xref: /linux/arch/x86/events/intel/core.c (revision 6d99a79cb40da3eddafef844b7a679fe5162f224)
1 /*
2  * Per core/cpu state
3  *
4  * Used to coordinate shared registers between HT threads or
5  * among events on a single PMU.
6  */
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/stddef.h>
11 #include <linux/types.h>
12 #include <linux/init.h>
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/nmi.h>
16 
17 #include <asm/cpufeature.h>
18 #include <asm/hardirq.h>
19 #include <asm/intel-family.h>
20 #include <asm/apic.h>
21 
22 #include "../perf_event.h"
23 
24 /*
25  * Intel PerfMon, used on Core and later.
26  */
27 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
28 {
29 	[PERF_COUNT_HW_CPU_CYCLES]		= 0x003c,
30 	[PERF_COUNT_HW_INSTRUCTIONS]		= 0x00c0,
31 	[PERF_COUNT_HW_CACHE_REFERENCES]	= 0x4f2e,
32 	[PERF_COUNT_HW_CACHE_MISSES]		= 0x412e,
33 	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS]	= 0x00c4,
34 	[PERF_COUNT_HW_BRANCH_MISSES]		= 0x00c5,
35 	[PERF_COUNT_HW_BUS_CYCLES]		= 0x013c,
36 	[PERF_COUNT_HW_REF_CPU_CYCLES]		= 0x0300, /* pseudo-encoding */
37 };
38 
39 static struct event_constraint intel_core_event_constraints[] __read_mostly =
40 {
41 	INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
42 	INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
43 	INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
44 	INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
45 	INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
46 	INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
47 	EVENT_CONSTRAINT_END
48 };
49 
50 static struct event_constraint intel_core2_event_constraints[] __read_mostly =
51 {
52 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
53 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
54 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
55 	INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
56 	INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
57 	INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
58 	INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
59 	INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
60 	INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
61 	INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
62 	INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
63 	INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
64 	INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
65 	EVENT_CONSTRAINT_END
66 };
67 
68 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
69 {
70 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
71 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
72 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
73 	INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
74 	INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
75 	INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
76 	INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
77 	INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
78 	INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
79 	INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
80 	INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
81 	EVENT_CONSTRAINT_END
82 };
83 
84 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
85 {
86 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
87 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
88 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
89 	EVENT_EXTRA_END
90 };
91 
92 static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
93 {
94 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
95 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
96 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
97 	INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
98 	INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
99 	INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
100 	INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
101 	EVENT_CONSTRAINT_END
102 };
103 
104 static struct event_constraint intel_snb_event_constraints[] __read_mostly =
105 {
106 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
107 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
108 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
109 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
110 	INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
111 	INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
112 	INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
113 	INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
114 	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
115 	INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
116 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
117 	INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
118 
119 	/*
120 	 * When HT is off these events can only run on the bottom 4 counters
121 	 * When HT is on, they are impacted by the HT bug and require EXCL access
122 	 */
123 	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
124 	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
125 	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
126 	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
127 
128 	EVENT_CONSTRAINT_END
129 };
130 
131 static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
132 {
133 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
134 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
135 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
136 	INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
137 	INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMTPY */
138 	INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
139 	INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
140 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
141 	INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
142 	INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
143 	INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
144 	INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
145 	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
146 
147 	/*
148 	 * When HT is off these events can only run on the bottom 4 counters
149 	 * When HT is on, they are impacted by the HT bug and require EXCL access
150 	 */
151 	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
152 	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
153 	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
154 	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
155 
156 	EVENT_CONSTRAINT_END
157 };
158 
159 static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
160 {
161 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
162 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
163 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
164 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
165 	EVENT_EXTRA_END
166 };
167 
168 static struct event_constraint intel_v1_event_constraints[] __read_mostly =
169 {
170 	EVENT_CONSTRAINT_END
171 };
172 
173 static struct event_constraint intel_gen_event_constraints[] __read_mostly =
174 {
175 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
176 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
177 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
178 	EVENT_CONSTRAINT_END
179 };
180 
181 static struct event_constraint intel_slm_event_constraints[] __read_mostly =
182 {
183 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
184 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
185 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
186 	EVENT_CONSTRAINT_END
187 };
188 
189 static struct event_constraint intel_skl_event_constraints[] = {
190 	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
191 	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
192 	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
193 	INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2),	/* INST_RETIRED.PREC_DIST */
194 
195 	/*
196 	 * when HT is off, these can only run on the bottom 4 counters
197 	 */
198 	INTEL_EVENT_CONSTRAINT(0xd0, 0xf),	/* MEM_INST_RETIRED.* */
199 	INTEL_EVENT_CONSTRAINT(0xd1, 0xf),	/* MEM_LOAD_RETIRED.* */
200 	INTEL_EVENT_CONSTRAINT(0xd2, 0xf),	/* MEM_LOAD_L3_HIT_RETIRED.* */
201 	INTEL_EVENT_CONSTRAINT(0xcd, 0xf),	/* MEM_TRANS_RETIRED.* */
202 	INTEL_EVENT_CONSTRAINT(0xc6, 0xf),	/* FRONTEND_RETIRED.* */
203 
204 	EVENT_CONSTRAINT_END
205 };
206 
207 static struct extra_reg intel_knl_extra_regs[] __read_mostly = {
208 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x799ffbb6e7ull, RSP_0),
209 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x399ffbffe7ull, RSP_1),
210 	EVENT_EXTRA_END
211 };
212 
213 static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
214 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
215 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
216 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
217 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
218 	EVENT_EXTRA_END
219 };
220 
221 static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
222 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
223 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
224 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
225 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
226 	EVENT_EXTRA_END
227 };
228 
229 static struct extra_reg intel_skl_extra_regs[] __read_mostly = {
230 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
231 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
232 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
233 	/*
234 	 * Note the low 8 bits eventsel code is not a continuous field, containing
235 	 * some #GPing bits. These are masked out.
236 	 */
237 	INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
238 	EVENT_EXTRA_END
239 };
240 
241 EVENT_ATTR_STR(mem-loads,	mem_ld_nhm,	"event=0x0b,umask=0x10,ldlat=3");
242 EVENT_ATTR_STR(mem-loads,	mem_ld_snb,	"event=0xcd,umask=0x1,ldlat=3");
243 EVENT_ATTR_STR(mem-stores,	mem_st_snb,	"event=0xcd,umask=0x2");
244 
245 static struct attribute *nhm_mem_events_attrs[] = {
246 	EVENT_PTR(mem_ld_nhm),
247 	NULL,
248 };
249 
250 /*
251  * topdown events for Intel Core CPUs.
252  *
253  * The events are all in slots, which is a free slot in a 4 wide
254  * pipeline. Some events are already reported in slots, for cycle
255  * events we multiply by the pipeline width (4).
256  *
257  * With Hyper Threading on, topdown metrics are either summed or averaged
258  * between the threads of a core: (count_t0 + count_t1).
259  *
260  * For the average case the metric is always scaled to pipeline width,
261  * so we use factor 2 ((count_t0 + count_t1) / 2 * 4)
262  */
263 
264 EVENT_ATTR_STR_HT(topdown-total-slots, td_total_slots,
265 	"event=0x3c,umask=0x0",			/* cpu_clk_unhalted.thread */
266 	"event=0x3c,umask=0x0,any=1");		/* cpu_clk_unhalted.thread_any */
267 EVENT_ATTR_STR_HT(topdown-total-slots.scale, td_total_slots_scale, "4", "2");
268 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued,
269 	"event=0xe,umask=0x1");			/* uops_issued.any */
270 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired,
271 	"event=0xc2,umask=0x2");		/* uops_retired.retire_slots */
272 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles,
273 	"event=0x9c,umask=0x1");		/* idq_uops_not_delivered_core */
274 EVENT_ATTR_STR_HT(topdown-recovery-bubbles, td_recovery_bubbles,
275 	"event=0xd,umask=0x3,cmask=1",		/* int_misc.recovery_cycles */
276 	"event=0xd,umask=0x3,cmask=1,any=1");	/* int_misc.recovery_cycles_any */
277 EVENT_ATTR_STR_HT(topdown-recovery-bubbles.scale, td_recovery_bubbles_scale,
278 	"4", "2");
279 
280 static struct attribute *snb_events_attrs[] = {
281 	EVENT_PTR(td_slots_issued),
282 	EVENT_PTR(td_slots_retired),
283 	EVENT_PTR(td_fetch_bubbles),
284 	EVENT_PTR(td_total_slots),
285 	EVENT_PTR(td_total_slots_scale),
286 	EVENT_PTR(td_recovery_bubbles),
287 	EVENT_PTR(td_recovery_bubbles_scale),
288 	NULL,
289 };
290 
291 static struct attribute *snb_mem_events_attrs[] = {
292 	EVENT_PTR(mem_ld_snb),
293 	EVENT_PTR(mem_st_snb),
294 	NULL,
295 };
296 
297 static struct event_constraint intel_hsw_event_constraints[] = {
298 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
299 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
300 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
301 	INTEL_UEVENT_CONSTRAINT(0x148, 0x4),	/* L1D_PEND_MISS.PENDING */
302 	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
303 	INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
304 	/* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
305 	INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
306 	/* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
307 	INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
308 	/* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
309 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
310 
311 	/*
312 	 * When HT is off these events can only run on the bottom 4 counters
313 	 * When HT is on, they are impacted by the HT bug and require EXCL access
314 	 */
315 	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
316 	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
317 	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
318 	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
319 
320 	EVENT_CONSTRAINT_END
321 };
322 
323 static struct event_constraint intel_bdw_event_constraints[] = {
324 	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
325 	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
326 	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
327 	INTEL_UEVENT_CONSTRAINT(0x148, 0x4),	/* L1D_PEND_MISS.PENDING */
328 	INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4),	/* CYCLE_ACTIVITY.CYCLES_L1D_MISS */
329 	/*
330 	 * when HT is off, these can only run on the bottom 4 counters
331 	 */
332 	INTEL_EVENT_CONSTRAINT(0xd0, 0xf),	/* MEM_INST_RETIRED.* */
333 	INTEL_EVENT_CONSTRAINT(0xd1, 0xf),	/* MEM_LOAD_RETIRED.* */
334 	INTEL_EVENT_CONSTRAINT(0xd2, 0xf),	/* MEM_LOAD_L3_HIT_RETIRED.* */
335 	INTEL_EVENT_CONSTRAINT(0xcd, 0xf),	/* MEM_TRANS_RETIRED.* */
336 	EVENT_CONSTRAINT_END
337 };
338 
339 static u64 intel_pmu_event_map(int hw_event)
340 {
341 	return intel_perfmon_event_map[hw_event];
342 }
343 
344 /*
345  * Notes on the events:
346  * - data reads do not include code reads (comparable to earlier tables)
347  * - data counts include speculative execution (except L1 write, dtlb, bpu)
348  * - remote node access includes remote memory, remote cache, remote mmio.
349  * - prefetches are not included in the counts.
350  * - icache miss does not include decoded icache
351  */
352 
353 #define SKL_DEMAND_DATA_RD		BIT_ULL(0)
354 #define SKL_DEMAND_RFO			BIT_ULL(1)
355 #define SKL_ANY_RESPONSE		BIT_ULL(16)
356 #define SKL_SUPPLIER_NONE		BIT_ULL(17)
357 #define SKL_L3_MISS_LOCAL_DRAM		BIT_ULL(26)
358 #define SKL_L3_MISS_REMOTE_HOP0_DRAM	BIT_ULL(27)
359 #define SKL_L3_MISS_REMOTE_HOP1_DRAM	BIT_ULL(28)
360 #define SKL_L3_MISS_REMOTE_HOP2P_DRAM	BIT_ULL(29)
361 #define SKL_L3_MISS			(SKL_L3_MISS_LOCAL_DRAM| \
362 					 SKL_L3_MISS_REMOTE_HOP0_DRAM| \
363 					 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
364 					 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
365 #define SKL_SPL_HIT			BIT_ULL(30)
366 #define SKL_SNOOP_NONE			BIT_ULL(31)
367 #define SKL_SNOOP_NOT_NEEDED		BIT_ULL(32)
368 #define SKL_SNOOP_MISS			BIT_ULL(33)
369 #define SKL_SNOOP_HIT_NO_FWD		BIT_ULL(34)
370 #define SKL_SNOOP_HIT_WITH_FWD		BIT_ULL(35)
371 #define SKL_SNOOP_HITM			BIT_ULL(36)
372 #define SKL_SNOOP_NON_DRAM		BIT_ULL(37)
373 #define SKL_ANY_SNOOP			(SKL_SPL_HIT|SKL_SNOOP_NONE| \
374 					 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
375 					 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
376 					 SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM)
377 #define SKL_DEMAND_READ			SKL_DEMAND_DATA_RD
378 #define SKL_SNOOP_DRAM			(SKL_SNOOP_NONE| \
379 					 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
380 					 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
381 					 SKL_SNOOP_HITM|SKL_SPL_HIT)
382 #define SKL_DEMAND_WRITE		SKL_DEMAND_RFO
383 #define SKL_LLC_ACCESS			SKL_ANY_RESPONSE
384 #define SKL_L3_MISS_REMOTE		(SKL_L3_MISS_REMOTE_HOP0_DRAM| \
385 					 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
386 					 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
387 
388 static __initconst const u64 skl_hw_cache_event_ids
389 				[PERF_COUNT_HW_CACHE_MAX]
390 				[PERF_COUNT_HW_CACHE_OP_MAX]
391 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
392 {
393  [ C(L1D ) ] = {
394 	[ C(OP_READ) ] = {
395 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_INST_RETIRED.ALL_LOADS */
396 		[ C(RESULT_MISS)   ] = 0x151,	/* L1D.REPLACEMENT */
397 	},
398 	[ C(OP_WRITE) ] = {
399 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_INST_RETIRED.ALL_STORES */
400 		[ C(RESULT_MISS)   ] = 0x0,
401 	},
402 	[ C(OP_PREFETCH) ] = {
403 		[ C(RESULT_ACCESS) ] = 0x0,
404 		[ C(RESULT_MISS)   ] = 0x0,
405 	},
406  },
407  [ C(L1I ) ] = {
408 	[ C(OP_READ) ] = {
409 		[ C(RESULT_ACCESS) ] = 0x0,
410 		[ C(RESULT_MISS)   ] = 0x283,	/* ICACHE_64B.MISS */
411 	},
412 	[ C(OP_WRITE) ] = {
413 		[ C(RESULT_ACCESS) ] = -1,
414 		[ C(RESULT_MISS)   ] = -1,
415 	},
416 	[ C(OP_PREFETCH) ] = {
417 		[ C(RESULT_ACCESS) ] = 0x0,
418 		[ C(RESULT_MISS)   ] = 0x0,
419 	},
420  },
421  [ C(LL  ) ] = {
422 	[ C(OP_READ) ] = {
423 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
424 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
425 	},
426 	[ C(OP_WRITE) ] = {
427 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
428 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
429 	},
430 	[ C(OP_PREFETCH) ] = {
431 		[ C(RESULT_ACCESS) ] = 0x0,
432 		[ C(RESULT_MISS)   ] = 0x0,
433 	},
434  },
435  [ C(DTLB) ] = {
436 	[ C(OP_READ) ] = {
437 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_INST_RETIRED.ALL_LOADS */
438 		[ C(RESULT_MISS)   ] = 0xe08,	/* DTLB_LOAD_MISSES.WALK_COMPLETED */
439 	},
440 	[ C(OP_WRITE) ] = {
441 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_INST_RETIRED.ALL_STORES */
442 		[ C(RESULT_MISS)   ] = 0xe49,	/* DTLB_STORE_MISSES.WALK_COMPLETED */
443 	},
444 	[ C(OP_PREFETCH) ] = {
445 		[ C(RESULT_ACCESS) ] = 0x0,
446 		[ C(RESULT_MISS)   ] = 0x0,
447 	},
448  },
449  [ C(ITLB) ] = {
450 	[ C(OP_READ) ] = {
451 		[ C(RESULT_ACCESS) ] = 0x2085,	/* ITLB_MISSES.STLB_HIT */
452 		[ C(RESULT_MISS)   ] = 0xe85,	/* ITLB_MISSES.WALK_COMPLETED */
453 	},
454 	[ C(OP_WRITE) ] = {
455 		[ C(RESULT_ACCESS) ] = -1,
456 		[ C(RESULT_MISS)   ] = -1,
457 	},
458 	[ C(OP_PREFETCH) ] = {
459 		[ C(RESULT_ACCESS) ] = -1,
460 		[ C(RESULT_MISS)   ] = -1,
461 	},
462  },
463  [ C(BPU ) ] = {
464 	[ C(OP_READ) ] = {
465 		[ C(RESULT_ACCESS) ] = 0xc4,	/* BR_INST_RETIRED.ALL_BRANCHES */
466 		[ C(RESULT_MISS)   ] = 0xc5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
467 	},
468 	[ C(OP_WRITE) ] = {
469 		[ C(RESULT_ACCESS) ] = -1,
470 		[ C(RESULT_MISS)   ] = -1,
471 	},
472 	[ C(OP_PREFETCH) ] = {
473 		[ C(RESULT_ACCESS) ] = -1,
474 		[ C(RESULT_MISS)   ] = -1,
475 	},
476  },
477  [ C(NODE) ] = {
478 	[ C(OP_READ) ] = {
479 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
480 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
481 	},
482 	[ C(OP_WRITE) ] = {
483 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
484 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
485 	},
486 	[ C(OP_PREFETCH) ] = {
487 		[ C(RESULT_ACCESS) ] = 0x0,
488 		[ C(RESULT_MISS)   ] = 0x0,
489 	},
490  },
491 };
492 
493 static __initconst const u64 skl_hw_cache_extra_regs
494 				[PERF_COUNT_HW_CACHE_MAX]
495 				[PERF_COUNT_HW_CACHE_OP_MAX]
496 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
497 {
498  [ C(LL  ) ] = {
499 	[ C(OP_READ) ] = {
500 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
501 				       SKL_LLC_ACCESS|SKL_ANY_SNOOP,
502 		[ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
503 				       SKL_L3_MISS|SKL_ANY_SNOOP|
504 				       SKL_SUPPLIER_NONE,
505 	},
506 	[ C(OP_WRITE) ] = {
507 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
508 				       SKL_LLC_ACCESS|SKL_ANY_SNOOP,
509 		[ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
510 				       SKL_L3_MISS|SKL_ANY_SNOOP|
511 				       SKL_SUPPLIER_NONE,
512 	},
513 	[ C(OP_PREFETCH) ] = {
514 		[ C(RESULT_ACCESS) ] = 0x0,
515 		[ C(RESULT_MISS)   ] = 0x0,
516 	},
517  },
518  [ C(NODE) ] = {
519 	[ C(OP_READ) ] = {
520 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
521 				       SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
522 		[ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
523 				       SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
524 	},
525 	[ C(OP_WRITE) ] = {
526 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
527 				       SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
528 		[ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
529 				       SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
530 	},
531 	[ C(OP_PREFETCH) ] = {
532 		[ C(RESULT_ACCESS) ] = 0x0,
533 		[ C(RESULT_MISS)   ] = 0x0,
534 	},
535  },
536 };
537 
538 #define SNB_DMND_DATA_RD	(1ULL << 0)
539 #define SNB_DMND_RFO		(1ULL << 1)
540 #define SNB_DMND_IFETCH		(1ULL << 2)
541 #define SNB_DMND_WB		(1ULL << 3)
542 #define SNB_PF_DATA_RD		(1ULL << 4)
543 #define SNB_PF_RFO		(1ULL << 5)
544 #define SNB_PF_IFETCH		(1ULL << 6)
545 #define SNB_LLC_DATA_RD		(1ULL << 7)
546 #define SNB_LLC_RFO		(1ULL << 8)
547 #define SNB_LLC_IFETCH		(1ULL << 9)
548 #define SNB_BUS_LOCKS		(1ULL << 10)
549 #define SNB_STRM_ST		(1ULL << 11)
550 #define SNB_OTHER		(1ULL << 15)
551 #define SNB_RESP_ANY		(1ULL << 16)
552 #define SNB_NO_SUPP		(1ULL << 17)
553 #define SNB_LLC_HITM		(1ULL << 18)
554 #define SNB_LLC_HITE		(1ULL << 19)
555 #define SNB_LLC_HITS		(1ULL << 20)
556 #define SNB_LLC_HITF		(1ULL << 21)
557 #define SNB_LOCAL		(1ULL << 22)
558 #define SNB_REMOTE		(0xffULL << 23)
559 #define SNB_SNP_NONE		(1ULL << 31)
560 #define SNB_SNP_NOT_NEEDED	(1ULL << 32)
561 #define SNB_SNP_MISS		(1ULL << 33)
562 #define SNB_NO_FWD		(1ULL << 34)
563 #define SNB_SNP_FWD		(1ULL << 35)
564 #define SNB_HITM		(1ULL << 36)
565 #define SNB_NON_DRAM		(1ULL << 37)
566 
567 #define SNB_DMND_READ		(SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
568 #define SNB_DMND_WRITE		(SNB_DMND_RFO|SNB_LLC_RFO)
569 #define SNB_DMND_PREFETCH	(SNB_PF_DATA_RD|SNB_PF_RFO)
570 
571 #define SNB_SNP_ANY		(SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
572 				 SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
573 				 SNB_HITM)
574 
575 #define SNB_DRAM_ANY		(SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
576 #define SNB_DRAM_REMOTE		(SNB_REMOTE|SNB_SNP_ANY)
577 
578 #define SNB_L3_ACCESS		SNB_RESP_ANY
579 #define SNB_L3_MISS		(SNB_DRAM_ANY|SNB_NON_DRAM)
580 
581 static __initconst const u64 snb_hw_cache_extra_regs
582 				[PERF_COUNT_HW_CACHE_MAX]
583 				[PERF_COUNT_HW_CACHE_OP_MAX]
584 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
585 {
586  [ C(LL  ) ] = {
587 	[ C(OP_READ) ] = {
588 		[ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
589 		[ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_L3_MISS,
590 	},
591 	[ C(OP_WRITE) ] = {
592 		[ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
593 		[ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_L3_MISS,
594 	},
595 	[ C(OP_PREFETCH) ] = {
596 		[ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
597 		[ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
598 	},
599  },
600  [ C(NODE) ] = {
601 	[ C(OP_READ) ] = {
602 		[ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
603 		[ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
604 	},
605 	[ C(OP_WRITE) ] = {
606 		[ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
607 		[ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
608 	},
609 	[ C(OP_PREFETCH) ] = {
610 		[ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
611 		[ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
612 	},
613  },
614 };
615 
616 static __initconst const u64 snb_hw_cache_event_ids
617 				[PERF_COUNT_HW_CACHE_MAX]
618 				[PERF_COUNT_HW_CACHE_OP_MAX]
619 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
620 {
621  [ C(L1D) ] = {
622 	[ C(OP_READ) ] = {
623 		[ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS        */
624 		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPLACEMENT              */
625 	},
626 	[ C(OP_WRITE) ] = {
627 		[ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES       */
628 		[ C(RESULT_MISS)   ] = 0x0851, /* L1D.ALL_M_REPLACEMENT        */
629 	},
630 	[ C(OP_PREFETCH) ] = {
631 		[ C(RESULT_ACCESS) ] = 0x0,
632 		[ C(RESULT_MISS)   ] = 0x024e, /* HW_PRE_REQ.DL1_MISS          */
633 	},
634  },
635  [ C(L1I ) ] = {
636 	[ C(OP_READ) ] = {
637 		[ C(RESULT_ACCESS) ] = 0x0,
638 		[ C(RESULT_MISS)   ] = 0x0280, /* ICACHE.MISSES */
639 	},
640 	[ C(OP_WRITE) ] = {
641 		[ C(RESULT_ACCESS) ] = -1,
642 		[ C(RESULT_MISS)   ] = -1,
643 	},
644 	[ C(OP_PREFETCH) ] = {
645 		[ C(RESULT_ACCESS) ] = 0x0,
646 		[ C(RESULT_MISS)   ] = 0x0,
647 	},
648  },
649  [ C(LL  ) ] = {
650 	[ C(OP_READ) ] = {
651 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
652 		[ C(RESULT_ACCESS) ] = 0x01b7,
653 		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
654 		[ C(RESULT_MISS)   ] = 0x01b7,
655 	},
656 	[ C(OP_WRITE) ] = {
657 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
658 		[ C(RESULT_ACCESS) ] = 0x01b7,
659 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
660 		[ C(RESULT_MISS)   ] = 0x01b7,
661 	},
662 	[ C(OP_PREFETCH) ] = {
663 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
664 		[ C(RESULT_ACCESS) ] = 0x01b7,
665 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
666 		[ C(RESULT_MISS)   ] = 0x01b7,
667 	},
668  },
669  [ C(DTLB) ] = {
670 	[ C(OP_READ) ] = {
671 		[ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
672 		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
673 	},
674 	[ C(OP_WRITE) ] = {
675 		[ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
676 		[ C(RESULT_MISS)   ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
677 	},
678 	[ C(OP_PREFETCH) ] = {
679 		[ C(RESULT_ACCESS) ] = 0x0,
680 		[ C(RESULT_MISS)   ] = 0x0,
681 	},
682  },
683  [ C(ITLB) ] = {
684 	[ C(OP_READ) ] = {
685 		[ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT         */
686 		[ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK    */
687 	},
688 	[ C(OP_WRITE) ] = {
689 		[ C(RESULT_ACCESS) ] = -1,
690 		[ C(RESULT_MISS)   ] = -1,
691 	},
692 	[ C(OP_PREFETCH) ] = {
693 		[ C(RESULT_ACCESS) ] = -1,
694 		[ C(RESULT_MISS)   ] = -1,
695 	},
696  },
697  [ C(BPU ) ] = {
698 	[ C(OP_READ) ] = {
699 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
700 		[ C(RESULT_MISS)   ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
701 	},
702 	[ C(OP_WRITE) ] = {
703 		[ C(RESULT_ACCESS) ] = -1,
704 		[ C(RESULT_MISS)   ] = -1,
705 	},
706 	[ C(OP_PREFETCH) ] = {
707 		[ C(RESULT_ACCESS) ] = -1,
708 		[ C(RESULT_MISS)   ] = -1,
709 	},
710  },
711  [ C(NODE) ] = {
712 	[ C(OP_READ) ] = {
713 		[ C(RESULT_ACCESS) ] = 0x01b7,
714 		[ C(RESULT_MISS)   ] = 0x01b7,
715 	},
716 	[ C(OP_WRITE) ] = {
717 		[ C(RESULT_ACCESS) ] = 0x01b7,
718 		[ C(RESULT_MISS)   ] = 0x01b7,
719 	},
720 	[ C(OP_PREFETCH) ] = {
721 		[ C(RESULT_ACCESS) ] = 0x01b7,
722 		[ C(RESULT_MISS)   ] = 0x01b7,
723 	},
724  },
725 
726 };
727 
728 /*
729  * Notes on the events:
730  * - data reads do not include code reads (comparable to earlier tables)
731  * - data counts include speculative execution (except L1 write, dtlb, bpu)
732  * - remote node access includes remote memory, remote cache, remote mmio.
