xref: /linux/arch/x86/events/intel/core.c (revision ad59baa3169591e0b4cf1a217c9139f2145f4c7f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Per core/cpu state
4  *
5  * Used to coordinate shared registers between HT threads or
6  * among events on a single PMU.
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/stddef.h>
12 #include <linux/types.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/nmi.h>
17 #include <linux/kvm_host.h>
18 
19 #include <asm/cpufeature.h>
20 #include <asm/debugreg.h>
21 #include <asm/hardirq.h>
22 #include <asm/intel-family.h>
23 #include <asm/intel_pt.h>
24 #include <asm/apic.h>
25 #include <asm/cpu_device_id.h>
26 
27 #include "../perf_event.h"
28 
29 /*
30  * Intel PerfMon, used on Core and later.
31  */
32 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
33 {
34 	[PERF_COUNT_HW_CPU_CYCLES]		= 0x003c,
35 	[PERF_COUNT_HW_INSTRUCTIONS]		= 0x00c0,
36 	[PERF_COUNT_HW_CACHE_REFERENCES]	= 0x4f2e,
37 	[PERF_COUNT_HW_CACHE_MISSES]		= 0x412e,
38 	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS]	= 0x00c4,
39 	[PERF_COUNT_HW_BRANCH_MISSES]		= 0x00c5,
40 	[PERF_COUNT_HW_BUS_CYCLES]		= 0x013c,
41 	[PERF_COUNT_HW_REF_CPU_CYCLES]		= 0x0300, /* pseudo-encoding */
42 };
43 
44 static struct event_constraint intel_core_event_constraints[] __read_mostly =
45 {
46 	INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
47 	INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
48 	INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
49 	INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
50 	INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
51 	INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
52 	EVENT_CONSTRAINT_END
53 };
54 
55 static struct event_constraint intel_core2_event_constraints[] __read_mostly =
56 {
57 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
58 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
59 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
60 	INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
61 	INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
62 	INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
63 	INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
64 	INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
65 	INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
66 	INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
67 	INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
68 	INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
69 	INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
70 	EVENT_CONSTRAINT_END
71 };
72 
73 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
74 {
75 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
76 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
77 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
78 	INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
79 	INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
80 	INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
81 	INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
82 	INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
83 	INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
84 	INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
85 	INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
86 	EVENT_CONSTRAINT_END
87 };
88 
89 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
90 {
91 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
92 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
93 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
94 	EVENT_EXTRA_END
95 };
96 
97 static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
98 {
99 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
100 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
101 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
102 	INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
103 	INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
104 	INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
105 	INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
106 	EVENT_CONSTRAINT_END
107 };
108 
109 static struct event_constraint intel_snb_event_constraints[] __read_mostly =
110 {
111 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
112 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
113 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
114 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
115 	INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
116 	INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
117 	INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
118 	INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
119 	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
120 	INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
121 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
122 	INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
123 
124 	/*
125 	 * When HT is off these events can only run on the bottom 4 counters
126 	 * When HT is on, they are impacted by the HT bug and require EXCL access
127 	 */
128 	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
129 	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
130 	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
131 	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
132 
133 	EVENT_CONSTRAINT_END
134 };
135 
136 static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
137 {
138 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
139 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
140 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
141 	INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
142 	INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMPTY */
143 	INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
144 	INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
145 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
146 	INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
147 	INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
148 	INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
149 	INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
150 	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
151 
152 	/*
153 	 * When HT is off these events can only run on the bottom 4 counters
154 	 * When HT is on, they are impacted by the HT bug and require EXCL access
155 	 */
156 	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
157 	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
158 	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
159 	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
160 
161 	EVENT_CONSTRAINT_END
162 };
163 
164 static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
165 {
166 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
167 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
168 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
169 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
170 	EVENT_EXTRA_END
171 };
172 
173 static struct event_constraint intel_v1_event_constraints[] __read_mostly =
174 {
175 	EVENT_CONSTRAINT_END
176 };
177 
178 static struct event_constraint intel_gen_event_constraints[] __read_mostly =
179 {
180 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
181 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
182 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
183 	EVENT_CONSTRAINT_END
184 };
185 
186 static struct event_constraint intel_v5_gen_event_constraints[] __read_mostly =
187 {
188 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
189 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
190 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
191 	FIXED_EVENT_CONSTRAINT(0x0400, 3), /* SLOTS */
192 	FIXED_EVENT_CONSTRAINT(0x0500, 4),
193 	FIXED_EVENT_CONSTRAINT(0x0600, 5),
194 	FIXED_EVENT_CONSTRAINT(0x0700, 6),
195 	FIXED_EVENT_CONSTRAINT(0x0800, 7),
196 	FIXED_EVENT_CONSTRAINT(0x0900, 8),
197 	FIXED_EVENT_CONSTRAINT(0x0a00, 9),
198 	FIXED_EVENT_CONSTRAINT(0x0b00, 10),
199 	FIXED_EVENT_CONSTRAINT(0x0c00, 11),
200 	FIXED_EVENT_CONSTRAINT(0x0d00, 12),
201 	FIXED_EVENT_CONSTRAINT(0x0e00, 13),
202 	FIXED_EVENT_CONSTRAINT(0x0f00, 14),
203 	FIXED_EVENT_CONSTRAINT(0x1000, 15),
204 	EVENT_CONSTRAINT_END
205 };
206 
207 static struct event_constraint intel_slm_event_constraints[] __read_mostly =
208 {
209 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
210 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
211 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
212 	EVENT_CONSTRAINT_END
213 };
214 
215 static struct event_constraint intel_grt_event_constraints[] __read_mostly = {
216 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
217 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
218 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
219 	FIXED_EVENT_CONSTRAINT(0x013c, 2), /* CPU_CLK_UNHALTED.REF_TSC_P */
220 	EVENT_CONSTRAINT_END
221 };
222 
223 static struct event_constraint intel_skl_event_constraints[] = {
224 	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
225 	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
226 	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
227 	INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2),	/* INST_RETIRED.PREC_DIST */
228 
229 	/*
230 	 * when HT is off, these can only run on the bottom 4 counters
231 	 */
232 	INTEL_EVENT_CONSTRAINT(0xd0, 0xf),	/* MEM_INST_RETIRED.* */
233 	INTEL_EVENT_CONSTRAINT(0xd1, 0xf),	/* MEM_LOAD_RETIRED.* */
234 	INTEL_EVENT_CONSTRAINT(0xd2, 0xf),	/* MEM_LOAD_L3_HIT_RETIRED.* */
235 	INTEL_EVENT_CONSTRAINT(0xcd, 0xf),	/* MEM_TRANS_RETIRED.* */
236 	INTEL_EVENT_CONSTRAINT(0xc6, 0xf),	/* FRONTEND_RETIRED.* */
237 
238 	EVENT_CONSTRAINT_END
239 };
240 
241 static struct extra_reg intel_knl_extra_regs[] __read_mostly = {
242 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x799ffbb6e7ull, RSP_0),
243 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x399ffbffe7ull, RSP_1),
244 	EVENT_EXTRA_END
245 };
246 
247 static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
248 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
249 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
250 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
251 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
252 	EVENT_EXTRA_END
253 };
254 
255 static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
256 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
257 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
258 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
259 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
260 	EVENT_EXTRA_END
261 };
262 
263 static struct extra_reg intel_skl_extra_regs[] __read_mostly = {
264 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
265 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
266 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
267 	/*
268 	 * Note the low 8 bits eventsel code is not a continuous field, containing
269 	 * some #GPing bits. These are masked out.
270 	 */
271 	INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
272 	EVENT_EXTRA_END
273 };
274 
275 static struct event_constraint intel_icl_event_constraints[] = {
276 	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
277 	FIXED_EVENT_CONSTRAINT(0x01c0, 0),	/* old INST_RETIRED.PREC_DIST */
278 	FIXED_EVENT_CONSTRAINT(0x0100, 0),	/* INST_RETIRED.PREC_DIST */
279 	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
280 	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
281 	FIXED_EVENT_CONSTRAINT(0x0400, 3),	/* SLOTS */
282 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_RETIRING, 0),
283 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BAD_SPEC, 1),
284 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FE_BOUND, 2),
285 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BE_BOUND, 3),
286 	INTEL_EVENT_CONSTRAINT_RANGE(0x03, 0x0a, 0xf),
287 	INTEL_EVENT_CONSTRAINT_RANGE(0x1f, 0x28, 0xf),
288 	INTEL_EVENT_CONSTRAINT(0x32, 0xf),	/* SW_PREFETCH_ACCESS.* */
289 	INTEL_EVENT_CONSTRAINT_RANGE(0x48, 0x56, 0xf),
290 	INTEL_EVENT_CONSTRAINT_RANGE(0x60, 0x8b, 0xf),
291 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xff),  /* CYCLE_ACTIVITY.STALLS_TOTAL */
292 	INTEL_UEVENT_CONSTRAINT(0x10a3, 0xff),  /* CYCLE_ACTIVITY.CYCLES_MEM_ANY */
293 	INTEL_UEVENT_CONSTRAINT(0x14a3, 0xff),  /* CYCLE_ACTIVITY.STALLS_MEM_ANY */
294 	INTEL_EVENT_CONSTRAINT(0xa3, 0xf),      /* CYCLE_ACTIVITY.* */
295 	INTEL_EVENT_CONSTRAINT_RANGE(0xa8, 0xb0, 0xf),
296 	INTEL_EVENT_CONSTRAINT_RANGE(0xb7, 0xbd, 0xf),
297 	INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xe6, 0xf),
298 	INTEL_EVENT_CONSTRAINT(0xef, 0xf),
299 	INTEL_EVENT_CONSTRAINT_RANGE(0xf0, 0xf4, 0xf),
300 	EVENT_CONSTRAINT_END
301 };
302 
303 static struct extra_reg intel_icl_extra_regs[] __read_mostly = {
304 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffffbfffull, RSP_0),
305 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffffbfffull, RSP_1),
306 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
307 	INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
308 	EVENT_EXTRA_END
309 };
310 
311 static struct extra_reg intel_glc_extra_regs[] __read_mostly = {
312 	INTEL_UEVENT_EXTRA_REG(0x012a, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
313 	INTEL_UEVENT_EXTRA_REG(0x012b, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
314 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
315 	INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff1f, FE),
316 	INTEL_UEVENT_EXTRA_REG(0x40ad, MSR_PEBS_FRONTEND, 0x7, FE),
317 	INTEL_UEVENT_EXTRA_REG(0x04c2, MSR_PEBS_FRONTEND, 0x8, FE),
318 	EVENT_EXTRA_END
319 };
320 
321 static struct event_constraint intel_glc_event_constraints[] = {
322 	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
323 	FIXED_EVENT_CONSTRAINT(0x0100, 0),	/* INST_RETIRED.PREC_DIST */
324 	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
325 	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
326 	FIXED_EVENT_CONSTRAINT(0x013c, 2),	/* CPU_CLK_UNHALTED.REF_TSC_P */
327 	FIXED_EVENT_CONSTRAINT(0x0400, 3),	/* SLOTS */
328 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_RETIRING, 0),
329 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BAD_SPEC, 1),
330 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FE_BOUND, 2),
331 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BE_BOUND, 3),
332 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_HEAVY_OPS, 4),
333 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BR_MISPREDICT, 5),
334 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FETCH_LAT, 6),
335 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_MEM_BOUND, 7),
336 
337 	INTEL_EVENT_CONSTRAINT(0x2e, 0xff),
338 	INTEL_EVENT_CONSTRAINT(0x3c, 0xff),
339 	/*
340 	 * Generally event codes < 0x90 are restricted to counters 0-3.
341 	 * The 0x2E and 0x3C are exception, which has no restriction.
342 	 */
343 	INTEL_EVENT_CONSTRAINT_RANGE(0x01, 0x8f, 0xf),
344 
345 	INTEL_UEVENT_CONSTRAINT(0x01a3, 0xf),
346 	INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf),
347 	INTEL_UEVENT_CONSTRAINT(0x08a3, 0xf),
348 	INTEL_UEVENT_CONSTRAINT(0x04a4, 0x1),
349 	INTEL_UEVENT_CONSTRAINT(0x08a4, 0x1),
350 	INTEL_UEVENT_CONSTRAINT(0x02cd, 0x1),
351 	INTEL_EVENT_CONSTRAINT(0xce, 0x1),
352 	INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xdf, 0xf),
353 	/*
354 	 * Generally event codes >= 0x90 are likely to have no restrictions.
355 	 * The exception are defined as above.
356 	 */
357 	INTEL_EVENT_CONSTRAINT_RANGE(0x90, 0xfe, 0xff),
358 
359 	EVENT_CONSTRAINT_END
360 };
361 
362 static struct extra_reg intel_rwc_extra_regs[] __read_mostly = {
363 	INTEL_UEVENT_EXTRA_REG(0x012a, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
364 	INTEL_UEVENT_EXTRA_REG(0x012b, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
365 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
366 	INTEL_UEVENT_EXTRA_REG(0x02c6, MSR_PEBS_FRONTEND, 0x9, FE),
367 	INTEL_UEVENT_EXTRA_REG(0x03c6, MSR_PEBS_FRONTEND, 0x7fff1f, FE),
368 	INTEL_UEVENT_EXTRA_REG(0x40ad, MSR_PEBS_FRONTEND, 0x7, FE),
369 	INTEL_UEVENT_EXTRA_REG(0x04c2, MSR_PEBS_FRONTEND, 0x8, FE),
370 	EVENT_EXTRA_END
371 };
372 
373 EVENT_ATTR_STR(mem-loads,	mem_ld_nhm,	"event=0x0b,umask=0x10,ldlat=3");
374 EVENT_ATTR_STR(mem-loads,	mem_ld_snb,	"event=0xcd,umask=0x1,ldlat=3");
375 EVENT_ATTR_STR(mem-stores,	mem_st_snb,	"event=0xcd,umask=0x2");
376 
377 static struct attribute *nhm_mem_events_attrs[] = {
378 	EVENT_PTR(mem_ld_nhm),
379 	NULL,
380 };
381 
382 /*
383  * topdown events for Intel Core CPUs.
384  *
385  * The events are all in slots, which is a free slot in a 4 wide
386  * pipeline. Some events are already reported in slots, for cycle
387  * events we multiply by the pipeline width (4).
388  *
389  * With Hyper Threading on, topdown metrics are either summed or averaged
390  * between the threads of a core: (count_t0 + count_t1).
391  *
392  * For the average case the metric is always scaled to pipeline width,
393  * so we use factor 2 ((count_t0 + count_t1) / 2 * 4)
394  */
395 
396 EVENT_ATTR_STR_HT(topdown-total-slots, td_total_slots,
397 	"event=0x3c,umask=0x0",			/* cpu_clk_unhalted.thread */
398 	"event=0x3c,umask=0x0,any=1");		/* cpu_clk_unhalted.thread_any */
399 EVENT_ATTR_STR_HT(topdown-total-slots.scale, td_total_slots_scale, "4", "2");
400 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued,
401 	"event=0xe,umask=0x1");			/* uops_issued.any */
402 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired,
403 	"event=0xc2,umask=0x2");		/* uops_retired.retire_slots */
404 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles,
405 	"event=0x9c,umask=0x1");		/* idq_uops_not_delivered_core */
406 EVENT_ATTR_STR_HT(topdown-recovery-bubbles, td_recovery_bubbles,
407 	"event=0xd,umask=0x3,cmask=1",		/* int_misc.recovery_cycles */
408 	"event=0xd,umask=0x3,cmask=1,any=1");	/* int_misc.recovery_cycles_any */
409 EVENT_ATTR_STR_HT(topdown-recovery-bubbles.scale, td_recovery_bubbles_scale,
410 	"4", "2");
411 
412 EVENT_ATTR_STR(slots,			slots,			"event=0x00,umask=0x4");
413 EVENT_ATTR_STR(topdown-retiring,	td_retiring,		"event=0x00,umask=0x80");
414 EVENT_ATTR_STR(topdown-bad-spec,	td_bad_spec,		"event=0x00,umask=0x81");
415 EVENT_ATTR_STR(topdown-fe-bound,	td_fe_bound,		"event=0x00,umask=0x82");
416 EVENT_ATTR_STR(topdown-be-bound,	td_be_bound,		"event=0x00,umask=0x83");
417 EVENT_ATTR_STR(topdown-heavy-ops,	td_heavy_ops,		"event=0x00,umask=0x84");
418 EVENT_ATTR_STR(topdown-br-mispredict,	td_br_mispredict,	"event=0x00,umask=0x85");
419 EVENT_ATTR_STR(topdown-fetch-lat,	td_fetch_lat,		"event=0x00,umask=0x86");
420 EVENT_ATTR_STR(topdown-mem-bound,	td_mem_bound,		"event=0x00,umask=0x87");
421 
422 static struct attribute *snb_events_attrs[] = {
423 	EVENT_PTR(td_slots_issued),
424 	EVENT_PTR(td_slots_retired),
425 	EVENT_PTR(td_fetch_bubbles),
426 	EVENT_PTR(td_total_slots),
427 	EVENT_PTR(td_total_slots_scale),
428 	EVENT_PTR(td_recovery_bubbles),
429 	EVENT_PTR(td_recovery_bubbles_scale),
430 	NULL,
431 };
432 
433 static struct attribute *snb_mem_events_attrs[] = {
434 	EVENT_PTR(mem_ld_snb),
435 	EVENT_PTR(mem_st_snb),
436 	NULL,
437 };
438 
439 static struct event_constraint intel_hsw_event_constraints[] = {
440 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
441 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
442 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
443 	INTEL_UEVENT_CONSTRAINT(0x148, 0x4),	/* L1D_PEND_MISS.PENDING */
444 	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
445 	INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
446 	/* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
447 	INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
448 	/* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
449 	INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
450 	/* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
451 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
452 
453 	/*
454 	 * When HT is off these events can only run on the bottom 4 counters
455 	 * When HT is on, they are impacted by the HT bug and require EXCL access
456 	 */
457 	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
458 	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
459 	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
460 	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
461 
462 	EVENT_CONSTRAINT_END
463 };
464 
465 static struct event_constraint intel_bdw_event_constraints[] = {
466 	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
467 	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
468 	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
469 	INTEL_UEVENT_CONSTRAINT(0x148, 0x4),	/* L1D_PEND_MISS.PENDING */
470 	INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4),	/* CYCLE_ACTIVITY.CYCLES_L1D_MISS */
471 	/*
472 	 * when HT is off, these can only run on the bottom 4 counters
473 	 */
474 	INTEL_EVENT_CONSTRAINT(0xd0, 0xf),	/* MEM_INST_RETIRED.* */
475 	INTEL_EVENT_CONSTRAINT(0xd1, 0xf),	/* MEM_LOAD_RETIRED.* */
476 	INTEL_EVENT_CONSTRAINT(0xd2, 0xf),	/* MEM_LOAD_L3_HIT_RETIRED.* */
477 	INTEL_EVENT_CONSTRAINT(0xcd, 0xf),	/* MEM_TRANS_RETIRED.* */
478 	EVENT_CONSTRAINT_END
479 };
480 
481 static u64 intel_pmu_event_map(int hw_event)
482 {
483 	return intel_perfmon_event_map[hw_event];
484 }
485 
486 static __initconst const u64 glc_hw_cache_event_ids
487 				[PERF_COUNT_HW_CACHE_MAX]
488 				[PERF_COUNT_HW_CACHE_OP_MAX]
489 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
490 {
491  [ C(L1D ) ] = {
492 	[ C(OP_READ) ] = {
493 		[ C(RESULT_ACCESS) ] = 0x81d0,
494 		[ C(RESULT_MISS)   ] = 0xe124,
495 	},
496 	[ C(OP_WRITE) ] = {
497 		[ C(RESULT_ACCESS) ] = 0x82d0,
498 	},
499  },
500  [ C(L1I ) ] = {
501 	[ C(OP_READ) ] = {
502 		[ C(RESULT_MISS)   ] = 0xe424,
503 	},
504 	[ C(OP_WRITE) ] = {
505 		[ C(RESULT_ACCESS) ] = -1,
506 		[ C(RESULT_MISS)   ] = -1,
507 	},
508  },
509  [ C(LL  ) ] = {
510 	[ C(OP_READ) ] = {
511 		[ C(RESULT_ACCESS) ] = 0x12a,
512 		[ C(RESULT_MISS)   ] = 0x12a,
513 	},
514 	[ C(OP_WRITE) ] = {
515 		[ C(RESULT_ACCESS) ] = 0x12a,
516 		[ C(RESULT_MISS)   ] = 0x12a,
517 	},
518  },
519  [ C(DTLB) ] = {
520 	[ C(OP_READ) ] = {
521 		[ C(RESULT_ACCESS) ] = 0x81d0,
522 		[ C(RESULT_MISS)   ] = 0xe12,
523 	},
524 	[ C(OP_WRITE) ] = {
525 		[ C(RESULT_ACCESS) ] = 0x82d0,
526 		[ C(RESULT_MISS)   ] = 0xe13,
527 	},
528  },
529  [ C(ITLB) ] = {
530 	[ C(OP_READ) ] = {
531 		[ C(RESULT_ACCESS) ] = -1,
532 		[ C(RESULT_MISS)   ] = 0xe11,
533 	},
534 	[ C(OP_WRITE) ] = {
535 		[ C(RESULT_ACCESS) ] = -1,
536 		[ C(RESULT_MISS)   ] = -1,
537 	},
538 	[ C(OP_PREFETCH) ] = {
539 		[ C(RESULT_ACCESS) ] = -1,
540 		[ C(RESULT_MISS)   ] = -1,
541 	},
542  },
543  [ C(BPU ) ] = {
544 	[ C(OP_READ) ] = {
545 		[ C(RESULT_ACCESS) ] = 0x4c4,
546 		[ C(RESULT_MISS)   ] = 0x4c5,
547 	},
548 	[ C(OP_WRITE) ] = {
549 		[ C(RESULT_ACCESS) ] = -1,
550 		[ C(RESULT_MISS)   ] = -1,
551 	},
552 	[ C(OP_PREFETCH) ] = {
553 		[ C(RESULT_ACCESS) ] = -1,
554 		[ C(RESULT_MISS)   ] = -1,
555 	},
556  },
557  [ C(NODE) ] = {
558 	[ C(OP_READ) ] = {
559 		[ C(RESULT_ACCESS) ] = 0x12a,
560 		[ C(RESULT_MISS)   ] = 0x12a,
561 	},
562  },
563 };
564 
565 static __initconst const u64 glc_hw_cache_extra_regs
566 				[PERF_COUNT_HW_CACHE_MAX]
567 				[PERF_COUNT_HW_CACHE_OP_MAX]
568 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
569 {
570  [ C(LL  ) ] = {
571 	[ C(OP_READ) ] = {
572 		[ C(RESULT_ACCESS) ] = 0x10001,
573 		[ C(RESULT_MISS)   ] = 0x3fbfc00001,
574 	},
575 	[ C(OP_WRITE) ] = {
576 		[ C(RESULT_ACCESS) ] = 0x3f3ffc0002,
577 		[ C(RESULT_MISS)   ] = 0x3f3fc00002,
578 	},
579  },
580  [ C(NODE) ] = {
581 	[ C(OP_READ) ] = {
582 		[ C(RESULT_ACCESS) ] = 0x10c000001,
583 		[ C(RESULT_MISS)   ] = 0x3fb3000001,
584 	},
585  },
586 };
587 
588 /*
589  * Notes on the events:
590  * - data reads do not include code reads (comparable to earlier tables)
591  * - data counts include speculative execution (except L1 write, dtlb, bpu)
592  * - remote node access includes remote memory, remote cache, remote mmio.
593  * - prefetches are not included in the counts.
594  * - icache miss does not include decoded icache
595  */
596 
597 #define SKL_DEMAND_DATA_RD		BIT_ULL(0)
598 #define SKL_DEMAND_RFO			BIT_ULL(1)
599 #define SKL_ANY_RESPONSE		BIT_ULL(16)
600 #define SKL_SUPPLIER_NONE		BIT_ULL(17)
601 #define SKL_L3_MISS_LOCAL_DRAM		BIT_ULL(26)
602 #define SKL_L3_MISS_REMOTE_HOP0_DRAM	BIT_ULL(27)
603 #define SKL_L3_MISS_REMOTE_HOP1_DRAM	BIT_ULL(28)
604 #define SKL_L3_MISS_REMOTE_HOP2P_DRAM	BIT_ULL(29)
605 #define SKL_L3_MISS			(SKL_L3_MISS_LOCAL_DRAM| \
606 					 SKL_L3_MISS_REMOTE_HOP0_DRAM| \
607 					 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
608 					 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
609 #define SKL_SPL_HIT			BIT_ULL(30)
610 #define SKL_SNOOP_NONE			BIT_ULL(31)
611 #define SKL_SNOOP_NOT_NEEDED		BIT_ULL(32)
612 #define SKL_SNOOP_MISS			BIT_ULL(33)
613 #define SKL_SNOOP_HIT_NO_FWD		BIT_ULL(34)
614 #define SKL_SNOOP_HIT_WITH_FWD		BIT_ULL(35)
615 #define SKL_SNOOP_HITM			BIT_ULL(36)
616 #define SKL_SNOOP_NON_DRAM		BIT_ULL(37)
617 #define SKL_ANY_SNOOP			(SKL_SPL_HIT|SKL_SNOOP_NONE| \
618 					 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
619 					 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
620 					 SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM)
621 #define SKL_DEMAND_READ			SKL_DEMAND_DATA_RD
622 #define SKL_SNOOP_DRAM			(SKL_SNOOP_NONE| \
623 					 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
624 					 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
625 					 SKL_SNOOP_HITM|SKL_SPL_HIT)
626 #define SKL_DEMAND_WRITE		SKL_DEMAND_RFO
627 #define SKL_LLC_ACCESS			SKL_ANY_RESPONSE
628 #define SKL_L3_MISS_REMOTE		(SKL_L3_MISS_REMOTE_HOP0_DRAM| \
629 					 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
630 					 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
631 
632 static __initconst const u64 skl_hw_cache_event_ids
633 				[PERF_COUNT_HW_CACHE_MAX]
634 				[PERF_COUNT_HW_CACHE_OP_MAX]
635 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
636 {
637  [ C(L1D ) ] = {
638 	[ C(OP_READ) ] = {
639 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_INST_RETIRED.ALL_LOADS */
640 		[ C(RESULT_MISS)   ] = 0x151,	/* L1D.REPLACEMENT */
641 	},
642 	[ C(OP_WRITE) ] = {
643 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_INST_RETIRED.ALL_STORES */
644 		[ C(RESULT_MISS)   ] = 0x0,
645 	},
646 	[ C(OP_PREFETCH) ] = {
647 		[ C(RESULT_ACCESS) ] = 0x0,
648 		[ C(RESULT_MISS)   ] = 0x0,
649 	},
650  },
651  [ C(L1I ) ] = {
652 	[ C(OP_READ) ] = {
653 		[ C(RESULT_ACCESS) ] = 0x0,
654 		[ C(RESULT_MISS)   ] = 0x283,	/* ICACHE_64B.MISS */
655 	},
656 	[ C(OP_WRITE) ] = {
657 		[ C(RESULT_ACCESS) ] = -1,
658 		[ C(RESULT_MISS)   ] = -1,
659 	},
660 	[ C(OP_PREFETCH) ] = {
661 		[ C(RESULT_ACCESS) ] = 0x0,
662 		[ C(RESULT_MISS)   ] = 0x0,
663 	},
664  },
665  [ C(LL  ) ] = {
666 	[ C(OP_READ) ] = {
667 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
668 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
669 	},
670 	[ C(OP_WRITE) ] = {
671 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
672 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
673 	},
674 	[ C(OP_PREFETCH) ] = {
675 		[ C(RESULT_ACCESS) ] = 0x0,
676 		[ C(RESULT_MISS)   ] = 0x0,
677 	},
678  },
679  [ C(DTLB) ] = {
680 	[ C(OP_READ) ] = {
681 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_INST_RETIRED.ALL_LOADS */
682 		[ C(RESULT_MISS)   ] = 0xe08,	/* DTLB_LOAD_MISSES.WALK_COMPLETED */
683 	},
684 	[ C(OP_WRITE) ] = {
685 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_INST_RETIRED.ALL_STORES */
686 		[ C(RESULT_MISS)   ] = 0xe49,	/* DTLB_STORE_MISSES.WALK_COMPLETED */
687 	},
688 	[ C(OP_PREFETCH) ] = {
689 		[ C(RESULT_ACCESS) ] = 0x0,
690 		[ C(RESULT_MISS)   ] = 0x0,
691 	},
692  },
693  [ C(ITLB) ] = {
694 	[ C(OP_READ) ] = {
695 		[ C(RESULT_ACCESS) ] = 0x2085,	/* ITLB_MISSES.STLB_HIT */
696 		[ C(RESULT_MISS)   ] = 0xe85,	/* ITLB_MISSES.WALK_COMPLETED */
697 	},
698 	[ C(OP_WRITE) ] = {
699 		[ C(RESULT_ACCESS) ] = -1,
700 		[ C(RESULT_MISS)   ] = -1,
701 	},
702 	[ C(OP_PREFETCH) ] = {
703 		[ C(RESULT_ACCESS) ] = -1,
704 		[ C(RESULT_MISS)   ] = -1,
705 	},
706  },
707  [ C(BPU ) ] = {
708 	[ C(OP_READ) ] = {
709 		[ C(RESULT_ACCESS) ] = 0xc4,	/* BR_INST_RETIRED.ALL_BRANCHES */
710 		[ C(RESULT_MISS)   ] = 0xc5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
711 	},
712 	[ C(OP_WRITE) ] = {
713 		[ C(RESULT_ACCESS) ] = -1,
714 		[ C(RESULT_MISS)   ] = -1,
715 	},
716 	[ C(OP_PREFETCH) ] = {
717 		[ C(RESULT_ACCESS) ] = -1,
718 		[ C(RESULT_MISS)   ] = -1,
719 	},
720  },
721  [ C(NODE) ] = {
722 	[ C(OP_READ) ] = {
723 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
724 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
725 	},
726 	[ C(OP_WRITE) ] = {
727 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
728 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
729 	},
730 	[ C(OP_PREFETCH) ] = {
731 		[ C(RESULT_ACCESS) ] = 0x0,
732 		[ C(RESULT_MISS)   ] = 0x0,
733 	},
734  },
735 };
736 
737 static __initconst const u64 skl_hw_cache_extra_regs
738 				[PERF_COUNT_HW_CACHE_MAX]
739 				[PERF_COUNT_HW_CACHE_OP_MAX]
740 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
741 {
742  [ C(LL  ) ] = {
743 	[ C(OP_READ) ] = {
744 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
745 				       SKL_LLC_ACCESS|SKL_ANY_SNOOP,
746 		[ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
747 				       SKL_L3_MISS|SKL_ANY_SNOOP|
748 				       SKL_SUPPLIER_NONE,
749 	},
750 	[ C(OP_WRITE) ] = {
751 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
752 				       SKL_LLC_ACCESS|SKL_ANY_SNOOP,
753 		[ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
754 				       SKL_L3_MISS|SKL_ANY_SNOOP|
755 				       SKL_SUPPLIER_NONE,
756 	},
757 	[ C(OP_PREFETCH) ] = {
758 		[ C(RESULT_ACCESS) ] = 0x0,
759 		[ C(RESULT_MISS)   ] = 0x0,
760 	},
761  },
762  [ C(NODE) ] = {
763 	[ C(OP_READ) ] = {
764 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
765 				       SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
766 		[ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
767 				       SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
768 	},
769 	[ C(OP_WRITE) ] = {
770 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
771 				       SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
772 		[ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
773 				       SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
774 	},
775 	[ C(OP_PREFETCH) ] = {
776 		[ C(RESULT_ACCESS) ] = 0x0,
777 		[ C(RESULT_MISS)   ] = 0x0,
778 	},
779  },
780 };
781 
782 #define SNB_DMND_DATA_RD	(1ULL << 0)
783 #define SNB_DMND_RFO		(1ULL << 1)
784 #define SNB_DMND_IFETCH		(1ULL << 2)
785 #define SNB_DMND_WB		(1ULL << 3)
786 #define SNB_PF_DATA_RD		(1ULL << 4)
787 #define SNB_PF_RFO		(1ULL << 5)
788 #define SNB_PF_IFETCH		(1ULL << 6)
789 #define SNB_LLC_DATA_RD		(1ULL << 7)
790 #define SNB_LLC_RFO		(1ULL << 8)
791 #define SNB_LLC_IFETCH		(1ULL << 9)
792 #define SNB_BUS_LOCKS		(1ULL << 10)
793 #define SNB_STRM_ST		(1ULL << 11)
794 #define SNB_OTHER		(1ULL << 15)
795 #define SNB_RESP_ANY		(1ULL << 16)
796 #define SNB_NO_SUPP		(1ULL << 17)
797 #define SNB_LLC_HITM		(1ULL << 18)
798 #define SNB_LLC_HITE		(1ULL << 19)
799 #define SNB_LLC_HITS		(1ULL << 20)
800 #define SNB_LLC_HITF		(1ULL << 21)
801 #define SNB_LOCAL		(1ULL << 22)
802 #define SNB_REMOTE		(0xffULL << 23)
803 #define SNB_SNP_NONE		(1ULL << 31)
804 #define SNB_SNP_NOT_NEEDED	(1ULL << 32)
805 #define SNB_SNP_MISS		(1ULL << 33)
806 #define SNB_NO_FWD		(1ULL << 34)
807 #define SNB_SNP_FWD		(1ULL << 35)
808 #define SNB_HITM		(1ULL << 36)
809 #define SNB_NON_DRAM		(1ULL << 37)
810 
811 #define SNB_DMND_READ		(SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
812 #define SNB_DMND_WRITE		(SNB_DMND_RFO|SNB_LLC_RFO)
813 #define SNB_DMND_PREFETCH	(SNB_PF_DATA_RD|SNB_PF_RFO)
814 
815 #define SNB_SNP_ANY		(SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
816 				 SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
817 				 SNB_HITM)
818 
819 #define SNB_DRAM_ANY		(SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
820 #define SNB_DRAM_REMOTE		(SNB_REMOTE|SNB_SNP_ANY)
821 
822 #define SNB_L3_ACCESS		SNB_RESP_ANY
823 #define SNB_L3_MISS		(SNB_DRAM_ANY|SNB_NON_DRAM)
824 
825 static __initconst const u64 snb_hw_cache_extra_regs
826 				[PERF_COUNT_HW_CACHE_MAX]
827 				[PERF_COUNT_HW_CACHE_OP_MAX]
828 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
829 {
830  [ C(LL  ) ] = {
831 	[ C(OP_READ) ] = {
832 		[ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
833 		[ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_L3_MISS,
834 	},
835 	[ C(OP_WRITE) ] = {
836 		[ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
837 		[ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_L3_MISS,
838 	},
839 	[ C(OP_PREFETCH) ] = {
840 		[ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
841 		[ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
842 	},
843  },
844  [ C(NODE) ] = {
845 	[ C(OP_READ) ] = {
846 		[ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
847 		[ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
848 	},
849 	[ C(OP_WRITE) ] = {
850 		[ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
851 		[ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
852 	},
853 	[ C(OP_PREFETCH) ] = {
854 		[ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
855 		[ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
856 	},
857  },
858 };
859 
860 static __initconst const u64 snb_hw_cache_event_ids
861 				[PERF_COUNT_HW_CACHE_MAX]
862 				[PERF_COUNT_HW_CACHE_OP_MAX]
863 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
864 {
865  [ C(L1D) ] = {
866 	[ C(OP_READ) ] = {
867 		[ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS        */
868 		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPLACEMENT              */
869 	},
870 	[ C(OP_WRITE) ] = {
871 		[ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES       */
872 		[ C(RESULT_MISS)   ] = 0x0851, /* L1D.ALL_M_REPLACEMENT        */
873 	},
874 	[ C(OP_PREFETCH) ] = {
875 		[ C(RESULT_ACCESS) ] = 0x0,
876 		[ C(RESULT_MISS)   ] = 0x024e, /* HW_PRE_REQ.DL1_MISS          */
877 	},
878  },
879  [ C(L1I ) ] = {
880 	[ C(OP_READ) ] = {
881 		[ C(RESULT_ACCESS) ] = 0x0,
882 		[ C(RESULT_MISS)   ] = 0x0280, /* ICACHE.MISSES */
883 	},
884 	[ C(OP_WRITE) ] = {
885 		[ C(RESULT_ACCESS) ] = -1,
886 		[ C(RESULT_MISS)   ] = -1,
887 	},
888 	[ C(OP_PREFETCH) ] = {
889 		[ C(RESULT_ACCESS) ] = 0x0,
890 		[ C(RESULT_MISS)   ] = 0x0,
891 	},
892  },
893  [ C(LL  ) ] = {
894 	[ C(OP_READ) ] = {
895 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
896 		[ C(RESULT_ACCESS) ] = 0x01b7,
897 		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
898 		[ C(RESULT_MISS)   ] = 0x01b7,
899 	},
900 	[ C(OP_WRITE) ] = {
901 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
902 		[ C(RESULT_ACCESS) ] = 0x01b7,
903 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
904 		[ C(RESULT_MISS)   ] = 0x01b7,
905 	},
906 	[ C(OP_PREFETCH) ] = {
907 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
908 		[ C(RESULT_ACCESS) ] = 0x01b7,
909 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
910 		[ C(RESULT_MISS)   ] = 0x01b7,
911 	},
912  },
913  [ C(DTLB) ] = {
914 	[ C(OP_READ) ] = {
915 		[ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
916 		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
917 	},
918 	[ C(OP_WRITE) ] = {
919 		[ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
920 		[ C(RESULT_MISS)   ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
921 	},
922 	[ C(OP_PREFETCH) ] = {
923 		[ C(RESULT_ACCESS) ] = 0x0,
924 		[ C(RESULT_MISS)   ] = 0x0,
925 	},
926  },
927  [ C(ITLB) ] = {
928 	[ C(OP_READ) ] = {
929 		[ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT         */
930 		[ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK    */
931 	},
932 	[ C(OP_WRITE) ] = {
933 		[ C(RESULT_ACCESS) ] = -1,
934 		[ C(RESULT_MISS)   ] = -1,
935 	},
936 	[ C(OP_PREFETCH) ] = {
937 		[ C(RESULT_ACCESS) ] = -1,
938 		[ C(RESULT_MISS)   ] = -1,
939 	},
940  },
941  [ C(BPU ) ] = {
942 	[ C(OP_READ) ] = {
943 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
944 		[ C(RESULT_MISS)   ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
945 	},
946 	[ C(OP_WRITE) ] = {
947 		[ C(RESULT_ACCESS) ] = -1,
948 		[ C(RESULT_MISS)   ] = -1,
949 	},
950 	[ C(OP_PREFETCH) ] = {
951 		[ C(RESULT_ACCESS) ] = -1,
952 		[ C(RESULT_MISS)   ] = -1,
953 	},
954  },
955  [ C(NODE) ] = {
956 	[ C(OP_READ) ] = {
957 		[ C(RESULT_ACCESS) ] = 0x01b7,
958 		[ C(RESULT_MISS)   ] = 0x01b7,
959 	},
960 	[ C(OP_WRITE) ] = {
961 		[ C(RESULT_ACCESS) ] = 0x01b7,
962 		[ C(RESULT_MISS)   ] = 0x01b7,
963 	},
964 	[ C(OP_PREFETCH) ] = {
965 		[ C(RESULT_ACCESS) ] = 0x01b7,
966 		[ C(RESULT_MISS)   ] = 0x01b7,
967 	},
968  },
969 
970 };
971 
972 /*
973  * Notes on the events:
974  * - data reads do not include code reads (comparable to earlier tables)
975  * - data counts include speculative execution (except L1 write, dtlb, bpu)
976  * - remote node access includes remote memory, remote cache, remote mmio.
