_online_cpus();
3377 
3378 	if (pebs_broken == x86_pmu.pebs_broken)
3379 		return;
3380 
3381 	/*
3382 	 * Serialized by the microcode lock..
3383 	 */
3384 	if (x86_pmu.pebs_broken) {
3385 		pr_info("PEBS enabled due to microcode update\n");
3386 		x86_pmu.pebs_broken = 0;
3387 	} else {
3388 		pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
3389 		x86_pmu.pebs_broken = 1;
3390 	}
3391 }
3392 
3393 static bool is_lbr_from(unsigned long msr)
3394 {
3395 	unsigned long lbr_from_nr = x86_pmu.lbr_from + x86_pmu.lbr_nr;
3396 
3397 	return x86_pmu.lbr_from <= msr && msr < lbr_from_nr;
3398 }
3399 
3400 /*
3401  * Under certain circumstances, access certain MSR may cause #GP.
3402  * The function tests if the input MSR can be safely accessed.
3403  */
3404 static bool check_msr(unsigned long msr, u64 mask)
3405 {
3406 	u64 val_old, val_new, val_tmp;
3407 
3408 	/*
3409 	 * Read the current value, change it and read it back to see if it
3410 	 * matches, this is needed to detect certain hardware emulators
3411 	 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
3412 	 */
3413 	if (rdmsrl_safe(msr, &val_old))
3414 		return false;
3415 
3416 	/*
3417 	 * Only change the bits which can be updated by wrmsrl.
3418 	 */
3419 	val_tmp = val_old ^ mask;
3420 
3421 	if (is_lbr_from(msr))
3422 		val_tmp = lbr_from_signext_quirk_wr(val_tmp);
3423 
3424 	if (wrmsrl_safe(msr, val_tmp) ||
3425 	    rdmsrl_safe(msr, &val_new))
3426 		return false;
3427 
3428 	/*
3429 	 * Quirk only affects validation in wrmsr(), so wrmsrl()'s value
3430 	 * should equal rdmsrl()'s even with the quirk.
3431 	 */
3432 	if (val_new != val_tmp)
3433 		return false;
3434 
3435 	if (is_lbr_from(msr))
3436 		val_old = lbr_from_signext_quirk_wr(val_old);
3437 
3438 	/* Here it's sure that the MSR can be safely accessed.
3439 	 * Restore the old value and return.
3440 	 */
3441 	wrmsrl(msr, val_old);
3442 
3443 	return true;
3444 }
3445 
3446 static __init void intel_sandybridge_quirk(void)
3447 {
3448 	x86_pmu.check_microcode = intel_snb_check_microcode;
3449 	intel_snb_check_microcode();
3450 }
3451 
3452 static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
3453 	{ PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
3454 	{ PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
3455 	{ PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
3456 	{ PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
3457 	{ PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
3458 	{ PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
3459 	{ PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
3460 };
3461 
3462 static __init void intel_arch_events_quirk(void)
3463 {
3464 	int bit;
3465 
3466 	/* disable event that reported as not presend by cpuid */
3467 	for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
3468 		intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
3469 		pr_warn("CPUID marked event: \'%s\' unavailable\n",
3470 			intel_arch_events_map[bit].name);
3471 	}
3472 }
3473 
3474 static __init void intel_nehalem_quirk(void)
3475 {
3476 	union cpuid10_ebx ebx;
3477 
3478 	ebx.full = x86_pmu.events_maskl;
3479 	if (ebx.split.no_branch_misses_retired) {
3480 		/*
3481 		 * Erratum AAJ80 detected, we work it around by using
3482 		 * the BR_MISP_EXEC.ANY event. This will over-count
3483 		 * branch-misses, but it's still much better than the
