xref: /linux/arch/x86/events/intel/core.c (revision 643e2e259c2b25a2af0ae4c23c6e16586d9fd19c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Per core/cpu state
4  *
5  * Used to coordinate shared registers between HT threads or
6  * among events on a single PMU.
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/stddef.h>
12 #include <linux/types.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/nmi.h>
17 #include <linux/kvm_host.h>
18 
19 #include <asm/cpufeature.h>
20 #include <asm/debugreg.h>
21 #include <asm/hardirq.h>
22 #include <asm/intel-family.h>
23 #include <asm/intel_pt.h>
24 #include <asm/apic.h>
25 #include <asm/cpu_device_id.h>
26 
27 #include "../perf_event.h"
28 
29 /*
30  * Intel PerfMon, used on Core and later.
31  */
32 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
33 {
34 	[PERF_COUNT_HW_CPU_CYCLES]		= 0x003c,
35 	[PERF_COUNT_HW_INSTRUCTIONS]		= 0x00c0,
36 	[PERF_COUNT_HW_CACHE_REFERENCES]	= 0x4f2e,
37 	[PERF_COUNT_HW_CACHE_MISSES]		= 0x412e,
38 	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS]	= 0x00c4,
39 	[PERF_COUNT_HW_BRANCH_MISSES]		= 0x00c5,
40 	[PERF_COUNT_HW_BUS_CYCLES]		= 0x013c,
41 	[PERF_COUNT_HW_REF_CPU_CYCLES]		= 0x0300, /* pseudo-encoding */
42 };
43 
44 static struct event_constraint intel_core_event_constraints[] __read_mostly =
45 {
46 	INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
47 	INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
48 	INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
49 	INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
50 	INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
51 	INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
52 	EVENT_CONSTRAINT_END
53 };
54 
55 static struct event_constraint intel_core2_event_constraints[] __read_mostly =
56 {
57 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
58 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
59 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
60 	INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
61 	INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
62 	INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
63 	INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
64 	INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
65 	INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
66 	INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
67 	INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
68 	INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
69 	INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
70 	EVENT_CONSTRAINT_END
71 };
72 
73 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
74 {
75 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
76 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
77 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
78 	INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
79 	INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
80 	INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
81 	INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
82 	INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
83 	INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
84 	INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
85 	INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
86 	EVENT_CONSTRAINT_END
87 };
88 
89 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
90 {
91 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
92 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
93 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
94 	EVENT_EXTRA_END
95 };
96 
97 static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
98 {
99 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
100 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
101 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
102 	INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
103 	INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
104 	INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
105 	INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
106 	EVENT_CONSTRAINT_END
107 };
108 
109 static struct event_constraint intel_snb_event_constraints[] __read_mostly =
110 {
111 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
112 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
113 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
114 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
115 	INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
116 	INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
117 	INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
118 	INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
119 	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
120 	INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
121 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
122 	INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
123 
124 	/*
125 	 * When HT is off these events can only run on the bottom 4 counters
126 	 * When HT is on, they are impacted by the HT bug and require EXCL access
127 	 */
128 	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
129 	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
130 	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
131 	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
132 
133 	EVENT_CONSTRAINT_END
134 };
135 
136 static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
137 {
138 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
139 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
140 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
141 	INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
142 	INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMPTY */
143 	INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
144 	INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
145 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
146 	INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
147 	INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
148 	INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
149 	INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
150 	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
151 
152 	/*
153 	 * When HT is off these events can only run on the bottom 4 counters
154 	 * When HT is on, they are impacted by the HT bug and require EXCL access
155 	 */
156 	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
157 	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
158 	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
159 	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
160 
161 	EVENT_CONSTRAINT_END
162 };
163 
164 static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
165 {
166 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
167 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
168 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
169 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
170 	EVENT_EXTRA_END
171 };
172 
173 static struct event_constraint intel_v1_event_constraints[] __read_mostly =
174 {
175 	EVENT_CONSTRAINT_END
176 };
177 
178 static struct event_constraint intel_gen_event_constraints[] __read_mostly =
179 {
180 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
181 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
182 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
183 	EVENT_CONSTRAINT_END
184 };
185 
186 static struct event_constraint intel_v5_gen_event_constraints[] __read_mostly =
187 {
188 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
189 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
190 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
191 	FIXED_EVENT_CONSTRAINT(0x0400, 3), /* SLOTS */
192 	FIXED_EVENT_CONSTRAINT(0x0500, 4),
193 	FIXED_EVENT_CONSTRAINT(0x0600, 5),
194 	FIXED_EVENT_CONSTRAINT(0x0700, 6),
195 	FIXED_EVENT_CONSTRAINT(0x0800, 7),
196 	FIXED_EVENT_CONSTRAINT(0x0900, 8),
197 	FIXED_EVENT_CONSTRAINT(0x0a00, 9),
198 	FIXED_EVENT_CONSTRAINT(0x0b00, 10),
199 	FIXED_EVENT_CONSTRAINT(0x0c00, 11),
200 	FIXED_EVENT_CONSTRAINT(0x0d00, 12),
201 	FIXED_EVENT_CONSTRAINT(0x0e00, 13),
202 	FIXED_EVENT_CONSTRAINT(0x0f00, 14),
203 	FIXED_EVENT_CONSTRAINT(0x1000, 15),
204 	EVENT_CONSTRAINT_END
205 };
206 
207 static struct event_constraint intel_slm_event_constraints[] __read_mostly =
208 {
209 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
210 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
211 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
212 	EVENT_CONSTRAINT_END
213 };
214 
215 static struct event_constraint intel_grt_event_constraints[] __read_mostly = {
216 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
217 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
218 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
219 	FIXED_EVENT_CONSTRAINT(0x013c, 2), /* CPU_CLK_UNHALTED.REF_TSC_P */
220 	EVENT_CONSTRAINT_END
221 };
222 
223 static struct event_constraint intel_skt_event_constraints[] __read_mostly = {
224 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
225 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
226 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
227 	FIXED_EVENT_CONSTRAINT(0x013c, 2), /* CPU_CLK_UNHALTED.REF_TSC_P */
228 	FIXED_EVENT_CONSTRAINT(0x0073, 4), /* TOPDOWN_BAD_SPECULATION.ALL */
229 	FIXED_EVENT_CONSTRAINT(0x019c, 5), /* TOPDOWN_FE_BOUND.ALL */
230 	FIXED_EVENT_CONSTRAINT(0x02c2, 6), /* TOPDOWN_RETIRING.ALL */
231 	EVENT_CONSTRAINT_END
232 };
233 
234 static struct event_constraint intel_skl_event_constraints[] = {
235 	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
236 	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
237 	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
238 	INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2),	/* INST_RETIRED.PREC_DIST */
239 
240 	/*
241 	 * when HT is off, these can only run on the bottom 4 counters
242 	 */
243 	INTEL_EVENT_CONSTRAINT(0xd0, 0xf),	/* MEM_INST_RETIRED.* */
244 	INTEL_EVENT_CONSTRAINT(0xd1, 0xf),	/* MEM_LOAD_RETIRED.* */
245 	INTEL_EVENT_CONSTRAINT(0xd2, 0xf),	/* MEM_LOAD_L3_HIT_RETIRED.* */
246 	INTEL_EVENT_CONSTRAINT(0xcd, 0xf),	/* MEM_TRANS_RETIRED.* */
247 	INTEL_EVENT_CONSTRAINT(0xc6, 0xf),	/* FRONTEND_RETIRED.* */
248 
249 	EVENT_CONSTRAINT_END
250 };
251 
252 static struct extra_reg intel_knl_extra_regs[] __read_mostly = {
253 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x799ffbb6e7ull, RSP_0),
254 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x399ffbffe7ull, RSP_1),
255 	EVENT_EXTRA_END
256 };
257 
258 static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
259 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
260 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
261 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
262 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
263 	EVENT_EXTRA_END
264 };
265 
266 static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
267 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
268 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
269 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
270 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
271 	EVENT_EXTRA_END
272 };
273 
274 static struct extra_reg intel_skl_extra_regs[] __read_mostly = {
275 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
276 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
277 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
278 	/*
279 	 * Note the low 8 bits eventsel code is not a continuous field, containing
280 	 * some #GPing bits. These are masked out.
281 	 */
282 	INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
283 	EVENT_EXTRA_END
284 };
285 
286 static struct event_constraint intel_icl_event_constraints[] = {
287 	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
288 	FIXED_EVENT_CONSTRAINT(0x01c0, 0),	/* old INST_RETIRED.PREC_DIST */
289 	FIXED_EVENT_CONSTRAINT(0x0100, 0),	/* INST_RETIRED.PREC_DIST */
290 	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
291 	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
292 	FIXED_EVENT_CONSTRAINT(0x0400, 3),	/* SLOTS */
293 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_RETIRING, 0),
294 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BAD_SPEC, 1),
295 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FE_BOUND, 2),
296 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BE_BOUND, 3),
297 	INTEL_EVENT_CONSTRAINT_RANGE(0x03, 0x0a, 0xf),
298 	INTEL_EVENT_CONSTRAINT_RANGE(0x1f, 0x28, 0xf),
299 	INTEL_EVENT_CONSTRAINT(0x32, 0xf),	/* SW_PREFETCH_ACCESS.* */
300 	INTEL_EVENT_CONSTRAINT_RANGE(0x48, 0x56, 0xf),
301 	INTEL_EVENT_CONSTRAINT_RANGE(0x60, 0x8b, 0xf),
302 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xff),  /* CYCLE_ACTIVITY.STALLS_TOTAL */
303 	INTEL_UEVENT_CONSTRAINT(0x10a3, 0xff),  /* CYCLE_ACTIVITY.CYCLES_MEM_ANY */
304 	INTEL_UEVENT_CONSTRAINT(0x14a3, 0xff),  /* CYCLE_ACTIVITY.STALLS_MEM_ANY */
305 	INTEL_EVENT_CONSTRAINT(0xa3, 0xf),      /* CYCLE_ACTIVITY.* */
306 	INTEL_EVENT_CONSTRAINT_RANGE(0xa8, 0xb0, 0xf),
307 	INTEL_EVENT_CONSTRAINT_RANGE(0xb7, 0xbd, 0xf),
308 	INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xe6, 0xf),
309 	INTEL_EVENT_CONSTRAINT(0xef, 0xf),
310 	INTEL_EVENT_CONSTRAINT_RANGE(0xf0, 0xf4, 0xf),
311 	EVENT_CONSTRAINT_END
312 };
313 
314 static struct extra_reg intel_icl_extra_regs[] __read_mostly = {
315 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffffbfffull, RSP_0),
316 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffffbfffull, RSP_1),
317 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
318 	INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
319 	EVENT_EXTRA_END
320 };
321 
322 static struct extra_reg intel_glc_extra_regs[] __read_mostly = {
323 	INTEL_UEVENT_EXTRA_REG(0x012a, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
324 	INTEL_UEVENT_EXTRA_REG(0x012b, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
325 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
326 	INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff1f, FE),
327 	INTEL_UEVENT_EXTRA_REG(0x40ad, MSR_PEBS_FRONTEND, 0x7, FE),
328 	INTEL_UEVENT_EXTRA_REG(0x04c2, MSR_PEBS_FRONTEND, 0x8, FE),
329 	EVENT_EXTRA_END
330 };
331 
332 static struct event_constraint intel_glc_event_constraints[] = {
333 	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
334 	FIXED_EVENT_CONSTRAINT(0x0100, 0),	/* INST_RETIRED.PREC_DIST */
335 	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
336 	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
337 	FIXED_EVENT_CONSTRAINT(0x013c, 2),	/* CPU_CLK_UNHALTED.REF_TSC_P */
338 	FIXED_EVENT_CONSTRAINT(0x0400, 3),	/* SLOTS */
339 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_RETIRING, 0),
340 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BAD_SPEC, 1),
341 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FE_BOUND, 2),
342 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BE_BOUND, 3),
343 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_HEAVY_OPS, 4),
344 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BR_MISPREDICT, 5),
345 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FETCH_LAT, 6),
346 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_MEM_BOUND, 7),
347 
348 	INTEL_EVENT_CONSTRAINT(0x2e, 0xff),
349 	INTEL_EVENT_CONSTRAINT(0x3c, 0xff),
350 	/*
351 	 * Generally event codes < 0x90 are restricted to counters 0-3.
352 	 * The 0x2E and 0x3C are exception, which has no restriction.
353 	 */
354 	INTEL_EVENT_CONSTRAINT_RANGE(0x01, 0x8f, 0xf),
355 
356 	INTEL_UEVENT_CONSTRAINT(0x01a3, 0xf),
357 	INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf),
358 	INTEL_UEVENT_CONSTRAINT(0x08a3, 0xf),
359 	INTEL_UEVENT_CONSTRAINT(0x04a4, 0x1),
360 	INTEL_UEVENT_CONSTRAINT(0x08a4, 0x1),
361 	INTEL_UEVENT_CONSTRAINT(0x02cd, 0x1),
362 	INTEL_EVENT_CONSTRAINT(0xce, 0x1),
363 	INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xdf, 0xf),
364 	/*
365 	 * Generally event codes >= 0x90 are likely to have no restrictions.
366 	 * The exception are defined as above.
367 	 */
368 	INTEL_EVENT_CONSTRAINT_RANGE(0x90, 0xfe, 0xff),
369 
370 	EVENT_CONSTRAINT_END
371 };
372 
373 static struct extra_reg intel_rwc_extra_regs[] __read_mostly = {
374 	INTEL_UEVENT_EXTRA_REG(0x012a, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
375 	INTEL_UEVENT_EXTRA_REG(0x012b, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
376 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
377 	INTEL_UEVENT_EXTRA_REG(0x02c6, MSR_PEBS_FRONTEND, 0x9, FE),
378 	INTEL_UEVENT_EXTRA_REG(0x03c6, MSR_PEBS_FRONTEND, 0x7fff1f, FE),
379 	INTEL_UEVENT_EXTRA_REG(0x40ad, MSR_PEBS_FRONTEND, 0x7, FE),
380 	INTEL_UEVENT_EXTRA_REG(0x04c2, MSR_PEBS_FRONTEND, 0x8, FE),
381 	EVENT_EXTRA_END
382 };
383 
384 static struct event_constraint intel_lnc_event_constraints[] = {
385 	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
386 	FIXED_EVENT_CONSTRAINT(0x0100, 0),	/* INST_RETIRED.PREC_DIST */
387 	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
388 	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
389 	FIXED_EVENT_CONSTRAINT(0x013c, 2),	/* CPU_CLK_UNHALTED.REF_TSC_P */
390 	FIXED_EVENT_CONSTRAINT(0x0400, 3),	/* SLOTS */
391 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_RETIRING, 0),
392 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BAD_SPEC, 1),
393 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FE_BOUND, 2),
394 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BE_BOUND, 3),
395 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_HEAVY_OPS, 4),
396 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BR_MISPREDICT, 5),
397 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FETCH_LAT, 6),
398 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_MEM_BOUND, 7),
399 
400 	INTEL_UEVENT_CONSTRAINT(0x0148, 0x4),
401 	INTEL_UEVENT_CONSTRAINT(0x0175, 0x4),
402 
403 	INTEL_EVENT_CONSTRAINT(0x2e, 0x3ff),
404 	INTEL_EVENT_CONSTRAINT(0x3c, 0x3ff),
405 	/*
406 	 * Generally event codes < 0x90 are restricted to counters 0-3.
407 	 * The 0x2E and 0x3C are exception, which has no restriction.
408 	 */
409 	INTEL_EVENT_CONSTRAINT_RANGE(0x01, 0x8f, 0xf),
410 
411 	INTEL_UEVENT_CONSTRAINT(0x01a3, 0xf),
412 	INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf),
413 	INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
414 	INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
415 	INTEL_UEVENT_CONSTRAINT(0x04a4, 0x1),
416 	INTEL_UEVENT_CONSTRAINT(0x08a4, 0x1),
417 	INTEL_UEVENT_CONSTRAINT(0x10a4, 0x1),
418 	INTEL_UEVENT_CONSTRAINT(0x01b1, 0x8),
419 	INTEL_UEVENT_CONSTRAINT(0x02cd, 0x3),
420 	INTEL_EVENT_CONSTRAINT(0xce, 0x1),
421 
422 	INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xdf, 0xf),
423 	/*
424 	 * Generally event codes >= 0x90 are likely to have no restrictions.
425 	 * The exception are defined as above.
426 	 */
427 	INTEL_EVENT_CONSTRAINT_RANGE(0x90, 0xfe, 0x3ff),
428 
429 	EVENT_CONSTRAINT_END
430 };
431 
432 static struct extra_reg intel_lnc_extra_regs[] __read_mostly = {
433 	INTEL_UEVENT_EXTRA_REG(0x012a, MSR_OFFCORE_RSP_0, 0xfffffffffffull, RSP_0),
434 	INTEL_UEVENT_EXTRA_REG(0x012b, MSR_OFFCORE_RSP_1, 0xfffffffffffull, RSP_1),
435 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
436 	INTEL_UEVENT_EXTRA_REG(0x02c6, MSR_PEBS_FRONTEND, 0x9, FE),
437 	INTEL_UEVENT_EXTRA_REG(0x03c6, MSR_PEBS_FRONTEND, 0x7fff1f, FE),
438 	INTEL_UEVENT_EXTRA_REG(0x40ad, MSR_PEBS_FRONTEND, 0xf, FE),
439 	INTEL_UEVENT_EXTRA_REG(0x04c2, MSR_PEBS_FRONTEND, 0x8, FE),
440 	EVENT_EXTRA_END
441 };
442 
443 EVENT_ATTR_STR(mem-loads,	mem_ld_nhm,	"event=0x0b,umask=0x10,ldlat=3");
444 EVENT_ATTR_STR(mem-loads,	mem_ld_snb,	"event=0xcd,umask=0x1,ldlat=3");
445 EVENT_ATTR_STR(mem-stores,	mem_st_snb,	"event=0xcd,umask=0x2");
446 
447 static struct attribute *nhm_mem_events_attrs[] = {
448 	EVENT_PTR(mem_ld_nhm),
449 	NULL,
450 };
451 
452 /*
453  * topdown events for Intel Core CPUs.
454  *
455  * The events are all in slots, which is a free slot in a 4 wide
456  * pipeline. Some events are already reported in slots, for cycle
457  * events we multiply by the pipeline width (4).
458  *
459  * With Hyper Threading on, topdown metrics are either summed or averaged
460  * between the threads of a core: (count_t0 + count_t1).
461  *
462  * For the average case the metric is always scaled to pipeline width,
463  * so we use factor 2 ((count_t0 + count_t1) / 2 * 4)
464  */
465 
466 EVENT_ATTR_STR_HT(topdown-total-slots, td_total_slots,
467 	"event=0x3c,umask=0x0",			/* cpu_clk_unhalted.thread */
468 	"event=0x3c,umask=0x0,any=1");		/* cpu_clk_unhalted.thread_any */
469 EVENT_ATTR_STR_HT(topdown-total-slots.scale, td_total_slots_scale, "4", "2");
470 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued,
471 	"event=0xe,umask=0x1");			/* uops_issued.any */
472 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired,
473 	"event=0xc2,umask=0x2");		/* uops_retired.retire_slots */
474 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles,
475 	"event=0x9c,umask=0x1");		/* idq_uops_not_delivered_core */
476 EVENT_ATTR_STR_HT(topdown-recovery-bubbles, td_recovery_bubbles,
477 	"event=0xd,umask=0x3,cmask=1",		/* int_misc.recovery_cycles */
478 	"event=0xd,umask=0x3,cmask=1,any=1");	/* int_misc.recovery_cycles_any */
479 EVENT_ATTR_STR_HT(topdown-recovery-bubbles.scale, td_recovery_bubbles_scale,
480 	"4", "2");
481 
482 EVENT_ATTR_STR(slots,			slots,			"event=0x00,umask=0x4");
483 EVENT_ATTR_STR(topdown-retiring,	td_retiring,		"event=0x00,umask=0x80");
484 EVENT_ATTR_STR(topdown-bad-spec,	td_bad_spec,		"event=0x00,umask=0x81");
485 EVENT_ATTR_STR(topdown-fe-bound,	td_fe_bound,		"event=0x00,umask=0x82");
486 EVENT_ATTR_STR(topdown-be-bound,	td_be_bound,		"event=0x00,umask=0x83");
487 EVENT_ATTR_STR(topdown-heavy-ops,	td_heavy_ops,		"event=0x00,umask=0x84");
488 EVENT_ATTR_STR(topdown-br-mispredict,	td_br_mispredict,	"event=0x00,umask=0x85");
489 EVENT_ATTR_STR(topdown-fetch-lat,	td_fetch_lat,		"event=0x00,umask=0x86");
490 EVENT_ATTR_STR(topdown-mem-bound,	td_mem_bound,		"event=0x00,umask=0x87");
491 
492 static struct attribute *snb_events_attrs[] = {
493 	EVENT_PTR(td_slots_issued),
494 	EVENT_PTR(td_slots_retired),
495 	EVENT_PTR(td_fetch_bubbles),
496 	EVENT_PTR(td_total_slots),
497 	EVENT_PTR(td_total_slots_scale),
498 	EVENT_PTR(td_recovery_bubbles),
499 	EVENT_PTR(td_recovery_bubbles_scale),
500 	NULL,
501 };
502 
503 static struct attribute *snb_mem_events_attrs[] = {
504 	EVENT_PTR(mem_ld_snb),
505 	EVENT_PTR(mem_st_snb),
506 	NULL,
507 };
508 
509 static struct event_constraint intel_hsw_event_constraints[] = {
510 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
511 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
512 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
513 	INTEL_UEVENT_CONSTRAINT(0x148, 0x4),	/* L1D_PEND_MISS.PENDING */
514 	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
515 	INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
516 	/* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
517 	INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
518 	/* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
519 	INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
520 	/* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
521 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
522 
523 	/*
524 	 * When HT is off these events can only run on the bottom 4 counters
525 	 * When HT is on, they are impacted by the HT bug and require EXCL access
526 	 */
527 	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
528 	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
529 	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
530 	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
531 
532 	EVENT_CONSTRAINT_END
533 };
534 
535 static struct event_constraint intel_bdw_event_constraints[] = {
536 	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
537 	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
538 	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
539 	INTEL_UEVENT_CONSTRAINT(0x148, 0x4),	/* L1D_PEND_MISS.PENDING */
540 	INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4),	/* CYCLE_ACTIVITY.CYCLES_L1D_MISS */
541 	/*
542 	 * when HT is off, these can only run on the bottom 4 counters
543 	 */
544 	INTEL_EVENT_CONSTRAINT(0xd0, 0xf),	/* MEM_INST_RETIRED.* */
545 	INTEL_EVENT_CONSTRAINT(0xd1, 0xf),	/* MEM_LOAD_RETIRED.* */
546 	INTEL_EVENT_CONSTRAINT(0xd2, 0xf),	/* MEM_LOAD_L3_HIT_RETIRED.* */
547 	INTEL_EVENT_CONSTRAINT(0xcd, 0xf),	/* MEM_TRANS_RETIRED.* */
548 	EVENT_CONSTRAINT_END
549 };
550 
551 static u64 intel_pmu_event_map(int hw_event)
552 {
553 	return intel_perfmon_event_map[hw_event];
554 }
555 
556 static __initconst const u64 glc_hw_cache_event_ids
557 				[PERF_COUNT_HW_CACHE_MAX]
558 				[PERF_COUNT_HW_CACHE_OP_MAX]
559 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
560 {
561  [ C(L1D ) ] = {
562 	[ C(OP_READ) ] = {
563 		[ C(RESULT_ACCESS) ] = 0x81d0,
564 		[ C(RESULT_MISS)   ] = 0xe124,
565 	},
566 	[ C(OP_WRITE) ] = {
567 		[ C(RESULT_ACCESS) ] = 0x82d0,
568 	},
569  },
570  [ C(L1I ) ] = {
571 	[ C(OP_READ) ] = {
572 		[ C(RESULT_MISS)   ] = 0xe424,
573 	},
574 	[ C(OP_WRITE) ] = {
575 		[ C(RESULT_ACCESS) ] = -1,
576 		[ C(RESULT_MISS)   ] = -1,
577 	},
578  },
579  [ C(LL  ) ] = {
580 	[ C(OP_READ) ] = {
581 		[ C(RESULT_ACCESS) ] = 0x12a,
582 		[ C(RESULT_MISS)   ] = 0x12a,
583 	},
584 	[ C(OP_WRITE) ] = {
585 		[ C(RESULT_ACCESS) ] = 0x12a,
586 		[ C(RESULT_MISS)   ] = 0x12a,
587 	},
588  },
589  [ C(DTLB) ] = {
590 	[ C(OP_READ) ] = {
591 		[ C(RESULT_ACCESS) ] = 0x81d0,
592 		[ C(RESULT_MISS)   ] = 0xe12,
593 	},
594 	[ C(OP_WRITE) ] = {
595 		[ C(RESULT_ACCESS) ] = 0x82d0,
596 		[ C(RESULT_MISS)   ] = 0xe13,
597 	},
598  },
599  [ C(ITLB) ] = {
600 	[ C(OP_READ) ] = {
601 		[ C(RESULT_ACCESS) ] = -1,
602 		[ C(RESULT_MISS)   ] = 0xe11,
603 	},
604 	[ C(OP_WRITE) ] = {
605 		[ C(RESULT_ACCESS) ] = -1,
606 		[ C(RESULT_MISS)   ] = -1,
607 	},
608 	[ C(OP_PREFETCH) ] = {
609 		[ C(RESULT_ACCESS) ] = -1,
610 		[ C(RESULT_MISS)   ] = -1,
611 	},
612  },
613  [ C(BPU ) ] = {
614 	[ C(OP_READ) ] = {
615 		[ C(RESULT_ACCESS) ] = 0x4c4,
616 		[ C(RESULT_MISS)   ] = 0x4c5,
617 	},
618 	[ C(OP_WRITE) ] = {
619 		[ C(RESULT_ACCESS) ] = -1,
620 		[ C(RESULT_MISS)   ] = -1,
621 	},
622 	[ C(OP_PREFETCH) ] = {
623 		[ C(RESULT_ACCESS) ] = -1,
624 		[ C(RESULT_MISS)   ] = -1,
625 	},
626  },
627  [ C(NODE) ] = {
628 	[ C(OP_READ) ] = {
629 		[ C(RESULT_ACCESS) ] = 0x12a,
630 		[ C(RESULT_MISS)   ] = 0x12a,
631 	},
632  },
633 };
634 
635 static __initconst const u64 glc_hw_cache_extra_regs
636 				[PERF_COUNT_HW_CACHE_MAX]
637 				[PERF_COUNT_HW_CACHE_OP_MAX]
638 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
639 {
640  [ C(LL  ) ] = {
641 	[ C(OP_READ) ] = {
642 		[ C(RESULT_ACCESS) ] = 0x10001,
643 		[ C(RESULT_MISS)   ] = 0x3fbfc00001,
644 	},
645 	[ C(OP_WRITE) ] = {
646 		[ C(RESULT_ACCESS) ] = 0x3f3ffc0002,
647 		[ C(RESULT_MISS)   ] = 0x3f3fc00002,
648 	},
649  },
650  [ C(NODE) ] = {
651 	[ C(OP_READ) ] = {
652 		[ C(RESULT_ACCESS) ] = 0x10c000001,
653 		[ C(RESULT_MISS)   ] = 0x3fb3000001,
654 	},
655  },
656 };
657 
658 /*
659  * Notes on the events:
660  * - data reads do not include code reads (comparable to earlier tables)
661  * - data counts include speculative execution (except L1 write, dtlb, bpu)
662  * - remote node access includes remote memory, remote cache, remote mmio.
663  * - prefetches are not included in the counts.
664  * - icache miss does not include decoded icache
665  */
666 
667 #define SKL_DEMAND_DATA_RD		BIT_ULL(0)
668 #define SKL_DEMAND_RFO			BIT_ULL(1)
669 #define SKL_ANY_RESPONSE		BIT_ULL(16)
670 #define SKL_SUPPLIER_NONE		BIT_ULL(17)
671 #define SKL_L3_MISS_LOCAL_DRAM		BIT_ULL(26)
672 #define SKL_L3_MISS_REMOTE_HOP0_DRAM	BIT_ULL(27)
673 #define SKL_L3_MISS_REMOTE_HOP1_DRAM	BIT_ULL(28)
674 #define SKL_L3_MISS_REMOTE_HOP2P_DRAM	BIT_ULL(29)
675 #define SKL_L3_MISS			(SKL_L3_MISS_LOCAL_DRAM| \
676 					 SKL_L3_MISS_REMOTE_HOP0_DRAM| \
677 					 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
678 					 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
679 #define SKL_SPL_HIT			BIT_ULL(30)
680 #define SKL_SNOOP_NONE			BIT_ULL(31)
681 #define SKL_SNOOP_NOT_NEEDED		BIT_ULL(32)
682 #define SKL_SNOOP_MISS			BIT_ULL(33)
683 #define SKL_SNOOP_HIT_NO_FWD		BIT_ULL(34)
684 #define SKL_SNOOP_HIT_WITH_FWD		BIT_ULL(35)
685 #define SKL_SNOOP_HITM			BIT_ULL(36)
686 #define SKL_SNOOP_NON_DRAM		BIT_ULL(37)
687 #define SKL_ANY_SNOOP			(SKL_SPL_HIT|SKL_SNOOP_NONE| \
688 					 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
689 					 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
690 					 SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM)
691 #define SKL_DEMAND_READ			SKL_DEMAND_DATA_RD
692 #define SKL_SNOOP_DRAM			(SKL_SNOOP_NONE| \
693 					 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
694 					 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
695 					 SKL_SNOOP_HITM|SKL_SPL_HIT)
696 #define SKL_DEMAND_WRITE		SKL_DEMAND_RFO
697 #define SKL_LLC_ACCESS			SKL_ANY_RESPONSE
698 #define SKL_L3_MISS_REMOTE		(SKL_L3_MISS_REMOTE_HOP0_DRAM| \
699 					 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
700 					 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
701 
702 static __initconst const u64 skl_hw_cache_event_ids
703 				[PERF_COUNT_HW_CACHE_MAX]
704 				[PERF_COUNT_HW_CACHE_OP_MAX]
705 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
706 {
707  [ C(L1D ) ] = {
708 	[ C(OP_READ) ] = {
709 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_INST_RETIRED.ALL_LOADS */
710 		[ C(RESULT_MISS)   ] = 0x151,	/* L1D.REPLACEMENT */
711 	},
712 	[ C(OP_WRITE) ] = {
713 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_INST_RETIRED.ALL_STORES */
714 		[ C(RESULT_MISS)   ] = 0x0,
715 	},
716 	[ C(OP_PREFETCH) ] = {
717 		[ C(RESULT_ACCESS) ] = 0x0,
718 		[ C(RESULT_MISS)   ] = 0x0,
719 	},
720  },
721  [ C(L1I ) ] = {
722 	[ C(OP_READ) ] = {
723 		[ C(RESULT_ACCESS) ] = 0x0,
724 		[ C(RESULT_MISS)   ] = 0x283,	/* ICACHE_64B.MISS */
725 	},
726 	[ C(OP_WRITE) ] = {
727 		[ C(RESULT_ACCESS) ] = -1,
728 		[ C(RESULT_MISS)   ] = -1,
729 	},
730 	[ C(OP_PREFETCH) ] = {
731 		[ C(RESULT_ACCESS) ] = 0x0,
732 		[ C(RESULT_MISS)   ] = 0x0,
733 	},
734  },
735  [ C(LL  ) ] = {
736 	[ C(OP_READ) ] = {
737 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
738 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
739 	},
740 	[ C(OP_WRITE) ] = {
741 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
742 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
743 	},
744 	[ C(OP_PREFETCH) ] = {
745 		[ C(RESULT_ACCESS) ] = 0x0,
746 		[ C(RESULT_MISS)   ] = 0x0,
747 	},
748  },
749  [ C(DTLB) ] = {
750 	[ C(OP_READ) ] = {
751 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_INST_RETIRED.ALL_LOADS */
752 		[ C(RESULT_MISS)   ] = 0xe08,	/* DTLB_LOAD_MISSES.WALK_COMPLETED */
753 	},
754 	[ C(OP_WRITE) ] = {
755 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_INST_RETIRED.ALL_STORES */
756 		[ C(RESULT_MISS)   ] = 0xe49,	/* DTLB_STORE_MISSES.WALK_COMPLETED */
757 	},
758 	[ C(OP_PREFETCH) ] = {
759 		[ C(RESULT_ACCESS) ] = 0x0,
760 		[ C(RESULT_MISS)   ] = 0x0,
761 	},
762  },
763  [ C(ITLB) ] = {
764 	[ C(OP_READ) ] = {
765 		[ C(RESULT_ACCESS) ] = 0x2085,	/* ITLB_MISSES.STLB_HIT */
766 		[ C(RESULT_MISS)   ] = 0xe85,	/* ITLB_MISSES.WALK_COMPLETED */
767 	},
768 	[ C(OP_WRITE) ] = {
769 		[ C(RESULT_ACCESS) ] = -1,
770 		[ C(RESULT_MISS)   ] = -1,
771 	},
772 	[ C(OP_PREFETCH) ] = {
773 		[ C(RESULT_ACCESS) ] = -1,
774 		[ C(RESULT_MISS)   ] = -1,
775 	},
776  },
777  [ C(BPU ) ] = {
778 	[ C(OP_READ) ] = {
779 		[ C(RESULT_ACCESS) ] = 0xc4,	/* BR_INST_RETIRED.ALL_BRANCHES */
780 		[ C(RESULT_MISS)   ] = 0xc5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
781 	},
782 	[ C(OP_WRITE) ] = {
783 		[ C(RESULT_ACCESS) ] = -1,
784 		[ C(RESULT_MISS)   ] = -1,
785 	},
786 	[ C(OP_PREFETCH) ] = {
787 		[ C(RESULT_ACCESS) ] = -1,
788 		[ C(RESULT_MISS)   ] = -1,
789 	},
790  },
791  [ C(NODE) ] = {
792 	[ C(OP_READ) ] = {
793 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
794 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
795 	},
796 	[ C(OP_WRITE) ] = {
797 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
798 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
799 	},
800 	[ C(OP_PREFETCH) ] = {
801 		[ C(RESULT_ACCESS) ] = 0x0,
802 		[ C(RESULT_MISS)   ] = 0x0,
803 	},
804  },
805 };
806 
807 static __initconst const u64 skl_hw_cache_extra_regs
808 				[PERF_COUNT_HW_CACHE_MAX]
809 				[PERF_COUNT_HW_CACHE_OP_MAX]
810 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
811 {
812  [ C(LL  ) ] = {
813 	[ C(OP_READ) ] = {
814 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
815 				       SKL_LLC_ACCESS|SKL_ANY_SNOOP,
816 		[ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
817 				       SKL_L3_MISS|SKL_ANY_SNOOP|
818 				       SKL_SUPPLIER_NONE,
819 	},
820 	[ C(OP_WRITE) ] = {
821 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
822 				       SKL_LLC_ACCESS|SKL_ANY_SNOOP,
823 		[ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
824 				       SKL_L3_MISS|SKL_ANY_SNOOP|
825 				       SKL_SUPPLIER_NONE,
826 	},
827 	[ C(OP_PREFETCH) ] = {
828 		[ C(RESULT_ACCESS) ] = 0x0,
829 		[ C(RESULT_MISS)   ] = 0x0,
830 	},
831  },
832  [ C(NODE) ] = {
833 	[ C(OP_READ) ] = {
834 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
835 				       SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
836 		[ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
837 				       SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
838 	},
839 	[ C(OP_WRITE) ] = {
840 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
841 				       SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
842 		[ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
843 				       SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
844 	},
845 	[ C(OP_PREFETCH) ] = {
846 		[ C(RESULT_ACCESS) ] = 0x0,
847 		[ C(RESULT_MISS)   ] = 0x0,
848 	},
849  },
850 };
851 
852 #define SNB_DMND_DATA_RD	(1ULL << 0)
853 #define SNB_DMND_RFO		(1ULL << 1)
854 #define SNB_DMND_IFETCH		(1ULL << 2)
855 #define SNB_DMND_WB		(1ULL << 3)
856 #define SNB_PF_DATA_RD		(1ULL << 4)
857 #define SNB_PF_RFO		(1ULL << 5)
858 #define SNB_PF_IFETCH		(1ULL << 6)
859 #define SNB_LLC_DATA_RD		(1ULL << 7)
860 #define SNB_LLC_RFO		(1ULL << 8)
861 #define SNB_LLC_IFETCH		(1ULL << 9)
862 #define SNB_BUS_LOCKS		(1ULL << 10)
863 #define SNB_STRM_ST		(1ULL << 11)
864 #define SNB_OTHER		(1ULL << 15)
865 #define SNB_RESP_ANY		(1ULL << 16)
866 #define SNB_NO_SUPP		(1ULL << 17)
867 #define SNB_LLC_HITM		(1ULL << 18)
868 #define SNB_LLC_HITE		(1ULL << 19)
869 #define SNB_LLC_HITS		(1ULL << 20)
870 #define SNB_LLC_HITF		(1ULL << 21)
871 #define SNB_LOCAL		(1ULL << 22)
872 #define SNB_REMOTE		(0xffULL << 23)
873 #define SNB_SNP_NONE		(1ULL << 31)
874 #define SNB_SNP_NOT_NEEDED	(1ULL << 32)
875 #define SNB_SNP_MISS		(1ULL << 33)
876 #define SNB_NO_FWD		(1ULL << 34)
877 #define SNB_SNP_FWD		(1ULL << 35)
878 #define SNB_HITM		(1ULL << 36)
879 #define SNB_NON_DRAM		(1ULL << 37)
880 
881 #define SNB_DMND_READ		(SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
882 #define SNB_DMND_WRITE		(SNB_DMND_RFO|SNB_LLC_RFO)
883 #define SNB_DMND_PREFETCH	(SNB_PF_DATA_RD|SNB_PF_RFO)
884 
885 #define SNB_SNP_ANY		(SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
886 				 SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
887 				 SNB_HITM)
888 
889 #define SNB_DRAM_ANY		(SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
890 #define SNB_DRAM_REMOTE		(SNB_REMOTE|SNB_SNP_ANY)
891 
892 #define SNB_L3_ACCESS		SNB_RESP_ANY
893 #define SNB_L3_MISS		(SNB_DRAM_ANY|SNB_NON_DRAM)
894 
895 static __initconst const u64 snb_hw_cache_extra_regs
896 				[PERF_COUNT_HW_CACHE_MAX]
897 				[PERF_COUNT_HW_CACHE_OP_MAX]
898 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
899 {
900  [ C(LL  ) ] = {
901 	[ C(OP_READ) ] = {
902 		[ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
903 		[ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_L3_MISS,
904 	},
905 	[ C(OP_WRITE) ] = {
906 		[ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
907 		[ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_L3_MISS,
908 	},
909 	[ C(OP_PREFETCH) ] = {
910 		[ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
911 		[ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
912 	},
913  },
914  [ C(NODE) ] = {
915 	[ C(OP_READ) ] = {
916 		[ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
917 		[ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
918 	},
919 	[ C(OP_WRITE) ] = {
920 		[ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
921 		[ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
922 	},
923 	[ C(OP_PREFETCH) ] = {
924 		[ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
925 		[ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
926 	},
927  },
928 };
929 
930 static __initconst const u64 snb_hw_cache_event_ids
931 				[PERF_COUNT_HW_CACHE_MAX]
932 				[PERF_COUNT_HW_CACHE_OP_MAX]
933 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
934 {
935  [ C(L1D) ] = {
936 	[ C(OP_READ) ] = {
937 		[ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS        */
938 		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPLACEMENT              */
939 	},
940 	[ C(OP_WRITE) ] = {
941 		[ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES       */
942 		[ C(RESULT_MISS)   ] = 0x0851, /* L1D.ALL_M_REPLACEMENT        */
943 	},
944 	[ C(OP_PREFETCH) ] = {
945 		[ C(RESULT_ACCESS) ] = 0x0,
946 		[ C(RESULT_MISS)   ] = 0x024e, /* HW_PRE_REQ.DL1_MISS          */
947 	},
948  },
949  [ C(L1I ) ] = {
950 	[ C(OP_READ) ] = {
951 		[ C(RESULT_ACCESS) ] = 0x0,
952 		[ C(RESULT_MISS)   ] = 0x0280, /* ICACHE.MISSES */
953 	},
954 	[ C(OP_WRITE) ] = {
955 		[ C(RESULT_ACCESS) ] = -1,
956 		[ C(RESULT_MISS)   ] = -1,
957 	},
958 	[ C(OP_PREFETCH) ] = {
959 		[ C(RESULT_ACCESS) ] = 0x0,
960 		[ C(RESULT_MISS)   ] = 0x0,
961 	},
962  },
963  [ C(LL  ) ] = {
964 	[ C(OP_READ) ] = {
965 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
966 		[ C(RESULT_ACCESS) ] = 0x01b7,
967 		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
968 		[ C(RESULT_MISS)   ] = 0x01b7,
969 	},
970 	[ C(OP_WRITE) ] = {
971 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
972 		[ C(RESULT_ACCESS) ] = 0x01b7,
973 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
974 		[ C(RESULT_MISS)   ] = 0x01b7,
975 	},
976 	[ C(OP_PREFETCH) ] = {
977 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
978 		[ C(RESULT_ACCESS) ] = 0x01b7,
979 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
980 		[ C(RESULT_MISS)   ] = 0x01b7,
981 	},
982  },
983  [ C(DTLB) ] = {
984 	[ C(OP_READ) ] = {
985 		[ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
986 		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
987 	},
988 	[ C(OP_WRITE) ] = {
989 		[ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
990 		[ C(RESULT_MISS)   ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
991 	},
992 	[ C(OP_PREFETCH) ] = {
993 		[ C(RESULT_ACCESS) ] = 0x0,
994 		[ C(RESULT_MISS)   ] = 0x0,
995 	},
996  },
997  [ C(ITLB) ] = {
998 	[ C(OP_READ) ] = {
999 		[ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT         */
1000 		[ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK    */
1001 	},
1002 	[ C(OP_WRITE) ] = {
1003 		[ C(RESULT_ACCESS) ] = -1,
1004 		[ C(RESULT_MISS)   ] = -1,
1005 	},
1006 	[ C(OP_PREFETCH) ] = {
1007 		[ C(RESULT_ACCESS) ] = -1,
1008 		[ C(RESULT_MISS)   ] = -1,
1009 	},
1010  },
1011  [ C(BPU ) ] = {
1012 	[ C(OP_READ) ] = {
1013 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1014 		[ C(RESULT_MISS)   ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
1015 	},
1016 	[ C(OP_WRITE) ] = {
1017 		[ C(RESULT_ACCESS) ] = -1,
1018 		[ C(RESULT_MISS)   ] = -1,
1019 	},
1020 	[ C(OP_PREFETCH) ] = {
1021 		[ C(RESULT_ACCESS) ] = -1,
1022 		[ C(RESULT_MISS)   ] = -1,
1023 	},
1024  },
1025  [ C(NODE) ] = {
1026 	[ C(OP_READ) ] = {
1027 		[ C(RESULT_ACCESS) ] = 0x01b7,
1028 		[ C(RESULT_MISS)   ] = 0x01b7,
1029 	},
1030 	[ C(OP_WRITE) ] = {
1031 		[ C(RESULT_ACCESS) ] = 0x01b7,
1032 		[ C(RESULT_MISS)   ] = 0x01b7,
1033 	},
1034 	[ C(OP_PREFETCH) ] = {
1035 		[ C(RESULT_ACCESS) ] = 0x01b7,
1036 		[ C(RESULT_MISS)   ] = 0x01b7,
1037 	},
1038  },
1039 
1040 };
1041 
1042 /*
1043  * Notes on the events:
1044  * - data reads do not include code reads (comparable to earlier tables)
1045  * - data counts include speculative execution (except L1 write, dtlb, bpu)
1046  * - remote node access includes remote memory, remote cache, remote mmio.