977  * - prefetches are not included in the counts because they are not
978  *   reliably counted.
979  */
980 
981 #define HSW_DEMAND_DATA_RD		BIT_ULL(0)
982 #define HSW_DEMAND_RFO			BIT_ULL(1)
983 #define HSW_ANY_RESPONSE		BIT_ULL(16)
984 #define HSW_SUPPLIER_NONE		BIT_ULL(17)
985 #define HSW_L3_MISS_LOCAL_DRAM		BIT_ULL(22)
986 #define HSW_L3_MISS_REMOTE_HOP0		BIT_ULL(27)
987 #define HSW_L3_MISS_REMOTE_HOP1		BIT_ULL(28)
988 #define HSW_L3_MISS_REMOTE_HOP2P	BIT_ULL(29)
989 #define HSW_L3_MISS			(HSW_L3_MISS_LOCAL_DRAM| \
990 					 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
991 					 HSW_L3_MISS_REMOTE_HOP2P)
992 #define HSW_SNOOP_NONE			BIT_ULL(31)
993 #define HSW_SNOOP_NOT_NEEDED		BIT_ULL(32)
994 #define HSW_SNOOP_MISS			BIT_ULL(33)
995 #define HSW_SNOOP_HIT_NO_FWD		BIT_ULL(34)
996 #define HSW_SNOOP_HIT_WITH_FWD		BIT_ULL(35)
997 #define HSW_SNOOP_HITM			BIT_ULL(36)
998 #define HSW_SNOOP_NON_DRAM		BIT_ULL(37)
999 #define HSW_ANY_SNOOP			(HSW_SNOOP_NONE| \
1000 					 HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
1001 					 HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
1002 					 HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
1003 #define HSW_SNOOP_DRAM			(HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
1004 #define HSW_DEMAND_READ			HSW_DEMAND_DATA_RD
1005 #define HSW_DEMAND_WRITE		HSW_DEMAND_RFO
1006 #define HSW_L3_MISS_REMOTE		(HSW_L3_MISS_REMOTE_HOP0|\
1007 					 HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
1008 #define HSW_LLC_ACCESS			HSW_ANY_RESPONSE
1009 
1010 #define BDW_L3_MISS_LOCAL		BIT(26)
1011 #define BDW_L3_MISS			(BDW_L3_MISS_LOCAL| \
1012 					 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
1013 					 HSW_L3_MISS_REMOTE_HOP2P)
1014 
1015 
1016 static __initconst const u64 hsw_hw_cache_event_ids
1017 				[PERF_COUNT_HW_CACHE_MAX]
1018 				[PERF_COUNT_HW_CACHE_OP_MAX]
1019 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1020 {
1021  [ C(L1D ) ] = {
1022 	[ C(OP_READ) ] = {
1023 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1024 		[ C(RESULT_MISS)   ] = 0x151,	/* L1D.REPLACEMENT */
1025 	},
1026 	[ C(OP_WRITE) ] = {
1027 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1028 		[ C(RESULT_MISS)   ] = 0x0,
1029 	},
1030 	[ C(OP_PREFETCH) ] = {
1031 		[ C(RESULT_ACCESS) ] = 0x0,
1032 		[ C(RESULT_MISS)   ] = 0x0,
1033 	},
1034  },
1035  [ C(L1I ) ] = {
1036 	[ C(OP_READ) ] = {
1037 		[ C(RESULT_ACCESS) ] = 0x0,
1038 		[ C(RESULT_MISS)   ] = 0x280,	/* ICACHE.MISSES */
1039 	},
1040 	[ C(OP_WRITE) ] = {
1041 		[ C(RESULT_ACCESS) ] = -1,
1042 		[ C(RESULT_MISS)   ] = -1,
1043 	},
1044 	[ C(OP_PREFETCH) ] = {
1045 		[ C(RESULT_ACCESS) ] = 0x0,
1046 		[ C(RESULT_MISS)   ] = 0x0,
1047 	},
1048  },
1049  [ C(LL  ) ] = {
1050 	[ C(OP_READ) ] = {
1051 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
1052 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
1053 	},
1054 	[ C(OP_WRITE) ] = {
1055 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
1056 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
1057 	},
1058 	[ C(OP_PREFETCH) ] = {
1059 		[ C(RESULT_ACCESS) ] = 0x0,
1060 		[ C(RESULT_MISS)   ] = 0x0,
1061 	},
1062  },
1063  [ C(DTLB) ] = {
1064 	[ C(OP_READ) ] = {
1065 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1066 		[ C(RESULT_MISS)   ] = 0x108,	/* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
1067 	},
1068 	[ C(OP_WRITE) ] = {
1069 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1070 		[ C(RESULT_MISS)   ] = 0x149,	/* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
1071 	},
1072 	[ C(OP_PREFETCH) ] = {
1073 		[ C(RESULT_ACCESS) ] = 0x0,
1074 		[ C(RESULT_MISS)   ] = 0x0,
1075 	},
1076  },
1077  [ C(ITLB) ] = {
1078 	[ C(OP_READ) ] = {
1079 		[ C(RESULT_ACCESS) ] = 0x6085,	/* ITLB_MISSES.STLB_HIT */
1080 		[ C(RESULT_MISS)   ] = 0x185,	/* ITLB_MISSES.MISS_CAUSES_A_WALK */
1081 	},
1082 	[ C(OP_WRITE) ] = {
1083 		[ C(RESULT_ACCESS) ] = -1,
1084 		[ C(RESULT_MISS)   ] = -1,
1085 	},
1086 	[ C(OP_PREFETCH) ] = {
1087 		[ C(RESULT_ACCESS) ] = -1,
1088 		[ C(RESULT_MISS)   ] = -1,
1089 	},
1090  },
1091  [ C(BPU ) ] = {
1092 	[ C(OP_READ) ] = {
1093 		[ C(RESULT_ACCESS) ] = 0xc4,	/* BR_INST_RETIRED.ALL_BRANCHES */
1094 		[ C(RESULT_MISS)   ] = 0xc5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
1095 	},
1096 	[ C(OP_WRITE) ] = {
1097 		[ C(RESULT_ACCESS) ] = -1,
1098 		[ C(RESULT_MISS)   ] = -1,
1099 	},
1100 	[ C(OP_PREFETCH) ] = {
1101 		[ C(RESULT_ACCESS) ] = -1,
1102 		[ C(RESULT_MISS)   ] = -1,
1103 	},
1104  },
1105  [ C(NODE) ] = {
1106 	[ C(OP_READ) ] = {
1107 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
1108 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
1109 	},
1110 	[ C(OP_WRITE) ] = {
1111 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
1112 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
1113 	},
1114 	[ C(OP_PREFETCH) ] = {
1115 		[ C(RESULT_ACCESS) ] = 0x0,
1116 		[ C(RESULT_MISS)   ] = 0x0,
1117 	},
1118  },
1119 };
1120 
1121 static __initconst const u64 hsw_hw_cache_extra_regs
1122 				[PERF_COUNT_HW_CACHE_MAX]
1123 				[PERF_COUNT_HW_CACHE_OP_MAX]
1124 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1125 {
1126  [ C(LL  ) ] = {
1127 	[ C(OP_READ) ] = {
1128 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
1129 				       HSW_LLC_ACCESS,
1130 		[ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
1131 				       HSW_L3_MISS|HSW_ANY_SNOOP,
1132 	},
1133 	[ C(OP_WRITE) ] = {
1134 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
1135 				       HSW_LLC_ACCESS,
1136 		[ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
1137 				       HSW_L3_MISS|HSW_ANY_SNOOP,
1138 	},
1139 	[ C(OP_PREFETCH) ] = {
1140 		[ C(RESULT_ACCESS) ] = 0x0,
1141 		[ C(RESULT_MISS)   ] = 0x0,
1142 	},
1143  },
1144  [ C(NODE) ] = {
1145 	[ C(OP_READ) ] = {
1146 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
1147 				       HSW_L3_MISS_LOCAL_DRAM|
1148 				       HSW_SNOOP_DRAM,
1149 		[ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
1150 				       HSW_L3_MISS_REMOTE|
1151 				       HSW_SNOOP_DRAM,
1152 	},
1153 	[ C(OP_WRITE) ] = {
1154 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
1155 				       HSW_L3_MISS_LOCAL_DRAM|
1156 				       HSW_SNOOP_DRAM,
1157 		[ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
1158 				       HSW_L3_MISS_REMOTE|
1159 				       HSW_SNOOP_DRAM,
1160 	},
1161 	[ C(OP_PREFETCH) ] = {
1162 		[ C(RESULT_ACCESS) ] = 0x0,
1163 		[ C(RESULT_MISS)   ] = 0x0,
1164 	},
1165  },
1166 };
1167 
1168 static __initconst const u64 westmere_hw_cache_event_ids
1169 				[PERF_COUNT_HW_CACHE_MAX]
1170 				[PERF_COUNT_HW_CACHE_OP_MAX]
1171 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1172 {
1173  [ C(L1D) ] = {
1174 	[ C(OP_READ) ] = {
1175 		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1176 		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
1177 	},
1178 	[ C(OP_WRITE) ] = {
1179 		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1180 		[ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
1181 	},
1182 	[ C(OP_PREFETCH) ] = {
1183 		[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
1184 		[ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
1185 	},
1186  },
1187  [ C(L1I ) ] = {
1188 	[ C(OP_READ) ] = {
1189 		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
1190 		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
1191 	},
1192 	[ C(OP_WRITE) ] = {
1193 		[ C(RESULT_ACCESS) ] = -1,
1194 		[ C(RESULT_MISS)   ] = -1,
1195 	},
1196 	[ C(OP_PREFETCH) ] = {
1197 		[ C(RESULT_ACCESS) ] = 0x0,
1198 		[ C(RESULT_MISS)   ] = 0x0,
1199 	},
1200  },
1201  [ C(LL  ) ] = {
1202 	[ C(OP_READ) ] = {
1203 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1204 		[ C(RESULT_ACCESS) ] = 0x01b7,
1205 		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1206 		[ C(RESULT_MISS)   ] = 0x01b7,
1207 	},
1208 	/*
1209 	 * Use RFO, not WRITEBACK, because a write miss would typically occur
1210 	 * on RFO.
1211 	 */
1212 	[ C(OP_WRITE) ] = {
1213 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1214 		[ C(RESULT_ACCESS) ] = 0x01b7,
1215 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1216 		[ C(RESULT_MISS)   ] = 0x01b7,
1217 	},
1218 	[ C(OP_PREFETCH) ] = {
1219 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1220 		[ C(RESULT_ACCESS) ] = 0x01b7,
1221 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1222 		[ C(RESULT_MISS)   ] = 0x01b7,
1223 	},
1224  },
1225  [ C(DTLB) ] = {
1226 	[ C(OP_READ) ] = {
1227 		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1228 		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
1229 	},
1230 	[ C(OP_WRITE) ] = {
1231 		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1232 		[ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
1233 	},
1234 	[ C(OP_PREFETCH) ] = {
1235 		[ C(RESULT_ACCESS) ] = 0x0,
1236 		[ C(RESULT_MISS)   ] = 0x0,
1237 	},
1238  },
1239  [ C(ITLB) ] = {
1240 	[ C(OP_READ) ] = {
1241 		[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
1242 		[ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.ANY              */
1243 	},
1244 	[ C(OP_WRITE) ] = {
1245 		[ C(RESULT_ACCESS) ] = -1,
1246 		[ C(RESULT_MISS)   ] = -1,
1247 	},
1248 	[ C(OP_PREFETCH) ] = {
1249 		[ C(RESULT_ACCESS) ] = -1,
1250 		[ C(RESULT_MISS)   ] = -1,
1251 	},
1252  },
1253  [ C(BPU ) ] = {
1254 	[ C(OP_READ) ] = {
1255 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1256 		[ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1257 	},
1258 	[ C(OP_WRITE) ] = {
1259 		[ C(RESULT_ACCESS) ] = -1,
1260 		[ C(RESULT_MISS)   ] = -1,
1261 	},
1262 	[ C(OP_PREFETCH) ] = {
1263 		[ C(RESULT_ACCESS) ] = -1,
1264 		[ C(RESULT_MISS)   ] = -1,
1265 	},
1266  },
1267  [ C(NODE) ] = {
1268 	[ C(OP_READ) ] = {
1269 		[ C(RESULT_ACCESS) ] = 0x01b7,
1270 		[ C(RESULT_MISS)   ] = 0x01b7,
1271 	},
1272 	[ C(OP_WRITE) ] = {
1273 		[ C(RESULT_ACCESS) ] = 0x01b7,
1274 		[ C(RESULT_MISS)   ] = 0x01b7,
1275 	},
1276 	[ C(OP_PREFETCH) ] = {
1277 		[ C(RESULT_ACCESS) ] = 0x01b7,
1278 		[ C(RESULT_MISS)   ] = 0x01b7,
1279 	},
1280  },
1281 };
1282 
1283 /*
1284  * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
1285  * See IA32 SDM Vol 3B 30.6.1.3
1286  */
1287 
1288 #define NHM_DMND_DATA_RD	(1 << 0)
1289 #define NHM_DMND_RFO		(1 << 1)
1290 #define NHM_DMND_IFETCH		(1 << 2)
1291 #define NHM_DMND_WB		(1 << 3)
1292 #define NHM_PF_DATA_RD		(1 << 4)
1293 #define NHM_PF_DATA_RFO		(1 << 5)
1294 #define NHM_PF_IFETCH		(1 << 6)
1295 #define NHM_OFFCORE_OTHER	(1 << 7)
1296 #define NHM_UNCORE_HIT		(1 << 8)
1297 #define NHM_OTHER_CORE_HIT_SNP	(1 << 9)
1298 #define NHM_OTHER_CORE_HITM	(1 << 10)
1299         			/* reserved */
1300 #define NHM_REMOTE_CACHE_FWD	(1 << 12)
1301 #define NHM_REMOTE_DRAM		(1 << 13)
1302 #define NHM_LOCAL_DRAM		(1 << 14)
1303 #define NHM_NON_DRAM		(1 << 15)
1304 
1305 #define NHM_LOCAL		(NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
1306 #define NHM_REMOTE		(NHM_REMOTE_DRAM)
1307 
1308 #define NHM_DMND_READ		(NHM_DMND_DATA_RD)
1309 #define NHM_DMND_WRITE		(NHM_DMND_RFO|NHM_DMND_WB)
1310 #define NHM_DMND_PREFETCH	(NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
1311 
1312 #define NHM_L3_HIT	(NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
1313 #define NHM_L3_MISS	(NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
1314 #define NHM_L3_ACCESS	(NHM_L3_HIT|NHM_L3_MISS)
1315 
1316 static __initconst const u64 nehalem_hw_cache_extra_regs
1317 				[PERF_COUNT_HW_CACHE_MAX]
1318 				[PERF_COUNT_HW_CACHE_OP_MAX]
1319 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1320 {
1321  [ C(LL  ) ] = {
1322 	[ C(OP_READ) ] = {
1323 		[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
1324 		[ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_L3_MISS,
1325 	},
1326 	[ C(OP_WRITE) ] = {
1327 		[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
1328 		[ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_L3_MISS,
1329 	},
1330 	[ C(OP_PREFETCH) ] = {
1331 		[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
1332 		[ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
1333 	},
1334  },
1335  [ C(NODE) ] = {
1336 	[ C(OP_READ) ] = {
1337 		[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
1338 		[ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_REMOTE,
1339 	},
1340 	[ C(OP_WRITE) ] = {
1341 		[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
1342 		[ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_REMOTE,
1343 	},
1344 	[ C(OP_PREFETCH) ] = {
1345 		[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
1346 		[ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_REMOTE,
1347 	},
1348  },
1349 };
1350 
1351 static __initconst const u64 nehalem_hw_cache_event_ids
1352 				[PERF_COUNT_HW_CACHE_MAX]
1353 				[PERF_COUNT_HW_CACHE_OP_MAX]
1354 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1355 {
1356  [ C(L1D) ] = {
1357 	[ C(OP_READ) ] = {
1358 		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1359 		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
1360 	},
1361 	[ C(OP_WRITE) ] = {
1362 		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1363 		[ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
1364 	},
1365 	[ C(OP_PREFETCH) ] = {
1366 		[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
1367 		[ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
1368 	},
1369  },
1370  [ C(L1I ) ] = {
1371 	[ C(OP_READ) ] = {
1372 		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
1373 		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
1374 	},
1375 	[ C(OP_WRITE) ] = {
1376 		[ C(RESULT_ACCESS) ] = -1,
1377 		[ C(RESULT_MISS)   ] = -1,
1378 	},
1379 	[ C(OP_PREFETCH) ] = {
1380 		[ C(RESULT_ACCESS) ] = 0x0,
1381 		[ C(RESULT_MISS)   ] = 0x0,
1382 	},
1383  },
1384  [ C(LL  ) ] = {
1385 	[ C(OP_READ) ] = {
1386 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1387 		[ C(RESULT_ACCESS) ] = 0x01b7,
1388 		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1389 		[ C(RESULT_MISS)   ] = 0x01b7,
1390 	},
1391 	/*
1392 	 * Use RFO, not WRITEBACK, because a write miss would typically occur
1393 	 * on RFO.
1394 	 */
1395 	[ C(OP_WRITE) ] = {
1396 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1397 		[ C(RESULT_ACCESS) ] = 0x01b7,
1398 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1399 		[ C(RESULT_MISS)   ] = 0x01b7,
1400 	},
1401 	[ C(OP_PREFETCH) ] = {
1402 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1403 		[ C(RESULT_ACCESS) ] = 0x01b7,
1404 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1405 		[ C(RESULT_MISS)   ] = 0x01b7,
1406 	},
1407  },
1408  [ C(DTLB) ] = {
1409 	[ C(OP_READ) ] = {
1410 		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI   (alias)  */
1411 		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
1412 	},
1413 	[ C(OP_WRITE) ] = {
1414 		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI   (alias)  */
1415 		[ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
1416 	},
1417 	[ C(OP_PREFETCH) ] = {
1418 		[ C(RESULT_ACCESS) ] = 0x0,
1419 		[ C(RESULT_MISS)   ] = 0x0,
1420 	},
1421  },
1422  [ C(ITLB) ] = {
1423 	[ C(OP_READ) ] = {
1424 		[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
1425 		[ C(RESULT_MISS)   ] = 0x20c8, /* ITLB_MISS_RETIRED            */
1426 	},
1427 	[ C(OP_WRITE) ] = {
1428 		[ C(RESULT_ACCESS) ] = -1,
1429 		[ C(RESULT_MISS)   ] = -1,
1430 	},
1431 	[ C(OP_PREFETCH) ] = {
1432 		[ C(RESULT_ACCESS) ] = -1,
1433 		[ C(RESULT_MISS)   ] = -1,
1434 	},
1435  },
1436  [ C(BPU ) ] = {
1437 	[ C(OP_READ) ] = {
1438 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1439 		[ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1440 	},
1441 	[ C(OP_WRITE) ] = {
1442 		[ C(RESULT_ACCESS) ] = -1,
1443 		[ C(RESULT_MISS)   ] = -1,
1444 	},
1445 	[ C(OP_PREFETCH) ] = {
1446 		[ C(RESULT_ACCESS) ] = -1,
1447 		[ C(RESULT_MISS)   ] = -1,
1448 	},
1449  },
1450  [ C(NODE) ] = {
1451 	[ C(OP_READ) ] = {
1452 		[ C(RESULT_ACCESS) ] = 0x01b7,
1453 		[ C(RESULT_MISS)   ] = 0x01b7,
1454 	},
1455 	[ C(OP_WRITE) ] = {
1456 		[ C(RESULT_ACCESS) ] = 0x01b7,
1457 		[ C(RESULT_MISS)   ] = 0x01b7,
1458 	},
1459 	[ C(OP_PREFETCH) ] = {
1460 		[ C(RESULT_ACCESS) ] = 0x01b7,
1461 		[ C(RESULT_MISS)   ] = 0x01b7,
1462 	},
1463  },
1464 };
1465 
1466 static __initconst const u64 core2_hw_cache_event_ids
1467 				[PERF_COUNT_HW_CACHE_MAX]
1468 				[PERF_COUNT_HW_CACHE_OP_MAX]
1469 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1470 {
1471  [ C(L1D) ] = {
1472 	[ C(OP_READ) ] = {
1473 		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI          */
1474 		[ C(RESULT_MISS)   ] = 0x0140, /* L1D_CACHE_LD.I_STATE       */
1475 	},
1476 	[ C(OP_WRITE) ] = {
1477 		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI          */
1478 		[ C(RESULT_MISS)   ] = 0x0141, /* L1D_CACHE_ST.I_STATE       */
1479 	},
1480 	[ C(OP_PREFETCH) ] = {
1481 		[ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS      */
1482 		[ C(RESULT_MISS)   ] = 0,
1483 	},
1484  },
1485  [ C(L1I ) ] = {
1486 	[ C(OP_READ) ] = {
1487 		[ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS                  */
1488 		[ C(RESULT_MISS)   ] = 0x0081, /* L1I.MISSES                 */
1489 	},
1490 	[ C(OP_WRITE) ] = {
1491 		[ C(RESULT_ACCESS) ] = -1,
1492 		[ C(RESULT_MISS)   ] = -1,
1493 	},
1494 	[ C(OP_PREFETCH) ] = {
1495 		[ C(RESULT_ACCESS) ] = 0,
1496 		[ C(RESULT_MISS)   ] = 0,
1497 	},
1498  },
1499  [ C(LL  ) ] = {
1500 	[ C(OP_READ) ] = {
1501 		[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1502 		[ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1503 	},
1504 	[ C(OP_WRITE) ] = {
1505 		[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1506 		[ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1507 	},
1508 	[ C(OP_PREFETCH) ] = {
1509 		[ C(RESULT_ACCESS) ] = 0,
1510 		[ C(RESULT_MISS)   ] = 0,
1511 	},
1512  },
1513  [ C(DTLB) ] = {
1514 	[ C(OP_READ) ] = {
1515 		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI  (alias) */
1516 		[ C(RESULT_MISS)   ] = 0x0208, /* DTLB_MISSES.MISS_LD        */
1517 	},
1518 	[ C(OP_WRITE) ] = {
1519 		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI  (alias) */
1520 		[ C(RESULT_MISS)   ] = 0x0808, /* DTLB_MISSES.MISS_ST        */
1521 	},
1522 	[ C(OP_PREFETCH) ] = {
1523 		[ C(RESULT_ACCESS) ] = 0,
1524 		[ C(RESULT_MISS)   ] = 0,
1525 	},
1526  },
1527  [ C(ITLB) ] = {
1528 	[ C(OP_READ) ] = {
1529 		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1530 		[ C(RESULT_MISS)   ] = 0x1282, /* ITLBMISSES                 */
1531 	},
1532 	[ C(OP_WRITE) ] = {
1533 		[ C(RESULT_ACCESS) ] = -1,
1534 		[ C(RESULT_MISS)   ] = -1,
1535 	},
1536 	[ C(OP_PREFETCH) ] = {
1537 		[ C(RESULT_ACCESS) ] = -1,
1538 		[ C(RESULT_MISS)   ] = -1,
1539 	},
1540  },
1541  [ C(BPU ) ] = {
1542 	[ C(OP_READ) ] = {
1543 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1544 		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1545 	},
1546 	[ C(OP_WRITE) ] = {
1547 		[ C(RESULT_ACCESS) ] = -1,
1548 		[ C(RESULT_MISS)   ] = -1,
1549 	},
1550 	[ C(OP_PREFETCH) ] = {
1551 		[ C(RESULT_ACCESS) ] = -1,
1552 		[ C(RESULT_MISS)   ] = -1,
1553 	},
1554  },
1555 };
1556 
1557 static __initconst const u64 atom_hw_cache_event_ids
1558 				[PERF_COUNT_HW_CACHE_MAX]
1559 				[PERF_COUNT_HW_CACHE_OP_MAX]
1560 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1561 {
1562  [ C(L1D) ] = {
1563 	[ C(OP_READ) ] = {
1564 		[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD               */
1565 		[ C(RESULT_MISS)   ] = 0,
1566 	},
1567 	[ C(OP_WRITE) ] = {
1568 		[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST               */
1569 		[ C(RESULT_MISS)   ] = 0,
1570 	},
1571 	[ C(OP_PREFETCH) ] = {
1572 		[ C(RESULT_ACCESS) ] = 0x0,
1573 		[ C(RESULT_MISS)   ] = 0,
1574 	},
1575  },
1576  [ C(L1I ) ] = {
1577 	[ C(OP_READ) ] = {
1578 		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                  */
1579 		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                 */
1580 	},
1581 	[ C(OP_WRITE) ] = {
1582 		[ C(RESULT_ACCESS) ] = -1,
1583 		[ C(RESULT_MISS)   ] = -1,
1584 	},
1585 	[ C(OP_PREFETCH) ] = {
1586 		[ C(RESULT_ACCESS) ] = 0,
1587 		[ C(RESULT_MISS)   ] = 0,
1588 	},
1589  },
1590  [ C(LL  ) ] = {
1591 	[ C(OP_READ) ] = {
1592 		[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1593 		[ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1594 	},
1595 	[ C(OP_WRITE) ] = {
1596 		[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1597 		[ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1598 	},
1599 	[ C(OP_PREFETCH) ] = {
1600 		[ C(RESULT_ACCESS) ] = 0,
1601 		[ C(RESULT_MISS)   ] = 0,
1602 	},
1603  },
1604  [ C(DTLB) ] = {
1605 	[ C(OP_READ) ] = {
1606 		[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI  (alias) */
1607 		[ C(RESULT_MISS)   ] = 0x0508, /* DTLB_MISSES.MISS_LD        */
1608 	},
1609 	[ C(OP_WRITE) ] = {
1610 		[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI  (alias) */
1611 		[ C(RESULT_MISS)   ] = 0x0608, /* DTLB_MISSES.MISS_ST        */
1612 	},
1613 	[ C(OP_PREFETCH) ] = {
1614 		[ C(RESULT_ACCESS) ] = 0,
1615 		[ C(RESULT_MISS)   ] = 0,
1616 	},
1617  },
1618  [ C(ITLB) ] = {
1619 	[ C(OP_READ) ] = {
1620 		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1621 		[ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES                */
1622 	},
1623 	[ C(OP_WRITE) ] = {
1624 		[ C(RESULT_ACCESS) ] = -1,
1625 		[ C(RESULT_MISS)   ] = -1,
1626 	},
1627 	[ C(OP_PREFETCH) ] = {
1628 		[ C(RESULT_ACCESS) ] = -1,
1629 		[ C(RESULT_MISS)   ] = -1,
1630 	},
1631  },
1632  [ C(BPU ) ] = {
1633 	[ C(OP_READ) ] = {
1634 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1635 		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1636 	},
1637 	[ C(OP_WRITE) ] = {
1638 		[ C(RESULT_ACCESS) ] = -1,
1639 		[ C(RESULT_MISS)   ] = -1,
1640 	},
1641 	[ C(OP_PREFETCH) ] = {
1642 		[ C(RESULT_ACCESS) ] = -1,
1643 		[ C(RESULT_MISS)   ] = -1,
1644 	},
1645  },
1646 };
1647 
1648 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_slm, "event=0x3c");
1649 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_slm, "2");
1650 /* no_alloc_cycles.not_delivered */
1651 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_slm,
1652 	       "event=0xca,umask=0x50");
1653 EVENT_ATTR_STR(topdown-fetch-bubbles.scale, td_fetch_bubbles_scale_slm, "2");
1654 /* uops_retired.all */
1655 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_slm,
1656 	       "event=0xc2,umask=0x10");
1657 /* uops_retired.all */
1658 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_slm,
1659 	       "event=0xc2,umask=0x10");
1660 
1661 static struct attribute *slm_events_attrs[] = {
1662 	EVENT_PTR(td_total_slots_slm),
1663 	EVENT_PTR(td_total_slots_scale_slm),
1664 	EVENT_PTR(td_fetch_bubbles_slm),
1665 	EVENT_PTR(td_fetch_bubbles_scale_slm),
1666 	EVENT_PTR(td_slots_issued_slm),
1667 	EVENT_PTR(td_slots_retired_slm),
1668 	NULL
1669 };
1670 
1671 static struct extra_reg intel_slm_extra_regs[] __read_mostly =
1672 {
1673 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1674 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
1675 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1),
1676 	EVENT_EXTRA_END
1677 };
1678 
1679 #define SLM_DMND_READ		SNB_DMND_DATA_RD
1680 #define SLM_DMND_WRITE		SNB_DMND_RFO
1681 #define SLM_DMND_PREFETCH	(SNB_PF_DATA_RD|SNB_PF_RFO)
1682 
1683 #define SLM_SNP_ANY		(SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
1684 #define SLM_LLC_ACCESS		SNB_RESP_ANY
1685 #define SLM_LLC_MISS		(SLM_SNP_ANY|SNB_NON_DRAM)
1686 
1687 static __initconst const u64 slm_hw_cache_extra_regs
1688 				[PERF_COUNT_HW_CACHE_MAX]
1689 				[PERF_COUNT_HW_CACHE_OP_MAX]
1690 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1691 {
1692  [ C(LL  ) ] = {
1693 	[ C(OP_READ) ] = {
1694 		[ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
1695 		[ C(RESULT_MISS)   ] = 0,
1696 	},
1697 	[ C(OP_WRITE) ] = {
1698 		[ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
1699 		[ C(RESULT_MISS)   ] = SLM_DMND_WRITE|SLM_LLC_MISS,
1700 	},
1701 	[ C(OP_PREFETCH) ] = {
1702 		[ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
1703 		[ C(RESULT_MISS)   ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
1704 	},
1705  },
1706 };
1707 
1708 static __initconst const u64 slm_hw_cache_event_ids
1709 				[PERF_COUNT_HW_CACHE_MAX]
1710 				[PERF_COUNT_HW_CACHE_OP_MAX]
1711 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1712 {
1713  [ C(L1D) ] = {
1714 	[ C(OP_READ) ] = {
1715 		[ C(RESULT_ACCESS) ] = 0,
1716 		[ C(RESULT_MISS)   ] = 0x0104, /* LD_DCU_MISS */
1717 	},
1718 	[ C(OP_WRITE) ] = {
1719 		[ C(RESULT_ACCESS) ] = 0,
1720 		[ C(RESULT_MISS)   ] = 0,
1721 	},
1722 	[ C(OP_PREFETCH) ] = {
1723 		[ C(RESULT_ACCESS) ] = 0,
1724 		[ C(RESULT_MISS)   ] = 0,
1725 	},
1726  },
1727  [ C(L1I ) ] = {
1728 	[ C(OP_READ) ] = {
1729 		[ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
1730 		[ C(RESULT_MISS)   ] = 0x0280, /* ICACGE.MISSES */
1731 	},
1732 	[ C(OP_WRITE) ] = {
1733 		[ C(RESULT_ACCESS) ] = -1,
1734 		[ C(RESULT_MISS)   ] = -1,
1735 	},
1736 	[ C(OP_PREFETCH) ] = {
1737 		[ C(RESULT_ACCESS) ] = 0,
1738 		[ C(RESULT_MISS)   ] = 0,
1739 	},
1740  },
1741  [ C(LL  ) ] = {
1742 	[ C(OP_READ) ] = {
1743 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1744 		[ C(RESULT_ACCESS) ] = 0x01b7,
1745 		[ C(RESULT_MISS)   ] = 0,
1746 	},
1747 	[ C(OP_WRITE) ] = {
1748 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1749 		[ C(RESULT_ACCESS) ] = 0x01b7,
1750 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1751 		[ C(RESULT_MISS)   ] = 0x01b7,
1752 	},
1753 	[ C(OP_PREFETCH) ] = {
1754 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1755 		[ C(RESULT_ACCESS) ] = 0x01b7,
1756 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1757 		[ C(RESULT_MISS)   ] = 0x01b7,
1758 	},
1759  },
1760  [ C(DTLB) ] = {
1761 	[ C(OP_READ) ] = {
1762 		[ C(RESULT_ACCESS) ] = 0,
1763 		[ C(RESULT_MISS)   ] = 0x0804, /* LD_DTLB_MISS */
1764 	},
1765 	[ C(OP_WRITE) ] = {
1766 		[ C(RESULT_ACCESS) ] = 0,
1767 		[ C(RESULT_MISS)   ] = 0,
1768 	},
1769 	[ C(OP_PREFETCH) ] = {
1770 		[ C(RESULT_ACCESS) ] = 0,
1771 		[ C(RESULT_MISS)   ] = 0,
1772 	},
1773  },
1774  [ C(ITLB) ] = {
1775 	[ C(OP_READ) ] = {
1776 		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1777 		[ C(RESULT_MISS)   ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
1778 	},
1779 	[ C(OP_WRITE) ] = {
1780 		[ C(RESULT_ACCESS) ] = -1,
1781 		[ C(RESULT_MISS)   ] = -1,
1782 	},
1783 	[ C(OP_PREFETCH) ] = {
1784 		[ C(RESULT_ACCESS) ] = -1,
1785 		[ C(RESULT_MISS)   ] = -1,
1786 	},
1787  },
