xref: /linux/arch/x86/events/intel/core.c (revision 5f346a6e5970229c19c059e8fa62c3dbdde56e7b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Per core/cpu state
4  *
5  * Used to coordinate shared registers between HT threads or
6  * among events on a single PMU.
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/stddef.h>
12 #include <linux/types.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/nmi.h>
17 #include <linux/kvm_host.h>
18 
19 #include <asm/cpufeature.h>
20 #include <asm/hardirq.h>
21 #include <asm/intel-family.h>
22 #include <asm/intel_pt.h>
23 #include <asm/apic.h>
24 #include <asm/cpu_device_id.h>
25 
26 #include "../perf_event.h"
27 
28 /*
29  * Intel PerfMon, used on Core and later.
30  */
31 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
32 {
33 	[PERF_COUNT_HW_CPU_CYCLES]		= 0x003c,
34 	[PERF_COUNT_HW_INSTRUCTIONS]		= 0x00c0,
35 	[PERF_COUNT_HW_CACHE_REFERENCES]	= 0x4f2e,
36 	[PERF_COUNT_HW_CACHE_MISSES]		= 0x412e,
37 	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS]	= 0x00c4,
38 	[PERF_COUNT_HW_BRANCH_MISSES]		= 0x00c5,
39 	[PERF_COUNT_HW_BUS_CYCLES]		= 0x013c,
40 	[PERF_COUNT_HW_REF_CPU_CYCLES]		= 0x0300, /* pseudo-encoding */
41 };
42 
43 static struct event_constraint intel_core_event_constraints[] __read_mostly =
44 {
45 	INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
46 	INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
47 	INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
48 	INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
49 	INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
50 	INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
51 	EVENT_CONSTRAINT_END
52 };
53 
54 static struct event_constraint intel_core2_event_constraints[] __read_mostly =
55 {
56 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
57 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
58 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
59 	INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
60 	INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
61 	INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
62 	INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
63 	INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
64 	INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
65 	INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
66 	INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
67 	INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
68 	INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
69 	EVENT_CONSTRAINT_END
70 };
71 
72 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
73 {
74 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
75 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
76 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
77 	INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
78 	INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
79 	INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
80 	INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
81 	INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
82 	INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
83 	INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
84 	INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
85 	EVENT_CONSTRAINT_END
86 };
87 
88 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
89 {
90 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
91 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
92 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
93 	EVENT_EXTRA_END
94 };
95 
96 static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
97 {
98 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
99 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
100 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
101 	INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
102 	INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
103 	INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
104 	INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
105 	EVENT_CONSTRAINT_END
106 };
107 
108 static struct event_constraint intel_snb_event_constraints[] __read_mostly =
109 {
110 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
111 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
112 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
113 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
114 	INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
115 	INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
116 	INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
117 	INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
118 	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
119 	INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
120 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
121 	INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
122 
123 	/*
124 	 * When HT is off these events can only run on the bottom 4 counters
125 	 * When HT is on, they are impacted by the HT bug and require EXCL access
126 	 */
127 	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
128 	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
129 	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
130 	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
131 
132 	EVENT_CONSTRAINT_END
133 };
134 
135 static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
136 {
137 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
138 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