3484 		 * architectural event which is often completely bogus:
3485 		 */
3486 		intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
3487 		ebx.split.no_branch_misses_retired = 0;
3488 		x86_pmu.events_maskl = ebx.full;
3489 		pr_info("CPU erratum AAJ80 worked around\n");
3490 	}
3491 }
3492 
3493 /*
3494  * enable software workaround for errata:
3495  * SNB: BJ122
3496  * IVB: BV98
3497  * HSW: HSD29
3498  *
3499  * Only needed when HT is enabled. However detecting
3500  * if HT is enabled is difficult (model specific). So instead,
3501  * we enable the workaround in the early boot, and verify if
3502  * it is needed in a later initcall phase once we have valid
3503  * topology information to check if HT is actually enabled
3504  */
3505 static __init void intel_ht_bug(void)
3506 {
3507 	x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED;
3508 
3509 	x86_pmu.start_scheduling = intel_start_scheduling;
3510 	x86_pmu.commit_scheduling = intel_commit_scheduling;
3511 	x86_pmu.stop_scheduling = intel_stop_scheduling;
3512 }
3513 
3514 EVENT_ATTR_STR(mem-loads,	mem_ld_hsw,	"event=0xcd,umask=0x1,ldlat=3");
3515 EVENT_ATTR_STR(mem-stores,	mem_st_hsw,	"event=0xd0,umask=0x82")
3516 
3517 /* Haswell special events */
3518 EVENT_ATTR_STR(tx-start,	tx_start,	"event=0xc9,umask=0x1");
3519 EVENT_ATTR_STR(tx-commit,	tx_commit,	"event=0xc9,umask=0x2");
3520 EVENT_ATTR_STR(tx-abort,	tx_abort,	"event=0xc9,umask=0x4");
3521 EVENT_ATTR_STR(tx-capacity,	tx_capacity,	"event=0x54,umask=0x2");
3522 EVENT_ATTR_STR(tx-conflict,	tx_conflict,	"event=0x54,umask=0x1");
3523 EVENT_ATTR_STR(el-start,	el_start,	"event=0xc8,umask=0x1");
3524 EVENT_ATTR_STR(el-commit,	el_commit,	"event=0xc8,umask=0x2");
3525 EVENT_ATTR_STR(el-abort,	el_abort,	"event=0xc8,umask=0x4");
3526 EVENT_ATTR_STR(el-capacity,	el_capacity,	"event=0x54,umask=0x2");
3527 EVENT_ATTR_STR(el-conflict,	el_conflict,	"event=0x54,umask=0x1");
3528 EVENT_ATTR_STR(cycles-t,	cycles_t,	"event=0x3c,in_tx=1");
3529 EVENT_ATTR_STR(cycles-ct,	cycles_ct,	"event=0x3c,in_tx=1,in_tx_cp=1");
3530 
3531 static struct attribute *hsw_events_attrs[] = {
3532 	EVENT_PTR(tx_start),
3533 	EVENT_PTR(tx_commit),
3534 	EVENT_PTR(tx_abort),
3535 	EVENT_PTR(tx_capacity),
3536 	EVENT_PTR(tx_conflict),
3537 	EVENT_PTR(el_start),
3538 	EVENT_PTR(el_commit),
3539 	EVENT_PTR(el_abort),
3540 	EVENT_PTR(el_capacity),
3541 	EVENT_PTR(el_conflict),
3542 	EVENT_PTR(cycles_t),
3543 	EVENT_PTR(cycles_ct),
3544 	EVENT_PTR(mem_ld_hsw),
3545 	EVENT_PTR(mem_st_hsw),
3546 	EVENT_PTR(td_slots_issued),
3547 	EVENT_PTR(td_slots_retired),
3548 	EVENT_PTR(td_fetch_bubbles),
3549 	EVENT_PTR(td_total_slots),
3550 	EVENT_PTR(td_total_slots_scale),
3551 	EVENT_PTR(td_recovery_bubbles),
3552 	EVENT_PTR(td_recovery_bubbles_scale),
3553 	NULL
3554 };
3555 
3556 __init int intel_pmu_init(void)
3557 {
3558 	union cpuid10_edx edx;
3559 	union cpuid10_eax eax;
3560 	union cpuid10_ebx ebx;
3561 	struct event_constraint *c;
3562 	unsigned int unused;
3563 	struct extra_reg *er;
3564 	int version, i;
3565 
3566 	if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
3567 		switch (boot_cpu_data.x86) {
3568 		case 0x6:
3569 			return p6_pmu_init();
3570 		case 0xb:
3571 			return knc_pmu_init();
3572 		case 0xf:
3573 			return p4_pmu_init();
3574 		}
3575 		return -ENODEV;
3576 	}
3577 
3578 	/*
3579 	 * Check whether the Architectural PerfMon supports
3580 	 * Branch Misses Retired hw_event or not.