1788  [ C(BPU ) ] = {
1789 	[ C(OP_READ) ] = {
1790 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1791 		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1792 	},
1793 	[ C(OP_WRITE) ] = {
1794 		[ C(RESULT_ACCESS) ] = -1,
1795 		[ C(RESULT_MISS)   ] = -1,
1796 	},
1797 	[ C(OP_PREFETCH) ] = {
1798 		[ C(RESULT_ACCESS) ] = -1,
1799 		[ C(RESULT_MISS)   ] = -1,
1800 	},
1801  },
1802 };
1803 
1804 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_glm, "event=0x3c");
1805 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_glm, "3");
1806 /* UOPS_NOT_DELIVERED.ANY */
1807 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_glm, "event=0x9c");
1808 /* ISSUE_SLOTS_NOT_CONSUMED.RECOVERY */
1809 EVENT_ATTR_STR(topdown-recovery-bubbles, td_recovery_bubbles_glm, "event=0xca,umask=0x02");
1810 /* UOPS_RETIRED.ANY */
1811 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_glm, "event=0xc2");
1812 /* UOPS_ISSUED.ANY */
1813 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_glm, "event=0x0e");
1814 
1815 static struct attribute *glm_events_attrs[] = {
1816 	EVENT_PTR(td_total_slots_glm),
1817 	EVENT_PTR(td_total_slots_scale_glm),
1818 	EVENT_PTR(td_fetch_bubbles_glm),
1819 	EVENT_PTR(td_recovery_bubbles_glm),
1820 	EVENT_PTR(td_slots_issued_glm),
1821 	EVENT_PTR(td_slots_retired_glm),
1822 	NULL
1823 };
1824 
1825 static struct extra_reg intel_glm_extra_regs[] __read_mostly = {
1826 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1827 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x760005ffbfull, RSP_0),
1828 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x360005ffbfull, RSP_1),
1829 	EVENT_EXTRA_END
1830 };
1831 
1832 #define GLM_DEMAND_DATA_RD		BIT_ULL(0)
1833 #define GLM_DEMAND_RFO			BIT_ULL(1)
1834 #define GLM_ANY_RESPONSE		BIT_ULL(16)
1835 #define GLM_SNP_NONE_OR_MISS		BIT_ULL(33)
1836 #define GLM_DEMAND_READ			GLM_DEMAND_DATA_RD
1837 #define GLM_DEMAND_WRITE		GLM_DEMAND_RFO
1838 #define GLM_DEMAND_PREFETCH		(SNB_PF_DATA_RD|SNB_PF_RFO)
1839 #define GLM_LLC_ACCESS			GLM_ANY_RESPONSE
1840 #define GLM_SNP_ANY			(GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM)
1841 #define GLM_LLC_MISS			(GLM_SNP_ANY|SNB_NON_DRAM)
1842 
1843 static __initconst const u64 glm_hw_cache_event_ids
1844 				[PERF_COUNT_HW_CACHE_MAX]
1845 				[PERF_COUNT_HW_CACHE_OP_MAX]
1846 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1847 	[C(L1D)] = {
1848 		[C(OP_READ)] = {
1849 			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1850 			[C(RESULT_MISS)]	= 0x0,
1851 		},
1852 		[C(OP_WRITE)] = {
1853 			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1854 			[C(RESULT_MISS)]	= 0x0,
1855 		},
1856 		[C(OP_PREFETCH)] = {
1857 			[C(RESULT_ACCESS)]	= 0x0,
1858 			[C(RESULT_MISS)]	= 0x0,
1859 		},
1860 	},
1861 	[C(L1I)] = {
1862 		[C(OP_READ)] = {
1863 			[C(RESULT_ACCESS)]	= 0x0380,	/* ICACHE.ACCESSES */
1864 			[C(RESULT_MISS)]	= 0x0280,	/* ICACHE.MISSES */
1865 		},
1866 		[C(OP_WRITE)] = {
1867 			[C(RESULT_ACCESS)]	= -1,
1868 			[C(RESULT_MISS)]	= -1,
1869 		},
1870 		[C(OP_PREFETCH)] = {
1871 			[C(RESULT_ACCESS)]	= 0x0,
1872 			[C(RESULT_MISS)]	= 0x0,
1873 		},
1874 	},
1875 	[C(LL)] = {
1876 		[C(OP_READ)] = {
1877 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1878 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1879 		},
1880 		[C(OP_WRITE)] = {
1881 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1882 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1883 		},
1884 		[C(OP_PREFETCH)] = {
1885 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1886 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1887 		},
1888 	},
1889 	[C(DTLB)] = {
1890 		[C(OP_READ)] = {
1891 			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1892 			[C(RESULT_MISS)]	= 0x0,
1893 		},
1894 		[C(OP_WRITE)] = {
1895 			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1896 			[C(RESULT_MISS)]	= 0x0,
1897 		},
1898 		[C(OP_PREFETCH)] = {
1899 			[C(RESULT_ACCESS)]	= 0x0,
1900 			[C(RESULT_MISS)]	= 0x0,
1901 		},
1902 	},
1903 	[C(ITLB)] = {
1904 		[C(OP_READ)] = {
1905 			[C(RESULT_ACCESS)]	= 0x00c0,	/* INST_RETIRED.ANY_P */
1906 			[C(RESULT_MISS)]	= 0x0481,	/* ITLB.MISS */
1907 		},
1908 		[C(OP_WRITE)] = {
1909 			[C(RESULT_ACCESS)]	= -1,
1910 			[C(RESULT_MISS)]	= -1,
1911 		},
1912 		[C(OP_PREFETCH)] = {
1913 			[C(RESULT_ACCESS)]	= -1,
1914 			[C(RESULT_MISS)]	= -1,
1915 		},
1916 	},
1917 	[C(BPU)] = {
1918 		[C(OP_READ)] = {
1919 			[C(RESULT_ACCESS)]	= 0x00c4,	/* BR_INST_RETIRED.ALL_BRANCHES */
1920 			[C(RESULT_MISS)]	= 0x00c5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
1921 		},
1922 		[C(OP_WRITE)] = {
1923 			[C(RESULT_ACCESS)]	= -1,
1924 			[C(RESULT_MISS)]	= -1,
1925 		},
1926 		[C(OP_PREFETCH)] = {
1927 			[C(RESULT_ACCESS)]	= -1,
1928 			[C(RESULT_MISS)]	= -1,
1929 		},
1930 	},
1931 };
1932 
1933 static __initconst const u64 glm_hw_cache_extra_regs
1934 				[PERF_COUNT_HW_CACHE_MAX]
1935 				[PERF_COUNT_HW_CACHE_OP_MAX]
1936 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1937 	[C(LL)] = {
1938 		[C(OP_READ)] = {
1939 			[C(RESULT_ACCESS)]	= GLM_DEMAND_READ|
1940 						  GLM_LLC_ACCESS,
1941 			[C(RESULT_MISS)]	= GLM_DEMAND_READ|
1942 						  GLM_LLC_MISS,
1943 		},
1944 		[C(OP_WRITE)] = {
1945 			[C(RESULT_ACCESS)]	= GLM_DEMAND_WRITE|
1946 						  GLM_LLC_ACCESS,
1947 			[C(RESULT_MISS)]	= GLM_DEMAND_WRITE|
1948 						  GLM_LLC_MISS,
1949 		},
1950 		[C(OP_PREFETCH)] = {
1951 			[C(RESULT_ACCESS)]	= GLM_DEMAND_PREFETCH|
1952 						  GLM_LLC_ACCESS,
1953 			[C(RESULT_MISS)]	= GLM_DEMAND_PREFETCH|
1954 						  GLM_LLC_MISS,
1955 		},
1956 	},
1957 };
1958 
1959 static __initconst const u64 glp_hw_cache_event_ids
1960 				[PERF_COUNT_HW_CACHE_MAX]
1961 				[PERF_COUNT_HW_CACHE_OP_MAX]
1962 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1963 	[C(L1D)] = {
1964 		[C(OP_READ)] = {
1965 			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1966 			[C(RESULT_MISS)]	= 0x0,
1967 		},
1968 		[C(OP_WRITE)] = {
1969 			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1970 			[C(RESULT_MISS)]	= 0x0,
1971 		},
1972 		[C(OP_PREFETCH)] = {
1973 			[C(RESULT_ACCESS)]	= 0x0,
1974 			[C(RESULT_MISS)]	= 0x0,
1975 		},
1976 	},
1977 	[C(L1I)] = {
1978 		[C(OP_READ)] = {
1979 			[C(RESULT_ACCESS)]	= 0x0380,	/* ICACHE.ACCESSES */
1980 			[C(RESULT_MISS)]	= 0x0280,	/* ICACHE.MISSES */
1981 		},
1982 		[C(OP_WRITE)] = {
1983 			[C(RESULT_ACCESS)]	= -1,
1984 			[C(RESULT_MISS)]	= -1,
1985 		},
1986 		[C(OP_PREFETCH)] = {
1987 			[C(RESULT_ACCESS)]	= 0x0,
1988 			[C(RESULT_MISS)]	= 0x0,
1989 		},
1990 	},
1991 	[C(LL)] = {
1992 		[C(OP_READ)] = {
1993 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1994 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1995 		},
1996 		[C(OP_WRITE)] = {
1997 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1998 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1999 		},
2000 		[C(OP_PREFETCH)] = {
2001 			[C(RESULT_ACCESS)]	= 0x0,
2002 			[C(RESULT_MISS)]	= 0x0,
2003 		},
2004 	},
2005 	[C(DTLB)] = {
2006 		[C(OP_READ)] = {
2007 			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
2008 			[C(RESULT_MISS)]	= 0xe08,	/* DTLB_LOAD_MISSES.WALK_COMPLETED */
2009 		},
2010 		[C(OP_WRITE)] = {
2011 			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
2012 			[C(RESULT_MISS)]	= 0xe49,	/* DTLB_STORE_MISSES.WALK_COMPLETED */
2013 		},
2014 		[C(OP_PREFETCH)] = {
2015 			[C(RESULT_ACCESS)]	= 0x0,
2016 			[C(RESULT_MISS)]	= 0x0,
2017 		},
2018 	},
2019 	[C(ITLB)] = {
2020 		[C(OP_READ)] = {
2021 			[C(RESULT_ACCESS)]	= 0x00c0,	/* INST_RETIRED.ANY_P */
2022 			[C(RESULT_MISS)]	= 0x0481,	/* ITLB.MISS */
2023 		},
2024 		[C(OP_WRITE)] = {
2025 			[C(RESULT_ACCESS)]	= -1,
2026 			[C(RESULT_MISS)]	= -1,
2027 		},
2028 		[C(OP_PREFETCH)] = {
2029 			[C(RESULT_ACCESS)]	= -1,
2030 			[C(RESULT_MISS)]	= -1,
2031 		},
2032 	},
2033 	[C(BPU)] = {
2034 		[C(OP_READ)] = {
2035 			[C(RESULT_ACCESS)]	= 0x00c4,	/* BR_INST_RETIRED.ALL_BRANCHES */
2036 			[C(RESULT_MISS)]	= 0x00c5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
2037 		},
2038 		[C(OP_WRITE)] = {
2039 			[C(RESULT_ACCESS)]	= -1,
2040 			[C(RESULT_MISS)]	= -1,
2041 		},
2042 		[C(OP_PREFETCH)] = {
2043 			[C(RESULT_ACCESS)]	= -1,
2044 			[C(RESULT_MISS)]	= -1,
2045 		},
2046 	},
2047 };
2048 
2049 static __initconst const u64 glp_hw_cache_extra_regs
2050 				[PERF_COUNT_HW_CACHE_MAX]
2051 				[PERF_COUNT_HW_CACHE_OP_MAX]
2052 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2053 	[C(LL)] = {
2054 		[C(OP_READ)] = {
2055 			[C(RESULT_ACCESS)]	= GLM_DEMAND_READ|
2056 						  GLM_LLC_ACCESS,
2057 			[C(RESULT_MISS)]	= GLM_DEMAND_READ|
2058 						  GLM_LLC_MISS,
2059 		},
2060 		[C(OP_WRITE)] = {
2061 			[C(RESULT_ACCESS)]	= GLM_DEMAND_WRITE|
2062 						  GLM_LLC_ACCESS,
2063 			[C(RESULT_MISS)]	= GLM_DEMAND_WRITE|
2064 						  GLM_LLC_MISS,
2065 		},
2066 		[C(OP_PREFETCH)] = {
2067 			[C(RESULT_ACCESS)]	= 0x0,
2068 			[C(RESULT_MISS)]	= 0x0,
2069 		},
2070 	},
2071 };
2072 
2073 #define TNT_LOCAL_DRAM			BIT_ULL(26)
2074 #define TNT_DEMAND_READ			GLM_DEMAND_DATA_RD
2075 #define TNT_DEMAND_WRITE		GLM_DEMAND_RFO
2076 #define TNT_LLC_ACCESS			GLM_ANY_RESPONSE
2077 #define TNT_SNP_ANY			(SNB_SNP_NOT_NEEDED|SNB_SNP_MISS| \
2078 					 SNB_NO_FWD|SNB_SNP_FWD|SNB_HITM)
2079 #define TNT_LLC_MISS			(TNT_SNP_ANY|SNB_NON_DRAM|TNT_LOCAL_DRAM)
2080 
2081 static __initconst const u64 tnt_hw_cache_extra_regs
2082 				[PERF_COUNT_HW_CACHE_MAX]
2083 				[PERF_COUNT_HW_CACHE_OP_MAX]
2084 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2085 	[C(LL)] = {
2086 		[C(OP_READ)] = {
2087 			[C(RESULT_ACCESS)]	= TNT_DEMAND_READ|
2088 						  TNT_LLC_ACCESS,
2089 			[C(RESULT_MISS)]	= TNT_DEMAND_READ|
2090 						  TNT_LLC_MISS,
2091 		},
2092 		[C(OP_WRITE)] = {
2093 			[C(RESULT_ACCESS)]	= TNT_DEMAND_WRITE|
2094 						  TNT_LLC_ACCESS,
2095 			[C(RESULT_MISS)]	= TNT_DEMAND_WRITE|
2096 						  TNT_LLC_MISS,
2097 		},
2098 		[C(OP_PREFETCH)] = {
2099 			[C(RESULT_ACCESS)]	= 0x0,
2100 			[C(RESULT_MISS)]	= 0x0,
2101 		},
2102 	},
2103 };
2104 
2105 EVENT_ATTR_STR(topdown-fe-bound,       td_fe_bound_tnt,        "event=0x71,umask=0x0");
2106 EVENT_ATTR_STR(topdown-retiring,       td_retiring_tnt,        "event=0xc2,umask=0x0");
2107 EVENT_ATTR_STR(topdown-bad-spec,       td_bad_spec_tnt,        "event=0x73,umask=0x6");
2108 EVENT_ATTR_STR(topdown-be-bound,       td_be_bound_tnt,        "event=0x74,umask=0x0");
2109 
2110 static struct attribute *tnt_events_attrs[] = {
2111 	EVENT_PTR(td_fe_bound_tnt),
2112 	EVENT_PTR(td_retiring_tnt),
2113 	EVENT_PTR(td_bad_spec_tnt),
2114 	EVENT_PTR(td_be_bound_tnt),
2115 	NULL,
2116 };
2117 
2118 static struct extra_reg intel_tnt_extra_regs[] __read_mostly = {
2119 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
2120 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x800ff0ffffff9fffull, RSP_0),
2121 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0xff0ffffff9fffull, RSP_1),
2122 	EVENT_EXTRA_END
2123 };
2124 
2125 EVENT_ATTR_STR(mem-loads,	mem_ld_grt,	"event=0xd0,umask=0x5,ldlat=3");
2126 EVENT_ATTR_STR(mem-stores,	mem_st_grt,	"event=0xd0,umask=0x6");
2127 
2128 static struct attribute *grt_mem_attrs[] = {
2129 	EVENT_PTR(mem_ld_grt),
2130 	EVENT_PTR(mem_st_grt),
2131 	NULL
2132 };
2133 
2134 static struct extra_reg intel_grt_extra_regs[] __read_mostly = {
2135 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
2136 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
2137 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
2138 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x5d0),
2139 	EVENT_EXTRA_END
2140 };
2141 
2142 EVENT_ATTR_STR(topdown-retiring,       td_retiring_cmt,        "event=0x72,umask=0x0");
2143 EVENT_ATTR_STR(topdown-bad-spec,       td_bad_spec_cmt,        "event=0x73,umask=0x0");
2144 
2145 static struct attribute *cmt_events_attrs[] = {
2146 	EVENT_PTR(td_fe_bound_tnt),
2147 	EVENT_PTR(td_retiring_cmt),
2148 	EVENT_PTR(td_bad_spec_cmt),
2149 	EVENT_PTR(td_be_bound_tnt),
2150 	NULL
2151 };
2152 
2153 static struct extra_reg intel_cmt_extra_regs[] __read_mostly = {
2154 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
2155 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x800ff3ffffffffffull, RSP_0),
2156 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0xff3ffffffffffull, RSP_1),
2157 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x5d0),
2158 	INTEL_UEVENT_EXTRA_REG(0x0127, MSR_SNOOP_RSP_0, 0xffffffffffffffffull, SNOOP_0),
2159 	INTEL_UEVENT_EXTRA_REG(0x0227, MSR_SNOOP_RSP_1, 0xffffffffffffffffull, SNOOP_1),
2160 	EVENT_EXTRA_END
2161 };
2162 
2163 #define KNL_OT_L2_HITE		BIT_ULL(19) /* Other Tile L2 Hit */
2164 #define KNL_OT_L2_HITF		BIT_ULL(20) /* Other Tile L2 Hit */
2165 #define KNL_MCDRAM_LOCAL	BIT_ULL(21)
2166 #define KNL_MCDRAM_FAR		BIT_ULL(22)
2167 #define KNL_DDR_LOCAL		BIT_ULL(23)
2168 #define KNL_DDR_FAR		BIT_ULL(24)
2169 #define KNL_DRAM_ANY		(KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \
2170 				    KNL_DDR_LOCAL | KNL_DDR_FAR)
2171 #define KNL_L2_READ		SLM_DMND_READ
2172 #define KNL_L2_WRITE		SLM_DMND_WRITE
2173 #define KNL_L2_PREFETCH		SLM_DMND_PREFETCH
2174 #define KNL_L2_ACCESS		SLM_LLC_ACCESS
2175 #define KNL_L2_MISS		(KNL_OT_L2_HITE | KNL_OT_L2_HITF | \
2176 				   KNL_DRAM_ANY | SNB_SNP_ANY | \
2177 						  SNB_NON_DRAM)
2178 
2179 static __initconst const u64 knl_hw_cache_extra_regs
2180 				[PERF_COUNT_HW_CACHE_MAX]
2181 				[PERF_COUNT_HW_CACHE_OP_MAX]
2182 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2183 	[C(LL)] = {
2184 		[C(OP_READ)] = {
2185 			[C(RESULT_ACCESS)] = KNL_L2_READ | KNL_L2_ACCESS,
2186 			[C(RESULT_MISS)]   = 0,
2187 		},
2188 		[C(OP_WRITE)] = {
2189 			[C(RESULT_ACCESS)] = KNL_L2_WRITE | KNL_L2_ACCESS,
2190 			[C(RESULT_MISS)]   = KNL_L2_WRITE | KNL_L2_MISS,
2191 		},
2192 		[C(OP_PREFETCH)] = {
2193 			[C(RESULT_ACCESS)] = KNL_L2_PREFETCH | KNL_L2_ACCESS,
2194 			[C(RESULT_MISS)]   = KNL_L2_PREFETCH | KNL_L2_MISS,
2195 		},
2196 	},
2197 };
2198 
2199 /*
2200  * Used from PMIs where the LBRs are already disabled.
2201  *
2202  * This function could be called consecutively. It is required to remain in
2203  * disabled state if called consecutively.
2204  *
2205  * During consecutive calls, the same disable value will be written to related
2206  * registers, so the PMU state remains unchanged.
2207  *
2208  * intel_bts events don't coexist with intel PMU's BTS events because of
2209  * x86_add_exclusive(x86_lbr_exclusive_lbr); there's no need to keep them
2210  * disabled around intel PMU's event batching etc, only inside the PMI handler.
2211  *
2212  * Avoid PEBS_ENABLE MSR access in PMIs.
2213  * The GLOBAL_CTRL has been disabled. All the counters do not count anymore.
2214  * It doesn't matter if the PEBS is enabled or not.
2215  * Usually, the PEBS status are not changed in PMIs. It's unnecessary to
2216  * access PEBS_ENABLE MSR in disable_all()/enable_all().
2217  * However, there are some cases which may change PEBS status, e.g. PMI
2218  * throttle. The PEBS_ENABLE should be updated where the status changes.
2219  */
2220 static __always_inline void __intel_pmu_disable_all(bool bts)
2221 {
2222 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2223 
2224 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
2225 
2226 	if (bts && test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
2227 		intel_pmu_disable_bts();
2228 }
2229 
2230 static __always_inline void intel_pmu_disable_all(void)
2231 {
2232 	__intel_pmu_disable_all(true);
2233 	intel_pmu_pebs_disable_all();
2234 	intel_pmu_lbr_disable_all();
2235 }
2236 
2237 static void __intel_pmu_enable_all(int added, bool pmi)
2238 {
2239 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2240 	u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
2241 
2242 	intel_pmu_lbr_enable_all(pmi);
2243 
2244 	if (cpuc->fixed_ctrl_val != cpuc->active_fixed_ctrl_val) {
2245 		wrmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, cpuc->fixed_ctrl_val);
2246 		cpuc->active_fixed_ctrl_val = cpuc->fixed_ctrl_val;
2247 	}
2248 
2249 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
2250 	       intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
2251 
2252 	if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
2253 		struct perf_event *event =
2254 			cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
2255 
2256 		if (WARN_ON_ONCE(!event))
2257 			return;
2258 
2259 		intel_pmu_enable_bts(event->hw.config);
2260 	}
2261 }
2262 
2263 static void intel_pmu_enable_all(int added)
2264 {
2265 	intel_pmu_pebs_enable_all();
2266 	__intel_pmu_enable_all(added, false);
2267 }
2268 
2269 static noinline int
2270 __intel_pmu_snapshot_branch_stack(struct perf_branch_entry *entries,
2271 				  unsigned int cnt, unsigned long flags)
2272 {
2273 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2274 
2275 	intel_pmu_lbr_read();
2276 	cnt = min_t(unsigned int, cnt, x86_pmu.lbr_nr);
2277 
2278 	memcpy(entries, cpuc->lbr_entries, sizeof(struct perf_branch_entry) * cnt);
2279 	intel_pmu_enable_all(0);
2280 	local_irq_restore(flags);
2281 	return cnt;
2282 }
2283 
2284 static int
2285 intel_pmu_snapshot_branch_stack(struct perf_branch_entry *entries, unsigned int cnt)
2286 {
2287 	unsigned long flags;
2288 
2289 	/* must not have branches... */
2290 	local_irq_save(flags);
2291 	__intel_pmu_disable_all(false); /* we don't care about BTS */
2292 	__intel_pmu_lbr_disable();
2293 	/*            ... until here */
2294 	return __intel_pmu_snapshot_branch_stack(entries, cnt, flags);
2295 }
2296 
2297 static int
2298 intel_pmu_snapshot_arch_branch_stack(struct perf_branch_entry *entries, unsigned int cnt)
2299 {
2300 	unsigned long flags;
2301 
2302 	/* must not have branches... */
2303 	local_irq_save(flags);
2304 	__intel_pmu_disable_all(false); /* we don't care about BTS */
2305 	__intel_pmu_arch_lbr_disable();
2306 	/*            ... until here */
2307 	return __intel_pmu_snapshot_branch_stack(entries, cnt, flags);
2308 }
2309 
2310 /*
2311  * Workaround for:
2312  *   Intel Errata AAK100 (model 26)
2313  *   Intel Errata AAP53  (model 30)
2314  *   Intel Errata BD53   (model 44)
2315  *
2316  * The official story:
2317  *   These chips need to be 'reset' when adding counters by programming the
2318  *   magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
2319  *   in sequence on the same PMC or on different PMCs.
2320  *
2321  * In practice it appears some of these events do in fact count, and
2322  * we need to program all 4 events.
2323  */
2324 static void intel_pmu_nhm_workaround(void)
2325 {
2326 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2327 	static const unsigned long nhm_magic[4] = {
2328 		0x4300B5,
2329 		0x4300D2,
2330 		0x4300B1,
2331 		0x4300B1
2332 	};
2333 	struct perf_event *event;
2334 	int i;
2335 
2336 	/*
2337 	 * The Errata requires below steps:
2338 	 * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
2339 	 * 2) Configure 4 PERFEVTSELx with the magic events and clear
2340 	 *    the corresponding PMCx;
2341 	 * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
2342 	 * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
2343 	 * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
2344 	 */
2345 
2346 	/*
2347 	 * The real steps we choose are a little different from above.
2348 	 * A) To reduce MSR operations, we don't run step 1) as they
2349 	 *    are already cleared before this function is called;
2350 	 * B) Call x86_perf_event_update to save PMCx before configuring
2351 	 *    PERFEVTSELx with magic number;
2352 	 * C) With step 5), we do clear only when the PERFEVTSELx is
2353 	 *    not used currently.
2354 	 * D) Call x86_perf_event_set_period to restore PMCx;
2355 	 */
2356 
2357 	/* We always operate 4 pairs of PERF Counters */
2358 	for (i = 0; i < 4; i++) {
2359 		event = cpuc->events[i];
2360 		if (event)
2361 			static_call(x86_pmu_update)(event);
2362 	}
2363 
2364 	for (i = 0; i < 4; i++) {
2365 		wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
2366 		wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
2367 	}
2368 
2369 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
2370 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
2371 
2372 	for (i = 0; i < 4; i++) {
2373 		event = cpuc->events[i];
2374 
2375 		if (event) {
2376 			static_call(x86_pmu_set_period)(event);
2377 			__x86_pmu_enable_event(&event->hw,
2378 					ARCH_PERFMON_EVENTSEL_ENABLE);
2379 		} else
2380 			wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
2381 	}
2382 }
2383 
2384 static void intel_pmu_nhm_enable_all(int added)
2385 {
2386 	if (added)
2387 		intel_pmu_nhm_workaround();
2388 	intel_pmu_enable_all(added);
2389 }
2390 
2391 static void intel_set_tfa(struct cpu_hw_events *cpuc, bool on)
2392 {
2393 	u64 val = on ? MSR_TFA_RTM_FORCE_ABORT : 0;
2394 
2395 	if (cpuc->tfa_shadow != val) {
2396 		cpuc->tfa_shadow = val;
2397 		wrmsrl(MSR_TSX_FORCE_ABORT, val);
2398 	}
2399 }
2400 
2401 static void intel_tfa_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
2402 {
2403 	/*
2404 	 * We're going to use PMC3, make sure TFA is set before we touch it.
2405 	 */
2406 	if (cntr == 3)
2407 		intel_set_tfa(cpuc, true);
2408 }
2409 
2410 static void intel_tfa_pmu_enable_all(int added)
2411 {
2412 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2413 
2414 	/*
2415 	 * If we find PMC3 is no longer used when we enable the PMU, we can
2416 	 * clear TFA.
2417 	 */
2418 	if (!test_bit(3, cpuc->active_mask))
2419 		intel_set_tfa(cpuc, false);
2420 
2421 	intel_pmu_enable_all(added);
2422 }
2423 
2424 static inline u64 intel_pmu_get_status(void)
2425 {
2426 	u64 status;
2427 
2428 	rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
2429 
2430 	return status;
2431 }
2432 
2433 static inline void intel_pmu_ack_status(u64 ack)
2434 {
2435 	wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
2436 }
2437 
2438 static inline bool event_is_checkpointed(struct perf_event *event)
2439 {
2440 	return unlikely(event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
2441 }
2442 
2443 static inline void intel_set_masks(struct perf_event *event, int idx)
2444 {
2445 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2446 
2447 	if (event->attr.exclude_host)
2448 		__set_bit(idx, (unsigned long *)&cpuc->intel_ctrl_guest_mask);
2449 	if (event->attr.exclude_guest)
2450 		__set_bit(idx, (unsigned long *)&cpuc->intel_ctrl_host_mask);
2451 	if (event_is_checkpointed(event))
2452 		__set_bit(idx, (unsigned long *)&cpuc->intel_cp_status);
2453 }
2454 
2455 static inline void intel_clear_masks(struct perf_event *event, int idx)
2456 {
2457 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2458 
2459 	__clear_bit(idx, (unsigned long *)&cpuc->intel_ctrl_guest_mask);
2460 	__clear_bit(idx, (unsigned long *)&cpuc->intel_ctrl_host_mask);
2461 	__clear_bit(idx, (unsigned long *)&cpuc->intel_cp_status);
2462 }
2463 
2464 static void intel_pmu_disable_fixed(struct perf_event *event)
2465 {
2466 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2467 	struct hw_perf_event *hwc = &event->hw;
2468 	int idx = hwc->idx;
2469 	u64 mask;
2470 
2471 	if (is_topdown_idx(idx)) {
2472 		struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2473 
2474 		/*
2475 		 * When there are other active TopDown events,
2476 		 * don't disable the fixed counter 3.
2477 		 */
2478 		if (*(u64 *)cpuc->active_mask & INTEL_PMC_OTHER_TOPDOWN_BITS(idx))
2479 			return;
2480 		idx = INTEL_PMC_IDX_FIXED_SLOTS;
2481 	}
2482 
2483 	intel_clear_masks(event, idx);
2484 
2485 	mask = intel_fixed_bits_by_idx(idx - INTEL_PMC_IDX_FIXED, INTEL_FIXED_BITS_MASK);
2486 	cpuc->fixed_ctrl_val &= ~mask;
2487 }
2488 
2489 static void intel_pmu_disable_event(struct perf_event *event)
2490 {
2491 	struct hw_perf_event *hwc = &event->hw;
2492 	int idx = hwc->idx;
2493 
2494 	switch (idx) {
2495 	case 0 ... INTEL_PMC_IDX_FIXED - 1:
2496 		intel_clear_masks(event, idx);
2497 		x86_pmu_disable_event(event);
2498 		break;
2499 	case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS - 1:
2500 	case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
2501 		intel_pmu_disable_fixed(event);
2502 		break;
2503 	case INTEL_PMC_IDX_FIXED_BTS:
2504 		intel_pmu_disable_bts();
2505 		intel_pmu_drain_bts_buffer();
2506 		return;
2507 	case INTEL_PMC_IDX_FIXED_VLBR:
2508 		intel_clear_masks(event, idx);
2509 		break;
2510 	default:
2511 		intel_clear_masks(event, idx);
2512 		pr_warn("Failed to disable the event with invalid index %d\n",
2513 			idx);
2514 		return;
2515 	}
2516 
2517 	/*
2518 	 * Needs to be called after x86_pmu_disable_event,
2519 	 * so we don't trigger the event without PEBS bit set.
2520 	 */
2521 	if (unlikely(event->attr.precise_ip))
2522 		intel_pmu_pebs_disable(event);
2523 }
2524 
2525 static void intel_pmu_assign_event(struct perf_event *event, int idx)
2526 {
2527 	if (is_pebs_pt(event))
2528 		perf_report_aux_output_id(event, idx);
2529 }
2530 
2531 static __always_inline bool intel_pmu_needs_branch_stack(struct perf_event *event)
2532 {
2533 	return event->hw.flags & PERF_X86_EVENT_NEEDS_BRANCH_STACK;
2534 }
2535 
2536 static void intel_pmu_del_event(struct perf_event *event)
2537 {
2538 	if (intel_pmu_needs_branch_stack(event))
2539 		intel_pmu_lbr_del(event);
2540 	if (event->attr.precise_ip)
2541 		intel_pmu_pebs_del(event);
2542 }
2543 
2544 static int icl_set_topdown_event_period(struct perf_event *event)
2545 {
2546 	struct hw_perf_event *hwc = &event->hw;
2547 	s64 left = local64_read(&hwc->period_left);
2548 
2549 	/*
2550 	 * The values in PERF_METRICS MSR are derived from fixed counter 3.
2551 	 * Software should start both registers, PERF_METRICS and fixed
2552 	 * counter 3, from zero.
2553 	 * Clear PERF_METRICS and Fixed counter 3 in initialization.
2554 	 * After that, both MSRs will be cleared for each read.
2555 	 * Don't need to clear them again.
2556 	 */
2557 	if (left == x86_pmu.max_period) {
2558 		wrmsrl(MSR_CORE_PERF_FIXED_CTR3, 0);
2559 		wrmsrl(MSR_PERF_METRICS, 0);
2560 		hwc->saved_slots = 0;
2561 		hwc->saved_metric = 0;
2562 	}
2563 
2564 	if ((hwc->saved_slots) && is_slots_event(event)) {
2565 		wrmsrl(MSR_CORE_PERF_FIXED_CTR3, hwc->saved_slots);
2566 		wrmsrl(MSR_PERF_METRICS, hwc->saved_metric);
2567 	}
2568 
2569 	perf_event_update_userpage(event);
2570 
2571 	return 0;
2572 }
2573 
2574 DEFINE_STATIC_CALL(intel_pmu_set_topdown_event_period, x86_perf_event_set_period);
2575 
2576 static inline u64 icl_get_metrics_event_value(u64 metric, u64 slots, int idx)
2577 {
2578 	u32 val;
2579 
2580 	/*
2581 	 * The metric is reported as an 8bit integer fraction
2582 	 * summing up to 0xff.