1047  * - prefetches are not included in the counts because they are not
1048  *   reliably counted.
1049  */
1050 
1051 #define HSW_DEMAND_DATA_RD		BIT_ULL(0)
1052 #define HSW_DEMAND_RFO			BIT_ULL(1)
1053 #define HSW_ANY_RESPONSE		BIT_ULL(16)
1054 #define HSW_SUPPLIER_NONE		BIT_ULL(17)
1055 #define HSW_L3_MISS_LOCAL_DRAM		BIT_ULL(22)
1056 #define HSW_L3_MISS_REMOTE_HOP0		BIT_ULL(27)
1057 #define HSW_L3_MISS_REMOTE_HOP1		BIT_ULL(28)
1058 #define HSW_L3_MISS_REMOTE_HOP2P	BIT_ULL(29)
1059 #define HSW_L3_MISS			(HSW_L3_MISS_LOCAL_DRAM| \
1060 					 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
1061 					 HSW_L3_MISS_REMOTE_HOP2P)
1062 #define HSW_SNOOP_NONE			BIT_ULL(31)
1063 #define HSW_SNOOP_NOT_NEEDED		BIT_ULL(32)
1064 #define HSW_SNOOP_MISS			BIT_ULL(33)
1065 #define HSW_SNOOP_HIT_NO_FWD		BIT_ULL(34)
1066 #define HSW_SNOOP_HIT_WITH_FWD		BIT_ULL(35)
1067 #define HSW_SNOOP_HITM			BIT_ULL(36)
1068 #define HSW_SNOOP_NON_DRAM		BIT_ULL(37)
1069 #define HSW_ANY_SNOOP			(HSW_SNOOP_NONE| \
1070 					 HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
1071 					 HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
1072 					 HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
1073 #define HSW_SNOOP_DRAM			(HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
1074 #define HSW_DEMAND_READ			HSW_DEMAND_DATA_RD
1075 #define HSW_DEMAND_WRITE		HSW_DEMAND_RFO
1076 #define HSW_L3_MISS_REMOTE		(HSW_L3_MISS_REMOTE_HOP0|\
1077 					 HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
1078 #define HSW_LLC_ACCESS			HSW_ANY_RESPONSE
1079 
1080 #define BDW_L3_MISS_LOCAL		BIT(26)
1081 #define BDW_L3_MISS			(BDW_L3_MISS_LOCAL| \
1082 					 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
1083 					 HSW_L3_MISS_REMOTE_HOP2P)
1084 
1085 
1086 static __initconst const u64 hsw_hw_cache_event_ids
1087 				[PERF_COUNT_HW_CACHE_MAX]
1088 				[PERF_COUNT_HW_CACHE_OP_MAX]
1089 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1090 {
1091  [ C(L1D ) ] = {
1092 	[ C(OP_READ) ] = {
1093 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1094 		[ C(RESULT_MISS)   ] = 0x151,	/* L1D.REPLACEMENT */
1095 	},
1096 	[ C(OP_WRITE) ] = {
1097 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1098 		[ C(RESULT_MISS)   ] = 0x0,
1099 	},
1100 	[ C(OP_PREFETCH) ] = {
1101 		[ C(RESULT_ACCESS) ] = 0x0,
1102 		[ C(RESULT_MISS)   ] = 0x0,
1103 	},
1104  },
1105  [ C(L1I ) ] = {
1106 	[ C(OP_READ) ] = {
1107 		[ C(RESULT_ACCESS) ] = 0x0,
1108 		[ C(RESULT_MISS)   ] = 0x280,	/* ICACHE.MISSES */
1109 	},
1110 	[ C(OP_WRITE) ] = {
1111 		[ C(RESULT_ACCESS) ] = -1,
1112 		[ C(RESULT_MISS)   ] = -1,
1113 	},
1114 	[ C(OP_PREFETCH) ] = {
1115 		[ C(RESULT_ACCESS) ] = 0x0,
1116 		[ C(RESULT_MISS)   ] = 0x0,
1117 	},
1118  },
1119  [ C(LL  ) ] = {
1120 	[ C(OP_READ) ] = {
1121 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
1122 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
1123 	},
1124 	[ C(OP_WRITE) ] = {
1125 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
1126 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
1127 	},
1128 	[ C(OP_PREFETCH) ] = {
1129 		[ C(RESULT_ACCESS) ] = 0x0,
1130 		[ C(RESULT_MISS)   ] = 0x0,
1131 	},
1132  },
1133  [ C(DTLB) ] = {
1134 	[ C(OP_READ) ] = {
1135 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1136 		[ C(RESULT_MISS)   ] = 0x108,	/* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
1137 	},
1138 	[ C(OP_WRITE) ] = {
1139 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1140 		[ C(RESULT_MISS)   ] = 0x149,	/* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
1141 	},
1142 	[ C(OP_PREFETCH) ] = {
1143 		[ C(RESULT_ACCESS) ] = 0x0,
1144 		[ C(RESULT_MISS)   ] = 0x0,
1145 	},
1146  },
1147  [ C(ITLB) ] = {
1148 	[ C(OP_READ) ] = {
1149 		[ C(RESULT_ACCESS) ] = 0x6085,	/* ITLB_MISSES.STLB_HIT */
1150 		[ C(RESULT_MISS)   ] = 0x185,	/* ITLB_MISSES.MISS_CAUSES_A_WALK */
1151 	},
1152 	[ C(OP_WRITE) ] = {
1153 		[ C(RESULT_ACCESS) ] = -1,
1154 		[ C(RESULT_MISS)   ] = -1,
1155 	},
1156 	[ C(OP_PREFETCH) ] = {
1157 		[ C(RESULT_ACCESS) ] = -1,
1158 		[ C(RESULT_MISS)   ] = -1,
1159 	},
1160  },
1161  [ C(BPU ) ] = {
1162 	[ C(OP_READ) ] = {
1163 		[ C(RESULT_ACCESS) ] = 0xc4,	/* BR_INST_RETIRED.ALL_BRANCHES */
1164 		[ C(RESULT_MISS)   ] = 0xc5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
1165 	},
1166 	[ C(OP_WRITE) ] = {
1167 		[ C(RESULT_ACCESS) ] = -1,
1168 		[ C(RESULT_MISS)   ] = -1,
1169 	},
1170 	[ C(OP_PREFETCH) ] = {
1171 		[ C(RESULT_ACCESS) ] = -1,
1172 		[ C(RESULT_MISS)   ] = -1,
1173 	},
1174  },
1175  [ C(NODE) ] = {
1176 	[ C(OP_READ) ] = {
1177 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
1178 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
1179 	},
1180 	[ C(OP_WRITE) ] = {
1181 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
1182 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
1183 	},
1184 	[ C(OP_PREFETCH) ] = {
1185 		[ C(RESULT_ACCESS) ] = 0x0,
1186 		[ C(RESULT_MISS)   ] = 0x0,
1187 	},
1188  },
1189 };
1190 
1191 static __initconst const u64 hsw_hw_cache_extra_regs
1192 				[PERF_COUNT_HW_CACHE_MAX]
1193 				[PERF_COUNT_HW_CACHE_OP_MAX]
1194 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1195 {
1196  [ C(LL  ) ] = {
1197 	[ C(OP_READ) ] = {
1198 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
1199 				       HSW_LLC_ACCESS,
1200 		[ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
1201 				       HSW_L3_MISS|HSW_ANY_SNOOP,
1202 	},
1203 	[ C(OP_WRITE) ] = {
1204 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
1205 				       HSW_LLC_ACCESS,
1206 		[ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
1207 				       HSW_L3_MISS|HSW_ANY_SNOOP,
1208 	},
1209 	[ C(OP_PREFETCH) ] = {
1210 		[ C(RESULT_ACCESS) ] = 0x0,
1211 		[ C(RESULT_MISS)   ] = 0x0,
1212 	},
1213  },
1214  [ C(NODE) ] = {
1215 	[ C(OP_READ) ] = {
1216 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
1217 				       HSW_L3_MISS_LOCAL_DRAM|
1218 				       HSW_SNOOP_DRAM,
1219 		[ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
1220 				       HSW_L3_MISS_REMOTE|
1221 				       HSW_SNOOP_DRAM,
1222 	},
1223 	[ C(OP_WRITE) ] = {
1224 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
1225 				       HSW_L3_MISS_LOCAL_DRAM|
1226 				       HSW_SNOOP_DRAM,
1227 		[ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
1228 				       HSW_L3_MISS_REMOTE|
1229 				       HSW_SNOOP_DRAM,
1230 	},
1231 	[ C(OP_PREFETCH) ] = {
1232 		[ C(RESULT_ACCESS) ] = 0x0,
1233 		[ C(RESULT_MISS)   ] = 0x0,
1234 	},
1235  },
1236 };
1237 
1238 static __initconst const u64 westmere_hw_cache_event_ids
1239 				[PERF_COUNT_HW_CACHE_MAX]
1240 				[PERF_COUNT_HW_CACHE_OP_MAX]
1241 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1242 {
1243  [ C(L1D) ] = {
1244 	[ C(OP_READ) ] = {
1245 		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1246 		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
1247 	},
1248 	[ C(OP_WRITE) ] = {
1249 		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1250 		[ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
1251 	},
1252 	[ C(OP_PREFETCH) ] = {
1253 		[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
1254 		[ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
1255 	},
1256  },
1257  [ C(L1I ) ] = {
1258 	[ C(OP_READ) ] = {
1259 		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
1260 		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
1261 	},
1262 	[ C(OP_WRITE) ] = {
1263 		[ C(RESULT_ACCESS) ] = -1,
1264 		[ C(RESULT_MISS)   ] = -1,
1265 	},
1266 	[ C(OP_PREFETCH) ] = {
1267 		[ C(RESULT_ACCESS) ] = 0x0,
1268 		[ C(RESULT_MISS)   ] = 0x0,
1269 	},
1270  },
1271  [ C(LL  ) ] = {
1272 	[ C(OP_READ) ] = {
1273 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1274 		[ C(RESULT_ACCESS) ] = 0x01b7,
1275 		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1276 		[ C(RESULT_MISS)   ] = 0x01b7,
1277 	},
1278 	/*
1279 	 * Use RFO, not WRITEBACK, because a write miss would typically occur
1280 	 * on RFO.
1281 	 */
1282 	[ C(OP_WRITE) ] = {
1283 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1284 		[ C(RESULT_ACCESS) ] = 0x01b7,
1285 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1286 		[ C(RESULT_MISS)   ] = 0x01b7,
1287 	},
1288 	[ C(OP_PREFETCH) ] = {
1289 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1290 		[ C(RESULT_ACCESS) ] = 0x01b7,
1291 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1292 		[ C(RESULT_MISS)   ] = 0x01b7,
1293 	},
1294  },
1295  [ C(DTLB) ] = {
1296 	[ C(OP_READ) ] = {
1297 		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1298 		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
1299 	},
1300 	[ C(OP_WRITE) ] = {
1301 		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1302 		[ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
1303 	},
1304 	[ C(OP_PREFETCH) ] = {
1305 		[ C(RESULT_ACCESS) ] = 0x0,
1306 		[ C(RESULT_MISS)   ] = 0x0,
1307 	},
1308  },
1309  [ C(ITLB) ] = {
1310 	[ C(OP_READ) ] = {
1311 		[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
1312 		[ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.ANY              */
1313 	},
1314 	[ C(OP_WRITE) ] = {
1315 		[ C(RESULT_ACCESS) ] = -1,
1316 		[ C(RESULT_MISS)   ] = -1,
1317 	},
1318 	[ C(OP_PREFETCH) ] = {
1319 		[ C(RESULT_ACCESS) ] = -1,
1320 		[ C(RESULT_MISS)   ] = -1,
1321 	},
1322  },
1323  [ C(BPU ) ] = {
1324 	[ C(OP_READ) ] = {
1325 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1326 		[ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1327 	},
1328 	[ C(OP_WRITE) ] = {
1329 		[ C(RESULT_ACCESS) ] = -1,
1330 		[ C(RESULT_MISS)   ] = -1,
1331 	},
1332 	[ C(OP_PREFETCH) ] = {
1333 		[ C(RESULT_ACCESS) ] = -1,
1334 		[ C(RESULT_MISS)   ] = -1,
1335 	},
1336  },
1337  [ C(NODE) ] = {
1338 	[ C(OP_READ) ] = {
1339 		[ C(RESULT_ACCESS) ] = 0x01b7,
1340 		[ C(RESULT_MISS)   ] = 0x01b7,
1341 	},
1342 	[ C(OP_WRITE) ] = {
1343 		[ C(RESULT_ACCESS) ] = 0x01b7,
1344 		[ C(RESULT_MISS)   ] = 0x01b7,
1345 	},
1346 	[ C(OP_PREFETCH) ] = {
1347 		[ C(RESULT_ACCESS) ] = 0x01b7,
1348 		[ C(RESULT_MISS)   ] = 0x01b7,
1349 	},
1350  },
1351 };
1352 
1353 /*
1354  * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
1355  * See IA32 SDM Vol 3B 30.6.1.3
1356  */
1357 
1358 #define NHM_DMND_DATA_RD	(1 << 0)
1359 #define NHM_DMND_RFO		(1 << 1)
1360 #define NHM_DMND_IFETCH		(1 << 2)
1361 #define NHM_DMND_WB		(1 << 3)
1362 #define NHM_PF_DATA_RD		(1 << 4)
1363 #define NHM_PF_DATA_RFO		(1 << 5)
1364 #define NHM_PF_IFETCH		(1 << 6)
1365 #define NHM_OFFCORE_OTHER	(1 << 7)
1366 #define NHM_UNCORE_HIT		(1 << 8)
1367 #define NHM_OTHER_CORE_HIT_SNP	(1 << 9)
1368 #define NHM_OTHER_CORE_HITM	(1 << 10)
1369         			/* reserved */
1370 #define NHM_REMOTE_CACHE_FWD	(1 << 12)
1371 #define NHM_REMOTE_DRAM		(1 << 13)
1372 #define NHM_LOCAL_DRAM		(1 << 14)
1373 #define NHM_NON_DRAM		(1 << 15)
1374 
1375 #define NHM_LOCAL		(NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
1376 #define NHM_REMOTE		(NHM_REMOTE_DRAM)
1377 
1378 #define NHM_DMND_READ		(NHM_DMND_DATA_RD)
1379 #define NHM_DMND_WRITE		(NHM_DMND_RFO|NHM_DMND_WB)
1380 #define NHM_DMND_PREFETCH	(NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
1381 
1382 #define NHM_L3_HIT	(NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
1383 #define NHM_L3_MISS	(NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
1384 #define NHM_L3_ACCESS	(NHM_L3_HIT|NHM_L3_MISS)
1385 
1386 static __initconst const u64 nehalem_hw_cache_extra_regs
1387 				[PERF_COUNT_HW_CACHE_MAX]
1388 				[PERF_COUNT_HW_CACHE_OP_MAX]
1389 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1390 {
1391  [ C(LL  ) ] = {
1392 	[ C(OP_READ) ] = {
1393 		[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
1394 		[ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_L3_MISS,
1395 	},
1396 	[ C(OP_WRITE) ] = {
1397 		[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
1398 		[ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_L3_MISS,
1399 	},
1400 	[ C(OP_PREFETCH) ] = {
1401 		[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
1402 		[ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
1403 	},
1404  },
1405  [ C(NODE) ] = {
1406 	[ C(OP_READ) ] = {
1407 		[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
1408 		[ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_REMOTE,
1409 	},
1410 	[ C(OP_WRITE) ] = {
1411 		[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
1412 		[ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_REMOTE,
1413 	},
1414 	[ C(OP_PREFETCH) ] = {
1415 		[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
1416 		[ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_REMOTE,
1417 	},
1418  },
1419 };
1420 
1421 static __initconst const u64 nehalem_hw_cache_event_ids
1422 				[PERF_COUNT_HW_CACHE_MAX]
1423 				[PERF_COUNT_HW_CACHE_OP_MAX]
1424 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1425 {
1426  [ C(L1D) ] = {
1427 	[ C(OP_READ) ] = {
1428 		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1429 		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
1430 	},
1431 	[ C(OP_WRITE) ] = {
1432 		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1433 		[ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
1434 	},
1435 	[ C(OP_PREFETCH) ] = {
1436 		[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
1437 		[ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
1438 	},
1439  },
1440  [ C(L1I ) ] = {
1441 	[ C(OP_READ) ] = {
1442 		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
1443 		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
1444 	},
1445 	[ C(OP_WRITE) ] = {
1446 		[ C(RESULT_ACCESS) ] = -1,
1447 		[ C(RESULT_MISS)   ] = -1,
1448 	},
1449 	[ C(OP_PREFETCH) ] = {
1450 		[ C(RESULT_ACCESS) ] = 0x0,
1451 		[ C(RESULT_MISS)   ] = 0x0,
1452 	},
1453  },
1454  [ C(LL  ) ] = {
1455 	[ C(OP_READ) ] = {
1456 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1457 		[ C(RESULT_ACCESS) ] = 0x01b7,
1458 		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1459 		[ C(RESULT_MISS)   ] = 0x01b7,
1460 	},
1461 	/*
1462 	 * Use RFO, not WRITEBACK, because a write miss would typically occur
1463 	 * on RFO.
1464 	 */
1465 	[ C(OP_WRITE) ] = {
1466 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1467 		[ C(RESULT_ACCESS) ] = 0x01b7,
1468 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1469 		[ C(RESULT_MISS)   ] = 0x01b7,
1470 	},
1471 	[ C(OP_PREFETCH) ] = {
1472 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1473 		[ C(RESULT_ACCESS) ] = 0x01b7,
1474 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1475 		[ C(RESULT_MISS)   ] = 0x01b7,
1476 	},
1477  },
1478  [ C(DTLB) ] = {
1479 	[ C(OP_READ) ] = {
1480 		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI   (alias)  */
1481 		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
1482 	},
1483 	[ C(OP_WRITE) ] = {
1484 		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI   (alias)  */
1485 		[ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
1486 	},
1487 	[ C(OP_PREFETCH) ] = {
1488 		[ C(RESULT_ACCESS) ] = 0x0,
1489 		[ C(RESULT_MISS)   ] = 0x0,
1490 	},
1491  },
1492  [ C(ITLB) ] = {
1493 	[ C(OP_READ) ] = {
1494 		[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
1495 		[ C(RESULT_MISS)   ] = 0x20c8, /* ITLB_MISS_RETIRED            */
1496 	},
1497 	[ C(OP_WRITE) ] = {
1498 		[ C(RESULT_ACCESS) ] = -1,
1499 		[ C(RESULT_MISS)   ] = -1,
1500 	},
1501 	[ C(OP_PREFETCH) ] = {
1502 		[ C(RESULT_ACCESS) ] = -1,
1503 		[ C(RESULT_MISS)   ] = -1,
1504 	},
1505  },
1506  [ C(BPU ) ] = {
1507 	[ C(OP_READ) ] = {
1508 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1509 		[ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1510 	},
1511 	[ C(OP_WRITE) ] = {
1512 		[ C(RESULT_ACCESS) ] = -1,
1513 		[ C(RESULT_MISS)   ] = -1,
1514 	},
1515 	[ C(OP_PREFETCH) ] = {
1516 		[ C(RESULT_ACCESS) ] = -1,
1517 		[ C(RESULT_MISS)   ] = -1,
1518 	},
1519  },
1520  [ C(NODE) ] = {
1521 	[ C(OP_READ) ] = {
1522 		[ C(RESULT_ACCESS) ] = 0x01b7,
1523 		[ C(RESULT_MISS)   ] = 0x01b7,
1524 	},
1525 	[ C(OP_WRITE) ] = {
1526 		[ C(RESULT_ACCESS) ] = 0x01b7,
1527 		[ C(RESULT_MISS)   ] = 0x01b7,
1528 	},
1529 	[ C(OP_PREFETCH) ] = {
1530 		[ C(RESULT_ACCESS) ] = 0x01b7,
1531 		[ C(RESULT_MISS)   ] = 0x01b7,
1532 	},
1533  },
1534 };
1535 
1536 static __initconst const u64 core2_hw_cache_event_ids
1537 				[PERF_COUNT_HW_CACHE_MAX]
1538 				[PERF_COUNT_HW_CACHE_OP_MAX]
1539 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1540 {
1541  [ C(L1D) ] = {
1542 	[ C(OP_READ) ] = {
1543 		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI          */
1544 		[ C(RESULT_MISS)   ] = 0x0140, /* L1D_CACHE_LD.I_STATE       */
1545 	},
1546 	[ C(OP_WRITE) ] = {
1547 		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI          */
1548 		[ C(RESULT_MISS)   ] = 0x0141, /* L1D_CACHE_ST.I_STATE       */
1549 	},
1550 	[ C(OP_PREFETCH) ] = {
1551 		[ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS      */
1552 		[ C(RESULT_MISS)   ] = 0,
1553 	},
1554  },
1555  [ C(L1I ) ] = {
1556 	[ C(OP_READ) ] = {
1557 		[ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS                  */
1558 		[ C(RESULT_MISS)   ] = 0x0081, /* L1I.MISSES                 */
1559 	},
1560 	[ C(OP_WRITE) ] = {
1561 		[ C(RESULT_ACCESS) ] = -1,
1562 		[ C(RESULT_MISS)   ] = -1,
1563 	},
1564 	[ C(OP_PREFETCH) ] = {
1565 		[ C(RESULT_ACCESS) ] = 0,
1566 		[ C(RESULT_MISS)   ] = 0,
1567 	},
1568  },
1569  [ C(LL  ) ] = {
1570 	[ C(OP_READ) ] = {
1571 		[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1572 		[ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1573 	},
1574 	[ C(OP_WRITE) ] = {
1575 		[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1576 		[ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1577 	},
1578 	[ C(OP_PREFETCH) ] = {
1579 		[ C(RESULT_ACCESS) ] = 0,
1580 		[ C(RESULT_MISS)   ] = 0,
1581 	},
1582  },
1583  [ C(DTLB) ] = {
1584 	[ C(OP_READ) ] = {
1585 		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI  (alias) */
1586 		[ C(RESULT_MISS)   ] = 0x0208, /* DTLB_MISSES.MISS_LD        */
1587 	},
1588 	[ C(OP_WRITE) ] = {
1589 		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI  (alias) */
1590 		[ C(RESULT_MISS)   ] = 0x0808, /* DTLB_MISSES.MISS_ST        */
1591 	},
1592 	[ C(OP_PREFETCH) ] = {
1593 		[ C(RESULT_ACCESS) ] = 0,
1594 		[ C(RESULT_MISS)   ] = 0,
1595 	},
1596  },
1597  [ C(ITLB) ] = {
1598 	[ C(OP_READ) ] = {
1599 		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1600 		[ C(RESULT_MISS)   ] = 0x1282, /* ITLBMISSES                 */
1601 	},
1602 	[ C(OP_WRITE) ] = {
1603 		[ C(RESULT_ACCESS) ] = -1,
1604 		[ C(RESULT_MISS)   ] = -1,
1605 	},
1606 	[ C(OP_PREFETCH) ] = {
1607 		[ C(RESULT_ACCESS) ] = -1,
1608 		[ C(RESULT_MISS)   ] = -1,
1609 	},
1610  },
1611  [ C(BPU ) ] = {
1612 	[ C(OP_READ) ] = {
1613 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1614 		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1615 	},
1616 	[ C(OP_WRITE) ] = {
1617 		[ C(RESULT_ACCESS) ] = -1,
1618 		[ C(RESULT_MISS)   ] = -1,
1619 	},
1620 	[ C(OP_PREFETCH) ] = {
1621 		[ C(RESULT_ACCESS) ] = -1,
1622 		[ C(RESULT_MISS)   ] = -1,
1623 	},
1624  },
1625 };
1626 
1627 static __initconst const u64 atom_hw_cache_event_ids
1628 				[PERF_COUNT_HW_CACHE_MAX]
1629 				[PERF_COUNT_HW_CACHE_OP_MAX]
1630 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1631 {
1632  [ C(L1D) ] = {
1633 	[ C(OP_READ) ] = {
1634 		[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD               */
1635 		[ C(RESULT_MISS)   ] = 0,
1636 	},
1637 	[ C(OP_WRITE) ] = {
1638 		[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST               */
1639 		[ C(RESULT_MISS)   ] = 0,
1640 	},
1641 	[ C(OP_PREFETCH) ] = {
1642 		[ C(RESULT_ACCESS) ] = 0x0,
1643 		[ C(RESULT_MISS)   ] = 0,
1644 	},
1645  },
1646  [ C(L1I ) ] = {
1647 	[ C(OP_READ) ] = {
1648 		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                  */
1649 		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                 */
1650 	},
1651 	[ C(OP_WRITE) ] = {
1652 		[ C(RESULT_ACCESS) ] = -1,
1653 		[ C(RESULT_MISS)   ] = -1,
1654 	},
1655 	[ C(OP_PREFETCH) ] = {
1656 		[ C(RESULT_ACCESS) ] = 0,
1657 		[ C(RESULT_MISS)   ] = 0,
1658 	},
1659  },
1660  [ C(LL  ) ] = {
1661 	[ C(OP_READ) ] = {
1662 		[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1663 		[ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1664 	},
1665 	[ C(OP_WRITE) ] = {
1666 		[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1667 		[ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1668 	},
1669 	[ C(OP_PREFETCH) ] = {
1670 		[ C(RESULT_ACCESS) ] = 0,
1671 		[ C(RESULT_MISS)   ] = 0,
1672 	},
1673  },
1674  [ C(DTLB) ] = {
1675 	[ C(OP_READ) ] = {
1676 		[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI  (alias) */
1677 		[ C(RESULT_MISS)   ] = 0x0508, /* DTLB_MISSES.MISS_LD        */
1678 	},
1679 	[ C(OP_WRITE) ] = {
1680 		[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI  (alias) */
1681 		[ C(RESULT_MISS)   ] = 0x0608, /* DTLB_MISSES.MISS_ST        */
1682 	},
1683 	[ C(OP_PREFETCH) ] = {
1684 		[ C(RESULT_ACCESS) ] = 0,
1685 		[ C(RESULT_MISS)   ] = 0,
1686 	},
1687  },
1688  [ C(ITLB) ] = {
1689 	[ C(OP_READ) ] = {
1690 		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1691 		[ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES                */
1692 	},
1693 	[ C(OP_WRITE) ] = {
1694 		[ C(RESULT_ACCESS) ] = -1,
1695 		[ C(RESULT_MISS)   ] = -1,
1696 	},
1697 	[ C(OP_PREFETCH) ] = {
1698 		[ C(RESULT_ACCESS) ] = -1,
1699 		[ C(RESULT_MISS)   ] = -1,
1700 	},
1701  },
1702  [ C(BPU ) ] = {
1703 	[ C(OP_READ) ] = {
1704 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1705 		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1706 	},
1707 	[ C(OP_WRITE) ] = {
1708 		[ C(RESULT_ACCESS) ] = -1,
1709 		[ C(RESULT_MISS)   ] = -1,
1710 	},
1711 	[ C(OP_PREFETCH) ] = {
1712 		[ C(RESULT_ACCESS) ] = -1,
1713 		[ C(RESULT_MISS)   ] = -1,
1714 	},
1715  },
1716 };
1717 
1718 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_slm, "event=0x3c");
1719 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_slm, "2");
1720 /* no_alloc_cycles.not_delivered */
1721 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_slm,
1722 	       "event=0xca,umask=0x50");
1723 EVENT_ATTR_STR(topdown-fetch-bubbles.scale, td_fetch_bubbles_scale_slm, "2");
1724 /* uops_retired.all */
1725 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_slm,
1726 	       "event=0xc2,umask=0x10");
1727 /* uops_retired.all */
1728 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_slm,
1729 	       "event=0xc2,umask=0x10");
1730 
1731 static struct attribute *slm_events_attrs[] = {
1732 	EVENT_PTR(td_total_slots_slm),
1733 	EVENT_PTR(td_total_slots_scale_slm),
1734 	EVENT_PTR(td_fetch_bubbles_slm),
1735 	EVENT_PTR(td_fetch_bubbles_scale_slm),
1736 	EVENT_PTR(td_slots_issued_slm),
1737 	EVENT_PTR(td_slots_retired_slm),
1738 	NULL
1739 };
1740 
1741 static struct extra_reg intel_slm_extra_regs[] __read_mostly =
1742 {
1743 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1744 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
1745 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1),
1746 	EVENT_EXTRA_END
1747 };
1748 
1749 #define SLM_DMND_READ		SNB_DMND_DATA_RD
1750 #define SLM_DMND_WRITE		SNB_DMND_RFO
1751 #define SLM_DMND_PREFETCH	(SNB_PF_DATA_RD|SNB_PF_RFO)
1752 
1753 #define SLM_SNP_ANY		(SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
1754 #define SLM_LLC_ACCESS		SNB_RESP_ANY
1755 #define SLM_LLC_MISS		(SLM_SNP_ANY|SNB_NON_DRAM)
1756 
1757 static __initconst const u64 slm_hw_cache_extra_regs
1758 				[PERF_COUNT_HW_CACHE_MAX]
1759 				[PERF_COUNT_HW_CACHE_OP_MAX]
1760 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1761 {
1762  [ C(LL  ) ] = {
1763 	[ C(OP_READ) ] = {
1764 		[ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
1765 		[ C(RESULT_MISS)   ] = 0,
1766 	},
1767 	[ C(OP_WRITE) ] = {
1768 		[ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
1769 		[ C(RESULT_MISS)   ] = SLM_DMND_WRITE|SLM_LLC_MISS,
1770 	},
1771 	[ C(OP_PREFETCH) ] = {
1772 		[ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
1773 		[ C(RESULT_MISS)   ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
1774 	},
1775  },
1776 };
1777 
1778 static __initconst const u64 slm_hw_cache_event_ids
1779 				[PERF_COUNT_HW_CACHE_MAX]
1780 				[PERF_COUNT_HW_CACHE_OP_MAX]
1781 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1782 {
1783  [ C(L1D) ] = {
1784 	[ C(OP_READ) ] = {
1785 		[ C(RESULT_ACCESS) ] = 0,
1786 		[ C(RESULT_MISS)   ] = 0x0104, /* LD_DCU_MISS */
1787 	},
1788 	[ C(OP_WRITE) ] = {
1789 		[ C(RESULT_ACCESS) ] = 0,
1790 		[ C(RESULT_MISS)   ] = 0,
1791 	},
1792 	[ C(OP_PREFETCH) ] = {
1793 		[ C(RESULT_ACCESS) ] = 0,
1794 		[ C(RESULT_MISS)   ] = 0,
1795 	},
1796  },
1797  [ C(L1I ) ] = {
1798 	[ C(OP_READ) ] = {
1799 		[ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
1800 		[ C(RESULT_MISS)   ] = 0x0280, /* ICACGE.MISSES */
1801 	},
1802 	[ C(OP_WRITE) ] = {
1803 		[ C(RESULT_ACCESS) ] = -1,
1804 		[ C(RESULT_MISS)   ] = -1,
1805 	},
1806 	[ C(OP_PREFETCH) ] = {
1807 		[ C(RESULT_ACCESS) ] = 0,
1808 		[ C(RESULT_MISS)   ] = 0,
1809 	},
1810  },
1811  [ C(LL  ) ] = {
1812 	[ C(OP_READ) ] = {
1813 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1814 		[ C(RESULT_ACCESS) ] = 0x01b7,
1815 		[ C(RESULT_MISS)   ] = 0,
1816 	},
1817 	[ C(OP_WRITE) ] = {
1818 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1819 		[ C(RESULT_ACCESS) ] = 0x01b7,
1820 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1821 		[ C(RESULT_MISS)   ] = 0x01b7,
1822 	},
1823 	[ C(OP_PREFETCH) ] = {
1824 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1825 		[ C(RESULT_ACCESS) ] = 0x01b7,
1826 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1827 		[ C(RESULT_MISS)   ] = 0x01b7,
1828 	},
1829  },
1830  [ C(DTLB) ] = {
1831 	[ C(OP_READ) ] = {
1832 		[ C(RESULT_ACCESS) ] = 0,
1833 		[ C(RESULT_MISS)   ] = 0x0804, /* LD_DTLB_MISS */
1834 	},
1835 	[ C(OP_WRITE) ] = {
1836 		[ C(RESULT_ACCESS) ] = 0,
1837 		[ C(RESULT_MISS)   ] = 0,
1838 	},
1839 	[ C(OP_PREFETCH) ] = {
1840 		[ C(RESULT_ACCESS) ] = 0,
1841 		[ C(RESULT_MISS)   ] = 0,
1842 	},
1843  },
1844  [ C(ITLB) ] = {
1845 	[ C(OP_READ) ] = {
1846 		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1847 		[ C(RESULT_MISS)   ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
1848 	},
1849 	[ C(OP_WRITE) ] = {
1850 		[ C(RESULT_ACCESS) ] = -1,
1851 		[ C(RESULT_MISS)   ] = -1,
1852 	},
1853 	[ C(OP_PREFETCH) ] = {
1854 		[ C(RESULT_ACCESS) ] = -1,
1855 		[ C(RESULT_MISS)   ] = -1,
1856 	},
1857  },
1858  [ C(BPU ) ] = {
1859 	[ C(OP_READ) ] = {
1860 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1861 		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1862 	},
1863 	[ C(OP_WRITE) ] = {
1864 		[ C(RESULT_ACCESS) ] = -1,
1865 		[ C(RESULT_MISS)   ] = -1,
1866 	},
1867 	[ C(OP_PREFETCH) ] = {
1868 		[ C(RESULT_ACCESS) ] = -1,
1869 		[ C(RESULT_MISS)   ] = -1,
1870 	},
1871  },
1872 };
1873 
1874 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_glm, "event=0x3c");
1875 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_glm, "3");
1876 /* UOPS_NOT_DELIVERED.ANY */
1877 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_glm, "event=0x9c");
1878 /* ISSUE_SLOTS_NOT_CONSUMED.RECOVERY */
1879 EVENT_ATTR_STR(topdown-recovery-bubbles, td_recovery_bubbles_glm, "event=0xca,umask=0x02");
1880 /* UOPS_RETIRED.ANY */
1881 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_glm, "event=0xc2");
1882 /* UOPS_ISSUED.ANY */
1883 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_glm, "event=0x0e");
1884 
1885 static struct attribute *glm_events_attrs[] = {
1886 	EVENT_PTR(td_total_slots_glm),
1887 	EVENT_PTR(td_total_slots_scale_glm),
1888 	EVENT_PTR(td_fetch_bubbles_glm),
1889 	EVENT_PTR(td_recovery_bubbles_glm),
1890 	EVENT_PTR(td_slots_issued_glm),
1891 	EVENT_PTR(td_slots_retired_glm),
1892 	NULL
1893 };
1894 
1895 static struct extra_reg intel_glm_extra_regs[] __read_mostly = {
1896 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1897 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x760005ffbfull, RSP_0),
1898 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x360005ffbfull, RSP_1),
1899 	EVENT_EXTRA_END
1900 };
1901 
1902 #define GLM_DEMAND_DATA_RD		BIT_ULL(0)
1903 #define GLM_DEMAND_RFO			BIT_ULL(1)