733  * - prefetches are not included in the counts because they are not
734  *   reliably counted.
735  */
736 
737 #define HSW_DEMAND_DATA_RD		BIT_ULL(0)
738 #define HSW_DEMAND_RFO			BIT_ULL(1)
739 #define HSW_ANY_RESPONSE		BIT_ULL(16)
740 #define HSW_SUPPLIER_NONE		BIT_ULL(17)
741 #define HSW_L3_MISS_LOCAL_DRAM		BIT_ULL(22)
742 #define HSW_L3_MISS_REMOTE_HOP0		BIT_ULL(27)
743 #define HSW_L3_MISS_REMOTE_HOP1		BIT_ULL(28)
744 #define HSW_L3_MISS_REMOTE_HOP2P	BIT_ULL(29)
745 #define HSW_L3_MISS			(HSW_L3_MISS_LOCAL_DRAM| \
746 					 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
747 					 HSW_L3_MISS_REMOTE_HOP2P)
748 #define HSW_SNOOP_NONE			BIT_ULL(31)
749 #define HSW_SNOOP_NOT_NEEDED		BIT_ULL(32)
750 #define HSW_SNOOP_MISS			BIT_ULL(33)
751 #define HSW_SNOOP_HIT_NO_FWD		BIT_ULL(34)
752 #define HSW_SNOOP_HIT_WITH_FWD		BIT_ULL(35)
753 #define HSW_SNOOP_HITM			BIT_ULL(36)
754 #define HSW_SNOOP_NON_DRAM		BIT_ULL(37)
755 #define HSW_ANY_SNOOP			(HSW_SNOOP_NONE| \
756 					 HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
757 					 HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
758 					 HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
759 #define HSW_SNOOP_DRAM			(HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
760 #define HSW_DEMAND_READ			HSW_DEMAND_DATA_RD
761 #define HSW_DEMAND_WRITE		HSW_DEMAND_RFO
762 #define HSW_L3_MISS_REMOTE		(HSW_L3_MISS_REMOTE_HOP0|\
763 					 HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
764 #define HSW_LLC_ACCESS			HSW_ANY_RESPONSE
765 
766 #define BDW_L3_MISS_LOCAL		BIT(26)
767 #define BDW_L3_MISS			(BDW_L3_MISS_LOCAL| \
768 					 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
769 					 HSW_L3_MISS_REMOTE_HOP2P)
770 
771 
772 static __initconst const u64 hsw_hw_cache_event_ids
773 				[PERF_COUNT_HW_CACHE_MAX]
774 				[PERF_COUNT_HW_CACHE_OP_MAX]
775 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
776 {
777  [ C(L1D ) ] = {
778 	[ C(OP_READ) ] = {
779 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
780 		[ C(RESULT_MISS)   ] = 0x151,	/* L1D.REPLACEMENT */
781 	},
782 	[ C(OP_WRITE) ] = {
783 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
784 		[ C(RESULT_MISS)   ] = 0x0,
785 	},
786 	[ C(OP_PREFETCH) ] = {
787 		[ C(RESULT_ACCESS) ] = 0x0,
788 		[ C(RESULT_MISS)   ] = 0x0,
789 	},
790  },
791  [ C(L1I ) ] = {
792 	[ C(OP_READ) ] = {
793 		[ C(RESULT_ACCESS) ] = 0x0,
794 		[ C(RESULT_MISS)   ] = 0x280,	/* ICACHE.MISSES */
795 	},
796 	[ C(OP_WRITE) ] = {
797 		[ C(RESULT_ACCESS) ] = -1,
798 		[ C(RESULT_MISS)   ] = -1,
799 	},
800 	[ C(OP_PREFETCH) ] = {
801 		[ C(RESULT_ACCESS) ] = 0x0,
802 		[ C(RESULT_MISS)   ] = 0x0,
803 	},
804  },
805  [ C(LL  ) ] = {
806 	[ C(OP_READ) ] = {
807 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
808 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
809 	},
810 	[ C(OP_WRITE) ] = {
811 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
812 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
813 	},
814 	[ C(OP_PREFETCH) ] = {
815 		[ C(RESULT_ACCESS) ] = 0x0,
816 		[ C(RESULT_MISS)   ] = 0x0,
817 	},
818  },
819  [ C(DTLB) ] = {
820 	[ C(OP_READ) ] = {
821 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
822 		[ C(RESULT_MISS)   ] = 0x108,	/* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
823 	},
824 	[ C(OP_WRITE) ] = {
825 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
826 		[ C(RESULT_MISS)   ] = 0x149,	/* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
827 	},
828 	[ C(OP_PREFETCH) ] = {
829 		[ C(RESULT_ACCESS) ] = 0x0,
830 		[ C(RESULT_MISS)   ] = 0x0,
831 	},
832  },
833  [ C(ITLB) ] = {
834 	[ C(OP_READ) ] = {
835 		[ C(RESULT_ACCESS) ] = 0x6085,	/* ITLB_MISSES.STLB_HIT */
836 		[ C(RESULT_MISS)   ] = 0x185,	/* ITLB_MISSES.MISS_CAUSES_A_WALK */
837 	},
838 	[ C(OP_WRITE) ] = {
839 		[ C(RESULT_ACCESS) ] = -1,
840 		[ C(RESULT_MISS)   ] = -1,
841 	},
842 	[ C(OP_PREFETCH) ] = {
843 		[ C(RESULT_ACCESS) ] = -1,
844 		[ C(RESULT_MISS)   ] = -1,
845 	},
846  },
847  [ C(BPU ) ] = {
848 	[ C(OP_READ) ] = {
849 		[ C(RESULT_ACCESS) ] = 0xc4,	/* BR_INST_RETIRED.ALL_BRANCHES */
850 		[ C(RESULT_MISS)   ] = 0xc5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
851 	},
852 	[ C(OP_WRITE) ] = {
853 		[ C(RESULT_ACCESS) ] = -1,
854 		[ C(RESULT_MISS)   ] = -1,
855 	},
856 	[ C(OP_PREFETCH) ] = {
857 		[ C(RESULT_ACCESS) ] = -1,
858 		[ C(RESULT_MISS)   ] = -1,
859 	},
860  },
861  [ C(NODE) ] = {
862 	[ C(OP_READ) ] = {
863 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
864 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
865 	},
866 	[ C(OP_WRITE) ] = {
867 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
868 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
869 	},
870 	[ C(OP_PREFETCH) ] = {
871 		[ C(RESULT_ACCESS) ] = 0x0,
872 		[ C(RESULT_MISS)   ] = 0x0,
873 	},
874  },
875 };
876 
877 static __initconst const u64 hsw_hw_cache_extra_regs
878 				[PERF_COUNT_HW_CACHE_MAX]
879 				[PERF_COUNT_HW_CACHE_OP_MAX]
880 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
881 {
882  [ C(LL  ) ] = {
883 	[ C(OP_READ) ] = {
884 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
885 				       HSW_LLC_ACCESS,
886 		[ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
887 				       HSW_L3_MISS|HSW_ANY_SNOOP,
888 	},
889 	[ C(OP_WRITE) ] = {
890 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
891 				       HSW_LLC_ACCESS,
892 		[ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
893 				       HSW_L3_MISS|HSW_ANY_SNOOP,
894 	},
895 	[ C(OP_PREFETCH) ] = {
896 		[ C(RESULT_ACCESS) ] = 0x0,
897 		[ C(RESULT_MISS)   ] = 0x0,
898 	},
899  },
900  [ C(NODE) ] = {
901 	[ C(OP_READ) ] = {
902 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
903 				       HSW_L3_MISS_LOCAL_DRAM|
904 				       HSW_SNOOP_DRAM,
905 		[ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
906 				       HSW_L3_MISS_REMOTE|
907 				       HSW_SNOOP_DRAM,
908 	},
909 	[ C(OP_WRITE) ] = {
910 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
911 				       HSW_L3_MISS_LOCAL_DRAM|
912 				       HSW_SNOOP_DRAM,
913 		[ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
914 				       HSW_L3_MISS_REMOTE|
915 				       HSW_SNOOP_DRAM,
916 	},
917 	[ C(OP_PREFETCH) ] = {
918 		[ C(RESULT_ACCESS) ] = 0x0,
919 		[ C(RESULT_MISS)   ] = 0x0,
920 	},
921  },
922 };
923 
924 static __initconst const u64 westmere_hw_cache_event_ids
925 				[PERF_COUNT_HW_CACHE_MAX]
926 				[PERF_COUNT_HW_CACHE_OP_MAX]
927 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
928 {
929  [ C(L1D) ] = {
930 	[ C(OP_READ) ] = {
931 		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
932 		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
933 	},
934 	[ C(OP_WRITE) ] = {
935 		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
936 		[ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
937 	},
938 	[ C(OP_PREFETCH) ] = {
939 		[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
940 		[ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
941 	},
942  },
943  [ C(L1I ) ] = {
944 	[ C(OP_READ) ] = {
945 		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
946 		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
947 	},
948 	[ C(OP_WRITE) ] = {
949 		[ C(RESULT_ACCESS) ] = -1,
950 		[ C(RESULT_MISS)   ] = -1,
951 	},
952 	[ C(OP_PREFETCH) ] = {
953 		[ C(RESULT_ACCESS) ] = 0x0,
954 		[ C(RESULT_MISS)   ] = 0x0,
955 	},
956  },
957  [ C(LL  ) ] = {
958 	[ C(OP_READ) ] = {
959 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
960 		[ C(RESULT_ACCESS) ] = 0x01b7,
961 		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
962 		[ C(RESULT_MISS)   ] = 0x01b7,
963 	},
964 	/*
965 	 * Use RFO, not WRITEBACK, because a write miss would typically occur
966 	 * on RFO.
967 	 */
968 	[ C(OP_WRITE) ] = {
969 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
970 		[ C(RESULT_ACCESS) ] = 0x01b7,
971 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
972 		[ C(RESULT_MISS)   ] = 0x01b7,
973 	},
974 	[ C(OP_PREFETCH) ] = {
975 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
976 		[ C(RESULT_ACCESS) ] = 0x01b7,
977 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
978 		[ C(RESULT_MISS)   ] = 0x01b7,
979 	},
980  },
981  [ C(DTLB) ] = {
982 	[ C(OP_READ) ] = {
983 		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
984 		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
985 	},
986 	[ C(OP_WRITE) ] = {
987 		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
988 		[ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
989 	},
990 	[ C(OP_PREFETCH) ] = {
991 		[ C(RESULT_ACCESS) ] = 0x0,
992 		[ C(RESULT_MISS)   ] = 0x0,
993 	},
994  },
995  [ C(ITLB) ] = {
996 	[ C(OP_READ) ] = {
997 		[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
998 		[ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.ANY              */
999 	},
1000 	[ C(OP_WRITE) ] = {
1001 		[ C(RESULT_ACCESS) ] = -1,
1002 		[ C(RESULT_MISS)   ] = -1,
1003 	},
1004 	[ C(OP_PREFETCH) ] = {
1005 		[ C(RESULT_ACCESS) ] = -1,
1006 		[ C(RESULT_MISS)   ] = -1,
1007 	},
1008  },
1009  [ C(BPU ) ] = {
1010 	[ C(OP_READ) ] = {
1011 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1012 		[ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1013 	},
1014 	[ C(OP_WRITE) ] = {
1015 		[ C(RESULT_ACCESS) ] = -1,
1016 		[ C(RESULT_MISS)   ] = -1,
1017 	},
1018 	[ C(OP_PREFETCH) ] = {
1019 		[ C(RESULT_ACCESS) ] = -1,
1020 		[ C(RESULT_MISS)   ] = -1,
1021 	},
1022  },
1023  [ C(NODE) ] = {
1024 	[ C(OP_READ) ] = {
1025 		[ C(RESULT_ACCESS) ] = 0x01b7,
1026 		[ C(RESULT_MISS)   ] = 0x01b7,
1027 	},
1028 	[ C(OP_WRITE) ] = {
1029 		[ C(RESULT_ACCESS) ] = 0x01b7,
1030 		[ C(RESULT_MISS)   ] = 0x01b7,
1031 	},
1032 	[ C(OP_PREFETCH) ] = {
1033 		[ C(RESULT_ACCESS) ] = 0x01b7,
1034 		[ C(RESULT_MISS)   ] = 0x01b7,
1035 	},
1036  },
1037 };
1038 
1039 /*
1040  * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
1041  * See IA32 SDM Vol 3B 30.6.1.3
1042  */
1043 
1044 #define NHM_DMND_DATA_RD	(1 << 0)
1045 #define NHM_DMND_RFO		(1 << 1)
1046 #define NHM_DMND_IFETCH		(1 << 2)
1047 #define NHM_DMND_WB		(1 << 3)
1048 #define NHM_PF_DATA_RD		(1 << 4)
1049 #define NHM_PF_DATA_RFO		(1 << 5)
1050 #define NHM_PF_IFETCH		(1 << 6)
1051 #define NHM_OFFCORE_OTHER	(1 << 7)
1052 #define NHM_UNCORE_HIT		(1 << 8)
1053 #define NHM_OTHER_CORE_HIT_SNP	(1 << 9)
1054 #define NHM_OTHER_CORE_HITM	(1 << 10)
1055         			/* reserved */
1056 #define NHM_REMOTE_CACHE_FWD	(1 << 12)
1057 #define NHM_REMOTE_DRAM		(1 << 13)
1058 #define NHM_LOCAL_DRAM		(1 << 14)
1059 #define NHM_NON_DRAM		(1 << 15)
1060 
1061 #define NHM_LOCAL		(NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
1062 #define NHM_REMOTE		(NHM_REMOTE_DRAM)
1063 
1064 #define NHM_DMND_READ		(NHM_DMND_DATA_RD)
1065 #define NHM_DMND_WRITE		(NHM_DMND_RFO|NHM_DMND_WB)
1066 #define NHM_DMND_PREFETCH	(NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
1067 
1068 #define NHM_L3_HIT	(NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
1069 #define NHM_L3_MISS	(NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
1070 #define NHM_L3_ACCESS	(NHM_L3_HIT|NHM_L3_MISS)
1071 
1072 static __initconst const u64 nehalem_hw_cache_extra_regs
1073 				[PERF_COUNT_HW_CACHE_MAX]
1074 				[PERF_COUNT_HW_CACHE_OP_MAX]
1075 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1076 {
1077  [ C(LL  ) ] = {
1078 	[ C(OP_READ) ] = {
1079 		[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
1080 		[ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_L3_MISS,
1081 	},
1082 	[ C(OP_WRITE) ] = {
1083 		[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
1084 		[ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_L3_MISS,
1085 	},
1086 	[ C(OP_PREFETCH) ] = {
1087 		[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
1088 		[ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
1089 	},
1090  },
1091  [ C(NODE) ] = {
1092 	[ C(OP_READ) ] = {
1093 		[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
1094 		[ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_REMOTE,
1095 	},
1096 	[ C(OP_WRITE) ] = {
1097 		[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
1098 		[ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_REMOTE,
1099 	},
1100 	[ C(OP_PREFETCH) ] = {
1101 		[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
1102 		[ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_REMOTE,
1103 	},
1104  },
1105 };
1106 
1107 static __initconst const u64 nehalem_hw_cache_event_ids
1108 				[PERF_COUNT_HW_CACHE_MAX]
1109 				[PERF_COUNT_HW_CACHE_OP_MAX]
1110 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1111 {
1112  [ C(L1D) ] = {
1113 	[ C(OP_READ) ] = {
1114 		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1115 		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
1116 	},
1117 	[ C(OP_WRITE) ] = {
1118 		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1119 		[ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
1120 	},
1121 	[ C(OP_PREFETCH) ] = {
1122 		[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
1123 		[ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
1124 	},
1125  },
1126  [ C(L1I ) ] = {
1127 	[ C(OP_READ) ] = {
1128 		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
1129 		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
1130 	},
1131 	[ C(OP_WRITE) ] = {
1132 		[ C(RESULT_ACCESS) ] = -1,
1133 		[ C(RESULT_MISS)   ] = -1,
1134 	},
1135 	[ C(OP_PREFETCH) ] = {
1136 		[ C(RESULT_ACCESS) ] = 0x0,
1137 		[ C(RESULT_MISS)   ] = 0x0,
1138 	},
1139  },
1140  [ C(LL  ) ] = {
1141 	[ C(OP_READ) ] = {
1142 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1143 		[ C(RESULT_ACCESS) ] = 0x01b7,
1144 		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1145 		[ C(RESULT_MISS)   ] = 0x01b7,
1146 	},
1147 	/*
1148 	 * Use RFO, not WRITEBACK, because a write miss would typically occur
1149 	 * on RFO.