2583 	 * slots-in-metric = (Metric / 0xff) * slots
2584 	 */
2585 	val = (metric >> ((idx - INTEL_PMC_IDX_METRIC_BASE) * 8)) & 0xff;
2586 	return  mul_u64_u32_div(slots, val, 0xff);
2587 }
2588 
2589 static u64 icl_get_topdown_value(struct perf_event *event,
2590 				       u64 slots, u64 metrics)
2591 {
2592 	int idx = event->hw.idx;
2593 	u64 delta;
2594 
2595 	if (is_metric_idx(idx))
2596 		delta = icl_get_metrics_event_value(metrics, slots, idx);
2597 	else
2598 		delta = slots;
2599 
2600 	return delta;
2601 }
2602 
2603 static void __icl_update_topdown_event(struct perf_event *event,
2604 				       u64 slots, u64 metrics,
2605 				       u64 last_slots, u64 last_metrics)
2606 {
2607 	u64 delta, last = 0;
2608 
2609 	delta = icl_get_topdown_value(event, slots, metrics);
2610 	if (last_slots)
2611 		last = icl_get_topdown_value(event, last_slots, last_metrics);
2612 
2613 	/*
2614 	 * The 8bit integer fraction of metric may be not accurate,
2615 	 * especially when the changes is very small.
2616 	 * For example, if only a few bad_spec happens, the fraction
2617 	 * may be reduced from 1 to 0. If so, the bad_spec event value
2618 	 * will be 0 which is definitely less than the last value.
2619 	 * Avoid update event->count for this case.
2620 	 */
2621 	if (delta > last) {
2622 		delta -= last;
2623 		local64_add(delta, &event->count);
2624 	}
2625 }
2626 
2627 static void update_saved_topdown_regs(struct perf_event *event, u64 slots,
2628 				      u64 metrics, int metric_end)
2629 {
2630 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2631 	struct perf_event *other;
2632 	int idx;
2633 
2634 	event->hw.saved_slots = slots;
2635 	event->hw.saved_metric = metrics;
2636 
2637 	for_each_set_bit(idx, cpuc->active_mask, metric_end + 1) {
2638 		if (!is_topdown_idx(idx))
2639 			continue;
2640 		other = cpuc->events[idx];
2641 		other->hw.saved_slots = slots;
2642 		other->hw.saved_metric = metrics;
2643 	}
2644 }
2645 
2646 /*
2647  * Update all active Topdown events.
2648  *
2649  * The PERF_METRICS and Fixed counter 3 are read separately. The values may be
2650  * modify by a NMI. PMU has to be disabled before calling this function.
2651  */
2652 
2653 static u64 intel_update_topdown_event(struct perf_event *event, int metric_end)
2654 {
2655 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2656 	struct perf_event *other;
2657 	u64 slots, metrics;
2658 	bool reset = true;
2659 	int idx;
2660 
2661 	/* read Fixed counter 3 */
2662 	rdpmcl((3 | INTEL_PMC_FIXED_RDPMC_BASE), slots);
2663 	if (!slots)
2664 		return 0;
2665 
2666 	/* read PERF_METRICS */
2667 	rdpmcl(INTEL_PMC_FIXED_RDPMC_METRICS, metrics);
2668 
2669 	for_each_set_bit(idx, cpuc->active_mask, metric_end + 1) {
2670 		if (!is_topdown_idx(idx))
2671 			continue;
2672 		other = cpuc->events[idx];
2673 		__icl_update_topdown_event(other, slots, metrics,
2674 					   event ? event->hw.saved_slots : 0,
2675 					   event ? event->hw.saved_metric : 0);
2676 	}
2677 
2678 	/*
2679 	 * Check and update this event, which may have been cleared
2680 	 * in active_mask e.g. x86_pmu_stop()
2681 	 */
2682 	if (event && !test_bit(event->hw.idx, cpuc->active_mask)) {
2683 		__icl_update_topdown_event(event, slots, metrics,
2684 					   event->hw.saved_slots,
2685 					   event->hw.saved_metric);
2686 
2687 		/*
2688 		 * In x86_pmu_stop(), the event is cleared in active_mask first,
2689 		 * then drain the delta, which indicates context switch for
2690 		 * counting.
2691 		 * Save metric and slots for context switch.
2692 		 * Don't need to reset the PERF_METRICS and Fixed counter 3.
2693 		 * Because the values will be restored in next schedule in.
2694 		 */
2695 		update_saved_topdown_regs(event, slots, metrics, metric_end);
2696 		reset = false;
2697 	}
2698 
2699 	if (reset) {
2700 		/* The fixed counter 3 has to be written before the PERF_METRICS. */
2701 		wrmsrl(MSR_CORE_PERF_FIXED_CTR3, 0);
2702 		wrmsrl(MSR_PERF_METRICS, 0);
2703 		if (event)
2704 			update_saved_topdown_regs(event, 0, 0, metric_end);
2705 	}
2706 
2707 	return slots;
2708 }
2709 
2710 static u64 icl_update_topdown_event(struct perf_event *event)
2711 {
2712 	return intel_update_topdown_event(event, INTEL_PMC_IDX_METRIC_BASE +
2713 						 x86_pmu.num_topdown_events - 1);
2714 }
2715 
2716 DEFINE_STATIC_CALL(intel_pmu_update_topdown_event, x86_perf_event_update);
2717 
2718 static void intel_pmu_read_topdown_event(struct perf_event *event)
2719 {
2720 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2721 
2722 	/* Only need to call update_topdown_event() once for group read. */
2723 	if ((cpuc->txn_flags & PERF_PMU_TXN_READ) &&
2724 	    !is_slots_event(event))
2725 		return;
2726 
2727 	perf_pmu_disable(event->pmu);
2728 	static_call(intel_pmu_update_topdown_event)(event);
2729 	perf_pmu_enable(event->pmu);
2730 }
2731 
2732 static void intel_pmu_read_event(struct perf_event *event)
2733 {
2734 	if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
2735 		intel_pmu_auto_reload_read(event);
2736 	else if (is_topdown_count(event))
2737 		intel_pmu_read_topdown_event(event);
2738 	else
2739 		x86_perf_event_update(event);
2740 }
2741 
2742 static void intel_pmu_enable_fixed(struct perf_event *event)
2743 {
2744 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2745 	struct hw_perf_event *hwc = &event->hw;
2746 	u64 mask, bits = 0;
2747 	int idx = hwc->idx;
2748 
2749 	if (is_topdown_idx(idx)) {
2750 		struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2751 		/*
2752 		 * When there are other active TopDown events,
2753 		 * don't enable the fixed counter 3 again.
2754 		 */
2755 		if (*(u64 *)cpuc->active_mask & INTEL_PMC_OTHER_TOPDOWN_BITS(idx))
2756 			return;
2757 
2758 		idx = INTEL_PMC_IDX_FIXED_SLOTS;
2759 	}
2760 
2761 	intel_set_masks(event, idx);
2762 
2763 	/*
2764 	 * Enable IRQ generation (0x8), if not PEBS,
2765 	 * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
2766 	 * if requested:
2767 	 */
2768 	if (!event->attr.precise_ip)
2769 		bits |= INTEL_FIXED_0_ENABLE_PMI;
2770 	if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
2771 		bits |= INTEL_FIXED_0_USER;
2772 	if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
2773 		bits |= INTEL_FIXED_0_KERNEL;
2774 
2775 	/*
2776 	 * ANY bit is supported in v3 and up
2777 	 */
2778 	if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
2779 		bits |= INTEL_FIXED_0_ANYTHREAD;
2780 
2781 	idx -= INTEL_PMC_IDX_FIXED;
2782 	bits = intel_fixed_bits_by_idx(idx, bits);
2783 	mask = intel_fixed_bits_by_idx(idx, INTEL_FIXED_BITS_MASK);
2784 
2785 	if (x86_pmu.intel_cap.pebs_baseline && event->attr.precise_ip) {
2786 		bits |= intel_fixed_bits_by_idx(idx, ICL_FIXED_0_ADAPTIVE);
2787 		mask |= intel_fixed_bits_by_idx(idx, ICL_FIXED_0_ADAPTIVE);
2788 	}
2789 
2790 	cpuc->fixed_ctrl_val &= ~mask;
2791 	cpuc->fixed_ctrl_val |= bits;
2792 }
2793 
2794 static void intel_pmu_enable_event(struct perf_event *event)
2795 {
2796 	u64 enable_mask = ARCH_PERFMON_EVENTSEL_ENABLE;
2797 	struct hw_perf_event *hwc = &event->hw;
2798 	int idx = hwc->idx;
2799 
2800 	if (unlikely(event->attr.precise_ip))
2801 		intel_pmu_pebs_enable(event);
2802 
2803 	switch (idx) {
2804 	case 0 ... INTEL_PMC_IDX_FIXED - 1:
2805 		if (branch_sample_counters(event))
2806 			enable_mask |= ARCH_PERFMON_EVENTSEL_BR_CNTR;
2807 		intel_set_masks(event, idx);
2808 		__x86_pmu_enable_event(hwc, enable_mask);
2809 		break;
2810 	case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS - 1:
2811 	case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
2812 		intel_pmu_enable_fixed(event);
2813 		break;
2814 	case INTEL_PMC_IDX_FIXED_BTS:
2815 		if (!__this_cpu_read(cpu_hw_events.enabled))
2816 			return;
2817 		intel_pmu_enable_bts(hwc->config);
2818 		break;
2819 	case INTEL_PMC_IDX_FIXED_VLBR:
2820 		intel_set_masks(event, idx);
2821 		break;
2822 	default:
2823 		pr_warn("Failed to enable the event with invalid index %d\n",
2824 			idx);
2825 	}
2826 }
2827 
2828 static void intel_pmu_add_event(struct perf_event *event)
2829 {
2830 	if (event->attr.precise_ip)
2831 		intel_pmu_pebs_add(event);
2832 	if (intel_pmu_needs_branch_stack(event))
2833 		intel_pmu_lbr_add(event);
2834 }
2835 
2836 /*
2837  * Save and restart an expired event. Called by NMI contexts,
2838  * so it has to be careful about preempting normal event ops:
2839  */
2840 int intel_pmu_save_and_restart(struct perf_event *event)
2841 {
2842 	static_call(x86_pmu_update)(event);
2843 	/*
2844 	 * For a checkpointed counter always reset back to 0.  This
2845 	 * avoids a situation where the counter overflows, aborts the
2846 	 * transaction and is then set back to shortly before the
2847 	 * overflow, and overflows and aborts again.
2848 	 */
2849 	if (unlikely(event_is_checkpointed(event))) {
2850 		/* No race with NMIs because the counter should not be armed */
2851 		wrmsrl(event->hw.event_base, 0);
2852 		local64_set(&event->hw.prev_count, 0);
2853 	}
2854 	return static_call(x86_pmu_set_period)(event);
2855 }
2856 
2857 static int intel_pmu_set_period(struct perf_event *event)
2858 {
2859 	if (unlikely(is_topdown_count(event)))
2860 		return static_call(intel_pmu_set_topdown_event_period)(event);
2861 
2862 	return x86_perf_event_set_period(event);
2863 }
2864 
2865 static u64 intel_pmu_update(struct perf_event *event)
2866 {
2867 	if (unlikely(is_topdown_count(event)))
2868 		return static_call(intel_pmu_update_topdown_event)(event);
2869 
2870 	return x86_perf_event_update(event);
2871 }
2872 
2873 static void intel_pmu_reset(void)
2874 {
2875 	struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
2876 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2877 	int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
2878 	int num_counters = hybrid(cpuc->pmu, num_counters);
2879 	unsigned long flags;
2880 	int idx;
2881 
2882 	if (!num_counters)
2883 		return;
2884 
2885 	local_irq_save(flags);
2886 
2887 	pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
2888 
2889 	for (idx = 0; idx < num_counters; idx++) {
2890 		wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
2891 		wrmsrl_safe(x86_pmu_event_addr(idx),  0ull);
2892 	}
2893 	for (idx = 0; idx < num_counters_fixed; idx++) {
2894 		if (fixed_counter_disabled(idx, cpuc->pmu))
2895 			continue;
2896 		wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
2897 	}
2898 
2899 	if (ds)
2900 		ds->bts_index = ds->bts_buffer_base;
2901 
2902 	/* Ack all overflows and disable fixed counters */
2903 	if (x86_pmu.version >= 2) {
2904 		intel_pmu_ack_status(intel_pmu_get_status());
2905 		wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
2906 	}
2907 
2908 	/* Reset LBRs and LBR freezing */
2909 	if (x86_pmu.lbr_nr) {
2910 		update_debugctlmsr(get_debugctlmsr() &
2911 			~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
2912 	}
2913 
2914 	local_irq_restore(flags);
2915 }
2916 
2917 /*
2918  * We may be running with guest PEBS events created by KVM, and the
2919  * PEBS records are logged into the guest's DS and invisible to host.
2920  *
2921  * In the case of guest PEBS overflow, we only trigger a fake event
2922  * to emulate the PEBS overflow PMI for guest PEBS counters in KVM.
2923  * The guest will then vm-entry and check the guest DS area to read
2924  * the guest PEBS records.
2925  *
2926  * The contents and other behavior of the guest event do not matter.
2927  */
2928 static void x86_pmu_handle_guest_pebs(struct pt_regs *regs,
2929 				      struct perf_sample_data *data)
2930 {
2931 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2932 	u64 guest_pebs_idxs = cpuc->pebs_enabled & ~cpuc->intel_ctrl_host_mask;
2933 	struct perf_event *event = NULL;
2934 	int bit;
2935 
2936 	if (!unlikely(perf_guest_state()))
2937 		return;
2938 
2939 	if (!x86_pmu.pebs_ept || !x86_pmu.pebs_active ||
2940 	    !guest_pebs_idxs)
2941 		return;
2942 
2943 	for_each_set_bit(bit, (unsigned long *)&guest_pebs_idxs,
2944 			 INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed) {
2945 		event = cpuc->events[bit];
2946 		if (!event->attr.precise_ip)
2947 			continue;
2948 
2949 		perf_sample_data_init(data, 0, event->hw.last_period);
2950 		if (perf_event_overflow(event, data, regs))
2951 			x86_pmu_stop(event, 0);
2952 
2953 		/* Inject one fake event is enough. */
2954 		break;
2955 	}
2956 }
2957 
2958 static int handle_pmi_common(struct pt_regs *regs, u64 status)
2959 {
2960 	struct perf_sample_data data;
2961 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2962 	int bit;
2963 	int handled = 0;
2964 	u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
2965 
2966 	inc_irq_stat(apic_perf_irqs);
2967 
2968 	/*
2969 	 * Ignore a range of extra bits in status that do not indicate
2970 	 * overflow by themselves.
2971 	 */
2972 	status &= ~(GLOBAL_STATUS_COND_CHG |
2973 		    GLOBAL_STATUS_ASIF |
2974 		    GLOBAL_STATUS_LBRS_FROZEN);
2975 	if (!status)
2976 		return 0;
2977 	/*
2978 	 * In case multiple PEBS events are sampled at the same time,
2979 	 * it is possible to have GLOBAL_STATUS bit 62 set indicating
2980 	 * PEBS buffer overflow and also seeing at most 3 PEBS counters
2981 	 * having their bits set in the status register. This is a sign
2982 	 * that there was at least one PEBS record pending at the time
2983 	 * of the PMU interrupt. PEBS counters must only be processed
2984 	 * via the drain_pebs() calls and not via the regular sample
2985 	 * processing loop coming after that the function, otherwise
2986 	 * phony regular samples may be generated in the sampling buffer
2987 	 * not marked with the EXACT tag. Another possibility is to have
2988 	 * one PEBS event and at least one non-PEBS event which overflows
2989 	 * while PEBS has armed. In this case, bit 62 of GLOBAL_STATUS will
2990 	 * not be set, yet the overflow status bit for the PEBS counter will
2991 	 * be on Skylake.
2992 	 *
2993 	 * To avoid this problem, we systematically ignore the PEBS-enabled
2994 	 * counters from the GLOBAL_STATUS mask and we always process PEBS
2995 	 * events via drain_pebs().
2996 	 */
2997 	status &= ~(cpuc->pebs_enabled & x86_pmu.pebs_capable);
2998 
2999 	/*
3000 	 * PEBS overflow sets bit 62 in the global status register
3001 	 */
3002 	if (__test_and_clear_bit(GLOBAL_STATUS_BUFFER_OVF_BIT, (unsigned long *)&status)) {
3003 		u64 pebs_enabled = cpuc->pebs_enabled;
3004 
3005 		handled++;
3006 		x86_pmu_handle_guest_pebs(regs, &data);
3007 		x86_pmu.drain_pebs(regs, &data);
3008 		status &= intel_ctrl | GLOBAL_STATUS_TRACE_TOPAPMI;
3009 
3010 		/*
3011 		 * PMI throttle may be triggered, which stops the PEBS event.
3012 		 * Although cpuc->pebs_enabled is updated accordingly, the
3013 		 * MSR_IA32_PEBS_ENABLE is not updated. Because the
3014 		 * cpuc->enabled has been forced to 0 in PMI.
3015 		 * Update the MSR if pebs_enabled is changed.
3016 		 */
3017 		if (pebs_enabled != cpuc->pebs_enabled)
3018 			wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
3019 	}
3020 
3021 	/*
3022 	 * Intel PT
3023 	 */
3024 	if (__test_and_clear_bit(GLOBAL_STATUS_TRACE_TOPAPMI_BIT, (unsigned long *)&status)) {
3025 		handled++;
3026 		if (!perf_guest_handle_intel_pt_intr())
3027 			intel_pt_interrupt();
3028 	}
3029 
3030 	/*
3031 	 * Intel Perf metrics
3032 	 */
3033 	if (__test_and_clear_bit(GLOBAL_STATUS_PERF_METRICS_OVF_BIT, (unsigned long *)&status)) {
3034 		handled++;
3035 		static_call(intel_pmu_update_topdown_event)(NULL);
3036 	}
3037 
3038 	/*
3039 	 * Checkpointed counters can lead to 'spurious' PMIs because the
3040 	 * rollback caused by the PMI will have cleared the overflow status
3041 	 * bit. Therefore always force probe these counters.
3042 	 */
3043 	status |= cpuc->intel_cp_status;
3044 
3045 	for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
3046 		struct perf_event *event = cpuc->events[bit];
3047 
3048 		handled++;
3049 
3050 		if (!test_bit(bit, cpuc->active_mask))
3051 			continue;
3052 
3053 		if (!intel_pmu_save_and_restart(event))
3054 			continue;
3055 
3056 		perf_sample_data_init(&data, 0, event->hw.last_period);
3057 
3058 		if (has_branch_stack(event))
3059 			intel_pmu_lbr_save_brstack(&data, cpuc, event);
3060 
3061 		if (perf_event_overflow(event, &data, regs))
3062 			x86_pmu_stop(event, 0);
3063 	}
3064 
3065 	return handled;
3066 }
3067 
3068 /*
3069  * This handler is triggered by the local APIC, so the APIC IRQ handling
3070  * rules apply:
3071  */
3072 static int intel_pmu_handle_irq(struct pt_regs *regs)
3073 {
3074 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3075 	bool late_ack = hybrid_bit(cpuc->pmu, late_ack);
3076 	bool mid_ack = hybrid_bit(cpuc->pmu, mid_ack);
3077 	int loops;
3078 	u64 status;
3079 	int handled;
3080 	int pmu_enabled;
3081 
3082 	/*
3083 	 * Save the PMU state.
3084 	 * It needs to be restored when leaving the handler.
3085 	 */
3086 	pmu_enabled = cpuc->enabled;
3087 	/*
3088 	 * In general, the early ACK is only applied for old platforms.
3089 	 * For the big core starts from Haswell, the late ACK should be
3090 	 * applied.
3091 	 * For the small core after Tremont, we have to do the ACK right
3092 	 * before re-enabling counters, which is in the middle of the
3093 	 * NMI handler.
3094 	 */
3095 	if (!late_ack && !mid_ack)
3096 		apic_write(APIC_LVTPC, APIC_DM_NMI);
3097 	intel_bts_disable_local();
3098 	cpuc->enabled = 0;
3099 	__intel_pmu_disable_all(true);
3100 	handled = intel_pmu_drain_bts_buffer();
3101 	handled += intel_bts_interrupt();
3102 	status = intel_pmu_get_status();
3103 	if (!status)
3104 		goto done;
3105 
3106 	loops = 0;
3107 again:
3108 	intel_pmu_lbr_read();
3109 	intel_pmu_ack_status(status);
3110 	if (++loops > 100) {
3111 		static bool warned;
3112 
3113 		if (!warned) {
3114 			WARN(1, "perfevents: irq loop stuck!\n");
3115 			perf_event_print_debug();
3116 			warned = true;
3117 		}
3118 		intel_pmu_reset();
3119 		goto done;
3120 	}
3121 
3122 	handled += handle_pmi_common(regs, status);
3123 
3124 	/*
3125 	 * Repeat if there is more work to be done:
3126 	 */
3127 	status = intel_pmu_get_status();
3128 	if (status)
3129 		goto again;
3130 
3131 done:
3132 	if (mid_ack)
3133 		apic_write(APIC_LVTPC, APIC_DM_NMI);
3134 	/* Only restore PMU state when it's active. See x86_pmu_disable(). */
3135 	cpuc->enabled = pmu_enabled;
3136 	if (pmu_enabled)
3137 		__intel_pmu_enable_all(0, true);
3138 	intel_bts_enable_local();
3139 
3140 	/*
3141 	 * Only unmask the NMI after the overflow counters
3142 	 * have been reset. This avoids spurious NMIs on
3143 	 * Haswell CPUs.
3144 	 */
3145 	if (late_ack)
3146 		apic_write(APIC_LVTPC, APIC_DM_NMI);
3147 	return handled;
3148 }
3149 
3150 static struct event_constraint *
3151 intel_bts_constraints(struct perf_event *event)
3152 {
3153 	if (unlikely(intel_pmu_has_bts(event)))
3154 		return &bts_constraint;
3155 
3156 	return NULL;
3157 }
3158 
3159 /*
3160  * Note: matches a fake event, like Fixed2.
3161  */
3162 static struct event_constraint *
3163 intel_vlbr_constraints(struct perf_event *event)
3164 {
3165 	struct event_constraint *c = &vlbr_constraint;
3166 
3167 	if (unlikely(constraint_match(c, event->hw.config))) {
3168 		event->hw.flags |= c->flags;
3169 		return c;
3170 	}
3171 
3172 	return NULL;
3173 }
3174 
3175 static int intel_alt_er(struct cpu_hw_events *cpuc,
3176 			int idx, u64 config)
3177 {
3178 	struct extra_reg *extra_regs = hybrid(cpuc->pmu, extra_regs);
3179 	int alt_idx = idx;
3180 
3181 	if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
3182 		return idx;
3183 
3184 	if (idx == EXTRA_REG_RSP_0)
3185 		alt_idx = EXTRA_REG_RSP_1;
3186 
3187 	if (idx == EXTRA_REG_RSP_1)
3188 		alt_idx = EXTRA_REG_RSP_0;
3189 
3190 	if (config & ~extra_regs[alt_idx].valid_mask)
3191 		return idx;
3192 
3193 	return alt_idx;
3194 }
3195 
3196 static void intel_fixup_er(struct perf_event *event, int idx)
3197 {
3198 	struct extra_reg *extra_regs = hybrid(event->pmu, extra_regs);
3199 	event->hw.extra_reg.idx = idx;
3200 
3201 	if (idx == EXTRA_REG_RSP_0) {
3202 		event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
3203 		event->hw.config |= extra_regs[EXTRA_REG_RSP_0].event;
3204 		event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
3205 	} else if (idx == EXTRA_REG_RSP_1) {
3206 		event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
3207 		event->hw.config |= extra_regs[EXTRA_REG_RSP_1].event;
3208 		event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
3209 	}
3210 }
3211 
3212 /*
3213  * manage allocation of shared extra msr for certain events
3214  *
3215  * sharing can be:
3216  * per-cpu: to be shared between the various events on a single PMU
3217  * per-core: per-cpu + shared by HT threads
3218  */
3219 static struct event_constraint *
3220 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
3221 				   struct perf_event *event,
3222 				   struct hw_perf_event_extra *reg)
3223 {
3224 	struct event_constraint *c = &emptyconstraint;
3225 	struct er_account *era;
3226 	unsigned long flags;
3227 	int idx = reg->idx;
3228 
3229 	/*
3230 	 * reg->alloc can be set due to existing state, so for fake cpuc we
3231 	 * need to ignore this, otherwise we might fail to allocate proper fake
3232 	 * state for this extra reg constraint. Also see the comment below.
3233 	 */
3234 	if (reg->alloc && !cpuc->is_fake)
3235 		return NULL; /* call x86_get_event_constraint() */
3236 
3237 again:
3238 	era = &cpuc->shared_regs->regs[idx];
3239 	/*
3240 	 * we use spin_lock_irqsave() to avoid lockdep issues when
3241 	 * passing a fake cpuc
3242 	 */
3243 	raw_spin_lock_irqsave(&era->lock, flags);
3244 
3245 	if (!atomic_read(&era->ref) || era->config == reg->config) {
3246 
3247 		/*
3248 		 * If its a fake cpuc -- as per validate_{group,event}() we
3249 		 * shouldn't touch event state and we can avoid doing so
3250 		 * since both will only call get_event_constraints() once
3251 		 * on each event, this avoids the need for reg->alloc.
3252 		 *
3253 		 * Not doing the ER fixup will only result in era->reg being
3254 		 * wrong, but since we won't actually try and program hardware
3255 		 * this isn't a problem either.
3256 		 */
3257 		if (!cpuc->is_fake) {
3258 			if (idx != reg->idx)
3259 				intel_fixup_er(event, idx);
3260 
3261 			/*
3262 			 * x86_schedule_events() can call get_event_constraints()
3263 			 * multiple times on events in the case of incremental
3264 			 * scheduling(). reg->alloc ensures we only do the ER
3265 			 * allocation once.
3266 			 */
3267 			reg->alloc = 1;
3268 		}
3269 
3270 		/* lock in msr value */
3271 		era->config = reg->config;
3272 		era->reg = reg->reg;
3273 
3274 		/* one more user */
3275 		atomic_inc(&era->ref);
3276 
3277 		/*
3278 		 * need to call x86_get_event_constraint()
3279 		 * to check if associated event has constraints
3280 		 */
3281 		c = NULL;
3282 	} else {
3283 		idx = intel_alt_er(cpuc, idx, reg->config);
3284 		if (idx != reg->idx) {
3285 			raw_spin_unlock_irqrestore(&era->lock, flags);
3286 			goto again;
3287 		}
3288 	}
3289 	raw_spin_unlock_irqrestore(&era->lock, flags);
3290 
3291 	return c;
3292 }
3293 
3294 static void
3295 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
3296 				   struct hw_perf_event_extra *reg)
3297 {
3298 	struct er_account *era;
3299 
3300 	/*
3301 	 * Only put constraint if extra reg was actually allocated. Also takes
3302 	 * care of event which do not use an extra shared reg.
3303 	 *
3304 	 * Also, if this is a fake cpuc we shouldn't touch any event state
3305 	 * (reg->alloc) and we don't care about leaving inconsistent cpuc state
3306 	 * either since it'll be thrown out.
3307 	 */
3308 	if (!reg->alloc || cpuc->is_fake)
3309 		return;
3310 
3311 	era = &cpuc->shared_regs->regs[reg->idx];
3312 
3313 	/* one fewer user */
3314 	atomic_dec(&era->ref);
3315 
3316 	/* allocate again next time */
3317 	reg->alloc = 0;
3318 }
3319 
3320 static struct event_constraint *
3321 intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
3322 			      struct perf_event *event)
3323 {
3324 	struct event_constraint *c = NULL, *d;
3325 	struct hw_perf_event_extra *xreg, *breg;
3326 
3327 	xreg = &event->hw.extra_reg;
3328 	if (xreg->idx != EXTRA_REG_NONE) {
3329 		c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
3330 		if (c == &emptyconstraint)
3331 			return c;
3332 	}
3333 	breg = &event->hw.branch_reg;
3334 	if (breg->idx != EXTRA_REG_NONE) {
3335 		d = __intel_shared_reg_get_constraints(cpuc, event, breg);
3336 		if (d == &emptyconstraint) {
3337 			__intel_shared_reg_put_constraints(cpuc, xreg);
3338 			c = d;
3339 		}
3340 	}
3341 	return c;
3342 }
3343 
3344 struct event_constraint *
3345 x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3346 			  struct perf_event *event)
3347 {
3348 	struct event_constraint *event_constraints = hybrid(cpuc->pmu, event_constraints);
3349 	struct event_constraint *c;
3350 
3351 	if (event_constraints) {
3352 		for_each_event_constraint(c, event_constraints) {
3353 			if (constraint_match(c, event->hw.config)) {
3354 				event->hw.flags |= c->flags;
3355 				return c;
3356 			}
3357 		}
3358 	}
3359 
3360 	return &hybrid_var(cpuc->pmu, unconstrained);
3361 }
3362 
3363 static struct event_constraint *
3364 __intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3365 			    struct perf_event *event)
3366 {
3367 	struct event_constraint *c;
3368 
3369 	c = intel_vlbr_constraints(event);
3370 	if (c)
3371 		return c;
3372 
3373 	c = intel_bts_constraints(event);
3374 	if (c)
3375 		return c;
3376 
3377 	c = intel_shared_regs_constraints(cpuc, event);
3378 	if (c)
3379 		return c;
3380 
3381 	c = intel_pebs_constraints(event);
3382 	if (c)
3383 		return c;
3384 
3385 	return x86_get_event_constraints(cpuc, idx, event);
3386 }
3387 
3388 static void
3389 intel_start_scheduling(struct cpu_hw_events *cpuc)
3390 {
3391 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3392 	struct intel_excl_states *xl;
3393 	int tid = cpuc->excl_thread_id;
3394 
3395 	/*
3396 	 * nothing needed if in group validation mode
3397 	 */
3398 	if (cpuc->is_fake || !is_ht_workaround_enabled())
3399 		return;
3400 
3401 	/*
3402 	 * no exclusion needed
3403 	 */
3404 	if (WARN_ON_ONCE(!excl_cntrs))
3405 		return;
3406 
3407 	xl = &excl_cntrs->states[tid];
3408 
3409 	xl->sched_started = true;
3410 	/*
3411 	 * lock shared state until we are done scheduling
3412 	 * in stop_event_scheduling()
3413 	 * makes scheduling appear as a transaction
3414 	 */
3415 	raw_spin_lock(&excl_cntrs->lock);
3416 }
3417 
3418 static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
3419 {
3420 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3421 	struct event_constraint *c = cpuc->event_constraint[idx];
3422 	struct intel_excl_states *xl;
3423 	int tid = cpuc->excl_thread_id;
3424 
3425 	if (cpuc->is_fake || !is_ht_workaround_enabled())
3426 		return;
3427 
3428 	if (WARN_ON_ONCE(!excl_cntrs))
3429 		return;
3430 
3431 	if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
3432 		return;
3433 
3434 	xl = &excl_cntrs->states[tid];
3435 
3436 	lockdep_assert_held(&excl_cntrs->lock);
3437 
3438 	if (c->flags & PERF_X86_EVENT_EXCL)
3439 		xl->state[cntr] = INTEL_EXCL_EXCLUSIVE;
3440 	else
3441 		xl->state[cntr] = INTEL_EXCL_SHARED;
3442 }
3443 
3444 static void
3445 intel_stop_scheduling(struct cpu_hw_events *cpuc)
3446 {
3447 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3448 	struct intel_excl_states *xl;
3449 	int tid = cpuc->excl_thread_id;
3450 
3451 	/*
3452 	 * nothing needed if in group validation mode
3453 	 */
3454 	if (cpuc->is_fake || !is_ht_workaround_enabled())
3455 		return;
3456 	/*
3457 	 * no exclusion needed
3458 	 */
3459 	if (WARN_ON_ONCE(!excl_cntrs))
3460 		return;
3461 
3462 	xl = &excl_cntrs->states[tid];
3463 
3464 	xl->sched_started = false;
3465 	/*
3466 	 * release shared state lock (acquired in intel_start_scheduling())
3467 	 */
3468 	raw_spin_unlock(&excl_cntrs->lock);
3469 }
3470 
3471 static struct event_constraint *
3472 dyn_constraint(struct cpu_hw_events *cpuc, struct event_constraint *c, int idx)
3473 {
3474 	WARN_ON_ONCE(!cpuc->constraint_list);
3475 
3476 	if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
3477 		struct event_constraint *cx;
3478 
3479 		/*
3480 		 * grab pre-allocated constraint entry
3481 		 */
3482 		cx = &cpuc->constraint_list[idx];
3483 
3484 		/*
3485 		 * initialize dynamic constraint
3486 		 * with static constraint
3487 		 */
3488 		*cx = *c;
3489 
3490 		/*
3491 		 * mark constraint as dynamic
3492 		 */
3493 		cx->flags |= PERF_X86_EVENT_DYNAMIC;
3494 		c = cx;
3495 	}
3496 
3497 	return c;
3498 }
3499 
3500 static struct event_constraint *
3501 intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
3502 			   int idx, struct event_constraint *c)
3503 {
3504 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3505 	struct intel_excl_states *xlo;
3506 	int tid = cpuc->excl_thread_id;
3507 	int is_excl, i, w;
3508 
3509 	/*
3510 	 * validating a group does not require
3511 	 * enforcing cross-thread  exclusion
3512 	 */
3513 	if (cpuc->is_fake || !is_ht_workaround_enabled())
3514 		return c;
3515 
3516 	/*
3517 	 * no exclusion needed
3518 	 */
3519 	if (WARN_ON_ONCE(!excl_cntrs))
3520 		return c;
3521 
3522 	/*
3523 	 * because we modify the constraint, we need
3524 	 * to make a copy. Static constraints come
3525 	 * from static const tables.
3526 	 *
3527 	 * only needed when constraint has not yet
3528 	 * been cloned (marked dynamic)
3529 	 */
3530 	c = dyn_constraint(cpuc, c, idx);
3531 
3532 	/*
3533 	 * From here on, the constraint is dynamic.