1904 #define GLM_ANY_RESPONSE		BIT_ULL(16)
1905 #define GLM_SNP_NONE_OR_MISS		BIT_ULL(33)
1906 #define GLM_DEMAND_READ			GLM_DEMAND_DATA_RD
1907 #define GLM_DEMAND_WRITE		GLM_DEMAND_RFO
1908 #define GLM_DEMAND_PREFETCH		(SNB_PF_DATA_RD|SNB_PF_RFO)
1909 #define GLM_LLC_ACCESS			GLM_ANY_RESPONSE
1910 #define GLM_SNP_ANY			(GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM)
1911 #define GLM_LLC_MISS			(GLM_SNP_ANY|SNB_NON_DRAM)
1912 
1913 static __initconst const u64 glm_hw_cache_event_ids
1914 				[PERF_COUNT_HW_CACHE_MAX]
1915 				[PERF_COUNT_HW_CACHE_OP_MAX]
1916 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1917 	[C(L1D)] = {
1918 		[C(OP_READ)] = {
1919 			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1920 			[C(RESULT_MISS)]	= 0x0,
1921 		},
1922 		[C(OP_WRITE)] = {
1923 			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1924 			[C(RESULT_MISS)]	= 0x0,
1925 		},
1926 		[C(OP_PREFETCH)] = {
1927 			[C(RESULT_ACCESS)]	= 0x0,
1928 			[C(RESULT_MISS)]	= 0x0,
1929 		},
1930 	},
1931 	[C(L1I)] = {
1932 		[C(OP_READ)] = {
1933 			[C(RESULT_ACCESS)]	= 0x0380,	/* ICACHE.ACCESSES */
1934 			[C(RESULT_MISS)]	= 0x0280,	/* ICACHE.MISSES */
1935 		},
1936 		[C(OP_WRITE)] = {
1937 			[C(RESULT_ACCESS)]	= -1,
1938 			[C(RESULT_MISS)]	= -1,
1939 		},
1940 		[C(OP_PREFETCH)] = {
1941 			[C(RESULT_ACCESS)]	= 0x0,
1942 			[C(RESULT_MISS)]	= 0x0,
1943 		},
1944 	},
1945 	[C(LL)] = {
1946 		[C(OP_READ)] = {
1947 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1948 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1949 		},
1950 		[C(OP_WRITE)] = {
1951 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1952 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1953 		},
1954 		[C(OP_PREFETCH)] = {
1955 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1956 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1957 		},
1958 	},
1959 	[C(DTLB)] = {
1960 		[C(OP_READ)] = {
1961 			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1962 			[C(RESULT_MISS)]	= 0x0,
1963 		},
1964 		[C(OP_WRITE)] = {
1965 			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1966 			[C(RESULT_MISS)]	= 0x0,
1967 		},
1968 		[C(OP_PREFETCH)] = {
1969 			[C(RESULT_ACCESS)]	= 0x0,
1970 			[C(RESULT_MISS)]	= 0x0,
1971 		},
1972 	},
1973 	[C(ITLB)] = {
1974 		[C(OP_READ)] = {
1975 			[C(RESULT_ACCESS)]	= 0x00c0,	/* INST_RETIRED.ANY_P */
1976 			[C(RESULT_MISS)]	= 0x0481,	/* ITLB.MISS */
1977 		},
1978 		[C(OP_WRITE)] = {
1979 			[C(RESULT_ACCESS)]	= -1,
1980 			[C(RESULT_MISS)]	= -1,
1981 		},
1982 		[C(OP_PREFETCH)] = {
1983 			[C(RESULT_ACCESS)]	= -1,
1984 			[C(RESULT_MISS)]	= -1,
1985 		},
1986 	},
1987 	[C(BPU)] = {
1988 		[C(OP_READ)] = {
1989 			[C(RESULT_ACCESS)]	= 0x00c4,	/* BR_INST_RETIRED.ALL_BRANCHES */
1990 			[C(RESULT_MISS)]	= 0x00c5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
1991 		},
1992 		[C(OP_WRITE)] = {
1993 			[C(RESULT_ACCESS)]	= -1,
1994 			[C(RESULT_MISS)]	= -1,
1995 		},
1996 		[C(OP_PREFETCH)] = {
1997 			[C(RESULT_ACCESS)]	= -1,
1998 			[C(RESULT_MISS)]	= -1,
1999 		},
2000 	},
2001 };
2002 
2003 static __initconst const u64 glm_hw_cache_extra_regs
2004 				[PERF_COUNT_HW_CACHE_MAX]
2005 				[PERF_COUNT_HW_CACHE_OP_MAX]
2006 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2007 	[C(LL)] = {
2008 		[C(OP_READ)] = {
2009 			[C(RESULT_ACCESS)]	= GLM_DEMAND_READ|
2010 						  GLM_LLC_ACCESS,
2011 			[C(RESULT_MISS)]	= GLM_DEMAND_READ|
2012 						  GLM_LLC_MISS,
2013 		},
2014 		[C(OP_WRITE)] = {
2015 			[C(RESULT_ACCESS)]	= GLM_DEMAND_WRITE|
2016 						  GLM_LLC_ACCESS,
2017 			[C(RESULT_MISS)]	= GLM_DEMAND_WRITE|
2018 						  GLM_LLC_MISS,
2019 		},
2020 		[C(OP_PREFETCH)] = {
2021 			[C(RESULT_ACCESS)]	= GLM_DEMAND_PREFETCH|
2022 						  GLM_LLC_ACCESS,
2023 			[C(RESULT_MISS)]	= GLM_DEMAND_PREFETCH|
2024 						  GLM_LLC_MISS,
2025 		},
2026 	},
2027 };
2028 
2029 static __initconst const u64 glp_hw_cache_event_ids
2030 				[PERF_COUNT_HW_CACHE_MAX]
2031 				[PERF_COUNT_HW_CACHE_OP_MAX]
2032 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2033 	[C(L1D)] = {
2034 		[C(OP_READ)] = {
2035 			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
2036 			[C(RESULT_MISS)]	= 0x0,
2037 		},
2038 		[C(OP_WRITE)] = {
2039 			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
2040 			[C(RESULT_MISS)]	= 0x0,
2041 		},
2042 		[C(OP_PREFETCH)] = {
2043 			[C(RESULT_ACCESS)]	= 0x0,
2044 			[C(RESULT_MISS)]	= 0x0,
2045 		},
2046 	},
2047 	[C(L1I)] = {
2048 		[C(OP_READ)] = {
2049 			[C(RESULT_ACCESS)]	= 0x0380,	/* ICACHE.ACCESSES */
2050 			[C(RESULT_MISS)]	= 0x0280,	/* ICACHE.MISSES */
2051 		},
2052 		[C(OP_WRITE)] = {
2053 			[C(RESULT_ACCESS)]	= -1,
2054 			[C(RESULT_MISS)]	= -1,
2055 		},
2056 		[C(OP_PREFETCH)] = {
2057 			[C(RESULT_ACCESS)]	= 0x0,
2058 			[C(RESULT_MISS)]	= 0x0,
2059 		},
2060 	},
2061 	[C(LL)] = {
2062 		[C(OP_READ)] = {
2063 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
2064 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
2065 		},
2066 		[C(OP_WRITE)] = {
2067 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
2068 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
2069 		},
2070 		[C(OP_PREFETCH)] = {
2071 			[C(RESULT_ACCESS)]	= 0x0,
2072 			[C(RESULT_MISS)]	= 0x0,
2073 		},
2074 	},
2075 	[C(DTLB)] = {
2076 		[C(OP_READ)] = {
2077 			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
2078 			[C(RESULT_MISS)]	= 0xe08,	/* DTLB_LOAD_MISSES.WALK_COMPLETED */
2079 		},
2080 		[C(OP_WRITE)] = {
2081 			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
2082 			[C(RESULT_MISS)]	= 0xe49,	/* DTLB_STORE_MISSES.WALK_COMPLETED */
2083 		},
2084 		[C(OP_PREFETCH)] = {
2085 			[C(RESULT_ACCESS)]	= 0x0,
2086 			[C(RESULT_MISS)]	= 0x0,
2087 		},
2088 	},
2089 	[C(ITLB)] = {
2090 		[C(OP_READ)] = {
2091 			[C(RESULT_ACCESS)]	= 0x00c0,	/* INST_RETIRED.ANY_P */
2092 			[C(RESULT_MISS)]	= 0x0481,	/* ITLB.MISS */
2093 		},
2094 		[C(OP_WRITE)] = {
2095 			[C(RESULT_ACCESS)]	= -1,
2096 			[C(RESULT_MISS)]	= -1,
2097 		},
2098 		[C(OP_PREFETCH)] = {
2099 			[C(RESULT_ACCESS)]	= -1,
2100 			[C(RESULT_MISS)]	= -1,
2101 		},
2102 	},
2103 	[C(BPU)] = {
2104 		[C(OP_READ)] = {
2105 			[C(RESULT_ACCESS)]	= 0x00c4,	/* BR_INST_RETIRED.ALL_BRANCHES */
2106 			[C(RESULT_MISS)]	= 0x00c5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
2107 		},
2108 		[C(OP_WRITE)] = {
2109 			[C(RESULT_ACCESS)]	= -1,
2110 			[C(RESULT_MISS)]	= -1,
2111 		},
2112 		[C(OP_PREFETCH)] = {
2113 			[C(RESULT_ACCESS)]	= -1,
2114 			[C(RESULT_MISS)]	= -1,
2115 		},
2116 	},
2117 };
2118 
2119 static __initconst const u64 glp_hw_cache_extra_regs
2120 				[PERF_COUNT_HW_CACHE_MAX]
2121 				[PERF_COUNT_HW_CACHE_OP_MAX]
2122 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2123 	[C(LL)] = {
2124 		[C(OP_READ)] = {
2125 			[C(RESULT_ACCESS)]	= GLM_DEMAND_READ|
2126 						  GLM_LLC_ACCESS,
2127 			[C(RESULT_MISS)]	= GLM_DEMAND_READ|
2128 						  GLM_LLC_MISS,
2129 		},
2130 		[C(OP_WRITE)] = {
2131 			[C(RESULT_ACCESS)]	= GLM_DEMAND_WRITE|
2132 						  GLM_LLC_ACCESS,
2133 			[C(RESULT_MISS)]	= GLM_DEMAND_WRITE|
2134 						  GLM_LLC_MISS,
2135 		},
2136 		[C(OP_PREFETCH)] = {
2137 			[C(RESULT_ACCESS)]	= 0x0,
2138 			[C(RESULT_MISS)]	= 0x0,
2139 		},
2140 	},
2141 };
2142 
2143 #define TNT_LOCAL_DRAM			BIT_ULL(26)
2144 #define TNT_DEMAND_READ			GLM_DEMAND_DATA_RD
2145 #define TNT_DEMAND_WRITE		GLM_DEMAND_RFO
2146 #define TNT_LLC_ACCESS			GLM_ANY_RESPONSE
2147 #define TNT_SNP_ANY			(SNB_SNP_NOT_NEEDED|SNB_SNP_MISS| \
2148 					 SNB_NO_FWD|SNB_SNP_FWD|SNB_HITM)
2149 #define TNT_LLC_MISS			(TNT_SNP_ANY|SNB_NON_DRAM|TNT_LOCAL_DRAM)
2150 
2151 static __initconst const u64 tnt_hw_cache_extra_regs
2152 				[PERF_COUNT_HW_CACHE_MAX]
2153 				[PERF_COUNT_HW_CACHE_OP_MAX]
2154 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2155 	[C(LL)] = {
2156 		[C(OP_READ)] = {
2157 			[C(RESULT_ACCESS)]	= TNT_DEMAND_READ|
2158 						  TNT_LLC_ACCESS,
2159 			[C(RESULT_MISS)]	= TNT_DEMAND_READ|
2160 						  TNT_LLC_MISS,
2161 		},
2162 		[C(OP_WRITE)] = {
2163 			[C(RESULT_ACCESS)]	= TNT_DEMAND_WRITE|
2164 						  TNT_LLC_ACCESS,
2165 			[C(RESULT_MISS)]	= TNT_DEMAND_WRITE|
2166 						  TNT_LLC_MISS,
2167 		},
2168 		[C(OP_PREFETCH)] = {
2169 			[C(RESULT_ACCESS)]	= 0x0,
2170 			[C(RESULT_MISS)]	= 0x0,
2171 		},
2172 	},
2173 };
2174 
2175 EVENT_ATTR_STR(topdown-fe-bound,       td_fe_bound_tnt,        "event=0x71,umask=0x0");
2176 EVENT_ATTR_STR(topdown-retiring,       td_retiring_tnt,        "event=0xc2,umask=0x0");
2177 EVENT_ATTR_STR(topdown-bad-spec,       td_bad_spec_tnt,        "event=0x73,umask=0x6");
2178 EVENT_ATTR_STR(topdown-be-bound,       td_be_bound_tnt,        "event=0x74,umask=0x0");
2179 
2180 static struct attribute *tnt_events_attrs[] = {
2181 	EVENT_PTR(td_fe_bound_tnt),
2182 	EVENT_PTR(td_retiring_tnt),
2183 	EVENT_PTR(td_bad_spec_tnt),
2184 	EVENT_PTR(td_be_bound_tnt),
2185 	NULL,
2186 };
2187 
2188 static struct extra_reg intel_tnt_extra_regs[] __read_mostly = {
2189 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
2190 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x800ff0ffffff9fffull, RSP_0),
2191 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0xff0ffffff9fffull, RSP_1),
2192 	EVENT_EXTRA_END
2193 };
2194 
2195 EVENT_ATTR_STR(mem-loads,	mem_ld_grt,	"event=0xd0,umask=0x5,ldlat=3");
2196 EVENT_ATTR_STR(mem-stores,	mem_st_grt,	"event=0xd0,umask=0x6");
2197 
2198 static struct attribute *grt_mem_attrs[] = {
2199 	EVENT_PTR(mem_ld_grt),
2200 	EVENT_PTR(mem_st_grt),
2201 	NULL
2202 };
2203 
2204 static struct extra_reg intel_grt_extra_regs[] __read_mostly = {
2205 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
2206 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
2207 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
2208 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x5d0),
2209 	EVENT_EXTRA_END
2210 };
2211 
2212 EVENT_ATTR_STR(topdown-retiring,       td_retiring_cmt,        "event=0x72,umask=0x0");
2213 EVENT_ATTR_STR(topdown-bad-spec,       td_bad_spec_cmt,        "event=0x73,umask=0x0");
2214 
2215 static struct attribute *cmt_events_attrs[] = {
2216 	EVENT_PTR(td_fe_bound_tnt),
2217 	EVENT_PTR(td_retiring_cmt),
2218 	EVENT_PTR(td_bad_spec_cmt),
2219 	EVENT_PTR(td_be_bound_tnt),
2220 	NULL
2221 };
2222 
2223 static struct extra_reg intel_cmt_extra_regs[] __read_mostly = {
2224 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
2225 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x800ff3ffffffffffull, RSP_0),
2226 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0xff3ffffffffffull, RSP_1),
2227 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x5d0),
2228 	INTEL_UEVENT_EXTRA_REG(0x0127, MSR_SNOOP_RSP_0, 0xffffffffffffffffull, SNOOP_0),
2229 	INTEL_UEVENT_EXTRA_REG(0x0227, MSR_SNOOP_RSP_1, 0xffffffffffffffffull, SNOOP_1),
2230 	EVENT_EXTRA_END
2231 };
2232 
2233 #define KNL_OT_L2_HITE		BIT_ULL(19) /* Other Tile L2 Hit */
2234 #define KNL_OT_L2_HITF		BIT_ULL(20) /* Other Tile L2 Hit */
2235 #define KNL_MCDRAM_LOCAL	BIT_ULL(21)
2236 #define KNL_MCDRAM_FAR		BIT_ULL(22)
2237 #define KNL_DDR_LOCAL		BIT_ULL(23)
2238 #define KNL_DDR_FAR		BIT_ULL(24)
2239 #define KNL_DRAM_ANY		(KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \
2240 				    KNL_DDR_LOCAL | KNL_DDR_FAR)
2241 #define KNL_L2_READ		SLM_DMND_READ
2242 #define KNL_L2_WRITE		SLM_DMND_WRITE
2243 #define KNL_L2_PREFETCH		SLM_DMND_PREFETCH
2244 #define KNL_L2_ACCESS		SLM_LLC_ACCESS
2245 #define KNL_L2_MISS		(KNL_OT_L2_HITE | KNL_OT_L2_HITF | \
2246 				   KNL_DRAM_ANY | SNB_SNP_ANY | \
2247 						  SNB_NON_DRAM)
2248 
2249 static __initconst const u64 knl_hw_cache_extra_regs
2250 				[PERF_COUNT_HW_CACHE_MAX]
2251 				[PERF_COUNT_HW_CACHE_OP_MAX]
2252 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2253 	[C(LL)] = {
2254 		[C(OP_READ)] = {
2255 			[C(RESULT_ACCESS)] = KNL_L2_READ | KNL_L2_ACCESS,
2256 			[C(RESULT_MISS)]   = 0,
2257 		},
2258 		[C(OP_WRITE)] = {
2259 			[C(RESULT_ACCESS)] = KNL_L2_WRITE | KNL_L2_ACCESS,
2260 			[C(RESULT_MISS)]   = KNL_L2_WRITE | KNL_L2_MISS,
2261 		},
2262 		[C(OP_PREFETCH)] = {
2263 			[C(RESULT_ACCESS)] = KNL_L2_PREFETCH | KNL_L2_ACCESS,
2264 			[C(RESULT_MISS)]   = KNL_L2_PREFETCH | KNL_L2_MISS,
2265 		},
2266 	},
2267 };
2268 
2269 /*
2270  * Used from PMIs where the LBRs are already disabled.
2271  *
2272  * This function could be called consecutively. It is required to remain in
2273  * disabled state if called consecutively.
2274  *
2275  * During consecutive calls, the same disable value will be written to related
2276  * registers, so the PMU state remains unchanged.
2277  *
2278  * intel_bts events don't coexist with intel PMU's BTS events because of
2279  * x86_add_exclusive(x86_lbr_exclusive_lbr); there's no need to keep them
2280  * disabled around intel PMU's event batching etc, only inside the PMI handler.
2281  *
2282  * Avoid PEBS_ENABLE MSR access in PMIs.
2283  * The GLOBAL_CTRL has been disabled. All the counters do not count anymore.
2284  * It doesn't matter if the PEBS is enabled or not.
2285  * Usually, the PEBS status are not changed in PMIs. It's unnecessary to
2286  * access PEBS_ENABLE MSR in disable_all()/enable_all().
2287  * However, there are some cases which may change PEBS status, e.g. PMI
2288  * throttle. The PEBS_ENABLE should be updated where the status changes.
2289  */
2290 static __always_inline void __intel_pmu_disable_all(bool bts)
2291 {
2292 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2293 
2294 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
2295 
2296 	if (bts && test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
2297 		intel_pmu_disable_bts();
2298 }
2299 
2300 static __always_inline void intel_pmu_disable_all(void)
2301 {
2302 	__intel_pmu_disable_all(true);
2303 	intel_pmu_pebs_disable_all();
2304 	intel_pmu_lbr_disable_all();
2305 }
2306 
2307 static void __intel_pmu_enable_all(int added, bool pmi)
2308 {
2309 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2310 	u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
2311 
2312 	intel_pmu_lbr_enable_all(pmi);
2313 
2314 	if (cpuc->fixed_ctrl_val != cpuc->active_fixed_ctrl_val) {
2315 		wrmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, cpuc->fixed_ctrl_val);
2316 		cpuc->active_fixed_ctrl_val = cpuc->fixed_ctrl_val;
2317 	}
2318 
2319 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
2320 	       intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
2321 
2322 	if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
2323 		struct perf_event *event =
2324 			cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
2325 
2326 		if (WARN_ON_ONCE(!event))
2327 			return;
2328 
2329 		intel_pmu_enable_bts(event->hw.config);
2330 	}
2331 }
2332 
2333 static void intel_pmu_enable_all(int added)
2334 {
2335 	intel_pmu_pebs_enable_all();
2336 	__intel_pmu_enable_all(added, false);
2337 }
2338 
2339 static noinline int
2340 __intel_pmu_snapshot_branch_stack(struct perf_branch_entry *entries,
2341 				  unsigned int cnt, unsigned long flags)
2342 {
2343 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2344 
2345 	intel_pmu_lbr_read();
2346 	cnt = min_t(unsigned int, cnt, x86_pmu.lbr_nr);
2347 
2348 	memcpy(entries, cpuc->lbr_entries, sizeof(struct perf_branch_entry) * cnt);
2349 	intel_pmu_enable_all(0);
2350 	local_irq_restore(flags);
2351 	return cnt;
2352 }
2353 
2354 static int
2355 intel_pmu_snapshot_branch_stack(struct perf_branch_entry *entries, unsigned int cnt)
2356 {
2357 	unsigned long flags;
2358 
2359 	/* must not have branches... */
2360 	local_irq_save(flags);
2361 	__intel_pmu_disable_all(false); /* we don't care about BTS */
2362 	__intel_pmu_lbr_disable();
2363 	/*            ... until here */
2364 	return __intel_pmu_snapshot_branch_stack(entries, cnt, flags);
2365 }
2366 
2367 static int
2368 intel_pmu_snapshot_arch_branch_stack(struct perf_branch_entry *entries, unsigned int cnt)
2369 {
2370 	unsigned long flags;
2371 
2372 	/* must not have branches... */
2373 	local_irq_save(flags);
2374 	__intel_pmu_disable_all(false); /* we don't care about BTS */
2375 	__intel_pmu_arch_lbr_disable();
2376 	/*            ... until here */
2377 	return __intel_pmu_snapshot_branch_stack(entries, cnt, flags);
2378 }
2379 
2380 /*
2381  * Workaround for:
2382  *   Intel Errata AAK100 (model 26)
2383  *   Intel Errata AAP53  (model 30)
2384  *   Intel Errata BD53   (model 44)
2385  *
2386  * The official story:
2387  *   These chips need to be 'reset' when adding counters by programming the
2388  *   magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
2389  *   in sequence on the same PMC or on different PMCs.
2390  *
2391  * In practice it appears some of these events do in fact count, and
2392  * we need to program all 4 events.
2393  */
2394 static void intel_pmu_nhm_workaround(void)
2395 {
2396 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2397 	static const unsigned long nhm_magic[4] = {
2398 		0x4300B5,
2399 		0x4300D2,
2400 		0x4300B1,
2401 		0x4300B1
2402 	};
2403 	struct perf_event *event;
2404 	int i;
2405 
2406 	/*
2407 	 * The Errata requires below steps:
2408 	 * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
2409 	 * 2) Configure 4 PERFEVTSELx with the magic events and clear
2410 	 *    the corresponding PMCx;
2411 	 * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
2412 	 * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
2413 	 * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
2414 	 */
2415 
2416 	/*
2417 	 * The real steps we choose are a little different from above.
2418 	 * A) To reduce MSR operations, we don't run step 1) as they
2419 	 *    are already cleared before this function is called;
2420 	 * B) Call x86_perf_event_update to save PMCx before configuring
2421 	 *    PERFEVTSELx with magic number;
2422 	 * C) With step 5), we do clear only when the PERFEVTSELx is
2423 	 *    not used currently.
2424 	 * D) Call x86_perf_event_set_period to restore PMCx;
2425 	 */
2426 
2427 	/* We always operate 4 pairs of PERF Counters */
2428 	for (i = 0; i < 4; i++) {
2429 		event = cpuc->events[i];
2430 		if (event)
2431 			static_call(x86_pmu_update)(event);
2432 	}
2433 
2434 	for (i = 0; i < 4; i++) {
2435 		wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
2436 		wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
2437 	}
2438 
2439 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
2440 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
2441 
2442 	for (i = 0; i < 4; i++) {
2443 		event = cpuc->events[i];
2444 
2445 		if (event) {
2446 			static_call(x86_pmu_set_period)(event);
2447 			__x86_pmu_enable_event(&event->hw,
2448 					ARCH_PERFMON_EVENTSEL_ENABLE);
2449 		} else
2450 			wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
2451 	}
2452 }
2453 
2454 static void intel_pmu_nhm_enable_all(int added)
2455 {
2456 	if (added)
2457 		intel_pmu_nhm_workaround();
2458 	intel_pmu_enable_all(added);
2459 }
2460 
2461 static void intel_set_tfa(struct cpu_hw_events *cpuc, bool on)
2462 {
2463 	u64 val = on ? MSR_TFA_RTM_FORCE_ABORT : 0;
2464 
2465 	if (cpuc->tfa_shadow != val) {
2466 		cpuc->tfa_shadow = val;
2467 		wrmsrl(MSR_TSX_FORCE_ABORT, val);
2468 	}
2469 }
2470 
2471 static void intel_tfa_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
2472 {
2473 	/*
2474 	 * We're going to use PMC3, make sure TFA is set before we touch it.
2475 	 */
2476 	if (cntr == 3)
2477 		intel_set_tfa(cpuc, true);
2478 }
2479 
2480 static void intel_tfa_pmu_enable_all(int added)
2481 {
2482 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2483 
2484 	/*
2485 	 * If we find PMC3 is no longer used when we enable the PMU, we can
2486 	 * clear TFA.
2487 	 */
2488 	if (!test_bit(3, cpuc->active_mask))
2489 		intel_set_tfa(cpuc, false);
2490 
2491 	intel_pmu_enable_all(added);
2492 }
2493 
2494 static inline u64 intel_pmu_get_status(void)
2495 {
2496 	u64 status;
2497 
2498 	rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
2499 
2500 	return status;
2501 }
2502 
2503 static inline void intel_pmu_ack_status(u64 ack)
2504 {
2505 	wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
2506 }
2507 
2508 static inline bool event_is_checkpointed(struct perf_event *event)
2509 {
2510 	return unlikely(event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
2511 }
2512 
2513 static inline void intel_set_masks(struct perf_event *event, int idx)
2514 {
2515 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2516 
2517 	if (event->attr.exclude_host)
2518 		__set_bit(idx, (unsigned long *)&cpuc->intel_ctrl_guest_mask);
2519 	if (event->attr.exclude_guest)
2520 		__set_bit(idx, (unsigned long *)&cpuc->intel_ctrl_host_mask);
2521 	if (event_is_checkpointed(event))
2522 		__set_bit(idx, (unsigned long *)&cpuc->intel_cp_status);
2523 }
2524 
2525 static inline void intel_clear_masks(struct perf_event *event, int idx)
2526 {
2527 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2528 
2529 	__clear_bit(idx, (unsigned long *)&cpuc->intel_ctrl_guest_mask);
2530 	__clear_bit(idx, (unsigned long *)&cpuc->intel_ctrl_host_mask);
2531 	__clear_bit(idx, (unsigned long *)&cpuc->intel_cp_status);
2532 }
2533 
2534 static void intel_pmu_disable_fixed(struct perf_event *event)
2535 {
2536 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2537 	struct hw_perf_event *hwc = &event->hw;
2538 	int idx = hwc->idx;
2539 	u64 mask;
2540 
2541 	if (is_topdown_idx(idx)) {
2542 		struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2543 
2544 		/*
2545 		 * When there are other active TopDown events,
2546 		 * don't disable the fixed counter 3.
2547 		 */
2548 		if (*(u64 *)cpuc->active_mask & INTEL_PMC_OTHER_TOPDOWN_BITS(idx))
2549 			return;
2550 		idx = INTEL_PMC_IDX_FIXED_SLOTS;
2551 	}
2552 
2553 	intel_clear_masks(event, idx);
2554 
2555 	mask = intel_fixed_bits_by_idx(idx - INTEL_PMC_IDX_FIXED, INTEL_FIXED_BITS_MASK);
2556 	cpuc->fixed_ctrl_val &= ~mask;
2557 }
2558 
2559 static void intel_pmu_disable_event(struct perf_event *event)
2560 {
2561 	struct hw_perf_event *hwc = &event->hw;
2562 	int idx = hwc->idx;
2563 
2564 	switch (idx) {
2565 	case 0 ... INTEL_PMC_IDX_FIXED - 1:
2566 		intel_clear_masks(event, idx);
2567 		x86_pmu_disable_event(event);
2568 		break;
2569 	case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS - 1:
2570 	case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
2571 		intel_pmu_disable_fixed(event);
2572 		break;
2573 	case INTEL_PMC_IDX_FIXED_BTS:
2574 		intel_pmu_disable_bts();
2575 		intel_pmu_drain_bts_buffer();
2576 		return;
2577 	case INTEL_PMC_IDX_FIXED_VLBR:
2578 		intel_clear_masks(event, idx);
2579 		break;
2580 	default:
2581 		intel_clear_masks(event, idx);
2582 		pr_warn("Failed to disable the event with invalid index %d\n",
2583 			idx);
2584 		return;
2585 	}
2586 
2587 	/*
2588 	 * Needs to be called after x86_pmu_disable_event,
2589 	 * so we don't trigger the event without PEBS bit set.
2590 	 */
2591 	if (unlikely(event->attr.precise_ip))
2592 		intel_pmu_pebs_disable(event);
2593 }
2594 
2595 static void intel_pmu_assign_event(struct perf_event *event, int idx)
2596 {
2597 	if (is_pebs_pt(event))
2598 		perf_report_aux_output_id(event, idx);
2599 }
2600 
2601 static __always_inline bool intel_pmu_needs_branch_stack(struct perf_event *event)
2602 {
2603 	return event->hw.flags & PERF_X86_EVENT_NEEDS_BRANCH_STACK;
2604 }
2605 
2606 static void intel_pmu_del_event(struct perf_event *event)
2607 {
2608 	if (intel_pmu_needs_branch_stack(event))
2609 		intel_pmu_lbr_del(event);
2610 	if (event->attr.precise_ip)
2611 		intel_pmu_pebs_del(event);
2612 }
2613 
2614 static int icl_set_topdown_event_period(struct perf_event *event)
2615 {
2616 	struct hw_perf_event *hwc = &event->hw;
2617 	s64 left = local64_read(&hwc->period_left);
2618 
2619 	/*
2620 	 * The values in PERF_METRICS MSR are derived from fixed counter 3.
2621 	 * Software should start both registers, PERF_METRICS and fixed
2622 	 * counter 3, from zero.
2623 	 * Clear PERF_METRICS and Fixed counter 3 in initialization.
2624 	 * After that, both MSRs will be cleared for each read.
2625 	 * Don't need to clear them again.
2626 	 */
2627 	if (left == x86_pmu.max_period) {
2628 		wrmsrl(MSR_CORE_PERF_FIXED_CTR3, 0);
2629 		wrmsrl(MSR_PERF_METRICS, 0);
2630 		hwc->saved_slots = 0;
2631 		hwc->saved_metric = 0;
2632 	}
2633 
2634 	if ((hwc->saved_slots) && is_slots_event(event)) {
2635 		wrmsrl(MSR_CORE_PERF_FIXED_CTR3, hwc->saved_slots);
2636 		wrmsrl(MSR_PERF_METRICS, hwc->saved_metric);
2637 	}
2638 
2639 	perf_event_update_userpage(event);
2640 
2641 	return 0;
2642 }
2643 
2644 DEFINE_STATIC_CALL(intel_pmu_set_topdown_event_period, x86_perf_event_set_period);
2645 
2646 static inline u64 icl_get_metrics_event_value(u64 metric, u64 slots, int idx)
2647 {
2648 	u32 val;
2649 
2650 	/*
2651 	 * The metric is reported as an 8bit integer fraction
2652 	 * summing up to 0xff.
2653 	 * slots-in-metric = (Metric / 0xff) * slots
2654 	 */
2655 	val = (metric >> ((idx - INTEL_PMC_IDX_METRIC_BASE) * 8)) & 0xff;
2656 	return  mul_u64_u32_div(slots, val, 0xff);
2657 }
2658 
2659 static u64 icl_get_topdown_value(struct perf_event *event,
2660 				       u64 slots, u64 metrics)
2661 {
2662 	int idx = event->hw.idx;
2663 	u64 delta;
2664 
2665 	if (is_metric_idx(idx))
2666 		delta = icl_get_metrics_event_value(metrics, slots, idx);
2667 	else
2668 		delta = slots;
2669 
2670 	return delta;
2671 }
2672 
2673 static void __icl_update_topdown_event(struct perf_event *event,
2674 				       u64 slots, u64 metrics,
2675 				       u64 last_slots, u64 last_metrics)
2676 {
2677 	u64 delta, last = 0;
2678 
2679 	delta = icl_get_topdown_value(event, slots, metrics);
2680 	if (last_slots)
2681 		last = icl_get_topdown_value(event, last_slots, last_metrics);
2682 
2683 	/*
2684 	 * The 8bit integer fraction of metric may be not accurate,
2685 	 * especially when the changes is very small.
2686 	 * For example, if only a few bad_spec happens, the fraction
2687 	 * may be reduced from 1 to 0. If so, the bad_spec event value
2688 	 * will be 0 which is definitely less than the last value.
2689 	 * Avoid update event->count for this case.
2690 	 */
2691 	if (delta > last) {
2692 		delta -= last;
2693 		local64_add(delta, &event->count);
2694 	}
2695 }
2696 
2697 static void update_saved_topdown_regs(struct perf_event *event, u64 slots,
2698 				      u64 metrics, int metric_end)
2699 {
2700 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2701 	struct perf_event *other;
2702 	int idx;
2703 
2704 	event->hw.saved_slots = slots;
2705 	event->hw.saved_metric = metrics;
2706 
2707 	for_each_set_bit(idx, cpuc->active_mask, metric_end + 1) {
2708 		if (!is_topdown_idx(idx))
2709 			continue;
2710 		other = cpuc->events[idx];
2711 		other->hw.saved_slots = slots;
2712 		other->hw.saved_metric = metrics;
2713 	}
2714 }
2715 
2716 /*
2717  * Update all active Topdown events.
2718  *
2719  * The PERF_METRICS and Fixed counter 3 are read separately. The values may be
2720  * modify by a NMI. PMU has to be disabled before calling this function.
2721  */
2722 
2723 static u64 intel_update_topdown_event(struct perf_event *event, int metric_end)
2724 {
2725 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2726 	struct perf_event *other;
2727 	u64 slots, metrics;
2728 	bool reset = true;
2729 	int idx;
2730 
2731 	/* read Fixed counter 3 */
2732 	rdpmcl((3 | INTEL_PMC_FIXED_RDPMC_BASE), slots);
2733 	if (!slots)
2734 		return 0;
2735 
2736 	/* read PERF_METRICS */
2737 	rdpmcl(INTEL_PMC_FIXED_RDPMC_METRICS, metrics);
2738 
2739 	for_each_set_bit(idx, cpuc->active_mask, metric_end + 1) {
2740 		if (!is_topdown_idx(idx))
2741 			continue;
2742 		other = cpuc->events[idx];
2743 		__icl_update_topdown_event(other, slots, metrics,
2744 					   event ? event->hw.saved_slots : 0,
2745 					   event ? event->hw.saved_metric : 0);
2746 	}
2747 
2748 	/*
2749 	 * Check and update this event, which may have been cleared
2750 	 * in active_mask e.g. x86_pmu_stop()
2751 	 */
2752 	if (event && !test_bit(event->hw.idx, cpuc->active_mask)) {
2753 		__icl_update_topdown_event(event, slots, metrics,
2754 					   event->hw.saved_slots,
2755 					   event->hw.saved_metric);
2756 
2757 		/*
2758 		 * In x86_pmu_stop(), the event is cleared in active_mask first,
2759 		 * then drain the delta, which indicates context switch for
2760 		 * counting.