1150 	 */
1151 	[ C(OP_WRITE) ] = {
1152 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1153 		[ C(RESULT_ACCESS) ] = 0x01b7,
1154 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1155 		[ C(RESULT_MISS)   ] = 0x01b7,
1156 	},
1157 	[ C(OP_PREFETCH) ] = {
1158 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1159 		[ C(RESULT_ACCESS) ] = 0x01b7,
1160 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1161 		[ C(RESULT_MISS)   ] = 0x01b7,
1162 	},
1163  },
1164  [ C(DTLB) ] = {
1165 	[ C(OP_READ) ] = {
1166 		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI   (alias)  */
1167 		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
1168 	},
1169 	[ C(OP_WRITE) ] = {
1170 		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI   (alias)  */
1171 		[ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
1172 	},
1173 	[ C(OP_PREFETCH) ] = {
1174 		[ C(RESULT_ACCESS) ] = 0x0,
1175 		[ C(RESULT_MISS)   ] = 0x0,
1176 	},
1177  },
1178  [ C(ITLB) ] = {
1179 	[ C(OP_READ) ] = {
1180 		[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
1181 		[ C(RESULT_MISS)   ] = 0x20c8, /* ITLB_MISS_RETIRED            */
1182 	},
1183 	[ C(OP_WRITE) ] = {
1184 		[ C(RESULT_ACCESS) ] = -1,
1185 		[ C(RESULT_MISS)   ] = -1,
1186 	},
1187 	[ C(OP_PREFETCH) ] = {
1188 		[ C(RESULT_ACCESS) ] = -1,
1189 		[ C(RESULT_MISS)   ] = -1,
1190 	},
1191  },
1192  [ C(BPU ) ] = {
1193 	[ C(OP_READ) ] = {
1194 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1195 		[ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1196 	},
1197 	[ C(OP_WRITE) ] = {
1198 		[ C(RESULT_ACCESS) ] = -1,
1199 		[ C(RESULT_MISS)   ] = -1,
1200 	},
1201 	[ C(OP_PREFETCH) ] = {
1202 		[ C(RESULT_ACCESS) ] = -1,
1203 		[ C(RESULT_MISS)   ] = -1,
1204 	},
1205  },
1206  [ C(NODE) ] = {
1207 	[ C(OP_READ) ] = {
1208 		[ C(RESULT_ACCESS) ] = 0x01b7,
1209 		[ C(RESULT_MISS)   ] = 0x01b7,
1210 	},
1211 	[ C(OP_WRITE) ] = {
1212 		[ C(RESULT_ACCESS) ] = 0x01b7,
1213 		[ C(RESULT_MISS)   ] = 0x01b7,
1214 	},
1215 	[ C(OP_PREFETCH) ] = {
1216 		[ C(RESULT_ACCESS) ] = 0x01b7,
1217 		[ C(RESULT_MISS)   ] = 0x01b7,
1218 	},
1219  },
1220 };
1221 
1222 static __initconst const u64 core2_hw_cache_event_ids
1223 				[PERF_COUNT_HW_CACHE_MAX]
1224 				[PERF_COUNT_HW_CACHE_OP_MAX]
1225 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1226 {
1227  [ C(L1D) ] = {
1228 	[ C(OP_READ) ] = {
1229 		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI          */
1230 		[ C(RESULT_MISS)   ] = 0x0140, /* L1D_CACHE_LD.I_STATE       */
1231 	},
1232 	[ C(OP_WRITE) ] = {
1233 		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI          */
1234 		[ C(RESULT_MISS)   ] = 0x0141, /* L1D_CACHE_ST.I_STATE       */
1235 	},
1236 	[ C(OP_PREFETCH) ] = {
1237 		[ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS      */
1238 		[ C(RESULT_MISS)   ] = 0,
1239 	},
1240  },
1241  [ C(L1I ) ] = {
1242 	[ C(OP_READ) ] = {
1243 		[ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS                  */
1244 		[ C(RESULT_MISS)   ] = 0x0081, /* L1I.MISSES                 */
1245 	},
1246 	[ C(OP_WRITE) ] = {
1247 		[ C(RESULT_ACCESS) ] = -1,
1248 		[ C(RESULT_MISS)   ] = -1,
1249 	},
1250 	[ C(OP_PREFETCH) ] = {
1251 		[ C(RESULT_ACCESS) ] = 0,
1252 		[ C(RESULT_MISS)   ] = 0,
1253 	},
1254  },
1255  [ C(LL  ) ] = {
1256 	[ C(OP_READ) ] = {
1257 		[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1258 		[ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1259 	},
1260 	[ C(OP_WRITE) ] = {
1261 		[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1262 		[ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1263 	},
1264 	[ C(OP_PREFETCH) ] = {
1265 		[ C(RESULT_ACCESS) ] = 0,
1266 		[ C(RESULT_MISS)   ] = 0,
1267 	},
1268  },
1269  [ C(DTLB) ] = {
1270 	[ C(OP_READ) ] = {
1271 		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI  (alias) */
1272 		[ C(RESULT_MISS)   ] = 0x0208, /* DTLB_MISSES.MISS_LD        */
1273 	},
1274 	[ C(OP_WRITE) ] = {
1275 		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI  (alias) */
1276 		[ C(RESULT_MISS)   ] = 0x0808, /* DTLB_MISSES.MISS_ST        */
1277 	},
1278 	[ C(OP_PREFETCH) ] = {
1279 		[ C(RESULT_ACCESS) ] = 0,
1280 		[ C(RESULT_MISS)   ] = 0,
1281 	},
1282  },
1283  [ C(ITLB) ] = {
1284 	[ C(OP_READ) ] = {
1285 		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1286 		[ C(RESULT_MISS)   ] = 0x1282, /* ITLBMISSES                 */
1287 	},
1288 	[ C(OP_WRITE) ] = {
1289 		[ C(RESULT_ACCESS) ] = -1,
1290 		[ C(RESULT_MISS)   ] = -1,
1291 	},
1292 	[ C(OP_PREFETCH) ] = {
1293 		[ C(RESULT_ACCESS) ] = -1,
1294 		[ C(RESULT_MISS)   ] = -1,
1295 	},
1296  },
1297  [ C(BPU ) ] = {
1298 	[ C(OP_READ) ] = {
1299 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1300 		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1301 	},
1302 	[ C(OP_WRITE) ] = {
1303 		[ C(RESULT_ACCESS) ] = -1,
1304 		[ C(RESULT_MISS)   ] = -1,
1305 	},
1306 	[ C(OP_PREFETCH) ] = {
1307 		[ C(RESULT_ACCESS) ] = -1,
1308 		[ C(RESULT_MISS)   ] = -1,
1309 	},
1310  },
1311 };
1312 
1313 static __initconst const u64 atom_hw_cache_event_ids
1314 				[PERF_COUNT_HW_CACHE_MAX]
1315 				[PERF_COUNT_HW_CACHE_OP_MAX]
1316 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1317 {
1318  [ C(L1D) ] = {
1319 	[ C(OP_READ) ] = {
1320 		[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD               */
1321 		[ C(RESULT_MISS)   ] = 0,
1322 	},
1323 	[ C(OP_WRITE) ] = {
1324 		[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST               */
1325 		[ C(RESULT_MISS)   ] = 0,
1326 	},
1327 	[ C(OP_PREFETCH) ] = {
1328 		[ C(RESULT_ACCESS) ] = 0x0,
1329 		[ C(RESULT_MISS)   ] = 0,
1330 	},
1331  },
1332  [ C(L1I ) ] = {
1333 	[ C(OP_READ) ] = {
1334 		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                  */
1335 		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                 */
1336 	},
1337 	[ C(OP_WRITE) ] = {
1338 		[ C(RESULT_ACCESS) ] = -1,
1339 		[ C(RESULT_MISS)   ] = -1,
1340 	},
1341 	[ C(OP_PREFETCH) ] = {
1342 		[ C(RESULT_ACCESS) ] = 0,
1343 		[ C(RESULT_MISS)   ] = 0,
1344 	},
1345  },
1346  [ C(LL  ) ] = {
1347 	[ C(OP_READ) ] = {
1348 		[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1349 		[ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1350 	},
1351 	[ C(OP_WRITE) ] = {
1352 		[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1353 		[ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1354 	},
1355 	[ C(OP_PREFETCH) ] = {
1356 		[ C(RESULT_ACCESS) ] = 0,
1357 		[ C(RESULT_MISS)   ] = 0,
1358 	},
1359  },
1360  [ C(DTLB) ] = {
1361 	[ C(OP_READ) ] = {
1362 		[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI  (alias) */
1363 		[ C(RESULT_MISS)   ] = 0x0508, /* DTLB_MISSES.MISS_LD        */
1364 	},
1365 	[ C(OP_WRITE) ] = {
1366 		[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI  (alias) */
1367 		[ C(RESULT_MISS)   ] = 0x0608, /* DTLB_MISSES.MISS_ST        */
1368 	},
1369 	[ C(OP_PREFETCH) ] = {
1370 		[ C(RESULT_ACCESS) ] = 0,
1371 		[ C(RESULT_MISS)   ] = 0,
1372 	},
1373  },
1374  [ C(ITLB) ] = {
1375 	[ C(OP_READ) ] = {
1376 		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1377 		[ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES                */
1378 	},
1379 	[ C(OP_WRITE) ] = {
1380 		[ C(RESULT_ACCESS) ] = -1,
1381 		[ C(RESULT_MISS)   ] = -1,
1382 	},
1383 	[ C(OP_PREFETCH) ] = {
1384 		[ C(RESULT_ACCESS) ] = -1,
1385 		[ C(RESULT_MISS)   ] = -1,
1386 	},
1387  },
1388  [ C(BPU ) ] = {
1389 	[ C(OP_READ) ] = {
1390 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1391 		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1392 	},
1393 	[ C(OP_WRITE) ] = {
1394 		[ C(RESULT_ACCESS) ] = -1,
1395 		[ C(RESULT_MISS)   ] = -1,
1396 	},
1397 	[ C(OP_PREFETCH) ] = {
1398 		[ C(RESULT_ACCESS) ] = -1,
1399 		[ C(RESULT_MISS)   ] = -1,
1400 	},
1401  },
1402 };
1403 
1404 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_slm, "event=0x3c");
1405 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_slm, "2");
1406 /* no_alloc_cycles.not_delivered */
1407 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_slm,
1408 	       "event=0xca,umask=0x50");
1409 EVENT_ATTR_STR(topdown-fetch-bubbles.scale, td_fetch_bubbles_scale_slm, "2");
1410 /* uops_retired.all */
1411 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_slm,
1412 	       "event=0xc2,umask=0x10");
1413 /* uops_retired.all */
1414 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_slm,
1415 	       "event=0xc2,umask=0x10");
1416 
1417 static struct attribute *slm_events_attrs[] = {
1418 	EVENT_PTR(td_total_slots_slm),
1419 	EVENT_PTR(td_total_slots_scale_slm),
1420 	EVENT_PTR(td_fetch_bubbles_slm),
1421 	EVENT_PTR(td_fetch_bubbles_scale_slm),
1422 	EVENT_PTR(td_slots_issued_slm),
1423 	EVENT_PTR(td_slots_retired_slm),
1424 	NULL
1425 };
1426 
1427 static struct extra_reg intel_slm_extra_regs[] __read_mostly =
1428 {
1429 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1430 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
1431 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1),
1432 	EVENT_EXTRA_END
1433 };
1434 
1435 #define SLM_DMND_READ		SNB_DMND_DATA_RD
1436 #define SLM_DMND_WRITE		SNB_DMND_RFO
1437 #define SLM_DMND_PREFETCH	(SNB_PF_DATA_RD|SNB_PF_RFO)
1438 
1439 #define SLM_SNP_ANY		(SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
1440 #define SLM_LLC_ACCESS		SNB_RESP_ANY
1441 #define SLM_LLC_MISS		(SLM_SNP_ANY|SNB_NON_DRAM)
1442 
1443 static __initconst const u64 slm_hw_cache_extra_regs
1444 				[PERF_COUNT_HW_CACHE_MAX]
1445 				[PERF_COUNT_HW_CACHE_OP_MAX]
1446 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1447 {
1448  [ C(LL  ) ] = {
1449 	[ C(OP_READ) ] = {
1450 		[ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
1451 		[ C(RESULT_MISS)   ] = 0,
1452 	},
1453 	[ C(OP_WRITE) ] = {
1454 		[ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
1455 		[ C(RESULT_MISS)   ] = SLM_DMND_WRITE|SLM_LLC_MISS,
1456 	},
1457 	[ C(OP_PREFETCH) ] = {
1458 		[ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
1459 		[ C(RESULT_MISS)   ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
1460 	},
1461  },
1462 };
1463 
1464 static __initconst const u64 slm_hw_cache_event_ids
1465 				[PERF_COUNT_HW_CACHE_MAX]
1466 				[PERF_COUNT_HW_CACHE_OP_MAX]
1467 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1468 {
1469  [ C(L1D) ] = {
1470 	[ C(OP_READ) ] = {
1471 		[ C(RESULT_ACCESS) ] = 0,
1472 		[ C(RESULT_MISS)   ] = 0x0104, /* LD_DCU_MISS */
1473 	},
1474 	[ C(OP_WRITE) ] = {
1475 		[ C(RESULT_ACCESS) ] = 0,
1476 		[ C(RESULT_MISS)   ] = 0,
1477 	},
1478 	[ C(OP_PREFETCH) ] = {
1479 		[ C(RESULT_ACCESS) ] = 0,
1480 		[ C(RESULT_MISS)   ] = 0,
1481 	},
1482  },
1483  [ C(L1I ) ] = {
1484 	[ C(OP_READ) ] = {
1485 		[ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
1486 		[ C(RESULT_MISS)   ] = 0x0280, /* ICACGE.MISSES */
1487 	},
1488 	[ C(OP_WRITE) ] = {
1489 		[ C(RESULT_ACCESS) ] = -1,
1490 		[ C(RESULT_MISS)   ] = -1,
1491 	},
1492 	[ C(OP_PREFETCH) ] = {
1493 		[ C(RESULT_ACCESS) ] = 0,
1494 		[ C(RESULT_MISS)   ] = 0,
1495 	},
1496  },
1497  [ C(LL  ) ] = {
1498 	[ C(OP_READ) ] = {
1499 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1500 		[ C(RESULT_ACCESS) ] = 0x01b7,
1501 		[ C(RESULT_MISS)   ] = 0,
1502 	},
1503 	[ C(OP_WRITE) ] = {
1504 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1505 		[ C(RESULT_ACCESS) ] = 0x01b7,
1506 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1507 		[ C(RESULT_MISS)   ] = 0x01b7,
1508 	},
1509 	[ C(OP_PREFETCH) ] = {
1510 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1511 		[ C(RESULT_ACCESS) ] = 0x01b7,
1512 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1513 		[ C(RESULT_MISS)   ] = 0x01b7,
1514 	},
1515  },
1516  [ C(DTLB) ] = {
1517 	[ C(OP_READ) ] = {
1518 		[ C(RESULT_ACCESS) ] = 0,
1519 		[ C(RESULT_MISS)   ] = 0x0804, /* LD_DTLB_MISS */
1520 	},
1521 	[ C(OP_WRITE) ] = {
1522 		[ C(RESULT_ACCESS) ] = 0,
1523 		[ C(RESULT_MISS)   ] = 0,
1524 	},
1525 	[ C(OP_PREFETCH) ] = {
1526 		[ C(RESULT_ACCESS) ] = 0,
1527 		[ C(RESULT_MISS)   ] = 0,
1528 	},
1529  },
1530  [ C(ITLB) ] = {
1531 	[ C(OP_READ) ] = {
1532 		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1533 		[ C(RESULT_MISS)   ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
1534 	},
1535 	[ C(OP_WRITE) ] = {
1536 		[ C(RESULT_ACCESS) ] = -1,
1537 		[ C(RESULT_MISS)   ] = -1,
1538 	},
1539 	[ C(OP_PREFETCH) ] = {
1540 		[ C(RESULT_ACCESS) ] = -1,
1541 		[ C(RESULT_MISS)   ] = -1,
1542 	},
1543  },
1544  [ C(BPU ) ] = {
1545 	[ C(OP_READ) ] = {
1546 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1547 		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1548 	},
1549 	[ C(OP_WRITE) ] = {
1550 		[ C(RESULT_ACCESS) ] = -1,
1551 		[ C(RESULT_MISS)   ] = -1,
1552 	},
1553 	[ C(OP_PREFETCH) ] = {
1554 		[ C(RESULT_ACCESS) ] = -1,
1555 		[ C(RESULT_MISS)   ] = -1,
1556 	},
1557  },
1558 };
1559 
1560 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_glm, "event=0x3c");
1561 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_glm, "3");
1562 /* UOPS_NOT_DELIVERED.ANY */
1563 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_glm, "event=0x9c");
1564 /* ISSUE_SLOTS_NOT_CONSUMED.RECOVERY */
1565 EVENT_ATTR_STR(topdown-recovery-bubbles, td_recovery_bubbles_glm, "event=0xca,umask=0x02");
1566 /* UOPS_RETIRED.ANY */
1567 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_glm, "event=0xc2");
1568 /* UOPS_ISSUED.ANY */
1569 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_glm, "event=0x0e");
1570 
1571 static struct attribute *glm_events_attrs[] = {
1572 	EVENT_PTR(td_total_slots_glm),
1573 	EVENT_PTR(td_total_slots_scale_glm),
1574 	EVENT_PTR(td_fetch_bubbles_glm),
1575 	EVENT_PTR(td_recovery_bubbles_glm),
1576 	EVENT_PTR(td_slots_issued_glm),
1577 	EVENT_PTR(td_slots_retired_glm),
1578 	NULL
1579 };
1580 
1581 static struct extra_reg intel_glm_extra_regs[] __read_mostly = {
1582 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1583 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x760005ffbfull, RSP_0),
1584 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x360005ffbfull, RSP_1),
1585 	EVENT_EXTRA_END
1586 };
1587 
1588 #define GLM_DEMAND_DATA_RD		BIT_ULL(0)
1589 #define GLM_DEMAND_RFO			BIT_ULL(1)
1590 #define GLM_ANY_RESPONSE		BIT_ULL(16)
1591 #define GLM_SNP_NONE_OR_MISS		BIT_ULL(33)
1592 #define GLM_DEMAND_READ			GLM_DEMAND_DATA_RD
1593 #define GLM_DEMAND_WRITE		GLM_DEMAND_RFO
1594 #define GLM_DEMAND_PREFETCH		(SNB_PF_DATA_RD|SNB_PF_RFO)
1595 #define GLM_LLC_ACCESS			GLM_ANY_RESPONSE
1596 #define GLM_SNP_ANY			(GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM)
1597 #define GLM_LLC_MISS			(GLM_SNP_ANY|SNB_NON_DRAM)
1598 
1599 static __initconst const u64 glm_hw_cache_event_ids
1600 				[PERF_COUNT_HW_CACHE_MAX]
1601 				[PERF_COUNT_HW_CACHE_OP_MAX]
1602 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1603 	[C(L1D)] = {
1604 		[C(OP_READ)] = {
1605 			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1606 			[C(RESULT_MISS)]	= 0x0,
1607 		},
1608 		[C(OP_WRITE)] = {
1609 			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1610 			[C(RESULT_MISS)]	= 0x0,
1611 		},
1612 		[C(OP_PREFETCH)] = {
1613 			[C(RESULT_ACCESS)]	= 0x0,
1614 			[C(RESULT_MISS)]	= 0x0,
1615 		},
1616 	},
1617 	[C(L1I)] = {
1618 		[C(OP_READ)] = {
1619 			[C(RESULT_ACCESS)]	= 0x0380,	/* ICACHE.ACCESSES */
1620 			[C(RESULT_MISS)]	= 0x0280,	/* ICACHE.MISSES */
1621 		},
1622 		[C(OP_WRITE)] = {
1623 			[C(RESULT_ACCESS)]	= -1,
1624 			[C(RESULT_MISS)]	= -1,
1625 		},
1626 		[C(OP_PREFETCH)] = {
1627 			[C(RESULT_ACCESS)]	= 0x0,
1628 			[C(RESULT_MISS)]	= 0x0,
1629 		},
1630 	},
1631 	[C(LL)] = {
1632 		[C(OP_READ)] = {
1633 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1634 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1635 		},
1636 		[C(OP_WRITE)] = {
1637 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1638 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1639 		},
1640 		[C(OP_PREFETCH)] = {
1641 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1642 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1643 		},
1644 	},
1645 	[C(DTLB)] = {
1646 		[C(OP_READ)] = {
1647 			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1648 			[C(RESULT_MISS)]	= 0x0,
1649 		},
1650 		[C(OP_WRITE)] = {
1651 			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1652 			[C(RESULT_MISS)]	= 0x0,
1653 		},
1654 		[C(OP_PREFETCH)] = {
1655 			[C(RESULT_ACCESS)]	= 0x0,
1656 			[C(RESULT_MISS)]	= 0x0,
1657 		},
1658 	},
1659 	[C(ITLB)] = {
1660 		[C(OP_READ)] = {
1661 			[C(RESULT_ACCESS)]	= 0x00c0,	/* INST_RETIRED.ANY_P */
1662 			[C(RESULT_MISS)]	= 0x0481,	/* ITLB.MISS */
1663 		},
1664 		[C(OP_WRITE)] = {
1665 			[C(RESULT_ACCESS)]	= -1,
1666 			[C(RESULT_MISS)]	= -1,
1667 		},
1668 		[C(OP_PREFETCH)] = {
1669 			[C(RESULT_ACCESS)]	= -1,
1670 			[C(RESULT_MISS)]	= -1,
1671 		},
1672 	},
1673 	[C(BPU)] = {
1674 		[C(OP_READ)] = {
1675 			[C(RESULT_ACCESS)]	= 0x00c4,	/* BR_INST_RETIRED.ALL_BRANCHES */
1676 			[C(RESULT_MISS)]	= 0x00c5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
1677 		},
1678 		[C(OP_WRITE)] = {
1679 			[C(RESULT_ACCESS)]	= -1,
1680 			[C(RESULT_MISS)]	= -1,
1681 		},
1682 		[C(OP_PREFETCH)] = {
1683 			[C(RESULT_ACCESS)]	= -1,
1684 			[C(RESULT_MISS)]	= -1,
1685 		},
1686 	},
1687 };
1688 
1689 static __initconst const u64 glm_hw_cache_extra_regs
1690 				[PERF_COUNT_HW_CACHE_MAX]
1691 				[PERF_COUNT_HW_CACHE_OP_MAX]
1692 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1693 	[C(LL)] = {
1694 		[C(OP_READ)] = {
1695 			[C(RESULT_ACCESS)]	= GLM_DEMAND_READ|
1696 						  GLM_LLC_ACCESS,
1697 			[C(RESULT_MISS)]	= GLM_DEMAND_READ|
1698 						  GLM_LLC_MISS,
1699 		},
1700 		[C(OP_WRITE)] = {