139 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
140 	INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
141 	INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMPTY */
142 	INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
143 	INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
144 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
145 	INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
146 	INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
147 	INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
148 	INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
149 	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
150 
151 	/*
152 	 * When HT is off these events can only run on the bottom 4 counters
153 	 * When HT is on, they are impacted by the HT bug and require EXCL access
154 	 */
155 	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
156 	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
157 	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
158 	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
159 
160 	EVENT_CONSTRAINT_END
161 };
162 
163 static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
164 {
165 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
166 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
167 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
168 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
169 	EVENT_EXTRA_END
170 };
171 
172 static struct event_constraint intel_v1_event_constraints[] __read_mostly =
173 {
174 	EVENT_CONSTRAINT_END
175 };
176 
177 static struct event_constraint intel_gen_event_constraints[] __read_mostly =
178 {
179 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
180 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
181 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
182 	EVENT_CONSTRAINT_END
183 };
184 
185 static struct event_constraint intel_v5_gen_event_constraints[] __read_mostly =
186 {
187 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
188 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
189 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
190 	FIXED_EVENT_CONSTRAINT(0x0400, 3), /* SLOTS */
191 	FIXED_EVENT_CONSTRAINT(0x0500, 4),
192 	FIXED_EVENT_CONSTRAINT(0x0600, 5),
193 	FIXED_EVENT_CONSTRAINT(0x0700, 6),
194 	FIXED_EVENT_CONSTRAINT(0x0800, 7),
195 	FIXED_EVENT_CONSTRAINT(0x0900, 8),
196 	FIXED_EVENT_CONSTRAINT(0x0a00, 9),
197 	FIXED_EVENT_CONSTRAINT(0x0b00, 10),
198 	FIXED_EVENT_CONSTRAINT(0x0c00, 11),
199 	FIXED_EVENT_CONSTRAINT(0x0d00, 12),
200 	FIXED_EVENT_CONSTRAINT(0x0e00, 13),
201 	FIXED_EVENT_CONSTRAINT(0x0f00, 14),
202 	FIXED_EVENT_CONSTRAINT(0x1000, 15),
203 	EVENT_CONSTRAINT_END
204 };
205 
206 static struct event_constraint intel_slm_event_constraints[] __read_mostly =
207 {
208 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
209 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
210 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
211 	EVENT_CONSTRAINT_END
212 };
213 
214 static struct event_constraint intel_grt_event_constraints[] __read_mostly = {
215 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
216 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
217 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
218 	FIXED_EVENT_CONSTRAINT(0x013c, 2), /* CPU_CLK_UNHALTED.REF_TSC_P */
219 	EVENT_CONSTRAINT_END
220 };
221 
222 static struct event_constraint intel_skl_event_constraints[] = {
223 	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
224 	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
225 	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
226 	INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2),	/* INST_RETIRED.PREC_DIST */
227 
228 	/*
229 	 * when HT is off, these can only run on the bottom 4 counters
230 	 */
231 	INTEL_EVENT_CONSTRAINT(0xd0, 0xf),	/* MEM_INST_RETIRED.* */
232 	INTEL_EVENT_CONSTRAINT(0xd1, 0xf),	/* MEM_LOAD_RETIRED.* */
233 	INTEL_EVENT_CONSTRAINT(0xd2, 0xf),	/* MEM_LOAD_L3_HIT_RETIRED.* */
234 	INTEL_EVENT_CONSTRAINT(0xcd, 0xf),	/* MEM_TRANS_RETIRED.* */
235 	INTEL_EVENT_CONSTRAINT(0xc6, 0xf),	/* FRONTEND_RETIRED.* */
236 
237 	EVENT_CONSTRAINT_END
238 };
239 
240 static struct extra_reg intel_knl_extra_regs[] __read_mostly = {
241 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x799ffbb6e7ull, RSP_0),
242 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x399ffbffe7ull, RSP_1),
243 	EVENT_EXTRA_END
244 };
245 
246 static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
247 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
248 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
249 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
250 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
251 	EVENT_EXTRA_END
252 };
253 
254 static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
255 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
256 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
257 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
258 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
259 	EVENT_EXTRA_END
260 };
261 
262 static struct extra_reg intel_skl_extra_regs[] __read_mostly = {
263 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
264 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
265 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
266 	/*
267 	 * Note the low 8 bits eventsel code is not a continuous field, containing
268 	 * some #GPing bits. These are masked out.