2761 		 * Save metric and slots for context switch.
2762 		 * Don't need to reset the PERF_METRICS and Fixed counter 3.
2763 		 * Because the values will be restored in next schedule in.
2764 		 */
2765 		update_saved_topdown_regs(event, slots, metrics, metric_end);
2766 		reset = false;
2767 	}
2768 
2769 	if (reset) {
2770 		/* The fixed counter 3 has to be written before the PERF_METRICS. */
2771 		wrmsrl(MSR_CORE_PERF_FIXED_CTR3, 0);
2772 		wrmsrl(MSR_PERF_METRICS, 0);
2773 		if (event)
2774 			update_saved_topdown_regs(event, 0, 0, metric_end);
2775 	}
2776 
2777 	return slots;
2778 }
2779 
2780 static u64 icl_update_topdown_event(struct perf_event *event)
2781 {
2782 	return intel_update_topdown_event(event, INTEL_PMC_IDX_METRIC_BASE +
2783 						 x86_pmu.num_topdown_events - 1);
2784 }
2785 
2786 DEFINE_STATIC_CALL(intel_pmu_update_topdown_event, x86_perf_event_update);
2787 
2788 static void intel_pmu_read_topdown_event(struct perf_event *event)
2789 {
2790 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2791 
2792 	/* Only need to call update_topdown_event() once for group read. */
2793 	if ((cpuc->txn_flags & PERF_PMU_TXN_READ) &&
2794 	    !is_slots_event(event))
2795 		return;
2796 
2797 	perf_pmu_disable(event->pmu);
2798 	static_call(intel_pmu_update_topdown_event)(event);
2799 	perf_pmu_enable(event->pmu);
2800 }
2801 
2802 static void intel_pmu_read_event(struct perf_event *event)
2803 {
2804 	if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
2805 		intel_pmu_auto_reload_read(event);
2806 	else if (is_topdown_count(event))
2807 		intel_pmu_read_topdown_event(event);
2808 	else
2809 		x86_perf_event_update(event);
2810 }
2811 
2812 static void intel_pmu_enable_fixed(struct perf_event *event)
2813 {
2814 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2815 	struct hw_perf_event *hwc = &event->hw;
2816 	u64 mask, bits = 0;
2817 	int idx = hwc->idx;
2818 
2819 	if (is_topdown_idx(idx)) {
2820 		struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2821 		/*
2822 		 * When there are other active TopDown events,
2823 		 * don't enable the fixed counter 3 again.
2824 		 */
2825 		if (*(u64 *)cpuc->active_mask & INTEL_PMC_OTHER_TOPDOWN_BITS(idx))
2826 			return;
2827 
2828 		idx = INTEL_PMC_IDX_FIXED_SLOTS;
2829 	}
2830 
2831 	intel_set_masks(event, idx);
2832 
2833 	/*
2834 	 * Enable IRQ generation (0x8), if not PEBS,
2835 	 * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
2836 	 * if requested:
2837 	 */
2838 	if (!event->attr.precise_ip)
2839 		bits |= INTEL_FIXED_0_ENABLE_PMI;
2840 	if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
2841 		bits |= INTEL_FIXED_0_USER;
2842 	if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
2843 		bits |= INTEL_FIXED_0_KERNEL;
2844 
2845 	/*
2846 	 * ANY bit is supported in v3 and up
2847 	 */
2848 	if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
2849 		bits |= INTEL_FIXED_0_ANYTHREAD;
2850 
2851 	idx -= INTEL_PMC_IDX_FIXED;
2852 	bits = intel_fixed_bits_by_idx(idx, bits);
2853 	mask = intel_fixed_bits_by_idx(idx, INTEL_FIXED_BITS_MASK);
2854 
2855 	if (x86_pmu.intel_cap.pebs_baseline && event->attr.precise_ip) {
2856 		bits |= intel_fixed_bits_by_idx(idx, ICL_FIXED_0_ADAPTIVE);
2857 		mask |= intel_fixed_bits_by_idx(idx, ICL_FIXED_0_ADAPTIVE);
2858 	}
2859 
2860 	cpuc->fixed_ctrl_val &= ~mask;
2861 	cpuc->fixed_ctrl_val |= bits;
2862 }
2863 
2864 static void intel_pmu_enable_event(struct perf_event *event)
2865 {
2866 	u64 enable_mask = ARCH_PERFMON_EVENTSEL_ENABLE;
2867 	struct hw_perf_event *hwc = &event->hw;
2868 	int idx = hwc->idx;
2869 
2870 	if (unlikely(event->attr.precise_ip))
2871 		intel_pmu_pebs_enable(event);
2872 
2873 	switch (idx) {
2874 	case 0 ... INTEL_PMC_IDX_FIXED - 1:
2875 		if (branch_sample_counters(event))
2876 			enable_mask |= ARCH_PERFMON_EVENTSEL_BR_CNTR;
2877 		intel_set_masks(event, idx);
2878 		__x86_pmu_enable_event(hwc, enable_mask);
2879 		break;
2880 	case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS - 1:
2881 	case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
2882 		intel_pmu_enable_fixed(event);
2883 		break;
2884 	case INTEL_PMC_IDX_FIXED_BTS:
2885 		if (!__this_cpu_read(cpu_hw_events.enabled))
2886 			return;
2887 		intel_pmu_enable_bts(hwc->config);
2888 		break;
2889 	case INTEL_PMC_IDX_FIXED_VLBR:
2890 		intel_set_masks(event, idx);
2891 		break;
2892 	default:
2893 		pr_warn("Failed to enable the event with invalid index %d\n",
2894 			idx);
2895 	}
2896 }
2897 
2898 static void intel_pmu_add_event(struct perf_event *event)
2899 {
2900 	if (event->attr.precise_ip)
2901 		intel_pmu_pebs_add(event);
2902 	if (intel_pmu_needs_branch_stack(event))
2903 		intel_pmu_lbr_add(event);
2904 }
2905 
2906 /*
2907  * Save and restart an expired event. Called by NMI contexts,
2908  * so it has to be careful about preempting normal event ops:
2909  */
2910 int intel_pmu_save_and_restart(struct perf_event *event)
2911 {
2912 	static_call(x86_pmu_update)(event);
2913 	/*
2914 	 * For a checkpointed counter always reset back to 0.  This
2915 	 * avoids a situation where the counter overflows, aborts the
2916 	 * transaction and is then set back to shortly before the
2917 	 * overflow, and overflows and aborts again.
2918 	 */
2919 	if (unlikely(event_is_checkpointed(event))) {
2920 		/* No race with NMIs because the counter should not be armed */
2921 		wrmsrl(event->hw.event_base, 0);
2922 		local64_set(&event->hw.prev_count, 0);
2923 	}
2924 	return static_call(x86_pmu_set_period)(event);
2925 }
2926 
2927 static int intel_pmu_set_period(struct perf_event *event)
2928 {
2929 	if (unlikely(is_topdown_count(event)))
2930 		return static_call(intel_pmu_set_topdown_event_period)(event);
2931 
2932 	return x86_perf_event_set_period(event);
2933 }
2934 
2935 static u64 intel_pmu_update(struct perf_event *event)
2936 {
2937 	if (unlikely(is_topdown_count(event)))
2938 		return static_call(intel_pmu_update_topdown_event)(event);
2939 
2940 	return x86_perf_event_update(event);
2941 }
2942 
2943 static void intel_pmu_reset(void)
2944 {
2945 	struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
2946 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2947 	unsigned long *cntr_mask = hybrid(cpuc->pmu, cntr_mask);
2948 	unsigned long *fixed_cntr_mask = hybrid(cpuc->pmu, fixed_cntr_mask);
2949 	unsigned long flags;
2950 	int idx;
2951 
2952 	if (!*(u64 *)cntr_mask)
2953 		return;
2954 
2955 	local_irq_save(flags);
2956 
2957 	pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
2958 
2959 	for_each_set_bit(idx, cntr_mask, INTEL_PMC_MAX_GENERIC) {
2960 		wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
2961 		wrmsrl_safe(x86_pmu_event_addr(idx),  0ull);
2962 	}
2963 	for_each_set_bit(idx, fixed_cntr_mask, INTEL_PMC_MAX_FIXED) {
2964 		if (fixed_counter_disabled(idx, cpuc->pmu))
2965 			continue;
2966 		wrmsrl_safe(x86_pmu_fixed_ctr_addr(idx), 0ull);
2967 	}
2968 
2969 	if (ds)
2970 		ds->bts_index = ds->bts_buffer_base;
2971 
2972 	/* Ack all overflows and disable fixed counters */
2973 	if (x86_pmu.version >= 2) {
2974 		intel_pmu_ack_status(intel_pmu_get_status());
2975 		wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
2976 	}
2977 
2978 	/* Reset LBRs and LBR freezing */
2979 	if (x86_pmu.lbr_nr) {
2980 		update_debugctlmsr(get_debugctlmsr() &
2981 			~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
2982 	}
2983 
2984 	local_irq_restore(flags);
2985 }
2986 
2987 /*
2988  * We may be running with guest PEBS events created by KVM, and the
2989  * PEBS records are logged into the guest's DS and invisible to host.
2990  *
2991  * In the case of guest PEBS overflow, we only trigger a fake event
2992  * to emulate the PEBS overflow PMI for guest PEBS counters in KVM.
2993  * The guest will then vm-entry and check the guest DS area to read
2994  * the guest PEBS records.
2995  *
2996  * The contents and other behavior of the guest event do not matter.
2997  */
2998 static void x86_pmu_handle_guest_pebs(struct pt_regs *regs,
2999 				      struct perf_sample_data *data)
3000 {
3001 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3002 	u64 guest_pebs_idxs = cpuc->pebs_enabled & ~cpuc->intel_ctrl_host_mask;
3003 	struct perf_event *event = NULL;
3004 	int bit;
3005 
3006 	if (!unlikely(perf_guest_state()))
3007 		return;
3008 
3009 	if (!x86_pmu.pebs_ept || !x86_pmu.pebs_active ||
3010 	    !guest_pebs_idxs)
3011 		return;
3012 
3013 	for_each_set_bit(bit, (unsigned long *)&guest_pebs_idxs, X86_PMC_IDX_MAX) {
3014 		event = cpuc->events[bit];
3015 		if (!event->attr.precise_ip)
3016 			continue;
3017 
3018 		perf_sample_data_init(data, 0, event->hw.last_period);
3019 		if (perf_event_overflow(event, data, regs))
3020 			x86_pmu_stop(event, 0);
3021 
3022 		/* Inject one fake event is enough. */
3023 		break;
3024 	}
3025 }
3026 
3027 static int handle_pmi_common(struct pt_regs *regs, u64 status)
3028 {
3029 	struct perf_sample_data data;
3030 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3031 	int bit;
3032 	int handled = 0;
3033 	u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
3034 
3035 	inc_irq_stat(apic_perf_irqs);
3036 
3037 	/*
3038 	 * Ignore a range of extra bits in status that do not indicate
3039 	 * overflow by themselves.
3040 	 */
3041 	status &= ~(GLOBAL_STATUS_COND_CHG |
3042 		    GLOBAL_STATUS_ASIF |
3043 		    GLOBAL_STATUS_LBRS_FROZEN);
3044 	if (!status)
3045 		return 0;
3046 	/*
3047 	 * In case multiple PEBS events are sampled at the same time,
3048 	 * it is possible to have GLOBAL_STATUS bit 62 set indicating
3049 	 * PEBS buffer overflow and also seeing at most 3 PEBS counters
3050 	 * having their bits set in the status register. This is a sign
3051 	 * that there was at least one PEBS record pending at the time
3052 	 * of the PMU interrupt. PEBS counters must only be processed
3053 	 * via the drain_pebs() calls and not via the regular sample
3054 	 * processing loop coming after that the function, otherwise
3055 	 * phony regular samples may be generated in the sampling buffer
3056 	 * not marked with the EXACT tag. Another possibility is to have
3057 	 * one PEBS event and at least one non-PEBS event which overflows
3058 	 * while PEBS has armed. In this case, bit 62 of GLOBAL_STATUS will
3059 	 * not be set, yet the overflow status bit for the PEBS counter will
3060 	 * be on Skylake.
3061 	 *
3062 	 * To avoid this problem, we systematically ignore the PEBS-enabled
3063 	 * counters from the GLOBAL_STATUS mask and we always process PEBS
3064 	 * events via drain_pebs().
3065 	 */
3066 	status &= ~(cpuc->pebs_enabled & x86_pmu.pebs_capable);
3067 
3068 	/*
3069 	 * PEBS overflow sets bit 62 in the global status register
3070 	 */
3071 	if (__test_and_clear_bit(GLOBAL_STATUS_BUFFER_OVF_BIT, (unsigned long *)&status)) {
3072 		u64 pebs_enabled = cpuc->pebs_enabled;
3073 
3074 		handled++;
3075 		x86_pmu_handle_guest_pebs(regs, &data);
3076 		x86_pmu.drain_pebs(regs, &data);
3077 		status &= intel_ctrl | GLOBAL_STATUS_TRACE_TOPAPMI;
3078 
3079 		/*
3080 		 * PMI throttle may be triggered, which stops the PEBS event.
3081 		 * Although cpuc->pebs_enabled is updated accordingly, the
3082 		 * MSR_IA32_PEBS_ENABLE is not updated. Because the
3083 		 * cpuc->enabled has been forced to 0 in PMI.
3084 		 * Update the MSR if pebs_enabled is changed.
3085 		 */
3086 		if (pebs_enabled != cpuc->pebs_enabled)
3087 			wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
3088 	}
3089 
3090 	/*
3091 	 * Intel PT
3092 	 */
3093 	if (__test_and_clear_bit(GLOBAL_STATUS_TRACE_TOPAPMI_BIT, (unsigned long *)&status)) {
3094 		handled++;
3095 		if (!perf_guest_handle_intel_pt_intr())
3096 			intel_pt_interrupt();
3097 	}
3098 
3099 	/*
3100 	 * Intel Perf metrics
3101 	 */
3102 	if (__test_and_clear_bit(GLOBAL_STATUS_PERF_METRICS_OVF_BIT, (unsigned long *)&status)) {
3103 		handled++;
3104 		static_call(intel_pmu_update_topdown_event)(NULL);
3105 	}
3106 
3107 	/*
3108 	 * Checkpointed counters can lead to 'spurious' PMIs because the
3109 	 * rollback caused by the PMI will have cleared the overflow status
3110 	 * bit. Therefore always force probe these counters.
3111 	 */
3112 	status |= cpuc->intel_cp_status;
3113 
3114 	for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
3115 		struct perf_event *event = cpuc->events[bit];
3116 
3117 		handled++;
3118 
3119 		if (!test_bit(bit, cpuc->active_mask))
3120 			continue;
3121 
3122 		if (!intel_pmu_save_and_restart(event))
3123 			continue;
3124 
3125 		perf_sample_data_init(&data, 0, event->hw.last_period);
3126 
3127 		if (has_branch_stack(event))
3128 			intel_pmu_lbr_save_brstack(&data, cpuc, event);
3129 
3130 		if (perf_event_overflow(event, &data, regs))
3131 			x86_pmu_stop(event, 0);
3132 	}
3133 
3134 	return handled;
3135 }
3136 
3137 /*
3138  * This handler is triggered by the local APIC, so the APIC IRQ handling
3139  * rules apply:
3140  */
3141 static int intel_pmu_handle_irq(struct pt_regs *regs)
3142 {
3143 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3144 	bool late_ack = hybrid_bit(cpuc->pmu, late_ack);
3145 	bool mid_ack = hybrid_bit(cpuc->pmu, mid_ack);
3146 	int loops;
3147 	u64 status;
3148 	int handled;
3149 	int pmu_enabled;
3150 
3151 	/*
3152 	 * Save the PMU state.
3153 	 * It needs to be restored when leaving the handler.
3154 	 */
3155 	pmu_enabled = cpuc->enabled;
3156 	/*
3157 	 * In general, the early ACK is only applied for old platforms.
3158 	 * For the big core starts from Haswell, the late ACK should be
3159 	 * applied.
3160 	 * For the small core after Tremont, we have to do the ACK right
3161 	 * before re-enabling counters, which is in the middle of the
3162 	 * NMI handler.
3163 	 */
3164 	if (!late_ack && !mid_ack)
3165 		apic_write(APIC_LVTPC, APIC_DM_NMI);
3166 	intel_bts_disable_local();
3167 	cpuc->enabled = 0;
3168 	__intel_pmu_disable_all(true);
3169 	handled = intel_pmu_drain_bts_buffer();
3170 	handled += intel_bts_interrupt();
3171 	status = intel_pmu_get_status();
3172 	if (!status)
3173 		goto done;
3174 
3175 	loops = 0;
3176 again:
3177 	intel_pmu_lbr_read();
3178 	intel_pmu_ack_status(status);
3179 	if (++loops > 100) {
3180 		static bool warned;
3181 
3182 		if (!warned) {
3183 			WARN(1, "perfevents: irq loop stuck!\n");
3184 			perf_event_print_debug();
3185 			warned = true;
3186 		}
3187 		intel_pmu_reset();
3188 		goto done;
3189 	}
3190 
3191 	handled += handle_pmi_common(regs, status);
3192 
3193 	/*
3194 	 * Repeat if there is more work to be done:
3195 	 */
3196 	status = intel_pmu_get_status();
3197 	if (status)
3198 		goto again;
3199 
3200 done:
3201 	if (mid_ack)
3202 		apic_write(APIC_LVTPC, APIC_DM_NMI);
3203 	/* Only restore PMU state when it's active. See x86_pmu_disable(). */
3204 	cpuc->enabled = pmu_enabled;
3205 	if (pmu_enabled)
3206 		__intel_pmu_enable_all(0, true);
3207 	intel_bts_enable_local();
3208 
3209 	/*
3210 	 * Only unmask the NMI after the overflow counters
3211 	 * have been reset. This avoids spurious NMIs on
3212 	 * Haswell CPUs.
3213 	 */
3214 	if (late_ack)
3215 		apic_write(APIC_LVTPC, APIC_DM_NMI);
3216 	return handled;
3217 }
3218 
3219 static struct event_constraint *
3220 intel_bts_constraints(struct perf_event *event)
3221 {
3222 	if (unlikely(intel_pmu_has_bts(event)))
3223 		return &bts_constraint;
3224 
3225 	return NULL;
3226 }
3227 
3228 /*
3229  * Note: matches a fake event, like Fixed2.
3230  */
3231 static struct event_constraint *
3232 intel_vlbr_constraints(struct perf_event *event)
3233 {
3234 	struct event_constraint *c = &vlbr_constraint;
3235 
3236 	if (unlikely(constraint_match(c, event->hw.config))) {
3237 		event->hw.flags |= c->flags;
3238 		return c;
3239 	}
3240 
3241 	return NULL;
3242 }
3243 
3244 static int intel_alt_er(struct cpu_hw_events *cpuc,
3245 			int idx, u64 config)
3246 {
3247 	struct extra_reg *extra_regs = hybrid(cpuc->pmu, extra_regs);
3248 	int alt_idx = idx;
3249 
3250 	if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
3251 		return idx;
3252 
3253 	if (idx == EXTRA_REG_RSP_0)
3254 		alt_idx = EXTRA_REG_RSP_1;
3255 
3256 	if (idx == EXTRA_REG_RSP_1)
3257 		alt_idx = EXTRA_REG_RSP_0;
3258 
3259 	if (config & ~extra_regs[alt_idx].valid_mask)
3260 		return idx;
3261 
3262 	return alt_idx;
3263 }
3264 
3265 static void intel_fixup_er(struct perf_event *event, int idx)
3266 {
3267 	struct extra_reg *extra_regs = hybrid(event->pmu, extra_regs);
3268 	event->hw.extra_reg.idx = idx;
3269 
3270 	if (idx == EXTRA_REG_RSP_0) {
3271 		event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
3272 		event->hw.config |= extra_regs[EXTRA_REG_RSP_0].event;
3273 		event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
3274 	} else if (idx == EXTRA_REG_RSP_1) {
3275 		event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
3276 		event->hw.config |= extra_regs[EXTRA_REG_RSP_1].event;
3277 		event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
3278 	}
3279 }
3280 
3281 /*
3282  * manage allocation of shared extra msr for certain events
3283  *
3284  * sharing can be:
3285  * per-cpu: to be shared between the various events on a single PMU
3286  * per-core: per-cpu + shared by HT threads
3287  */
3288 static struct event_constraint *
3289 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
3290 				   struct perf_event *event,
3291 				   struct hw_perf_event_extra *reg)
3292 {
3293 	struct event_constraint *c = &emptyconstraint;
3294 	struct er_account *era;
3295 	unsigned long flags;
3296 	int idx = reg->idx;
3297 
3298 	/*
3299 	 * reg->alloc can be set due to existing state, so for fake cpuc we
3300 	 * need to ignore this, otherwise we might fail to allocate proper fake
3301 	 * state for this extra reg constraint. Also see the comment below.
3302 	 */
3303 	if (reg->alloc && !cpuc->is_fake)
3304 		return NULL; /* call x86_get_event_constraint() */
3305 
3306 again:
3307 	era = &cpuc->shared_regs->regs[idx];
3308 	/*
3309 	 * we use spin_lock_irqsave() to avoid lockdep issues when
3310 	 * passing a fake cpuc
3311 	 */
3312 	raw_spin_lock_irqsave(&era->lock, flags);
3313 
3314 	if (!atomic_read(&era->ref) || era->config == reg->config) {
3315 
3316 		/*
3317 		 * If its a fake cpuc -- as per validate_{group,event}() we
3318 		 * shouldn't touch event state and we can avoid doing so
3319 		 * since both will only call get_event_constraints() once
3320 		 * on each event, this avoids the need for reg->alloc.
3321 		 *
3322 		 * Not doing the ER fixup will only result in era->reg being
3323 		 * wrong, but since we won't actually try and program hardware
3324 		 * this isn't a problem either.
3325 		 */
3326 		if (!cpuc->is_fake) {
3327 			if (idx != reg->idx)
3328 				intel_fixup_er(event, idx);
3329 
3330 			/*
3331 			 * x86_schedule_events() can call get_event_constraints()
3332 			 * multiple times on events in the case of incremental
3333 			 * scheduling(). reg->alloc ensures we only do the ER
3334 			 * allocation once.
3335 			 */
3336 			reg->alloc = 1;
3337 		}
3338 
3339 		/* lock in msr value */
3340 		era->config = reg->config;
3341 		era->reg = reg->reg;
3342 
3343 		/* one more user */
3344 		atomic_inc(&era->ref);
3345 
3346 		/*
3347 		 * need to call x86_get_event_constraint()
3348 		 * to check if associated event has constraints
3349 		 */
3350 		c = NULL;
3351 	} else {
3352 		idx = intel_alt_er(cpuc, idx, reg->config);
3353 		if (idx != reg->idx) {
3354 			raw_spin_unlock_irqrestore(&era->lock, flags);
3355 			goto again;
3356 		}
3357 	}
3358 	raw_spin_unlock_irqrestore(&era->lock, flags);
3359 
3360 	return c;
3361 }
3362 
3363 static void
3364 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
3365 				   struct hw_perf_event_extra *reg)
3366 {
3367 	struct er_account *era;
3368 
3369 	/*
3370 	 * Only put constraint if extra reg was actually allocated. Also takes
3371 	 * care of event which do not use an extra shared reg.
3372 	 *
3373 	 * Also, if this is a fake cpuc we shouldn't touch any event state
3374 	 * (reg->alloc) and we don't care about leaving inconsistent cpuc state
3375 	 * either since it'll be thrown out.
3376 	 */
3377 	if (!reg->alloc || cpuc->is_fake)
3378 		return;
3379 
3380 	era = &cpuc->shared_regs->regs[reg->idx];
3381 
3382 	/* one fewer user */
3383 	atomic_dec(&era->ref);
3384 
3385 	/* allocate again next time */
3386 	reg->alloc = 0;
3387 }
3388 
3389 static struct event_constraint *
3390 intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
3391 			      struct perf_event *event)
3392 {
3393 	struct event_constraint *c = NULL, *d;
3394 	struct hw_perf_event_extra *xreg, *breg;
3395 
3396 	xreg = &event->hw.extra_reg;
3397 	if (xreg->idx != EXTRA_REG_NONE) {
3398 		c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
3399 		if (c == &emptyconstraint)
3400 			return c;
3401 	}
3402 	breg = &event->hw.branch_reg;
3403 	if (breg->idx != EXTRA_REG_NONE) {
3404 		d = __intel_shared_reg_get_constraints(cpuc, event, breg);
3405 		if (d == &emptyconstraint) {
3406 			__intel_shared_reg_put_constraints(cpuc, xreg);
3407 			c = d;
3408 		}
3409 	}
3410 	return c;
3411 }
3412 
3413 struct event_constraint *
3414 x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3415 			  struct perf_event *event)
3416 {
3417 	struct event_constraint *event_constraints = hybrid(cpuc->pmu, event_constraints);
3418 	struct event_constraint *c;
3419 
3420 	if (event_constraints) {
3421 		for_each_event_constraint(c, event_constraints) {
3422 			if (constraint_match(c, event->hw.config)) {
3423 				event->hw.flags |= c->flags;
3424 				return c;
3425 			}
3426 		}
3427 	}
3428 
3429 	return &hybrid_var(cpuc->pmu, unconstrained);
3430 }
3431 
3432 static struct event_constraint *
3433 __intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3434 			    struct perf_event *event)
3435 {
3436 	struct event_constraint *c;
3437 
3438 	c = intel_vlbr_constraints(event);
3439 	if (c)
3440 		return c;
3441 
3442 	c = intel_bts_constraints(event);
3443 	if (c)
3444 		return c;
3445 
3446 	c = intel_shared_regs_constraints(cpuc, event);
3447 	if (c)
3448 		return c;
3449 
3450 	c = intel_pebs_constraints(event);
3451 	if (c)
3452 		return c;
3453 
3454 	return x86_get_event_constraints(cpuc, idx, event);
3455 }
3456 
3457 static void
3458 intel_start_scheduling(struct cpu_hw_events *cpuc)
3459 {
3460 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3461 	struct intel_excl_states *xl;
3462 	int tid = cpuc->excl_thread_id;
3463 
3464 	/*
3465 	 * nothing needed if in group validation mode
3466 	 */
3467 	if (cpuc->is_fake || !is_ht_workaround_enabled())
3468 		return;
3469 
3470 	/*
3471 	 * no exclusion needed
3472 	 */
3473 	if (WARN_ON_ONCE(!excl_cntrs))
3474 		return;
3475 
3476 	xl = &excl_cntrs->states[tid];
3477 
3478 	xl->sched_started = true;
3479 	/*
3480 	 * lock shared state until we are done scheduling
3481 	 * in stop_event_scheduling()
3482 	 * makes scheduling appear as a transaction
3483 	 */
3484 	raw_spin_lock(&excl_cntrs->lock);
3485 }
3486 
3487 static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
3488 {
3489 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3490 	struct event_constraint *c = cpuc->event_constraint[idx];
3491 	struct intel_excl_states *xl;
3492 	int tid = cpuc->excl_thread_id;
3493 
3494 	if (cpuc->is_fake || !is_ht_workaround_enabled())
3495 		return;
3496 
3497 	if (WARN_ON_ONCE(!excl_cntrs))
3498 		return;
3499 
3500 	if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
3501 		return;
3502 
3503 	xl = &excl_cntrs->states[tid];
3504 
3505 	lockdep_assert_held(&excl_cntrs->lock);
3506 
3507 	if (c->flags & PERF_X86_EVENT_EXCL)
3508 		xl->state[cntr] = INTEL_EXCL_EXCLUSIVE;
3509 	else
3510 		xl->state[cntr] = INTEL_EXCL_SHARED;
3511 }
3512 
3513 static void
3514 intel_stop_scheduling(struct cpu_hw_events *cpuc)
3515 {
3516 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3517 	struct intel_excl_states *xl;
3518 	int tid = cpuc->excl_thread_id;
3519 
3520 	/*
3521 	 * nothing needed if in group validation mode
3522 	 */
3523 	if (cpuc->is_fake || !is_ht_workaround_enabled())
3524 		return;
3525 	/*
3526 	 * no exclusion needed
3527 	 */
3528 	if (WARN_ON_ONCE(!excl_cntrs))
3529 		return;
3530 
3531 	xl = &excl_cntrs->states[tid];
3532 
3533 	xl->sched_started = false;
3534 	/*
3535 	 * release shared state lock (acquired in intel_start_scheduling())
3536 	 */
3537 	raw_spin_unlock(&excl_cntrs->lock);
3538 }
3539 
3540 static struct event_constraint *
3541 dyn_constraint(struct cpu_hw_events *cpuc, struct event_constraint *c, int idx)
3542 {
3543 	WARN_ON_ONCE(!cpuc->constraint_list);
3544 
3545 	if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
3546 		struct event_constraint *cx;
3547 
3548 		/*
3549 		 * grab pre-allocated constraint entry
3550 		 */
3551 		cx = &cpuc->constraint_list[idx];
3552 
3553 		/*
3554 		 * initialize dynamic constraint
3555 		 * with static constraint
3556 		 */
3557 		*cx = *c;
3558 
3559 		/*
3560 		 * mark constraint as dynamic
3561 		 */
3562 		cx->flags |= PERF_X86_EVENT_DYNAMIC;
3563 		c = cx;
3564 	}
3565 
3566 	return c;
3567 }
3568 
3569 static struct event_constraint *
3570 intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
3571 			   int idx, struct event_constraint *c)
3572 {
3573 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3574 	struct intel_excl_states *xlo;
3575 	int tid = cpuc->excl_thread_id;
3576 	int is_excl, i, w;
3577 
3578 	/*
3579 	 * validating a group does not require
3580 	 * enforcing cross-thread  exclusion
3581 	 */
3582 	if (cpuc->is_fake || !is_ht_workaround_enabled())
3583 		return c;
3584 
3585 	/*
3586 	 * no exclusion needed
3587 	 */
3588 	if (WARN_ON_ONCE(!excl_cntrs))
3589 		return c;
3590 
3591 	/*
3592 	 * because we modify the constraint, we need
3593 	 * to make a copy. Static constraints come
3594 	 * from static const tables.
3595 	 *
3596 	 * only needed when constraint has not yet
3597 	 * been cloned (marked dynamic)
3598 	 */
3599 	c = dyn_constraint(cpuc, c, idx);
3600 
3601 	/*
3602 	 * From here on, the constraint is dynamic.
3603 	 * Either it was just allocated above, or it
3604 	 * was allocated during a earlier invocation
3605 	 * of this function
3606 	 */
3607 
3608 	/*
3609 	 * state of sibling HT
3610 	 */
3611 	xlo = &excl_cntrs->states[tid ^ 1];
3612 
3613 	/*
3614 	 * event requires exclusive counter access
3615 	 * across HT threads
3616 	 */
3617 	is_excl = c->flags & PERF_X86_EVENT_EXCL;
3618 	if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) {
3619 		event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT;
3620 		if (!cpuc->n_excl++)
3621 			WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1);
3622 	}
3623 
3624 	/*
3625 	 * Modify static constraint with current dynamic
3626 	 * state of thread
3627 	 *
3628 	 * EXCLUSIVE: sibling counter measuring exclusive event
3629 	 * SHARED   : sibling counter measuring non-exclusive event
3630 	 * UNUSED   : sibling counter unused
3631 	 */
3632 	w = c->weight;
3633 	for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) {
3634 		/*
3635 		 * exclusive event in sibling counter
3636 		 * our corresponding counter cannot be used
3637 		 * regardless of our event
3638 		 */
3639 		if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE) {
3640 			__clear_bit(i, c->idxmsk);
3641 			w--;
3642 			continue;
3643 		}
3644 		/*
3645 		 * if measuring an exclusive event, sibling
3646 		 * measuring non-exclusive, then counter cannot
3647 		 * be used
3648 		 */
3649 		if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED) {
3650 			__clear_bit(i, c->idxmsk);
3651 			w--;
3652 			continue;
3653 		}
3654 	}
3655 
3656 	/*
3657 	 * if we return an empty mask, then switch
3658 	 * back to static empty constraint to avoid
3659 	 * the cost of freeing later on
3660 	 */
3661 	if (!w)
3662 		c = &emptyconstraint;
3663 
3664 	c->weight = w;
3665 
3666 	return c;
3667 }
3668 
3669 static struct event_constraint *
3670 intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3671 			    struct perf_event *event)
3672 {
3673 	struct event_constraint *c1, *c2;
3674 
3675 	c1 = cpuc->event_constraint[idx];
3676 
3677 	/*
3678 	 * first time only
3679 	 * - static constraint: no change across incremental scheduling calls
3680 	 * - dynamic constraint: handled by intel_get_excl_constraints()
3681 	 */
3682 	c2 = __intel_get_event_constraints(cpuc, idx, event);
3683 	if (c1) {
3684 	        WARN_ON_ONCE(!(c1->flags & PERF_X86_EVENT_DYNAMIC));
3685 		bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
3686 		c1->weight = c2->weight;
3687 		c2 = c1;
3688 	}
3689 
3690 	if (cpuc->excl_cntrs)
3691 		return intel_get_excl_constraints(cpuc, event, idx, c2);
3692 
3693 	/* Not all counters support the branch counter feature. */
3694 	if (branch_sample_counters(event)) {
3695 		c2 = dyn_constraint(cpuc, c2, idx);
3696 		c2->idxmsk64 &= x86_pmu.lbr_counters;
3697 		c2->weight = hweight64(c2->idxmsk64);
3698 	}
3699 
3700 	return c2;
3701 }
3702 
3703 static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
3704 		struct perf_event *event)
3705 {
3706 	struct hw_perf_event *hwc = &event->hw;
3707 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3708 	int tid = cpuc->excl_thread_id;
3709 	struct intel_excl_states *xl;
3710 
3711 	/*
3712 	 * nothing needed if in group validation mode
3713 	 */
3714 	if (cpuc->is_fake)
3715 		return;
3716 
3717 	if (WARN_ON_ONCE(!excl_cntrs))
3718 		return;
3719 
3720 	if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) {
3721 		hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT;
3722 		if (!--cpuc->n_excl)
3723 			WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0);
3724 	}
3725 
3726 	/*
3727 	 * If event was actually assigned, then mark the counter state as
3728 	 * unused now.
3729 	 */
3730 	if (hwc->idx >= 0) {
3731 		xl = &excl_cntrs->states[tid];
3732 
3733 		/*
3734 		 * put_constraint may be called from x86_schedule_events()
3735 		 * which already has the lock held so here make locking
3736 		 * conditional.
3737 		 */
3738 		if (!xl->sched_started)
3739 			raw_spin_lock(&excl_cntrs->lock);
3740 
3741 		xl->state[hwc->idx] = INTEL_EXCL_UNUSED;
3742 
3743 		if (!xl->sched_started)
3744 			raw_spin_unlock(&excl_cntrs->lock);
3745 	}
3746 }
3747 
3748 static void
3749 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
3750 					struct perf_event *event)
3751 {
3752 	struct hw_perf_event_extra *reg;
3753 
3754 	reg = &event->hw.extra_reg;
3755 	if (reg->idx != EXTRA_REG_NONE)
3756 		__intel_shared_reg_put_constraints(cpuc, reg);
3757 
3758 	reg = &event->hw.branch_reg;
3759 	if (reg->idx != EXTRA_REG_NONE)
3760 		__intel_shared_reg_put_constraints(cpuc, reg);
3761 }
3762 
3763 static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
3764 					struct perf_event *event)
3765 {
3766 	intel_put_shared_regs_event_constraints(cpuc, event);
3767 
3768 	/*
3769 	 * is PMU has exclusive counter restrictions, then
3770 	 * all events are subject to and must call the
3771 	 * put_excl_constraints() routine
3772 	 */
3773 	if (cpuc->excl_cntrs)
3774 		intel_put_excl_constraints(cpuc, event);
3775 }
3776 
3777 static void intel_pebs_aliases_core2(struct perf_event *event)
3778 {
3779 	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3780 		/*
3781 		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3782 		 * (0x003c) so that we can use it with PEBS.
3783 		 *
3784 		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3785 		 * PEBS capable. However we can use INST_RETIRED.ANY_P
3786 		 * (0x00c0), which is a PEBS capable event, to get the same
3787 		 * count.
3788 		 *
3789 		 * INST_RETIRED.ANY_P counts the number of cycles that retires
3790 		 * CNTMASK instructions. By setting CNTMASK to a value (16)
3791 		 * larger than the maximum number of instructions that can be
3792 		 * retired per cycle (4) and then inverting the condition, we
3793 		 * count all cycles that retire 16 or less instructions, which
3794 		 * is every cycle.
3795 		 *
3796 		 * Thereby we gain a PEBS capable cycle counter.
3797 		 */
3798 		u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
3799 
3800 		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3801 		event->hw.config = alt_config;
3802 	}
3803 }
3804 
3805 static void intel_pebs_aliases_snb(struct perf_event *event)
3806 {
3807 	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3808 		/*
3809 		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3810 		 * (0x003c) so that we can use it with PEBS.
3811 		 *
3812 		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3813 		 * PEBS capable. However we can use UOPS_RETIRED.ALL
3814 		 * (0x01c2), which is a PEBS capable event, to get the same
3815 		 * count.
3816 		 *
3817 		 * UOPS_RETIRED.ALL counts the number of cycles that retires
3818 		 * CNTMASK micro-ops. By setting CNTMASK to a value (16)
3819 		 * larger than the maximum number of micro-ops that can be
3820 		 * retired per cycle (4) and then inverting the condition, we
3821 		 * count all cycles that retire 16 or less micro-ops, which
3822 		 * is every cycle.