1701 			[C(RESULT_ACCESS)]	= GLM_DEMAND_WRITE|
1702 						  GLM_LLC_ACCESS,
1703 			[C(RESULT_MISS)]	= GLM_DEMAND_WRITE|
1704 						  GLM_LLC_MISS,
1705 		},
1706 		[C(OP_PREFETCH)] = {
1707 			[C(RESULT_ACCESS)]	= GLM_DEMAND_PREFETCH|
1708 						  GLM_LLC_ACCESS,
1709 			[C(RESULT_MISS)]	= GLM_DEMAND_PREFETCH|
1710 						  GLM_LLC_MISS,
1711 		},
1712 	},
1713 };
1714 
1715 static __initconst const u64 glp_hw_cache_event_ids
1716 				[PERF_COUNT_HW_CACHE_MAX]
1717 				[PERF_COUNT_HW_CACHE_OP_MAX]
1718 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1719 	[C(L1D)] = {
1720 		[C(OP_READ)] = {
1721 			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1722 			[C(RESULT_MISS)]	= 0x0,
1723 		},
1724 		[C(OP_WRITE)] = {
1725 			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1726 			[C(RESULT_MISS)]	= 0x0,
1727 		},
1728 		[C(OP_PREFETCH)] = {
1729 			[C(RESULT_ACCESS)]	= 0x0,
1730 			[C(RESULT_MISS)]	= 0x0,
1731 		},
1732 	},
1733 	[C(L1I)] = {
1734 		[C(OP_READ)] = {
1735 			[C(RESULT_ACCESS)]	= 0x0380,	/* ICACHE.ACCESSES */
1736 			[C(RESULT_MISS)]	= 0x0280,	/* ICACHE.MISSES */
1737 		},
1738 		[C(OP_WRITE)] = {
1739 			[C(RESULT_ACCESS)]	= -1,
1740 			[C(RESULT_MISS)]	= -1,
1741 		},
1742 		[C(OP_PREFETCH)] = {
1743 			[C(RESULT_ACCESS)]	= 0x0,
1744 			[C(RESULT_MISS)]	= 0x0,
1745 		},
1746 	},
1747 	[C(LL)] = {
1748 		[C(OP_READ)] = {
1749 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1750 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1751 		},
1752 		[C(OP_WRITE)] = {
1753 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1754 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1755 		},
1756 		[C(OP_PREFETCH)] = {
1757 			[C(RESULT_ACCESS)]	= 0x0,
1758 			[C(RESULT_MISS)]	= 0x0,
1759 		},
1760 	},
1761 	[C(DTLB)] = {
1762 		[C(OP_READ)] = {
1763 			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1764 			[C(RESULT_MISS)]	= 0xe08,	/* DTLB_LOAD_MISSES.WALK_COMPLETED */
1765 		},
1766 		[C(OP_WRITE)] = {
1767 			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1768 			[C(RESULT_MISS)]	= 0xe49,	/* DTLB_STORE_MISSES.WALK_COMPLETED */
1769 		},
1770 		[C(OP_PREFETCH)] = {
1771 			[C(RESULT_ACCESS)]	= 0x0,
1772 			[C(RESULT_MISS)]	= 0x0,
1773 		},
1774 	},
1775 	[C(ITLB)] = {
1776 		[C(OP_READ)] = {
1777 			[C(RESULT_ACCESS)]	= 0x00c0,	/* INST_RETIRED.ANY_P */
1778 			[C(RESULT_MISS)]	= 0x0481,	/* ITLB.MISS */
1779 		},
1780 		[C(OP_WRITE)] = {
1781 			[C(RESULT_ACCESS)]	= -1,
1782 			[C(RESULT_MISS)]	= -1,
1783 		},
1784 		[C(OP_PREFETCH)] = {
1785 			[C(RESULT_ACCESS)]	= -1,
1786 			[C(RESULT_MISS)]	= -1,
1787 		},
1788 	},
1789 	[C(BPU)] = {
1790 		[C(OP_READ)] = {
1791 			[C(RESULT_ACCESS)]	= 0x00c4,	/* BR_INST_RETIRED.ALL_BRANCHES */
1792 			[C(RESULT_MISS)]	= 0x00c5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
1793 		},
1794 		[C(OP_WRITE)] = {
1795 			[C(RESULT_ACCESS)]	= -1,
1796 			[C(RESULT_MISS)]	= -1,
1797 		},
1798 		[C(OP_PREFETCH)] = {
1799 			[C(RESULT_ACCESS)]	= -1,
1800 			[C(RESULT_MISS)]	= -1,
1801 		},
1802 	},
1803 };
1804 
1805 static __initconst const u64 glp_hw_cache_extra_regs
1806 				[PERF_COUNT_HW_CACHE_MAX]
1807 				[PERF_COUNT_HW_CACHE_OP_MAX]
1808 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1809 	[C(LL)] = {
1810 		[C(OP_READ)] = {
1811 			[C(RESULT_ACCESS)]	= GLM_DEMAND_READ|
1812 						  GLM_LLC_ACCESS,
1813 			[C(RESULT_MISS)]	= GLM_DEMAND_READ|
1814 						  GLM_LLC_MISS,
1815 		},
1816 		[C(OP_WRITE)] = {
1817 			[C(RESULT_ACCESS)]	= GLM_DEMAND_WRITE|
1818 						  GLM_LLC_ACCESS,
1819 			[C(RESULT_MISS)]	= GLM_DEMAND_WRITE|
1820 						  GLM_LLC_MISS,
1821 		},
1822 		[C(OP_PREFETCH)] = {
1823 			[C(RESULT_ACCESS)]	= 0x0,
1824 			[C(RESULT_MISS)]	= 0x0,
1825 		},
1826 	},
1827 };
1828 
1829 #define KNL_OT_L2_HITE		BIT_ULL(19) /* Other Tile L2 Hit */
1830 #define KNL_OT_L2_HITF		BIT_ULL(20) /* Other Tile L2 Hit */
1831 #define KNL_MCDRAM_LOCAL	BIT_ULL(21)
1832 #define KNL_MCDRAM_FAR		BIT_ULL(22)
1833 #define KNL_DDR_LOCAL		BIT_ULL(23)
1834 #define KNL_DDR_FAR		BIT_ULL(24)
1835 #define KNL_DRAM_ANY		(KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \
1836 				    KNL_DDR_LOCAL | KNL_DDR_FAR)
1837 #define KNL_L2_READ		SLM_DMND_READ
1838 #define KNL_L2_WRITE		SLM_DMND_WRITE
1839 #define KNL_L2_PREFETCH		SLM_DMND_PREFETCH
1840 #define KNL_L2_ACCESS		SLM_LLC_ACCESS
1841 #define KNL_L2_MISS		(KNL_OT_L2_HITE | KNL_OT_L2_HITF | \
1842 				   KNL_DRAM_ANY | SNB_SNP_ANY | \
1843 						  SNB_NON_DRAM)
1844 
1845 static __initconst const u64 knl_hw_cache_extra_regs
1846 				[PERF_COUNT_HW_CACHE_MAX]
1847 				[PERF_COUNT_HW_CACHE_OP_MAX]
1848 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1849 	[C(LL)] = {
1850 		[C(OP_READ)] = {
1851 			[C(RESULT_ACCESS)] = KNL_L2_READ | KNL_L2_ACCESS,
1852 			[C(RESULT_MISS)]   = 0,
1853 		},
1854 		[C(OP_WRITE)] = {
1855 			[C(RESULT_ACCESS)] = KNL_L2_WRITE | KNL_L2_ACCESS,
1856 			[C(RESULT_MISS)]   = KNL_L2_WRITE | KNL_L2_MISS,
1857 		},
1858 		[C(OP_PREFETCH)] = {
1859 			[C(RESULT_ACCESS)] = KNL_L2_PREFETCH | KNL_L2_ACCESS,
1860 			[C(RESULT_MISS)]   = KNL_L2_PREFETCH | KNL_L2_MISS,
1861 		},
1862 	},
1863 };
1864 
1865 /*
1866  * Used from PMIs where the LBRs are already disabled.
1867  *
1868  * This function could be called consecutively. It is required to remain in
1869  * disabled state if called consecutively.
1870  *
1871  * During consecutive calls, the same disable value will be written to related
1872  * registers, so the PMU state remains unchanged.
1873  *
1874  * intel_bts events don't coexist with intel PMU's BTS events because of
1875  * x86_add_exclusive(x86_lbr_exclusive_lbr); there's no need to keep them
1876  * disabled around intel PMU's event batching etc, only inside the PMI handler.
1877  */
1878 static void __intel_pmu_disable_all(void)
1879 {
1880 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1881 
1882 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
1883 
1884 	if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
1885 		intel_pmu_disable_bts();
1886 
1887 	intel_pmu_pebs_disable_all();
1888 }
1889 
1890 static void intel_pmu_disable_all(void)
1891 {
1892 	__intel_pmu_disable_all();
1893 	intel_pmu_lbr_disable_all();
1894 }
1895 
1896 static void __intel_pmu_enable_all(int added, bool pmi)
1897 {
1898 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1899 
1900 	intel_pmu_pebs_enable_all();
1901 	intel_pmu_lbr_enable_all(pmi);
1902 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
1903 			x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
1904 
1905 	if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
1906 		struct perf_event *event =
1907 			cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
1908 
1909 		if (WARN_ON_ONCE(!event))
1910 			return;
1911 
1912 		intel_pmu_enable_bts(event->hw.config);
1913 	}
1914 }
1915 
1916 static void intel_pmu_enable_all(int added)
1917 {
1918 	__intel_pmu_enable_all(added, false);
1919 }
1920 
1921 /*
1922  * Workaround for:
1923  *   Intel Errata AAK100 (model 26)
1924  *   Intel Errata AAP53  (model 30)
1925  *   Intel Errata BD53   (model 44)
1926  *
1927  * The official story:
1928  *   These chips need to be 'reset' when adding counters by programming the
1929  *   magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
1930  *   in sequence on the same PMC or on different PMCs.
1931  *
1932  * In practise it appears some of these events do in fact count, and
1933  * we need to programm all 4 events.
1934  */
1935 static void intel_pmu_nhm_workaround(void)
1936 {
1937 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1938 	static const unsigned long nhm_magic[4] = {
1939 		0x4300B5,
1940 		0x4300D2,
1941 		0x4300B1,
1942 		0x4300B1
1943 	};
1944 	struct perf_event *event;
1945 	int i;
1946 
1947 	/*
1948 	 * The Errata requires below steps:
1949 	 * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
1950 	 * 2) Configure 4 PERFEVTSELx with the magic events and clear
1951 	 *    the corresponding PMCx;
1952 	 * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
1953 	 * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
1954 	 * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
1955 	 */
1956 
1957 	/*
1958 	 * The real steps we choose are a little different from above.
1959 	 * A) To reduce MSR operations, we don't run step 1) as they
1960 	 *    are already cleared before this function is called;
1961 	 * B) Call x86_perf_event_update to save PMCx before configuring
1962 	 *    PERFEVTSELx with magic number;
1963 	 * C) With step 5), we do clear only when the PERFEVTSELx is
1964 	 *    not used currently.
1965 	 * D) Call x86_perf_event_set_period to restore PMCx;
1966 	 */
1967 
1968 	/* We always operate 4 pairs of PERF Counters */
1969 	for (i = 0; i < 4; i++) {
1970 		event = cpuc->events[i];
1971 		if (event)
1972 			x86_perf_event_update(event);
1973 	}
1974 
1975 	for (i = 0; i < 4; i++) {
1976 		wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
1977 		wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
1978 	}
1979 
1980 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
1981 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
1982 
1983 	for (i = 0; i < 4; i++) {
1984 		event = cpuc->events[i];
1985 
1986 		if (event) {
1987 			x86_perf_event_set_period(event);
1988 			__x86_pmu_enable_event(&event->hw,
1989 					ARCH_PERFMON_EVENTSEL_ENABLE);
1990 		} else
1991 			wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
1992 	}
1993 }
1994 
1995 static void intel_pmu_nhm_enable_all(int added)
1996 {
1997 	if (added)
1998 		intel_pmu_nhm_workaround();
1999 	intel_pmu_enable_all(added);
2000 }
2001 
2002 static void enable_counter_freeze(void)
2003 {
2004 	update_debugctlmsr(get_debugctlmsr() |
2005 			DEBUGCTLMSR_FREEZE_PERFMON_ON_PMI);
2006 }
2007 
2008 static void disable_counter_freeze(void)
2009 {
2010 	update_debugctlmsr(get_debugctlmsr() &
2011 			~DEBUGCTLMSR_FREEZE_PERFMON_ON_PMI);
2012 }
2013 
2014 static inline u64 intel_pmu_get_status(void)
2015 {
2016 	u64 status;
2017 
2018 	rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
2019 
2020 	return status;
2021 }
2022 
2023 static inline void intel_pmu_ack_status(u64 ack)
2024 {
2025 	wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
2026 }
2027 
2028 static void intel_pmu_disable_fixed(struct hw_perf_event *hwc)
2029 {
2030 	int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
2031 	u64 ctrl_val, mask;
2032 
2033 	mask = 0xfULL << (idx * 4);
2034 
2035 	rdmsrl(hwc->config_base, ctrl_val);
2036 	ctrl_val &= ~mask;
2037 	wrmsrl(hwc->config_base, ctrl_val);
2038 }
2039 
2040 static inline bool event_is_checkpointed(struct perf_event *event)
2041 {
2042 	return (event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
2043 }
2044 
2045 static void intel_pmu_disable_event(struct perf_event *event)
2046 {
2047 	struct hw_perf_event *hwc = &event->hw;
2048 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2049 
2050 	if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
2051 		intel_pmu_disable_bts();
2052 		intel_pmu_drain_bts_buffer();
2053 		return;
2054 	}
2055 
2056 	cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx);
2057 	cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx);
2058 	cpuc->intel_cp_status &= ~(1ull << hwc->idx);
2059 
2060 	if (unlikely(event->attr.precise_ip))
2061 		intel_pmu_pebs_disable(event);
2062 
2063 	if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
2064 		intel_pmu_disable_fixed(hwc);
2065 		return;
2066 	}
2067 
2068 	x86_pmu_disable_event(event);
2069 }
2070 
2071 static void intel_pmu_del_event(struct perf_event *event)
2072 {
2073 	if (needs_branch_stack(event))
2074 		intel_pmu_lbr_del(event);
2075 	if (event->attr.precise_ip)
2076 		intel_pmu_pebs_del(event);
2077 }
2078 
2079 static void intel_pmu_read_event(struct perf_event *event)
2080 {
2081 	if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
2082 		intel_pmu_auto_reload_read(event);
2083 	else
2084 		x86_perf_event_update(event);
2085 }
2086 
2087 static void intel_pmu_enable_fixed(struct perf_event *event)
2088 {
2089 	struct hw_perf_event *hwc = &event->hw;
2090 	int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
2091 	u64 ctrl_val, mask, bits = 0;
2092 
2093 	/*
2094 	 * Enable IRQ generation (0x8), if not PEBS,
2095 	 * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
2096 	 * if requested:
2097 	 */
2098 	if (!event->attr.precise_ip)
2099 		bits |= 0x8;
2100 	if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
2101 		bits |= 0x2;
2102 	if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
2103 		bits |= 0x1;
2104 
2105 	/*
2106 	 * ANY bit is supported in v3 and up
2107 	 */
2108 	if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
2109 		bits |= 0x4;
2110 
2111 	bits <<= (idx * 4);
2112 	mask = 0xfULL << (idx * 4);
2113 
2114 	rdmsrl(hwc->config_base, ctrl_val);
2115 	ctrl_val &= ~mask;
2116 	ctrl_val |= bits;
2117 	wrmsrl(hwc->config_base, ctrl_val);
2118 }
2119 
2120 static void intel_pmu_enable_event(struct perf_event *event)
2121 {
2122 	struct hw_perf_event *hwc = &event->hw;
2123 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2124 
2125 	if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
2126 		if (!__this_cpu_read(cpu_hw_events.enabled))
2127 			return;
2128 
2129 		intel_pmu_enable_bts(hwc->config);
2130 		return;
2131 	}
2132 
2133 	if (event->attr.exclude_host)
2134 		cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx);
2135 	if (event->attr.exclude_guest)
2136 		cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx);
2137 
2138 	if (unlikely(event_is_checkpointed(event)))
2139 		cpuc->intel_cp_status |= (1ull << hwc->idx);
2140 
2141 	if (unlikely(event->attr.precise_ip))
2142 		intel_pmu_pebs_enable(event);
2143 
2144 	if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
2145 		intel_pmu_enable_fixed(event);
2146 		return;
2147 	}
2148 
2149 	__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
2150 }
2151 
2152 static void intel_pmu_add_event(struct perf_event *event)
2153 {
2154 	if (event->attr.precise_ip)
2155 		intel_pmu_pebs_add(event);
2156 	if (needs_branch_stack(event))
2157 		intel_pmu_lbr_add(event);
2158 }
2159 
2160 /*
2161  * Save and restart an expired event. Called by NMI contexts,
2162  * so it has to be careful about preempting normal event ops:
2163  */
2164 int intel_pmu_save_and_restart(struct perf_event *event)
2165 {
2166 	x86_perf_event_update(event);
2167 	/*
2168 	 * For a checkpointed counter always reset back to 0.  This
2169 	 * avoids a situation where the counter overflows, aborts the
2170 	 * transaction and is then set back to shortly before the
2171 	 * overflow, and overflows and aborts again.
2172 	 */
2173 	if (unlikely(event_is_checkpointed(event))) {
2174 		/* No race with NMIs because the counter should not be armed */
2175 		wrmsrl(event->hw.event_base, 0);
2176 		local64_set(&event->hw.prev_count, 0);
2177 	}
2178 	return x86_perf_event_set_period(event);
2179 }
2180 
2181 static void intel_pmu_reset(void)
2182 {
2183 	struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
2184 	unsigned long flags;
2185 	int idx;
2186 
2187 	if (!x86_pmu.num_counters)
2188 		return;
2189 
2190 	local_irq_save(flags);
2191 
2192 	pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
2193 
2194 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
2195 		wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
2196 		wrmsrl_safe(x86_pmu_event_addr(idx),  0ull);
2197 	}
2198 	for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
2199 		wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
2200 
2201 	if (ds)
2202 		ds->bts_index = ds->bts_buffer_base;
2203 
2204 	/* Ack all overflows and disable fixed counters */
2205 	if (x86_pmu.version >= 2) {
2206 		intel_pmu_ack_status(intel_pmu_get_status());
2207 		wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
2208 	}
2209 
2210 	/* Reset LBRs and LBR freezing */
2211 	if (x86_pmu.lbr_nr) {
2212 		update_debugctlmsr(get_debugctlmsr() &
2213 			~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
2214 	}
2215 
2216 	local_irq_restore(flags);
2217 }
2218 
2219 static int handle_pmi_common(struct pt_regs *regs, u64 status)
2220 {
2221 	struct perf_sample_data data;
2222 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2223 	int bit;
2224 	int handled = 0;
2225 
2226 	inc_irq_stat(apic_perf_irqs);
2227 
2228 	/*
2229 	 * Ignore a range of extra bits in status that do not indicate
2230 	 * overflow by themselves.
2231 	 */
2232 	status &= ~(GLOBAL_STATUS_COND_CHG |
2233 		    GLOBAL_STATUS_ASIF |
2234 		    GLOBAL_STATUS_LBRS_FROZEN);
2235 	if (!status)
2236 		return 0;
2237 	/*
2238 	 * In case multiple PEBS events are sampled at the same time,
2239 	 * it is possible to have GLOBAL_STATUS bit 62 set indicating
2240 	 * PEBS buffer overflow and also seeing at most 3 PEBS counters
2241 	 * having their bits set in the status register. This is a sign
2242 	 * that there was at least one PEBS record pending at the time
2243 	 * of the PMU interrupt. PEBS counters must only be processed
2244 	 * via the drain_pebs() calls and not via the regular sample
2245 	 * processing loop coming after that the function, otherwise
2246 	 * phony regular samples may be generated in the sampling buffer
2247 	 * not marked with the EXACT tag. Another possibility is to have
2248 	 * one PEBS event and at least one non-PEBS event whic hoverflows
2249 	 * while PEBS has armed. In this case, bit 62 of GLOBAL_STATUS will
2250 	 * not be set, yet the overflow status bit for the PEBS counter will
2251 	 * be on Skylake.
2252 	 *
2253 	 * To avoid this problem, we systematically ignore the PEBS-enabled
2254 	 * counters from the GLOBAL_STATUS mask and we always process PEBS
2255 	 * events via drain_pebs().