269 	 */
270 	INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
271 	EVENT_EXTRA_END
272 };
273 
274 static struct event_constraint intel_icl_event_constraints[] = {
275 	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
276 	FIXED_EVENT_CONSTRAINT(0x01c0, 0),	/* old INST_RETIRED.PREC_DIST */
277 	FIXED_EVENT_CONSTRAINT(0x0100, 0),	/* INST_RETIRED.PREC_DIST */
278 	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
279 	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
280 	FIXED_EVENT_CONSTRAINT(0x0400, 3),	/* SLOTS */
281 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_RETIRING, 0),
282 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BAD_SPEC, 1),
283 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FE_BOUND, 2),
284 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BE_BOUND, 3),
285 	INTEL_EVENT_CONSTRAINT_RANGE(0x03, 0x0a, 0xf),
286 	INTEL_EVENT_CONSTRAINT_RANGE(0x1f, 0x28, 0xf),
287 	INTEL_EVENT_CONSTRAINT(0x32, 0xf),	/* SW_PREFETCH_ACCESS.* */
288 	INTEL_EVENT_CONSTRAINT_RANGE(0x48, 0x56, 0xf),
289 	INTEL_EVENT_CONSTRAINT_RANGE(0x60, 0x8b, 0xf),
290 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xff),  /* CYCLE_ACTIVITY.STALLS_TOTAL */
291 	INTEL_UEVENT_CONSTRAINT(0x10a3, 0xff),  /* CYCLE_ACTIVITY.CYCLES_MEM_ANY */
292 	INTEL_UEVENT_CONSTRAINT(0x14a3, 0xff),  /* CYCLE_ACTIVITY.STALLS_MEM_ANY */
293 	INTEL_EVENT_CONSTRAINT(0xa3, 0xf),      /* CYCLE_ACTIVITY.* */
294 	INTEL_EVENT_CONSTRAINT_RANGE(0xa8, 0xb0, 0xf),
295 	INTEL_EVENT_CONSTRAINT_RANGE(0xb7, 0xbd, 0xf),
296 	INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xe6, 0xf),
297 	INTEL_EVENT_CONSTRAINT(0xef, 0xf),
298 	INTEL_EVENT_CONSTRAINT_RANGE(0xf0, 0xf4, 0xf),
299 	EVENT_CONSTRAINT_END
300 };
301 
302 static struct extra_reg intel_icl_extra_regs[] __read_mostly = {
303 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffffbfffull, RSP_0),
304 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffffbfffull, RSP_1),
305 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
306 	INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
307 	EVENT_EXTRA_END
308 };
309 
310 static struct extra_reg intel_glc_extra_regs[] __read_mostly = {
311 	INTEL_UEVENT_EXTRA_REG(0x012a, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
312 	INTEL_UEVENT_EXTRA_REG(0x012b, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
313 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
314 	INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff1f, FE),
315 	INTEL_UEVENT_EXTRA_REG(0x40ad, MSR_PEBS_FRONTEND, 0x7, FE),
316 	INTEL_UEVENT_EXTRA_REG(0x04c2, MSR_PEBS_FRONTEND, 0x8, FE),
317 	EVENT_EXTRA_END
318 };
319 
320 static struct event_constraint intel_glc_event_constraints[] = {
321 	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
322 	FIXED_EVENT_CONSTRAINT(0x0100, 0),	/* INST_RETIRED.PREC_DIST */
323 	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
324 	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
325 	FIXED_EVENT_CONSTRAINT(0x013c, 2),	/* CPU_CLK_UNHALTED.REF_TSC_P */
326 	FIXED_EVENT_CONSTRAINT(0x0400, 3),	/* SLOTS */
327 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_RETIRING, 0),
328 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BAD_SPEC, 1),
329 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FE_BOUND, 2),
330 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BE_BOUND, 3),
331 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_HEAVY_OPS, 4),
332 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BR_MISPREDICT, 5),
333 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FETCH_LAT, 6),
334 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_MEM_BOUND, 7),
335 
336 	INTEL_EVENT_CONSTRAINT(0x2e, 0xff),
337 	INTEL_EVENT_CONSTRAINT(0x3c, 0xff),
338 	/*
339 	 * Generally event codes < 0x90 are restricted to counters 0-3.
340 	 * The 0x2E and 0x3C are exception, which has no restriction.
341 	 */
342 	INTEL_EVENT_CONSTRAINT_RANGE(0x01, 0x8f, 0xf),
343 
344 	INTEL_UEVENT_CONSTRAINT(0x01a3, 0xf),
345 	INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf),
346 	INTEL_UEVENT_CONSTRAINT(0x08a3, 0xf),
347 	INTEL_UEVENT_CONSTRAINT(0x04a4, 0x1),
348 	INTEL_UEVENT_CONSTRAINT(0x08a4, 0x1),
349 	INTEL_UEVENT_CONSTRAINT(0x02cd, 0x1),
350 	INTEL_EVENT_CONSTRAINT(0xce, 0x1),
351 	INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xdf, 0xf),
352 	/*
353 	 * Generally event codes >= 0x90 are likely to have no restrictions.
354 	 * The exception are defined as above.