3581 	 */
3582 	cpuid(10, &eax.full, &ebx.full, &unused, &edx.full);
3583 	if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
3584 		return -ENODEV;
3585 
3586 	version = eax.split.version_id;
3587 	if (version < 2)
3588 		x86_pmu = core_pmu;
3589 	else
3590 		x86_pmu = intel_pmu;
3591 
3592 	x86_pmu.version			= version;
3593 	x86_pmu.num_counters		= eax.split.num_counters;
3594 	x86_pmu.cntval_bits		= eax.split.bit_width;
3595 	x86_pmu.cntval_mask		= (1ULL << eax.split.bit_width) - 1;
3596 
3597 	x86_pmu.events_maskl		= ebx.full;
3598 	x86_pmu.events_mask_len		= eax.split.mask_length;
3599 
3600 	x86_pmu.max_pebs_events		= min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
3601 
3602 	/*
3603 	 * Quirk: v2 perfmon does not report fixed-purpose events, so
3604 	 * assume at least 3 events:
3605 	 */
3606 	if (version > 1)
3607 		x86_pmu.num_counters_fixed = max((int)edx.split.num_counters_fixed, 3);
3608 
3609 	if (boot_cpu_has(X86_FEATURE_PDCM)) {
3610 		u64 capabilities;
3611 
3612 		rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
3613 		x86_pmu.intel_cap.capabilities = capabilities;
3614 	}
3615 
3616 	intel_ds_init();
3617 
3618 	x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
3619 
3620 	/*
3621 	 * Install the hw-cache-events table:
3622 	 */
3623 	switch (boot_cpu_data.x86_model) {
3624 	case INTEL_FAM6_CORE_YONAH:
3625 		pr_cont("Core events, ");
3626 		break;
3627 
3628 	case INTEL_FAM6_CORE2_MEROM:
3629 		x86_add_quirk(intel_clovertown_quirk);
3630 	case INTEL_FAM6_CORE2_MEROM_L:
3631 	case INTEL_FAM6_CORE2_PENRYN:
3632 	case INTEL_FAM6_CORE2_DUNNINGTON:
3633 		memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
3634 		       sizeof(hw_cache_event_ids));
3635 
3636 		intel_pmu_lbr_init_core();
3637 
3638 		x86_pmu.event_constraints = intel_core2_event_constraints;
3639 		x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
3640 		pr_cont("Core2 events, ");
3641 		break;
3642 
3643 	case INTEL_FAM6_NEHALEM:
3644 	case INTEL_FAM6_NEHALEM_EP:
3645 	case INTEL_FAM6_NEHALEM_EX:
3646 		memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
3647 		       sizeof(hw_cache_event_ids));
3648 		memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
3649 		       sizeof(hw_cache_extra_regs));
3650 
3651 		intel_pmu_lbr_init_nhm();
3652 
3653 		x86_pmu.event_constraints = intel_nehalem_event_constraints;
3654 		x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
3655 		x86_pmu.enable_all = intel_pmu_nhm_enable_all;
3656 		x86_pmu.extra_regs = intel_nehalem_extra_regs;
3657 
3658 		x86_pmu.cpu_events = nhm_events_attrs;
3659 
3660 		/* UOPS_ISSUED.STALLED_CYCLES */
3661 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3662 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
3663 		/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
3664 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
3665 			X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
3666 
3667 		intel_pmu_pebs_data_source_nhm();
3668 		x86_add_quirk(intel_nehalem_quirk);
3669 
3670 		pr_cont("Nehalem events, ");
3671 		break;
3672 
3673 	case INTEL_FAM6_ATOM_PINEVIEW:
3674 	case INTEL_FAM6_ATOM_LINCROFT:
3675 	case INTEL_FAM6_ATOM_PENWELL:
3676 	case INTEL_FAM6_ATOM_CLOVERVIEW:
3677 	case INTEL_FAM6_ATOM_CEDARVIEW:
3678 		memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
3679 		       sizeof(hw_cache_event_ids));
3680 
3681 		intel_pmu_lbr_init_atom();
3682 
3683 		x86_pmu.event_constraints = intel_gen_event_constraints;
3684 		x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
3685 		x86_pmu.pebs_aliases = intel_pebs_aliases_core2;
3686 		pr_cont("Atom events, ");
3687 		break;
3688 
3689 	case INTEL_FAM6_ATOM_SILVERMONT1:
3690 	case INTEL_FAM6_ATOM_SILVERMONT2:
3691 	case INTEL_FAM6_ATOM_AIRMONT:
3692 		memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
3693 			sizeof(hw_cache_event_ids));
3694 		memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