2256 	 */
2257 	if (x86_pmu.flags & PMU_FL_PEBS_ALL)
2258 		status &= ~cpuc->pebs_enabled;
2259 	else
2260 		status &= ~(cpuc->pebs_enabled & PEBS_COUNTER_MASK);
2261 
2262 	/*
2263 	 * PEBS overflow sets bit 62 in the global status register
2264 	 */
2265 	if (__test_and_clear_bit(62, (unsigned long *)&status)) {
2266 		handled++;
2267 		x86_pmu.drain_pebs(regs);
2268 		status &= x86_pmu.intel_ctrl | GLOBAL_STATUS_TRACE_TOPAPMI;
2269 	}
2270 
2271 	/*
2272 	 * Intel PT
2273 	 */
2274 	if (__test_and_clear_bit(55, (unsigned long *)&status)) {
2275 		handled++;
2276 		intel_pt_interrupt();
2277 	}
2278 
2279 	/*
2280 	 * Checkpointed counters can lead to 'spurious' PMIs because the
2281 	 * rollback caused by the PMI will have cleared the overflow status
2282 	 * bit. Therefore always force probe these counters.
2283 	 */
2284 	status |= cpuc->intel_cp_status;
2285 
2286 	for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
2287 		struct perf_event *event = cpuc->events[bit];
2288 
2289 		handled++;
2290 
2291 		if (!test_bit(bit, cpuc->active_mask))
2292 			continue;
2293 
2294 		if (!intel_pmu_save_and_restart(event))
2295 			continue;
2296 
2297 		perf_sample_data_init(&data, 0, event->hw.last_period);
2298 
2299 		if (has_branch_stack(event))
2300 			data.br_stack = &cpuc->lbr_stack;
2301 
2302 		if (perf_event_overflow(event, &data, regs))
2303 			x86_pmu_stop(event, 0);
2304 	}
2305 
2306 	return handled;
2307 }
2308 
2309 static bool disable_counter_freezing = true;
2310 static int __init intel_perf_counter_freezing_setup(char *s)
2311 {
2312 	bool res;
2313 
2314 	if (kstrtobool(s, &res))
2315 		return -EINVAL;
2316 
2317 	disable_counter_freezing = !res;
2318 	return 1;
2319 }
2320 __setup("perf_v4_pmi=", intel_perf_counter_freezing_setup);
2321 
2322 /*
2323  * Simplified handler for Arch Perfmon v4:
2324  * - We rely on counter freezing/unfreezing to enable/disable the PMU.
2325  * This is done automatically on PMU ack.
2326  * - Ack the PMU only after the APIC.
2327  */
2328 
2329 static int intel_pmu_handle_irq_v4(struct pt_regs *regs)
2330 {
2331 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2332 	int handled = 0;
2333 	bool bts = false;
2334 	u64 status;
2335 	int pmu_enabled = cpuc->enabled;
2336 	int loops = 0;
2337 
2338 	/* PMU has been disabled because of counter freezing */
2339 	cpuc->enabled = 0;
2340 	if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
2341 		bts = true;
2342 		intel_bts_disable_local();
2343 		handled = intel_pmu_drain_bts_buffer();
2344 		handled += intel_bts_interrupt();
2345 	}
2346 	status = intel_pmu_get_status();
2347 	if (!status)
2348 		goto done;
2349 again:
2350 	intel_pmu_lbr_read();
2351 	if (++loops > 100) {
2352 		static bool warned;
2353 
2354 		if (!warned) {
2355 			WARN(1, "perfevents: irq loop stuck!\n");
2356 			perf_event_print_debug();
2357 			warned = true;
2358 		}
2359 		intel_pmu_reset();
2360 		goto done;
2361 	}
2362 
2363 
2364 	handled += handle_pmi_common(regs, status);
2365 done:
2366 	/* Ack the PMI in the APIC */
2367 	apic_write(APIC_LVTPC, APIC_DM_NMI);
2368 
2369 	/*
2370 	 * The counters start counting immediately while ack the status.
2371 	 * Make it as close as possible to IRET. This avoids bogus
2372 	 * freezing on Skylake CPUs.
2373 	 */
2374 	if (status) {
2375 		intel_pmu_ack_status(status);
2376 	} else {
2377 		/*
2378 		 * CPU may issues two PMIs very close to each other.
2379 		 * When the PMI handler services the first one, the
2380 		 * GLOBAL_STATUS is already updated to reflect both.
2381 		 * When it IRETs, the second PMI is immediately
2382 		 * handled and it sees clear status. At the meantime,
2383 		 * there may be a third PMI, because the freezing bit
2384 		 * isn't set since the ack in first PMI handlers.
2385 		 * Double check if there is more work to be done.
2386 		 */
2387 		status = intel_pmu_get_status();
2388 		if (status)
2389 			goto again;
2390 	}
2391 
2392 	if (bts)
2393 		intel_bts_enable_local();
2394 	cpuc->enabled = pmu_enabled;
2395 	return handled;
2396 }
2397 
2398 /*
2399  * This handler is triggered by the local APIC, so the APIC IRQ handling
2400  * rules apply:
2401  */
2402 static int intel_pmu_handle_irq(struct pt_regs *regs)
2403 {
2404 	struct cpu_hw_events *cpuc;
2405 	int loops;
2406 	u64 status;
2407 	int handled;
2408 	int pmu_enabled;
2409 
2410 	cpuc = this_cpu_ptr(&cpu_hw_events);
2411 
2412 	/*
2413 	 * Save the PMU state.
2414 	 * It needs to be restored when leaving the handler.
2415 	 */
2416 	pmu_enabled = cpuc->enabled;
2417 	/*
2418 	 * No known reason to not always do late ACK,
2419 	 * but just in case do it opt-in.
2420 	 */
2421 	if (!x86_pmu.late_ack)
2422 		apic_write(APIC_LVTPC, APIC_DM_NMI);
2423 	intel_bts_disable_local();
2424 	cpuc->enabled = 0;
2425 	__intel_pmu_disable_all();
2426 	handled = intel_pmu_drain_bts_buffer();
2427 	handled += intel_bts_interrupt();
2428 	status = intel_pmu_get_status();
2429 	if (!status)
2430 		goto done;
2431 
2432 	loops = 0;
2433 again:
2434 	intel_pmu_lbr_read();
2435 	intel_pmu_ack_status(status);
2436 	if (++loops > 100) {
2437 		static bool warned;
2438 
2439 		if (!warned) {
2440 			WARN(1, "perfevents: irq loop stuck!\n");
2441 			perf_event_print_debug();
2442 			warned = true;
2443 		}
2444 		intel_pmu_reset();
2445 		goto done;
2446 	}
2447 
2448 	handled += handle_pmi_common(regs, status);
2449 
2450 	/*
2451 	 * Repeat if there is more work to be done:
2452 	 */
2453 	status = intel_pmu_get_status();
2454 	if (status)
2455 		goto again;
2456 
2457 done:
2458 	/* Only restore PMU state when it's active. See x86_pmu_disable(). */
2459 	cpuc->enabled = pmu_enabled;
2460 	if (pmu_enabled)
2461 		__intel_pmu_enable_all(0, true);
2462 	intel_bts_enable_local();
2463 
2464 	/*
2465 	 * Only unmask the NMI after the overflow counters
2466 	 * have been reset. This avoids spurious NMIs on
2467 	 * Haswell CPUs.
2468 	 */
2469 	if (x86_pmu.late_ack)
2470 		apic_write(APIC_LVTPC, APIC_DM_NMI);
2471 	return handled;
2472 }
2473 
2474 static struct event_constraint *
2475 intel_bts_constraints(struct perf_event *event)
2476 {
2477 	struct hw_perf_event *hwc = &event->hw;
2478 	unsigned int hw_event, bts_event;
2479 
2480 	if (event->attr.freq)
2481 		return NULL;
2482 
2483 	hw_event = hwc->config & INTEL_ARCH_EVENT_MASK;
2484 	bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
2485 
2486 	if (unlikely(hw_event == bts_event && hwc->sample_period == 1))
2487 		return &bts_constraint;
2488 
2489 	return NULL;
2490 }
2491 
2492 static int intel_alt_er(int idx, u64 config)
2493 {
2494 	int alt_idx = idx;
2495 
2496 	if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
2497 		return idx;
2498 
2499 	if (idx == EXTRA_REG_RSP_0)
2500 		alt_idx = EXTRA_REG_RSP_1;
2501 
2502 	if (idx == EXTRA_REG_RSP_1)
2503 		alt_idx = EXTRA_REG_RSP_0;
2504 
2505 	if (config & ~x86_pmu.extra_regs[alt_idx].valid_mask)
2506 		return idx;
2507 
2508 	return alt_idx;
2509 }
2510 
2511 static void intel_fixup_er(struct perf_event *event, int idx)
2512 {
2513 	event->hw.extra_reg.idx = idx;
2514 
2515 	if (idx == EXTRA_REG_RSP_0) {
2516 		event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
2517 		event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_0].event;
2518 		event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
2519 	} else if (idx == EXTRA_REG_RSP_1) {
2520 		event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
2521 		event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_1].event;
2522 		event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
2523 	}
2524 }
2525 
2526 /*
2527  * manage allocation of shared extra msr for certain events
2528  *
2529  * sharing can be:
2530  * per-cpu: to be shared between the various events on a single PMU
2531  * per-core: per-cpu + shared by HT threads
2532  */
2533 static struct event_constraint *
2534 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
2535 				   struct perf_event *event,
2536 				   struct hw_perf_event_extra *reg)
2537 {
2538 	struct event_constraint *c = &emptyconstraint;
2539 	struct er_account *era;
2540 	unsigned long flags;
2541 	int idx = reg->idx;
2542 
2543 	/*
2544 	 * reg->alloc can be set due to existing state, so for fake cpuc we
2545 	 * need to ignore this, otherwise we might fail to allocate proper fake
2546 	 * state for this extra reg constraint. Also see the comment below.
2547 	 */
2548 	if (reg->alloc && !cpuc->is_fake)
2549 		return NULL; /* call x86_get_event_constraint() */
2550 
2551 again:
2552 	era = &cpuc->shared_regs->regs[idx];
2553 	/*
2554 	 * we use spin_lock_irqsave() to avoid lockdep issues when
2555 	 * passing a fake cpuc
2556 	 */
2557 	raw_spin_lock_irqsave(&era->lock, flags);
2558 
2559 	if (!atomic_read(&era->ref) || era->config == reg->config) {
2560 
2561 		/*
2562 		 * If its a fake cpuc -- as per validate_{group,event}() we
2563 		 * shouldn't touch event state and we can avoid doing so
2564 		 * since both will only call get_event_constraints() once
2565 		 * on each event, this avoids the need for reg->alloc.
2566 		 *
2567 		 * Not doing the ER fixup will only result in era->reg being
2568 		 * wrong, but since we won't actually try and program hardware
2569 		 * this isn't a problem either.
2570 		 */
2571 		if (!cpuc->is_fake) {
2572 			if (idx != reg->idx)
2573 				intel_fixup_er(event, idx);
2574 
2575 			/*
2576 			 * x86_schedule_events() can call get_event_constraints()
2577 			 * multiple times on events in the case of incremental
2578 			 * scheduling(). reg->alloc ensures we only do the ER
2579 			 * allocation once.
2580 			 */
2581 			reg->alloc = 1;
2582 		}
2583 
2584 		/* lock in msr value */
2585 		era->config = reg->config;
2586 		era->reg = reg->reg;
2587 
2588 		/* one more user */
2589 		atomic_inc(&era->ref);
2590 
2591 		/*
2592 		 * need to call x86_get_event_constraint()
2593 		 * to check if associated event has constraints
2594 		 */
2595 		c = NULL;
2596 	} else {
2597 		idx = intel_alt_er(idx, reg->config);
2598 		if (idx != reg->idx) {
2599 			raw_spin_unlock_irqrestore(&era->lock, flags);
2600 			goto again;
2601 		}
2602 	}
2603 	raw_spin_unlock_irqrestore(&era->lock, flags);
2604 
2605 	return c;
2606 }
2607 
2608 static void
2609 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
2610 				   struct hw_perf_event_extra *reg)
2611 {
2612 	struct er_account *era;
2613 
2614 	/*
2615 	 * Only put constraint if extra reg was actually allocated. Also takes
2616 	 * care of event which do not use an extra shared reg.
2617 	 *
2618 	 * Also, if this is a fake cpuc we shouldn't touch any event state
2619 	 * (reg->alloc) and we don't care about leaving inconsistent cpuc state
2620 	 * either since it'll be thrown out.
2621 	 */
2622 	if (!reg->alloc || cpuc->is_fake)
2623 		return;
2624 
2625 	era = &cpuc->shared_regs->regs[reg->idx];
2626 
2627 	/* one fewer user */
2628 	atomic_dec(&era->ref);
2629 
2630 	/* allocate again next time */
2631 	reg->alloc = 0;
2632 }
2633 
2634 static struct event_constraint *
2635 intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
2636 			      struct perf_event *event)
2637 {
2638 	struct event_constraint *c = NULL, *d;
2639 	struct hw_perf_event_extra *xreg, *breg;
2640 
2641 	xreg = &event->hw.extra_reg;
2642 	if (xreg->idx != EXTRA_REG_NONE) {
2643 		c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
2644 		if (c == &emptyconstraint)
2645 			return c;
2646 	}
2647 	breg = &event->hw.branch_reg;
2648 	if (breg->idx != EXTRA_REG_NONE) {
2649 		d = __intel_shared_reg_get_constraints(cpuc, event, breg);
2650 		if (d == &emptyconstraint) {
2651 			__intel_shared_reg_put_constraints(cpuc, xreg);
2652 			c = d;
2653 		}
2654 	}
2655 	return c;
2656 }
2657 
2658 struct event_constraint *
2659 x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2660 			  struct perf_event *event)
2661 {
2662 	struct event_constraint *c;
2663 
2664 	if (x86_pmu.event_constraints) {
2665 		for_each_event_constraint(c, x86_pmu.event_constraints) {
2666 			if ((event->hw.config & c->cmask) == c->code) {
2667 				event->hw.flags |= c->flags;
2668 				return c;
2669 			}
2670 		}
2671 	}
2672 
2673 	return &unconstrained;
2674 }
2675 
2676 static struct event_constraint *
2677 __intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2678 			    struct perf_event *event)
2679 {
2680 	struct event_constraint *c;
2681 
2682 	c = intel_bts_constraints(event);
2683 	if (c)
2684 		return c;
2685 
2686 	c = intel_shared_regs_constraints(cpuc, event);
2687 	if (c)
2688 		return c;
2689 
2690 	c = intel_pebs_constraints(event);
2691 	if (c)
2692 		return c;
2693 
2694 	return x86_get_event_constraints(cpuc, idx, event);
2695 }
2696 
2697 static void
2698 intel_start_scheduling(struct cpu_hw_events *cpuc)
2699 {
2700 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2701 	struct intel_excl_states *xl;
2702 	int tid = cpuc->excl_thread_id;
2703 
2704 	/*
2705 	 * nothing needed if in group validation mode
2706 	 */
2707 	if (cpuc->is_fake || !is_ht_workaround_enabled())
2708 		return;
2709 
2710 	/*
2711 	 * no exclusion needed
2712 	 */
2713 	if (WARN_ON_ONCE(!excl_cntrs))
2714 		return;
2715 
2716 	xl = &excl_cntrs->states[tid];
2717 
2718 	xl->sched_started = true;
2719 	/*
2720 	 * lock shared state until we are done scheduling
2721 	 * in stop_event_scheduling()
2722 	 * makes scheduling appear as a transaction
2723 	 */
2724 	raw_spin_lock(&excl_cntrs->lock);
2725 }
2726 
2727 static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
2728 {
2729 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2730 	struct event_constraint *c = cpuc->event_constraint[idx];
2731 	struct intel_excl_states *xl;
2732 	int tid = cpuc->excl_thread_id;
2733 
2734 	if (cpuc->is_fake || !is_ht_workaround_enabled())
2735 		return;
2736 
2737 	if (WARN_ON_ONCE(!excl_cntrs))
2738 		return;
2739 
2740 	if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
2741 		return;
2742 
2743 	xl = &excl_cntrs->states[tid];
2744 
2745 	lockdep_assert_held(&excl_cntrs->lock);
2746 
2747 	if (c->flags & PERF_X86_EVENT_EXCL)
2748 		xl->state[cntr] = INTEL_EXCL_EXCLUSIVE;
2749 	else
2750 		xl->state[cntr] = INTEL_EXCL_SHARED;
2751 }
2752 
2753 static void
2754 intel_stop_scheduling(struct cpu_hw_events *cpuc)
2755 {
2756 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2757 	struct intel_excl_states *xl;
2758 	int tid = cpuc->excl_thread_id;
2759 
2760 	/*
2761 	 * nothing needed if in group validation mode
2762 	 */
2763 	if (cpuc->is_fake || !is_ht_workaround_enabled())
2764 		return;
2765 	/*
2766 	 * no exclusion needed
2767 	 */
2768 	if (WARN_ON_ONCE(!excl_cntrs))
2769 		return;
2770 
2771 	xl = &excl_cntrs->states[tid];
2772 
2773 	xl->sched_started = false;
2774 	/*
2775 	 * release shared state lock (acquired in intel_start_scheduling())
2776 	 */
2777 	raw_spin_unlock(&excl_cntrs->lock);
2778 }
2779 
2780 static struct event_constraint *
2781 intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
2782 			   int idx, struct event_constraint *c)
2783 {
2784 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2785 	struct intel_excl_states *xlo;
2786 	int tid = cpuc->excl_thread_id;
2787 	int is_excl, i;
2788 
2789 	/*
2790 	 * validating a group does not require
2791 	 * enforcing cross-thread  exclusion
2792 	 */
2793 	if (cpuc->is_fake || !is_ht_workaround_enabled())
2794 		return c;
2795 
2796 	/*
2797 	 * no exclusion needed
2798 	 */
2799 	if (WARN_ON_ONCE(!excl_cntrs))
2800 		return c;
2801 
2802 	/*
2803 	 * because we modify the constraint, we need
2804 	 * to make a copy. Static constraints come
2805 	 * from static const tables.
2806 	 *
2807 	 * only needed when constraint has not yet
2808 	 * been cloned (marked dynamic)
2809 	 */
2810 	if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
2811 		struct event_constraint *cx;
2812 
2813 		/*
2814 		 * grab pre-allocated constraint entry
2815 		 */
2816 		cx = &cpuc->constraint_list[idx];
2817 
2818 		/*
2819 		 * initialize dynamic constraint
2820 		 * with static constraint
2821 		 */
2822 		*cx = *c;
2823 
2824 		/*
2825 		 * mark constraint as dynamic, so we
2826 		 * can free it later on
2827 		 */
2828 		cx->flags |= PERF_X86_EVENT_DYNAMIC;
2829 		c = cx;
2830 	}
2831 
2832 	/*
2833 	 * From here on, the constraint is dynamic.
2834 	 * Either it was just allocated above, or it
2835 	 * was allocated during a earlier invocation
2836 	 * of this function
2837 	 */
2838 
2839 	/*
2840 	 * state of sibling HT
2841 	 */
2842 	xlo = &excl_cntrs->states[tid ^ 1];
2843 
2844 	/*
2845 	 * event requires exclusive counter access
2846 	 * across HT threads
2847 	 */
2848 	is_excl = c->flags & PERF_X86_EVENT_EXCL;
2849 	if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) {
2850 		event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT;
2851 		if (!cpuc->n_excl++)
2852 			WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1);
2853 	}
2854 
2855 	/*
2856 	 * Modify static constraint with current dynamic
2857 	 * state of thread
2858 	 *
2859 	 * EXCLUSIVE: sibling counter measuring exclusive event
2860 	 * SHARED   : sibling counter measuring non-exclusive event
2861 	 * UNUSED   : sibling counter unused
2862 	 */
2863 	for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) {
2864 		/*
2865 		 * exclusive event in sibling counter
2866 		 * our corresponding counter cannot be used
2867 		 * regardless of our event
2868 		 */
2869 		if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE)
2870 			__clear_bit(i, c->idxmsk);
2871 		/*
2872 		 * if measuring an exclusive event, sibling
2873 		 * measuring non-exclusive, then counter cannot
2874 		 * be used
2875 		 */
2876 		if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED)
2877 			__clear_bit(i, c->idxmsk);
2878 	}
2879 
2880 	/*
2881 	 * recompute actual bit weight for scheduling algorithm
2882 	 */
2883 	c->weight = hweight64(c->idxmsk64);
2884 
2885 	/*
2886 	 * if we return an empty mask, then switch
2887 	 * back to static empty constraint to avoid
2888 	 * the cost of freeing later on
2889 	 */
2890 	if (c->weight == 0)
2891 		c = &emptyconstraint;
2892 
2893 	return c;
2894 }
2895 
2896 static struct event_constraint *
2897 intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2898 			    struct perf_event *event)
2899 {
2900 	struct event_constraint *c1 = NULL;
2901 	struct event_constraint *c2;
2902 
2903 	if (idx >= 0) /* fake does < 0 */
2904 		c1 = cpuc->event_constraint[idx];
2905 
2906 	/*
2907 	 * first time only
2908 	 * - static constraint: no change across incremental scheduling calls
2909 	 * - dynamic constraint: handled by intel_get_excl_constraints()
2910 	 */
2911 	c2 = __intel_get_event_constraints(cpuc, idx, event);
2912 	if (c1 && (c1->flags & PERF_X86_EVENT_DYNAMIC)) {
2913 		bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
2914 		c1->weight = c2->weight;
2915 		c2 = c1;
2916 	}
2917 
2918 	if (cpuc->excl_cntrs)
2919 		return intel_get_excl_constraints(cpuc, event, idx, c2);
2920 
2921 	return c2;
2922 }
2923 
2924 static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
2925 		struct perf_event *event)
2926 {
2927 	struct hw_perf_event *hwc = &event->hw;
2928 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2929 	int tid = cpuc->excl_thread_id;
2930 	struct intel_excl_states *xl;
2931 
2932 	/*
2933 	 * nothing needed if in group validation mode
2934 	 */
2935 	if (cpuc->is_fake)
2936 		return;
2937 
2938 	if (WARN_ON_ONCE(!excl_cntrs))
2939 		return;
2940 
2941 	if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) {
2942 		hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT;
2943 		if (!--cpuc->n_excl)
2944 			WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0);
2945 	}
2946 
2947 	/*
2948 	 * If event was actually assigned, then mark the counter state as
2949 	 * unused now.