355 	 */
356 	INTEL_EVENT_CONSTRAINT_RANGE(0x90, 0xfe, 0xff),
357 
358 	EVENT_CONSTRAINT_END
359 };
360 
361 static struct extra_reg intel_rwc_extra_regs[] __read_mostly = {
362 	INTEL_UEVENT_EXTRA_REG(0x012a, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
363 	INTEL_UEVENT_EXTRA_REG(0x012b, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
364 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
365 	INTEL_UEVENT_EXTRA_REG(0x02c6, MSR_PEBS_FRONTEND, 0x9, FE),
366 	INTEL_UEVENT_EXTRA_REG(0x03c6, MSR_PEBS_FRONTEND, 0x7fff1f, FE),
367 	INTEL_UEVENT_EXTRA_REG(0x40ad, MSR_PEBS_FRONTEND, 0x7, FE),
368 	INTEL_UEVENT_EXTRA_REG(0x04c2, MSR_PEBS_FRONTEND, 0x8, FE),
369 	EVENT_EXTRA_END
370 };
371 
372 EVENT_ATTR_STR(mem-loads,	mem_ld_nhm,	"event=0x0b,umask=0x10,ldlat=3");
373 EVENT_ATTR_STR(mem-loads,	mem_ld_snb,	"event=0xcd,umask=0x1,ldlat=3");
374 EVENT_ATTR_STR(mem-stores,	mem_st_snb,	"event=0xcd,umask=0x2");
375 
376 static struct attribute *nhm_mem_events_attrs[] = {
377 	EVENT_PTR(mem_ld_nhm),
378 	NULL,
379 };
380 
381 /*
382  * topdown events for Intel Core CPUs.
383  *
384  * The events are all in slots, which is a free slot in a 4 wide
385  * pipeline. Some events are already reported in slots, for cycle
386  * events we multiply by the pipeline width (4).
387  *
388  * With Hyper Threading on, topdown metrics are either summed or averaged
389  * between the threads of a core: (count_t0 + count_t1).
390  *
391  * For the average case the metric is always scaled to pipeline width,
392  * so we use factor 2 ((count_t0 + count_t1) / 2 * 4)
393  */
394 
395 EVENT_ATTR_STR_HT(topdown-total-slots, td_total_slots,
396 	"event=0x3c,umask=0x0",			/* cpu_clk_unhalted.thread */
397 	"event=0x3c,umask=0x0,any=1");		/* cpu_clk_unhalted.thread_any */
398 EVENT_ATTR_STR_HT(topdown-total-slots.scale, td_total_slots_scale, "4", "2");
399 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued,
400 	"event=0xe,umask=0x1");			/* uops_issued.any */
401 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired,
402 	"event=0xc2,umask=0x2");		/* uops_retired.retire_slots */
403 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles,
404 	"event=0x9c,umask=0x1");		/* idq_uops_not_delivered_core */
405 EVENT_ATTR_STR_HT(topdown-recovery-bubbles, td_recovery_bubbles,
406 	"event=0xd,umask=0x3,cmask=1",		/* int_misc.recovery_cycles */
407 	"event=0xd,umask=0x3,cmask=1,any=1");	/* int_misc.recovery_cycles_any */
408 EVENT_ATTR_STR_HT(topdown-recovery-bubbles.scale, td_recovery_bubbles_scale,
409 	"4", "2");
410 
411 EVENT_ATTR_STR(slots,			slots,			"event=0x00,umask=0x4");
412 EVENT_ATTR_STR(topdown-retiring,	td_retiring,		"event=0x00,umask=0x80");
413 EVENT_ATTR_STR(topdown-bad-spec,	td_bad_spec,		"event=0x00,umask=0x81");
414 EVENT_ATTR_STR(topdown-fe-bound,	td_fe_bound,		"event=0x00,umask=0x82");
415 EVENT_ATTR_STR(topdown-be-bound,	td_be_bound,		"event=0x00,umask=0x83");
416 EVENT_ATTR_STR(topdown-heavy-ops,	td_heavy_ops,		"event=0x00,umask=0x84");
417 EVENT_ATTR_STR(topdown-br-mispredict,	td_br_mispredict,	"event=0x00,umask=0x85");
418 EVENT_ATTR_STR(topdown-fetch-lat,	td_fetch_lat,		"event=0x00,umask=0x86");