3695 		       sizeof(hw_cache_extra_regs));
3696 
3697 		intel_pmu_lbr_init_slm();
3698 
3699 		x86_pmu.event_constraints = intel_slm_event_constraints;
3700 		x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
3701 		x86_pmu.extra_regs = intel_slm_extra_regs;
3702 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3703 		x86_pmu.cpu_events = slm_events_attrs;
3704 		pr_cont("Silvermont events, ");
3705 		break;
3706 
3707 	case INTEL_FAM6_ATOM_GOLDMONT:
3708 	case INTEL_FAM6_ATOM_DENVERTON:
3709 		memcpy(hw_cache_event_ids, glm_hw_cache_event_ids,
3710 		       sizeof(hw_cache_event_ids));
3711 		memcpy(hw_cache_extra_regs, glm_hw_cache_extra_regs,
3712 		       sizeof(hw_cache_extra_regs));
3713 
3714 		intel_pmu_lbr_init_skl();
3715 
3716 		x86_pmu.event_constraints = intel_slm_event_constraints;
3717 		x86_pmu.pebs_constraints = intel_glm_pebs_event_constraints;
3718 		x86_pmu.extra_regs = intel_glm_extra_regs;
3719 		/*
3720 		 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
3721 		 * for precise cycles.
3722 		 * :pp is identical to :ppp
3723 		 */
3724 		x86_pmu.pebs_aliases = NULL;
3725 		x86_pmu.pebs_prec_dist = true;
3726 		x86_pmu.lbr_pt_coexist = true;
3727 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3728 		pr_cont("Goldmont events, ");
3729 		break;
3730 
3731 	case INTEL_FAM6_WESTMERE:
3732 	case INTEL_FAM6_WESTMERE_EP:
3733 	case INTEL_FAM6_WESTMERE_EX:
3734 		memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
3735 		       sizeof(hw_cache_event_ids));
3736 		memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
3737 		       sizeof(hw_cache_extra_regs));
3738 
3739 		intel_pmu_lbr_init_nhm();
3740 
3741 		x86_pmu.event_constraints = intel_westmere_event_constraints;
3742 		x86_pmu.enable_all = intel_pmu_nhm_enable_all;
3743 		x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
3744 		x86_pmu.extra_regs = intel_westmere_extra_regs;
3745 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3746 
3747 		x86_pmu.cpu_events = nhm_events_attrs;
3748 
3749 		/* UOPS_ISSUED.STALLED_CYCLES */
3750 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3751 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
3752 		/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
3753 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
3754 			X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
3755 
3756 		intel_pmu_pebs_data_source_nhm();
3757 		pr_cont("Westmere events, ");
3758 		break;
3759 
3760 	case INTEL_FAM6_SANDYBRIDGE:
3761 	case INTEL_FAM6_SANDYBRIDGE_X:
3762 		x86_add_quirk(intel_sandybridge_quirk);
3763 		x86_add_quirk(intel_ht_bug);
3764 		memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
3765 		       sizeof(hw_cache_event_ids));
3766 		memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
3767 		       sizeof(hw_cache_extra_regs));
3768 
3769 		intel_pmu_lbr_init_snb();
3770 
3771 		x86_pmu.event_constraints = intel_snb_event_constraints;
3772 		x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
3773 		x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
3774 		if (boot_cpu_data.x86_model == INTEL_FAM6_SANDYBRIDGE_X)
3775 			x86_pmu.extra_regs = intel_snbep_extra_regs;
3776 		else
3777 			x86_pmu.extra_regs = intel_snb_extra_regs;
3778 
3779 
3780 		/* all extra regs are per-cpu when HT is on */
3781 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3782 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3783 
3784 		x86_pmu.cpu_events = snb_events_attrs;
3785 
3786 		/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
3787 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3788 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
3789 		/* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
3790 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
3791 			X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
3792 
3793 		pr_cont("SandyBridge events, ");
3794 		break;
3795 
3796 	case INTEL_FAM6_IVYBRIDGE:
3797 	case INTEL_FAM6_IVYBRIDGE_X:
3798 		x86_add_quirk(intel_ht_bug);
3799 		memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
3800 		       sizeof(hw_cache_event_ids));
3801 		/* dTLB-load-misses on IVB is different than SNB */
3802 		hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
3803 
3804 		memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
3805 		       sizeof(hw_cache_extra_regs));
3806 
3807 		intel_pmu_lbr_init_snb();
3808 
3809 		x86_pmu.event_constraints = intel_ivb_event_constraints;
3810 		x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
3811 		x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
3812 		x86_pmu.pebs_prec_dist = true;
3813 		if (boot_cpu_data.x86_model == INTEL_FAM6_IVYBRIDGE_X)
3814 			x86_pmu.extra_regs = intel_snbep_extra_regs;
3815 		else
3816 			x86_pmu.extra_regs = intel_snb_extra_regs;
3817 		/* all extra regs are per-cpu when HT is on */
3818 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3819 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3820 
3821 		x86_pmu.cpu_events = snb_events_attrs;
3822 
3823 		/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
3824 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3825 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
3826 
3827 		pr_cont("IvyBridge events, ");
3828 		break;
3829 
3830 
3831 	case INTEL_FAM6_HASWELL_CORE:
3832 	case INTEL_FAM6_HASWELL_X:
3833 	case INTEL_FAM6_HASWELL_ULT:
3834 	case INTEL_FAM6_HASWELL_GT3E:
3835 		x86_add_quirk(intel_ht_bug);
3836 		x86_pmu.late_ack = true;
3837 		memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
3838 		memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
3839 
3840 		intel_pmu_lbr_init_hsw();
3841 
3842 		x86_pmu.event_constraints = intel_hsw_event_constraints;
3843 		x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
3844 		x86_pmu.extra_regs = intel_snbep_extra_regs;
3845 		x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
3846 		x86_pmu.pebs_prec_dist = true;
3847 		/* all extra regs are per-cpu when HT is on */
3848 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3849 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3850 
3851 		x86_pmu.hw_config = hsw_hw_config;
3852 		x86_pmu.get_event_constraints = hsw_get_event_constraints;
3853 		x86_pmu.cpu_events = hsw_events_attrs;
3854 		x86_pmu.lbr_double_abort = true;
3855 		pr_cont("Haswell events, ");
3856 		break;
3857 
3858 	case INTEL_FAM6_BROADWELL_CORE:
3859 	case INTEL_FAM6_BROADWELL_XEON_D:
3860 	case INTEL_FAM6_BROADWELL_GT3E:
3861 	case INTEL_FAM6_BROADWELL_X:
3862 		x86_pmu.late_ack = true;
3863 		memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
3864 		memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
3865 
3866 		/* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
3867 		hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
3868 									 BDW_L3_MISS|HSW_SNOOP_DRAM;
3869 		hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
3870 									  HSW_SNOOP_DRAM;
3871 		hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
3872 									     BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
3873 		hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
3874 									      BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
3875 
3876 		intel_pmu_lbr_init_hsw();
3877 
3878 		x86_pmu.event_constraints = intel_bdw_event_constraints;
3879 		x86_pmu.pebs_constraints = intel_bdw_pebs_event_constraints;
3880 		x86_pmu.extra_regs = intel_snbep_extra_regs;
3881 		x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
3882 		x86_pmu.pebs_prec_dist = true;
3883 		/* all extra regs are per-cpu when HT is on */
3884 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3885 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3886 
3887 		x86_pmu.hw_config = hsw_hw_config;
3888 		x86_pmu.get_event_constraints = hsw_get_event_constraints;
3889 		x86_pmu.cpu_events = hsw_events_attrs;
3890 		x86_pmu.limit_period = bdw_limit_period;
3891 		pr_cont("Broadwell events, ");