2950 	 */
2951 	if (hwc->idx >= 0) {
2952 		xl = &excl_cntrs->states[tid];
2953 
2954 		/*
2955 		 * put_constraint may be called from x86_schedule_events()
2956 		 * which already has the lock held so here make locking
2957 		 * conditional.
2958 		 */
2959 		if (!xl->sched_started)
2960 			raw_spin_lock(&excl_cntrs->lock);
2961 
2962 		xl->state[hwc->idx] = INTEL_EXCL_UNUSED;
2963 
2964 		if (!xl->sched_started)
2965 			raw_spin_unlock(&excl_cntrs->lock);
2966 	}
2967 }
2968 
2969 static void
2970 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
2971 					struct perf_event *event)
2972 {
2973 	struct hw_perf_event_extra *reg;
2974 
2975 	reg = &event->hw.extra_reg;
2976 	if (reg->idx != EXTRA_REG_NONE)
2977 		__intel_shared_reg_put_constraints(cpuc, reg);
2978 
2979 	reg = &event->hw.branch_reg;
2980 	if (reg->idx != EXTRA_REG_NONE)
2981 		__intel_shared_reg_put_constraints(cpuc, reg);
2982 }
2983 
2984 static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
2985 					struct perf_event *event)
2986 {
2987 	intel_put_shared_regs_event_constraints(cpuc, event);
2988 
2989 	/*
2990 	 * is PMU has exclusive counter restrictions, then
2991 	 * all events are subject to and must call the
2992 	 * put_excl_constraints() routine
2993 	 */
2994 	if (cpuc->excl_cntrs)
2995 		intel_put_excl_constraints(cpuc, event);
2996 }
2997 
2998 static void intel_pebs_aliases_core2(struct perf_event *event)
2999 {
3000 	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3001 		/*
3002 		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3003 		 * (0x003c) so that we can use it with PEBS.
3004 		 *
3005 		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3006 		 * PEBS capable. However we can use INST_RETIRED.ANY_P
3007 		 * (0x00c0), which is a PEBS capable event, to get the same
3008 		 * count.
3009 		 *
3010 		 * INST_RETIRED.ANY_P counts the number of cycles that retires
3011 		 * CNTMASK instructions. By setting CNTMASK to a value (16)
3012 		 * larger than the maximum number of instructions that can be
3013 		 * retired per cycle (4) and then inverting the condition, we
3014 		 * count all cycles that retire 16 or less instructions, which
3015 		 * is every cycle.
3016 		 *
3017 		 * Thereby we gain a PEBS capable cycle counter.
3018 		 */
3019 		u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
3020 
3021 		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3022 		event->hw.config = alt_config;
3023 	}
3024 }
3025 
3026 static void intel_pebs_aliases_snb(struct perf_event *event)
3027 {
3028 	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3029 		/*
3030 		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3031 		 * (0x003c) so that we can use it with PEBS.
3032 		 *
3033 		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3034 		 * PEBS capable. However we can use UOPS_RETIRED.ALL
3035 		 * (0x01c2), which is a PEBS capable event, to get the same
3036 		 * count.
3037 		 *
3038 		 * UOPS_RETIRED.ALL counts the number of cycles that retires
3039 		 * CNTMASK micro-ops. By setting CNTMASK to a value (16)
3040 		 * larger than the maximum number of micro-ops that can be
3041 		 * retired per cycle (4) and then inverting the condition, we
3042 		 * count all cycles that retire 16 or less micro-ops, which
3043 		 * is every cycle.
3044 		 *
3045 		 * Thereby we gain a PEBS capable cycle counter.
3046 		 */
3047 		u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
3048 
3049 		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3050 		event->hw.config = alt_config;
3051 	}
3052 }
3053 
3054 static void intel_pebs_aliases_precdist(struct perf_event *event)
3055 {
3056 	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3057 		/*
3058 		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3059 		 * (0x003c) so that we can use it with PEBS.
3060 		 *
3061 		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3062 		 * PEBS capable. However we can use INST_RETIRED.PREC_DIST
3063 		 * (0x01c0), which is a PEBS capable event, to get the same
3064 		 * count.
3065 		 *
3066 		 * The PREC_DIST event has special support to minimize sample
3067 		 * shadowing effects. One drawback is that it can be
3068 		 * only programmed on counter 1, but that seems like an
3069 		 * acceptable trade off.
3070 		 */
3071 		u64 alt_config = X86_CONFIG(.event=0xc0, .umask=0x01, .inv=1, .cmask=16);
3072 
3073 		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3074 		event->hw.config = alt_config;
3075 	}
3076 }
3077 
3078 static void intel_pebs_aliases_ivb(struct perf_event *event)
3079 {
3080 	if (event->attr.precise_ip < 3)
3081 		return intel_pebs_aliases_snb(event);
3082 	return intel_pebs_aliases_precdist(event);
3083 }
3084 
3085 static void intel_pebs_aliases_skl(struct perf_event *event)
3086 {
3087 	if (event->attr.precise_ip < 3)
3088 		return intel_pebs_aliases_core2(event);
3089 	return intel_pebs_aliases_precdist(event);
3090 }
3091 
3092 static unsigned long intel_pmu_large_pebs_flags(struct perf_event *event)
3093 {
3094 	unsigned long flags = x86_pmu.large_pebs_flags;
3095 
3096 	if (event->attr.use_clockid)
3097 		flags &= ~PERF_SAMPLE_TIME;
3098 	if (!event->attr.exclude_kernel)
3099 		flags &= ~PERF_SAMPLE_REGS_USER;
3100 	if (event->attr.sample_regs_user & ~PEBS_REGS)
3101 		flags &= ~(PERF_SAMPLE_REGS_USER | PERF_SAMPLE_REGS_INTR);
3102 	return flags;
3103 }
3104 
3105 static int intel_pmu_hw_config(struct perf_event *event)
3106 {
3107 	int ret = x86_pmu_hw_config(event);
3108 
3109 	if (ret)
3110 		return ret;
3111 
3112 	if (event->attr.precise_ip) {
3113 		if (!event->attr.freq) {
3114 			event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD;
3115 			if (!(event->attr.sample_type &
3116 			      ~intel_pmu_large_pebs_flags(event)))
3117 				event->hw.flags |= PERF_X86_EVENT_LARGE_PEBS;
3118 		}
3119 		if (x86_pmu.pebs_aliases)
3120 			x86_pmu.pebs_aliases(event);
3121 
3122 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3123 			event->attr.sample_type |= __PERF_SAMPLE_CALLCHAIN_EARLY;
3124 	}
3125 
3126 	if (needs_branch_stack(event)) {
3127 		ret = intel_pmu_setup_lbr_filter(event);
3128 		if (ret)
3129 			return ret;
3130 
3131 		/*
3132 		 * BTS is set up earlier in this path, so don't account twice
3133 		 */
3134 		if (!intel_pmu_has_bts(event)) {
3135 			/* disallow lbr if conflicting events are present */
3136 			if (x86_add_exclusive(x86_lbr_exclusive_lbr))
3137 				return -EBUSY;
3138 
3139 			event->destroy = hw_perf_lbr_event_destroy;
3140 		}
3141 	}
3142 
3143 	if (event->attr.type != PERF_TYPE_RAW)
3144 		return 0;
3145 
3146 	if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
3147 		return 0;
3148 
3149 	if (x86_pmu.version < 3)
3150 		return -EINVAL;
3151 
3152 	if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3153 		return -EACCES;
3154 
3155 	event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
3156 
3157 	return 0;
3158 }
3159 
3160 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
3161 {
3162 	if (x86_pmu.guest_get_msrs)
3163 		return x86_pmu.guest_get_msrs(nr);
3164 	*nr = 0;
3165 	return NULL;
3166 }
3167 EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
3168 
3169 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
3170 {
3171 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3172 	struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
3173 
3174 	arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
3175 	arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
3176 	arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;
3177 	/*
3178 	 * If PMU counter has PEBS enabled it is not enough to disable counter
3179 	 * on a guest entry since PEBS memory write can overshoot guest entry
3180 	 * and corrupt guest memory. Disabling PEBS solves the problem.
3181 	 */
3182 	arr[1].msr = MSR_IA32_PEBS_ENABLE;
3183 	arr[1].host = cpuc->pebs_enabled;
3184 	arr[1].guest = 0;
3185 
3186 	*nr = 2;
3187 	return arr;
3188 }
3189 
3190 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
3191 {
3192 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3193 	struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
3194 	int idx;
3195 
3196 	for (idx = 0; idx < x86_pmu.num_counters; idx++)  {
3197 		struct perf_event *event = cpuc->events[idx];
3198 
3199 		arr[idx].msr = x86_pmu_config_addr(idx);
3200 		arr[idx].host = arr[idx].guest = 0;
3201 
3202 		if (!test_bit(idx, cpuc->active_mask))
3203 			continue;
3204 
3205 		arr[idx].host = arr[idx].guest =
3206 			event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
3207 
3208 		if (event->attr.exclude_host)
3209 			arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
3210 		else if (event->attr.exclude_guest)
3211 			arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
3212 	}
3213 
3214 	*nr = x86_pmu.num_counters;
3215 	return arr;
3216 }
3217 
3218 static void core_pmu_enable_event(struct perf_event *event)
3219 {
3220 	if (!event->attr.exclude_host)
3221 		x86_pmu_enable_event(event);
3222 }
3223 
3224 static void core_pmu_enable_all(int added)
3225 {
3226 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3227 	int idx;
3228 
3229 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
3230 		struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
3231 
3232 		if (!test_bit(idx, cpuc->active_mask) ||
3233 				cpuc->events[idx]->attr.exclude_host)
3234 			continue;
3235 
3236 		__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
3237 	}
3238 }
3239 
3240 static int hsw_hw_config(struct perf_event *event)
3241 {
3242 	int ret = intel_pmu_hw_config(event);
3243 
3244 	if (ret)
3245 		return ret;
3246 	if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
3247 		return 0;
3248 	event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
3249 
3250 	/*
3251 	 * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
3252 	 * PEBS or in ANY thread mode. Since the results are non-sensical forbid
3253 	 * this combination.
3254 	 */
3255 	if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
3256 	     ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
3257 	      event->attr.precise_ip > 0))
3258 		return -EOPNOTSUPP;
3259 
3260 	if (event_is_checkpointed(event)) {
3261 		/*
3262 		 * Sampling of checkpointed events can cause situations where
3263 		 * the CPU constantly aborts because of a overflow, which is
3264 		 * then checkpointed back and ignored. Forbid checkpointing
3265 		 * for sampling.
3266 		 *
3267 		 * But still allow a long sampling period, so that perf stat
3268 		 * from KVM works.
3269 		 */
3270 		if (event->attr.sample_period > 0 &&
3271 		    event->attr.sample_period < 0x7fffffff)
3272 			return -EOPNOTSUPP;
3273 	}
3274 	return 0;
3275 }
3276 
3277 static struct event_constraint counter0_constraint =
3278 			INTEL_ALL_EVENT_CONSTRAINT(0, 0x1);
3279 
3280 static struct event_constraint counter2_constraint =
3281 			EVENT_CONSTRAINT(0, 0x4, 0);
3282 
3283 static struct event_constraint *
3284 hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3285 			  struct perf_event *event)
3286 {
3287 	struct event_constraint *c;
3288 
3289 	c = intel_get_event_constraints(cpuc, idx, event);
3290 
3291 	/* Handle special quirk on in_tx_checkpointed only in counter 2 */
3292 	if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
3293 		if (c->idxmsk64 & (1U << 2))
3294 			return &counter2_constraint;
3295 		return &emptyconstraint;
3296 	}
3297 
3298 	return c;
3299 }
3300 
3301 static struct event_constraint *
3302 glp_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3303 			  struct perf_event *event)
3304 {
3305 	struct event_constraint *c;
3306 
3307 	/* :ppp means to do reduced skid PEBS which is PMC0 only. */
3308 	if (event->attr.precise_ip == 3)
3309 		return &counter0_constraint;
3310 
3311 	c = intel_get_event_constraints(cpuc, idx, event);
3312 
3313 	return c;
3314 }
3315 
3316 /*
3317  * Broadwell:
3318  *
3319  * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
3320  * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
3321  * the two to enforce a minimum period of 128 (the smallest value that has bits
3322  * 0-5 cleared and >= 100).
3323  *
3324  * Because of how the code in x86_perf_event_set_period() works, the truncation
3325  * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
3326  * to make up for the 'lost' events due to carrying the 'error' in period_left.
3327  *
3328  * Therefore the effective (average) period matches the requested period,
3329  * despite coarser hardware granularity.
3330  */
3331 static u64 bdw_limit_period(struct perf_event *event, u64 left)
3332 {
3333 	if ((event->hw.config & INTEL_ARCH_EVENT_MASK) ==
3334 			X86_CONFIG(.event=0xc0, .umask=0x01)) {
3335 		if (left < 128)
3336 			left = 128;
3337 		left &= ~0x3fULL;
3338 	}
3339 	return left;
3340 }
3341 
3342 PMU_FORMAT_ATTR(event,	"config:0-7"	);
3343 PMU_FORMAT_ATTR(umask,	"config:8-15"	);
3344 PMU_FORMAT_ATTR(edge,	"config:18"	);
3345 PMU_FORMAT_ATTR(pc,	"config:19"	);
3346 PMU_FORMAT_ATTR(any,	"config:21"	); /* v3 + */
3347 PMU_FORMAT_ATTR(inv,	"config:23"	);
3348 PMU_FORMAT_ATTR(cmask,	"config:24-31"	);
3349 PMU_FORMAT_ATTR(in_tx,  "config:32");
3350 PMU_FORMAT_ATTR(in_tx_cp, "config:33");
3351 
3352 static struct attribute *intel_arch_formats_attr[] = {
3353 	&format_attr_event.attr,
3354 	&format_attr_umask.attr,
3355 	&format_attr_edge.attr,
3356 	&format_attr_pc.attr,
3357 	&format_attr_inv.attr,
3358 	&format_attr_cmask.attr,
3359 	NULL,
3360 };
3361 
3362 ssize_t intel_event_sysfs_show(char *page, u64 config)
3363 {
3364 	u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
3365 
3366 	return x86_event_sysfs_show(page, config, event);
3367 }
3368 
3369 struct intel_shared_regs *allocate_shared_regs(int cpu)
3370 {
3371 	struct intel_shared_regs *regs;
3372 	int i;
3373 
3374 	regs = kzalloc_node(sizeof(struct intel_shared_regs),
3375 			    GFP_KERNEL, cpu_to_node(cpu));
3376 	if (regs) {
3377 		/*
3378 		 * initialize the locks to keep lockdep happy
3379 		 */
3380 		for (i = 0; i < EXTRA_REG_MAX; i++)
3381 			raw_spin_lock_init(&regs->regs[i].lock);
3382 
3383 		regs->core_id = -1;
3384 	}
3385 	return regs;
3386 }
3387 
3388 static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
3389 {
3390 	struct intel_excl_cntrs *c;
3391 
3392 	c = kzalloc_node(sizeof(struct intel_excl_cntrs),
3393 			 GFP_KERNEL, cpu_to_node(cpu));
3394 	if (c) {
3395 		raw_spin_lock_init(&c->lock);
3396 		c->core_id = -1;
3397 	}
3398 	return c;
3399 }
3400 
3401 static int intel_pmu_cpu_prepare(int cpu)
3402 {
3403 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
3404 
3405 	if (x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
3406 		cpuc->shared_regs = allocate_shared_regs(cpu);
3407 		if (!cpuc->shared_regs)
3408 			goto err;
3409 	}
3410 
3411 	if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
3412 		size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);
3413 
3414 		cpuc->constraint_list = kzalloc(sz, GFP_KERNEL);
3415 		if (!cpuc->constraint_list)
3416 			goto err_shared_regs;
3417 
3418 		cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
3419 		if (!cpuc->excl_cntrs)
3420 			goto err_constraint_list;
3421 
3422 		cpuc->excl_thread_id = 0;
3423 	}
3424 
3425 	return 0;
3426 
3427 err_constraint_list:
3428 	kfree(cpuc->constraint_list);
3429 	cpuc->constraint_list = NULL;
3430 
3431 err_shared_regs:
3432 	kfree(cpuc->shared_regs);
3433 	cpuc->shared_regs = NULL;
3434 
3435 err:
3436 	return -ENOMEM;
3437 }
3438 
3439 static void flip_smm_bit(void *data)
3440 {
3441 	unsigned long set = *(unsigned long *)data;
3442 
3443 	if (set > 0) {
3444 		msr_set_bit(MSR_IA32_DEBUGCTLMSR,
3445 			    DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
3446 	} else {
3447 		msr_clear_bit(MSR_IA32_DEBUGCTLMSR,
3448 			      DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
3449 	}
3450 }
3451 
3452 static void intel_pmu_cpu_starting(int cpu)
3453 {
3454 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
3455 	int core_id = topology_core_id(cpu);
3456 	int i;
3457 
3458 	init_debug_store_on_cpu(cpu);
3459 	/*
3460 	 * Deal with CPUs that don't clear their LBRs on power-up.
3461 	 */
3462 	intel_pmu_lbr_reset();
3463 
3464 	cpuc->lbr_sel = NULL;
3465 
3466 	if (x86_pmu.version > 1)
3467 		flip_smm_bit(&x86_pmu.attr_freeze_on_smi);
3468 
3469 	if (x86_pmu.counter_freezing)
3470 		enable_counter_freeze();
3471 
3472 	if (!cpuc->shared_regs)
3473 		return;
3474 
3475 	if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
3476 		for_each_cpu(i, topology_sibling_cpumask(cpu)) {
3477 			struct intel_shared_regs *pc;
3478 
3479 			pc = per_cpu(cpu_hw_events, i).shared_regs;
3480 			if (pc && pc->core_id == core_id) {
3481 				cpuc->kfree_on_online[0] = cpuc->shared_regs;
3482 				cpuc->shared_regs = pc;
3483 				break;
3484 			}
3485 		}
3486 		cpuc->shared_regs->core_id = core_id;
3487 		cpuc->shared_regs->refcnt++;
3488 	}
3489 
3490 	if (x86_pmu.lbr_sel_map)
3491 		cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
3492 
3493 	if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
3494 		for_each_cpu(i, topology_sibling_cpumask(cpu)) {
3495 			struct cpu_hw_events *sibling;
3496 			struct intel_excl_cntrs *c;
3497 
3498 			sibling = &per_cpu(cpu_hw_events, i);
3499 			c = sibling->excl_cntrs;
3500 			if (c && c->core_id == core_id) {
3501 				cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
3502 				cpuc->excl_cntrs = c;
3503 				if (!sibling->excl_thread_id)
3504 					cpuc->excl_thread_id = 1;
3505 				break;
3506 			}
3507 		}
3508 		cpuc->excl_cntrs->core_id = core_id;
3509 		cpuc->excl_cntrs->refcnt++;
3510 	}
3511 }
3512 
3513 static void free_excl_cntrs(int cpu)
3514 {
3515 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
3516 	struct intel_excl_cntrs *c;
3517 
3518 	c = cpuc->excl_cntrs;
3519 	if (c) {
3520 		if (c->core_id == -1 || --c->refcnt == 0)
3521 			kfree(c);
3522 		cpuc->excl_cntrs = NULL;
3523 		kfree(cpuc->constraint_list);
3524 		cpuc->constraint_list = NULL;
3525 	}
3526 }
3527 
3528 static void intel_pmu_cpu_dying(int cpu)
3529 {
3530 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
3531 	struct intel_shared_regs *pc;
3532 
3533 	pc = cpuc->shared_regs;
3534 	if (pc) {
3535 		if (pc->core_id == -1 || --pc->refcnt == 0)
3536 			kfree(pc);
3537 		cpuc->shared_regs = NULL;
3538 	}
3539 
3540 	free_excl_cntrs(cpu);
3541 
3542 	fini_debug_store_on_cpu(cpu);
3543 
3544 	if (x86_pmu.counter_freezing)
3545 		disable_counter_freeze();
3546 }
3547 
3548 static void intel_pmu_sched_task(struct perf_event_context *ctx,
3549 				 bool sched_in)
3550 {
3551 	intel_pmu_pebs_sched_task(ctx, sched_in);
3552 	intel_pmu_lbr_sched_task(ctx, sched_in);
3553 }
3554 
3555 PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
3556 
3557 PMU_FORMAT_ATTR(ldlat, "config1:0-15");
3558 
3559 PMU_FORMAT_ATTR(frontend, "config1:0-23");
3560 
3561 static struct attribute *intel_arch3_formats_attr[] = {
3562 	&format_attr_event.attr,
3563 	&format_attr_umask.attr,
3564 	&format_attr_edge.attr,
3565 	&format_attr_pc.attr,
3566 	&format_attr_any.attr,
3567 	&format_attr_inv.attr,
3568 	&format_attr_cmask.attr,
3569 	NULL,
3570 };
3571 
3572 static struct attribute *hsw_format_attr[] = {
3573 	&format_attr_in_tx.attr,
3574 	&format_attr_in_tx_cp.attr,
3575 	&format_attr_offcore_rsp.attr,
3576 	&format_attr_ldlat.attr,
3577 	NULL
3578 };
3579 
3580 static struct attribute *nhm_format_attr[] = {
3581 	&format_attr_offcore_rsp.attr,
3582 	&format_attr_ldlat.attr,
3583 	NULL
3584 };
3585 
3586 static struct attribute *slm_format_attr[] = {
3587 	&format_attr_offcore_rsp.attr,
3588 	NULL
3589 };
3590 
3591 static struct attribute *skl_format_attr[] = {
3592 	&format_attr_frontend.attr,
3593 	NULL,
3594 };
3595 
3596 static __initconst const struct x86_pmu core_pmu = {
3597 	.name			= "core",
3598 	.handle_irq		= x86_pmu_handle_irq,
3599 	.disable_all		= x86_pmu_disable_all,
3600 	.enable_all		= core_pmu_enable_all,
3601 	.enable			= core_pmu_enable_event,
3602 	.disable		= x86_pmu_disable_event,
3603 	.hw_config		= x86_pmu_hw_config,
3604 	.schedule_events	= x86_schedule_events,
3605 	.eventsel		= MSR_ARCH_PERFMON_EVENTSEL0,
3606 	.perfctr		= MSR_ARCH_PERFMON_PERFCTR0,
3607 	.event_map		= intel_pmu_event_map,
3608 	.max_events		= ARRAY_SIZE(intel_perfmon_event_map),
3609 	.apic			= 1,
3610 	.large_pebs_flags	= LARGE_PEBS_FLAGS,
3611 
3612 	/*
3613 	 * Intel PMCs cannot be accessed sanely above 32-bit width,
3614 	 * so we install an artificial 1<<31 period regardless of
3615 	 * the generic event period:
3616 	 */
3617 	.max_period		= (1ULL<<31) - 1,
3618 	.get_event_constraints	= intel_get_event_constraints,
3619 	.put_event_constraints	= intel_put_event_constraints,
3620 	.event_constraints	= intel_core_event_constraints,
3621 	.guest_get_msrs		= core_guest_get_msrs,
3622 	.format_attrs		= intel_arch_formats_attr,
3623 	.events_sysfs_show	= intel_event_sysfs_show,
3624 
3625 	/*
3626 	 * Virtual (or funny metal) CPU can define x86_pmu.extra_regs
3627 	 * together with PMU version 1 and thus be using core_pmu with
3628 	 * shared_regs. We need following callbacks here to allocate
3629 	 * it properly.