419 EVENT_ATTR_STR(topdown-mem-bound,	td_mem_bound,		"event=0x00,umask=0x87");
420 
421 static struct attribute *snb_events_attrs[] = {
422 	EVENT_PTR(td_slots_issued),
423 	EVENT_PTR(td_slots_retired),
424 	EVENT_PTR(td_fetch_bubbles),
425 	EVENT_PTR(td_total_slots),
426 	EVENT_PTR(td_total_slots_scale),
427 	EVENT_PTR(td_recovery_bubbles),
428 	EVENT_PTR(td_recovery_bubbles_scale),
429 	NULL,
430 };
431 
432 static struct attribute *snb_mem_events_attrs[] = {
433 	EVENT_PTR(mem_ld_snb),
434 	EVENT_PTR(mem_st_snb),
435 	NULL,
436 };
437 
438 static struct event_constraint intel_hsw_event_constraints[] = {
439 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
440 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
441 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
442 	INTEL_UEVENT_CONSTRAINT(0x148, 0x4),	/* L1D_PEND_MISS.PENDING */
443 	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
444 	INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
445 	/* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
446 	INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
447 	/* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
448 	INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
449 	/* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
450 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
451 
452 	/*
453 	 * When HT is off these events can only run on the bottom 4 counters
454 	 * When HT is on, they are impacted by the HT bug and require EXCL access
455 	 */
456 	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
457 	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
458 	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
459 	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
460 
461 	EVENT_CONSTRAINT_END
462 };
463 
464 static struct event_constraint intel_bdw_event_constraints[] = {
465 	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
466 	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
467 	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
468 	INTEL_UEVENT_CONSTRAINT(0x148, 0x4),	/* L1D_PEND_MISS.PENDING */
469 	INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4),	/* CYCLE_ACTIVITY.CYCLES_L1D_MISS */
470 	/*
471 	 * when HT is off, these can only run on the bottom 4 counters
472 	 */
473 	INTEL_EVENT_CONSTRAINT(0xd0, 0xf),	/* MEM_INST_RETIRED.* */
474 	INTEL_EVENT_CONSTRAINT(0xd1, 0xf),	/* MEM_LOAD_RETIRED.* */
475 	INTEL_EVENT_CONSTRAINT(0xd2, 0xf),	/* MEM_LOAD_L3_HIT_RETIRED.* */
476 	INTEL_EVENT_CONSTRAINT(0xcd, 0xf),	/* MEM_TRANS_RETIRED.* */
477 	EVENT_CONSTRAINT_END
478 };
479 
480 static u64 intel_pmu_event_map(int hw_event)
481 {
482 	return intel_perfmon_event_map[hw_event];
483 }
484 
485 static __initconst const u64 glc_hw_cache_event_ids
486 				[PERF_COUNT_HW_CACHE_MAX]
487 				[PERF_COUNT_HW_CACHE_OP_MAX]
488 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
489 {
490  [ C(L1D ) ] = {
491 	[ C(OP_READ) ] = {
492 		[ C(RESULT_ACCESS) ] = 0x81d0,
493 		[ C(RESULT_MISS)   ] = 0xe124,
494 	},
495 	[ C(OP_WRITE) ] = {
496 		[ C(RESULT_ACCESS) ] = 0x82d0,
497 	},
498  },
499  [ C(L1I ) ] = {
500 	[ C(OP_READ) ] = {