3823 		 *
3824 		 * Thereby we gain a PEBS capable cycle counter.
3825 		 */
3826 		u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
3827 
3828 		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3829 		event->hw.config = alt_config;
3830 	}
3831 }
3832 
3833 static void intel_pebs_aliases_precdist(struct perf_event *event)
3834 {
3835 	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3836 		/*
3837 		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3838 		 * (0x003c) so that we can use it with PEBS.
3839 		 *
3840 		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3841 		 * PEBS capable. However we can use INST_RETIRED.PREC_DIST
3842 		 * (0x01c0), which is a PEBS capable event, to get the same
3843 		 * count.
3844 		 *
3845 		 * The PREC_DIST event has special support to minimize sample
3846 		 * shadowing effects. One drawback is that it can be
3847 		 * only programmed on counter 1, but that seems like an
3848 		 * acceptable trade off.
3849 		 */
3850 		u64 alt_config = X86_CONFIG(.event=0xc0, .umask=0x01, .inv=1, .cmask=16);
3851 
3852 		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3853 		event->hw.config = alt_config;
3854 	}
3855 }
3856 
3857 static void intel_pebs_aliases_ivb(struct perf_event *event)
3858 {
3859 	if (event->attr.precise_ip < 3)
3860 		return intel_pebs_aliases_snb(event);
3861 	return intel_pebs_aliases_precdist(event);
3862 }
3863 
3864 static void intel_pebs_aliases_skl(struct perf_event *event)
3865 {
3866 	if (event->attr.precise_ip < 3)
3867 		return intel_pebs_aliases_core2(event);
3868 	return intel_pebs_aliases_precdist(event);
3869 }
3870 
3871 static unsigned long intel_pmu_large_pebs_flags(struct perf_event *event)
3872 {
3873 	unsigned long flags = x86_pmu.large_pebs_flags;
3874 
3875 	if (event->attr.use_clockid)
3876 		flags &= ~PERF_SAMPLE_TIME;
3877 	if (!event->attr.exclude_kernel)
3878 		flags &= ~PERF_SAMPLE_REGS_USER;
3879 	if (event->attr.sample_regs_user & ~PEBS_GP_REGS)
3880 		flags &= ~(PERF_SAMPLE_REGS_USER | PERF_SAMPLE_REGS_INTR);
3881 	return flags;
3882 }
3883 
3884 static int intel_pmu_bts_config(struct perf_event *event)
3885 {
3886 	struct perf_event_attr *attr = &event->attr;
3887 
3888 	if (unlikely(intel_pmu_has_bts(event))) {
3889 		/* BTS is not supported by this architecture. */
3890 		if (!x86_pmu.bts_active)
3891 			return -EOPNOTSUPP;
3892 
3893 		/* BTS is currently only allowed for user-mode. */
3894 		if (!attr->exclude_kernel)
3895 			return -EOPNOTSUPP;
3896 
3897 		/* BTS is not allowed for precise events. */
3898 		if (attr->precise_ip)
3899 			return -EOPNOTSUPP;
3900 
3901 		/* disallow bts if conflicting events are present */
3902 		if (x86_add_exclusive(x86_lbr_exclusive_lbr))
3903 			return -EBUSY;
3904 
3905 		event->destroy = hw_perf_lbr_event_destroy;
3906 	}
3907 
3908 	return 0;
3909 }
3910 
3911 static int core_pmu_hw_config(struct perf_event *event)
3912 {
3913 	int ret = x86_pmu_hw_config(event);
3914 
3915 	if (ret)
3916 		return ret;
3917 
3918 	return intel_pmu_bts_config(event);
3919 }
3920 
3921 #define INTEL_TD_METRIC_AVAILABLE_MAX	(INTEL_TD_METRIC_RETIRING + \
3922 					 ((x86_pmu.num_topdown_events - 1) << 8))
3923 
3924 static bool is_available_metric_event(struct perf_event *event)
3925 {
3926 	return is_metric_event(event) &&
3927 		event->attr.config <= INTEL_TD_METRIC_AVAILABLE_MAX;
3928 }
3929 
3930 static inline bool is_mem_loads_event(struct perf_event *event)
3931 {
3932 	return (event->attr.config & INTEL_ARCH_EVENT_MASK) == X86_CONFIG(.event=0xcd, .umask=0x01);
3933 }
3934 
3935 static inline bool is_mem_loads_aux_event(struct perf_event *event)
3936 {
3937 	return (event->attr.config & INTEL_ARCH_EVENT_MASK) == X86_CONFIG(.event=0x03, .umask=0x82);
3938 }
3939 
3940 static inline bool require_mem_loads_aux_event(struct perf_event *event)
3941 {
3942 	if (!(x86_pmu.flags & PMU_FL_MEM_LOADS_AUX))
3943 		return false;
3944 
3945 	if (is_hybrid())
3946 		return hybrid_pmu(event->pmu)->pmu_type == hybrid_big;
3947 
3948 	return true;
3949 }
3950 
3951 static inline bool intel_pmu_has_cap(struct perf_event *event, int idx)
3952 {
3953 	union perf_capabilities *intel_cap = &hybrid(event->pmu, intel_cap);
3954 
3955 	return test_bit(idx, (unsigned long *)&intel_cap->capabilities);
3956 }
3957 
3958 static int intel_pmu_hw_config(struct perf_event *event)
3959 {
3960 	int ret = x86_pmu_hw_config(event);
3961 
3962 	if (ret)
3963 		return ret;
3964 
3965 	ret = intel_pmu_bts_config(event);
3966 	if (ret)
3967 		return ret;
3968 
3969 	if (event->attr.precise_ip) {
3970 		if ((event->attr.config & INTEL_ARCH_EVENT_MASK) == INTEL_FIXED_VLBR_EVENT)
3971 			return -EINVAL;
3972 
3973 		if (!(event->attr.freq || (event->attr.wakeup_events && !event->attr.watermark))) {
3974 			event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD;
3975 			if (!(event->attr.sample_type & ~intel_pmu_large_pebs_flags(event)) &&
3976 			    !has_aux_action(event)) {
3977 				event->hw.flags |= PERF_X86_EVENT_LARGE_PEBS;
3978 				event->attach_state |= PERF_ATTACH_SCHED_CB;
3979 			}
3980 		}
3981 		if (x86_pmu.pebs_aliases)
3982 			x86_pmu.pebs_aliases(event);
3983 	}
3984 
3985 	if (needs_branch_stack(event)) {
3986 		/* Avoid branch stack setup for counting events in SAMPLE READ */
3987 		if (is_sampling_event(event) ||
3988 		    !(event->attr.sample_type & PERF_SAMPLE_READ))
3989 			event->hw.flags |= PERF_X86_EVENT_NEEDS_BRANCH_STACK;
3990 	}
3991 
3992 	if (branch_sample_counters(event)) {
3993 		struct perf_event *leader, *sibling;
3994 		int num = 0;
3995 
3996 		if (!(x86_pmu.flags & PMU_FL_BR_CNTR) ||
3997 		    (event->attr.config & ~INTEL_ARCH_EVENT_MASK))
3998 			return -EINVAL;
3999 
4000 		/*
4001 		 * The branch counter logging is not supported in the call stack
4002 		 * mode yet, since we cannot simply flush the LBR during e.g.,
4003 		 * multiplexing. Also, there is no obvious usage with the call
4004 		 * stack mode. Simply forbids it for now.
4005 		 *
4006 		 * If any events in the group enable the branch counter logging
4007 		 * feature, the group is treated as a branch counter logging
4008 		 * group, which requires the extra space to store the counters.
4009 		 */
4010 		leader = event->group_leader;
4011 		if (branch_sample_call_stack(leader))
4012 			return -EINVAL;
4013 		if (branch_sample_counters(leader))
4014 			num++;
4015 		leader->hw.flags |= PERF_X86_EVENT_BRANCH_COUNTERS;
4016 
4017 		for_each_sibling_event(sibling, leader) {
4018 			if (branch_sample_call_stack(sibling))
4019 				return -EINVAL;
4020 			if (branch_sample_counters(sibling))
4021 				num++;
4022 		}
4023 
4024 		if (num > fls(x86_pmu.lbr_counters))
4025 			return -EINVAL;
4026 		/*
4027 		 * Only applying the PERF_SAMPLE_BRANCH_COUNTERS doesn't
4028 		 * require any branch stack setup.
4029 		 * Clear the bit to avoid unnecessary branch stack setup.
4030 		 */
4031 		if (0 == (event->attr.branch_sample_type &
4032 			  ~(PERF_SAMPLE_BRANCH_PLM_ALL |
4033 			    PERF_SAMPLE_BRANCH_COUNTERS)))
4034 			event->hw.flags  &= ~PERF_X86_EVENT_NEEDS_BRANCH_STACK;
4035 
4036 		/*
4037 		 * Force the leader to be a LBR event. So LBRs can be reset
4038 		 * with the leader event. See intel_pmu_lbr_del() for details.
4039 		 */
4040 		if (!intel_pmu_needs_branch_stack(leader))
4041 			return -EINVAL;
4042 	}
4043 
4044 	if (intel_pmu_needs_branch_stack(event)) {
4045 		ret = intel_pmu_setup_lbr_filter(event);
4046 		if (ret)
4047 			return ret;
4048 		event->attach_state |= PERF_ATTACH_SCHED_CB;
4049 
4050 		/*
4051 		 * BTS is set up earlier in this path, so don't account twice
4052 		 */
4053 		if (!unlikely(intel_pmu_has_bts(event))) {
4054 			/* disallow lbr if conflicting events are present */
4055 			if (x86_add_exclusive(x86_lbr_exclusive_lbr))
4056 				return -EBUSY;
4057 
4058 			event->destroy = hw_perf_lbr_event_destroy;
4059 		}
4060 	}
4061 
4062 	if (event->attr.aux_output) {
4063 		if (!event->attr.precise_ip)
4064 			return -EINVAL;
4065 
4066 		event->hw.flags |= PERF_X86_EVENT_PEBS_VIA_PT;
4067 	}
4068 
4069 	if ((event->attr.type == PERF_TYPE_HARDWARE) ||
4070 	    (event->attr.type == PERF_TYPE_HW_CACHE))
4071 		return 0;
4072 
4073 	/*
4074 	 * Config Topdown slots and metric events
4075 	 *
4076 	 * The slots event on Fixed Counter 3 can support sampling,
4077 	 * which will be handled normally in x86_perf_event_update().
4078 	 *
4079 	 * Metric events don't support sampling and require being paired
4080 	 * with a slots event as group leader. When the slots event
4081 	 * is used in a metrics group, it too cannot support sampling.
4082 	 */
4083 	if (intel_pmu_has_cap(event, PERF_CAP_METRICS_IDX) && is_topdown_event(event)) {
4084 		if (event->attr.config1 || event->attr.config2)
4085 			return -EINVAL;
4086 
4087 		/*
4088 		 * The TopDown metrics events and slots event don't
4089 		 * support any filters.
4090 		 */
4091 		if (event->attr.config & X86_ALL_EVENT_FLAGS)
4092 			return -EINVAL;
4093 
4094 		if (is_available_metric_event(event)) {
4095 			struct perf_event *leader = event->group_leader;
4096 
4097 			/* The metric events don't support sampling. */
4098 			if (is_sampling_event(event))
4099 				return -EINVAL;
4100 
4101 			/* The metric events require a slots group leader. */
4102 			if (!is_slots_event(leader))
4103 				return -EINVAL;
4104 
4105 			/*
4106 			 * The leader/SLOTS must not be a sampling event for
4107 			 * metric use; hardware requires it starts at 0 when used
4108 			 * in conjunction with MSR_PERF_METRICS.
4109 			 */
4110 			if (is_sampling_event(leader))
4111 				return -EINVAL;
4112 
4113 			event->event_caps |= PERF_EV_CAP_SIBLING;
4114 			/*
4115 			 * Only once we have a METRICs sibling do we
4116 			 * need TopDown magic.
4117 			 */
4118 			leader->hw.flags |= PERF_X86_EVENT_TOPDOWN;
4119 			event->hw.flags  |= PERF_X86_EVENT_TOPDOWN;
4120 		}
4121 	}
4122 
4123 	/*
4124 	 * The load latency event X86_CONFIG(.event=0xcd, .umask=0x01) on SPR
4125 	 * doesn't function quite right. As a work-around it needs to always be
4126 	 * co-scheduled with a auxiliary event X86_CONFIG(.event=0x03, .umask=0x82).
4127 	 * The actual count of this second event is irrelevant it just needs
4128 	 * to be active to make the first event function correctly.
4129 	 *
4130 	 * In a group, the auxiliary event must be in front of the load latency
4131 	 * event. The rule is to simplify the implementation of the check.
4132 	 * That's because perf cannot have a complete group at the moment.
4133 	 */
4134 	if (require_mem_loads_aux_event(event) &&
4135 	    (event->attr.sample_type & PERF_SAMPLE_DATA_SRC) &&
4136 	    is_mem_loads_event(event)) {
4137 		struct perf_event *leader = event->group_leader;
4138 		struct perf_event *sibling = NULL;
4139 
4140 		/*
4141 		 * When this memload event is also the first event (no group
4142 		 * exists yet), then there is no aux event before it.
4143 		 */
4144 		if (leader == event)
4145 			return -ENODATA;
4146 
4147 		if (!is_mem_loads_aux_event(leader)) {
4148 			for_each_sibling_event(sibling, leader) {
4149 				if (is_mem_loads_aux_event(sibling))
4150 					break;
4151 			}
4152 			if (list_entry_is_head(sibling, &leader->sibling_list, sibling_list))
4153 				return -ENODATA;
4154 		}
4155 	}
4156 
4157 	if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
4158 		return 0;
4159 
4160 	if (x86_pmu.version < 3)
4161 		return -EINVAL;
4162 
4163 	ret = perf_allow_cpu(&event->attr);
4164 	if (ret)
4165 		return ret;
4166 
4167 	event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
4168 
4169 	return 0;
4170 }
4171 
4172 /*
4173  * Currently, the only caller of this function is the atomic_switch_perf_msrs().
4174  * The host perf context helps to prepare the values of the real hardware for
4175  * a set of msrs that need to be switched atomically in a vmx transaction.
4176  *
4177  * For example, the pseudocode needed to add a new msr should look like:
4178  *
4179  * arr[(*nr)++] = (struct perf_guest_switch_msr){
4180  *	.msr = the hardware msr address,
4181  *	.host = the value the hardware has when it doesn't run a guest,
4182  *	.guest = the value the hardware has when it runs a guest,
4183  * };
4184  *
4185  * These values have nothing to do with the emulated values the guest sees
4186  * when it uses {RD,WR}MSR, which should be handled by the KVM context,
4187  * specifically in the intel_pmu_{get,set}_msr().
4188  */
4189 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr, void *data)
4190 {
4191 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
4192 	struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
4193 	struct kvm_pmu *kvm_pmu = (struct kvm_pmu *)data;
4194 	u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
4195 	u64 pebs_mask = cpuc->pebs_enabled & x86_pmu.pebs_capable;
4196 	int global_ctrl, pebs_enable;
4197 
4198 	/*
4199 	 * In addition to obeying exclude_guest/exclude_host, remove bits being
4200 	 * used for PEBS when running a guest, because PEBS writes to virtual
4201 	 * addresses (not physical addresses).
4202 	 */
4203 	*nr = 0;
4204 	global_ctrl = (*nr)++;
4205 	arr[global_ctrl] = (struct perf_guest_switch_msr){
4206 		.msr = MSR_CORE_PERF_GLOBAL_CTRL,
4207 		.host = intel_ctrl & ~cpuc->intel_ctrl_guest_mask,
4208 		.guest = intel_ctrl & ~cpuc->intel_ctrl_host_mask & ~pebs_mask,
4209 	};
4210 
4211 	if (!x86_pmu.pebs)
4212 		return arr;
4213 
4214 	/*
4215 	 * If PMU counter has PEBS enabled it is not enough to
4216 	 * disable counter on a guest entry since PEBS memory
4217 	 * write can overshoot guest entry and corrupt guest
4218 	 * memory. Disabling PEBS solves the problem.
4219 	 *
4220 	 * Don't do this if the CPU already enforces it.
4221 	 */
4222 	if (x86_pmu.pebs_no_isolation) {
4223 		arr[(*nr)++] = (struct perf_guest_switch_msr){
4224 			.msr = MSR_IA32_PEBS_ENABLE,
4225 			.host = cpuc->pebs_enabled,
4226 			.guest = 0,
4227 		};
4228 		return arr;
4229 	}
4230 
4231 	if (!kvm_pmu || !x86_pmu.pebs_ept)
4232 		return arr;
4233 
4234 	arr[(*nr)++] = (struct perf_guest_switch_msr){
4235 		.msr = MSR_IA32_DS_AREA,
4236 		.host = (unsigned long)cpuc->ds,
4237 		.guest = kvm_pmu->ds_area,
4238 	};
4239 
4240 	if (x86_pmu.intel_cap.pebs_baseline) {
4241 		arr[(*nr)++] = (struct perf_guest_switch_msr){
4242 			.msr = MSR_PEBS_DATA_CFG,
4243 			.host = cpuc->active_pebs_data_cfg,
4244 			.guest = kvm_pmu->pebs_data_cfg,
4245 		};
4246 	}
4247 
4248 	pebs_enable = (*nr)++;
4249 	arr[pebs_enable] = (struct perf_guest_switch_msr){
4250 		.msr = MSR_IA32_PEBS_ENABLE,
4251 		.host = cpuc->pebs_enabled & ~cpuc->intel_ctrl_guest_mask,
4252 		.guest = pebs_mask & ~cpuc->intel_ctrl_host_mask,
4253 	};
4254 
4255 	if (arr[pebs_enable].host) {
4256 		/* Disable guest PEBS if host PEBS is enabled. */
4257 		arr[pebs_enable].guest = 0;
4258 	} else {
4259 		/* Disable guest PEBS thoroughly for cross-mapped PEBS counters. */
4260 		arr[pebs_enable].guest &= ~kvm_pmu->host_cross_mapped_mask;
4261 		arr[global_ctrl].guest &= ~kvm_pmu->host_cross_mapped_mask;
4262 		/* Set hw GLOBAL_CTRL bits for PEBS counter when it runs for guest */
4263 		arr[global_ctrl].guest |= arr[pebs_enable].guest;
4264 	}
4265 
4266 	return arr;
4267 }
4268 
4269 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr, void *data)
4270 {
4271 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
4272 	struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
4273 	int idx;
4274 
4275 	for_each_set_bit(idx, x86_pmu.cntr_mask, X86_PMC_IDX_MAX) {
4276 		struct perf_event *event = cpuc->events[idx];
4277 
4278 		arr[idx].msr = x86_pmu_config_addr(idx);
4279 		arr[idx].host = arr[idx].guest = 0;
4280 
4281 		if (!test_bit(idx, cpuc->active_mask))
4282 			continue;
4283 
4284 		arr[idx].host = arr[idx].guest =
4285 			event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
4286 
4287 		if (event->attr.exclude_host)
4288 			arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
4289 		else if (event->attr.exclude_guest)
4290 			arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
4291 	}
4292 
4293 	*nr = x86_pmu_max_num_counters(cpuc->pmu);
4294 	return arr;
4295 }
4296 
4297 static void core_pmu_enable_event(struct perf_event *event)
4298 {
4299 	if (!event->attr.exclude_host)
4300 		x86_pmu_enable_event(event);
4301 }
4302 
4303 static void core_pmu_enable_all(int added)
4304 {
4305 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
4306 	int idx;
4307 
4308 	for_each_set_bit(idx, x86_pmu.cntr_mask, X86_PMC_IDX_MAX) {
4309 		struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
4310 
4311 		if (!test_bit(idx, cpuc->active_mask) ||
4312 				cpuc->events[idx]->attr.exclude_host)
4313 			continue;
4314 
4315 		__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
4316 	}
4317 }
4318 
4319 static int hsw_hw_config(struct perf_event *event)
4320 {
4321 	int ret = intel_pmu_hw_config(event);
4322 
4323 	if (ret)
4324 		return ret;
4325 	if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
4326 		return 0;
4327 	event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
4328 
4329 	/*
4330 	 * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
4331 	 * PEBS or in ANY thread mode. Since the results are non-sensical forbid
4332 	 * this combination.
4333 	 */
4334 	if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
4335 	     ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
4336 	      event->attr.precise_ip > 0))
4337 		return -EOPNOTSUPP;
4338 
4339 	if (event_is_checkpointed(event)) {
4340 		/*
4341 		 * Sampling of checkpointed events can cause situations where
4342 		 * the CPU constantly aborts because of a overflow, which is
4343 		 * then checkpointed back and ignored. Forbid checkpointing
4344 		 * for sampling.
4345 		 *
4346 		 * But still allow a long sampling period, so that perf stat
4347 		 * from KVM works.
4348 		 */
4349 		if (event->attr.sample_period > 0 &&
4350 		    event->attr.sample_period < 0x7fffffff)
4351 			return -EOPNOTSUPP;
4352 	}
4353 	return 0;
4354 }
4355 
4356 static struct event_constraint counter0_constraint =
4357 			INTEL_ALL_EVENT_CONSTRAINT(0, 0x1);
4358 
4359 static struct event_constraint counter1_constraint =
4360 			INTEL_ALL_EVENT_CONSTRAINT(0, 0x2);
4361 
4362 static struct event_constraint counter0_1_constraint =
4363 			INTEL_ALL_EVENT_CONSTRAINT(0, 0x3);
4364 
4365 static struct event_constraint counter2_constraint =
4366 			EVENT_CONSTRAINT(0, 0x4, 0);
4367 
4368 static struct event_constraint fixed0_constraint =
4369 			FIXED_EVENT_CONSTRAINT(0x00c0, 0);
4370 
4371 static struct event_constraint fixed0_counter0_constraint =
4372 			INTEL_ALL_EVENT_CONSTRAINT(0, 0x100000001ULL);
4373 
4374 static struct event_constraint fixed0_counter0_1_constraint =
4375 			INTEL_ALL_EVENT_CONSTRAINT(0, 0x100000003ULL);
4376 
4377 static struct event_constraint counters_1_7_constraint =
4378 			INTEL_ALL_EVENT_CONSTRAINT(0, 0xfeULL);
4379 
4380 static struct event_constraint *
4381 hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4382 			  struct perf_event *event)
4383 {
4384 	struct event_constraint *c;
4385 
4386 	c = intel_get_event_constraints(cpuc, idx, event);
4387 
4388 	/* Handle special quirk on in_tx_checkpointed only in counter 2 */
4389 	if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
4390 		if (c->idxmsk64 & (1U << 2))
4391 			return &counter2_constraint;
4392 		return &emptyconstraint;
4393 	}
4394 
4395 	return c;
4396 }
4397 
4398 static struct event_constraint *
4399 icl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4400 			  struct perf_event *event)
4401 {
4402 	/*
4403 	 * Fixed counter 0 has less skid.
4404 	 * Force instruction:ppp in Fixed counter 0
4405 	 */
4406 	if ((event->attr.precise_ip == 3) &&
4407 	    constraint_match(&fixed0_constraint, event->hw.config))
4408 		return &fixed0_constraint;
4409 
4410 	return hsw_get_event_constraints(cpuc, idx, event);
4411 }
4412 
4413 static struct event_constraint *
4414 glc_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4415 			  struct perf_event *event)
4416 {
4417 	struct event_constraint *c;
4418 
4419 	c = icl_get_event_constraints(cpuc, idx, event);
4420 
4421 	/*
4422 	 * The :ppp indicates the Precise Distribution (PDist) facility, which
4423 	 * is only supported on the GP counter 0. If a :ppp event which is not
4424 	 * available on the GP counter 0, error out.
4425 	 * Exception: Instruction PDIR is only available on the fixed counter 0.
4426 	 */
4427 	if ((event->attr.precise_ip == 3) &&
4428 	    !constraint_match(&fixed0_constraint, event->hw.config)) {
4429 		if (c->idxmsk64 & BIT_ULL(0))
4430 			return &counter0_constraint;
4431 
4432 		return &emptyconstraint;
4433 	}
4434 
4435 	return c;
4436 }
4437 
4438 static struct event_constraint *
4439 glp_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4440 			  struct perf_event *event)
4441 {
4442 	struct event_constraint *c;
4443 
4444 	/* :ppp means to do reduced skid PEBS which is PMC0 only. */
4445 	if (event->attr.precise_ip == 3)
4446 		return &counter0_constraint;
4447 
4448 	c = intel_get_event_constraints(cpuc, idx, event);
4449 
4450 	return c;
4451 }
4452 
4453 static struct event_constraint *
4454 tnt_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4455 			  struct perf_event *event)
4456 {
4457 	struct event_constraint *c;
4458 
4459 	c = intel_get_event_constraints(cpuc, idx, event);
4460 
4461 	/*
4462 	 * :ppp means to do reduced skid PEBS,
4463 	 * which is available on PMC0 and fixed counter 0.
4464 	 */
4465 	if (event->attr.precise_ip == 3) {
4466 		/* Force instruction:ppp on PMC0 and Fixed counter 0 */
4467 		if (constraint_match(&fixed0_constraint, event->hw.config))
4468 			return &fixed0_counter0_constraint;
4469 
4470 		return &counter0_constraint;
4471 	}
4472 
4473 	return c;
4474 }
4475 
4476 static bool allow_tsx_force_abort = true;
4477 
4478 static struct event_constraint *
4479 tfa_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4480 			  struct perf_event *event)
4481 {
4482 	struct event_constraint *c = hsw_get_event_constraints(cpuc, idx, event);
4483 
4484 	/*
4485 	 * Without TFA we must not use PMC3.
4486 	 */
4487 	if (!allow_tsx_force_abort && test_bit(3, c->idxmsk)) {
4488 		c = dyn_constraint(cpuc, c, idx);
4489 		c->idxmsk64 &= ~(1ULL << 3);
4490 		c->weight--;
4491 	}
4492 
4493 	return c;
4494 }
4495 
4496 static struct event_constraint *
4497 adl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4498 			  struct perf_event *event)
4499 {
4500 	struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
4501 
4502 	if (pmu->pmu_type == hybrid_big)
4503 		return glc_get_event_constraints(cpuc, idx, event);
4504 	else if (pmu->pmu_type == hybrid_small)
4505 		return tnt_get_event_constraints(cpuc, idx, event);
4506 
4507 	WARN_ON(1);
4508 	return &emptyconstraint;
4509 }
4510 
4511 static struct event_constraint *
4512 cmt_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4513 			  struct perf_event *event)
4514 {
4515 	struct event_constraint *c;
4516 
4517 	c = intel_get_event_constraints(cpuc, idx, event);
4518 
4519 	/*
4520 	 * The :ppp indicates the Precise Distribution (PDist) facility, which
4521 	 * is only supported on the GP counter 0 & 1 and Fixed counter 0.
4522 	 * If a :ppp event which is not available on the above eligible counters,
4523 	 * error out.
4524 	 */
4525 	if (event->attr.precise_ip == 3) {
4526 		/* Force instruction:ppp on PMC0, 1 and Fixed counter 0 */
4527 		if (constraint_match(&fixed0_constraint, event->hw.config)) {
4528 			/* The fixed counter 0 doesn't support LBR event logging. */
4529 			if (branch_sample_counters(event))
4530 				return &counter0_1_constraint;
4531 			else
4532 				return &fixed0_counter0_1_constraint;
4533 		}
4534 
4535 		switch (c->idxmsk64 & 0x3ull) {
4536 		case 0x1:
4537 			return &counter0_constraint;
4538 		case 0x2:
4539 			return &counter1_constraint;
4540 		case 0x3:
4541 			return &counter0_1_constraint;
4542 		}
4543 		return &emptyconstraint;
4544 	}
4545 
4546 	return c;
4547 }
4548 
4549 static struct event_constraint *
4550 rwc_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4551 			  struct perf_event *event)
4552 {
4553 	struct event_constraint *c;
4554 
4555 	c = glc_get_event_constraints(cpuc, idx, event);
4556 
4557 	/* The Retire Latency is not supported by the fixed counter 0. */
4558 	if (event->attr.precise_ip &&
4559 	    (event->attr.sample_type & PERF_SAMPLE_WEIGHT_TYPE) &&
4560 	    constraint_match(&fixed0_constraint, event->hw.config)) {
4561 		/*
4562 		 * The Instruction PDIR is only available
4563 		 * on the fixed counter 0. Error out for this case.
4564 		 */
4565 		if (event->attr.precise_ip == 3)
4566 			return &emptyconstraint;
4567 		return &counters_1_7_constraint;
4568 	}
4569 
4570 	return c;
4571 }
4572 
4573 static struct event_constraint *
4574 mtl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4575 			  struct perf_event *event)
4576 {
4577 	struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
4578 
4579 	if (pmu->pmu_type == hybrid_big)
4580 		return rwc_get_event_constraints(cpuc, idx, event);
4581 	if (pmu->pmu_type == hybrid_small)
4582 		return cmt_get_event_constraints(cpuc, idx, event);
4583 
4584 	WARN_ON(1);
4585 	return &emptyconstraint;
4586 }
4587 
4588 static int adl_hw_config(struct perf_event *event)
4589 {
4590 	struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
4591 
4592 	if (pmu->pmu_type == hybrid_big)
4593 		return hsw_hw_config(event);
4594 	else if (pmu->pmu_type == hybrid_small)
4595 		return intel_pmu_hw_config(event);
4596 
4597 	WARN_ON(1);
4598 	return -EOPNOTSUPP;
4599 }
4600 
4601 static enum hybrid_cpu_type adl_get_hybrid_cpu_type(void)
4602 {
4603 	return HYBRID_INTEL_CORE;
4604 }
4605 
4606 static inline bool erratum_hsw11(struct perf_event *event)
4607 {
4608 	return (event->hw.config & INTEL_ARCH_EVENT_MASK) ==
4609 		X86_CONFIG(.event=0xc0, .umask=0x01);
4610 }
4611 
4612 static struct event_constraint *
4613 arl_h_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4614 			  struct perf_event *event)
4615 {
4616 	struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
4617 
4618 	if (pmu->pmu_type == hybrid_tiny)
4619 		return cmt_get_event_constraints(cpuc, idx, event);
4620 
4621 	return mtl_get_event_constraints(cpuc, idx, event);
4622 }
4623 
4624 static int arl_h_hw_config(struct perf_event *event)
4625 {
4626 	struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
4627 
4628 	if (pmu->pmu_type == hybrid_tiny)
4629 		return intel_pmu_hw_config(event);
4630 
4631 	return adl_hw_config(event);
4632 }
4633 
4634 /*
4635  * The HSW11 requires a period larger than 100 which is the same as the BDM11.
4636  * A minimum period of 128 is enforced as well for the INST_RETIRED.ALL.
4637  *
4638  * The message 'interrupt took too long' can be observed on any counter which
4639  * was armed with a period < 32 and two events expired in the same NMI.
4640  * A minimum period of 32 is enforced for the rest of the events.
4641  */
4642 static void hsw_limit_period(struct perf_event *event, s64 *left)
4643 {
4644 	*left = max(*left, erratum_hsw11(event) ? 128 : 32);
4645 }
4646 
4647 /*
4648  * Broadwell:
4649  *
4650  * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
4651  * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
4652  * the two to enforce a minimum period of 128 (the smallest value that has bits
4653  * 0-5 cleared and >= 100).
4654  *
4655  * Because of how the code in x86_perf_event_set_period() works, the truncation
4656  * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
4657  * to make up for the 'lost' events due to carrying the 'error' in period_left.
4658  *
4659  * Therefore the effective (average) period matches the requested period,
4660  * despite coarser hardware granularity.
4661  */
4662 static void bdw_limit_period(struct perf_event *event, s64 *left)
4663 {
4664 	if (erratum_hsw11(event)) {
4665 		if (*left < 128)
4666 			*left = 128;
4667 		*left &= ~0x3fULL;
4668 	}
4669 }
4670 
4671 static void nhm_limit_period(struct perf_event *event, s64 *left)
4672 {
4673 	*left = max(*left, 32LL);
4674 }
4675 
4676 static void glc_limit_period(struct perf_event *event, s64 *left)
4677 {
4678 	if (event->attr.precise_ip == 3)
4679 		*left = max(*left, 128LL);
4680 }
4681 
4682 PMU_FORMAT_ATTR(event,	"config:0-7"	);
4683 PMU_FORMAT_ATTR(umask,	"config:8-15"	);
4684 PMU_FORMAT_ATTR(edge,	"config:18"	);
4685 PMU_FORMAT_ATTR(pc,	"config:19"	);
4686 PMU_FORMAT_ATTR(any,	"config:21"	); /* v3 + */
4687 PMU_FORMAT_ATTR(inv,	"config:23"	);
4688 PMU_FORMAT_ATTR(cmask,	"config:24-31"	);
4689 PMU_FORMAT_ATTR(in_tx,  "config:32"	);
4690 PMU_FORMAT_ATTR(in_tx_cp, "config:33"	);
4691 PMU_FORMAT_ATTR(eq,	"config:36"	); /* v6 + */
4692 
4693 static ssize_t umask2_show(struct device *dev,
4694 			   struct device_attribute *attr,
4695 			   char *page)
4696 {
4697 	u64 mask = hybrid(dev_get_drvdata(dev), config_mask) & ARCH_PERFMON_EVENTSEL_UMASK2;
4698 
4699 	if (mask == ARCH_PERFMON_EVENTSEL_UMASK2)
4700 		return sprintf(page, "config:8-15,40-47\n");
4701 
4702 	/* Roll back to the old format if umask2 is not supported. */
4703 	return sprintf(page, "config:8-15\n");
4704 }
4705 
4706 static struct device_attribute format_attr_umask2  =
4707 		__ATTR(umask, 0444, umask2_show, NULL);
4708 
4709 static struct attribute *format_evtsel_ext_attrs[] = {
4710 	&format_attr_umask2.attr,
4711 	&format_attr_eq.attr,
4712 	NULL
4713 };
4714 
4715 static umode_t
4716 evtsel_ext_is_visible(struct kobject *kobj, struct attribute *attr, int i)
4717 {
4718 	struct device *dev = kobj_to_dev(kobj);
4719 	u64 mask;
4720 
4721 	/*
4722 	 * The umask and umask2 have different formats but share the
4723 	 * same attr name. In update mode, the previous value of the
4724 	 * umask is unconditionally removed before is_visible. If
4725 	 * umask2 format is not enumerated, it's impossible to roll
4726 	 * back to the old format.
4727 	 * Does the check in umask2_show rather than is_visible.