3892 		break;
3893 
3894 	case INTEL_FAM6_XEON_PHI_KNL:
3895 		memcpy(hw_cache_event_ids,
3896 		       slm_hw_cache_event_ids, sizeof(hw_cache_event_ids));
3897 		memcpy(hw_cache_extra_regs,
3898 		       knl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
3899 		intel_pmu_lbr_init_knl();
3900 
3901 		x86_pmu.event_constraints = intel_slm_event_constraints;
3902 		x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
3903 		x86_pmu.extra_regs = intel_knl_extra_regs;
3904 
3905 		/* all extra regs are per-cpu when HT is on */
3906 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3907 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3908 
3909 		pr_cont("Knights Landing events, ");
3910 		break;
3911 
3912 	case INTEL_FAM6_SKYLAKE_MOBILE:
3913 	case INTEL_FAM6_SKYLAKE_DESKTOP:
3914 	case INTEL_FAM6_SKYLAKE_X:
3915 	case INTEL_FAM6_KABYLAKE_MOBILE:
3916 	case INTEL_FAM6_KABYLAKE_DESKTOP:
3917 		x86_pmu.late_ack = true;
3918 		memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
3919 		memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
3920 		intel_pmu_lbr_init_skl();
3921 
3922 		/* INT_MISC.RECOVERY_CYCLES has umask 1 in Skylake */
3923 		event_attr_td_recovery_bubbles.event_str_noht =
3924 			"event=0xd,umask=0x1,cmask=1";
3925 		event_attr_td_recovery_bubbles.event_str_ht =
3926 			"event=0xd,umask=0x1,cmask=1,any=1";
3927 
3928 		x86_pmu.event_constraints = intel_skl_event_constraints;
3929 		x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints;
3930 		x86_pmu.extra_regs = intel_skl_extra_regs;
3931 		x86_pmu.pebs_aliases = intel_pebs_aliases_skl;
3932 		x86_pmu.pebs_prec_dist = true;
3933 		/* all extra regs are per-cpu when HT is on */
3934 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3935 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3936 
3937 		x86_pmu.hw_config = hsw_hw_config;
3938 		x86_pmu.get_event_constraints = hsw_get_event_constraints;
3939 		x86_pmu.format_attrs = merge_attr(intel_arch3_formats_attr,
3940 						  skl_format_attr);
3941 		WARN_ON(!x86_pmu.format_attrs);
3942 		x86_pmu.cpu_events = hsw_events_attrs;
3943 		pr_cont("Skylake events, ");
3944 		break;
3945 
3946 	default:
3947 		switch (x86_pmu.version) {
3948 		case 1:
3949 			x86_pmu.event_constraints = intel_v1_event_constraints;
3950 			pr_cont("generic architected perfmon v1, ");
3951 			break;
3952 		default:
3953 			/*
3954 			 * default constraints for v2 and up
3955 			 */
3956 			x86_pmu.event_constraints = intel_gen_event_constraints;
3957 			pr_cont("generic architected perfmon, ");
3958 			break;
3959 		}
3960 	}
3961 
3962 	if (x86_pmu.num_counters > INTEL_PMC_MAX_GENERIC) {
3963 		WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
3964 		     x86_pmu.num_counters, INTEL_PMC_MAX_GENERIC);
3965 		x86_pmu.num_counters = INTEL_PMC_MAX_GENERIC;
3966 	}
3967 	x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
3968 
3969 	if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED) {
3970 		WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
3971 		     x86_pmu.num_counters_fixed, INTEL_PMC_MAX_FIXED);
3972 		x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
3973 	}
3974 
3975 	x86_pmu.intel_ctrl |=
3976 		((1LL << x86_pmu.num_counters_fixed)-1) << INTEL_PMC_IDX_FIXED;
3977 
3978 	if (x86_pmu.event_constraints) {
3979 		/*
3980 		 * event on fixed counter2 (REF_CYCLES) only works on this
3981 		 * counter, so do not extend mask to generic counters
3982 		 */
3983 		for_each_event_constraint(c, x86_pmu.event_constraints) {
3984 			if (c->cmask == FIXED_EVENT_FLAGS
3985 			    && c->idxmsk64 != INTEL_PMC_MSK_FIXED_REF_CYCLES) {
3986 				c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
3987 			}
3988 			c->idxmsk64 &=
3989 				~(~0ULL << (INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed));
3990 			c->weight = hweight64(c->idxmsk64);
3991 		}
3992 	}
3993 
3994 	/*
3995 	 * Access LBR MSR may cause #GP under certain circumstances.