3534 	 * Either it was just allocated above, or it
3535 	 * was allocated during a earlier invocation
3536 	 * of this function
3537 	 */
3538 
3539 	/*
3540 	 * state of sibling HT
3541 	 */
3542 	xlo = &excl_cntrs->states[tid ^ 1];
3543 
3544 	/*
3545 	 * event requires exclusive counter access
3546 	 * across HT threads
3547 	 */
3548 	is_excl = c->flags & PERF_X86_EVENT_EXCL;
3549 	if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) {
3550 		event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT;
3551 		if (!cpuc->n_excl++)
3552 			WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1);
3553 	}
3554 
3555 	/*
3556 	 * Modify static constraint with current dynamic
3557 	 * state of thread
3558 	 *
3559 	 * EXCLUSIVE: sibling counter measuring exclusive event
3560 	 * SHARED   : sibling counter measuring non-exclusive event
3561 	 * UNUSED   : sibling counter unused
3562 	 */
3563 	w = c->weight;
3564 	for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) {
3565 		/*
3566 		 * exclusive event in sibling counter
3567 		 * our corresponding counter cannot be used
3568 		 * regardless of our event
3569 		 */
3570 		if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE) {
3571 			__clear_bit(i, c->idxmsk);
3572 			w--;
3573 			continue;
3574 		}
3575 		/*
3576 		 * if measuring an exclusive event, sibling
3577 		 * measuring non-exclusive, then counter cannot
3578 		 * be used
3579 		 */
3580 		if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED) {
3581 			__clear_bit(i, c->idxmsk);
3582 			w--;
3583 			continue;
3584 		}
3585 	}
3586 
3587 	/*
3588 	 * if we return an empty mask, then switch
3589 	 * back to static empty constraint to avoid
3590 	 * the cost of freeing later on
3591 	 */
3592 	if (!w)
3593 		c = &emptyconstraint;
3594 
3595 	c->weight = w;
3596 
3597 	return c;
3598 }
3599 
3600 static struct event_constraint *
3601 intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3602 			    struct perf_event *event)
3603 {
3604 	struct event_constraint *c1, *c2;
3605 
3606 	c1 = cpuc->event_constraint[idx];
3607 
3608 	/*
3609 	 * first time only
3610 	 * - static constraint: no change across incremental scheduling calls
3611 	 * - dynamic constraint: handled by intel_get_excl_constraints()
3612 	 */
3613 	c2 = __intel_get_event_constraints(cpuc, idx, event);
3614 	if (c1) {
3615 	        WARN_ON_ONCE(!(c1->flags & PERF_X86_EVENT_DYNAMIC));
3616 		bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
3617 		c1->weight = c2->weight;
3618 		c2 = c1;
3619 	}
3620 
3621 	if (cpuc->excl_cntrs)
3622 		return intel_get_excl_constraints(cpuc, event, idx, c2);
3623 
3624 	/* Not all counters support the branch counter feature. */
3625 	if (branch_sample_counters(event)) {
3626 		c2 = dyn_constraint(cpuc, c2, idx);
3627 		c2->idxmsk64 &= x86_pmu.lbr_counters;
3628 		c2->weight = hweight64(c2->idxmsk64);
3629 	}
3630 
3631 	return c2;
3632 }
3633 
3634 static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
3635 		struct perf_event *event)
3636 {
3637 	struct hw_perf_event *hwc = &event->hw;
3638 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3639 	int tid = cpuc->excl_thread_id;
3640 	struct intel_excl_states *xl;
3641 
3642 	/*
3643 	 * nothing needed if in group validation mode
3644 	 */
3645 	if (cpuc->is_fake)
3646 		return;
3647 
3648 	if (WARN_ON_ONCE(!excl_cntrs))
3649 		return;
3650 
3651 	if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) {
3652 		hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT;
3653 		if (!--cpuc->n_excl)
3654 			WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0);
3655 	}
3656 
3657 	/*
3658 	 * If event was actually assigned, then mark the counter state as
3659 	 * unused now.
3660 	 */
3661 	if (hwc->idx >= 0) {
3662 		xl = &excl_cntrs->states[tid];
3663 
3664 		/*
3665 		 * put_constraint may be called from x86_schedule_events()
3666 		 * which already has the lock held so here make locking
3667 		 * conditional.
3668 		 */
3669 		if (!xl->sched_started)
3670 			raw_spin_lock(&excl_cntrs->lock);
3671 
3672 		xl->state[hwc->idx] = INTEL_EXCL_UNUSED;
3673 
3674 		if (!xl->sched_started)
3675 			raw_spin_unlock(&excl_cntrs->lock);
3676 	}
3677 }
3678 
3679 static void
3680 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
3681 					struct perf_event *event)
3682 {
3683 	struct hw_perf_event_extra *reg;
3684 
3685 	reg = &event->hw.extra_reg;
3686 	if (reg->idx != EXTRA_REG_NONE)
3687 		__intel_shared_reg_put_constraints(cpuc, reg);
3688 
3689 	reg = &event->hw.branch_reg;
3690 	if (reg->idx != EXTRA_REG_NONE)
3691 		__intel_shared_reg_put_constraints(cpuc, reg);
3692 }
3693 
3694 static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
3695 					struct perf_event *event)
3696 {
3697 	intel_put_shared_regs_event_constraints(cpuc, event);
3698 
3699 	/*
3700 	 * is PMU has exclusive counter restrictions, then
3701 	 * all events are subject to and must call the
3702 	 * put_excl_constraints() routine
3703 	 */
3704 	if (cpuc->excl_cntrs)
3705 		intel_put_excl_constraints(cpuc, event);
3706 }
3707 
3708 static void intel_pebs_aliases_core2(struct perf_event *event)
3709 {
3710 	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3711 		/*
3712 		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3713 		 * (0x003c) so that we can use it with PEBS.
3714 		 *
3715 		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3716 		 * PEBS capable. However we can use INST_RETIRED.ANY_P
3717 		 * (0x00c0), which is a PEBS capable event, to get the same
3718 		 * count.
3719 		 *
3720 		 * INST_RETIRED.ANY_P counts the number of cycles that retires
3721 		 * CNTMASK instructions. By setting CNTMASK to a value (16)
3722 		 * larger than the maximum number of instructions that can be
3723 		 * retired per cycle (4) and then inverting the condition, we
3724 		 * count all cycles that retire 16 or less instructions, which
3725 		 * is every cycle.
3726 		 *
3727 		 * Thereby we gain a PEBS capable cycle counter.
3728 		 */
3729 		u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
3730 
3731 		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3732 		event->hw.config = alt_config;
3733 	}
3734 }
3735 
3736 static void intel_pebs_aliases_snb(struct perf_event *event)
3737 {
3738 	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3739 		/*
3740 		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3741 		 * (0x003c) so that we can use it with PEBS.
3742 		 *
3743 		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3744 		 * PEBS capable. However we can use UOPS_RETIRED.ALL
3745 		 * (0x01c2), which is a PEBS capable event, to get the same
3746 		 * count.
3747 		 *
3748 		 * UOPS_RETIRED.ALL counts the number of cycles that retires
3749 		 * CNTMASK micro-ops. By setting CNTMASK to a value (16)
3750 		 * larger than the maximum number of micro-ops that can be
3751 		 * retired per cycle (4) and then inverting the condition, we
3752 		 * count all cycles that retire 16 or less micro-ops, which
3753 		 * is every cycle.
3754 		 *
3755 		 * Thereby we gain a PEBS capable cycle counter.
3756 		 */
3757 		u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
3758 
3759 		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3760 		event->hw.config = alt_config;
3761 	}
3762 }
3763 
3764 static void intel_pebs_aliases_precdist(struct perf_event *event)
3765 {
3766 	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3767 		/*
3768 		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3769 		 * (0x003c) so that we can use it with PEBS.
3770 		 *
3771 		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3772 		 * PEBS capable. However we can use INST_RETIRED.PREC_DIST
3773 		 * (0x01c0), which is a PEBS capable event, to get the same
3774 		 * count.
3775 		 *
3776 		 * The PREC_DIST event has special support to minimize sample
3777 		 * shadowing effects. One drawback is that it can be
3778 		 * only programmed on counter 1, but that seems like an
3779 		 * acceptable trade off.
3780 		 */
3781 		u64 alt_config = X86_CONFIG(.event=0xc0, .umask=0x01, .inv=1, .cmask=16);
3782 
3783 		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3784 		event->hw.config = alt_config;
3785 	}
3786 }
3787 
3788 static void intel_pebs_aliases_ivb(struct perf_event *event)
3789 {
3790 	if (event->attr.precise_ip < 3)
3791 		return intel_pebs_aliases_snb(event);
3792 	return intel_pebs_aliases_precdist(event);
3793 }
3794 
3795 static void intel_pebs_aliases_skl(struct perf_event *event)
3796 {
3797 	if (event->attr.precise_ip < 3)
3798 		return intel_pebs_aliases_core2(event);
3799 	return intel_pebs_aliases_precdist(event);
3800 }
3801 
3802 static unsigned long intel_pmu_large_pebs_flags(struct perf_event *event)
3803 {
3804 	unsigned long flags = x86_pmu.large_pebs_flags;
3805 
3806 	if (event->attr.use_clockid)
3807 		flags &= ~PERF_SAMPLE_TIME;
3808 	if (!event->attr.exclude_kernel)
3809 		flags &= ~PERF_SAMPLE_REGS_USER;
3810 	if (event->attr.sample_regs_user & ~PEBS_GP_REGS)
3811 		flags &= ~(PERF_SAMPLE_REGS_USER | PERF_SAMPLE_REGS_INTR);
3812 	return flags;
3813 }
3814 
3815 static int intel_pmu_bts_config(struct perf_event *event)
3816 {
3817 	struct perf_event_attr *attr = &event->attr;
3818 
3819 	if (unlikely(intel_pmu_has_bts(event))) {
3820 		/* BTS is not supported by this architecture. */
3821 		if (!x86_pmu.bts_active)
3822 			return -EOPNOTSUPP;
3823 
3824 		/* BTS is currently only allowed for user-mode. */
3825 		if (!attr->exclude_kernel)
3826 			return -EOPNOTSUPP;
3827 
3828 		/* BTS is not allowed for precise events. */
3829 		if (attr->precise_ip)
3830 			return -EOPNOTSUPP;
3831 
3832 		/* disallow bts if conflicting events are present */
3833 		if (x86_add_exclusive(x86_lbr_exclusive_lbr))
3834 			return -EBUSY;
3835 
3836 		event->destroy = hw_perf_lbr_event_destroy;
3837 	}
3838 
3839 	return 0;
3840 }
3841 
3842 static int core_pmu_hw_config(struct perf_event *event)
3843 {
3844 	int ret = x86_pmu_hw_config(event);
3845 
3846 	if (ret)
3847 		return ret;
3848 
3849 	return intel_pmu_bts_config(event);
3850 }
3851 
3852 #define INTEL_TD_METRIC_AVAILABLE_MAX	(INTEL_TD_METRIC_RETIRING + \
3853 					 ((x86_pmu.num_topdown_events - 1) << 8))
3854 
3855 static bool is_available_metric_event(struct perf_event *event)
3856 {
3857 	return is_metric_event(event) &&
3858 		event->attr.config <= INTEL_TD_METRIC_AVAILABLE_MAX;
3859 }
3860 
3861 static inline bool is_mem_loads_event(struct perf_event *event)
3862 {
3863 	return (event->attr.config & INTEL_ARCH_EVENT_MASK) == X86_CONFIG(.event=0xcd, .umask=0x01);
3864 }
3865 
3866 static inline bool is_mem_loads_aux_event(struct perf_event *event)
3867 {
3868 	return (event->attr.config & INTEL_ARCH_EVENT_MASK) == X86_CONFIG(.event=0x03, .umask=0x82);
3869 }
3870 
3871 static inline bool require_mem_loads_aux_event(struct perf_event *event)
3872 {
3873 	if (!(x86_pmu.flags & PMU_FL_MEM_LOADS_AUX))
3874 		return false;
3875 
3876 	if (is_hybrid())
3877 		return hybrid_pmu(event->pmu)->pmu_type == hybrid_big;
3878 
3879 	return true;
3880 }
3881 
3882 static inline bool intel_pmu_has_cap(struct perf_event *event, int idx)
3883 {
3884 	union perf_capabilities *intel_cap = &hybrid(event->pmu, intel_cap);
3885 
3886 	return test_bit(idx, (unsigned long *)&intel_cap->capabilities);
3887 }
3888 
3889 static int intel_pmu_hw_config(struct perf_event *event)
3890 {
3891 	int ret = x86_pmu_hw_config(event);
3892 
3893 	if (ret)
3894 		return ret;
3895 
3896 	ret = intel_pmu_bts_config(event);
3897 	if (ret)
3898 		return ret;
3899 
3900 	if (event->attr.precise_ip) {
3901 		if ((event->attr.config & INTEL_ARCH_EVENT_MASK) == INTEL_FIXED_VLBR_EVENT)
3902 			return -EINVAL;
3903 
3904 		if (!(event->attr.freq || (event->attr.wakeup_events && !event->attr.watermark))) {
3905 			event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD;
3906 			if (!(event->attr.sample_type &
3907 			      ~intel_pmu_large_pebs_flags(event))) {
3908 				event->hw.flags |= PERF_X86_EVENT_LARGE_PEBS;
3909 				event->attach_state |= PERF_ATTACH_SCHED_CB;
3910 			}
3911 		}
3912 		if (x86_pmu.pebs_aliases)
3913 			x86_pmu.pebs_aliases(event);
3914 	}
3915 
3916 	if (needs_branch_stack(event) && is_sampling_event(event))
3917 		event->hw.flags  |= PERF_X86_EVENT_NEEDS_BRANCH_STACK;
3918 
3919 	if (branch_sample_counters(event)) {
3920 		struct perf_event *leader, *sibling;
3921 		int num = 0;
3922 
3923 		if (!(x86_pmu.flags & PMU_FL_BR_CNTR) ||
3924 		    (event->attr.config & ~INTEL_ARCH_EVENT_MASK))
3925 			return -EINVAL;
3926 
3927 		/*
3928 		 * The branch counter logging is not supported in the call stack
3929 		 * mode yet, since we cannot simply flush the LBR during e.g.,
3930 		 * multiplexing. Also, there is no obvious usage with the call
3931 		 * stack mode. Simply forbids it for now.
3932 		 *
3933 		 * If any events in the group enable the branch counter logging
3934 		 * feature, the group is treated as a branch counter logging
3935 		 * group, which requires the extra space to store the counters.
3936 		 */
3937 		leader = event->group_leader;
3938 		if (branch_sample_call_stack(leader))
3939 			return -EINVAL;
3940 		if (branch_sample_counters(leader))
3941 			num++;
3942 		leader->hw.flags |= PERF_X86_EVENT_BRANCH_COUNTERS;
3943 
3944 		for_each_sibling_event(sibling, leader) {
3945 			if (branch_sample_call_stack(sibling))
3946 				return -EINVAL;
3947 			if (branch_sample_counters(sibling))
3948 				num++;
3949 		}
3950 
3951 		if (num > fls(x86_pmu.lbr_counters))
3952 			return -EINVAL;
3953 		/*
3954 		 * Only applying the PERF_SAMPLE_BRANCH_COUNTERS doesn't
3955 		 * require any branch stack setup.
3956 		 * Clear the bit to avoid unnecessary branch stack setup.
3957 		 */
3958 		if (0 == (event->attr.branch_sample_type &
3959 			  ~(PERF_SAMPLE_BRANCH_PLM_ALL |
3960 			    PERF_SAMPLE_BRANCH_COUNTERS)))
3961 			event->hw.flags  &= ~PERF_X86_EVENT_NEEDS_BRANCH_STACK;
3962 
3963 		/*
3964 		 * Force the leader to be a LBR event. So LBRs can be reset
3965 		 * with the leader event. See intel_pmu_lbr_del() for details.
3966 		 */
3967 		if (!intel_pmu_needs_branch_stack(leader))
3968 			return -EINVAL;
3969 	}
3970 
3971 	if (intel_pmu_needs_branch_stack(event)) {
3972 		ret = intel_pmu_setup_lbr_filter(event);
3973 		if (ret)
3974 			return ret;
3975 		event->attach_state |= PERF_ATTACH_SCHED_CB;
3976 
3977 		/*
3978 		 * BTS is set up earlier in this path, so don't account twice
3979 		 */
3980 		if (!unlikely(intel_pmu_has_bts(event))) {
3981 			/* disallow lbr if conflicting events are present */
3982 			if (x86_add_exclusive(x86_lbr_exclusive_lbr))
3983 				return -EBUSY;
3984 
3985 			event->destroy = hw_perf_lbr_event_destroy;
3986 		}
3987 	}
3988 
3989 	if (event->attr.aux_output) {
3990 		if (!event->attr.precise_ip)
3991 			return -EINVAL;
3992 
3993 		event->hw.flags |= PERF_X86_EVENT_PEBS_VIA_PT;
3994 	}
3995 
3996 	if ((event->attr.type == PERF_TYPE_HARDWARE) ||
3997 	    (event->attr.type == PERF_TYPE_HW_CACHE))
3998 		return 0;
3999 
4000 	/*
4001 	 * Config Topdown slots and metric events
4002 	 *
4003 	 * The slots event on Fixed Counter 3 can support sampling,
4004 	 * which will be handled normally in x86_perf_event_update().
4005 	 *
4006 	 * Metric events don't support sampling and require being paired
4007 	 * with a slots event as group leader. When the slots event
4008 	 * is used in a metrics group, it too cannot support sampling.
4009 	 */
4010 	if (intel_pmu_has_cap(event, PERF_CAP_METRICS_IDX) && is_topdown_event(event)) {
4011 		if (event->attr.config1 || event->attr.config2)
4012 			return -EINVAL;
4013 
4014 		/*
4015 		 * The TopDown metrics events and slots event don't
4016 		 * support any filters.
4017 		 */
4018 		if (event->attr.config & X86_ALL_EVENT_FLAGS)
4019 			return -EINVAL;
4020 
4021 		if (is_available_metric_event(event)) {
4022 			struct perf_event *leader = event->group_leader;
4023 
4024 			/* The metric events don't support sampling. */
4025 			if (is_sampling_event(event))
4026 				return -EINVAL;
4027 
4028 			/* The metric events require a slots group leader. */
4029 			if (!is_slots_event(leader))
4030 				return -EINVAL;
4031 
4032 			/*
4033 			 * The leader/SLOTS must not be a sampling event for
4034 			 * metric use; hardware requires it starts at 0 when used
4035 			 * in conjunction with MSR_PERF_METRICS.
4036 			 */
4037 			if (is_sampling_event(leader))
4038 				return -EINVAL;
4039 
4040 			event->event_caps |= PERF_EV_CAP_SIBLING;
4041 			/*
4042 			 * Only once we have a METRICs sibling do we
4043 			 * need TopDown magic.
4044 			 */
4045 			leader->hw.flags |= PERF_X86_EVENT_TOPDOWN;
4046 			event->hw.flags  |= PERF_X86_EVENT_TOPDOWN;
4047 		}
4048 	}
4049 
4050 	/*
4051 	 * The load latency event X86_CONFIG(.event=0xcd, .umask=0x01) on SPR
4052 	 * doesn't function quite right. As a work-around it needs to always be
4053 	 * co-scheduled with a auxiliary event X86_CONFIG(.event=0x03, .umask=0x82).
4054 	 * The actual count of this second event is irrelevant it just needs
4055 	 * to be active to make the first event function correctly.
4056 	 *
4057 	 * In a group, the auxiliary event must be in front of the load latency
4058 	 * event. The rule is to simplify the implementation of the check.
4059 	 * That's because perf cannot have a complete group at the moment.
4060 	 */
4061 	if (require_mem_loads_aux_event(event) &&
4062 	    (event->attr.sample_type & PERF_SAMPLE_DATA_SRC) &&
4063 	    is_mem_loads_event(event)) {
4064 		struct perf_event *leader = event->group_leader;
4065 		struct perf_event *sibling = NULL;
4066 
4067 		/*
4068 		 * When this memload event is also the first event (no group
4069 		 * exists yet), then there is no aux event before it.
4070 		 */
4071 		if (leader == event)
4072 			return -ENODATA;
4073 
4074 		if (!is_mem_loads_aux_event(leader)) {
4075 			for_each_sibling_event(sibling, leader) {
4076 				if (is_mem_loads_aux_event(sibling))
4077 					break;
4078 			}
4079 			if (list_entry_is_head(sibling, &leader->sibling_list, sibling_list))
4080 				return -ENODATA;
4081 		}
4082 	}
4083 
4084 	if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
4085 		return 0;
4086 
4087 	if (x86_pmu.version < 3)
4088 		return -EINVAL;
4089 
4090 	ret = perf_allow_cpu(&event->attr);
4091 	if (ret)
4092 		return ret;
4093 
4094 	event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
4095 
4096 	return 0;
4097 }
4098 
4099 /*
4100  * Currently, the only caller of this function is the atomic_switch_perf_msrs().
4101  * The host perf context helps to prepare the values of the real hardware for
4102  * a set of msrs that need to be switched atomically in a vmx transaction.
4103  *
4104  * For example, the pseudocode needed to add a new msr should look like:
4105  *
4106  * arr[(*nr)++] = (struct perf_guest_switch_msr){
4107  *	.msr = the hardware msr address,
4108  *	.host = the value the hardware has when it doesn't run a guest,
4109  *	.guest = the value the hardware has when it runs a guest,
4110  * };
4111  *
4112  * These values have nothing to do with the emulated values the guest sees
4113  * when it uses {RD,WR}MSR, which should be handled by the KVM context,
4114  * specifically in the intel_pmu_{get,set}_msr().
4115  */
4116 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr, void *data)
4117 {
4118 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
4119 	struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
4120 	struct kvm_pmu *kvm_pmu = (struct kvm_pmu *)data;
4121 	u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
4122 	u64 pebs_mask = cpuc->pebs_enabled & x86_pmu.pebs_capable;
4123 	int global_ctrl, pebs_enable;
4124 
4125 	/*
4126 	 * In addition to obeying exclude_guest/exclude_host, remove bits being
4127 	 * used for PEBS when running a guest, because PEBS writes to virtual
4128 	 * addresses (not physical addresses).
4129 	 */
4130 	*nr = 0;
4131 	global_ctrl = (*nr)++;
4132 	arr[global_ctrl] = (struct perf_guest_switch_msr){
4133 		.msr = MSR_CORE_PERF_GLOBAL_CTRL,
4134 		.host = intel_ctrl & ~cpuc->intel_ctrl_guest_mask,
4135 		.guest = intel_ctrl & ~cpuc->intel_ctrl_host_mask & ~pebs_mask,
4136 	};
4137 
4138 	if (!x86_pmu.pebs)
4139 		return arr;
4140 
4141 	/*
4142 	 * If PMU counter has PEBS enabled it is not enough to
4143 	 * disable counter on a guest entry since PEBS memory
4144 	 * write can overshoot guest entry and corrupt guest
4145 	 * memory. Disabling PEBS solves the problem.
4146 	 *
4147 	 * Don't do this if the CPU already enforces it.
4148 	 */
4149 	if (x86_pmu.pebs_no_isolation) {
4150 		arr[(*nr)++] = (struct perf_guest_switch_msr){
4151 			.msr = MSR_IA32_PEBS_ENABLE,
4152 			.host = cpuc->pebs_enabled,
4153 			.guest = 0,
4154 		};
4155 		return arr;
4156 	}
4157 
4158 	if (!kvm_pmu || !x86_pmu.pebs_ept)
4159 		return arr;
4160 
4161 	arr[(*nr)++] = (struct perf_guest_switch_msr){
4162 		.msr = MSR_IA32_DS_AREA,
4163 		.host = (unsigned long)cpuc->ds,
4164 		.guest = kvm_pmu->ds_area,
4165 	};
4166 
4167 	if (x86_pmu.intel_cap.pebs_baseline) {
4168 		arr[(*nr)++] = (struct perf_guest_switch_msr){
4169 			.msr = MSR_PEBS_DATA_CFG,
4170 			.host = cpuc->active_pebs_data_cfg,
4171 			.guest = kvm_pmu->pebs_data_cfg,
4172 		};
4173 	}
4174 
4175 	pebs_enable = (*nr)++;
4176 	arr[pebs_enable] = (struct perf_guest_switch_msr){
4177 		.msr = MSR_IA32_PEBS_ENABLE,
4178 		.host = cpuc->pebs_enabled & ~cpuc->intel_ctrl_guest_mask,
4179 		.guest = pebs_mask & ~cpuc->intel_ctrl_host_mask,
4180 	};
4181 
4182 	if (arr[pebs_enable].host) {
4183 		/* Disable guest PEBS if host PEBS is enabled. */
4184 		arr[pebs_enable].guest = 0;
4185 	} else {
4186 		/* Disable guest PEBS thoroughly for cross-mapped PEBS counters. */
4187 		arr[pebs_enable].guest &= ~kvm_pmu->host_cross_mapped_mask;
4188 		arr[global_ctrl].guest &= ~kvm_pmu->host_cross_mapped_mask;
4189 		/* Set hw GLOBAL_CTRL bits for PEBS counter when it runs for guest */
4190 		arr[global_ctrl].guest |= arr[pebs_enable].guest;
4191 	}
4192 
4193 	return arr;
4194 }
4195 
4196 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr, void *data)
4197 {
4198 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
4199 	struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
4200 	int idx;
4201 
4202 	for (idx = 0; idx < x86_pmu.num_counters; idx++)  {
4203 		struct perf_event *event = cpuc->events[idx];
4204 
4205 		arr[idx].msr = x86_pmu_config_addr(idx);
4206 		arr[idx].host = arr[idx].guest = 0;
4207 
4208 		if (!test_bit(idx, cpuc->active_mask))
4209 			continue;
4210 
4211 		arr[idx].host = arr[idx].guest =
4212 			event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
4213 
4214 		if (event->attr.exclude_host)
4215 			arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
4216 		else if (event->attr.exclude_guest)
4217 			arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
4218 	}
4219 
4220 	*nr = x86_pmu.num_counters;
4221 	return arr;
4222 }
4223 
4224 static void core_pmu_enable_event(struct perf_event *event)
4225 {
4226 	if (!event->attr.exclude_host)
4227 		x86_pmu_enable_event(event);
4228 }
4229 
4230 static void core_pmu_enable_all(int added)
4231 {
4232 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
4233 	int idx;
4234 
4235 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
4236 		struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
4237 
4238 		if (!test_bit(idx, cpuc->active_mask) ||
4239 				cpuc->events[idx]->attr.exclude_host)
4240 			continue;
4241 
4242 		__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
4243 	}
4244 }
4245 
4246 static int hsw_hw_config(struct perf_event *event)
4247 {
4248 	int ret = intel_pmu_hw_config(event);
4249 
4250 	if (ret)
4251 		return ret;
4252 	if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
4253 		return 0;
4254 	event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
4255 
4256 	/*
4257 	 * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
4258 	 * PEBS or in ANY thread mode. Since the results are non-sensical forbid
4259 	 * this combination.
4260 	 */
4261 	if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
4262 	     ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
4263 	      event->attr.precise_ip > 0))
4264 		return -EOPNOTSUPP;
4265 
4266 	if (event_is_checkpointed(event)) {
4267 		/*
4268 		 * Sampling of checkpointed events can cause situations where
4269 		 * the CPU constantly aborts because of a overflow, which is
4270 		 * then checkpointed back and ignored. Forbid checkpointing
4271 		 * for sampling.
4272 		 *
4273 		 * But still allow a long sampling period, so that perf stat
4274 		 * from KVM works.
4275 		 */
4276 		if (event->attr.sample_period > 0 &&
4277 		    event->attr.sample_period < 0x7fffffff)
4278 			return -EOPNOTSUPP;
4279 	}
4280 	return 0;
4281 }
4282 
4283 static struct event_constraint counter0_constraint =
4284 			INTEL_ALL_EVENT_CONSTRAINT(0, 0x1);
4285 
4286 static struct event_constraint counter1_constraint =
4287 			INTEL_ALL_EVENT_CONSTRAINT(0, 0x2);
4288 
4289 static struct event_constraint counter0_1_constraint =
4290 			INTEL_ALL_EVENT_CONSTRAINT(0, 0x3);
4291 
4292 static struct event_constraint counter2_constraint =
4293 			EVENT_CONSTRAINT(0, 0x4, 0);
4294 
4295 static struct event_constraint fixed0_constraint =
4296 			FIXED_EVENT_CONSTRAINT(0x00c0, 0);
4297 
4298 static struct event_constraint fixed0_counter0_constraint =
4299 			INTEL_ALL_EVENT_CONSTRAINT(0, 0x100000001ULL);
4300 
4301 static struct event_constraint fixed0_counter0_1_constraint =
4302 			INTEL_ALL_EVENT_CONSTRAINT(0, 0x100000003ULL);
4303 
4304 static struct event_constraint counters_1_7_constraint =
4305 			INTEL_ALL_EVENT_CONSTRAINT(0, 0xfeULL);
4306 
4307 static struct event_constraint *
4308 hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4309 			  struct perf_event *event)
4310 {
4311 	struct event_constraint *c;
4312 
4313 	c = intel_get_event_constraints(cpuc, idx, event);
4314 
4315 	/* Handle special quirk on in_tx_checkpointed only in counter 2 */
4316 	if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
4317 		if (c->idxmsk64 & (1U << 2))
4318 			return &counter2_constraint;
4319 		return &emptyconstraint;
4320 	}
4321 
4322 	return c;
4323 }
4324 
4325 static struct event_constraint *
4326 icl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4327 			  struct perf_event *event)
4328 {
4329 	/*
4330 	 * Fixed counter 0 has less skid.
4331 	 * Force instruction:ppp in Fixed counter 0
4332 	 */
4333 	if ((event->attr.precise_ip == 3) &&
4334 	    constraint_match(&fixed0_constraint, event->hw.config))
4335 		return &fixed0_constraint;
4336 
4337 	return hsw_get_event_constraints(cpuc, idx, event);
4338 }
4339 
4340 static struct event_constraint *
4341 glc_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4342 			  struct perf_event *event)
4343 {
4344 	struct event_constraint *c;
4345 
4346 	c = icl_get_event_constraints(cpuc, idx, event);
4347 
4348 	/*
4349 	 * The :ppp indicates the Precise Distribution (PDist) facility, which
4350 	 * is only supported on the GP counter 0. If a :ppp event which is not
4351 	 * available on the GP counter 0, error out.
4352 	 * Exception: Instruction PDIR is only available on the fixed counter 0.
4353 	 */
4354 	if ((event->attr.precise_ip == 3) &&
4355 	    !constraint_match(&fixed0_constraint, event->hw.config)) {
4356 		if (c->idxmsk64 & BIT_ULL(0))
4357 			return &counter0_constraint;
4358 
4359 		return &emptyconstraint;
4360 	}
4361 
4362 	return c;
4363 }
4364 
4365 static struct event_constraint *
4366 glp_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4367 			  struct perf_event *event)
4368 {
4369 	struct event_constraint *c;
4370 
4371 	/* :ppp means to do reduced skid PEBS which is PMC0 only. */
4372 	if (event->attr.precise_ip == 3)
4373 		return &counter0_constraint;
4374 
4375 	c = intel_get_event_constraints(cpuc, idx, event);
4376 
4377 	return c;
4378 }
4379 
4380 static struct event_constraint *
4381 tnt_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4382 			  struct perf_event *event)
4383 {
4384 	struct event_constraint *c;
4385 
4386 	c = intel_get_event_constraints(cpuc, idx, event);
4387 
4388 	/*
4389 	 * :ppp means to do reduced skid PEBS,
4390 	 * which is available on PMC0 and fixed counter 0.
4391 	 */
4392 	if (event->attr.precise_ip == 3) {
4393 		/* Force instruction:ppp on PMC0 and Fixed counter 0 */
4394 		if (constraint_match(&fixed0_constraint, event->hw.config))
4395 			return &fixed0_counter0_constraint;
4396 
4397 		return &counter0_constraint;
4398 	}
4399 
4400 	return c;
4401 }
4402 
4403 static bool allow_tsx_force_abort = true;
4404 
4405 static struct event_constraint *
4406 tfa_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4407 			  struct perf_event *event)
4408 {
4409 	struct event_constraint *c = hsw_get_event_constraints(cpuc, idx, event);
4410 
4411 	/*
4412 	 * Without TFA we must not use PMC3.
4413 	 */
4414 	if (!allow_tsx_force_abort && test_bit(3, c->idxmsk)) {
4415 		c = dyn_constraint(cpuc, c, idx);
4416 		c->idxmsk64 &= ~(1ULL << 3);
4417 		c->weight--;
4418 	}
4419 
4420 	return c;
4421 }
4422 
4423 static struct event_constraint *
4424 adl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4425 			  struct perf_event *event)
4426 {
4427 	struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
4428 
4429 	if (pmu->pmu_type == hybrid_big)
4430 		return glc_get_event_constraints(cpuc, idx, event);
4431 	else if (pmu->pmu_type == hybrid_small)
4432 		return tnt_get_event_constraints(cpuc, idx, event);
4433 
4434 	WARN_ON(1);
4435 	return &emptyconstraint;
4436 }
4437 
4438 static struct event_constraint *
4439 cmt_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4440 			  struct perf_event *event)
4441 {
4442 	struct event_constraint *c;
4443 
4444 	c = intel_get_event_constraints(cpuc, idx, event);
4445 
4446 	/*
4447 	 * The :ppp indicates the Precise Distribution (PDist) facility, which
4448 	 * is only supported on the GP counter 0 & 1 and Fixed counter 0.
4449 	 * If a :ppp event which is not available on the above eligible counters,
4450 	 * error out.
4451 	 */
4452 	if (event->attr.precise_ip == 3) {
4453 		/* Force instruction:ppp on PMC0, 1 and Fixed counter 0 */
4454 		if (constraint_match(&fixed0_constraint, event->hw.config)) {
4455 			/* The fixed counter 0 doesn't support LBR event logging. */
4456 			if (branch_sample_counters(event))
4457 				return &counter0_1_constraint;
4458 			else
4459 				return &fixed0_counter0_1_constraint;
4460 		}
4461 
4462 		switch (c->idxmsk64 & 0x3ull) {
4463 		case 0x1:
4464 			return &counter0_constraint;
4465 		case 0x2:
4466 			return &counter1_constraint;
4467 		case 0x3:
4468 			return &counter0_1_constraint;
4469 		}
4470 		return &emptyconstraint;
4471 	}
4472 
4473 	return c;
4474 }
4475 
4476 static struct event_constraint *
4477 rwc_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4478 			  struct perf_event *event)
4479 {
4480 	struct event_constraint *c;
4481 
4482 	c = glc_get_event_constraints(cpuc, idx, event);
4483 
4484 	/* The Retire Latency is not supported by the fixed counter 0. */
4485 	if (event->attr.precise_ip &&
4486 	    (event->attr.sample_type & PERF_SAMPLE_WEIGHT_TYPE) &&
4487 	    constraint_match(&fixed0_constraint, event->hw.config)) {
4488 		/*
4489 		 * The Instruction PDIR is only available
4490 		 * on the fixed counter 0. Error out for this case.
4491 		 */
4492 		if (event->attr.precise_ip == 3)
4493 			return &emptyconstraint;
4494 		return &counters_1_7_constraint;
4495 	}
4496 
4497 	return c;
4498 }
4499 
4500 static struct event_constraint *
4501 mtl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4502 			  struct perf_event *event)
4503 {
4504 	struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
4505 
4506 	if (pmu->pmu_type == hybrid_big)
4507 		return rwc_get_event_constraints(cpuc, idx, event);
4508 	if (pmu->pmu_type == hybrid_small)
4509 		return cmt_get_event_constraints(cpuc, idx, event);
4510 
4511 	WARN_ON(1);
4512 	return &emptyconstraint;
4513 }
4514 
4515 static int adl_hw_config(struct perf_event *event)
4516 {
4517 	struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
4518 
4519 	if (pmu->pmu_type == hybrid_big)
4520 		return hsw_hw_config(event);
4521 	else if (pmu->pmu_type == hybrid_small)
4522 		return intel_pmu_hw_config(event);
4523 
4524 	WARN_ON(1);
4525 	return -EOPNOTSUPP;
4526 }
4527 
4528 static enum hybrid_cpu_type adl_get_hybrid_cpu_type(void)
4529 {
4530 	return HYBRID_INTEL_CORE;
4531 }
4532 
4533 /*
4534  * Broadwell:
4535  *
4536  * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
4537  * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
4538  * the two to enforce a minimum period of 128 (the smallest value that has bits
4539  * 0-5 cleared and >= 100).
4540  *
4541  * Because of how the code in x86_perf_event_set_period() works, the truncation
4542  * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
4543  * to make up for the 'lost' events due to carrying the 'error' in period_left.