3630 	 */
3631 	.cpu_prepare		= intel_pmu_cpu_prepare,
3632 	.cpu_starting		= intel_pmu_cpu_starting,
3633 	.cpu_dying		= intel_pmu_cpu_dying,
3634 };
3635 
3636 static struct attribute *intel_pmu_attrs[];
3637 
3638 static __initconst const struct x86_pmu intel_pmu = {
3639 	.name			= "Intel",
3640 	.handle_irq		= intel_pmu_handle_irq,
3641 	.disable_all		= intel_pmu_disable_all,
3642 	.enable_all		= intel_pmu_enable_all,
3643 	.enable			= intel_pmu_enable_event,
3644 	.disable		= intel_pmu_disable_event,
3645 	.add			= intel_pmu_add_event,
3646 	.del			= intel_pmu_del_event,
3647 	.read			= intel_pmu_read_event,
3648 	.hw_config		= intel_pmu_hw_config,
3649 	.schedule_events	= x86_schedule_events,
3650 	.eventsel		= MSR_ARCH_PERFMON_EVENTSEL0,
3651 	.perfctr		= MSR_ARCH_PERFMON_PERFCTR0,
3652 	.event_map		= intel_pmu_event_map,
3653 	.max_events		= ARRAY_SIZE(intel_perfmon_event_map),
3654 	.apic			= 1,
3655 	.large_pebs_flags	= LARGE_PEBS_FLAGS,
3656 	/*
3657 	 * Intel PMCs cannot be accessed sanely above 32 bit width,
3658 	 * so we install an artificial 1<<31 period regardless of
3659 	 * the generic event period:
3660 	 */
3661 	.max_period		= (1ULL << 31) - 1,
3662 	.get_event_constraints	= intel_get_event_constraints,
3663 	.put_event_constraints	= intel_put_event_constraints,
3664 	.pebs_aliases		= intel_pebs_aliases_core2,
3665 
3666 	.format_attrs		= intel_arch3_formats_attr,
3667 	.events_sysfs_show	= intel_event_sysfs_show,
3668 
3669 	.attrs			= intel_pmu_attrs,
3670 
3671 	.cpu_prepare		= intel_pmu_cpu_prepare,
3672 	.cpu_starting		= intel_pmu_cpu_starting,
3673 	.cpu_dying		= intel_pmu_cpu_dying,
3674 	.guest_get_msrs		= intel_guest_get_msrs,
3675 	.sched_task		= intel_pmu_sched_task,
3676 };
3677 
3678 static __init void intel_clovertown_quirk(void)
3679 {
3680 	/*
3681 	 * PEBS is unreliable due to:
3682 	 *
3683 	 *   AJ67  - PEBS may experience CPL leaks
3684 	 *   AJ68  - PEBS PMI may be delayed by one event
3685 	 *   AJ69  - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
3686 	 *   AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
3687 	 *
3688 	 * AJ67 could be worked around by restricting the OS/USR flags.
3689 	 * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
3690 	 *
3691 	 * AJ106 could possibly be worked around by not allowing LBR
3692 	 *       usage from PEBS, including the fixup.
3693 	 * AJ68  could possibly be worked around by always programming
3694 	 *	 a pebs_event_reset[0] value and coping with the lost events.
3695 	 *
3696 	 * But taken together it might just make sense to not enable PEBS on
3697 	 * these chips.
3698 	 */
3699 	pr_warn("PEBS disabled due to CPU errata\n");
3700 	x86_pmu.pebs = 0;
3701 	x86_pmu.pebs_constraints = NULL;
3702 }
3703 
3704 static int intel_snb_pebs_broken(int cpu)
3705 {
3706 	u32 rev = UINT_MAX; /* default to broken for unknown models */
3707 
3708 	switch (cpu_data(cpu).x86_model) {
3709 	case INTEL_FAM6_SANDYBRIDGE:
3710 		rev = 0x28;
3711 		break;
3712 
3713 	case INTEL_FAM6_SANDYBRIDGE_X:
3714 		switch (cpu_data(cpu).x86_stepping) {
3715 		case 6: rev = 0x618; break;
3716 		case 7: rev = 0x70c; break;
3717 		}
3718 	}
3719 
3720 	return (cpu_data(cpu).microcode < rev);
3721 }
3722 
3723 static void intel_snb_check_microcode(void)
3724 {
3725 	int pebs_broken = 0;
3726 	int cpu;
3727 
3728 	for_each_online_cpu(cpu) {
3729 		if ((pebs_broken = intel_snb_pebs_broken(cpu)))
3730 			break;
3731 	}
3732 
3733 	if (pebs_broken == x86_pmu.pebs_broken)
3734 		return;
3735 
3736 	/*
3737 	 * Serialized by the microcode lock..
3738 	 */
3739 	if (x86_pmu.pebs_broken) {
3740 		pr_info("PEBS enabled due to microcode update\n");
3741 		x86_pmu.pebs_broken = 0;
3742 	} else {
3743 		pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
3744 		x86_pmu.pebs_broken = 1;
3745 	}
3746 }
3747 
3748 static bool is_lbr_from(unsigned long msr)
3749 {
3750 	unsigned long lbr_from_nr = x86_pmu.lbr_from + x86_pmu.lbr_nr;
3751 
3752 	return x86_pmu.lbr_from <= msr && msr < lbr_from_nr;
3753 }
3754 
3755 /*
3756  * Under certain circumstances, access certain MSR may cause #GP.
3757  * The function tests if the input MSR can be safely accessed.
3758  */
3759 static bool check_msr(unsigned long msr, u64 mask)
3760 {
3761 	u64 val_old, val_new, val_tmp;
3762 
3763 	/*
3764 	 * Read the current value, change it and read it back to see if it
3765 	 * matches, this is needed to detect certain hardware emulators
3766 	 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
3767 	 */
3768 	if (rdmsrl_safe(msr, &val_old))
3769 		return false;
3770 
3771 	/*
3772 	 * Only change the bits which can be updated by wrmsrl.
3773 	 */
3774 	val_tmp = val_old ^ mask;
3775 
3776 	if (is_lbr_from(msr))
3777 		val_tmp = lbr_from_signext_quirk_wr(val_tmp);
3778 
3779 	if (wrmsrl_safe(msr, val_tmp) ||
3780 	    rdmsrl_safe(msr, &val_new))
3781 		return false;
3782 
3783 	/*
3784 	 * Quirk only affects validation in wrmsr(), so wrmsrl()'s value
3785 	 * should equal rdmsrl()'s even with the quirk.
3786 	 */
3787 	if (val_new != val_tmp)
3788 		return false;
3789 
3790 	if (is_lbr_from(msr))
3791 		val_old = lbr_from_signext_quirk_wr(val_old);
3792 
3793 	/* Here it's sure that the MSR can be safely accessed.
3794 	 * Restore the old value and return.
3795 	 */
3796 	wrmsrl(msr, val_old);
3797 
3798 	return true;
3799 }
3800 
3801 static __init void intel_sandybridge_quirk(void)
3802 {
3803 	x86_pmu.check_microcode = intel_snb_check_microcode;
3804 	cpus_read_lock();
3805 	intel_snb_check_microcode();
3806 	cpus_read_unlock();
3807 }
3808 
3809 static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
3810 	{ PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
3811 	{ PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
3812 	{ PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
3813 	{ PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
3814 	{ PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
3815 	{ PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
3816 	{ PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
3817 };
3818 
3819 static __init void intel_arch_events_quirk(void)
3820 {
3821 	int bit;
3822 
3823 	/* disable event that reported as not presend by cpuid */
3824 	for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
3825 		intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
3826 		pr_warn("CPUID marked event: \'%s\' unavailable\n",
3827 			intel_arch_events_map[bit].name);
3828 	}
3829 }
3830 
3831 static __init void intel_nehalem_quirk(void)
3832 {
3833 	union cpuid10_ebx ebx;
3834 
3835 	ebx.full = x86_pmu.events_maskl;
3836 	if (ebx.split.no_branch_misses_retired) {
3837 		/*
3838 		 * Erratum AAJ80 detected, we work it around by using
3839 		 * the BR_MISP_EXEC.ANY event. This will over-count
3840 		 * branch-misses, but it's still much better than the
3841 		 * architectural event which is often completely bogus:
3842 		 */
3843 		intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
3844 		ebx.split.no_branch_misses_retired = 0;
3845 		x86_pmu.events_maskl = ebx.full;
3846 		pr_info("CPU erratum AAJ80 worked around\n");
3847 	}
3848 }
3849 
3850 static bool intel_glp_counter_freezing_broken(int cpu)
3851 {
3852 	u32 rev = UINT_MAX; /* default to broken for unknown stepping */
3853 
3854 	switch (cpu_data(cpu).x86_stepping) {
3855 	case 1:
3856 		rev = 0x28;
3857 		break;
3858 	case 8:
3859 		rev = 0x6;
3860 		break;
3861 	}
3862 
3863 	return (cpu_data(cpu).microcode < rev);
3864 }
3865 
3866 static __init void intel_glp_counter_freezing_quirk(void)
3867 {
3868 	/* Check if it's already disabled */
3869 	if (disable_counter_freezing)
3870 		return;
3871 
3872 	/*
3873 	 * If the system starts with the wrong ucode, leave the
3874 	 * counter-freezing feature permanently disabled.
3875 	 */
3876 	if (intel_glp_counter_freezing_broken(raw_smp_processor_id())) {
3877 		pr_info("PMU counter freezing disabled due to CPU errata,"
3878 			"please upgrade microcode\n");
3879 		x86_pmu.counter_freezing = false;
3880 		x86_pmu.handle_irq = intel_pmu_handle_irq;
3881 	}
3882 }
3883 
3884 /*
3885  * enable software workaround for errata:
3886  * SNB: BJ122
3887  * IVB: BV98
3888  * HSW: HSD29
3889  *
3890  * Only needed when HT is enabled. However detecting
3891  * if HT is enabled is difficult (model specific). So instead,
3892  * we enable the workaround in the early boot, and verify if
3893  * it is needed in a later initcall phase once we have valid
3894  * topology information to check if HT is actually enabled
3895  */
3896 static __init void intel_ht_bug(void)
3897 {
3898 	x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED;
3899 
3900 	x86_pmu.start_scheduling = intel_start_scheduling;
3901 	x86_pmu.commit_scheduling = intel_commit_scheduling;
3902 	x86_pmu.stop_scheduling = intel_stop_scheduling;
3903 }
3904 
3905 EVENT_ATTR_STR(mem-loads,	mem_ld_hsw,	"event=0xcd,umask=0x1,ldlat=3");
3906 EVENT_ATTR_STR(mem-stores,	mem_st_hsw,	"event=0xd0,umask=0x82")
3907 
3908 /* Haswell special events */
3909 EVENT_ATTR_STR(tx-start,	tx_start,	"event=0xc9,umask=0x1");
3910 EVENT_ATTR_STR(tx-commit,	tx_commit,	"event=0xc9,umask=0x2");
3911 EVENT_ATTR_STR(tx-abort,	tx_abort,	"event=0xc9,umask=0x4");
3912 EVENT_ATTR_STR(tx-capacity,	tx_capacity,	"event=0x54,umask=0x2");
3913 EVENT_ATTR_STR(tx-conflict,	tx_conflict,	"event=0x54,umask=0x1");
3914 EVENT_ATTR_STR(el-start,	el_start,	"event=0xc8,umask=0x1");
3915 EVENT_ATTR_STR(el-commit,	el_commit,	"event=0xc8,umask=0x2");
3916 EVENT_ATTR_STR(el-abort,	el_abort,	"event=0xc8,umask=0x4");
3917 EVENT_ATTR_STR(el-capacity,	el_capacity,	"event=0x54,umask=0x2");
3918 EVENT_ATTR_STR(el-conflict,	el_conflict,	"event=0x54,umask=0x1");
3919 EVENT_ATTR_STR(cycles-t,	cycles_t,	"event=0x3c,in_tx=1");
3920 EVENT_ATTR_STR(cycles-ct,	cycles_ct,	"event=0x3c,in_tx=1,in_tx_cp=1");
3921 
3922 static struct attribute *hsw_events_attrs[] = {
3923 	EVENT_PTR(td_slots_issued),
3924 	EVENT_PTR(td_slots_retired),
3925 	EVENT_PTR(td_fetch_bubbles),
3926 	EVENT_PTR(td_total_slots),
3927 	EVENT_PTR(td_total_slots_scale),
3928 	EVENT_PTR(td_recovery_bubbles),
3929 	EVENT_PTR(td_recovery_bubbles_scale),
3930 	NULL
3931 };
3932 
3933 static struct attribute *hsw_mem_events_attrs[] = {
3934 	EVENT_PTR(mem_ld_hsw),
3935 	EVENT_PTR(mem_st_hsw),
3936 	NULL,
3937 };
3938 
3939 static struct attribute *hsw_tsx_events_attrs[] = {
3940 	EVENT_PTR(tx_start),
3941 	EVENT_PTR(tx_commit),
3942 	EVENT_PTR(tx_abort),
3943 	EVENT_PTR(tx_capacity),
3944 	EVENT_PTR(tx_conflict),
3945 	EVENT_PTR(el_start),
3946 	EVENT_PTR(el_commit),
3947 	EVENT_PTR(el_abort),
3948 	EVENT_PTR(el_capacity),
3949 	EVENT_PTR(el_conflict),
3950 	EVENT_PTR(cycles_t),
3951 	EVENT_PTR(cycles_ct),
3952 	NULL
3953 };
3954 
3955 static ssize_t freeze_on_smi_show(struct device *cdev,
3956 				  struct device_attribute *attr,
3957 				  char *buf)
3958 {
3959 	return sprintf(buf, "%lu\n", x86_pmu.attr_freeze_on_smi);
3960 }
3961 
3962 static DEFINE_MUTEX(freeze_on_smi_mutex);
3963 
3964 static ssize_t freeze_on_smi_store(struct device *cdev,
3965 				   struct device_attribute *attr,
3966 				   const char *buf, size_t count)
3967 {
3968 	unsigned long val;
3969 	ssize_t ret;
3970 
3971 	ret = kstrtoul(buf, 0, &val);
3972 	if (ret)
3973 		return ret;
3974 
3975 	if (val > 1)
3976 		return -EINVAL;
3977 
3978 	mutex_lock(&freeze_on_smi_mutex);
3979 
3980 	if (x86_pmu.attr_freeze_on_smi == val)
3981 		goto done;
3982 
3983 	x86_pmu.attr_freeze_on_smi = val;
3984 
3985 	get_online_cpus();
3986 	on_each_cpu(flip_smm_bit, &val, 1);
3987 	put_online_cpus();
3988 done:
3989 	mutex_unlock(&freeze_on_smi_mutex);
3990 
3991 	return count;
3992 }
3993 
3994 static DEVICE_ATTR_RW(freeze_on_smi);
3995 
3996 static ssize_t branches_show(struct device *cdev,
3997 			     struct device_attribute *attr,
3998 			     char *buf)
3999 {
4000 	return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu.lbr_nr);
4001 }
4002 
4003 static DEVICE_ATTR_RO(branches);
4004 
4005 static struct attribute *lbr_attrs[] = {
4006 	&dev_attr_branches.attr,
4007 	NULL
4008 };
4009 
4010 static char pmu_name_str[30];
4011 
4012 static ssize_t pmu_name_show(struct device *cdev,
4013 			     struct device_attribute *attr,
4014 			     char *buf)
4015 {
4016 	return snprintf(buf, PAGE_SIZE, "%s\n", pmu_name_str);
4017 }
4018 
4019 static DEVICE_ATTR_RO(pmu_name);
4020 
4021 static struct attribute *intel_pmu_caps_attrs[] = {
4022        &dev_attr_pmu_name.attr,
4023        NULL
4024 };
4025 
4026 static struct attribute *intel_pmu_attrs[] = {
4027 	&dev_attr_freeze_on_smi.attr,
4028 	NULL,
4029 };
4030 
4031 static __init struct attribute **
4032 get_events_attrs(struct attribute **base,
4033 		 struct attribute **mem,
4034 		 struct attribute **tsx)
4035 {
4036 	struct attribute **attrs = base;
4037 	struct attribute **old;
4038 
4039 	if (mem && x86_pmu.pebs)
4040 		attrs = merge_attr(attrs, mem);
4041 
4042 	if (tsx && boot_cpu_has(X86_FEATURE_RTM)) {
4043 		old = attrs;
4044 		attrs = merge_attr(attrs, tsx);
4045 		if (old != base)
4046 			kfree(old);
4047 	}
4048 
4049 	return attrs;
4050 }
4051 
4052 __init int intel_pmu_init(void)
4053 {
4054 	struct attribute **extra_attr = NULL;
4055 	struct attribute **mem_attr = NULL;
4056 	struct attribute **tsx_attr = NULL;
4057 	struct attribute **to_free = NULL;
4058 	union cpuid10_edx edx;
4059 	union cpuid10_eax eax;
4060 	union cpuid10_ebx ebx;
4061 	struct event_constraint *c;
4062 	unsigned int unused;
4063 	struct extra_reg *er;
4064 	int version, i;
4065 	char *name;
4066 
4067 	if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
4068 		switch (boot_cpu_data.x86) {
4069 		case 0x6:
4070 			return p6_pmu_init();
4071 		case 0xb:
4072 			return knc_pmu_init();
4073 		case 0xf:
4074 			return p4_pmu_init();
4075 		}
4076 		return -ENODEV;
4077 	}
4078 
4079 	/*
4080 	 * Check whether the Architectural PerfMon supports
4081 	 * Branch Misses Retired hw_event or not.