4728 	 */
4729 	if (i == 0)
4730 		return attr->mode;
4731 
4732 	mask = hybrid(dev_get_drvdata(dev), config_mask);
4733 	if (i == 1)
4734 		return (mask & ARCH_PERFMON_EVENTSEL_EQ) ? attr->mode : 0;
4735 
4736 	return 0;
4737 }
4738 
4739 static struct attribute *intel_arch_formats_attr[] = {
4740 	&format_attr_event.attr,
4741 	&format_attr_umask.attr,
4742 	&format_attr_edge.attr,
4743 	&format_attr_pc.attr,
4744 	&format_attr_inv.attr,
4745 	&format_attr_cmask.attr,
4746 	NULL,
4747 };
4748 
4749 ssize_t intel_event_sysfs_show(char *page, u64 config)
4750 {
4751 	u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
4752 
4753 	return x86_event_sysfs_show(page, config, event);
4754 }
4755 
4756 static struct intel_shared_regs *allocate_shared_regs(int cpu)
4757 {
4758 	struct intel_shared_regs *regs;
4759 	int i;
4760 
4761 	regs = kzalloc_node(sizeof(struct intel_shared_regs),
4762 			    GFP_KERNEL, cpu_to_node(cpu));
4763 	if (regs) {
4764 		/*
4765 		 * initialize the locks to keep lockdep happy
4766 		 */
4767 		for (i = 0; i < EXTRA_REG_MAX; i++)
4768 			raw_spin_lock_init(&regs->regs[i].lock);
4769 
4770 		regs->core_id = -1;
4771 	}
4772 	return regs;
4773 }
4774 
4775 static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
4776 {
4777 	struct intel_excl_cntrs *c;
4778 
4779 	c = kzalloc_node(sizeof(struct intel_excl_cntrs),
4780 			 GFP_KERNEL, cpu_to_node(cpu));
4781 	if (c) {
4782 		raw_spin_lock_init(&c->lock);
4783 		c->core_id = -1;
4784 	}
4785 	return c;
4786 }
4787 
4788 
4789 int intel_cpuc_prepare(struct cpu_hw_events *cpuc, int cpu)
4790 {
4791 	cpuc->pebs_record_size = x86_pmu.pebs_record_size;
4792 
4793 	if (is_hybrid() || x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
4794 		cpuc->shared_regs = allocate_shared_regs(cpu);
4795 		if (!cpuc->shared_regs)
4796 			goto err;
4797 	}
4798 
4799 	if (x86_pmu.flags & (PMU_FL_EXCL_CNTRS | PMU_FL_TFA | PMU_FL_BR_CNTR)) {
4800 		size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);
4801 
4802 		cpuc->constraint_list = kzalloc_node(sz, GFP_KERNEL, cpu_to_node(cpu));
4803 		if (!cpuc->constraint_list)
4804 			goto err_shared_regs;
4805 	}
4806 
4807 	if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
4808 		cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
4809 		if (!cpuc->excl_cntrs)
4810 			goto err_constraint_list;
4811 
4812 		cpuc->excl_thread_id = 0;
4813 	}
4814 
4815 	return 0;
4816 
4817 err_constraint_list:
4818 	kfree(cpuc->constraint_list);
4819 	cpuc->constraint_list = NULL;
4820 
4821 err_shared_regs:
4822 	kfree(cpuc->shared_regs);
4823 	cpuc->shared_regs = NULL;
4824 
4825 err:
4826 	return -ENOMEM;
4827 }
4828 
4829 static int intel_pmu_cpu_prepare(int cpu)
4830 {
4831 	return intel_cpuc_prepare(&per_cpu(cpu_hw_events, cpu), cpu);
4832 }
4833 
4834 static void flip_smm_bit(void *data)
4835 {
4836 	unsigned long set = *(unsigned long *)data;
4837 
4838 	if (set > 0) {
4839 		msr_set_bit(MSR_IA32_DEBUGCTLMSR,
4840 			    DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
4841 	} else {
4842 		msr_clear_bit(MSR_IA32_DEBUGCTLMSR,
4843 			      DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
4844 	}
4845 }
4846 
4847 static void intel_pmu_check_counters_mask(u64 *cntr_mask,
4848 					  u64 *fixed_cntr_mask,
4849 					  u64 *intel_ctrl)
4850 {
4851 	unsigned int bit;
4852 
4853 	bit = fls64(*cntr_mask);
4854 	if (bit > INTEL_PMC_MAX_GENERIC) {
4855 		WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
4856 		     bit, INTEL_PMC_MAX_GENERIC);
4857 		*cntr_mask &= GENMASK_ULL(INTEL_PMC_MAX_GENERIC - 1, 0);
4858 	}
4859 	*intel_ctrl = *cntr_mask;
4860 
4861 	bit = fls64(*fixed_cntr_mask);
4862 	if (bit > INTEL_PMC_MAX_FIXED) {
4863 		WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
4864 		     bit, INTEL_PMC_MAX_FIXED);
4865 		*fixed_cntr_mask &= GENMASK_ULL(INTEL_PMC_MAX_FIXED - 1, 0);
4866 	}
4867 
4868 	*intel_ctrl |= *fixed_cntr_mask << INTEL_PMC_IDX_FIXED;
4869 }
4870 
4871 static void intel_pmu_check_event_constraints(struct event_constraint *event_constraints,
4872 					      u64 cntr_mask,
4873 					      u64 fixed_cntr_mask,
4874 					      u64 intel_ctrl);
4875 
4876 static void intel_pmu_check_extra_regs(struct extra_reg *extra_regs);
4877 
4878 static inline bool intel_pmu_broken_perf_cap(void)
4879 {
4880 	/* The Perf Metric (Bit 15) is always cleared */
4881 	if (boot_cpu_data.x86_vfm == INTEL_METEORLAKE ||
4882 	    boot_cpu_data.x86_vfm == INTEL_METEORLAKE_L)
4883 		return true;
4884 
4885 	return false;
4886 }
4887 
4888 static void update_pmu_cap(struct x86_hybrid_pmu *pmu)
4889 {
4890 	unsigned int sub_bitmaps, eax, ebx, ecx, edx;
4891 
4892 	cpuid(ARCH_PERFMON_EXT_LEAF, &sub_bitmaps, &ebx, &ecx, &edx);
4893 
4894 	if (ebx & ARCH_PERFMON_EXT_UMASK2)
4895 		pmu->config_mask |= ARCH_PERFMON_EVENTSEL_UMASK2;
4896 	if (ebx & ARCH_PERFMON_EXT_EQ)
4897 		pmu->config_mask |= ARCH_PERFMON_EVENTSEL_EQ;
4898 
4899 	if (sub_bitmaps & ARCH_PERFMON_NUM_COUNTER_LEAF_BIT) {
4900 		cpuid_count(ARCH_PERFMON_EXT_LEAF, ARCH_PERFMON_NUM_COUNTER_LEAF,
4901 			    &eax, &ebx, &ecx, &edx);
4902 		pmu->cntr_mask64 = eax;
4903 		pmu->fixed_cntr_mask64 = ebx;
4904 	}
4905 
4906 	if (!intel_pmu_broken_perf_cap()) {
4907 		/* Perf Metric (Bit 15) and PEBS via PT (Bit 16) are hybrid enumeration */
4908 		rdmsrl(MSR_IA32_PERF_CAPABILITIES, pmu->intel_cap.capabilities);
4909 	}
4910 }
4911 
4912 static void intel_pmu_check_hybrid_pmus(struct x86_hybrid_pmu *pmu)
4913 {
4914 	intel_pmu_check_counters_mask(&pmu->cntr_mask64, &pmu->fixed_cntr_mask64,
4915 				      &pmu->intel_ctrl);
4916 	pmu->pebs_events_mask = intel_pmu_pebs_mask(pmu->cntr_mask64);
4917 	pmu->unconstrained = (struct event_constraint)
4918 			     __EVENT_CONSTRAINT(0, pmu->cntr_mask64,
4919 						0, x86_pmu_num_counters(&pmu->pmu), 0, 0);
4920 
4921 	if (pmu->intel_cap.perf_metrics)
4922 		pmu->intel_ctrl |= 1ULL << GLOBAL_CTRL_EN_PERF_METRICS;
4923 	else
4924 		pmu->intel_ctrl &= ~(1ULL << GLOBAL_CTRL_EN_PERF_METRICS);
4925 
4926 	if (pmu->intel_cap.pebs_output_pt_available)
4927 		pmu->pmu.capabilities |= PERF_PMU_CAP_AUX_OUTPUT;
4928 	else
4929 		pmu->pmu.capabilities &= ~PERF_PMU_CAP_AUX_OUTPUT;
4930 
4931 	intel_pmu_check_event_constraints(pmu->event_constraints,
4932 					  pmu->cntr_mask64,
4933 					  pmu->fixed_cntr_mask64,
4934 					  pmu->intel_ctrl);
4935 
4936 	intel_pmu_check_extra_regs(pmu->extra_regs);
4937 }
4938 
4939 static struct x86_hybrid_pmu *find_hybrid_pmu_for_cpu(void)
4940 {
4941 	u8 cpu_type = get_this_hybrid_cpu_type();
4942 	int i;
4943 
4944 	/*
4945 	 * This is running on a CPU model that is known to have hybrid
4946 	 * configurations. But the CPU told us it is not hybrid, shame
4947 	 * on it. There should be a fixup function provided for these
4948 	 * troublesome CPUs (->get_hybrid_cpu_type).
4949 	 */
4950 	if (cpu_type == HYBRID_INTEL_NONE) {
4951 		if (x86_pmu.get_hybrid_cpu_type)
4952 			cpu_type = x86_pmu.get_hybrid_cpu_type();
4953 		else
4954 			return NULL;
4955 	}
4956 
4957 	/*
4958 	 * This essentially just maps between the 'hybrid_cpu_type'
4959 	 * and 'hybrid_pmu_type' enums except for ARL-H processor
4960 	 * which needs to compare atom uarch native id since ARL-H
4961 	 * contains two different atom uarchs.
4962 	 */
4963 	for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
4964 		enum hybrid_pmu_type pmu_type = x86_pmu.hybrid_pmu[i].pmu_type;
4965 		u32 native_id;
4966 
4967 		if (cpu_type == HYBRID_INTEL_CORE && pmu_type == hybrid_big)
4968 			return &x86_pmu.hybrid_pmu[i];
4969 		if (cpu_type == HYBRID_INTEL_ATOM) {
4970 			if (x86_pmu.num_hybrid_pmus == 2 && pmu_type == hybrid_small)
4971 				return &x86_pmu.hybrid_pmu[i];
4972 
4973 			native_id = get_this_hybrid_cpu_native_id();
4974 			if (native_id == skt_native_id && pmu_type == hybrid_small)
4975 				return &x86_pmu.hybrid_pmu[i];
4976 			if (native_id == cmt_native_id && pmu_type == hybrid_tiny)
4977 				return &x86_pmu.hybrid_pmu[i];
4978 		}
4979 	}
4980 
4981 	return NULL;
4982 }
4983 
4984 static bool init_hybrid_pmu(int cpu)
4985 {
4986 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
4987 	struct x86_hybrid_pmu *pmu = find_hybrid_pmu_for_cpu();
4988 
4989 	if (WARN_ON_ONCE(!pmu || (pmu->pmu.type == -1))) {
4990 		cpuc->pmu = NULL;
4991 		return false;
4992 	}
4993 
4994 	/* Only check and dump the PMU information for the first CPU */
4995 	if (!cpumask_empty(&pmu->supported_cpus))
4996 		goto end;
4997 
4998 	if (this_cpu_has(X86_FEATURE_ARCH_PERFMON_EXT))
4999 		update_pmu_cap(pmu);
5000 
5001 	intel_pmu_check_hybrid_pmus(pmu);
5002 
5003 	if (!check_hw_exists(&pmu->pmu, pmu->cntr_mask, pmu->fixed_cntr_mask))
5004 		return false;
5005 
5006 	pr_info("%s PMU driver: ", pmu->name);
5007 
5008 	if (pmu->intel_cap.pebs_output_pt_available)
5009 		pr_cont("PEBS-via-PT ");
5010 
5011 	pr_cont("\n");
5012 
5013 	x86_pmu_show_pmu_cap(&pmu->pmu);
5014 
5015 end:
5016 	cpumask_set_cpu(cpu, &pmu->supported_cpus);
5017 	cpuc->pmu = &pmu->pmu;
5018 
5019 	return true;
5020 }
5021 
5022 static void intel_pmu_cpu_starting(int cpu)
5023 {
5024 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
5025 	int core_id = topology_core_id(cpu);
5026 	int i;
5027 
5028 	if (is_hybrid() && !init_hybrid_pmu(cpu))
5029 		return;
5030 
5031 	init_debug_store_on_cpu(cpu);
5032 	/*
5033 	 * Deal with CPUs that don't clear their LBRs on power-up.
5034 	 */
5035 	intel_pmu_lbr_reset();
5036 
5037 	cpuc->lbr_sel = NULL;
5038 
5039 	if (x86_pmu.flags & PMU_FL_TFA) {
5040 		WARN_ON_ONCE(cpuc->tfa_shadow);
5041 		cpuc->tfa_shadow = ~0ULL;
5042 		intel_set_tfa(cpuc, false);
5043 	}
5044 
5045 	if (x86_pmu.version > 1)
5046 		flip_smm_bit(&x86_pmu.attr_freeze_on_smi);
5047 
5048 	/*
5049 	 * Disable perf metrics if any added CPU doesn't support it.
5050 	 *
5051 	 * Turn off the check for a hybrid architecture, because the
5052 	 * architecture MSR, MSR_IA32_PERF_CAPABILITIES, only indicate
5053 	 * the architecture features. The perf metrics is a model-specific
5054 	 * feature for now. The corresponding bit should always be 0 on
5055 	 * a hybrid platform, e.g., Alder Lake.
5056 	 */
5057 	if (!is_hybrid() && x86_pmu.intel_cap.perf_metrics) {
5058 		union perf_capabilities perf_cap;
5059 
5060 		rdmsrl(MSR_IA32_PERF_CAPABILITIES, perf_cap.capabilities);
5061 		if (!perf_cap.perf_metrics) {
5062 			x86_pmu.intel_cap.perf_metrics = 0;
5063 			x86_pmu.intel_ctrl &= ~(1ULL << GLOBAL_CTRL_EN_PERF_METRICS);
5064 		}
5065 	}
5066 
5067 	if (!cpuc->shared_regs)
5068 		return;
5069 
5070 	if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
5071 		for_each_cpu(i, topology_sibling_cpumask(cpu)) {
5072 			struct intel_shared_regs *pc;
5073 
5074 			pc = per_cpu(cpu_hw_events, i).shared_regs;
5075 			if (pc && pc->core_id == core_id) {
5076 				cpuc->kfree_on_online[0] = cpuc->shared_regs;
5077 				cpuc->shared_regs = pc;
5078 				break;
5079 			}
5080 		}
5081 		cpuc->shared_regs->core_id = core_id;
5082 		cpuc->shared_regs->refcnt++;
5083 	}
5084 
5085 	if (x86_pmu.lbr_sel_map)
5086 		cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
5087 
5088 	if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
5089 		for_each_cpu(i, topology_sibling_cpumask(cpu)) {
5090 			struct cpu_hw_events *sibling;
5091 			struct intel_excl_cntrs *c;
5092 
5093 			sibling = &per_cpu(cpu_hw_events, i);
5094 			c = sibling->excl_cntrs;
5095 			if (c && c->core_id == core_id) {
5096 				cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
5097 				cpuc->excl_cntrs = c;
5098 				if (!sibling->excl_thread_id)
5099 					cpuc->excl_thread_id = 1;
5100 				break;
5101 			}
5102 		}
5103 		cpuc->excl_cntrs->core_id = core_id;
5104 		cpuc->excl_cntrs->refcnt++;
5105 	}
5106 }
5107 
5108 static void free_excl_cntrs(struct cpu_hw_events *cpuc)
5109 {
5110 	struct intel_excl_cntrs *c;
5111 
5112 	c = cpuc->excl_cntrs;
5113 	if (c) {
5114 		if (c->core_id == -1 || --c->refcnt == 0)
5115 			kfree(c);
5116 		cpuc->excl_cntrs = NULL;
5117 	}
5118 
5119 	kfree(cpuc->constraint_list);
5120 	cpuc->constraint_list = NULL;
5121 }
5122 
5123 static void intel_pmu_cpu_dying(int cpu)
5124 {
5125 	fini_debug_store_on_cpu(cpu);
5126 }
5127 
5128 void intel_cpuc_finish(struct cpu_hw_events *cpuc)
5129 {
5130 	struct intel_shared_regs *pc;
5131 
5132 	pc = cpuc->shared_regs;
5133 	if (pc) {
5134 		if (pc->core_id == -1 || --pc->refcnt == 0)
5135 			kfree(pc);
5136 		cpuc->shared_regs = NULL;
5137 	}
5138 
5139 	free_excl_cntrs(cpuc);
5140 }
5141 
5142 static void intel_pmu_cpu_dead(int cpu)
5143 {
5144 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
5145 
5146 	intel_cpuc_finish(cpuc);
5147 
5148 	if (is_hybrid() && cpuc->pmu)
5149 		cpumask_clear_cpu(cpu, &hybrid_pmu(cpuc->pmu)->supported_cpus);
5150 }
5151 
5152 static void intel_pmu_sched_task(struct perf_event_pmu_context *pmu_ctx,
5153 				 bool sched_in)
5154 {
5155 	intel_pmu_pebs_sched_task(pmu_ctx, sched_in);
5156 	intel_pmu_lbr_sched_task(pmu_ctx, sched_in);
5157 }
5158 
5159 static void intel_pmu_swap_task_ctx(struct perf_event_pmu_context *prev_epc,
5160 				    struct perf_event_pmu_context *next_epc)
5161 {
5162 	intel_pmu_lbr_swap_task_ctx(prev_epc, next_epc);
5163 }
5164 
5165 static int intel_pmu_check_period(struct perf_event *event, u64 value)
5166 {
5167 	return intel_pmu_has_bts_period(event, value) ? -EINVAL : 0;
5168 }
5169 
5170 static void intel_aux_output_init(void)
5171 {
5172 	/* Refer also intel_pmu_aux_output_match() */
5173 	if (x86_pmu.intel_cap.pebs_output_pt_available)
5174 		x86_pmu.assign = intel_pmu_assign_event;
5175 }
5176 
5177 static int intel_pmu_aux_output_match(struct perf_event *event)
5178 {
5179 	/* intel_pmu_assign_event() is needed, refer intel_aux_output_init() */
5180 	if (!x86_pmu.intel_cap.pebs_output_pt_available)
5181 		return 0;
5182 
5183 	return is_intel_pt_event(event);
5184 }
5185 
5186 static void intel_pmu_filter(struct pmu *pmu, int cpu, bool *ret)
5187 {
5188 	struct x86_hybrid_pmu *hpmu = hybrid_pmu(pmu);
5189 
5190 	*ret = !cpumask_test_cpu(cpu, &hpmu->supported_cpus);
5191 }
5192 
5193 PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
5194 
5195 PMU_FORMAT_ATTR(ldlat, "config1:0-15");
5196 
5197 PMU_FORMAT_ATTR(frontend, "config1:0-23");
5198 
5199 PMU_FORMAT_ATTR(snoop_rsp, "config1:0-63");
5200 
5201 static struct attribute *intel_arch3_formats_attr[] = {
5202 	&format_attr_event.attr,
5203 	&format_attr_umask.attr,
5204 	&format_attr_edge.attr,
5205 	&format_attr_pc.attr,
5206 	&format_attr_any.attr,
5207 	&format_attr_inv.attr,
5208 	&format_attr_cmask.attr,
5209 	NULL,
5210 };
5211 
5212 static struct attribute *hsw_format_attr[] = {
5213 	&format_attr_in_tx.attr,
5214 	&format_attr_in_tx_cp.attr,
5215 	&format_attr_offcore_rsp.attr,
5216 	&format_attr_ldlat.attr,
5217 	NULL
5218 };
5219 
5220 static struct attribute *nhm_format_attr[] = {
5221 	&format_attr_offcore_rsp.attr,
5222 	&format_attr_ldlat.attr,
5223 	NULL
5224 };
5225 
5226 static struct attribute *slm_format_attr[] = {
5227 	&format_attr_offcore_rsp.attr,
5228 	NULL
5229 };
5230 
5231 static struct attribute *cmt_format_attr[] = {
5232 	&format_attr_offcore_rsp.attr,
5233 	&format_attr_ldlat.attr,
5234 	&format_attr_snoop_rsp.attr,
5235 	NULL
5236 };
5237 
5238 static struct attribute *skl_format_attr[] = {
5239 	&format_attr_frontend.attr,
5240 	NULL,
5241 };
5242 
5243 static __initconst const struct x86_pmu core_pmu = {
5244 	.name			= "core",
5245 	.handle_irq		= x86_pmu_handle_irq,
5246 	.disable_all		= x86_pmu_disable_all,
5247 	.enable_all		= core_pmu_enable_all,
5248 	.enable			= core_pmu_enable_event,
5249 	.disable		= x86_pmu_disable_event,
5250 	.hw_config		= core_pmu_hw_config,
5251 	.schedule_events	= x86_schedule_events,
5252 	.eventsel		= MSR_ARCH_PERFMON_EVENTSEL0,
5253 	.perfctr		= MSR_ARCH_PERFMON_PERFCTR0,
5254 	.fixedctr		= MSR_ARCH_PERFMON_FIXED_CTR0,
5255 	.event_map		= intel_pmu_event_map,
5256 	.max_events		= ARRAY_SIZE(intel_perfmon_event_map),
5257 	.apic			= 1,
5258 	.large_pebs_flags	= LARGE_PEBS_FLAGS,
5259 
5260 	/*
5261 	 * Intel PMCs cannot be accessed sanely above 32-bit width,
5262 	 * so we install an artificial 1<<31 period regardless of
5263 	 * the generic event period:
5264 	 */
5265 	.max_period		= (1ULL<<31) - 1,
5266 	.get_event_constraints	= intel_get_event_constraints,
5267 	.put_event_constraints	= intel_put_event_constraints,
5268 	.event_constraints	= intel_core_event_constraints,
5269 	.guest_get_msrs		= core_guest_get_msrs,
5270 	.format_attrs		= intel_arch_formats_attr,
5271 	.events_sysfs_show	= intel_event_sysfs_show,
5272 
5273 	/*
5274 	 * Virtual (or funny metal) CPU can define x86_pmu.extra_regs
5275 	 * together with PMU version 1 and thus be using core_pmu with
5276 	 * shared_regs. We need following callbacks here to allocate
5277 	 * it properly.
5278 	 */
5279 	.cpu_prepare		= intel_pmu_cpu_prepare,
5280 	.cpu_starting		= intel_pmu_cpu_starting,
5281 	.cpu_dying		= intel_pmu_cpu_dying,
5282 	.cpu_dead		= intel_pmu_cpu_dead,
5283 
5284 	.check_period		= intel_pmu_check_period,
5285 
5286 	.lbr_reset		= intel_pmu_lbr_reset_64,
5287 	.lbr_read		= intel_pmu_lbr_read_64,
5288 	.lbr_save		= intel_pmu_lbr_save,
5289 	.lbr_restore		= intel_pmu_lbr_restore,
5290 };
5291 
5292 static __initconst const struct x86_pmu intel_pmu = {
5293 	.name			= "Intel",
5294 	.handle_irq		= intel_pmu_handle_irq,
5295 	.disable_all		= intel_pmu_disable_all,
5296 	.enable_all		= intel_pmu_enable_all,
5297 	.enable			= intel_pmu_enable_event,
5298 	.disable		= intel_pmu_disable_event,
5299 	.add			= intel_pmu_add_event,
5300 	.del			= intel_pmu_del_event,
5301 	.read			= intel_pmu_read_event,
5302 	.set_period		= intel_pmu_set_period,
5303 	.update			= intel_pmu_update,
5304 	.hw_config		= intel_pmu_hw_config,
5305 	.schedule_events	= x86_schedule_events,
5306 	.eventsel		= MSR_ARCH_PERFMON_EVENTSEL0,
5307 	.perfctr		= MSR_ARCH_PERFMON_PERFCTR0,
5308 	.fixedctr		= MSR_ARCH_PERFMON_FIXED_CTR0,
5309 	.event_map		= intel_pmu_event_map,
5310 	.max_events		= ARRAY_SIZE(intel_perfmon_event_map),
5311 	.apic			= 1,
5312 	.large_pebs_flags	= LARGE_PEBS_FLAGS,
5313 	/*
5314 	 * Intel PMCs cannot be accessed sanely above 32 bit width,
5315 	 * so we install an artificial 1<<31 period regardless of
5316 	 * the generic event period:
5317 	 */
5318 	.max_period		= (1ULL << 31) - 1,
5319 	.get_event_constraints	= intel_get_event_constraints,
5320 	.put_event_constraints	= intel_put_event_constraints,
5321 	.pebs_aliases		= intel_pebs_aliases_core2,
5322 
5323 	.format_attrs		= intel_arch3_formats_attr,
5324 	.events_sysfs_show	= intel_event_sysfs_show,
5325 
5326 	.cpu_prepare		= intel_pmu_cpu_prepare,
5327 	.cpu_starting		= intel_pmu_cpu_starting,
5328 	.cpu_dying		= intel_pmu_cpu_dying,
5329 	.cpu_dead		= intel_pmu_cpu_dead,
5330 
5331 	.guest_get_msrs		= intel_guest_get_msrs,
5332 	.sched_task		= intel_pmu_sched_task,
5333 	.swap_task_ctx		= intel_pmu_swap_task_ctx,
5334 
5335 	.check_period		= intel_pmu_check_period,
5336 
5337 	.aux_output_match	= intel_pmu_aux_output_match,
5338 
5339 	.lbr_reset		= intel_pmu_lbr_reset_64,
5340 	.lbr_read		= intel_pmu_lbr_read_64,
5341 	.lbr_save		= intel_pmu_lbr_save,
5342 	.lbr_restore		= intel_pmu_lbr_restore,
5343 
5344 	/*
5345 	 * SMM has access to all 4 rings and while traditionally SMM code only
5346 	 * ran in CPL0, 2021-era firmware is starting to make use of CPL3 in SMM.
5347 	 *
5348 	 * Since the EVENTSEL.{USR,OS} CPL filtering makes no distinction
5349 	 * between SMM or not, this results in what should be pure userspace
5350 	 * counters including SMM data.
5351 	 *
5352 	 * This is a clear privilege issue, therefore globally disable
5353 	 * counting SMM by default.
5354 	 */
5355 	.attr_freeze_on_smi	= 1,
5356 };
5357 
5358 static __init void intel_clovertown_quirk(void)
5359 {
5360 	/*
5361 	 * PEBS is unreliable due to:
5362 	 *
5363 	 *   AJ67  - PEBS may experience CPL leaks
5364 	 *   AJ68  - PEBS PMI may be delayed by one event
5365 	 *   AJ69  - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
5366 	 *   AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
5367 	 *
5368 	 * AJ67 could be worked around by restricting the OS/USR flags.
5369 	 * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
5370 	 *
5371 	 * AJ106 could possibly be worked around by not allowing LBR
5372 	 *       usage from PEBS, including the fixup.
5373 	 * AJ68  could possibly be worked around by always programming
5374 	 *	 a pebs_event_reset[0] value and coping with the lost events.
5375 	 *
5376 	 * But taken together it might just make sense to not enable PEBS on
5377 	 * these chips.
5378 	 */
5379 	pr_warn("PEBS disabled due to CPU errata\n");
5380 	x86_pmu.pebs = 0;
5381 	x86_pmu.pebs_constraints = NULL;
5382 }
5383 
5384 static const struct x86_cpu_desc isolation_ucodes[] = {
5385 	INTEL_CPU_DESC(INTEL_HASWELL,		 3, 0x0000001f),
5386 	INTEL_CPU_DESC(INTEL_HASWELL_L,		 1, 0x0000001e),
5387 	INTEL_CPU_DESC(INTEL_HASWELL_G,		 1, 0x00000015),
5388 	INTEL_CPU_DESC(INTEL_HASWELL_X,		 2, 0x00000037),
5389 	INTEL_CPU_DESC(INTEL_HASWELL_X,		 4, 0x0000000a),
5390 	INTEL_CPU_DESC(INTEL_BROADWELL,		 4, 0x00000023),
5391 	INTEL_CPU_DESC(INTEL_BROADWELL_G,	 1, 0x00000014),
5392 	INTEL_CPU_DESC(INTEL_BROADWELL_D,	 2, 0x00000010),
5393 	INTEL_CPU_DESC(INTEL_BROADWELL_D,	 3, 0x07000009),
5394 	INTEL_CPU_DESC(INTEL_BROADWELL_D,	 4, 0x0f000009),
5395 	INTEL_CPU_DESC(INTEL_BROADWELL_D,	 5, 0x0e000002),
5396 	INTEL_CPU_DESC(INTEL_BROADWELL_X,	 1, 0x0b000014),
5397 	INTEL_CPU_DESC(INTEL_SKYLAKE_X,		 3, 0x00000021),
5398 	INTEL_CPU_DESC(INTEL_SKYLAKE_X,		 4, 0x00000000),
5399 	INTEL_CPU_DESC(INTEL_SKYLAKE_X,		 5, 0x00000000),
5400 	INTEL_CPU_DESC(INTEL_SKYLAKE_X,		 6, 0x00000000),
5401 	INTEL_CPU_DESC(INTEL_SKYLAKE_X,		 7, 0x00000000),
5402 	INTEL_CPU_DESC(INTEL_SKYLAKE_X,		11, 0x00000000),
5403 	INTEL_CPU_DESC(INTEL_SKYLAKE_L,		 3, 0x0000007c),
5404 	INTEL_CPU_DESC(INTEL_SKYLAKE,		 3, 0x0000007c),
5405 	INTEL_CPU_DESC(INTEL_KABYLAKE,		 9, 0x0000004e),
5406 	INTEL_CPU_DESC(INTEL_KABYLAKE_L,	 9, 0x0000004e),
5407 	INTEL_CPU_DESC(INTEL_KABYLAKE_L,	10, 0x0000004e),
5408 	INTEL_CPU_DESC(INTEL_KABYLAKE_L,	11, 0x0000004e),
5409 	INTEL_CPU_DESC(INTEL_KABYLAKE_L,	12, 0x0000004e),
5410 	INTEL_CPU_DESC(INTEL_KABYLAKE,		10, 0x0000004e),
5411 	INTEL_CPU_DESC(INTEL_KABYLAKE,		11, 0x0000004e),
5412 	INTEL_CPU_DESC(INTEL_KABYLAKE,		12, 0x0000004e),
5413 	INTEL_CPU_DESC(INTEL_KABYLAKE,		13, 0x0000004e),
5414 	{}
5415 };
5416 
5417 static void intel_check_pebs_isolation(void)
5418 {
5419 	x86_pmu.pebs_no_isolation = !x86_cpu_has_min_microcode_rev(isolation_ucodes);
5420 }
5421 
5422 static __init void intel_pebs_isolation_quirk(void)
5423 {
5424 	WARN_ON_ONCE(x86_pmu.check_microcode);
5425 	x86_pmu.check_microcode = intel_check_pebs_isolation;
5426 	intel_check_pebs_isolation();
5427 }
5428 
5429 static const struct x86_cpu_desc pebs_ucodes[] = {
5430 	INTEL_CPU_DESC(INTEL_SANDYBRIDGE,	7, 0x00000028),
5431 	INTEL_CPU_DESC(INTEL_SANDYBRIDGE_X,	6, 0x00000618),
5432 	INTEL_CPU_DESC(INTEL_SANDYBRIDGE_X,	7, 0x0000070c),
5433 	{}
5434 };
5435 
5436 static bool intel_snb_pebs_broken(void)
5437 {
5438 	return !x86_cpu_has_min_microcode_rev(pebs_ucodes);
5439 }
5440 
5441 static void intel_snb_check_microcode(void)
5442 {
5443 	if (intel_snb_pebs_broken() == x86_pmu.pebs_broken)
5444 		return;
5445 
5446 	/*
5447 	 * Serialized by the microcode lock..
5448 	 */
5449 	if (x86_pmu.pebs_broken) {
5450 		pr_info("PEBS enabled due to microcode update\n");
5451 		x86_pmu.pebs_broken = 0;
5452 	} else {
5453 		pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
5454 		x86_pmu.pebs_broken = 1;
5455 	}
5456 }
5457 
5458 static bool is_lbr_from(unsigned long msr)
5459 {
5460 	unsigned long lbr_from_nr = x86_pmu.lbr_from + x86_pmu.lbr_nr;
5461 
5462 	return x86_pmu.lbr_from <= msr && msr < lbr_from_nr;
5463 }
5464 
5465 /*
5466  * Under certain circumstances, access certain MSR may cause #GP.
5467  * The function tests if the input MSR can be safely accessed.
5468  */
5469 static bool check_msr(unsigned long msr, u64 mask)
5470 {
5471 	u64 val_old, val_new, val_tmp;
5472 
5473 	/*
5474 	 * Disable the check for real HW, so we don't
5475 	 * mess with potentially enabled registers:
5476 	 */
5477 	if (!boot_cpu_has(X86_FEATURE_HYPERVISOR))
5478 		return true;
5479 
5480 	/*
5481 	 * Read the current value, change it and read it back to see if it
5482 	 * matches, this is needed to detect certain hardware emulators
5483 	 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
5484 	 */
5485 	if (rdmsrl_safe(msr, &val_old))
5486 		return false;
5487 
5488 	/*
5489 	 * Only change the bits which can be updated by wrmsrl.
5490 	 */
5491 	val_tmp = val_old ^ mask;
5492 
5493 	if (is_lbr_from(msr))
5494 		val_tmp = lbr_from_signext_quirk_wr(val_tmp);
5495 
5496 	if (wrmsrl_safe(msr, val_tmp) ||
5497 	    rdmsrl_safe(msr, &val_new))
5498 		return false;
5499 
5500 	/*
5501 	 * Quirk only affects validation in wrmsr(), so wrmsrl()'s value
5502 	 * should equal rdmsrl()'s even with the quirk.
5503 	 */
5504 	if (val_new != val_tmp)
5505 		return false;
5506 
5507 	if (is_lbr_from(msr))
5508 		val_old = lbr_from_signext_quirk_wr(val_old);
5509 
5510 	/* Here it's sure that the MSR can be safely accessed.
5511 	 * Restore the old value and return.