4544  *
4545  * Therefore the effective (average) period matches the requested period,
4546  * despite coarser hardware granularity.
4547  */
4548 static void bdw_limit_period(struct perf_event *event, s64 *left)
4549 {
4550 	if ((event->hw.config & INTEL_ARCH_EVENT_MASK) ==
4551 			X86_CONFIG(.event=0xc0, .umask=0x01)) {
4552 		if (*left < 128)
4553 			*left = 128;
4554 		*left &= ~0x3fULL;
4555 	}
4556 }
4557 
4558 static void nhm_limit_period(struct perf_event *event, s64 *left)
4559 {
4560 	*left = max(*left, 32LL);
4561 }
4562 
4563 static void glc_limit_period(struct perf_event *event, s64 *left)
4564 {
4565 	if (event->attr.precise_ip == 3)
4566 		*left = max(*left, 128LL);
4567 }
4568 
4569 PMU_FORMAT_ATTR(event,	"config:0-7"	);
4570 PMU_FORMAT_ATTR(umask,	"config:8-15"	);
4571 PMU_FORMAT_ATTR(edge,	"config:18"	);
4572 PMU_FORMAT_ATTR(pc,	"config:19"	);
4573 PMU_FORMAT_ATTR(any,	"config:21"	); /* v3 + */
4574 PMU_FORMAT_ATTR(inv,	"config:23"	);
4575 PMU_FORMAT_ATTR(cmask,	"config:24-31"	);
4576 PMU_FORMAT_ATTR(in_tx,  "config:32");
4577 PMU_FORMAT_ATTR(in_tx_cp, "config:33");
4578 
4579 static struct attribute *intel_arch_formats_attr[] = {
4580 	&format_attr_event.attr,
4581 	&format_attr_umask.attr,
4582 	&format_attr_edge.attr,
4583 	&format_attr_pc.attr,
4584 	&format_attr_inv.attr,
4585 	&format_attr_cmask.attr,
4586 	NULL,
4587 };
4588 
4589 ssize_t intel_event_sysfs_show(char *page, u64 config)
4590 {
4591 	u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
4592 
4593 	return x86_event_sysfs_show(page, config, event);
4594 }
4595 
4596 static struct intel_shared_regs *allocate_shared_regs(int cpu)
4597 {
4598 	struct intel_shared_regs *regs;
4599 	int i;
4600 
4601 	regs = kzalloc_node(sizeof(struct intel_shared_regs),
4602 			    GFP_KERNEL, cpu_to_node(cpu));
4603 	if (regs) {
4604 		/*
4605 		 * initialize the locks to keep lockdep happy
4606 		 */
4607 		for (i = 0; i < EXTRA_REG_MAX; i++)
4608 			raw_spin_lock_init(&regs->regs[i].lock);
4609 
4610 		regs->core_id = -1;
4611 	}
4612 	return regs;
4613 }
4614 
4615 static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
4616 {
4617 	struct intel_excl_cntrs *c;
4618 
4619 	c = kzalloc_node(sizeof(struct intel_excl_cntrs),
4620 			 GFP_KERNEL, cpu_to_node(cpu));
4621 	if (c) {
4622 		raw_spin_lock_init(&c->lock);
4623 		c->core_id = -1;
4624 	}
4625 	return c;
4626 }
4627 
4628 
4629 int intel_cpuc_prepare(struct cpu_hw_events *cpuc, int cpu)
4630 {
4631 	cpuc->pebs_record_size = x86_pmu.pebs_record_size;
4632 
4633 	if (is_hybrid() || x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
4634 		cpuc->shared_regs = allocate_shared_regs(cpu);
4635 		if (!cpuc->shared_regs)
4636 			goto err;
4637 	}
4638 
4639 	if (x86_pmu.flags & (PMU_FL_EXCL_CNTRS | PMU_FL_TFA | PMU_FL_BR_CNTR)) {
4640 		size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);
4641 
4642 		cpuc->constraint_list = kzalloc_node(sz, GFP_KERNEL, cpu_to_node(cpu));
4643 		if (!cpuc->constraint_list)
4644 			goto err_shared_regs;
4645 	}
4646 
4647 	if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
4648 		cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
4649 		if (!cpuc->excl_cntrs)
4650 			goto err_constraint_list;
4651 
4652 		cpuc->excl_thread_id = 0;
4653 	}
4654 
4655 	return 0;
4656 
4657 err_constraint_list:
4658 	kfree(cpuc->constraint_list);
4659 	cpuc->constraint_list = NULL;
4660 
4661 err_shared_regs:
4662 	kfree(cpuc->shared_regs);
4663 	cpuc->shared_regs = NULL;
4664 
4665 err:
4666 	return -ENOMEM;
4667 }
4668 
4669 static int intel_pmu_cpu_prepare(int cpu)
4670 {
4671 	return intel_cpuc_prepare(&per_cpu(cpu_hw_events, cpu), cpu);
4672 }
4673 
4674 static void flip_smm_bit(void *data)
4675 {
4676 	unsigned long set = *(unsigned long *)data;
4677 
4678 	if (set > 0) {
4679 		msr_set_bit(MSR_IA32_DEBUGCTLMSR,
4680 			    DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
4681 	} else {
4682 		msr_clear_bit(MSR_IA32_DEBUGCTLMSR,
4683 			      DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
4684 	}
4685 }
4686 
4687 static void intel_pmu_check_num_counters(int *num_counters,
4688 					 int *num_counters_fixed,
4689 					 u64 *intel_ctrl, u64 fixed_mask);
4690 
4691 static void intel_pmu_check_event_constraints(struct event_constraint *event_constraints,
4692 					      int num_counters,
4693 					      int num_counters_fixed,
4694 					      u64 intel_ctrl);
4695 
4696 static void intel_pmu_check_extra_regs(struct extra_reg *extra_regs);
4697 
4698 static inline bool intel_pmu_broken_perf_cap(void)
4699 {
4700 	/* The Perf Metric (Bit 15) is always cleared */
4701 	if ((boot_cpu_data.x86_model == INTEL_FAM6_METEORLAKE) ||
4702 	    (boot_cpu_data.x86_model == INTEL_FAM6_METEORLAKE_L))
4703 		return true;
4704 
4705 	return false;
4706 }
4707 
4708 static void update_pmu_cap(struct x86_hybrid_pmu *pmu)
4709 {
4710 	unsigned int sub_bitmaps = cpuid_eax(ARCH_PERFMON_EXT_LEAF);
4711 	unsigned int eax, ebx, ecx, edx;
4712 
4713 	if (sub_bitmaps & ARCH_PERFMON_NUM_COUNTER_LEAF_BIT) {
4714 		cpuid_count(ARCH_PERFMON_EXT_LEAF, ARCH_PERFMON_NUM_COUNTER_LEAF,
4715 			    &eax, &ebx, &ecx, &edx);
4716 		pmu->num_counters = fls(eax);
4717 		pmu->num_counters_fixed = fls(ebx);
4718 	}
4719 
4720 
4721 	if (!intel_pmu_broken_perf_cap()) {
4722 		/* Perf Metric (Bit 15) and PEBS via PT (Bit 16) are hybrid enumeration */
4723 		rdmsrl(MSR_IA32_PERF_CAPABILITIES, pmu->intel_cap.capabilities);
4724 	}
4725 }
4726 
4727 static void intel_pmu_check_hybrid_pmus(struct x86_hybrid_pmu *pmu)
4728 {
4729 	intel_pmu_check_num_counters(&pmu->num_counters, &pmu->num_counters_fixed,
4730 				     &pmu->intel_ctrl, (1ULL << pmu->num_counters_fixed) - 1);
4731 	pmu->max_pebs_events = min_t(unsigned, MAX_PEBS_EVENTS, pmu->num_counters);
4732 	pmu->unconstrained = (struct event_constraint)
4733 			     __EVENT_CONSTRAINT(0, (1ULL << pmu->num_counters) - 1,
4734 						0, pmu->num_counters, 0, 0);
4735 
4736 	if (pmu->intel_cap.perf_metrics)
4737 		pmu->intel_ctrl |= 1ULL << GLOBAL_CTRL_EN_PERF_METRICS;
4738 	else
4739 		pmu->intel_ctrl &= ~(1ULL << GLOBAL_CTRL_EN_PERF_METRICS);
4740 
4741 	if (pmu->intel_cap.pebs_output_pt_available)
4742 		pmu->pmu.capabilities |= PERF_PMU_CAP_AUX_OUTPUT;
4743 	else
4744 		pmu->pmu.capabilities &= ~PERF_PMU_CAP_AUX_OUTPUT;
4745 
4746 	intel_pmu_check_event_constraints(pmu->event_constraints,
4747 					  pmu->num_counters,
4748 					  pmu->num_counters_fixed,
4749 					  pmu->intel_ctrl);
4750 
4751 	intel_pmu_check_extra_regs(pmu->extra_regs);
4752 }
4753 
4754 static struct x86_hybrid_pmu *find_hybrid_pmu_for_cpu(void)
4755 {
4756 	u8 cpu_type = get_this_hybrid_cpu_type();
4757 	int i;
4758 
4759 	/*
4760 	 * This is running on a CPU model that is known to have hybrid
4761 	 * configurations. But the CPU told us it is not hybrid, shame
4762 	 * on it. There should be a fixup function provided for these
4763 	 * troublesome CPUs (->get_hybrid_cpu_type).
4764 	 */
4765 	if (cpu_type == HYBRID_INTEL_NONE) {
4766 		if (x86_pmu.get_hybrid_cpu_type)
4767 			cpu_type = x86_pmu.get_hybrid_cpu_type();
4768 		else
4769 			return NULL;
4770 	}
4771 
4772 	/*
4773 	 * This essentially just maps between the 'hybrid_cpu_type'
4774 	 * and 'hybrid_pmu_type' enums:
4775 	 */
4776 	for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
4777 		enum hybrid_pmu_type pmu_type = x86_pmu.hybrid_pmu[i].pmu_type;
4778 
4779 		if (cpu_type == HYBRID_INTEL_CORE &&
4780 		    pmu_type == hybrid_big)
4781 			return &x86_pmu.hybrid_pmu[i];
4782 		if (cpu_type == HYBRID_INTEL_ATOM &&
4783 		    pmu_type == hybrid_small)
4784 			return &x86_pmu.hybrid_pmu[i];
4785 	}
4786 
4787 	return NULL;
4788 }
4789 
4790 static bool init_hybrid_pmu(int cpu)
4791 {
4792 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
4793 	struct x86_hybrid_pmu *pmu = find_hybrid_pmu_for_cpu();
4794 
4795 	if (WARN_ON_ONCE(!pmu || (pmu->pmu.type == -1))) {
4796 		cpuc->pmu = NULL;
4797 		return false;
4798 	}
4799 
4800 	/* Only check and dump the PMU information for the first CPU */
4801 	if (!cpumask_empty(&pmu->supported_cpus))
4802 		goto end;
4803 
4804 	if (this_cpu_has(X86_FEATURE_ARCH_PERFMON_EXT))
4805 		update_pmu_cap(pmu);
4806 
4807 	intel_pmu_check_hybrid_pmus(pmu);
4808 
4809 	if (!check_hw_exists(&pmu->pmu, pmu->num_counters, pmu->num_counters_fixed))
4810 		return false;
4811 
4812 	pr_info("%s PMU driver: ", pmu->name);
4813 
4814 	if (pmu->intel_cap.pebs_output_pt_available)
4815 		pr_cont("PEBS-via-PT ");
4816 
4817 	pr_cont("\n");
4818 
4819 	x86_pmu_show_pmu_cap(pmu->num_counters, pmu->num_counters_fixed,
4820 			     pmu->intel_ctrl);
4821 
4822 end:
4823 	cpumask_set_cpu(cpu, &pmu->supported_cpus);
4824 	cpuc->pmu = &pmu->pmu;
4825 
4826 	return true;
4827 }
4828 
4829 static void intel_pmu_cpu_starting(int cpu)
4830 {
4831 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
4832 	int core_id = topology_core_id(cpu);
4833 	int i;
4834 
4835 	if (is_hybrid() && !init_hybrid_pmu(cpu))
4836 		return;
4837 
4838 	init_debug_store_on_cpu(cpu);
4839 	/*
4840 	 * Deal with CPUs that don't clear their LBRs on power-up.
4841 	 */
4842 	intel_pmu_lbr_reset();
4843 
4844 	cpuc->lbr_sel = NULL;
4845 
4846 	if (x86_pmu.flags & PMU_FL_TFA) {
4847 		WARN_ON_ONCE(cpuc->tfa_shadow);
4848 		cpuc->tfa_shadow = ~0ULL;
4849 		intel_set_tfa(cpuc, false);
4850 	}
4851 
4852 	if (x86_pmu.version > 1)
4853 		flip_smm_bit(&x86_pmu.attr_freeze_on_smi);
4854 
4855 	/*
4856 	 * Disable perf metrics if any added CPU doesn't support it.
4857 	 *
4858 	 * Turn off the check for a hybrid architecture, because the
4859 	 * architecture MSR, MSR_IA32_PERF_CAPABILITIES, only indicate
4860 	 * the architecture features. The perf metrics is a model-specific
4861 	 * feature for now. The corresponding bit should always be 0 on
4862 	 * a hybrid platform, e.g., Alder Lake.
4863 	 */
4864 	if (!is_hybrid() && x86_pmu.intel_cap.perf_metrics) {
4865 		union perf_capabilities perf_cap;
4866 
4867 		rdmsrl(MSR_IA32_PERF_CAPABILITIES, perf_cap.capabilities);
4868 		if (!perf_cap.perf_metrics) {
4869 			x86_pmu.intel_cap.perf_metrics = 0;
4870 			x86_pmu.intel_ctrl &= ~(1ULL << GLOBAL_CTRL_EN_PERF_METRICS);
4871 		}
4872 	}
4873 
4874 	if (!cpuc->shared_regs)
4875 		return;
4876 
4877 	if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
4878 		for_each_cpu(i, topology_sibling_cpumask(cpu)) {
4879 			struct intel_shared_regs *pc;
4880 
4881 			pc = per_cpu(cpu_hw_events, i).shared_regs;
4882 			if (pc && pc->core_id == core_id) {
4883 				cpuc->kfree_on_online[0] = cpuc->shared_regs;
4884 				cpuc->shared_regs = pc;
4885 				break;
4886 			}
4887 		}
4888 		cpuc->shared_regs->core_id = core_id;
4889 		cpuc->shared_regs->refcnt++;
4890 	}
4891 
4892 	if (x86_pmu.lbr_sel_map)
4893 		cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
4894 
4895 	if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
4896 		for_each_cpu(i, topology_sibling_cpumask(cpu)) {
4897 			struct cpu_hw_events *sibling;
4898 			struct intel_excl_cntrs *c;
4899 
4900 			sibling = &per_cpu(cpu_hw_events, i);
4901 			c = sibling->excl_cntrs;
4902 			if (c && c->core_id == core_id) {
4903 				cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
4904 				cpuc->excl_cntrs = c;
4905 				if (!sibling->excl_thread_id)
4906 					cpuc->excl_thread_id = 1;
4907 				break;
4908 			}
4909 		}
4910 		cpuc->excl_cntrs->core_id = core_id;
4911 		cpuc->excl_cntrs->refcnt++;
4912 	}
4913 }
4914 
4915 static void free_excl_cntrs(struct cpu_hw_events *cpuc)
4916 {
4917 	struct intel_excl_cntrs *c;
4918 
4919 	c = cpuc->excl_cntrs;
4920 	if (c) {
4921 		if (c->core_id == -1 || --c->refcnt == 0)
4922 			kfree(c);
4923 		cpuc->excl_cntrs = NULL;
4924 	}
4925 
4926 	kfree(cpuc->constraint_list);
4927 	cpuc->constraint_list = NULL;
4928 }
4929 
4930 static void intel_pmu_cpu_dying(int cpu)
4931 {
4932 	fini_debug_store_on_cpu(cpu);
4933 }
4934 
4935 void intel_cpuc_finish(struct cpu_hw_events *cpuc)
4936 {
4937 	struct intel_shared_regs *pc;
4938 
4939 	pc = cpuc->shared_regs;
4940 	if (pc) {
4941 		if (pc->core_id == -1 || --pc->refcnt == 0)
4942 			kfree(pc);
4943 		cpuc->shared_regs = NULL;
4944 	}
4945 
4946 	free_excl_cntrs(cpuc);
4947 }
4948 
4949 static void intel_pmu_cpu_dead(int cpu)
4950 {
4951 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
4952 
4953 	intel_cpuc_finish(cpuc);
4954 
4955 	if (is_hybrid() && cpuc->pmu)
4956 		cpumask_clear_cpu(cpu, &hybrid_pmu(cpuc->pmu)->supported_cpus);
4957 }
4958 
4959 static void intel_pmu_sched_task(struct perf_event_pmu_context *pmu_ctx,
4960 				 bool sched_in)
4961 {
4962 	intel_pmu_pebs_sched_task(pmu_ctx, sched_in);
4963 	intel_pmu_lbr_sched_task(pmu_ctx, sched_in);
4964 }
4965 
4966 static void intel_pmu_swap_task_ctx(struct perf_event_pmu_context *prev_epc,
4967 				    struct perf_event_pmu_context *next_epc)
4968 {
4969 	intel_pmu_lbr_swap_task_ctx(prev_epc, next_epc);
4970 }
4971 
4972 static int intel_pmu_check_period(struct perf_event *event, u64 value)
4973 {
4974 	return intel_pmu_has_bts_period(event, value) ? -EINVAL : 0;
4975 }
4976 
4977 static void intel_aux_output_init(void)
4978 {
4979 	/* Refer also intel_pmu_aux_output_match() */
4980 	if (x86_pmu.intel_cap.pebs_output_pt_available)
4981 		x86_pmu.assign = intel_pmu_assign_event;
4982 }
4983 
4984 static int intel_pmu_aux_output_match(struct perf_event *event)
4985 {
4986 	/* intel_pmu_assign_event() is needed, refer intel_aux_output_init() */
4987 	if (!x86_pmu.intel_cap.pebs_output_pt_available)
4988 		return 0;
4989 
4990 	return is_intel_pt_event(event);
4991 }
4992 
4993 static void intel_pmu_filter(struct pmu *pmu, int cpu, bool *ret)
4994 {
4995 	struct x86_hybrid_pmu *hpmu = hybrid_pmu(pmu);
4996 
4997 	*ret = !cpumask_test_cpu(cpu, &hpmu->supported_cpus);
4998 }
4999 
5000 PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
5001 
5002 PMU_FORMAT_ATTR(ldlat, "config1:0-15");
5003 
5004 PMU_FORMAT_ATTR(frontend, "config1:0-23");
5005 
5006 PMU_FORMAT_ATTR(snoop_rsp, "config1:0-63");
5007 
5008 static struct attribute *intel_arch3_formats_attr[] = {
5009 	&format_attr_event.attr,
5010 	&format_attr_umask.attr,
5011 	&format_attr_edge.attr,
5012 	&format_attr_pc.attr,
5013 	&format_attr_any.attr,
5014 	&format_attr_inv.attr,
5015 	&format_attr_cmask.attr,
5016 	NULL,
5017 };
5018 
5019 static struct attribute *hsw_format_attr[] = {
5020 	&format_attr_in_tx.attr,
5021 	&format_attr_in_tx_cp.attr,
5022 	&format_attr_offcore_rsp.attr,
5023 	&format_attr_ldlat.attr,
5024 	NULL
5025 };
5026 
5027 static struct attribute *nhm_format_attr[] = {
5028 	&format_attr_offcore_rsp.attr,
5029 	&format_attr_ldlat.attr,
5030 	NULL
5031 };
5032 
5033 static struct attribute *slm_format_attr[] = {
5034 	&format_attr_offcore_rsp.attr,
5035 	NULL
5036 };
5037 
5038 static struct attribute *cmt_format_attr[] = {
5039 	&format_attr_offcore_rsp.attr,
5040 	&format_attr_ldlat.attr,
5041 	&format_attr_snoop_rsp.attr,
5042 	NULL
5043 };
5044 
5045 static struct attribute *skl_format_attr[] = {
5046 	&format_attr_frontend.attr,
5047 	NULL,
5048 };
5049 
5050 static __initconst const struct x86_pmu core_pmu = {
5051 	.name			= "core",
5052 	.handle_irq		= x86_pmu_handle_irq,
5053 	.disable_all		= x86_pmu_disable_all,
5054 	.enable_all		= core_pmu_enable_all,
5055 	.enable			= core_pmu_enable_event,
5056 	.disable		= x86_pmu_disable_event,
5057 	.hw_config		= core_pmu_hw_config,
5058 	.schedule_events	= x86_schedule_events,
5059 	.eventsel		= MSR_ARCH_PERFMON_EVENTSEL0,
5060 	.perfctr		= MSR_ARCH_PERFMON_PERFCTR0,
5061 	.event_map		= intel_pmu_event_map,
5062 	.max_events		= ARRAY_SIZE(intel_perfmon_event_map),
5063 	.apic			= 1,
5064 	.large_pebs_flags	= LARGE_PEBS_FLAGS,
5065 
5066 	/*
5067 	 * Intel PMCs cannot be accessed sanely above 32-bit width,
5068 	 * so we install an artificial 1<<31 period regardless of
5069 	 * the generic event period:
5070 	 */
5071 	.max_period		= (1ULL<<31) - 1,
5072 	.get_event_constraints	= intel_get_event_constraints,
5073 	.put_event_constraints	= intel_put_event_constraints,
5074 	.event_constraints	= intel_core_event_constraints,
5075 	.guest_get_msrs		= core_guest_get_msrs,
5076 	.format_attrs		= intel_arch_formats_attr,
5077 	.events_sysfs_show	= intel_event_sysfs_show,
5078 
5079 	/*
5080 	 * Virtual (or funny metal) CPU can define x86_pmu.extra_regs
5081 	 * together with PMU version 1 and thus be using core_pmu with
5082 	 * shared_regs. We need following callbacks here to allocate
5083 	 * it properly.
5084 	 */
5085 	.cpu_prepare		= intel_pmu_cpu_prepare,
5086 	.cpu_starting		= intel_pmu_cpu_starting,
5087 	.cpu_dying		= intel_pmu_cpu_dying,
5088 	.cpu_dead		= intel_pmu_cpu_dead,
5089 
5090 	.check_period		= intel_pmu_check_period,
5091 
5092 	.lbr_reset		= intel_pmu_lbr_reset_64,
5093 	.lbr_read		= intel_pmu_lbr_read_64,
5094 	.lbr_save		= intel_pmu_lbr_save,
5095 	.lbr_restore		= intel_pmu_lbr_restore,
5096 };
5097 
5098 static __initconst const struct x86_pmu intel_pmu = {
5099 	.name			= "Intel",
5100 	.handle_irq		= intel_pmu_handle_irq,
5101 	.disable_all		= intel_pmu_disable_all,
5102 	.enable_all		= intel_pmu_enable_all,
5103 	.enable			= intel_pmu_enable_event,
5104 	.disable		= intel_pmu_disable_event,
5105 	.add			= intel_pmu_add_event,
5106 	.del			= intel_pmu_del_event,
5107 	.read			= intel_pmu_read_event,
5108 	.set_period		= intel_pmu_set_period,
5109 	.update			= intel_pmu_update,
5110 	.hw_config		= intel_pmu_hw_config,
5111 	.schedule_events	= x86_schedule_events,
5112 	.eventsel		= MSR_ARCH_PERFMON_EVENTSEL0,
5113 	.perfctr		= MSR_ARCH_PERFMON_PERFCTR0,
5114 	.event_map		= intel_pmu_event_map,
5115 	.max_events		= ARRAY_SIZE(intel_perfmon_event_map),
5116 	.apic			= 1,
5117 	.large_pebs_flags	= LARGE_PEBS_FLAGS,
5118 	/*
5119 	 * Intel PMCs cannot be accessed sanely above 32 bit width,
5120 	 * so we install an artificial 1<<31 period regardless of
5121 	 * the generic event period:
5122 	 */
5123 	.max_period		= (1ULL << 31) - 1,
5124 	.get_event_constraints	= intel_get_event_constraints,
5125 	.put_event_constraints	= intel_put_event_constraints,
5126 	.pebs_aliases		= intel_pebs_aliases_core2,
5127 
5128 	.format_attrs		= intel_arch3_formats_attr,
5129 	.events_sysfs_show	= intel_event_sysfs_show,
5130 
5131 	.cpu_prepare		= intel_pmu_cpu_prepare,
5132 	.cpu_starting		= intel_pmu_cpu_starting,
5133 	.cpu_dying		= intel_pmu_cpu_dying,
5134 	.cpu_dead		= intel_pmu_cpu_dead,
5135 
5136 	.guest_get_msrs		= intel_guest_get_msrs,
5137 	.sched_task		= intel_pmu_sched_task,
5138 	.swap_task_ctx		= intel_pmu_swap_task_ctx,
5139 
5140 	.check_period		= intel_pmu_check_period,
5141 
5142 	.aux_output_match	= intel_pmu_aux_output_match,
5143 
5144 	.lbr_reset		= intel_pmu_lbr_reset_64,
5145 	.lbr_read		= intel_pmu_lbr_read_64,
5146 	.lbr_save		= intel_pmu_lbr_save,
5147 	.lbr_restore		= intel_pmu_lbr_restore,
5148 
5149 	/*
5150 	 * SMM has access to all 4 rings and while traditionally SMM code only
5151 	 * ran in CPL0, 2021-era firmware is starting to make use of CPL3 in SMM.
5152 	 *
5153 	 * Since the EVENTSEL.{USR,OS} CPL filtering makes no distinction
5154 	 * between SMM or not, this results in what should be pure userspace
5155 	 * counters including SMM data.
5156 	 *
5157 	 * This is a clear privilege issue, therefore globally disable
5158 	 * counting SMM by default.
5159 	 */
5160 	.attr_freeze_on_smi	= 1,
5161 };
5162 
5163 static __init void intel_clovertown_quirk(void)
5164 {
5165 	/*
5166 	 * PEBS is unreliable due to:
5167 	 *
5168 	 *   AJ67  - PEBS may experience CPL leaks
5169 	 *   AJ68  - PEBS PMI may be delayed by one event
5170 	 *   AJ69  - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
5171 	 *   AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
5172 	 *
5173 	 * AJ67 could be worked around by restricting the OS/USR flags.
5174 	 * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
5175 	 *
5176 	 * AJ106 could possibly be worked around by not allowing LBR
5177 	 *       usage from PEBS, including the fixup.
5178 	 * AJ68  could possibly be worked around by always programming
5179 	 *	 a pebs_event_reset[0] value and coping with the lost events.
5180 	 *
5181 	 * But taken together it might just make sense to not enable PEBS on
5182 	 * these chips.
5183 	 */
5184 	pr_warn("PEBS disabled due to CPU errata\n");
5185 	x86_pmu.pebs = 0;
5186 	x86_pmu.pebs_constraints = NULL;
5187 }
5188 
5189 static const struct x86_cpu_desc isolation_ucodes[] = {
5190 	INTEL_CPU_DESC(INTEL_FAM6_HASWELL,		 3, 0x0000001f),
5191 	INTEL_CPU_DESC(INTEL_FAM6_HASWELL_L,		 1, 0x0000001e),
5192 	INTEL_CPU_DESC(INTEL_FAM6_HASWELL_G,		 1, 0x00000015),
5193 	INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X,		 2, 0x00000037),
5194 	INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X,		 4, 0x0000000a),
5195 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL,		 4, 0x00000023),
5196 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_G,		 1, 0x00000014),
5197 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,		 2, 0x00000010),
5198 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,		 3, 0x07000009),
5199 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,		 4, 0x0f000009),
5200 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,		 5, 0x0e000002),
5201 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_X,		 1, 0x0b000014),
5202 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,		 3, 0x00000021),
5203 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,		 4, 0x00000000),
5204 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,		 5, 0x00000000),
5205 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,		 6, 0x00000000),
5206 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,		 7, 0x00000000),
5207 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,		11, 0x00000000),
5208 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_L,		 3, 0x0000007c),
5209 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE,		 3, 0x0000007c),
5210 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,		 9, 0x0000004e),
5211 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,		 9, 0x0000004e),
5212 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,		10, 0x0000004e),
5213 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,		11, 0x0000004e),
5214 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,		12, 0x0000004e),
5215 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,		10, 0x0000004e),
5216 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,		11, 0x0000004e),
5217 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,		12, 0x0000004e),
5218 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,		13, 0x0000004e),
5219 	{}
5220 };
5221 
5222 static void intel_check_pebs_isolation(void)
5223 {
5224 	x86_pmu.pebs_no_isolation = !x86_cpu_has_min_microcode_rev(isolation_ucodes);
5225 }
5226 
5227 static __init void intel_pebs_isolation_quirk(void)
5228 {
5229 	WARN_ON_ONCE(x86_pmu.check_microcode);
5230 	x86_pmu.check_microcode = intel_check_pebs_isolation;
5231 	intel_check_pebs_isolation();
5232 }
5233 
5234 static const struct x86_cpu_desc pebs_ucodes[] = {
5235 	INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE,		7, 0x00000028),
5236 	INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X,	6, 0x00000618),
5237 	INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X,	7, 0x0000070c),
5238 	{}
5239 };
5240 
5241 static bool intel_snb_pebs_broken(void)
5242 {
5243 	return !x86_cpu_has_min_microcode_rev(pebs_ucodes);
5244 }
5245 
5246 static void intel_snb_check_microcode(void)
5247 {
5248 	if (intel_snb_pebs_broken() == x86_pmu.pebs_broken)
5249 		return;
5250 
5251 	/*
5252 	 * Serialized by the microcode lock..
5253 	 */
5254 	if (x86_pmu.pebs_broken) {
5255 		pr_info("PEBS enabled due to microcode update\n");
5256 		x86_pmu.pebs_broken = 0;
5257 	} else {
5258 		pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
5259 		x86_pmu.pebs_broken = 1;
5260 	}
5261 }
5262 
5263 static bool is_lbr_from(unsigned long msr)
5264 {
5265 	unsigned long lbr_from_nr = x86_pmu.lbr_from + x86_pmu.lbr_nr;
5266 
5267 	return x86_pmu.lbr_from <= msr && msr < lbr_from_nr;
5268 }
5269 
5270 /*
5271  * Under certain circumstances, access certain MSR may cause #GP.
5272  * The function tests if the input MSR can be safely accessed.
5273  */
5274 static bool check_msr(unsigned long msr, u64 mask)
5275 {
5276 	u64 val_old, val_new, val_tmp;
5277 
5278 	/*
5279 	 * Disable the check for real HW, so we don't
5280 	 * mess with potentially enabled registers:
5281 	 */
5282 	if (!boot_cpu_has(X86_FEATURE_HYPERVISOR))
5283 		return true;
5284 
5285 	/*
5286 	 * Read the current value, change it and read it back to see if it
5287 	 * matches, this is needed to detect certain hardware emulators
5288 	 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
5289 	 */
5290 	if (rdmsrl_safe(msr, &val_old))
5291 		return false;
5292 
5293 	/*
5294 	 * Only change the bits which can be updated by wrmsrl.
5295 	 */
5296 	val_tmp = val_old ^ mask;
5297 
5298 	if (is_lbr_from(msr))
5299 		val_tmp = lbr_from_signext_quirk_wr(val_tmp);
5300 
5301 	if (wrmsrl_safe(msr, val_tmp) ||
5302 	    rdmsrl_safe(msr, &val_new))
5303 		return false;
5304 
5305 	/*
5306 	 * Quirk only affects validation in wrmsr(), so wrmsrl()'s value
5307 	 * should equal rdmsrl()'s even with the quirk.
5308 	 */
5309 	if (val_new != val_tmp)
5310 		return false;
5311 
5312 	if (is_lbr_from(msr))
5313 		val_old = lbr_from_signext_quirk_wr(val_old);
5314 
5315 	/* Here it's sure that the MSR can be safely accessed.
5316 	 * Restore the old value and return.