4082 	 */
4083 	cpuid(10, &eax.full, &ebx.full, &unused, &edx.full);
4084 	if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
4085 		return -ENODEV;
4086 
4087 	version = eax.split.version_id;
4088 	if (version < 2)
4089 		x86_pmu = core_pmu;
4090 	else
4091 		x86_pmu = intel_pmu;
4092 
4093 	x86_pmu.version			= version;
4094 	x86_pmu.num_counters		= eax.split.num_counters;
4095 	x86_pmu.cntval_bits		= eax.split.bit_width;
4096 	x86_pmu.cntval_mask		= (1ULL << eax.split.bit_width) - 1;
4097 
4098 	x86_pmu.events_maskl		= ebx.full;
4099 	x86_pmu.events_mask_len		= eax.split.mask_length;
4100 
4101 	x86_pmu.max_pebs_events		= min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
4102 
4103 	/*
4104 	 * Quirk: v2 perfmon does not report fixed-purpose events, so
4105 	 * assume at least 3 events, when not running in a hypervisor:
4106 	 */
4107 	if (version > 1) {
4108 		int assume = 3 * !boot_cpu_has(X86_FEATURE_HYPERVISOR);
4109 
4110 		x86_pmu.num_counters_fixed =
4111 			max((int)edx.split.num_counters_fixed, assume);
4112 	}
4113 
4114 	if (version >= 4)
4115 		x86_pmu.counter_freezing = !disable_counter_freezing;
4116 
4117 	if (boot_cpu_has(X86_FEATURE_PDCM)) {
4118 		u64 capabilities;
4119 
4120 		rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
4121 		x86_pmu.intel_cap.capabilities = capabilities;
4122 	}
4123 
4124 	intel_ds_init();
4125 
4126 	x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
4127 
4128 	/*
4129 	 * Install the hw-cache-events table:
4130 	 */
4131 	switch (boot_cpu_data.x86_model) {
4132 	case INTEL_FAM6_CORE_YONAH:
4133 		pr_cont("Core events, ");
4134 		name = "core";
4135 		break;
4136 
4137 	case INTEL_FAM6_CORE2_MEROM:
4138 		x86_add_quirk(intel_clovertown_quirk);
4139 	case INTEL_FAM6_CORE2_MEROM_L:
4140 	case INTEL_FAM6_CORE2_PENRYN:
4141 	case INTEL_FAM6_CORE2_DUNNINGTON:
4142 		memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
4143 		       sizeof(hw_cache_event_ids));
4144 
4145 		intel_pmu_lbr_init_core();
4146 
4147 		x86_pmu.event_constraints = intel_core2_event_constraints;
4148 		x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
4149 		pr_cont("Core2 events, ");
4150 		name = "core2";
4151 		break;
4152 
4153 	case INTEL_FAM6_NEHALEM:
4154 	case INTEL_FAM6_NEHALEM_EP:
4155 	case INTEL_FAM6_NEHALEM_EX:
4156 		memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
4157 		       sizeof(hw_cache_event_ids));
4158 		memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
4159 		       sizeof(hw_cache_extra_regs));
4160 
4161 		intel_pmu_lbr_init_nhm();
4162 
4163 		x86_pmu.event_constraints = intel_nehalem_event_constraints;
4164 		x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
4165 		x86_pmu.enable_all = intel_pmu_nhm_enable_all;
4166 		x86_pmu.extra_regs = intel_nehalem_extra_regs;
4167 
4168 		mem_attr = nhm_mem_events_attrs;
4169 
4170 		/* UOPS_ISSUED.STALLED_CYCLES */
4171 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
4172 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
4173 		/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
4174 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
4175 			X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
4176 
4177 		intel_pmu_pebs_data_source_nhm();
4178 		x86_add_quirk(intel_nehalem_quirk);
4179 		x86_pmu.pebs_no_tlb = 1;
4180 		extra_attr = nhm_format_attr;
4181 
4182 		pr_cont("Nehalem events, ");
4183 		name = "nehalem";
4184 		break;
4185 
4186 	case INTEL_FAM6_ATOM_BONNELL:
4187 	case INTEL_FAM6_ATOM_BONNELL_MID:
4188 	case INTEL_FAM6_ATOM_SALTWELL:
4189 	case INTEL_FAM6_ATOM_SALTWELL_MID:
4190 	case INTEL_FAM6_ATOM_SALTWELL_TABLET:
4191 		memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
4192 		       sizeof(hw_cache_event_ids));
4193 
4194 		intel_pmu_lbr_init_atom();
4195 
4196 		x86_pmu.event_constraints = intel_gen_event_constraints;
4197 		x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
4198 		x86_pmu.pebs_aliases = intel_pebs_aliases_core2;
4199 		pr_cont("Atom events, ");
4200 		name = "bonnell";
4201 		break;
4202 
4203 	case INTEL_FAM6_ATOM_SILVERMONT:
4204 	case INTEL_FAM6_ATOM_SILVERMONT_X:
4205 	case INTEL_FAM6_ATOM_SILVERMONT_MID:
4206 	case INTEL_FAM6_ATOM_AIRMONT:
4207 	case INTEL_FAM6_ATOM_AIRMONT_MID:
4208 		memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
4209 			sizeof(hw_cache_event_ids));
4210 		memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
4211 		       sizeof(hw_cache_extra_regs));
4212 
4213 		intel_pmu_lbr_init_slm();
4214 
4215 		x86_pmu.event_constraints = intel_slm_event_constraints;
4216 		x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
4217 		x86_pmu.extra_regs = intel_slm_extra_regs;
4218 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4219 		x86_pmu.cpu_events = slm_events_attrs;
4220 		extra_attr = slm_format_attr;
4221 		pr_cont("Silvermont events, ");
4222 		name = "silvermont";
4223 		break;
4224 
4225 	case INTEL_FAM6_ATOM_GOLDMONT:
4226 	case INTEL_FAM6_ATOM_GOLDMONT_X:
4227 		memcpy(hw_cache_event_ids, glm_hw_cache_event_ids,
4228 		       sizeof(hw_cache_event_ids));
4229 		memcpy(hw_cache_extra_regs, glm_hw_cache_extra_regs,
4230 		       sizeof(hw_cache_extra_regs));
4231 
4232 		intel_pmu_lbr_init_skl();
4233 
4234 		x86_pmu.event_constraints = intel_slm_event_constraints;
4235 		x86_pmu.pebs_constraints = intel_glm_pebs_event_constraints;
4236 		x86_pmu.extra_regs = intel_glm_extra_regs;
4237 		/*
4238 		 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
4239 		 * for precise cycles.
4240 		 * :pp is identical to :ppp
4241 		 */
4242 		x86_pmu.pebs_aliases = NULL;
4243 		x86_pmu.pebs_prec_dist = true;
4244 		x86_pmu.lbr_pt_coexist = true;
4245 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4246 		x86_pmu.cpu_events = glm_events_attrs;
4247 		extra_attr = slm_format_attr;
4248 		pr_cont("Goldmont events, ");
4249 		name = "goldmont";
4250 		break;
4251 
4252 	case INTEL_FAM6_ATOM_GOLDMONT_PLUS:
4253 		x86_add_quirk(intel_glp_counter_freezing_quirk);
4254 		memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
4255 		       sizeof(hw_cache_event_ids));
4256 		memcpy(hw_cache_extra_regs, glp_hw_cache_extra_regs,
4257 		       sizeof(hw_cache_extra_regs));
4258 
4259 		intel_pmu_lbr_init_skl();
4260 
4261 		x86_pmu.event_constraints = intel_slm_event_constraints;
4262 		x86_pmu.extra_regs = intel_glm_extra_regs;
4263 		/*
4264 		 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
4265 		 * for precise cycles.
4266 		 */
4267 		x86_pmu.pebs_aliases = NULL;
4268 		x86_pmu.pebs_prec_dist = true;
4269 		x86_pmu.lbr_pt_coexist = true;
4270 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4271 		x86_pmu.flags |= PMU_FL_PEBS_ALL;
4272 		x86_pmu.get_event_constraints = glp_get_event_constraints;
4273 		x86_pmu.cpu_events = glm_events_attrs;
4274 		/* Goldmont Plus has 4-wide pipeline */
4275 		event_attr_td_total_slots_scale_glm.event_str = "4";
4276 		extra_attr = slm_format_attr;
4277 		pr_cont("Goldmont plus events, ");
4278 		name = "goldmont_plus";
4279 		break;
4280 
4281 	case INTEL_FAM6_WESTMERE:
4282 	case INTEL_FAM6_WESTMERE_EP:
4283 	case INTEL_FAM6_WESTMERE_EX:
4284 		memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
4285 		       sizeof(hw_cache_event_ids));
4286 		memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
4287 		       sizeof(hw_cache_extra_regs));
4288 
4289 		intel_pmu_lbr_init_nhm();
4290 
4291 		x86_pmu.event_constraints = intel_westmere_event_constraints;
4292 		x86_pmu.enable_all = intel_pmu_nhm_enable_all;
4293 		x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
4294 		x86_pmu.extra_regs = intel_westmere_extra_regs;
4295 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4296 
4297 		mem_attr = nhm_mem_events_attrs;
4298 
4299 		/* UOPS_ISSUED.STALLED_CYCLES */
4300 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
4301 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
4302 		/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
4303 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
4304 			X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
4305 
4306 		intel_pmu_pebs_data_source_nhm();
4307 		extra_attr = nhm_format_attr;
4308 		pr_cont("Westmere events, ");
4309 		name = "westmere";
4310 		break;
4311 
4312 	case INTEL_FAM6_SANDYBRIDGE:
4313 	case INTEL_FAM6_SANDYBRIDGE_X:
4314 		x86_add_quirk(intel_sandybridge_quirk);
4315 		x86_add_quirk(intel_ht_bug);
4316 		memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
4317 		       sizeof(hw_cache_event_ids));
4318 		memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
4319 		       sizeof(hw_cache_extra_regs));
4320 
4321 		intel_pmu_lbr_init_snb();
4322 
4323 		x86_pmu.event_constraints = intel_snb_event_constraints;
4324 		x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
4325 		x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
4326 		if (boot_cpu_data.x86_model == INTEL_FAM6_SANDYBRIDGE_X)
4327 			x86_pmu.extra_regs = intel_snbep_extra_regs;
4328 		else
4329 			x86_pmu.extra_regs = intel_snb_extra_regs;
4330 
4331 
4332 		/* all extra regs are per-cpu when HT is on */
4333 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4334 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4335 
4336 		x86_pmu.cpu_events = snb_events_attrs;
4337 		mem_attr = snb_mem_events_attrs;
4338 
4339 		/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
4340 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
4341 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
4342 		/* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
4343 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
4344 			X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
4345 
4346 		extra_attr = nhm_format_attr;
4347 
4348 		pr_cont("SandyBridge events, ");
4349 		name = "sandybridge";
4350 		break;
4351 
4352 	case INTEL_FAM6_IVYBRIDGE:
4353 	case INTEL_FAM6_IVYBRIDGE_X:
4354 		x86_add_quirk(intel_ht_bug);
4355 		memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
4356 		       sizeof(hw_cache_event_ids));
4357 		/* dTLB-load-misses on IVB is different than SNB */
4358 		hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
4359 
4360 		memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
4361 		       sizeof(hw_cache_extra_regs));
4362 
4363 		intel_pmu_lbr_init_snb();
4364 
4365 		x86_pmu.event_constraints = intel_ivb_event_constraints;
4366 		x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
4367 		x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
4368 		x86_pmu.pebs_prec_dist = true;
4369 		if (boot_cpu_data.x86_model == INTEL_FAM6_IVYBRIDGE_X)
4370 			x86_pmu.extra_regs = intel_snbep_extra_regs;
4371 		else
4372 			x86_pmu.extra_regs = intel_snb_extra_regs;
4373 		/* all extra regs are per-cpu when HT is on */
4374 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4375 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4376 
4377 		x86_pmu.cpu_events = snb_events_attrs;
4378 		mem_attr = snb_mem_events_attrs;
4379 
4380 		/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
4381 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
4382 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
4383 
4384 		extra_attr = nhm_format_attr;
4385 
4386 		pr_cont("IvyBridge events, ");
4387 		name = "ivybridge";
4388 		break;
4389 
4390 
4391 	case INTEL_FAM6_HASWELL_CORE:
4392 	case INTEL_FAM6_HASWELL_X:
4393 	case INTEL_FAM6_HASWELL_ULT:
4394 	case INTEL_FAM6_HASWELL_GT3E:
4395 		x86_add_quirk(intel_ht_bug);
4396 		x86_pmu.late_ack = true;
4397 		memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
4398 		memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
4399 
4400 		intel_pmu_lbr_init_hsw();
4401 
4402 		x86_pmu.event_constraints = intel_hsw_event_constraints;
4403 		x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
4404 		x86_pmu.extra_regs = intel_snbep_extra_regs;
4405 		x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
4406 		x86_pmu.pebs_prec_dist = true;
4407 		/* all extra regs are per-cpu when HT is on */
4408 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4409 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4410 
4411 		x86_pmu.hw_config = hsw_hw_config;
4412 		x86_pmu.get_event_constraints = hsw_get_event_constraints;
4413 		x86_pmu.cpu_events = hsw_events_attrs;
4414 		x86_pmu.lbr_double_abort = true;
4415 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
4416 			hsw_format_attr : nhm_format_attr;
4417 		mem_attr = hsw_mem_events_attrs;
4418 		tsx_attr = hsw_tsx_events_attrs;
4419 		pr_cont("Haswell events, ");
4420 		name = "haswell";
4421 		break;
4422 
4423 	case INTEL_FAM6_BROADWELL_CORE:
4424 	case INTEL_FAM6_BROADWELL_XEON_D:
4425 	case INTEL_FAM6_BROADWELL_GT3E:
4426 	case INTEL_FAM6_BROADWELL_X:
4427 		x86_pmu.late_ack = true;
4428 		memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
4429 		memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
4430 
4431 		/* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
4432 		hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
4433 									 BDW_L3_MISS|HSW_SNOOP_DRAM;
4434 		hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
4435 									  HSW_SNOOP_DRAM;
4436 		hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
4437 									     BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
4438 		hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
4439 									      BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
4440 
4441 		intel_pmu_lbr_init_hsw();
4442 
4443 		x86_pmu.event_constraints = intel_bdw_event_constraints;
4444 		x86_pmu.pebs_constraints = intel_bdw_pebs_event_constraints;
4445 		x86_pmu.extra_regs = intel_snbep_extra_regs;
4446 		x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
4447 		x86_pmu.pebs_prec_dist = true;
4448 		/* all extra regs are per-cpu when HT is on */
4449 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4450 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4451 
4452 		x86_pmu.hw_config = hsw_hw_config;
4453 		x86_pmu.get_event_constraints = hsw_get_event_constraints;
4454 		x86_pmu.cpu_events = hsw_events_attrs;
4455 		x86_pmu.limit_period = bdw_limit_period;
4456 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
4457 			hsw_format_attr : nhm_format_attr;
4458 		mem_attr = hsw_mem_events_attrs;
4459 		tsx_attr = hsw_tsx_events_attrs;
4460 		pr_cont("Broadwell events, ");
4461 		name = "broadwell";
4462 		break;
4463 
4464 	case INTEL_FAM6_XEON_PHI_KNL:
4465 	case INTEL_FAM6_XEON_PHI_KNM:
4466 		memcpy(hw_cache_event_ids,
4467 		       slm_hw_cache_event_ids, sizeof(hw_cache_event_ids));
4468 		memcpy(hw_cache_extra_regs,
4469 		       knl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
4470 		intel_pmu_lbr_init_knl();
4471 
4472 		x86_pmu.event_constraints = intel_slm_event_constraints;
4473 		x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
4474 		x86_pmu.extra_regs = intel_knl_extra_regs;
4475 
4476 		/* all extra regs are per-cpu when HT is on */
4477 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4478 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4479 		extra_attr = slm_format_attr;
4480 		pr_cont("Knights Landing/Mill events, ");
4481 		name = "knights-landing";
4482 		break;
4483 
4484 	case INTEL_FAM6_SKYLAKE_MOBILE:
4485 	case INTEL_FAM6_SKYLAKE_DESKTOP:
4486 	case INTEL_FAM6_SKYLAKE_X:
4487 	case INTEL_FAM6_KABYLAKE_MOBILE:
4488 	case INTEL_FAM6_KABYLAKE_DESKTOP:
4489 		x86_pmu.late_ack = true;
4490 		memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
4491 		memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
4492 		intel_pmu_lbr_init_skl();
4493 
4494 		/* INT_MISC.RECOVERY_CYCLES has umask 1 in Skylake */
4495 		event_attr_td_recovery_bubbles.event_str_noht =
4496 			"event=0xd,umask=0x1,cmask=1";
4497 		event_attr_td_recovery_bubbles.event_str_ht =
4498 			"event=0xd,umask=0x1,cmask=1,any=1";
4499 
4500 		x86_pmu.event_constraints = intel_skl_event_constraints;
4501 		x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints;
4502 		x86_pmu.extra_regs = intel_skl_extra_regs;
4503 		x86_pmu.pebs_aliases = intel_pebs_aliases_skl;
4504 		x86_pmu.pebs_prec_dist = true;
4505 		/* all extra regs are per-cpu when HT is on */
4506 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4507 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4508 
4509 		x86_pmu.hw_config = hsw_hw_config;
4510 		x86_pmu.get_event_constraints = hsw_get_event_constraints;
4511 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
4512 			hsw_format_attr : nhm_format_attr;
4513 		extra_attr = merge_attr(extra_attr, skl_format_attr);
4514 		to_free = extra_attr;
4515 		x86_pmu.cpu_events = hsw_events_attrs;
4516 		mem_attr = hsw_mem_events_attrs;
4517 		tsx_attr = hsw_tsx_events_attrs;
4518 		intel_pmu_pebs_data_source_skl(
4519 			boot_cpu_data.x86_model == INTEL_FAM6_SKYLAKE_X);
4520 		pr_cont("Skylake events, ");
4521 		name = "skylake";
4522 		break;
4523 
4524 	default:
4525 		switch (x86_pmu.version) {
4526 		case 1:
4527 			x86_pmu.event_constraints = intel_v1_event_constraints;
4528 			pr_cont("generic architected perfmon v1, ");
4529 			name = "generic_arch_v1";
4530 			break;
4531 		default:
4532 			/*
4533 			 * default constraints for v2 and up
4534 			 */
4535 			x86_pmu.event_constraints = intel_gen_event_constraints;
4536 			pr_cont("generic architected perfmon, ");
4537 			name = "generic_arch_v2+";
4538 			break;
4539 		}
4540 	}
4541 
4542 	snprintf(pmu_name_str, sizeof(pmu_name_str), "%s", name);
4543 
4544 	if (version >= 2 && extra_attr) {
4545 		x86_pmu.format_attrs = merge_attr(intel_arch3_formats_attr,
4546 						  extra_attr);
4547 		WARN_ON(!x86_pmu.format_attrs);
4548 	}
4549 
4550 	x86_pmu.cpu_events = get_events_attrs(x86_pmu.cpu_events,
4551 					      mem_attr, tsx_attr);
4552 
4553 	if (x86_pmu.num_counters > INTEL_PMC_MAX_GENERIC) {
4554 		WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
4555 		     x86_pmu.num_counters, INTEL_PMC_MAX_GENERIC);
4556 		x86_pmu.num_counters = INTEL_PMC_MAX_GENERIC;
4557 	}
4558 	x86_pmu.intel_ctrl = (1ULL << x86_pmu.num_counters) - 1;
4559 
4560 	if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED) {
4561 		WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
4562 		     x86_pmu.num_counters_fixed, INTEL_PMC_MAX_FIXED);
4563 		x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
4564 	}
4565 
4566 	x86_pmu.intel_ctrl |=
4567 		((1LL << x86_pmu.num_counters_fixed)-1) << INTEL_PMC_IDX_FIXED;
4568 
4569 	if (x86_pmu.event_constraints) {
4570 		/*
4571 		 * event on fixed counter2 (REF_CYCLES) only works on this
4572 		 * counter, so do not extend mask to generic counters
4573 		 */
4574 		for_each_event_constraint(c, x86_pmu.event_constraints) {
4575 			if (c->cmask == FIXED_EVENT_FLAGS
4576 			    && c->idxmsk64 != INTEL_PMC_MSK_FIXED_REF_CYCLES) {
4577 				c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
4578 			}
4579 			c->idxmsk64 &=
4580 				~(~0ULL << (INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed));
4581 			c->weight = hweight64(c->idxmsk64);
4582 		}
4583 	}
4584 
4585 	/*
4586 	 * Access LBR MSR may cause #GP under certain circumstances.
4587 	 * E.g. KVM doesn't support LBR MSR
4588 	 * Check all LBT MSR here.
4589 	 * Disable LBR access if any LBR MSRs can not be accessed.
4590 	 */
4591 	if (x86_pmu.lbr_nr && !check_msr(x86_pmu.lbr_tos, 0x3UL))
4592 		x86_pmu.lbr_nr = 0;
4593 	for (i = 0; i < x86_pmu.lbr_nr; i++) {
4594 		if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
4595 		      check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
4596 			x86_pmu.lbr_nr = 0;
4597 	}
4598 
4599 	x86_pmu.caps_attrs = intel_pmu_caps_attrs;
4600 
4601 	if (x86_pmu.lbr_nr) {
4602 		x86_pmu.caps_attrs = merge_attr(x86_pmu.caps_attrs, lbr_attrs);
4603 		pr_cont("%d-deep LBR, ", x86_pmu.lbr_nr);
4604 	}
4605 
4606 	/*
4607 	 * Access extra MSR may cause #GP under certain circumstances.
4608 	 * E.g. KVM doesn't support offcore event
4609 	 * Check all extra_regs here.
4610 	 */
4611 	if (x86_pmu.extra_regs) {
4612 		for (er = x86_pmu.extra_regs; er->msr; er++) {
4613 			er->extra_msr_access = check_msr(er->msr, 0x11UL);
4614 			/* Disable LBR select mapping */
4615 			if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
4616 				x86_pmu.lbr_sel_map = NULL;
4617 		}
4618 	}
4619 
4620 	/* Support full width counters using alternative MSR range */
4621 	if (x86_pmu.intel_cap.full_width_write) {
4622 		x86_pmu.max_period = x86_pmu.cntval_mask >> 1;
4623 		x86_pmu.perfctr = MSR_IA32_PMC0;
4624 		pr_cont("full-width counters, ");
4625 	}
4626 
4627 	/*
4628 	 * For arch perfmon 4 use counter freezing to avoid
4629 	 * several MSR accesses in the PMI.
4630 	 */
4631 	if (x86_pmu.counter_freezing)
4632 		x86_pmu.handle_irq = intel_pmu_handle_irq_v4;
4633 
4634 	kfree(to_free);
4635 	return 0;
4636 }
4637 
4638 /*
4639  * HT bug: phase 2 init
4640  * Called once we have valid topology information to check
4641  * whether or not HT is enabled
4642  * If HT is off, then we disable the workaround
4643  */
4644 static __init int fixup_ht_bug(void)
4645 {
4646 	int c;
4647 	/*
4648 	 * problem not present on this CPU model, nothing to do
4649 	 */
4650 	if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED))
4651 		return 0;
4652 
4653 	if (topology_max_smt_threads() > 1) {
4654 		pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
4655 		return 0;
4656 	}
4657 
4658 	cpus_read_lock();
4659 
4660 	hardlockup_detector_perf_stop();
4661 
4662 	x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED);
4663 
4664 	x86_pmu.start_scheduling = NULL;
4665 	x86_pmu.commit_scheduling = NULL;
4666 	x86_pmu.stop_scheduling = NULL;
4667 
4668 	hardlockup_detector_perf_restart();
4669 
4670 	for_each_online_cpu(c)
4671 		free_excl_cntrs(c);
4672 
4673 	cpus_read_unlock();
4674 	pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
4675 	return 0;
4676 }
4677 subsys_initcall(fixup_ht_bug)
4678