5512 	 */
5513 	wrmsrl(msr, val_old);
5514 
5515 	return true;
5516 }
5517 
5518 static __init void intel_sandybridge_quirk(void)
5519 {
5520 	x86_pmu.check_microcode = intel_snb_check_microcode;
5521 	cpus_read_lock();
5522 	intel_snb_check_microcode();
5523 	cpus_read_unlock();
5524 }
5525 
5526 static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
5527 	{ PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
5528 	{ PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
5529 	{ PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
5530 	{ PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
5531 	{ PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
5532 	{ PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
5533 	{ PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
5534 };
5535 
5536 static __init void intel_arch_events_quirk(void)
5537 {
5538 	int bit;
5539 
5540 	/* disable event that reported as not present by cpuid */
5541 	for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
5542 		intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
5543 		pr_warn("CPUID marked event: \'%s\' unavailable\n",
5544 			intel_arch_events_map[bit].name);
5545 	}
5546 }
5547 
5548 static __init void intel_nehalem_quirk(void)
5549 {
5550 	union cpuid10_ebx ebx;
5551 
5552 	ebx.full = x86_pmu.events_maskl;
5553 	if (ebx.split.no_branch_misses_retired) {
5554 		/*
5555 		 * Erratum AAJ80 detected, we work it around by using
5556 		 * the BR_MISP_EXEC.ANY event. This will over-count
5557 		 * branch-misses, but it's still much better than the
5558 		 * architectural event which is often completely bogus:
5559 		 */
5560 		intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
5561 		ebx.split.no_branch_misses_retired = 0;
5562 		x86_pmu.events_maskl = ebx.full;
5563 		pr_info("CPU erratum AAJ80 worked around\n");
5564 	}
5565 }
5566 
5567 /*
5568  * enable software workaround for errata:
5569  * SNB: BJ122
5570  * IVB: BV98
5571  * HSW: HSD29
5572  *
5573  * Only needed when HT is enabled. However detecting
5574  * if HT is enabled is difficult (model specific). So instead,
5575  * we enable the workaround in the early boot, and verify if
5576  * it is needed in a later initcall phase once we have valid
5577  * topology information to check if HT is actually enabled
5578  */
5579 static __init void intel_ht_bug(void)
5580 {
5581 	x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED;
5582 
5583 	x86_pmu.start_scheduling = intel_start_scheduling;
5584 	x86_pmu.commit_scheduling = intel_commit_scheduling;
5585 	x86_pmu.stop_scheduling = intel_stop_scheduling;
5586 }
5587 
5588 EVENT_ATTR_STR(mem-loads,	mem_ld_hsw,	"event=0xcd,umask=0x1,ldlat=3");
5589 EVENT_ATTR_STR(mem-stores,	mem_st_hsw,	"event=0xd0,umask=0x82")
5590 
5591 /* Haswell special events */
5592 EVENT_ATTR_STR(tx-start,	tx_start,	"event=0xc9,umask=0x1");
5593 EVENT_ATTR_STR(tx-commit,	tx_commit,	"event=0xc9,umask=0x2");
5594 EVENT_ATTR_STR(tx-abort,	tx_abort,	"event=0xc9,umask=0x4");
5595 EVENT_ATTR_STR(tx-capacity,	tx_capacity,	"event=0x54,umask=0x2");
5596 EVENT_ATTR_STR(tx-conflict,	tx_conflict,	"event=0x54,umask=0x1");
5597 EVENT_ATTR_STR(el-start,	el_start,	"event=0xc8,umask=0x1");
5598 EVENT_ATTR_STR(el-commit,	el_commit,	"event=0xc8,umask=0x2");
5599 EVENT_ATTR_STR(el-abort,	el_abort,	"event=0xc8,umask=0x4");
5600 EVENT_ATTR_STR(el-capacity,	el_capacity,	"event=0x54,umask=0x2");
5601 EVENT_ATTR_STR(el-conflict,	el_conflict,	"event=0x54,umask=0x1");
5602 EVENT_ATTR_STR(cycles-t,	cycles_t,	"event=0x3c,in_tx=1");
5603 EVENT_ATTR_STR(cycles-ct,	cycles_ct,	"event=0x3c,in_tx=1,in_tx_cp=1");
5604 
5605 static struct attribute *hsw_events_attrs[] = {
5606 	EVENT_PTR(td_slots_issued),
5607 	EVENT_PTR(td_slots_retired),
5608 	EVENT_PTR(td_fetch_bubbles),
5609 	EVENT_PTR(td_total_slots),
5610 	EVENT_PTR(td_total_slots_scale),
5611 	EVENT_PTR(td_recovery_bubbles),
5612 	EVENT_PTR(td_recovery_bubbles_scale),
5613 	NULL
5614 };
5615 
5616 static struct attribute *hsw_mem_events_attrs[] = {
5617 	EVENT_PTR(mem_ld_hsw),
5618 	EVENT_PTR(mem_st_hsw),
5619 	NULL,
5620 };
5621 
5622 static struct attribute *hsw_tsx_events_attrs[] = {
5623 	EVENT_PTR(tx_start),
5624 	EVENT_PTR(tx_commit),
5625 	EVENT_PTR(tx_abort),
5626 	EVENT_PTR(tx_capacity),
5627 	EVENT_PTR(tx_conflict),
5628 	EVENT_PTR(el_start),
5629 	EVENT_PTR(el_commit),
5630 	EVENT_PTR(el_abort),
5631 	EVENT_PTR(el_capacity),
5632 	EVENT_PTR(el_conflict),
5633 	EVENT_PTR(cycles_t),
5634 	EVENT_PTR(cycles_ct),
5635 	NULL
5636 };
5637 
5638 EVENT_ATTR_STR(tx-capacity-read,  tx_capacity_read,  "event=0x54,umask=0x80");
5639 EVENT_ATTR_STR(tx-capacity-write, tx_capacity_write, "event=0x54,umask=0x2");
5640 EVENT_ATTR_STR(el-capacity-read,  el_capacity_read,  "event=0x54,umask=0x80");
5641 EVENT_ATTR_STR(el-capacity-write, el_capacity_write, "event=0x54,umask=0x2");
5642 
5643 static struct attribute *icl_events_attrs[] = {
5644 	EVENT_PTR(mem_ld_hsw),
5645 	EVENT_PTR(mem_st_hsw),
5646 	NULL,
5647 };
5648 
5649 static struct attribute *icl_td_events_attrs[] = {
5650 	EVENT_PTR(slots),
5651 	EVENT_PTR(td_retiring),
5652 	EVENT_PTR(td_bad_spec),
5653 	EVENT_PTR(td_fe_bound),
5654 	EVENT_PTR(td_be_bound),
5655 	NULL,
5656 };
5657 
5658 static struct attribute *icl_tsx_events_attrs[] = {
5659 	EVENT_PTR(tx_start),
5660 	EVENT_PTR(tx_abort),
5661 	EVENT_PTR(tx_commit),
5662 	EVENT_PTR(tx_capacity_read),
5663 	EVENT_PTR(tx_capacity_write),
5664 	EVENT_PTR(tx_conflict),
5665 	EVENT_PTR(el_start),
5666 	EVENT_PTR(el_abort),
5667 	EVENT_PTR(el_commit),
5668 	EVENT_PTR(el_capacity_read),
5669 	EVENT_PTR(el_capacity_write),
5670 	EVENT_PTR(el_conflict),
5671 	EVENT_PTR(cycles_t),
5672 	EVENT_PTR(cycles_ct),
5673 	NULL,
5674 };
5675 
5676 
5677 EVENT_ATTR_STR(mem-stores,	mem_st_spr,	"event=0xcd,umask=0x2");
5678 EVENT_ATTR_STR(mem-loads-aux,	mem_ld_aux,	"event=0x03,umask=0x82");
5679 
5680 static struct attribute *glc_events_attrs[] = {
5681 	EVENT_PTR(mem_ld_hsw),
5682 	EVENT_PTR(mem_st_spr),
5683 	EVENT_PTR(mem_ld_aux),
5684 	NULL,
5685 };
5686 
5687 static struct attribute *glc_td_events_attrs[] = {
5688 	EVENT_PTR(slots),
5689 	EVENT_PTR(td_retiring),
5690 	EVENT_PTR(td_bad_spec),
5691 	EVENT_PTR(td_fe_bound),
5692 	EVENT_PTR(td_be_bound),
5693 	EVENT_PTR(td_heavy_ops),
5694 	EVENT_PTR(td_br_mispredict),
5695 	EVENT_PTR(td_fetch_lat),
5696 	EVENT_PTR(td_mem_bound),
5697 	NULL,
5698 };
5699 
5700 static struct attribute *glc_tsx_events_attrs[] = {
5701 	EVENT_PTR(tx_start),
5702 	EVENT_PTR(tx_abort),
5703 	EVENT_PTR(tx_commit),
5704 	EVENT_PTR(tx_capacity_read),
5705 	EVENT_PTR(tx_capacity_write),
5706 	EVENT_PTR(tx_conflict),
5707 	EVENT_PTR(cycles_t),
5708 	EVENT_PTR(cycles_ct),
5709 	NULL,
5710 };
5711 
5712 static ssize_t freeze_on_smi_show(struct device *cdev,
5713 				  struct device_attribute *attr,
5714 				  char *buf)
5715 {
5716 	return sprintf(buf, "%lu\n", x86_pmu.attr_freeze_on_smi);
5717 }
5718 
5719 static DEFINE_MUTEX(freeze_on_smi_mutex);
5720 
5721 static ssize_t freeze_on_smi_store(struct device *cdev,
5722 				   struct device_attribute *attr,
5723 				   const char *buf, size_t count)
5724 {
5725 	unsigned long val;
5726 	ssize_t ret;
5727 
5728 	ret = kstrtoul(buf, 0, &val);
5729 	if (ret)
5730 		return ret;
5731 
5732 	if (val > 1)
5733 		return -EINVAL;
5734 
5735 	mutex_lock(&freeze_on_smi_mutex);
5736 
5737 	if (x86_pmu.attr_freeze_on_smi == val)
5738 		goto done;
5739 
5740 	x86_pmu.attr_freeze_on_smi = val;
5741 
5742 	cpus_read_lock();
5743 	on_each_cpu(flip_smm_bit, &val, 1);
5744 	cpus_read_unlock();
5745 done:
5746 	mutex_unlock(&freeze_on_smi_mutex);
5747 
5748 	return count;
5749 }
5750 
5751 static void update_tfa_sched(void *ignored)
5752 {
5753 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
5754 
5755 	/*
5756 	 * check if PMC3 is used
5757 	 * and if so force schedule out for all event types all contexts
5758 	 */
5759 	if (test_bit(3, cpuc->active_mask))
5760 		perf_pmu_resched(x86_get_pmu(smp_processor_id()));
5761 }
5762 
5763 static ssize_t show_sysctl_tfa(struct device *cdev,
5764 			      struct device_attribute *attr,
5765 			      char *buf)
5766 {
5767 	return snprintf(buf, 40, "%d\n", allow_tsx_force_abort);
5768 }
5769 
5770 static ssize_t set_sysctl_tfa(struct device *cdev,
5771 			      struct device_attribute *attr,
5772 			      const char *buf, size_t count)
5773 {
5774 	bool val;
5775 	ssize_t ret;
5776 
5777 	ret = kstrtobool(buf, &val);
5778 	if (ret)
5779 		return ret;
5780 
5781 	/* no change */
5782 	if (val == allow_tsx_force_abort)
5783 		return count;
5784 
5785 	allow_tsx_force_abort = val;
5786 
5787 	cpus_read_lock();
5788 	on_each_cpu(update_tfa_sched, NULL, 1);
5789 	cpus_read_unlock();
5790 
5791 	return count;
5792 }
5793 
5794 
5795 static DEVICE_ATTR_RW(freeze_on_smi);
5796 
5797 static ssize_t branches_show(struct device *cdev,
5798 			     struct device_attribute *attr,
5799 			     char *buf)
5800 {
5801 	return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu.lbr_nr);
5802 }
5803 
5804 static DEVICE_ATTR_RO(branches);
5805 
5806 static ssize_t branch_counter_nr_show(struct device *cdev,
5807 				      struct device_attribute *attr,
5808 				      char *buf)
5809 {
5810 	return snprintf(buf, PAGE_SIZE, "%d\n", fls(x86_pmu.lbr_counters));
5811 }
5812 
5813 static DEVICE_ATTR_RO(branch_counter_nr);
5814 
5815 static ssize_t branch_counter_width_show(struct device *cdev,
5816 					 struct device_attribute *attr,
5817 					 char *buf)
5818 {
5819 	return snprintf(buf, PAGE_SIZE, "%d\n", LBR_INFO_BR_CNTR_BITS);
5820 }
5821 
5822 static DEVICE_ATTR_RO(branch_counter_width);
5823 
5824 static struct attribute *lbr_attrs[] = {
5825 	&dev_attr_branches.attr,
5826 	&dev_attr_branch_counter_nr.attr,
5827 	&dev_attr_branch_counter_width.attr,
5828 	NULL
5829 };
5830 
5831 static umode_t
5832 lbr_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5833 {
5834 	/* branches */
5835 	if (i == 0)
5836 		return x86_pmu.lbr_nr ? attr->mode : 0;
5837 
5838 	return (x86_pmu.flags & PMU_FL_BR_CNTR) ? attr->mode : 0;
5839 }
5840 
5841 static char pmu_name_str[30];
5842 
5843 static DEVICE_STRING_ATTR_RO(pmu_name, 0444, pmu_name_str);
5844 
5845 static struct attribute *intel_pmu_caps_attrs[] = {
5846 	&dev_attr_pmu_name.attr.attr,
5847 	NULL
5848 };
5849 
5850 static DEVICE_ATTR(allow_tsx_force_abort, 0644,
5851 		   show_sysctl_tfa,
5852 		   set_sysctl_tfa);
5853 
5854 static struct attribute *intel_pmu_attrs[] = {
5855 	&dev_attr_freeze_on_smi.attr,
5856 	&dev_attr_allow_tsx_force_abort.attr,
5857 	NULL,
5858 };
5859 
5860 static umode_t
5861 default_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5862 {
5863 	if (attr == &dev_attr_allow_tsx_force_abort.attr)
5864 		return x86_pmu.flags & PMU_FL_TFA ? attr->mode : 0;
5865 
5866 	return attr->mode;
5867 }
5868 
5869 static umode_t
5870 tsx_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5871 {
5872 	return boot_cpu_has(X86_FEATURE_RTM) ? attr->mode : 0;
5873 }
5874 
5875 static umode_t
5876 pebs_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5877 {
5878 	return x86_pmu.pebs ? attr->mode : 0;
5879 }
5880 
5881 static umode_t
5882 mem_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5883 {
5884 	if (attr == &event_attr_mem_ld_aux.attr.attr)
5885 		return x86_pmu.flags & PMU_FL_MEM_LOADS_AUX ? attr->mode : 0;
5886 
5887 	return pebs_is_visible(kobj, attr, i);
5888 }
5889 
5890 static umode_t
5891 exra_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5892 {
5893 	return x86_pmu.version >= 2 ? attr->mode : 0;
5894 }
5895 
5896 static umode_t
5897 td_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5898 {
5899 	/*
5900 	 * Hide the perf metrics topdown events
5901 	 * if the feature is not enumerated.
5902 	 */
5903 	if (x86_pmu.num_topdown_events)
5904 		return x86_pmu.intel_cap.perf_metrics ? attr->mode : 0;
5905 
5906 	return attr->mode;
5907 }
5908 
5909 static struct attribute_group group_events_td  = {
5910 	.name = "events",
5911 	.is_visible = td_is_visible,
5912 };
5913 
5914 static struct attribute_group group_events_mem = {
5915 	.name       = "events",
5916 	.is_visible = mem_is_visible,
5917 };
5918 
5919 static struct attribute_group group_events_tsx = {
5920 	.name       = "events",
5921 	.is_visible = tsx_is_visible,
5922 };
5923 
5924 static struct attribute_group group_caps_gen = {
5925 	.name  = "caps",
5926 	.attrs = intel_pmu_caps_attrs,
5927 };
5928 
5929 static struct attribute_group group_caps_lbr = {
5930 	.name       = "caps",
5931 	.attrs	    = lbr_attrs,
5932 	.is_visible = lbr_is_visible,
5933 };
5934 
5935 static struct attribute_group group_format_extra = {
5936 	.name       = "format",
5937 	.is_visible = exra_is_visible,
5938 };
5939 
5940 static struct attribute_group group_format_extra_skl = {
5941 	.name       = "format",
5942 	.is_visible = exra_is_visible,
5943 };
5944 
5945 static struct attribute_group group_format_evtsel_ext = {
5946 	.name       = "format",
5947 	.attrs      = format_evtsel_ext_attrs,
5948 	.is_visible = evtsel_ext_is_visible,
5949 };
5950 
5951 static struct attribute_group group_default = {
5952 	.attrs      = intel_pmu_attrs,
5953 	.is_visible = default_is_visible,
5954 };
5955 
5956 static const struct attribute_group *attr_update[] = {
5957 	&group_events_td,
5958 	&group_events_mem,
5959 	&group_events_tsx,
5960 	&group_caps_gen,
5961 	&group_caps_lbr,
5962 	&group_format_extra,
5963 	&group_format_extra_skl,
5964 	&group_format_evtsel_ext,
5965 	&group_default,
5966 	NULL,
5967 };
5968 
5969 EVENT_ATTR_STR_HYBRID(slots,                 slots_adl,        "event=0x00,umask=0x4",                       hybrid_big);
5970 EVENT_ATTR_STR_HYBRID(topdown-retiring,      td_retiring_adl,  "event=0xc2,umask=0x0;event=0x00,umask=0x80", hybrid_big_small);
5971 EVENT_ATTR_STR_HYBRID(topdown-bad-spec,      td_bad_spec_adl,  "event=0x73,umask=0x0;event=0x00,umask=0x81", hybrid_big_small);
5972 EVENT_ATTR_STR_HYBRID(topdown-fe-bound,      td_fe_bound_adl,  "event=0x71,umask=0x0;event=0x00,umask=0x82", hybrid_big_small);
5973 EVENT_ATTR_STR_HYBRID(topdown-be-bound,      td_be_bound_adl,  "event=0x74,umask=0x0;event=0x00,umask=0x83", hybrid_big_small);
5974 EVENT_ATTR_STR_HYBRID(topdown-heavy-ops,     td_heavy_ops_adl, "event=0x00,umask=0x84",                      hybrid_big);
5975 EVENT_ATTR_STR_HYBRID(topdown-br-mispredict, td_br_mis_adl,    "event=0x00,umask=0x85",                      hybrid_big);
5976 EVENT_ATTR_STR_HYBRID(topdown-fetch-lat,     td_fetch_lat_adl, "event=0x00,umask=0x86",                      hybrid_big);
5977 EVENT_ATTR_STR_HYBRID(topdown-mem-bound,     td_mem_bound_adl, "event=0x00,umask=0x87",                      hybrid_big);
5978 
5979 static struct attribute *adl_hybrid_events_attrs[] = {
5980 	EVENT_PTR(slots_adl),
5981 	EVENT_PTR(td_retiring_adl),
5982 	EVENT_PTR(td_bad_spec_adl),
5983 	EVENT_PTR(td_fe_bound_adl),
5984 	EVENT_PTR(td_be_bound_adl),
5985 	EVENT_PTR(td_heavy_ops_adl),
5986 	EVENT_PTR(td_br_mis_adl),
5987 	EVENT_PTR(td_fetch_lat_adl),
5988 	EVENT_PTR(td_mem_bound_adl),
5989 	NULL,
5990 };
5991 
5992 EVENT_ATTR_STR_HYBRID(topdown-retiring,      td_retiring_lnl,  "event=0xc2,umask=0x02;event=0x00,umask=0x80", hybrid_big_small);
5993 EVENT_ATTR_STR_HYBRID(topdown-fe-bound,      td_fe_bound_lnl,  "event=0x9c,umask=0x01;event=0x00,umask=0x82", hybrid_big_small);
5994 EVENT_ATTR_STR_HYBRID(topdown-be-bound,      td_be_bound_lnl,  "event=0xa4,umask=0x02;event=0x00,umask=0x83", hybrid_big_small);
5995 
5996 static struct attribute *lnl_hybrid_events_attrs[] = {
5997 	EVENT_PTR(slots_adl),
5998 	EVENT_PTR(td_retiring_lnl),
5999 	EVENT_PTR(td_bad_spec_adl),
6000 	EVENT_PTR(td_fe_bound_lnl),
6001 	EVENT_PTR(td_be_bound_lnl),
6002 	EVENT_PTR(td_heavy_ops_adl),
6003 	EVENT_PTR(td_br_mis_adl),
6004 	EVENT_PTR(td_fetch_lat_adl),
6005 	EVENT_PTR(td_mem_bound_adl),
6006 	NULL
6007 };
6008 
6009 /* The event string must be in PMU IDX order. */
6010 EVENT_ATTR_STR_HYBRID(topdown-retiring,
6011 		      td_retiring_arl_h,
6012 		      "event=0xc2,umask=0x02;event=0x00,umask=0x80;event=0xc2,umask=0x0",
6013 		      hybrid_big_small_tiny);
6014 EVENT_ATTR_STR_HYBRID(topdown-bad-spec,
6015 		      td_bad_spec_arl_h,
6016 		      "event=0x73,umask=0x0;event=0x00,umask=0x81;event=0x73,umask=0x0",
6017 		      hybrid_big_small_tiny);
6018 EVENT_ATTR_STR_HYBRID(topdown-fe-bound,
6019 		      td_fe_bound_arl_h,
6020 		      "event=0x9c,umask=0x01;event=0x00,umask=0x82;event=0x71,umask=0x0",
6021 		      hybrid_big_small_tiny);
6022 EVENT_ATTR_STR_HYBRID(topdown-be-bound,
6023 		      td_be_bound_arl_h,
6024 		      "event=0xa4,umask=0x02;event=0x00,umask=0x83;event=0x74,umask=0x0",
6025 		      hybrid_big_small_tiny);
6026 
6027 static struct attribute *arl_h_hybrid_events_attrs[] = {
6028 	EVENT_PTR(slots_adl),
6029 	EVENT_PTR(td_retiring_arl_h),
6030 	EVENT_PTR(td_bad_spec_arl_h),
6031 	EVENT_PTR(td_fe_bound_arl_h),
6032 	EVENT_PTR(td_be_bound_arl_h),
6033 	EVENT_PTR(td_heavy_ops_adl),
6034 	EVENT_PTR(td_br_mis_adl),
6035 	EVENT_PTR(td_fetch_lat_adl),
6036 	EVENT_PTR(td_mem_bound_adl),
6037 	NULL,
6038 };
6039 
6040 /* Must be in IDX order */
6041 EVENT_ATTR_STR_HYBRID(mem-loads,     mem_ld_adl,     "event=0xd0,umask=0x5,ldlat=3;event=0xcd,umask=0x1,ldlat=3", hybrid_big_small);
6042 EVENT_ATTR_STR_HYBRID(mem-stores,    mem_st_adl,     "event=0xd0,umask=0x6;event=0xcd,umask=0x2",                 hybrid_big_small);
6043 EVENT_ATTR_STR_HYBRID(mem-loads-aux, mem_ld_aux_adl, "event=0x03,umask=0x82",                                     hybrid_big);
6044 
6045 static struct attribute *adl_hybrid_mem_attrs[] = {
6046 	EVENT_PTR(mem_ld_adl),
6047 	EVENT_PTR(mem_st_adl),
6048 	EVENT_PTR(mem_ld_aux_adl),
6049 	NULL,
6050 };
6051 
6052 static struct attribute *mtl_hybrid_mem_attrs[] = {
6053 	EVENT_PTR(mem_ld_adl),
6054 	EVENT_PTR(mem_st_adl),
6055 	NULL
6056 };
6057 
6058 EVENT_ATTR_STR_HYBRID(mem-loads,
6059 		      mem_ld_arl_h,
6060 		      "event=0xd0,umask=0x5,ldlat=3;event=0xcd,umask=0x1,ldlat=3;event=0xd0,umask=0x5,ldlat=3",
6061 		      hybrid_big_small_tiny);
6062 EVENT_ATTR_STR_HYBRID(mem-stores,
6063 		      mem_st_arl_h,
6064 		      "event=0xd0,umask=0x6;event=0xcd,umask=0x2;event=0xd0,umask=0x6",
6065 		      hybrid_big_small_tiny);
6066 
6067 static struct attribute *arl_h_hybrid_mem_attrs[] = {
6068 	EVENT_PTR(mem_ld_arl_h),
6069 	EVENT_PTR(mem_st_arl_h),
6070 	NULL,
6071 };
6072 
6073 EVENT_ATTR_STR_HYBRID(tx-start,          tx_start_adl,          "event=0xc9,umask=0x1",          hybrid_big);
6074 EVENT_ATTR_STR_HYBRID(tx-commit,         tx_commit_adl,         "event=0xc9,umask=0x2",          hybrid_big);
6075 EVENT_ATTR_STR_HYBRID(tx-abort,          tx_abort_adl,          "event=0xc9,umask=0x4",          hybrid_big);
6076 EVENT_ATTR_STR_HYBRID(tx-conflict,       tx_conflict_adl,       "event=0x54,umask=0x1",          hybrid_big);
6077 EVENT_ATTR_STR_HYBRID(cycles-t,          cycles_t_adl,          "event=0x3c,in_tx=1",            hybrid_big);
6078 EVENT_ATTR_STR_HYBRID(cycles-ct,         cycles_ct_adl,         "event=0x3c,in_tx=1,in_tx_cp=1", hybrid_big);
6079 EVENT_ATTR_STR_HYBRID(tx-capacity-read,  tx_capacity_read_adl,  "event=0x54,umask=0x80",         hybrid_big);
6080 EVENT_ATTR_STR_HYBRID(tx-capacity-write, tx_capacity_write_adl, "event=0x54,umask=0x2",          hybrid_big);
6081 
6082 static struct attribute *adl_hybrid_tsx_attrs[] = {
6083 	EVENT_PTR(tx_start_adl),
6084 	EVENT_PTR(tx_abort_adl),
6085 	EVENT_PTR(tx_commit_adl),
6086 	EVENT_PTR(tx_capacity_read_adl),
6087 	EVENT_PTR(tx_capacity_write_adl),
6088 	EVENT_PTR(tx_conflict_adl),
6089 	EVENT_PTR(cycles_t_adl),
6090 	EVENT_PTR(cycles_ct_adl),
6091 	NULL,
6092 };
6093 
6094 FORMAT_ATTR_HYBRID(in_tx,       hybrid_big);
6095 FORMAT_ATTR_HYBRID(in_tx_cp,    hybrid_big);
6096 FORMAT_ATTR_HYBRID(offcore_rsp, hybrid_big_small_tiny);
6097 FORMAT_ATTR_HYBRID(ldlat,       hybrid_big_small_tiny);
6098 FORMAT_ATTR_HYBRID(frontend,    hybrid_big);
6099 
6100 #define ADL_HYBRID_RTM_FORMAT_ATTR	\
6101 	FORMAT_HYBRID_PTR(in_tx),	\
6102 	FORMAT_HYBRID_PTR(in_tx_cp)
6103 
6104 #define ADL_HYBRID_FORMAT_ATTR		\
6105 	FORMAT_HYBRID_PTR(offcore_rsp),	\
6106 	FORMAT_HYBRID_PTR(ldlat),	\
6107 	FORMAT_HYBRID_PTR(frontend)
6108 
6109 static struct attribute *adl_hybrid_extra_attr_rtm[] = {
6110 	ADL_HYBRID_RTM_FORMAT_ATTR,
6111 	ADL_HYBRID_FORMAT_ATTR,
6112 	NULL
6113 };
6114 
6115 static struct attribute *adl_hybrid_extra_attr[] = {
6116 	ADL_HYBRID_FORMAT_ATTR,
6117 	NULL
6118 };
6119 
6120 FORMAT_ATTR_HYBRID(snoop_rsp,	hybrid_small_tiny);
6121 
6122 static struct attribute *mtl_hybrid_extra_attr_rtm[] = {
6123 	ADL_HYBRID_RTM_FORMAT_ATTR,
6124 	ADL_HYBRID_FORMAT_ATTR,
6125 	FORMAT_HYBRID_PTR(snoop_rsp),
6126 	NULL
6127 };
6128 
6129 static struct attribute *mtl_hybrid_extra_attr[] = {
6130 	ADL_HYBRID_FORMAT_ATTR,
6131 	FORMAT_HYBRID_PTR(snoop_rsp),
6132 	NULL
6133 };
6134 
6135 static bool is_attr_for_this_pmu(struct kobject *kobj, struct attribute *attr)
6136 {
6137 	struct device *dev = kobj_to_dev(kobj);
6138 	struct x86_hybrid_pmu *pmu =
6139 		container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
6140 	struct perf_pmu_events_hybrid_attr *pmu_attr =
6141 		container_of(attr, struct perf_pmu_events_hybrid_attr, attr.attr);
6142 
6143 	return pmu->pmu_type & pmu_attr->pmu_type;
6144 }
6145 
6146 static umode_t hybrid_events_is_visible(struct kobject *kobj,
6147 					struct attribute *attr, int i)
6148 {
6149 	return is_attr_for_this_pmu(kobj, attr) ? attr->mode : 0;
6150 }
6151 
6152 static inline int hybrid_find_supported_cpu(struct x86_hybrid_pmu *pmu)
6153 {
6154 	int cpu = cpumask_first(&pmu->supported_cpus);
6155 
6156 	return (cpu >= nr_cpu_ids) ? -1 : cpu;
6157 }
6158 
6159 static umode_t hybrid_tsx_is_visible(struct kobject *kobj,
6160 				     struct attribute *attr, int i)
6161 {
6162 	struct device *dev = kobj_to_dev(kobj);
6163 	struct x86_hybrid_pmu *pmu =
6164 		 container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
6165 	int cpu = hybrid_find_supported_cpu(pmu);
6166 
6167 	return (cpu >= 0) && is_attr_for_this_pmu(kobj, attr) && cpu_has(&cpu_data(cpu), X86_FEATURE_RTM) ? attr->mode : 0;
6168 }
6169 
6170 static umode_t hybrid_format_is_visible(struct kobject *kobj,
6171 					struct attribute *attr, int i)
6172 {
6173 	struct device *dev = kobj_to_dev(kobj);
6174 	struct x86_hybrid_pmu *pmu =
6175 		container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
6176 	struct perf_pmu_format_hybrid_attr *pmu_attr =
6177 		container_of(attr, struct perf_pmu_format_hybrid_attr, attr.attr);
6178 	int cpu = hybrid_find_supported_cpu(pmu);
6179 
6180 	return (cpu >= 0) && (pmu->pmu_type & pmu_attr->pmu_type) ? attr->mode : 0;
6181 }
6182 
6183 static umode_t hybrid_td_is_visible(struct kobject *kobj,
6184 				    struct attribute *attr, int i)
6185 {
6186 	struct device *dev = kobj_to_dev(kobj);
6187 	struct x86_hybrid_pmu *pmu =
6188 		 container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
6189 
6190 	if (!is_attr_for_this_pmu(kobj, attr))
6191 		return 0;
6192 
6193 
6194 	/* Only the big core supports perf metrics */
6195 	if (pmu->pmu_type == hybrid_big)
6196 		return pmu->intel_cap.perf_metrics ? attr->mode : 0;
6197 
6198 	return attr->mode;
6199 }
6200 
6201 static struct attribute_group hybrid_group_events_td  = {
6202 	.name		= "events",
6203 	.is_visible	= hybrid_td_is_visible,
6204 };
6205 
6206 static struct attribute_group hybrid_group_events_mem = {
6207 	.name		= "events",
6208 	.is_visible	= hybrid_events_is_visible,
6209 };
6210 
6211 static struct attribute_group hybrid_group_events_tsx = {
6212 	.name		= "events",
6213 	.is_visible	= hybrid_tsx_is_visible,
6214 };
6215 
6216 static struct attribute_group hybrid_group_format_extra = {
6217 	.name		= "format",
6218 	.is_visible	= hybrid_format_is_visible,
6219 };
6220 
6221 static ssize_t intel_hybrid_get_attr_cpus(struct device *dev,
6222 					  struct device_attribute *attr,
6223 					  char *buf)
6224 {
6225 	struct x86_hybrid_pmu *pmu =
6226 		container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
6227 
6228 	return cpumap_print_to_pagebuf(true, buf, &pmu->supported_cpus);
6229 }
6230 
6231 static DEVICE_ATTR(cpus, S_IRUGO, intel_hybrid_get_attr_cpus, NULL);
6232 static struct attribute *intel_hybrid_cpus_attrs[] = {
6233 	&dev_attr_cpus.attr,
6234 	NULL,
6235 };
6236 
6237 static struct attribute_group hybrid_group_cpus = {
6238 	.attrs		= intel_hybrid_cpus_attrs,
6239 };
6240 
6241 static const struct attribute_group *hybrid_attr_update[] = {
6242 	&hybrid_group_events_td,
6243 	&hybrid_group_events_mem,
6244 	&hybrid_group_events_tsx,
6245 	&group_caps_gen,
6246 	&group_caps_lbr,
6247 	&hybrid_group_format_extra,
6248 	&group_format_evtsel_ext,
6249 	&group_default,
6250 	&hybrid_group_cpus,
6251 	NULL,
6252 };
6253 
6254 static struct attribute *empty_attrs;
6255 
6256 static void intel_pmu_check_event_constraints(struct event_constraint *event_constraints,
6257 					      u64 cntr_mask,
6258 					      u64 fixed_cntr_mask,
6259 					      u64 intel_ctrl)
6260 {
6261 	struct event_constraint *c;
6262 
6263 	if (!event_constraints)
6264 		return;
6265 
6266 	/*
6267 	 * event on fixed counter2 (REF_CYCLES) only works on this
6268 	 * counter, so do not extend mask to generic counters
6269 	 */
6270 	for_each_event_constraint(c, event_constraints) {
6271 		/*
6272 		 * Don't extend the topdown slots and metrics
6273 		 * events to the generic counters.
6274 		 */
6275 		if (c->idxmsk64 & INTEL_PMC_MSK_TOPDOWN) {
6276 			/*
6277 			 * Disable topdown slots and metrics events,
6278 			 * if slots event is not in CPUID.
6279 			 */
6280 			if (!(INTEL_PMC_MSK_FIXED_SLOTS & intel_ctrl))
6281 				c->idxmsk64 = 0;
6282 			c->weight = hweight64(c->idxmsk64);
6283 			continue;
6284 		}
6285 
6286 		if (c->cmask == FIXED_EVENT_FLAGS) {
6287 			/* Disabled fixed counters which are not in CPUID */
6288 			c->idxmsk64 &= intel_ctrl;
6289 
6290 			/*
6291 			 * Don't extend the pseudo-encoding to the
6292 			 * generic counters
6293 			 */
6294 			if (!use_fixed_pseudo_encoding(c->code))
6295 				c->idxmsk64 |= cntr_mask;
6296 		}
6297 		c->idxmsk64 &= cntr_mask | (fixed_cntr_mask << INTEL_PMC_IDX_FIXED);
6298 		c->weight = hweight64(c->idxmsk64);
6299 	}
6300 }
6301 
6302 static void intel_pmu_check_extra_regs(struct extra_reg *extra_regs)
6303 {
6304 	struct extra_reg *er;
6305 
6306 	/*
6307 	 * Access extra MSR may cause #GP under certain circumstances.
6308 	 * E.g. KVM doesn't support offcore event
6309 	 * Check all extra_regs here.
6310 	 */
6311 	if (!extra_regs)
6312 		return;
6313 
6314 	for (er = extra_regs; er->msr; er++) {
6315 		er->extra_msr_access = check_msr(er->msr, 0x11UL);
6316 		/* Disable LBR select mapping */
6317 		if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
6318 			x86_pmu.lbr_sel_map = NULL;
6319 	}
6320 }
6321 
6322 static inline int intel_pmu_v6_addr_offset(int index, bool eventsel)
6323 {
6324 	return MSR_IA32_PMC_V6_STEP * index;
6325 }
6326 
6327 static const struct { enum hybrid_pmu_type id; char *name; } intel_hybrid_pmu_type_map[] __initconst = {
6328 	{ hybrid_small,	"cpu_atom" },
6329 	{ hybrid_big,	"cpu_core" },
6330 	{ hybrid_tiny,	"cpu_lowpower" },
6331 };
6332 
6333 static __always_inline int intel_pmu_init_hybrid(enum hybrid_pmu_type pmus)
6334 {
6335 	unsigned long pmus_mask = pmus;
6336 	struct x86_hybrid_pmu *pmu;
6337 	int idx = 0, bit;
6338 
6339 	x86_pmu.num_hybrid_pmus = hweight_long(pmus_mask);
6340 	x86_pmu.hybrid_pmu = kcalloc(x86_pmu.num_hybrid_pmus,
6341 				     sizeof(struct x86_hybrid_pmu),
6342 				     GFP_KERNEL);
6343 	if (!x86_pmu.hybrid_pmu)
6344 		return -ENOMEM;
6345 
6346 	static_branch_enable(&perf_is_hybrid);
6347 	x86_pmu.filter = intel_pmu_filter;
6348 
6349 	for_each_set_bit(bit, &pmus_mask, ARRAY_SIZE(intel_hybrid_pmu_type_map)) {
6350 		pmu = &x86_pmu.hybrid_pmu[idx++];
6351 		pmu->pmu_type = intel_hybrid_pmu_type_map[bit].id;
6352 		pmu->name = intel_hybrid_pmu_type_map[bit].name;
6353 
6354 		pmu->cntr_mask64 = x86_pmu.cntr_mask64;
6355 		pmu->fixed_cntr_mask64 = x86_pmu.fixed_cntr_mask64;
6356 		pmu->pebs_events_mask = intel_pmu_pebs_mask(pmu->cntr_mask64);
6357 		pmu->config_mask = X86_RAW_EVENT_MASK;
6358 		pmu->unconstrained = (struct event_constraint)
6359 				     __EVENT_CONSTRAINT(0, pmu->cntr_mask64,
6360 							0, x86_pmu_num_counters(&pmu->pmu), 0, 0);
6361 
6362 		pmu->intel_cap.capabilities = x86_pmu.intel_cap.capabilities;
6363 		if (pmu->pmu_type & hybrid_small_tiny) {
6364 			pmu->intel_cap.perf_metrics = 0;
6365 			pmu->intel_cap.pebs_output_pt_available = 1;
6366 			pmu->mid_ack = true;
6367 		} else if (pmu->pmu_type & hybrid_big) {
6368 			pmu->intel_cap.perf_metrics = 1;
6369 			pmu->intel_cap.pebs_output_pt_available = 0;
6370 			pmu->late_ack = true;
6371 		}
6372 	}
6373 
6374 	return 0;
6375 }
6376 
6377 static __always_inline void intel_pmu_ref_cycles_ext(void)
6378 {
6379 	if (!(x86_pmu.events_maskl & (INTEL_PMC_MSK_FIXED_REF_CYCLES >> INTEL_PMC_IDX_FIXED)))
6380 		intel_perfmon_event_map[PERF_COUNT_HW_REF_CPU_CYCLES] = 0x013c;
6381 }
6382 
6383 static __always_inline void intel_pmu_init_glc(struct pmu *pmu)
6384 {
6385 	x86_pmu.late_ack = true;
6386 	x86_pmu.limit_period = glc_limit_period;
6387 	x86_pmu.pebs_aliases = NULL;
6388 	x86_pmu.pebs_prec_dist = true;
6389 	x86_pmu.pebs_block = true;
6390 	x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6391 	x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6392 	x86_pmu.flags |= PMU_FL_INSTR_LATENCY;
6393 	x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
6394 	x86_pmu.lbr_pt_coexist = true;
6395 	x86_pmu.num_topdown_events = 8;
6396 	static_call_update(intel_pmu_update_topdown_event,
6397 			   &icl_update_topdown_event);
6398 	static_call_update(intel_pmu_set_topdown_event_period,
6399 			   &icl_set_topdown_event_period);
6400 
6401 	memcpy(hybrid_var(pmu, hw_cache_event_ids), glc_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6402 	memcpy(hybrid_var(pmu, hw_cache_extra_regs), glc_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6403 	hybrid(pmu, event_constraints) = intel_glc_event_constraints;
6404 	hybrid(pmu, pebs_constraints) = intel_glc_pebs_event_constraints;
6405 
6406 	intel_pmu_ref_cycles_ext();
6407 }
6408 
6409 static __always_inline void intel_pmu_init_grt(struct pmu *pmu)
6410 {
6411 	x86_pmu.mid_ack = true;
6412 	x86_pmu.limit_period = glc_limit_period;
6413 	x86_pmu.pebs_aliases = NULL;
6414 	x86_pmu.pebs_prec_dist = true;
6415 	x86_pmu.pebs_block = true;
6416 	x86_pmu.lbr_pt_coexist = true;
6417 	x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6418 	x86_pmu.flags |= PMU_FL_INSTR_LATENCY;
6419 
6420 	memcpy(hybrid_var(pmu, hw_cache_event_ids), glp_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6421 	memcpy(hybrid_var(pmu, hw_cache_extra_regs), tnt_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6422 	hybrid_var(pmu, hw_cache_event_ids)[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
6423 	hybrid(pmu, event_constraints) = intel_grt_event_constraints;
6424 	hybrid(pmu, pebs_constraints) = intel_grt_pebs_event_constraints;
6425 	hybrid(pmu, extra_regs) = intel_grt_extra_regs;
6426 
6427 	intel_pmu_ref_cycles_ext();
6428 }
6429 
6430 static __always_inline void intel_pmu_init_lnc(struct pmu *pmu)
6431 {
6432 	intel_pmu_init_glc(pmu);
6433 	hybrid(pmu, event_constraints) = intel_lnc_event_constraints;
6434 	hybrid(pmu, pebs_constraints) = intel_lnc_pebs_event_constraints;
6435 	hybrid(pmu, extra_regs) = intel_lnc_extra_regs;
6436 }
6437 
6438 static __always_inline void intel_pmu_init_skt(struct pmu *pmu)
6439 {
6440 	intel_pmu_init_grt(pmu);
6441 	hybrid(pmu, event_constraints) = intel_skt_event_constraints;
6442 	hybrid(pmu, extra_regs) = intel_cmt_extra_regs;
6443 }
6444 
6445 __init int intel_pmu_init(void)
6446 {
6447 	struct attribute **extra_skl_attr = &empty_attrs;
6448 	struct attribute **extra_attr = &empty_attrs;
6449 	struct attribute **td_attr    = &empty_attrs;
6450 	struct attribute **mem_attr   = &empty_attrs;
6451 	struct attribute **tsx_attr   = &empty_attrs;
6452 	union cpuid10_edx edx;
6453 	union cpuid10_eax eax;
6454 	union cpuid10_ebx ebx;
6455 	unsigned int fixed_mask;
6456 	bool pmem = false;
6457 	int version, i;
6458 	char *name;
6459 	struct x86_hybrid_pmu *pmu;
6460 
6461 	if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
6462 		switch (boot_cpu_data.x86) {
6463 		case 0x6:
6464 			return p6_pmu_init();
6465 		case 0xb:
6466 			return knc_pmu_init();
6467 		case 0xf:
6468 			return p4_pmu_init();
6469 		}
6470 		return -ENODEV;
6471 	}
6472 
6473 	/*
6474 	 * Check whether the Architectural PerfMon supports
6475 	 * Branch Misses Retired hw_event or not.