5317 	 */
5318 	wrmsrl(msr, val_old);
5319 
5320 	return true;
5321 }
5322 
5323 static __init void intel_sandybridge_quirk(void)
5324 {
5325 	x86_pmu.check_microcode = intel_snb_check_microcode;
5326 	cpus_read_lock();
5327 	intel_snb_check_microcode();
5328 	cpus_read_unlock();
5329 }
5330 
5331 static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
5332 	{ PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
5333 	{ PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
5334 	{ PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
5335 	{ PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
5336 	{ PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
5337 	{ PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
5338 	{ PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
5339 };
5340 
5341 static __init void intel_arch_events_quirk(void)
5342 {
5343 	int bit;
5344 
5345 	/* disable event that reported as not present by cpuid */
5346 	for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
5347 		intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
5348 		pr_warn("CPUID marked event: \'%s\' unavailable\n",
5349 			intel_arch_events_map[bit].name);
5350 	}
5351 }
5352 
5353 static __init void intel_nehalem_quirk(void)
5354 {
5355 	union cpuid10_ebx ebx;
5356 
5357 	ebx.full = x86_pmu.events_maskl;
5358 	if (ebx.split.no_branch_misses_retired) {
5359 		/*
5360 		 * Erratum AAJ80 detected, we work it around by using
5361 		 * the BR_MISP_EXEC.ANY event. This will over-count
5362 		 * branch-misses, but it's still much better than the
5363 		 * architectural event which is often completely bogus:
5364 		 */
5365 		intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
5366 		ebx.split.no_branch_misses_retired = 0;
5367 		x86_pmu.events_maskl = ebx.full;
5368 		pr_info("CPU erratum AAJ80 worked around\n");
5369 	}
5370 }
5371 
5372 /*
5373  * enable software workaround for errata:
5374  * SNB: BJ122
5375  * IVB: BV98
5376  * HSW: HSD29
5377  *
5378  * Only needed when HT is enabled. However detecting
5379  * if HT is enabled is difficult (model specific). So instead,
5380  * we enable the workaround in the early boot, and verify if
5381  * it is needed in a later initcall phase once we have valid
5382  * topology information to check if HT is actually enabled
5383  */
5384 static __init void intel_ht_bug(void)
5385 {
5386 	x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED;
5387 
5388 	x86_pmu.start_scheduling = intel_start_scheduling;
5389 	x86_pmu.commit_scheduling = intel_commit_scheduling;
5390 	x86_pmu.stop_scheduling = intel_stop_scheduling;
5391 }
5392 
5393 EVENT_ATTR_STR(mem-loads,	mem_ld_hsw,	"event=0xcd,umask=0x1,ldlat=3");
5394 EVENT_ATTR_STR(mem-stores,	mem_st_hsw,	"event=0xd0,umask=0x82")
5395 
5396 /* Haswell special events */
5397 EVENT_ATTR_STR(tx-start,	tx_start,	"event=0xc9,umask=0x1");
5398 EVENT_ATTR_STR(tx-commit,	tx_commit,	"event=0xc9,umask=0x2");
5399 EVENT_ATTR_STR(tx-abort,	tx_abort,	"event=0xc9,umask=0x4");
5400 EVENT_ATTR_STR(tx-capacity,	tx_capacity,	"event=0x54,umask=0x2");
5401 EVENT_ATTR_STR(tx-conflict,	tx_conflict,	"event=0x54,umask=0x1");
5402 EVENT_ATTR_STR(el-start,	el_start,	"event=0xc8,umask=0x1");
5403 EVENT_ATTR_STR(el-commit,	el_commit,	"event=0xc8,umask=0x2");
5404 EVENT_ATTR_STR(el-abort,	el_abort,	"event=0xc8,umask=0x4");
5405 EVENT_ATTR_STR(el-capacity,	el_capacity,	"event=0x54,umask=0x2");
5406 EVENT_ATTR_STR(el-conflict,	el_conflict,	"event=0x54,umask=0x1");
5407 EVENT_ATTR_STR(cycles-t,	cycles_t,	"event=0x3c,in_tx=1");
5408 EVENT_ATTR_STR(cycles-ct,	cycles_ct,	"event=0x3c,in_tx=1,in_tx_cp=1");
5409 
5410 static struct attribute *hsw_events_attrs[] = {
5411 	EVENT_PTR(td_slots_issued),
5412 	EVENT_PTR(td_slots_retired),
5413 	EVENT_PTR(td_fetch_bubbles),
5414 	EVENT_PTR(td_total_slots),
5415 	EVENT_PTR(td_total_slots_scale),
5416 	EVENT_PTR(td_recovery_bubbles),
5417 	EVENT_PTR(td_recovery_bubbles_scale),
5418 	NULL
5419 };
5420 
5421 static struct attribute *hsw_mem_events_attrs[] = {
5422 	EVENT_PTR(mem_ld_hsw),
5423 	EVENT_PTR(mem_st_hsw),
5424 	NULL,
5425 };
5426 
5427 static struct attribute *hsw_tsx_events_attrs[] = {
5428 	EVENT_PTR(tx_start),
5429 	EVENT_PTR(tx_commit),
5430 	EVENT_PTR(tx_abort),
5431 	EVENT_PTR(tx_capacity),
5432 	EVENT_PTR(tx_conflict),
5433 	EVENT_PTR(el_start),
5434 	EVENT_PTR(el_commit),
5435 	EVENT_PTR(el_abort),
5436 	EVENT_PTR(el_capacity),
5437 	EVENT_PTR(el_conflict),
5438 	EVENT_PTR(cycles_t),
5439 	EVENT_PTR(cycles_ct),
5440 	NULL
5441 };
5442 
5443 EVENT_ATTR_STR(tx-capacity-read,  tx_capacity_read,  "event=0x54,umask=0x80");
5444 EVENT_ATTR_STR(tx-capacity-write, tx_capacity_write, "event=0x54,umask=0x2");
5445 EVENT_ATTR_STR(el-capacity-read,  el_capacity_read,  "event=0x54,umask=0x80");
5446 EVENT_ATTR_STR(el-capacity-write, el_capacity_write, "event=0x54,umask=0x2");
5447 
5448 static struct attribute *icl_events_attrs[] = {
5449 	EVENT_PTR(mem_ld_hsw),
5450 	EVENT_PTR(mem_st_hsw),
5451 	NULL,
5452 };
5453 
5454 static struct attribute *icl_td_events_attrs[] = {
5455 	EVENT_PTR(slots),
5456 	EVENT_PTR(td_retiring),
5457 	EVENT_PTR(td_bad_spec),
5458 	EVENT_PTR(td_fe_bound),
5459 	EVENT_PTR(td_be_bound),
5460 	NULL,
5461 };
5462 
5463 static struct attribute *icl_tsx_events_attrs[] = {
5464 	EVENT_PTR(tx_start),
5465 	EVENT_PTR(tx_abort),
5466 	EVENT_PTR(tx_commit),
5467 	EVENT_PTR(tx_capacity_read),
5468 	EVENT_PTR(tx_capacity_write),
5469 	EVENT_PTR(tx_conflict),
5470 	EVENT_PTR(el_start),
5471 	EVENT_PTR(el_abort),
5472 	EVENT_PTR(el_commit),
5473 	EVENT_PTR(el_capacity_read),
5474 	EVENT_PTR(el_capacity_write),
5475 	EVENT_PTR(el_conflict),
5476 	EVENT_PTR(cycles_t),
5477 	EVENT_PTR(cycles_ct),
5478 	NULL,
5479 };
5480 
5481 
5482 EVENT_ATTR_STR(mem-stores,	mem_st_spr,	"event=0xcd,umask=0x2");
5483 EVENT_ATTR_STR(mem-loads-aux,	mem_ld_aux,	"event=0x03,umask=0x82");
5484 
5485 static struct attribute *glc_events_attrs[] = {
5486 	EVENT_PTR(mem_ld_hsw),
5487 	EVENT_PTR(mem_st_spr),
5488 	EVENT_PTR(mem_ld_aux),
5489 	NULL,
5490 };
5491 
5492 static struct attribute *glc_td_events_attrs[] = {
5493 	EVENT_PTR(slots),
5494 	EVENT_PTR(td_retiring),
5495 	EVENT_PTR(td_bad_spec),
5496 	EVENT_PTR(td_fe_bound),
5497 	EVENT_PTR(td_be_bound),
5498 	EVENT_PTR(td_heavy_ops),
5499 	EVENT_PTR(td_br_mispredict),
5500 	EVENT_PTR(td_fetch_lat),
5501 	EVENT_PTR(td_mem_bound),
5502 	NULL,
5503 };
5504 
5505 static struct attribute *glc_tsx_events_attrs[] = {
5506 	EVENT_PTR(tx_start),
5507 	EVENT_PTR(tx_abort),
5508 	EVENT_PTR(tx_commit),
5509 	EVENT_PTR(tx_capacity_read),
5510 	EVENT_PTR(tx_capacity_write),
5511 	EVENT_PTR(tx_conflict),
5512 	EVENT_PTR(cycles_t),
5513 	EVENT_PTR(cycles_ct),
5514 	NULL,
5515 };
5516 
5517 static ssize_t freeze_on_smi_show(struct device *cdev,
5518 				  struct device_attribute *attr,
5519 				  char *buf)
5520 {
5521 	return sprintf(buf, "%lu\n", x86_pmu.attr_freeze_on_smi);
5522 }
5523 
5524 static DEFINE_MUTEX(freeze_on_smi_mutex);
5525 
5526 static ssize_t freeze_on_smi_store(struct device *cdev,
5527 				   struct device_attribute *attr,
5528 				   const char *buf, size_t count)
5529 {
5530 	unsigned long val;
5531 	ssize_t ret;
5532 
5533 	ret = kstrtoul(buf, 0, &val);
5534 	if (ret)
5535 		return ret;
5536 
5537 	if (val > 1)
5538 		return -EINVAL;
5539 
5540 	mutex_lock(&freeze_on_smi_mutex);
5541 
5542 	if (x86_pmu.attr_freeze_on_smi == val)
5543 		goto done;
5544 
5545 	x86_pmu.attr_freeze_on_smi = val;
5546 
5547 	cpus_read_lock();
5548 	on_each_cpu(flip_smm_bit, &val, 1);
5549 	cpus_read_unlock();
5550 done:
5551 	mutex_unlock(&freeze_on_smi_mutex);
5552 
5553 	return count;
5554 }
5555 
5556 static void update_tfa_sched(void *ignored)
5557 {
5558 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
5559 
5560 	/*
5561 	 * check if PMC3 is used
5562 	 * and if so force schedule out for all event types all contexts
5563 	 */
5564 	if (test_bit(3, cpuc->active_mask))
5565 		perf_pmu_resched(x86_get_pmu(smp_processor_id()));
5566 }
5567 
5568 static ssize_t show_sysctl_tfa(struct device *cdev,
5569 			      struct device_attribute *attr,
5570 			      char *buf)
5571 {
5572 	return snprintf(buf, 40, "%d\n", allow_tsx_force_abort);
5573 }
5574 
5575 static ssize_t set_sysctl_tfa(struct device *cdev,
5576 			      struct device_attribute *attr,
5577 			      const char *buf, size_t count)
5578 {
5579 	bool val;
5580 	ssize_t ret;
5581 
5582 	ret = kstrtobool(buf, &val);
5583 	if (ret)
5584 		return ret;
5585 
5586 	/* no change */
5587 	if (val == allow_tsx_force_abort)
5588 		return count;
5589 
5590 	allow_tsx_force_abort = val;
5591 
5592 	cpus_read_lock();
5593 	on_each_cpu(update_tfa_sched, NULL, 1);
5594 	cpus_read_unlock();
5595 
5596 	return count;
5597 }
5598 
5599 
5600 static DEVICE_ATTR_RW(freeze_on_smi);
5601 
5602 static ssize_t branches_show(struct device *cdev,
5603 			     struct device_attribute *attr,
5604 			     char *buf)
5605 {
5606 	return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu.lbr_nr);
5607 }
5608 
5609 static DEVICE_ATTR_RO(branches);
5610 
5611 static ssize_t branch_counter_nr_show(struct device *cdev,
5612 				      struct device_attribute *attr,
5613 				      char *buf)
5614 {
5615 	return snprintf(buf, PAGE_SIZE, "%d\n", fls(x86_pmu.lbr_counters));
5616 }
5617 
5618 static DEVICE_ATTR_RO(branch_counter_nr);
5619 
5620 static ssize_t branch_counter_width_show(struct device *cdev,
5621 					 struct device_attribute *attr,
5622 					 char *buf)
5623 {
5624 	return snprintf(buf, PAGE_SIZE, "%d\n", LBR_INFO_BR_CNTR_BITS);
5625 }
5626 
5627 static DEVICE_ATTR_RO(branch_counter_width);
5628 
5629 static struct attribute *lbr_attrs[] = {
5630 	&dev_attr_branches.attr,
5631 	&dev_attr_branch_counter_nr.attr,
5632 	&dev_attr_branch_counter_width.attr,
5633 	NULL
5634 };
5635 
5636 static umode_t
5637 lbr_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5638 {
5639 	/* branches */
5640 	if (i == 0)
5641 		return x86_pmu.lbr_nr ? attr->mode : 0;
5642 
5643 	return (x86_pmu.flags & PMU_FL_BR_CNTR) ? attr->mode : 0;
5644 }
5645 
5646 static char pmu_name_str[30];
5647 
5648 static DEVICE_STRING_ATTR_RO(pmu_name, 0444, pmu_name_str);
5649 
5650 static struct attribute *intel_pmu_caps_attrs[] = {
5651 	&dev_attr_pmu_name.attr.attr,
5652 	NULL
5653 };
5654 
5655 static DEVICE_ATTR(allow_tsx_force_abort, 0644,
5656 		   show_sysctl_tfa,
5657 		   set_sysctl_tfa);
5658 
5659 static struct attribute *intel_pmu_attrs[] = {
5660 	&dev_attr_freeze_on_smi.attr,
5661 	&dev_attr_allow_tsx_force_abort.attr,
5662 	NULL,
5663 };
5664 
5665 static umode_t
5666 default_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5667 {
5668 	if (attr == &dev_attr_allow_tsx_force_abort.attr)
5669 		return x86_pmu.flags & PMU_FL_TFA ? attr->mode : 0;
5670 
5671 	return attr->mode;
5672 }
5673 
5674 static umode_t
5675 tsx_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5676 {
5677 	return boot_cpu_has(X86_FEATURE_RTM) ? attr->mode : 0;
5678 }
5679 
5680 static umode_t
5681 pebs_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5682 {
5683 	return x86_pmu.pebs ? attr->mode : 0;
5684 }
5685 
5686 static umode_t
5687 mem_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5688 {
5689 	if (attr == &event_attr_mem_ld_aux.attr.attr)
5690 		return x86_pmu.flags & PMU_FL_MEM_LOADS_AUX ? attr->mode : 0;
5691 
5692 	return pebs_is_visible(kobj, attr, i);
5693 }
5694 
5695 static umode_t
5696 exra_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5697 {
5698 	return x86_pmu.version >= 2 ? attr->mode : 0;
5699 }
5700 
5701 static struct attribute_group group_events_td  = {
5702 	.name = "events",
5703 };
5704 
5705 static struct attribute_group group_events_mem = {
5706 	.name       = "events",
5707 	.is_visible = mem_is_visible,
5708 };
5709 
5710 static struct attribute_group group_events_tsx = {
5711 	.name       = "events",
5712 	.is_visible = tsx_is_visible,
5713 };
5714 
5715 static struct attribute_group group_caps_gen = {
5716 	.name  = "caps",
5717 	.attrs = intel_pmu_caps_attrs,
5718 };
5719 
5720 static struct attribute_group group_caps_lbr = {
5721 	.name       = "caps",
5722 	.attrs	    = lbr_attrs,
5723 	.is_visible = lbr_is_visible,
5724 };
5725 
5726 static struct attribute_group group_format_extra = {
5727 	.name       = "format",
5728 	.is_visible = exra_is_visible,
5729 };
5730 
5731 static struct attribute_group group_format_extra_skl = {
5732 	.name       = "format",
5733 	.is_visible = exra_is_visible,
5734 };
5735 
5736 static struct attribute_group group_default = {
5737 	.attrs      = intel_pmu_attrs,
5738 	.is_visible = default_is_visible,
5739 };
5740 
5741 static const struct attribute_group *attr_update[] = {
5742 	&group_events_td,
5743 	&group_events_mem,
5744 	&group_events_tsx,
5745 	&group_caps_gen,
5746 	&group_caps_lbr,
5747 	&group_format_extra,
5748 	&group_format_extra_skl,
5749 	&group_default,
5750 	NULL,
5751 };
5752 
5753 EVENT_ATTR_STR_HYBRID(slots,                 slots_adl,        "event=0x00,umask=0x4",                       hybrid_big);
5754 EVENT_ATTR_STR_HYBRID(topdown-retiring,      td_retiring_adl,  "event=0xc2,umask=0x0;event=0x00,umask=0x80", hybrid_big_small);
5755 EVENT_ATTR_STR_HYBRID(topdown-bad-spec,      td_bad_spec_adl,  "event=0x73,umask=0x0;event=0x00,umask=0x81", hybrid_big_small);
5756 EVENT_ATTR_STR_HYBRID(topdown-fe-bound,      td_fe_bound_adl,  "event=0x71,umask=0x0;event=0x00,umask=0x82", hybrid_big_small);
5757 EVENT_ATTR_STR_HYBRID(topdown-be-bound,      td_be_bound_adl,  "event=0x74,umask=0x0;event=0x00,umask=0x83", hybrid_big_small);
5758 EVENT_ATTR_STR_HYBRID(topdown-heavy-ops,     td_heavy_ops_adl, "event=0x00,umask=0x84",                      hybrid_big);
5759 EVENT_ATTR_STR_HYBRID(topdown-br-mispredict, td_br_mis_adl,    "event=0x00,umask=0x85",                      hybrid_big);
5760 EVENT_ATTR_STR_HYBRID(topdown-fetch-lat,     td_fetch_lat_adl, "event=0x00,umask=0x86",                      hybrid_big);
5761 EVENT_ATTR_STR_HYBRID(topdown-mem-bound,     td_mem_bound_adl, "event=0x00,umask=0x87",                      hybrid_big);
5762 
5763 static struct attribute *adl_hybrid_events_attrs[] = {
5764 	EVENT_PTR(slots_adl),
5765 	EVENT_PTR(td_retiring_adl),
5766 	EVENT_PTR(td_bad_spec_adl),
5767 	EVENT_PTR(td_fe_bound_adl),
5768 	EVENT_PTR(td_be_bound_adl),
5769 	EVENT_PTR(td_heavy_ops_adl),
5770 	EVENT_PTR(td_br_mis_adl),
5771 	EVENT_PTR(td_fetch_lat_adl),
5772 	EVENT_PTR(td_mem_bound_adl),
5773 	NULL,
5774 };
5775 
5776 /* Must be in IDX order */
5777 EVENT_ATTR_STR_HYBRID(mem-loads,     mem_ld_adl,     "event=0xd0,umask=0x5,ldlat=3;event=0xcd,umask=0x1,ldlat=3", hybrid_big_small);
5778 EVENT_ATTR_STR_HYBRID(mem-stores,    mem_st_adl,     "event=0xd0,umask=0x6;event=0xcd,umask=0x2",                 hybrid_big_small);
5779 EVENT_ATTR_STR_HYBRID(mem-loads-aux, mem_ld_aux_adl, "event=0x03,umask=0x82",                                     hybrid_big);
5780 
5781 static struct attribute *adl_hybrid_mem_attrs[] = {
5782 	EVENT_PTR(mem_ld_adl),
5783 	EVENT_PTR(mem_st_adl),
5784 	EVENT_PTR(mem_ld_aux_adl),
5785 	NULL,
5786 };
5787 
5788 static struct attribute *mtl_hybrid_mem_attrs[] = {
5789 	EVENT_PTR(mem_ld_adl),
5790 	EVENT_PTR(mem_st_adl),
5791 	NULL
5792 };
5793 
5794 EVENT_ATTR_STR_HYBRID(tx-start,          tx_start_adl,          "event=0xc9,umask=0x1",          hybrid_big);
5795 EVENT_ATTR_STR_HYBRID(tx-commit,         tx_commit_adl,         "event=0xc9,umask=0x2",          hybrid_big);
5796 EVENT_ATTR_STR_HYBRID(tx-abort,          tx_abort_adl,          "event=0xc9,umask=0x4",          hybrid_big);
5797 EVENT_ATTR_STR_HYBRID(tx-conflict,       tx_conflict_adl,       "event=0x54,umask=0x1",          hybrid_big);
5798 EVENT_ATTR_STR_HYBRID(cycles-t,          cycles_t_adl,          "event=0x3c,in_tx=1",            hybrid_big);
5799 EVENT_ATTR_STR_HYBRID(cycles-ct,         cycles_ct_adl,         "event=0x3c,in_tx=1,in_tx_cp=1", hybrid_big);
5800 EVENT_ATTR_STR_HYBRID(tx-capacity-read,  tx_capacity_read_adl,  "event=0x54,umask=0x80",         hybrid_big);
5801 EVENT_ATTR_STR_HYBRID(tx-capacity-write, tx_capacity_write_adl, "event=0x54,umask=0x2",          hybrid_big);
5802 
5803 static struct attribute *adl_hybrid_tsx_attrs[] = {
5804 	EVENT_PTR(tx_start_adl),
5805 	EVENT_PTR(tx_abort_adl),
5806 	EVENT_PTR(tx_commit_adl),
5807 	EVENT_PTR(tx_capacity_read_adl),
5808 	EVENT_PTR(tx_capacity_write_adl),
5809 	EVENT_PTR(tx_conflict_adl),
5810 	EVENT_PTR(cycles_t_adl),
5811 	EVENT_PTR(cycles_ct_adl),
5812 	NULL,
5813 };
5814 
5815 FORMAT_ATTR_HYBRID(in_tx,       hybrid_big);
5816 FORMAT_ATTR_HYBRID(in_tx_cp,    hybrid_big);
5817 FORMAT_ATTR_HYBRID(offcore_rsp, hybrid_big_small);
5818 FORMAT_ATTR_HYBRID(ldlat,       hybrid_big_small);
5819 FORMAT_ATTR_HYBRID(frontend,    hybrid_big);
5820 
5821 #define ADL_HYBRID_RTM_FORMAT_ATTR	\
5822 	FORMAT_HYBRID_PTR(in_tx),	\
5823 	FORMAT_HYBRID_PTR(in_tx_cp)
5824 
5825 #define ADL_HYBRID_FORMAT_ATTR		\
5826 	FORMAT_HYBRID_PTR(offcore_rsp),	\
5827 	FORMAT_HYBRID_PTR(ldlat),	\
5828 	FORMAT_HYBRID_PTR(frontend)
5829 
5830 static struct attribute *adl_hybrid_extra_attr_rtm[] = {
5831 	ADL_HYBRID_RTM_FORMAT_ATTR,
5832 	ADL_HYBRID_FORMAT_ATTR,
5833 	NULL
5834 };
5835 
5836 static struct attribute *adl_hybrid_extra_attr[] = {
5837 	ADL_HYBRID_FORMAT_ATTR,
5838 	NULL
5839 };
5840 
5841 FORMAT_ATTR_HYBRID(snoop_rsp,	hybrid_small);
5842 
5843 static struct attribute *mtl_hybrid_extra_attr_rtm[] = {
5844 	ADL_HYBRID_RTM_FORMAT_ATTR,
5845 	ADL_HYBRID_FORMAT_ATTR,
5846 	FORMAT_HYBRID_PTR(snoop_rsp),
5847 	NULL
5848 };
5849 
5850 static struct attribute *mtl_hybrid_extra_attr[] = {
5851 	ADL_HYBRID_FORMAT_ATTR,
5852 	FORMAT_HYBRID_PTR(snoop_rsp),
5853 	NULL
5854 };
5855 
5856 static bool is_attr_for_this_pmu(struct kobject *kobj, struct attribute *attr)
5857 {
5858 	struct device *dev = kobj_to_dev(kobj);
5859 	struct x86_hybrid_pmu *pmu =
5860 		container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5861 	struct perf_pmu_events_hybrid_attr *pmu_attr =
5862 		container_of(attr, struct perf_pmu_events_hybrid_attr, attr.attr);
5863 
5864 	return pmu->pmu_type & pmu_attr->pmu_type;
5865 }
5866 
5867 static umode_t hybrid_events_is_visible(struct kobject *kobj,
5868 					struct attribute *attr, int i)
5869 {
5870 	return is_attr_for_this_pmu(kobj, attr) ? attr->mode : 0;
5871 }
5872 
5873 static inline int hybrid_find_supported_cpu(struct x86_hybrid_pmu *pmu)
5874 {
5875 	int cpu = cpumask_first(&pmu->supported_cpus);
5876 
5877 	return (cpu >= nr_cpu_ids) ? -1 : cpu;
5878 }
5879 
5880 static umode_t hybrid_tsx_is_visible(struct kobject *kobj,
5881 				     struct attribute *attr, int i)
5882 {
5883 	struct device *dev = kobj_to_dev(kobj);
5884 	struct x86_hybrid_pmu *pmu =
5885 		 container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5886 	int cpu = hybrid_find_supported_cpu(pmu);
5887 
5888 	return (cpu >= 0) && is_attr_for_this_pmu(kobj, attr) && cpu_has(&cpu_data(cpu), X86_FEATURE_RTM) ? attr->mode : 0;
5889 }
5890 
5891 static umode_t hybrid_format_is_visible(struct kobject *kobj,
5892 					struct attribute *attr, int i)
5893 {
5894 	struct device *dev = kobj_to_dev(kobj);
5895 	struct x86_hybrid_pmu *pmu =
5896 		container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5897 	struct perf_pmu_format_hybrid_attr *pmu_attr =
5898 		container_of(attr, struct perf_pmu_format_hybrid_attr, attr.attr);
5899 	int cpu = hybrid_find_supported_cpu(pmu);
5900 
5901 	return (cpu >= 0) && (pmu->pmu_type & pmu_attr->pmu_type) ? attr->mode : 0;
5902 }
5903 
5904 static struct attribute_group hybrid_group_events_td  = {
5905 	.name		= "events",
5906 	.is_visible	= hybrid_events_is_visible,
5907 };
5908 
5909 static struct attribute_group hybrid_group_events_mem = {
5910 	.name		= "events",
5911 	.is_visible	= hybrid_events_is_visible,
5912 };
5913 
5914 static struct attribute_group hybrid_group_events_tsx = {
5915 	.name		= "events",
5916 	.is_visible	= hybrid_tsx_is_visible,
5917 };
5918 
5919 static struct attribute_group hybrid_group_format_extra = {
5920 	.name		= "format",
5921 	.is_visible	= hybrid_format_is_visible,
5922 };
5923 
5924 static ssize_t intel_hybrid_get_attr_cpus(struct device *dev,
5925 					  struct device_attribute *attr,
5926 					  char *buf)
5927 {
5928 	struct x86_hybrid_pmu *pmu =
5929 		container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5930 
5931 	return cpumap_print_to_pagebuf(true, buf, &pmu->supported_cpus);
5932 }
5933 
5934 static DEVICE_ATTR(cpus, S_IRUGO, intel_hybrid_get_attr_cpus, NULL);
5935 static struct attribute *intel_hybrid_cpus_attrs[] = {
5936 	&dev_attr_cpus.attr,
5937 	NULL,
5938 };
5939 
5940 static struct attribute_group hybrid_group_cpus = {
5941 	.attrs		= intel_hybrid_cpus_attrs,
5942 };
5943 
5944 static const struct attribute_group *hybrid_attr_update[] = {
5945 	&hybrid_group_events_td,
5946 	&hybrid_group_events_mem,
5947 	&hybrid_group_events_tsx,
5948 	&group_caps_gen,
5949 	&group_caps_lbr,
5950 	&hybrid_group_format_extra,
5951 	&group_default,
5952 	&hybrid_group_cpus,
5953 	NULL,
5954 };
5955 
5956 static struct attribute *empty_attrs;
5957 
5958 static void intel_pmu_check_num_counters(int *num_counters,
5959 					 int *num_counters_fixed,
5960 					 u64 *intel_ctrl, u64 fixed_mask)
5961 {
5962 	if (*num_counters > INTEL_PMC_MAX_GENERIC) {
5963 		WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
5964 		     *num_counters, INTEL_PMC_MAX_GENERIC);
5965 		*num_counters = INTEL_PMC_MAX_GENERIC;
5966 	}
5967 	*intel_ctrl = (1ULL << *num_counters) - 1;
5968 
5969 	if (*num_counters_fixed > INTEL_PMC_MAX_FIXED) {
5970 		WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
5971 		     *num_counters_fixed, INTEL_PMC_MAX_FIXED);
5972 		*num_counters_fixed = INTEL_PMC_MAX_FIXED;
5973 	}
5974 
5975 	*intel_ctrl |= fixed_mask << INTEL_PMC_IDX_FIXED;
5976 }
5977 
5978 static void intel_pmu_check_event_constraints(struct event_constraint *event_constraints,
5979 					      int num_counters,
5980 					      int num_counters_fixed,
5981 					      u64 intel_ctrl)
5982 {
5983 	struct event_constraint *c;
5984 
5985 	if (!event_constraints)
5986 		return;
5987 
5988 	/*
5989 	 * event on fixed counter2 (REF_CYCLES) only works on this
5990 	 * counter, so do not extend mask to generic counters
5991 	 */
5992 	for_each_event_constraint(c, event_constraints) {
5993 		/*
5994 		 * Don't extend the topdown slots and metrics
5995 		 * events to the generic counters.
5996 		 */
5997 		if (c->idxmsk64 & INTEL_PMC_MSK_TOPDOWN) {
5998 			/*
5999 			 * Disable topdown slots and metrics events,
6000 			 * if slots event is not in CPUID.
6001 			 */
6002 			if (!(INTEL_PMC_MSK_FIXED_SLOTS & intel_ctrl))
6003 				c->idxmsk64 = 0;
6004 			c->weight = hweight64(c->idxmsk64);
6005 			continue;
6006 		}
6007 
6008 		if (c->cmask == FIXED_EVENT_FLAGS) {
6009 			/* Disabled fixed counters which are not in CPUID */
6010 			c->idxmsk64 &= intel_ctrl;
6011 
6012 			/*
6013 			 * Don't extend the pseudo-encoding to the
6014 			 * generic counters
6015 			 */
6016 			if (!use_fixed_pseudo_encoding(c->code))
6017 				c->idxmsk64 |= (1ULL << num_counters) - 1;
6018 		}
6019 		c->idxmsk64 &=
6020 			~(~0ULL << (INTEL_PMC_IDX_FIXED + num_counters_fixed));
6021 		c->weight = hweight64(c->idxmsk64);
6022 	}
6023 }
6024 
6025 static void intel_pmu_check_extra_regs(struct extra_reg *extra_regs)
6026 {
6027 	struct extra_reg *er;
6028 
6029 	/*
6030 	 * Access extra MSR may cause #GP under certain circumstances.
6031 	 * E.g. KVM doesn't support offcore event
6032 	 * Check all extra_regs here.
6033 	 */
6034 	if (!extra_regs)
6035 		return;
6036 
6037 	for (er = extra_regs; er->msr; er++) {
6038 		er->extra_msr_access = check_msr(er->msr, 0x11UL);
6039 		/* Disable LBR select mapping */
6040 		if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
6041 			x86_pmu.lbr_sel_map = NULL;
6042 	}
6043 }
6044 
6045 static const struct { enum hybrid_pmu_type id; char *name; } intel_hybrid_pmu_type_map[] __initconst = {
6046 	{ hybrid_small, "cpu_atom" },
6047 	{ hybrid_big, "cpu_core" },
6048 };
6049 
6050 static __always_inline int intel_pmu_init_hybrid(enum hybrid_pmu_type pmus)
6051 {
6052 	unsigned long pmus_mask = pmus;
6053 	struct x86_hybrid_pmu *pmu;
6054 	int idx = 0, bit;
6055 
6056 	x86_pmu.num_hybrid_pmus = hweight_long(pmus_mask);
6057 	x86_pmu.hybrid_pmu = kcalloc(x86_pmu.num_hybrid_pmus,
6058 				     sizeof(struct x86_hybrid_pmu),
6059 				     GFP_KERNEL);
6060 	if (!x86_pmu.hybrid_pmu)
6061 		return -ENOMEM;
6062 
6063 	static_branch_enable(&perf_is_hybrid);
6064 	x86_pmu.filter = intel_pmu_filter;
6065 
6066 	for_each_set_bit(bit, &pmus_mask, ARRAY_SIZE(intel_hybrid_pmu_type_map)) {
6067 		pmu = &x86_pmu.hybrid_pmu[idx++];
6068 		pmu->pmu_type = intel_hybrid_pmu_type_map[bit].id;
6069 		pmu->name = intel_hybrid_pmu_type_map[bit].name;
6070 
6071 		pmu->num_counters = x86_pmu.num_counters;
6072 		pmu->num_counters_fixed = x86_pmu.num_counters_fixed;
6073 		pmu->max_pebs_events = min_t(unsigned, MAX_PEBS_EVENTS, pmu->num_counters);
6074 		pmu->unconstrained = (struct event_constraint)
6075 				     __EVENT_CONSTRAINT(0, (1ULL << pmu->num_counters) - 1,
6076 							0, pmu->num_counters, 0, 0);
6077 
6078 		pmu->intel_cap.capabilities = x86_pmu.intel_cap.capabilities;
6079 		if (pmu->pmu_type & hybrid_small) {
6080 			pmu->intel_cap.perf_metrics = 0;
6081 			pmu->intel_cap.pebs_output_pt_available = 1;
6082 			pmu->mid_ack = true;
6083 		} else if (pmu->pmu_type & hybrid_big) {
6084 			pmu->intel_cap.perf_metrics = 1;
6085 			pmu->intel_cap.pebs_output_pt_available = 0;
6086 			pmu->late_ack = true;
6087 		}
6088 	}
6089 
6090 	return 0;
6091 }
6092 
6093 static __always_inline void intel_pmu_ref_cycles_ext(void)
6094 {
6095 	if (!(x86_pmu.events_maskl & (INTEL_PMC_MSK_FIXED_REF_CYCLES >> INTEL_PMC_IDX_FIXED)))
6096 		intel_perfmon_event_map[PERF_COUNT_HW_REF_CPU_CYCLES] = 0x013c;
6097 }
6098 
6099 static __always_inline void intel_pmu_init_glc(struct pmu *pmu)
6100 {
6101 	x86_pmu.late_ack = true;
6102 	x86_pmu.limit_period = glc_limit_period;
6103 	x86_pmu.pebs_aliases = NULL;
6104 	x86_pmu.pebs_prec_dist = true;
6105 	x86_pmu.pebs_block = true;
6106 	x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6107 	x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6108 	x86_pmu.flags |= PMU_FL_INSTR_LATENCY;
6109 	x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
6110 	x86_pmu.lbr_pt_coexist = true;
6111 	x86_pmu.num_topdown_events = 8;
6112 	static_call_update(intel_pmu_update_topdown_event,
6113 			   &icl_update_topdown_event);
6114 	static_call_update(intel_pmu_set_topdown_event_period,
6115 			   &icl_set_topdown_event_period);
6116 
6117 	memcpy(hybrid_var(pmu, hw_cache_event_ids), glc_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6118 	memcpy(hybrid_var(pmu, hw_cache_extra_regs), glc_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6119 	hybrid(pmu, event_constraints) = intel_glc_event_constraints;
6120 	hybrid(pmu, pebs_constraints) = intel_glc_pebs_event_constraints;
6121 
6122 	intel_pmu_ref_cycles_ext();
6123 }
6124 
6125 static __always_inline void intel_pmu_init_grt(struct pmu *pmu)
6126 {
6127 	x86_pmu.mid_ack = true;
6128 	x86_pmu.limit_period = glc_limit_period;
6129 	x86_pmu.pebs_aliases = NULL;
6130 	x86_pmu.pebs_prec_dist = true;
6131 	x86_pmu.pebs_block = true;
6132 	x86_pmu.lbr_pt_coexist = true;
6133 	x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6134 	x86_pmu.flags |= PMU_FL_INSTR_LATENCY;
6135 
6136 	memcpy(hybrid_var(pmu, hw_cache_event_ids), glp_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6137 	memcpy(hybrid_var(pmu, hw_cache_extra_regs), tnt_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6138 	hybrid_var(pmu, hw_cache_event_ids)[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
6139 	hybrid(pmu, event_constraints) = intel_grt_event_constraints;
6140 	hybrid(pmu, pebs_constraints) = intel_grt_pebs_event_constraints;
6141 	hybrid(pmu, extra_regs) = intel_grt_extra_regs;
6142 
6143 	intel_pmu_ref_cycles_ext();
6144 }
6145 
6146 __init int intel_pmu_init(void)
6147 {
6148 	struct attribute **extra_skl_attr = &empty_attrs;
6149 	struct attribute **extra_attr = &empty_attrs;
6150 	struct attribute **td_attr    = &empty_attrs;
6151 	struct attribute **mem_attr   = &empty_attrs;
6152 	struct attribute **tsx_attr   = &empty_attrs;
6153 	union cpuid10_edx edx;
6154 	union cpuid10_eax eax;
6155 	union cpuid10_ebx ebx;
6156 	unsigned int fixed_mask;
6157 	bool pmem = false;
6158 	int version, i;
6159 	char *name;
6160 	struct x86_hybrid_pmu *pmu;
6161 
6162 	if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
6163 		switch (boot_cpu_data.x86) {
6164 		case 0x6:
6165 			return p6_pmu_init();
6166 		case 0xb:
6167 			return knc_pmu_init();
6168 		case 0xf:
6169 			return p4_pmu_init();
6170 		}
6171 		return -ENODEV;
6172 	}
6173 
6174 	/*
6175 	 * Check whether the Architectural PerfMon supports
6176 	 * Branch Misses Retired hw_event or not.