3996 	 * E.g. KVM doesn't support LBR MSR
3997 	 * Check all LBT MSR here.
3998 	 * Disable LBR access if any LBR MSRs can not be accessed.
3999 	 */
4000 	if (x86_pmu.lbr_nr && !check_msr(x86_pmu.lbr_tos, 0x3UL))
4001 		x86_pmu.lbr_nr = 0;
4002 	for (i = 0; i < x86_pmu.lbr_nr; i++) {
4003 		if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
4004 		      check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
4005 			x86_pmu.lbr_nr = 0;
4006 	}
4007 
4008 	if (x86_pmu.lbr_nr)
4009 		pr_cont("%d-deep LBR, ", x86_pmu.lbr_nr);
4010 	/*
4011 	 * Access extra MSR may cause #GP under certain circumstances.
4012 	 * E.g. KVM doesn't support offcore event
4013 	 * Check all extra_regs here.
4014 	 */
4015 	if (x86_pmu.extra_regs) {
4016 		for (er = x86_pmu.extra_regs; er->msr; er++) {
4017 			er->extra_msr_access = check_msr(er->msr, 0x11UL);
4018 			/* Disable LBR select mapping */
4019 			if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
4020 				x86_pmu.lbr_sel_map = NULL;
4021 		}
4022 	}
4023 
4024 	/* Support full width counters using alternative MSR range */
4025 	if (x86_pmu.intel_cap.full_width_write) {
4026 		x86_pmu.max_period = x86_pmu.cntval_mask;
4027 		x86_pmu.perfctr = MSR_IA32_PMC0;
4028 		pr_cont("full-width counters, ");
4029 	}
4030 
4031 	return 0;
4032 }
4033 
4034 /*
4035  * HT bug: phase 2 init
4036  * Called once we have valid topology information to check
4037  * whether or not HT is enabled
4038  * If HT is off, then we disable the workaround
4039  */
4040 static __init int fixup_ht_bug(void)
4041 {
4042 	int c;
4043 	/*
4044 	 * problem not present on this CPU model, nothing to do
4045 	 */
4046 	if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED))
4047 		return 0;
4048 
4049 	if (topology_max_smt_threads() > 1) {
4050 		pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
4051 		return 0;
4052 	}
4053 
4054 	if (lockup_detector_suspend() != 0) {
4055 		pr_debug("failed to disable PMU erratum BJ122, BV98, HSD29 workaround\n");
4056 		return 0;
4057 	}
4058 
4059 	x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED);
4060 
4061 	x86_pmu.start_scheduling = NULL;
4062 	x86_pmu.commit_scheduling = NULL;
4063 	x86_pmu.stop_scheduling = NULL;
4064 
4065 	lockup_detector_resume();
4066 
4067 	get_online_cpus();
4068 
4069 	for_each_online_cpu(c) {
4070 		free_excl_cntrs(c);
4071 	}
4072 
4073 	put_online_cpus();
4074 	pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
4075 	return 0;
4076 }
4077 subsys_initcall(fixup_ht_bug)
4078