6476 	 */
6477 	cpuid(10, &eax.full, &ebx.full, &fixed_mask, &edx.full);
6478 	if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
6479 		return -ENODEV;
6480 
6481 	version = eax.split.version_id;
6482 	if (version < 2)
6483 		x86_pmu = core_pmu;
6484 	else
6485 		x86_pmu = intel_pmu;
6486 
6487 	x86_pmu.version			= version;
6488 	x86_pmu.cntr_mask64		= GENMASK_ULL(eax.split.num_counters - 1, 0);
6489 	x86_pmu.cntval_bits		= eax.split.bit_width;
6490 	x86_pmu.cntval_mask		= (1ULL << eax.split.bit_width) - 1;
6491 
6492 	x86_pmu.events_maskl		= ebx.full;
6493 	x86_pmu.events_mask_len		= eax.split.mask_length;
6494 
6495 	x86_pmu.pebs_events_mask	= intel_pmu_pebs_mask(x86_pmu.cntr_mask64);
6496 	x86_pmu.pebs_capable		= PEBS_COUNTER_MASK;
6497 
6498 	/*
6499 	 * Quirk: v2 perfmon does not report fixed-purpose events, so
6500 	 * assume at least 3 events, when not running in a hypervisor:
6501 	 */
6502 	if (version > 1 && version < 5) {
6503 		int assume = 3 * !boot_cpu_has(X86_FEATURE_HYPERVISOR);
6504 
6505 		x86_pmu.fixed_cntr_mask64 =
6506 			GENMASK_ULL(max((int)edx.split.num_counters_fixed, assume) - 1, 0);
6507 	} else if (version >= 5)
6508 		x86_pmu.fixed_cntr_mask64 = fixed_mask;
6509 
6510 	if (boot_cpu_has(X86_FEATURE_PDCM)) {
6511 		u64 capabilities;
6512 
6513 		rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
6514 		x86_pmu.intel_cap.capabilities = capabilities;
6515 	}
6516 
6517 	if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32) {
6518 		x86_pmu.lbr_reset = intel_pmu_lbr_reset_32;
6519 		x86_pmu.lbr_read = intel_pmu_lbr_read_32;
6520 	}
6521 
6522 	if (boot_cpu_has(X86_FEATURE_ARCH_LBR))
6523 		intel_pmu_arch_lbr_init();
6524 
6525 	intel_ds_init();
6526 
6527 	x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
6528 
6529 	if (version >= 5) {
6530 		x86_pmu.intel_cap.anythread_deprecated = edx.split.anythread_deprecated;
6531 		if (x86_pmu.intel_cap.anythread_deprecated)
6532 			pr_cont(" AnyThread deprecated, ");
6533 	}
6534 
6535 	/*
6536 	 * Install the hw-cache-events table:
6537 	 */
6538 	switch (boot_cpu_data.x86_vfm) {
6539 	case INTEL_CORE_YONAH:
6540 		pr_cont("Core events, ");
6541 		name = "core";
6542 		break;
6543 
6544 	case INTEL_CORE2_MEROM:
6545 		x86_add_quirk(intel_clovertown_quirk);
6546 		fallthrough;
6547 
6548 	case INTEL_CORE2_MEROM_L:
6549 	case INTEL_CORE2_PENRYN:
6550 	case INTEL_CORE2_DUNNINGTON:
6551 		memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
6552 		       sizeof(hw_cache_event_ids));
6553 
6554 		intel_pmu_lbr_init_core();
6555 
6556 		x86_pmu.event_constraints = intel_core2_event_constraints;
6557 		x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
6558 		pr_cont("Core2 events, ");
6559 		name = "core2";
6560 		break;
6561 
6562 	case INTEL_NEHALEM:
6563 	case INTEL_NEHALEM_EP:
6564 	case INTEL_NEHALEM_EX:
6565 		memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
6566 		       sizeof(hw_cache_event_ids));
6567 		memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
6568 		       sizeof(hw_cache_extra_regs));
6569 
6570 		intel_pmu_lbr_init_nhm();
6571 
6572 		x86_pmu.event_constraints = intel_nehalem_event_constraints;
6573 		x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
6574 		x86_pmu.enable_all = intel_pmu_nhm_enable_all;
6575 		x86_pmu.extra_regs = intel_nehalem_extra_regs;
6576 		x86_pmu.limit_period = nhm_limit_period;
6577 
6578 		mem_attr = nhm_mem_events_attrs;
6579 
6580 		/* UOPS_ISSUED.STALLED_CYCLES */
6581 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
6582 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
6583 		/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
6584 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
6585 			X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
6586 
6587 		intel_pmu_pebs_data_source_nhm();
6588 		x86_add_quirk(intel_nehalem_quirk);
6589 		x86_pmu.pebs_no_tlb = 1;
6590 		extra_attr = nhm_format_attr;
6591 
6592 		pr_cont("Nehalem events, ");
6593 		name = "nehalem";
6594 		break;
6595 
6596 	case INTEL_ATOM_BONNELL:
6597 	case INTEL_ATOM_BONNELL_MID:
6598 	case INTEL_ATOM_SALTWELL:
6599 	case INTEL_ATOM_SALTWELL_MID:
6600 	case INTEL_ATOM_SALTWELL_TABLET:
6601 		memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
6602 		       sizeof(hw_cache_event_ids));
6603 
6604 		intel_pmu_lbr_init_atom();
6605 
6606 		x86_pmu.event_constraints = intel_gen_event_constraints;
6607 		x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
6608 		x86_pmu.pebs_aliases = intel_pebs_aliases_core2;
6609 		pr_cont("Atom events, ");
6610 		name = "bonnell";
6611 		break;
6612 
6613 	case INTEL_ATOM_SILVERMONT:
6614 	case INTEL_ATOM_SILVERMONT_D:
6615 	case INTEL_ATOM_SILVERMONT_MID:
6616 	case INTEL_ATOM_AIRMONT:
6617 	case INTEL_ATOM_AIRMONT_MID:
6618 		memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
6619 			sizeof(hw_cache_event_ids));
6620 		memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
6621 		       sizeof(hw_cache_extra_regs));
6622 
6623 		intel_pmu_lbr_init_slm();
6624 
6625 		x86_pmu.event_constraints = intel_slm_event_constraints;
6626 		x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
6627 		x86_pmu.extra_regs = intel_slm_extra_regs;
6628 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6629 		td_attr = slm_events_attrs;
6630 		extra_attr = slm_format_attr;
6631 		pr_cont("Silvermont events, ");
6632 		name = "silvermont";
6633 		break;
6634 
6635 	case INTEL_ATOM_GOLDMONT:
6636 	case INTEL_ATOM_GOLDMONT_D:
6637 		memcpy(hw_cache_event_ids, glm_hw_cache_event_ids,
6638 		       sizeof(hw_cache_event_ids));
6639 		memcpy(hw_cache_extra_regs, glm_hw_cache_extra_regs,
6640 		       sizeof(hw_cache_extra_regs));
6641 
6642 		intel_pmu_lbr_init_skl();
6643 
6644 		x86_pmu.event_constraints = intel_slm_event_constraints;
6645 		x86_pmu.pebs_constraints = intel_glm_pebs_event_constraints;
6646 		x86_pmu.extra_regs = intel_glm_extra_regs;
6647 		/*
6648 		 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
6649 		 * for precise cycles.
6650 		 * :pp is identical to :ppp
6651 		 */
6652 		x86_pmu.pebs_aliases = NULL;
6653 		x86_pmu.pebs_prec_dist = true;
6654 		x86_pmu.lbr_pt_coexist = true;
6655 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6656 		td_attr = glm_events_attrs;
6657 		extra_attr = slm_format_attr;
6658 		pr_cont("Goldmont events, ");
6659 		name = "goldmont";
6660 		break;
6661 
6662 	case INTEL_ATOM_GOLDMONT_PLUS:
6663 		memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
6664 		       sizeof(hw_cache_event_ids));
6665 		memcpy(hw_cache_extra_regs, glp_hw_cache_extra_regs,
6666 		       sizeof(hw_cache_extra_regs));
6667 
6668 		intel_pmu_lbr_init_skl();
6669 
6670 		x86_pmu.event_constraints = intel_slm_event_constraints;
6671 		x86_pmu.extra_regs = intel_glm_extra_regs;
6672 		/*
6673 		 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
6674 		 * for precise cycles.
6675 		 */
6676 		x86_pmu.pebs_aliases = NULL;
6677 		x86_pmu.pebs_prec_dist = true;
6678 		x86_pmu.lbr_pt_coexist = true;
6679 		x86_pmu.pebs_capable = ~0ULL;
6680 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6681 		x86_pmu.flags |= PMU_FL_PEBS_ALL;
6682 		x86_pmu.get_event_constraints = glp_get_event_constraints;
6683 		td_attr = glm_events_attrs;
6684 		/* Goldmont Plus has 4-wide pipeline */
6685 		event_attr_td_total_slots_scale_glm.event_str = "4";
6686 		extra_attr = slm_format_attr;
6687 		pr_cont("Goldmont plus events, ");
6688 		name = "goldmont_plus";
6689 		break;
6690 
6691 	case INTEL_ATOM_TREMONT_D:
6692 	case INTEL_ATOM_TREMONT:
6693 	case INTEL_ATOM_TREMONT_L:
6694 		x86_pmu.late_ack = true;
6695 		memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
6696 		       sizeof(hw_cache_event_ids));
6697 		memcpy(hw_cache_extra_regs, tnt_hw_cache_extra_regs,
6698 		       sizeof(hw_cache_extra_regs));
6699 		hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
6700 
6701 		intel_pmu_lbr_init_skl();
6702 
6703 		x86_pmu.event_constraints = intel_slm_event_constraints;
6704 		x86_pmu.extra_regs = intel_tnt_extra_regs;
6705 		/*
6706 		 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
6707 		 * for precise cycles.
6708 		 */
6709 		x86_pmu.pebs_aliases = NULL;
6710 		x86_pmu.pebs_prec_dist = true;
6711 		x86_pmu.lbr_pt_coexist = true;
6712 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6713 		x86_pmu.get_event_constraints = tnt_get_event_constraints;
6714 		td_attr = tnt_events_attrs;
6715 		extra_attr = slm_format_attr;
6716 		pr_cont("Tremont events, ");
6717 		name = "Tremont";
6718 		break;
6719 
6720 	case INTEL_ATOM_GRACEMONT:
6721 		intel_pmu_init_grt(NULL);
6722 		intel_pmu_pebs_data_source_grt();
6723 		x86_pmu.pebs_latency_data = grt_latency_data;
6724 		x86_pmu.get_event_constraints = tnt_get_event_constraints;
6725 		td_attr = tnt_events_attrs;
6726 		mem_attr = grt_mem_attrs;
6727 		extra_attr = nhm_format_attr;
6728 		pr_cont("Gracemont events, ");
6729 		name = "gracemont";
6730 		break;
6731 
6732 	case INTEL_ATOM_CRESTMONT:
6733 	case INTEL_ATOM_CRESTMONT_X:
6734 		intel_pmu_init_grt(NULL);
6735 		x86_pmu.extra_regs = intel_cmt_extra_regs;
6736 		intel_pmu_pebs_data_source_cmt();
6737 		x86_pmu.pebs_latency_data = cmt_latency_data;
6738 		x86_pmu.get_event_constraints = cmt_get_event_constraints;
6739 		td_attr = cmt_events_attrs;
6740 		mem_attr = grt_mem_attrs;
6741 		extra_attr = cmt_format_attr;
6742 		pr_cont("Crestmont events, ");
6743 		name = "crestmont";
6744 		break;
6745 
6746 	case INTEL_WESTMERE:
6747 	case INTEL_WESTMERE_EP:
6748 	case INTEL_WESTMERE_EX:
6749 		memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
6750 		       sizeof(hw_cache_event_ids));
6751 		memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
6752 		       sizeof(hw_cache_extra_regs));
6753 
6754 		intel_pmu_lbr_init_nhm();
6755 
6756 		x86_pmu.event_constraints = intel_westmere_event_constraints;
6757 		x86_pmu.enable_all = intel_pmu_nhm_enable_all;
6758 		x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
6759 		x86_pmu.extra_regs = intel_westmere_extra_regs;
6760 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6761 
6762 		mem_attr = nhm_mem_events_attrs;
6763 
6764 		/* UOPS_ISSUED.STALLED_CYCLES */
6765 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
6766 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
6767 		/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
6768 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
6769 			X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
6770 
6771 		intel_pmu_pebs_data_source_nhm();
6772 		extra_attr = nhm_format_attr;
6773 		pr_cont("Westmere events, ");
6774 		name = "westmere";
6775 		break;
6776 
6777 	case INTEL_SANDYBRIDGE:
6778 	case INTEL_SANDYBRIDGE_X:
6779 		x86_add_quirk(intel_sandybridge_quirk);
6780 		x86_add_quirk(intel_ht_bug);
6781 		memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
6782 		       sizeof(hw_cache_event_ids));
6783 		memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
6784 		       sizeof(hw_cache_extra_regs));
6785 
6786 		intel_pmu_lbr_init_snb();
6787 
6788 		x86_pmu.event_constraints = intel_snb_event_constraints;
6789 		x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
6790 		x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
6791 		if (boot_cpu_data.x86_vfm == INTEL_SANDYBRIDGE_X)
6792 			x86_pmu.extra_regs = intel_snbep_extra_regs;
6793 		else
6794 			x86_pmu.extra_regs = intel_snb_extra_regs;
6795 
6796 
6797 		/* all extra regs are per-cpu when HT is on */
6798 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6799 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6800 
6801 		td_attr  = snb_events_attrs;
6802 		mem_attr = snb_mem_events_attrs;
6803 
6804 		/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
6805 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
6806 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
6807 		/* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
6808 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
6809 			X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
6810 
6811 		extra_attr = nhm_format_attr;
6812 
6813 		pr_cont("SandyBridge events, ");
6814 		name = "sandybridge";
6815 		break;
6816 
6817 	case INTEL_IVYBRIDGE:
6818 	case INTEL_IVYBRIDGE_X:
6819 		x86_add_quirk(intel_ht_bug);
6820 		memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
6821 		       sizeof(hw_cache_event_ids));
6822 		/* dTLB-load-misses on IVB is different than SNB */
6823 		hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
6824 
6825 		memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
6826 		       sizeof(hw_cache_extra_regs));
6827 
6828 		intel_pmu_lbr_init_snb();
6829 
6830 		x86_pmu.event_constraints = intel_ivb_event_constraints;
6831 		x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
6832 		x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
6833 		x86_pmu.pebs_prec_dist = true;
6834 		if (boot_cpu_data.x86_vfm == INTEL_IVYBRIDGE_X)
6835 			x86_pmu.extra_regs = intel_snbep_extra_regs;
6836 		else
6837 			x86_pmu.extra_regs = intel_snb_extra_regs;
6838 		/* all extra regs are per-cpu when HT is on */
6839 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6840 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6841 
6842 		td_attr  = snb_events_attrs;
6843 		mem_attr = snb_mem_events_attrs;
6844 
6845 		/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
6846 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
6847 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
6848 
6849 		extra_attr = nhm_format_attr;
6850 
6851 		pr_cont("IvyBridge events, ");
6852 		name = "ivybridge";
6853 		break;
6854 
6855 
6856 	case INTEL_HASWELL:
6857 	case INTEL_HASWELL_X:
6858 	case INTEL_HASWELL_L:
6859 	case INTEL_HASWELL_G:
6860 		x86_add_quirk(intel_ht_bug);
6861 		x86_add_quirk(intel_pebs_isolation_quirk);
6862 		x86_pmu.late_ack = true;
6863 		memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6864 		memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6865 
6866 		intel_pmu_lbr_init_hsw();
6867 
6868 		x86_pmu.event_constraints = intel_hsw_event_constraints;
6869 		x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
6870 		x86_pmu.extra_regs = intel_snbep_extra_regs;
6871 		x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
6872 		x86_pmu.pebs_prec_dist = true;
6873 		/* all extra regs are per-cpu when HT is on */
6874 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6875 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6876 
6877 		x86_pmu.hw_config = hsw_hw_config;
6878 		x86_pmu.get_event_constraints = hsw_get_event_constraints;
6879 		x86_pmu.limit_period = hsw_limit_period;
6880 		x86_pmu.lbr_double_abort = true;
6881 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6882 			hsw_format_attr : nhm_format_attr;
6883 		td_attr  = hsw_events_attrs;
6884 		mem_attr = hsw_mem_events_attrs;
6885 		tsx_attr = hsw_tsx_events_attrs;
6886 		pr_cont("Haswell events, ");
6887 		name = "haswell";
6888 		break;
6889 
6890 	case INTEL_BROADWELL:
6891 	case INTEL_BROADWELL_D:
6892 	case INTEL_BROADWELL_G:
6893 	case INTEL_BROADWELL_X:
6894 		x86_add_quirk(intel_pebs_isolation_quirk);
6895 		x86_pmu.late_ack = true;
6896 		memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6897 		memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6898 
6899 		/* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
6900 		hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
6901 									 BDW_L3_MISS|HSW_SNOOP_DRAM;
6902 		hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
6903 									  HSW_SNOOP_DRAM;
6904 		hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
6905 									     BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
6906 		hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
6907 									      BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
6908 
6909 		intel_pmu_lbr_init_hsw();
6910 
6911 		x86_pmu.event_constraints = intel_bdw_event_constraints;
6912 		x86_pmu.pebs_constraints = intel_bdw_pebs_event_constraints;
6913 		x86_pmu.extra_regs = intel_snbep_extra_regs;
6914 		x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
6915 		x86_pmu.pebs_prec_dist = true;
6916 		/* all extra regs are per-cpu when HT is on */
6917 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6918 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6919 
6920 		x86_pmu.hw_config = hsw_hw_config;
6921 		x86_pmu.get_event_constraints = hsw_get_event_constraints;
6922 		x86_pmu.limit_period = bdw_limit_period;
6923 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6924 			hsw_format_attr : nhm_format_attr;
6925 		td_attr  = hsw_events_attrs;
6926 		mem_attr = hsw_mem_events_attrs;
6927 		tsx_attr = hsw_tsx_events_attrs;
6928 		pr_cont("Broadwell events, ");
6929 		name = "broadwell";
6930 		break;
6931 
6932 	case INTEL_XEON_PHI_KNL:
6933 	case INTEL_XEON_PHI_KNM:
6934 		memcpy(hw_cache_event_ids,
6935 		       slm_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6936 		memcpy(hw_cache_extra_regs,
6937 		       knl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6938 		intel_pmu_lbr_init_knl();
6939 
6940 		x86_pmu.event_constraints = intel_slm_event_constraints;
6941 		x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
6942 		x86_pmu.extra_regs = intel_knl_extra_regs;
6943 
6944 		/* all extra regs are per-cpu when HT is on */
6945 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6946 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6947 		extra_attr = slm_format_attr;
6948 		pr_cont("Knights Landing/Mill events, ");
6949 		name = "knights-landing";
6950 		break;
6951 
6952 	case INTEL_SKYLAKE_X:
6953 		pmem = true;
6954 		fallthrough;
6955 	case INTEL_SKYLAKE_L:
6956 	case INTEL_SKYLAKE:
6957 	case INTEL_KABYLAKE_L:
6958 	case INTEL_KABYLAKE:
6959 	case INTEL_COMETLAKE_L:
6960 	case INTEL_COMETLAKE:
6961 		x86_add_quirk(intel_pebs_isolation_quirk);
6962 		x86_pmu.late_ack = true;
6963 		memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6964 		memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6965 		intel_pmu_lbr_init_skl();
6966 
6967 		/* INT_MISC.RECOVERY_CYCLES has umask 1 in Skylake */
6968 		event_attr_td_recovery_bubbles.event_str_noht =
6969 			"event=0xd,umask=0x1,cmask=1";
6970 		event_attr_td_recovery_bubbles.event_str_ht =
6971 			"event=0xd,umask=0x1,cmask=1,any=1";
6972 
6973 		x86_pmu.event_constraints = intel_skl_event_constraints;
6974 		x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints;
6975 		x86_pmu.extra_regs = intel_skl_extra_regs;
6976 		x86_pmu.pebs_aliases = intel_pebs_aliases_skl;
6977 		x86_pmu.pebs_prec_dist = true;
6978 		/* all extra regs are per-cpu when HT is on */
6979 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6980 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6981 
6982 		x86_pmu.hw_config = hsw_hw_config;
6983 		x86_pmu.get_event_constraints = hsw_get_event_constraints;
6984 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6985 			hsw_format_attr : nhm_format_attr;
6986 		extra_skl_attr = skl_format_attr;
6987 		td_attr  = hsw_events_attrs;
6988 		mem_attr = hsw_mem_events_attrs;
6989 		tsx_attr = hsw_tsx_events_attrs;
6990 		intel_pmu_pebs_data_source_skl(pmem);
6991 
6992 		/*
6993 		 * Processors with CPUID.RTM_ALWAYS_ABORT have TSX deprecated by default.
6994 		 * TSX force abort hooks are not required on these systems. Only deploy
6995 		 * workaround when microcode has not enabled X86_FEATURE_RTM_ALWAYS_ABORT.
6996 		 */
6997 		if (boot_cpu_has(X86_FEATURE_TSX_FORCE_ABORT) &&
6998 		   !boot_cpu_has(X86_FEATURE_RTM_ALWAYS_ABORT)) {
6999 			x86_pmu.flags |= PMU_FL_TFA;
7000 			x86_pmu.get_event_constraints = tfa_get_event_constraints;
7001 			x86_pmu.enable_all = intel_tfa_pmu_enable_all;
7002 			x86_pmu.commit_scheduling = intel_tfa_commit_scheduling;
7003 		}
7004 
7005 		pr_cont("Skylake events, ");
7006 		name = "skylake";
7007 		break;
7008 
7009 	case INTEL_ICELAKE_X:
7010 	case INTEL_ICELAKE_D:
7011 		x86_pmu.pebs_ept = 1;
7012 		pmem = true;
7013 		fallthrough;
7014 	case INTEL_ICELAKE_L:
7015 	case INTEL_ICELAKE:
7016 	case INTEL_TIGERLAKE_L:
7017 	case INTEL_TIGERLAKE:
7018 	case INTEL_ROCKETLAKE:
7019 		x86_pmu.late_ack = true;
7020 		memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
7021 		memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
7022 		hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
7023 		intel_pmu_lbr_init_skl();
7024 
7025 		x86_pmu.event_constraints = intel_icl_event_constraints;
7026 		x86_pmu.pebs_constraints = intel_icl_pebs_event_constraints;
7027 		x86_pmu.extra_regs = intel_icl_extra_regs;
7028 		x86_pmu.pebs_aliases = NULL;
7029 		x86_pmu.pebs_prec_dist = true;
7030 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
7031 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
7032 
7033 		x86_pmu.hw_config = hsw_hw_config;
7034 		x86_pmu.get_event_constraints = icl_get_event_constraints;
7035 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
7036 			hsw_format_attr : nhm_format_attr;
7037 		extra_skl_attr = skl_format_attr;
7038 		mem_attr = icl_events_attrs;
7039 		td_attr = icl_td_events_attrs;
7040 		tsx_attr = icl_tsx_events_attrs;
7041 		x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
7042 		x86_pmu.lbr_pt_coexist = true;
7043 		intel_pmu_pebs_data_source_skl(pmem);
7044 		x86_pmu.num_topdown_events = 4;
7045 		static_call_update(intel_pmu_update_topdown_event,
7046 				   &icl_update_topdown_event);
7047 		static_call_update(intel_pmu_set_topdown_event_period,
7048 				   &icl_set_topdown_event_period);
7049 		pr_cont("Icelake events, ");
7050 		name = "icelake";
7051 		break;
7052 
7053 	case INTEL_SAPPHIRERAPIDS_X:
7054 	case INTEL_EMERALDRAPIDS_X:
7055 		x86_pmu.flags |= PMU_FL_MEM_LOADS_AUX;
7056 		x86_pmu.extra_regs = intel_glc_extra_regs;
7057 		pr_cont("Sapphire Rapids events, ");
7058 		name = "sapphire_rapids";
7059 		goto glc_common;
7060 
7061 	case INTEL_GRANITERAPIDS_X:
7062 	case INTEL_GRANITERAPIDS_D:
7063 		x86_pmu.extra_regs = intel_rwc_extra_regs;
7064 		pr_cont("Granite Rapids events, ");
7065 		name = "granite_rapids";
7066 
7067 	glc_common:
7068 		intel_pmu_init_glc(NULL);
7069 		x86_pmu.pebs_ept = 1;
7070 		x86_pmu.hw_config = hsw_hw_config;
7071 		x86_pmu.get_event_constraints = glc_get_event_constraints;
7072 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
7073 			hsw_format_attr : nhm_format_attr;
7074 		extra_skl_attr = skl_format_attr;
7075 		mem_attr = glc_events_attrs;
7076 		td_attr = glc_td_events_attrs;
7077 		tsx_attr = glc_tsx_events_attrs;
7078 		intel_pmu_pebs_data_source_skl(true);
7079 		break;
7080 
7081 	case INTEL_ALDERLAKE:
7082 	case INTEL_ALDERLAKE_L:
7083 	case INTEL_RAPTORLAKE:
7084 	case INTEL_RAPTORLAKE_P:
7085 	case INTEL_RAPTORLAKE_S:
7086 		/*
7087 		 * Alder Lake has 2 types of CPU, core and atom.
7088 		 *
7089 		 * Initialize the common PerfMon capabilities here.
7090 		 */
7091 		intel_pmu_init_hybrid(hybrid_big_small);
7092 
7093 		x86_pmu.pebs_latency_data = grt_latency_data;
7094 		x86_pmu.get_event_constraints = adl_get_event_constraints;
7095 		x86_pmu.hw_config = adl_hw_config;
7096 		x86_pmu.get_hybrid_cpu_type = adl_get_hybrid_cpu_type;
7097 
7098 		td_attr = adl_hybrid_events_attrs;
7099 		mem_attr = adl_hybrid_mem_attrs;
7100 		tsx_attr = adl_hybrid_tsx_attrs;
7101 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
7102 			adl_hybrid_extra_attr_rtm : adl_hybrid_extra_attr;
7103 
7104 		/* Initialize big core specific PerfMon capabilities.*/
7105 		pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX];
7106 		intel_pmu_init_glc(&pmu->pmu);
7107 		if (cpu_feature_enabled(X86_FEATURE_HYBRID_CPU)) {
7108 			pmu->cntr_mask64 <<= 2;
7109 			pmu->cntr_mask64 |= 0x3;
7110 			pmu->fixed_cntr_mask64 <<= 1;
7111 			pmu->fixed_cntr_mask64 |= 0x1;
7112 		} else {
7113 			pmu->cntr_mask64 = x86_pmu.cntr_mask64;
7114 			pmu->fixed_cntr_mask64 = x86_pmu.fixed_cntr_mask64;
7115 		}
7116 
7117 		/*
7118 		 * Quirk: For some Alder Lake machine, when all E-cores are disabled in
7119 		 * a BIOS, the leaf 0xA will enumerate all counters of P-cores. However,
7120 		 * the X86_FEATURE_HYBRID_CPU is still set. The above codes will
7121 		 * mistakenly add extra counters for P-cores. Correct the number of
7122 		 * counters here.
7123 		 */
7124 		if ((x86_pmu_num_counters(&pmu->pmu) > 8) || (x86_pmu_num_counters_fixed(&pmu->pmu) > 4)) {
7125 			pmu->cntr_mask64 = x86_pmu.cntr_mask64;
7126 			pmu->fixed_cntr_mask64 = x86_pmu.fixed_cntr_mask64;
7127 		}
7128 
7129 		pmu->pebs_events_mask = intel_pmu_pebs_mask(pmu->cntr_mask64);
7130 		pmu->unconstrained = (struct event_constraint)
7131 				     __EVENT_CONSTRAINT(0, pmu->cntr_mask64,
7132 				     0, x86_pmu_num_counters(&pmu->pmu), 0, 0);
7133 
7134 		pmu->extra_regs = intel_glc_extra_regs;
7135 
7136 		/* Initialize Atom core specific PerfMon capabilities.*/
7137 		pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX];
7138 		intel_pmu_init_grt(&pmu->pmu);
7139 
7140 		x86_pmu.flags |= PMU_FL_MEM_LOADS_AUX;
7141 		intel_pmu_pebs_data_source_adl();
7142 		pr_cont("Alderlake Hybrid events, ");
7143 		name = "alderlake_hybrid";
7144 		break;
7145 
7146 	case INTEL_METEORLAKE:
7147 	case INTEL_METEORLAKE_L:
7148 	case INTEL_ARROWLAKE_U:
7149 		intel_pmu_init_hybrid(hybrid_big_small);
7150 
7151 		x86_pmu.pebs_latency_data = cmt_latency_data;
7152 		x86_pmu.get_event_constraints = mtl_get_event_constraints;
7153 		x86_pmu.hw_config = adl_hw_config;
7154 
7155 		td_attr = adl_hybrid_events_attrs;
7156 		mem_attr = mtl_hybrid_mem_attrs;
7157 		tsx_attr = adl_hybrid_tsx_attrs;
7158 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
7159 			mtl_hybrid_extra_attr_rtm : mtl_hybrid_extra_attr;
7160 
7161 		/* Initialize big core specific PerfMon capabilities.*/
7162 		pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX];
7163 		intel_pmu_init_glc(&pmu->pmu);
7164 		pmu->extra_regs = intel_rwc_extra_regs;
7165 
7166 		/* Initialize Atom core specific PerfMon capabilities.*/
7167 		pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX];
7168 		intel_pmu_init_grt(&pmu->pmu);
7169 		pmu->extra_regs = intel_cmt_extra_regs;
7170 
7171 		intel_pmu_pebs_data_source_mtl();
7172 		pr_cont("Meteorlake Hybrid events, ");
7173 		name = "meteorlake_hybrid";
7174 		break;
7175 
7176 	case INTEL_LUNARLAKE_M:
7177 	case INTEL_ARROWLAKE:
7178 		intel_pmu_init_hybrid(hybrid_big_small);
7179 
7180 		x86_pmu.pebs_latency_data = lnl_latency_data;
7181 		x86_pmu.get_event_constraints = mtl_get_event_constraints;
7182 		x86_pmu.hw_config = adl_hw_config;
7183 
7184 		td_attr = lnl_hybrid_events_attrs;
7185 		mem_attr = mtl_hybrid_mem_attrs;
7186 		tsx_attr = adl_hybrid_tsx_attrs;
7187 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
7188 			mtl_hybrid_extra_attr_rtm : mtl_hybrid_extra_attr;
7189 
7190 		/* Initialize big core specific PerfMon capabilities.*/
7191 		pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX];
7192 		intel_pmu_init_lnc(&pmu->pmu);
7193 
7194 		/* Initialize Atom core specific PerfMon capabilities.*/
7195 		pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX];
7196 		intel_pmu_init_skt(&pmu->pmu);
7197 
7198 		intel_pmu_pebs_data_source_lnl();
7199 		pr_cont("Lunarlake Hybrid events, ");
7200 		name = "lunarlake_hybrid";
7201 		break;
7202 
7203 	case INTEL_ARROWLAKE_H:
7204 		intel_pmu_init_hybrid(hybrid_big_small_tiny);
7205 
7206 		x86_pmu.pebs_latency_data = arl_h_latency_data;
7207 		x86_pmu.get_event_constraints = arl_h_get_event_constraints;
7208 		x86_pmu.hw_config = arl_h_hw_config;
7209 
7210 		td_attr = arl_h_hybrid_events_attrs;
7211 		mem_attr = arl_h_hybrid_mem_attrs;
7212 		tsx_attr = adl_hybrid_tsx_attrs;
7213 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
7214 			mtl_hybrid_extra_attr_rtm : mtl_hybrid_extra_attr;
7215 
7216 		/* Initialize big core specific PerfMon capabilities. */
7217 		pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX];
7218 		intel_pmu_init_lnc(&pmu->pmu);
7219 
7220 		/* Initialize Atom core specific PerfMon capabilities. */
7221 		pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX];
7222 		intel_pmu_init_skt(&pmu->pmu);
7223 
7224 		/* Initialize Lower Power Atom specific PerfMon capabilities. */
7225 		pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_TINY_IDX];
7226 		intel_pmu_init_grt(&pmu->pmu);
7227 		pmu->extra_regs = intel_cmt_extra_regs;
7228 
7229 		intel_pmu_pebs_data_source_arl_h();
7230 		pr_cont("ArrowLake-H Hybrid events, ");
7231 		name = "arrowlake_h_hybrid";
7232 		break;
7233 
7234 	default:
7235 		switch (x86_pmu.version) {
7236 		case 1:
7237 			x86_pmu.event_constraints = intel_v1_event_constraints;
7238 			pr_cont("generic architected perfmon v1, ");
7239 			name = "generic_arch_v1";
7240 			break;
7241 		case 2:
7242 		case 3:
7243 		case 4:
7244 			/*
7245 			 * default constraints for v2 and up
7246 			 */
7247 			x86_pmu.event_constraints = intel_gen_event_constraints;
7248 			pr_cont("generic architected perfmon, ");
7249 			name = "generic_arch_v2+";
7250 			break;
7251 		default:
7252 			/*
7253 			 * The default constraints for v5 and up can support up to
7254 			 * 16 fixed counters. For the fixed counters 4 and later,
7255 			 * the pseudo-encoding is applied.
7256 			 * The constraints may be cut according to the CPUID enumeration
7257 			 * by inserting the EVENT_CONSTRAINT_END.
7258 			 */
7259 			if (fls64(x86_pmu.fixed_cntr_mask64) > INTEL_PMC_MAX_FIXED)
7260 				x86_pmu.fixed_cntr_mask64 &= GENMASK_ULL(INTEL_PMC_MAX_FIXED - 1, 0);
7261 			intel_v5_gen_event_constraints[fls64(x86_pmu.fixed_cntr_mask64)].weight = -1;
7262 			x86_pmu.event_constraints = intel_v5_gen_event_constraints;
7263 			pr_cont("generic architected perfmon, ");
7264 			name = "generic_arch_v5+";
7265 			break;
7266 		}
7267 	}
7268 
7269 	snprintf(pmu_name_str, sizeof(pmu_name_str), "%s", name);
7270 
7271 	if (!is_hybrid()) {
7272 		group_events_td.attrs  = td_attr;
7273 		group_events_mem.attrs = mem_attr;
7274 		group_events_tsx.attrs = tsx_attr;
7275 		group_format_extra.attrs = extra_attr;
7276 		group_format_extra_skl.attrs = extra_skl_attr;
7277 
7278 		x86_pmu.attr_update = attr_update;
7279 	} else {
7280 		hybrid_group_events_td.attrs  = td_attr;
7281 		hybrid_group_events_mem.attrs = mem_attr;
7282 		hybrid_group_events_tsx.attrs = tsx_attr;
7283 		hybrid_group_format_extra.attrs = extra_attr;
7284 
7285 		x86_pmu.attr_update = hybrid_attr_update;
7286 	}
7287 
7288 	intel_pmu_check_counters_mask(&x86_pmu.cntr_mask64,
7289 				      &x86_pmu.fixed_cntr_mask64,
7290 				      &x86_pmu.intel_ctrl);
7291 
7292 	/* AnyThread may be deprecated on arch perfmon v5 or later */
7293 	if (x86_pmu.intel_cap.anythread_deprecated)
7294 		x86_pmu.format_attrs = intel_arch_formats_attr;
7295 
7296 	intel_pmu_check_event_constraints(x86_pmu.event_constraints,
7297 					  x86_pmu.cntr_mask64,
7298 					  x86_pmu.fixed_cntr_mask64,
7299 					  x86_pmu.intel_ctrl);
7300 	/*
7301 	 * Access LBR MSR may cause #GP under certain circumstances.
7302 	 * Check all LBR MSR here.
7303 	 * Disable LBR access if any LBR MSRs can not be accessed.
7304 	 */
7305 	if (x86_pmu.lbr_tos && !check_msr(x86_pmu.lbr_tos, 0x3UL))
7306 		x86_pmu.lbr_nr = 0;
7307 	for (i = 0; i < x86_pmu.lbr_nr; i++) {
7308 		if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
7309 		      check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
7310 			x86_pmu.lbr_nr = 0;
7311 	}
7312 
7313 	if (x86_pmu.lbr_nr) {
7314 		intel_pmu_lbr_init();
7315 
7316 		pr_cont("%d-deep LBR, ", x86_pmu.lbr_nr);
7317 
7318 		/* only support branch_stack snapshot for perfmon >= v2 */
7319 		if (x86_pmu.disable_all == intel_pmu_disable_all) {
7320 			if (boot_cpu_has(X86_FEATURE_ARCH_LBR)) {
7321 				static_call_update(perf_snapshot_branch_stack,
7322 						   intel_pmu_snapshot_arch_branch_stack);
7323 			} else {
7324 				static_call_update(perf_snapshot_branch_stack,
7325 						   intel_pmu_snapshot_branch_stack);
7326 			}
7327 		}
7328 	}
7329 
7330 	intel_pmu_check_extra_regs(x86_pmu.extra_regs);
7331 
7332 	/* Support full width counters using alternative MSR range */
7333 	if (x86_pmu.intel_cap.full_width_write) {
7334 		x86_pmu.max_period = x86_pmu.cntval_mask >> 1;
7335 		x86_pmu.perfctr = MSR_IA32_PMC0;
7336 		pr_cont("full-width counters, ");
7337 	}
7338 
7339 	/* Support V6+ MSR Aliasing */
7340 	if (x86_pmu.version >= 6) {
7341 		x86_pmu.perfctr = MSR_IA32_PMC_V6_GP0_CTR;
7342 		x86_pmu.eventsel = MSR_IA32_PMC_V6_GP0_CFG_A;
7343 		x86_pmu.fixedctr = MSR_IA32_PMC_V6_FX0_CTR;
7344 		x86_pmu.addr_offset = intel_pmu_v6_addr_offset;
7345 	}
7346 
7347 	if (!is_hybrid() && x86_pmu.intel_cap.perf_metrics)
7348 		x86_pmu.intel_ctrl |= 1ULL << GLOBAL_CTRL_EN_PERF_METRICS;
7349 
7350 	if (x86_pmu.intel_cap.pebs_timing_info)
7351 		x86_pmu.flags |= PMU_FL_RETIRE_LATENCY;
7352 
7353 	intel_aux_output_init();
7354 
7355 	return 0;
7356 }
7357 
7358 /*
7359  * HT bug: phase 2 init
7360  * Called once we have valid topology information to check
7361  * whether or not HT is enabled
7362  * If HT is off, then we disable the workaround
7363  */
7364 static __init int fixup_ht_bug(void)
7365 {
7366 	int c;
7367 	/*
7368 	 * problem not present on this CPU model, nothing to do
7369 	 */
7370 	if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED))
7371 		return 0;
7372 
7373 	if (topology_max_smt_threads() > 1) {
7374 		pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
7375 		return 0;
7376 	}
7377 
7378 	cpus_read_lock();
7379 
7380 	hardlockup_detector_perf_stop();
7381 
7382 	x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED);
7383 
7384 	x86_pmu.start_scheduling = NULL;
7385 	x86_pmu.commit_scheduling = NULL;
7386 	x86_pmu.stop_scheduling = NULL;
7387 
7388 	hardlockup_detector_perf_restart();
7389 
7390 	for_each_online_cpu(c)
7391 		free_excl_cntrs(&per_cpu(cpu_hw_events, c));
7392 
7393 	cpus_read_unlock();
7394 	pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
7395 	return 0;
7396 }
7397 subsys_initcall(fixup_ht_bug)
7398