6177 	 */
6178 	cpuid(10, &eax.full, &ebx.full, &fixed_mask, &edx.full);
6179 	if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
6180 		return -ENODEV;
6181 
6182 	version = eax.split.version_id;
6183 	if (version < 2)
6184 		x86_pmu = core_pmu;
6185 	else
6186 		x86_pmu = intel_pmu;
6187 
6188 	x86_pmu.version			= version;
6189 	x86_pmu.num_counters		= eax.split.num_counters;
6190 	x86_pmu.cntval_bits		= eax.split.bit_width;
6191 	x86_pmu.cntval_mask		= (1ULL << eax.split.bit_width) - 1;
6192 
6193 	x86_pmu.events_maskl		= ebx.full;
6194 	x86_pmu.events_mask_len		= eax.split.mask_length;
6195 
6196 	x86_pmu.max_pebs_events		= min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
6197 	x86_pmu.pebs_capable		= PEBS_COUNTER_MASK;
6198 
6199 	/*
6200 	 * Quirk: v2 perfmon does not report fixed-purpose events, so
6201 	 * assume at least 3 events, when not running in a hypervisor:
6202 	 */
6203 	if (version > 1 && version < 5) {
6204 		int assume = 3 * !boot_cpu_has(X86_FEATURE_HYPERVISOR);
6205 
6206 		x86_pmu.num_counters_fixed =
6207 			max((int)edx.split.num_counters_fixed, assume);
6208 
6209 		fixed_mask = (1L << x86_pmu.num_counters_fixed) - 1;
6210 	} else if (version >= 5)
6211 		x86_pmu.num_counters_fixed = fls(fixed_mask);
6212 
6213 	if (boot_cpu_has(X86_FEATURE_PDCM)) {
6214 		u64 capabilities;
6215 
6216 		rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
6217 		x86_pmu.intel_cap.capabilities = capabilities;
6218 	}
6219 
6220 	if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32) {
6221 		x86_pmu.lbr_reset = intel_pmu_lbr_reset_32;
6222 		x86_pmu.lbr_read = intel_pmu_lbr_read_32;
6223 	}
6224 
6225 	if (boot_cpu_has(X86_FEATURE_ARCH_LBR))
6226 		intel_pmu_arch_lbr_init();
6227 
6228 	intel_ds_init();
6229 
6230 	x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
6231 
6232 	if (version >= 5) {
6233 		x86_pmu.intel_cap.anythread_deprecated = edx.split.anythread_deprecated;
6234 		if (x86_pmu.intel_cap.anythread_deprecated)
6235 			pr_cont(" AnyThread deprecated, ");
6236 	}
6237 
6238 	/*
6239 	 * Install the hw-cache-events table:
6240 	 */
6241 	switch (boot_cpu_data.x86_model) {
6242 	case INTEL_FAM6_CORE_YONAH:
6243 		pr_cont("Core events, ");
6244 		name = "core";
6245 		break;
6246 
6247 	case INTEL_FAM6_CORE2_MEROM:
6248 		x86_add_quirk(intel_clovertown_quirk);
6249 		fallthrough;
6250 
6251 	case INTEL_FAM6_CORE2_MEROM_L:
6252 	case INTEL_FAM6_CORE2_PENRYN:
6253 	case INTEL_FAM6_CORE2_DUNNINGTON:
6254 		memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
6255 		       sizeof(hw_cache_event_ids));
6256 
6257 		intel_pmu_lbr_init_core();
6258 
6259 		x86_pmu.event_constraints = intel_core2_event_constraints;
6260 		x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
6261 		pr_cont("Core2 events, ");
6262 		name = "core2";
6263 		break;
6264 
6265 	case INTEL_FAM6_NEHALEM:
6266 	case INTEL_FAM6_NEHALEM_EP:
6267 	case INTEL_FAM6_NEHALEM_EX:
6268 		memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
6269 		       sizeof(hw_cache_event_ids));
6270 		memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
6271 		       sizeof(hw_cache_extra_regs));
6272 
6273 		intel_pmu_lbr_init_nhm();
6274 
6275 		x86_pmu.event_constraints = intel_nehalem_event_constraints;
6276 		x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
6277 		x86_pmu.enable_all = intel_pmu_nhm_enable_all;
6278 		x86_pmu.extra_regs = intel_nehalem_extra_regs;
6279 		x86_pmu.limit_period = nhm_limit_period;
6280 
6281 		mem_attr = nhm_mem_events_attrs;
6282 
6283 		/* UOPS_ISSUED.STALLED_CYCLES */
6284 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
6285 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
6286 		/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
6287 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
6288 			X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
6289 
6290 		intel_pmu_pebs_data_source_nhm();
6291 		x86_add_quirk(intel_nehalem_quirk);
6292 		x86_pmu.pebs_no_tlb = 1;
6293 		extra_attr = nhm_format_attr;
6294 
6295 		pr_cont("Nehalem events, ");
6296 		name = "nehalem";
6297 		break;
6298 
6299 	case INTEL_FAM6_ATOM_BONNELL:
6300 	case INTEL_FAM6_ATOM_BONNELL_MID:
6301 	case INTEL_FAM6_ATOM_SALTWELL:
6302 	case INTEL_FAM6_ATOM_SALTWELL_MID:
6303 	case INTEL_FAM6_ATOM_SALTWELL_TABLET:
6304 		memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
6305 		       sizeof(hw_cache_event_ids));
6306 
6307 		intel_pmu_lbr_init_atom();
6308 
6309 		x86_pmu.event_constraints = intel_gen_event_constraints;
6310 		x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
6311 		x86_pmu.pebs_aliases = intel_pebs_aliases_core2;
6312 		pr_cont("Atom events, ");
6313 		name = "bonnell";
6314 		break;
6315 
6316 	case INTEL_FAM6_ATOM_SILVERMONT:
6317 	case INTEL_FAM6_ATOM_SILVERMONT_D:
6318 	case INTEL_FAM6_ATOM_SILVERMONT_MID:
6319 	case INTEL_FAM6_ATOM_AIRMONT:
6320 	case INTEL_FAM6_ATOM_AIRMONT_MID:
6321 		memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
6322 			sizeof(hw_cache_event_ids));
6323 		memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
6324 		       sizeof(hw_cache_extra_regs));
6325 
6326 		intel_pmu_lbr_init_slm();
6327 
6328 		x86_pmu.event_constraints = intel_slm_event_constraints;
6329 		x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
6330 		x86_pmu.extra_regs = intel_slm_extra_regs;
6331 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6332 		td_attr = slm_events_attrs;
6333 		extra_attr = slm_format_attr;
6334 		pr_cont("Silvermont events, ");
6335 		name = "silvermont";
6336 		break;
6337 
6338 	case INTEL_FAM6_ATOM_GOLDMONT:
6339 	case INTEL_FAM6_ATOM_GOLDMONT_D:
6340 		memcpy(hw_cache_event_ids, glm_hw_cache_event_ids,
6341 		       sizeof(hw_cache_event_ids));
6342 		memcpy(hw_cache_extra_regs, glm_hw_cache_extra_regs,
6343 		       sizeof(hw_cache_extra_regs));
6344 
6345 		intel_pmu_lbr_init_skl();
6346 
6347 		x86_pmu.event_constraints = intel_slm_event_constraints;
6348 		x86_pmu.pebs_constraints = intel_glm_pebs_event_constraints;
6349 		x86_pmu.extra_regs = intel_glm_extra_regs;
6350 		/*
6351 		 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
6352 		 * for precise cycles.
6353 		 * :pp is identical to :ppp
6354 		 */
6355 		x86_pmu.pebs_aliases = NULL;
6356 		x86_pmu.pebs_prec_dist = true;
6357 		x86_pmu.lbr_pt_coexist = true;
6358 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6359 		td_attr = glm_events_attrs;
6360 		extra_attr = slm_format_attr;
6361 		pr_cont("Goldmont events, ");
6362 		name = "goldmont";
6363 		break;
6364 
6365 	case INTEL_FAM6_ATOM_GOLDMONT_PLUS:
6366 		memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
6367 		       sizeof(hw_cache_event_ids));
6368 		memcpy(hw_cache_extra_regs, glp_hw_cache_extra_regs,
6369 		       sizeof(hw_cache_extra_regs));
6370 
6371 		intel_pmu_lbr_init_skl();
6372 
6373 		x86_pmu.event_constraints = intel_slm_event_constraints;
6374 		x86_pmu.extra_regs = intel_glm_extra_regs;
6375 		/*
6376 		 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
6377 		 * for precise cycles.
6378 		 */
6379 		x86_pmu.pebs_aliases = NULL;
6380 		x86_pmu.pebs_prec_dist = true;
6381 		x86_pmu.lbr_pt_coexist = true;
6382 		x86_pmu.pebs_capable = ~0ULL;
6383 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6384 		x86_pmu.flags |= PMU_FL_PEBS_ALL;
6385 		x86_pmu.get_event_constraints = glp_get_event_constraints;
6386 		td_attr = glm_events_attrs;
6387 		/* Goldmont Plus has 4-wide pipeline */
6388 		event_attr_td_total_slots_scale_glm.event_str = "4";
6389 		extra_attr = slm_format_attr;
6390 		pr_cont("Goldmont plus events, ");
6391 		name = "goldmont_plus";
6392 		break;
6393 
6394 	case INTEL_FAM6_ATOM_TREMONT_D:
6395 	case INTEL_FAM6_ATOM_TREMONT:
6396 	case INTEL_FAM6_ATOM_TREMONT_L:
6397 		x86_pmu.late_ack = true;
6398 		memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
6399 		       sizeof(hw_cache_event_ids));
6400 		memcpy(hw_cache_extra_regs, tnt_hw_cache_extra_regs,
6401 		       sizeof(hw_cache_extra_regs));
6402 		hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
6403 
6404 		intel_pmu_lbr_init_skl();
6405 
6406 		x86_pmu.event_constraints = intel_slm_event_constraints;
6407 		x86_pmu.extra_regs = intel_tnt_extra_regs;
6408 		/*
6409 		 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
6410 		 * for precise cycles.
6411 		 */
6412 		x86_pmu.pebs_aliases = NULL;
6413 		x86_pmu.pebs_prec_dist = true;
6414 		x86_pmu.lbr_pt_coexist = true;
6415 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6416 		x86_pmu.get_event_constraints = tnt_get_event_constraints;
6417 		td_attr = tnt_events_attrs;
6418 		extra_attr = slm_format_attr;
6419 		pr_cont("Tremont events, ");
6420 		name = "Tremont";
6421 		break;
6422 
6423 	case INTEL_FAM6_ATOM_GRACEMONT:
6424 		intel_pmu_init_grt(NULL);
6425 		intel_pmu_pebs_data_source_grt();
6426 		x86_pmu.pebs_latency_data = adl_latency_data_small;
6427 		x86_pmu.get_event_constraints = tnt_get_event_constraints;
6428 		td_attr = tnt_events_attrs;
6429 		mem_attr = grt_mem_attrs;
6430 		extra_attr = nhm_format_attr;
6431 		pr_cont("Gracemont events, ");
6432 		name = "gracemont";
6433 		break;
6434 
6435 	case INTEL_FAM6_ATOM_CRESTMONT:
6436 	case INTEL_FAM6_ATOM_CRESTMONT_X:
6437 		intel_pmu_init_grt(NULL);
6438 		x86_pmu.extra_regs = intel_cmt_extra_regs;
6439 		intel_pmu_pebs_data_source_cmt();
6440 		x86_pmu.pebs_latency_data = mtl_latency_data_small;
6441 		x86_pmu.get_event_constraints = cmt_get_event_constraints;
6442 		td_attr = cmt_events_attrs;
6443 		mem_attr = grt_mem_attrs;
6444 		extra_attr = cmt_format_attr;
6445 		pr_cont("Crestmont events, ");
6446 		name = "crestmont";
6447 		break;
6448 
6449 	case INTEL_FAM6_WESTMERE:
6450 	case INTEL_FAM6_WESTMERE_EP:
6451 	case INTEL_FAM6_WESTMERE_EX:
6452 		memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
6453 		       sizeof(hw_cache_event_ids));
6454 		memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
6455 		       sizeof(hw_cache_extra_regs));
6456 
6457 		intel_pmu_lbr_init_nhm();
6458 
6459 		x86_pmu.event_constraints = intel_westmere_event_constraints;
6460 		x86_pmu.enable_all = intel_pmu_nhm_enable_all;
6461 		x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
6462 		x86_pmu.extra_regs = intel_westmere_extra_regs;
6463 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6464 
6465 		mem_attr = nhm_mem_events_attrs;
6466 
6467 		/* UOPS_ISSUED.STALLED_CYCLES */
6468 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
6469 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
6470 		/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
6471 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
6472 			X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
6473 
6474 		intel_pmu_pebs_data_source_nhm();
6475 		extra_attr = nhm_format_attr;
6476 		pr_cont("Westmere events, ");
6477 		name = "westmere";
6478 		break;
6479 
6480 	case INTEL_FAM6_SANDYBRIDGE:
6481 	case INTEL_FAM6_SANDYBRIDGE_X:
6482 		x86_add_quirk(intel_sandybridge_quirk);
6483 		x86_add_quirk(intel_ht_bug);
6484 		memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
6485 		       sizeof(hw_cache_event_ids));
6486 		memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
6487 		       sizeof(hw_cache_extra_regs));
6488 
6489 		intel_pmu_lbr_init_snb();
6490 
6491 		x86_pmu.event_constraints = intel_snb_event_constraints;
6492 		x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
6493 		x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
6494 		if (boot_cpu_data.x86_model == INTEL_FAM6_SANDYBRIDGE_X)
6495 			x86_pmu.extra_regs = intel_snbep_extra_regs;
6496 		else
6497 			x86_pmu.extra_regs = intel_snb_extra_regs;
6498 
6499 
6500 		/* all extra regs are per-cpu when HT is on */
6501 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6502 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6503 
6504 		td_attr  = snb_events_attrs;
6505 		mem_attr = snb_mem_events_attrs;
6506 
6507 		/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
6508 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
6509 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
6510 		/* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
6511 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
6512 			X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
6513 
6514 		extra_attr = nhm_format_attr;
6515 
6516 		pr_cont("SandyBridge events, ");
6517 		name = "sandybridge";
6518 		break;
6519 
6520 	case INTEL_FAM6_IVYBRIDGE:
6521 	case INTEL_FAM6_IVYBRIDGE_X:
6522 		x86_add_quirk(intel_ht_bug);
6523 		memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
6524 		       sizeof(hw_cache_event_ids));
6525 		/* dTLB-load-misses on IVB is different than SNB */
6526 		hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
6527 
6528 		memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
6529 		       sizeof(hw_cache_extra_regs));
6530 
6531 		intel_pmu_lbr_init_snb();
6532 
6533 		x86_pmu.event_constraints = intel_ivb_event_constraints;
6534 		x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
6535 		x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
6536 		x86_pmu.pebs_prec_dist = true;
6537 		if (boot_cpu_data.x86_model == INTEL_FAM6_IVYBRIDGE_X)
6538 			x86_pmu.extra_regs = intel_snbep_extra_regs;
6539 		else
6540 			x86_pmu.extra_regs = intel_snb_extra_regs;
6541 		/* all extra regs are per-cpu when HT is on */
6542 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6543 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6544 
6545 		td_attr  = snb_events_attrs;
6546 		mem_attr = snb_mem_events_attrs;
6547 
6548 		/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
6549 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
6550 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
6551 
6552 		extra_attr = nhm_format_attr;
6553 
6554 		pr_cont("IvyBridge events, ");
6555 		name = "ivybridge";
6556 		break;
6557 
6558 
6559 	case INTEL_FAM6_HASWELL:
6560 	case INTEL_FAM6_HASWELL_X:
6561 	case INTEL_FAM6_HASWELL_L:
6562 	case INTEL_FAM6_HASWELL_G:
6563 		x86_add_quirk(intel_ht_bug);
6564 		x86_add_quirk(intel_pebs_isolation_quirk);
6565 		x86_pmu.late_ack = true;
6566 		memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6567 		memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6568 
6569 		intel_pmu_lbr_init_hsw();
6570 
6571 		x86_pmu.event_constraints = intel_hsw_event_constraints;
6572 		x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
6573 		x86_pmu.extra_regs = intel_snbep_extra_regs;
6574 		x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
6575 		x86_pmu.pebs_prec_dist = true;
6576 		/* all extra regs are per-cpu when HT is on */
6577 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6578 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6579 
6580 		x86_pmu.hw_config = hsw_hw_config;
6581 		x86_pmu.get_event_constraints = hsw_get_event_constraints;
6582 		x86_pmu.lbr_double_abort = true;
6583 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6584 			hsw_format_attr : nhm_format_attr;
6585 		td_attr  = hsw_events_attrs;
6586 		mem_attr = hsw_mem_events_attrs;
6587 		tsx_attr = hsw_tsx_events_attrs;
6588 		pr_cont("Haswell events, ");
6589 		name = "haswell";
6590 		break;
6591 
6592 	case INTEL_FAM6_BROADWELL:
6593 	case INTEL_FAM6_BROADWELL_D:
6594 	case INTEL_FAM6_BROADWELL_G:
6595 	case INTEL_FAM6_BROADWELL_X:
6596 		x86_add_quirk(intel_pebs_isolation_quirk);
6597 		x86_pmu.late_ack = true;
6598 		memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6599 		memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6600 
6601 		/* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
6602 		hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
6603 									 BDW_L3_MISS|HSW_SNOOP_DRAM;
6604 		hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
6605 									  HSW_SNOOP_DRAM;
6606 		hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
6607 									     BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
6608 		hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
6609 									      BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
6610 
6611 		intel_pmu_lbr_init_hsw();
6612 
6613 		x86_pmu.event_constraints = intel_bdw_event_constraints;
6614 		x86_pmu.pebs_constraints = intel_bdw_pebs_event_constraints;
6615 		x86_pmu.extra_regs = intel_snbep_extra_regs;
6616 		x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
6617 		x86_pmu.pebs_prec_dist = true;
6618 		/* all extra regs are per-cpu when HT is on */
6619 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6620 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6621 
6622 		x86_pmu.hw_config = hsw_hw_config;
6623 		x86_pmu.get_event_constraints = hsw_get_event_constraints;
6624 		x86_pmu.limit_period = bdw_limit_period;
6625 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6626 			hsw_format_attr : nhm_format_attr;
6627 		td_attr  = hsw_events_attrs;
6628 		mem_attr = hsw_mem_events_attrs;
6629 		tsx_attr = hsw_tsx_events_attrs;
6630 		pr_cont("Broadwell events, ");
6631 		name = "broadwell";
6632 		break;
6633 
6634 	case INTEL_FAM6_XEON_PHI_KNL:
6635 	case INTEL_FAM6_XEON_PHI_KNM:
6636 		memcpy(hw_cache_event_ids,
6637 		       slm_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6638 		memcpy(hw_cache_extra_regs,
6639 		       knl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6640 		intel_pmu_lbr_init_knl();
6641 
6642 		x86_pmu.event_constraints = intel_slm_event_constraints;
6643 		x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
6644 		x86_pmu.extra_regs = intel_knl_extra_regs;
6645 
6646 		/* all extra regs are per-cpu when HT is on */
6647 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6648 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6649 		extra_attr = slm_format_attr;
6650 		pr_cont("Knights Landing/Mill events, ");
6651 		name = "knights-landing";
6652 		break;
6653 
6654 	case INTEL_FAM6_SKYLAKE_X:
6655 		pmem = true;
6656 		fallthrough;
6657 	case INTEL_FAM6_SKYLAKE_L:
6658 	case INTEL_FAM6_SKYLAKE:
6659 	case INTEL_FAM6_KABYLAKE_L:
6660 	case INTEL_FAM6_KABYLAKE:
6661 	case INTEL_FAM6_COMETLAKE_L:
6662 	case INTEL_FAM6_COMETLAKE:
6663 		x86_add_quirk(intel_pebs_isolation_quirk);
6664 		x86_pmu.late_ack = true;
6665 		memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6666 		memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6667 		intel_pmu_lbr_init_skl();
6668 
6669 		/* INT_MISC.RECOVERY_CYCLES has umask 1 in Skylake */
6670 		event_attr_td_recovery_bubbles.event_str_noht =
6671 			"event=0xd,umask=0x1,cmask=1";
6672 		event_attr_td_recovery_bubbles.event_str_ht =
6673 			"event=0xd,umask=0x1,cmask=1,any=1";
6674 
6675 		x86_pmu.event_constraints = intel_skl_event_constraints;
6676 		x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints;
6677 		x86_pmu.extra_regs = intel_skl_extra_regs;
6678 		x86_pmu.pebs_aliases = intel_pebs_aliases_skl;
6679 		x86_pmu.pebs_prec_dist = true;
6680 		/* all extra regs are per-cpu when HT is on */
6681 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6682 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6683 
6684 		x86_pmu.hw_config = hsw_hw_config;
6685 		x86_pmu.get_event_constraints = hsw_get_event_constraints;
6686 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6687 			hsw_format_attr : nhm_format_attr;
6688 		extra_skl_attr = skl_format_attr;
6689 		td_attr  = hsw_events_attrs;
6690 		mem_attr = hsw_mem_events_attrs;
6691 		tsx_attr = hsw_tsx_events_attrs;
6692 		intel_pmu_pebs_data_source_skl(pmem);
6693 
6694 		/*
6695 		 * Processors with CPUID.RTM_ALWAYS_ABORT have TSX deprecated by default.
6696 		 * TSX force abort hooks are not required on these systems. Only deploy
6697 		 * workaround when microcode has not enabled X86_FEATURE_RTM_ALWAYS_ABORT.
6698 		 */
6699 		if (boot_cpu_has(X86_FEATURE_TSX_FORCE_ABORT) &&
6700 		   !boot_cpu_has(X86_FEATURE_RTM_ALWAYS_ABORT)) {
6701 			x86_pmu.flags |= PMU_FL_TFA;
6702 			x86_pmu.get_event_constraints = tfa_get_event_constraints;
6703 			x86_pmu.enable_all = intel_tfa_pmu_enable_all;
6704 			x86_pmu.commit_scheduling = intel_tfa_commit_scheduling;
6705 		}
6706 
6707 		pr_cont("Skylake events, ");
6708 		name = "skylake";
6709 		break;
6710 
6711 	case INTEL_FAM6_ICELAKE_X:
6712 	case INTEL_FAM6_ICELAKE_D:
6713 		x86_pmu.pebs_ept = 1;
6714 		pmem = true;
6715 		fallthrough;
6716 	case INTEL_FAM6_ICELAKE_L:
6717 	case INTEL_FAM6_ICELAKE:
6718 	case INTEL_FAM6_TIGERLAKE_L:
6719 	case INTEL_FAM6_TIGERLAKE:
6720 	case INTEL_FAM6_ROCKETLAKE:
6721 		x86_pmu.late_ack = true;
6722 		memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6723 		memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6724 		hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
6725 		intel_pmu_lbr_init_skl();
6726 
6727 		x86_pmu.event_constraints = intel_icl_event_constraints;
6728 		x86_pmu.pebs_constraints = intel_icl_pebs_event_constraints;
6729 		x86_pmu.extra_regs = intel_icl_extra_regs;
6730 		x86_pmu.pebs_aliases = NULL;
6731 		x86_pmu.pebs_prec_dist = true;
6732 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6733 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6734 
6735 		x86_pmu.hw_config = hsw_hw_config;
6736 		x86_pmu.get_event_constraints = icl_get_event_constraints;
6737 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6738 			hsw_format_attr : nhm_format_attr;
6739 		extra_skl_attr = skl_format_attr;
6740 		mem_attr = icl_events_attrs;
6741 		td_attr = icl_td_events_attrs;
6742 		tsx_attr = icl_tsx_events_attrs;
6743 		x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
6744 		x86_pmu.lbr_pt_coexist = true;
6745 		intel_pmu_pebs_data_source_skl(pmem);
6746 		x86_pmu.num_topdown_events = 4;
6747 		static_call_update(intel_pmu_update_topdown_event,
6748 				   &icl_update_topdown_event);
6749 		static_call_update(intel_pmu_set_topdown_event_period,
6750 				   &icl_set_topdown_event_period);
6751 		pr_cont("Icelake events, ");
6752 		name = "icelake";
6753 		break;
6754 
6755 	case INTEL_FAM6_SAPPHIRERAPIDS_X:
6756 	case INTEL_FAM6_EMERALDRAPIDS_X:
6757 		x86_pmu.flags |= PMU_FL_MEM_LOADS_AUX;
6758 		x86_pmu.extra_regs = intel_glc_extra_regs;
6759 		fallthrough;
6760 	case INTEL_FAM6_GRANITERAPIDS_X:
6761 	case INTEL_FAM6_GRANITERAPIDS_D:
6762 		intel_pmu_init_glc(NULL);
6763 		if (!x86_pmu.extra_regs)
6764 			x86_pmu.extra_regs = intel_rwc_extra_regs;
6765 		x86_pmu.pebs_ept = 1;
6766 		x86_pmu.hw_config = hsw_hw_config;
6767 		x86_pmu.get_event_constraints = glc_get_event_constraints;
6768 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6769 			hsw_format_attr : nhm_format_attr;
6770 		extra_skl_attr = skl_format_attr;
6771 		mem_attr = glc_events_attrs;
6772 		td_attr = glc_td_events_attrs;
6773 		tsx_attr = glc_tsx_events_attrs;
6774 		intel_pmu_pebs_data_source_skl(true);
6775 		pr_cont("Sapphire Rapids events, ");
6776 		name = "sapphire_rapids";
6777 		break;
6778 
6779 	case INTEL_FAM6_ALDERLAKE:
6780 	case INTEL_FAM6_ALDERLAKE_L:
6781 	case INTEL_FAM6_RAPTORLAKE:
6782 	case INTEL_FAM6_RAPTORLAKE_P:
6783 	case INTEL_FAM6_RAPTORLAKE_S:
6784 		/*
6785 		 * Alder Lake has 2 types of CPU, core and atom.
6786 		 *
6787 		 * Initialize the common PerfMon capabilities here.
6788 		 */
6789 		intel_pmu_init_hybrid(hybrid_big_small);
6790 
6791 		x86_pmu.pebs_latency_data = adl_latency_data_small;
6792 		x86_pmu.get_event_constraints = adl_get_event_constraints;
6793 		x86_pmu.hw_config = adl_hw_config;
6794 		x86_pmu.get_hybrid_cpu_type = adl_get_hybrid_cpu_type;
6795 
6796 		td_attr = adl_hybrid_events_attrs;
6797 		mem_attr = adl_hybrid_mem_attrs;
6798 		tsx_attr = adl_hybrid_tsx_attrs;
6799 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6800 			adl_hybrid_extra_attr_rtm : adl_hybrid_extra_attr;
6801 
6802 		/* Initialize big core specific PerfMon capabilities.*/
6803 		pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX];
6804 		intel_pmu_init_glc(&pmu->pmu);
6805 		if (cpu_feature_enabled(X86_FEATURE_HYBRID_CPU)) {
6806 			pmu->num_counters = x86_pmu.num_counters + 2;
6807 			pmu->num_counters_fixed = x86_pmu.num_counters_fixed + 1;
6808 		} else {
6809 			pmu->num_counters = x86_pmu.num_counters;
6810 			pmu->num_counters_fixed = x86_pmu.num_counters_fixed;
6811 		}
6812 
6813 		/*
6814 		 * Quirk: For some Alder Lake machine, when all E-cores are disabled in
6815 		 * a BIOS, the leaf 0xA will enumerate all counters of P-cores. However,
6816 		 * the X86_FEATURE_HYBRID_CPU is still set. The above codes will
6817 		 * mistakenly add extra counters for P-cores. Correct the number of
6818 		 * counters here.
6819 		 */
6820 		if ((pmu->num_counters > 8) || (pmu->num_counters_fixed > 4)) {
6821 			pmu->num_counters = x86_pmu.num_counters;
6822 			pmu->num_counters_fixed = x86_pmu.num_counters_fixed;
6823 		}
6824 
6825 		pmu->max_pebs_events = min_t(unsigned, MAX_PEBS_EVENTS, pmu->num_counters);
6826 		pmu->unconstrained = (struct event_constraint)
6827 					__EVENT_CONSTRAINT(0, (1ULL << pmu->num_counters) - 1,
6828 							   0, pmu->num_counters, 0, 0);
6829 		pmu->extra_regs = intel_glc_extra_regs;
6830 
6831 		/* Initialize Atom core specific PerfMon capabilities.*/
6832 		pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX];
6833 		intel_pmu_init_grt(&pmu->pmu);
6834 
6835 		x86_pmu.flags |= PMU_FL_MEM_LOADS_AUX;
6836 		intel_pmu_pebs_data_source_adl();
6837 		pr_cont("Alderlake Hybrid events, ");
6838 		name = "alderlake_hybrid";
6839 		break;
6840 
6841 	case INTEL_FAM6_METEORLAKE:
6842 	case INTEL_FAM6_METEORLAKE_L:
6843 		intel_pmu_init_hybrid(hybrid_big_small);
6844 
6845 		x86_pmu.pebs_latency_data = mtl_latency_data_small;
6846 		x86_pmu.get_event_constraints = mtl_get_event_constraints;
6847 		x86_pmu.hw_config = adl_hw_config;
6848 
6849 		td_attr = adl_hybrid_events_attrs;
6850 		mem_attr = mtl_hybrid_mem_attrs;
6851 		tsx_attr = adl_hybrid_tsx_attrs;
6852 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6853 			mtl_hybrid_extra_attr_rtm : mtl_hybrid_extra_attr;
6854 
6855 		/* Initialize big core specific PerfMon capabilities.*/
6856 		pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX];
6857 		intel_pmu_init_glc(&pmu->pmu);
6858 		pmu->extra_regs = intel_rwc_extra_regs;
6859 
6860 		/* Initialize Atom core specific PerfMon capabilities.*/
6861 		pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX];
6862 		intel_pmu_init_grt(&pmu->pmu);
6863 		pmu->extra_regs = intel_cmt_extra_regs;
6864 
6865 		intel_pmu_pebs_data_source_mtl();
6866 		pr_cont("Meteorlake Hybrid events, ");
6867 		name = "meteorlake_hybrid";
6868 		break;
6869 
6870 	default:
6871 		switch (x86_pmu.version) {
6872 		case 1:
6873 			x86_pmu.event_constraints = intel_v1_event_constraints;
6874 			pr_cont("generic architected perfmon v1, ");
6875 			name = "generic_arch_v1";
6876 			break;
6877 		case 2:
6878 		case 3:
6879 		case 4:
6880 			/*
6881 			 * default constraints for v2 and up
6882 			 */
6883 			x86_pmu.event_constraints = intel_gen_event_constraints;
6884 			pr_cont("generic architected perfmon, ");
6885 			name = "generic_arch_v2+";
6886 			break;
6887 		default:
6888 			/*
6889 			 * The default constraints for v5 and up can support up to
6890 			 * 16 fixed counters. For the fixed counters 4 and later,
6891 			 * the pseudo-encoding is applied.
6892 			 * The constraints may be cut according to the CPUID enumeration
6893 			 * by inserting the EVENT_CONSTRAINT_END.
6894 			 */
6895 			if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED)
6896 				x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
6897 			intel_v5_gen_event_constraints[x86_pmu.num_counters_fixed].weight = -1;
6898 			x86_pmu.event_constraints = intel_v5_gen_event_constraints;
6899 			pr_cont("generic architected perfmon, ");
6900 			name = "generic_arch_v5+";
6901 			break;
6902 		}
6903 	}
6904 
6905 	snprintf(pmu_name_str, sizeof(pmu_name_str), "%s", name);
6906 
6907 	if (!is_hybrid()) {
6908 		group_events_td.attrs  = td_attr;
6909 		group_events_mem.attrs = mem_attr;
6910 		group_events_tsx.attrs = tsx_attr;
6911 		group_format_extra.attrs = extra_attr;
6912 		group_format_extra_skl.attrs = extra_skl_attr;
6913 
6914 		x86_pmu.attr_update = attr_update;
6915 	} else {
6916 		hybrid_group_events_td.attrs  = td_attr;
6917 		hybrid_group_events_mem.attrs = mem_attr;
6918 		hybrid_group_events_tsx.attrs = tsx_attr;
6919 		hybrid_group_format_extra.attrs = extra_attr;
6920 
6921 		x86_pmu.attr_update = hybrid_attr_update;
6922 	}
6923 
6924 	intel_pmu_check_num_counters(&x86_pmu.num_counters,
6925 				     &x86_pmu.num_counters_fixed,
6926 				     &x86_pmu.intel_ctrl,
6927 				     (u64)fixed_mask);
6928 
6929 	/* AnyThread may be deprecated on arch perfmon v5 or later */
6930 	if (x86_pmu.intel_cap.anythread_deprecated)
6931 		x86_pmu.format_attrs = intel_arch_formats_attr;
6932 
6933 	intel_pmu_check_event_constraints(x86_pmu.event_constraints,
6934 					  x86_pmu.num_counters,
6935 					  x86_pmu.num_counters_fixed,
6936 					  x86_pmu.intel_ctrl);
6937 	/*
6938 	 * Access LBR MSR may cause #GP under certain circumstances.
6939 	 * Check all LBR MSR here.
6940 	 * Disable LBR access if any LBR MSRs can not be accessed.
6941 	 */
6942 	if (x86_pmu.lbr_tos && !check_msr(x86_pmu.lbr_tos, 0x3UL))
6943 		x86_pmu.lbr_nr = 0;
6944 	for (i = 0; i < x86_pmu.lbr_nr; i++) {
6945 		if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
6946 		      check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
6947 			x86_pmu.lbr_nr = 0;
6948 	}
6949 
6950 	if (x86_pmu.lbr_nr) {
6951 		intel_pmu_lbr_init();
6952 
6953 		pr_cont("%d-deep LBR, ", x86_pmu.lbr_nr);
6954 
6955 		/* only support branch_stack snapshot for perfmon >= v2 */
6956 		if (x86_pmu.disable_all == intel_pmu_disable_all) {
6957 			if (boot_cpu_has(X86_FEATURE_ARCH_LBR)) {
6958 				static_call_update(perf_snapshot_branch_stack,
6959 						   intel_pmu_snapshot_arch_branch_stack);
6960 			} else {
6961 				static_call_update(perf_snapshot_branch_stack,
6962 						   intel_pmu_snapshot_branch_stack);
6963 			}
6964 		}
6965 	}
6966 
6967 	intel_pmu_check_extra_regs(x86_pmu.extra_regs);
6968 
6969 	/* Support full width counters using alternative MSR range */
6970 	if (x86_pmu.intel_cap.full_width_write) {
6971 		x86_pmu.max_period = x86_pmu.cntval_mask >> 1;
6972 		x86_pmu.perfctr = MSR_IA32_PMC0;
6973 		pr_cont("full-width counters, ");
6974 	}
6975 
6976 	if (!is_hybrid() && x86_pmu.intel_cap.perf_metrics)
6977 		x86_pmu.intel_ctrl |= 1ULL << GLOBAL_CTRL_EN_PERF_METRICS;
6978 
6979 	if (x86_pmu.intel_cap.pebs_timing_info)
6980 		x86_pmu.flags |= PMU_FL_RETIRE_LATENCY;
6981 
6982 	intel_aux_output_init();
6983 
6984 	return 0;
6985 }
6986 
6987 /*
6988  * HT bug: phase 2 init
6989  * Called once we have valid topology information to check
6990  * whether or not HT is enabled
6991  * If HT is off, then we disable the workaround
6992  */
6993 static __init int fixup_ht_bug(void)
6994 {
6995 	int c;
6996 	/*
6997 	 * problem not present on this CPU model, nothing to do
6998 	 */
6999 	if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED))
7000 		return 0;
7001 
7002 	if (topology_max_smt_threads() > 1) {
7003 		pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
7004 		return 0;
7005 	}
7006 
7007 	cpus_read_lock();
7008 
7009 	hardlockup_detector_perf_stop();
7010 
7011 	x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED);
7012 
7013 	x86_pmu.start_scheduling = NULL;
7014 	x86_pmu.commit_scheduling = NULL;
7015 	x86_pmu.stop_scheduling = NULL;
7016 
7017 	hardlockup_detector_perf_restart();
7018 
7019 	for_each_online_cpu(c)
7020 		free_excl_cntrs(&per_cpu(cpu_hw_events, c));
7021 
7022 	cpus_read_unlock();
7023 	pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
7024 	return 0;
7025 }
7026 subsys_initcall(fixup_ht_bug)
7027