501 		[ C(RESULT_MISS)   ] = 0xe424,
502 	},
503 	[ C(OP_WRITE) ] = {
504 		[ C(RESULT_ACCESS) ] = -1,
505 		[ C(RESULT_MISS)   ] = -1,
506 	},
507  },
508  [ C(LL  ) ] = {
509 	[ C(OP_READ) ] = {
510 		[ C(RESULT_ACCESS) ] = 0x12a,
511 		[ C(RESULT_MISS)   ] = 0x12a,
512 	},
513 	[ C(OP_WRITE) ] = {
514 		[ C(RESULT_ACCESS) ] = 0x12a,
515 		[ C(RESULT_MISS)   ] = 0x12a,
516 	},
517  },
518  [ C(DTLB) ] = {
519 	[ C(OP_READ) ] = {
520 		[ C(RESULT_ACCESS) ] = 0x81d0,
521 		[ C(RESULT_MISS)   ] = 0xe12,
522 	},
523 	[ C(OP_WRITE) ] = {
524 		[ C(RESULT_ACCESS) ] = 0x82d0,
525 		[ C(RESULT_MISS)   ] = 0xe13,
526 	},
527  },
528  [ C(ITLB) ] = {
529 	[ C(OP_READ) ] = {
530 		[ C(RESULT_ACCESS) ] = -1,
531 		[ C(RESULT_MISS)   ] = 0xe11,
532 	},
533 	[ C(OP_WRITE) ] = {
534 		[ C(RESULT_ACCESS) ] = -1,
535 		[ C(RESULT_MISS)   ] = -1,
536 	},
537 	[ C(OP_PREFETCH) ] = {
538 		[ C(RESULT_ACCESS) ] = -1,
539 		[ C(RESULT_MISS)   ] = -1,
540 	},
541  },
542  [ C(BPU ) ] = {
543 	[ C(OP_READ) ] = {
544 		[ C(RESULT_ACCESS) ] = 0x4c4,
545 		[ C(RESULT_MISS)   ] = 0x4c5,
546 	},
547 	[ C(OP_WRITE) ] = {
548 		[ C(RESULT_ACCESS) ] = -1,
549 		[ C(RESULT_MISS)   ] = -1,
550 	},
551 	[ C(OP_PREFETCH) ] = {
552 		[ C(RESULT_ACCESS) ] = -1,
553 		[ C(RESULT_MISS)   ] = -1,
554 	},
555  },
556  [ C(NODE) ] = {
557 	[ C(OP_READ) ] = {
558 		[ C(RESULT_ACCESS) ] = 0x12a,
559 		[ C(RESULT_MISS)   ] = 0x12a,
560 	},
561  },
562 };
563 
564 static __initconst const u64 glc_hw_cache_extra_regs
565 				[PERF_COUNT_HW_CACHE_MAX]
566 				[PERF_COUNT_HW_CACHE_OP_MAX]
567 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
568 {
569  [ C(LL  ) ] = {
570 	[ C(OP_READ) ] = {
571 		[ C(RESULT_ACCESS) ] = 0x10001,
572 		[ C(RESULT_MISS)   ] = 0x3fbfc00001,
573 	},
574 	[ C(OP_WRITE) ] = {
575 		[ C(RESULT_ACCESS) ] = 0x3f3ffc0002,
576 		[ C(RESULT_MISS)   ] = 0x3f3fc00002,
577 	},
578  },
579  [ C(NODE) ] = {
580 	[ C(OP_READ) ] = {
581 		[ C(RESULT_ACCESS) ] = 0x10c000001,
582 		[ C(RESULT_MISS)   ] = 0x3fb3000001,
583 	},
584  },
585 };
586 
587 /*
588  * Notes on the events:
589  * - data reads do not include code reads (comparable to earlier tables)
590  * - data counts include speculative execution (except L1 write, dtlb, bpu)
591  * - remote node access includes remote memory, remote cache, remote mmio.
592  * - prefetches are not included in the counts.
593  * - icache miss does not include decoded icache
594  */
595 
596 #define SKL_DEMAND_DATA_RD		BIT_ULL(0)
597 #define SKL_DEMAND_RFO			BIT_ULL(1)
598 #define SKL_ANY_RESPONSE		BIT_ULL(16)
599 #define SKL_SUPPLIER_NONE		BIT_ULL(17)
600 #define SKL_L3_MISS_LOCAL_DRAM		BIT_ULL(26)
601 #define SKL_L3_MISS_REMOTE_HOP0_DRAM	BIT_ULL(27)
602 #define SKL_L3_MISS_REMOTE_HOP1_DRAM	BIT_ULL(28)
603 #define SKL_L3_MISS_REMOTE_HOP2P_DRAM	BIT_ULL(29)
604 #define SKL_L3_MISS			(SKL_L3_MISS_LOCAL_DRAM| \
605 					 SKL_L3_MISS_REMOTE_HOP0_DRAM| \
606 					 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
607 					 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
608 #define SKL_SPL_HIT			BIT_ULL(30)
609 #define SKL_SNOOP_NONE			BIT_ULL(31)
610 #define SKL_SNOOP_NOT_NEEDED		BIT_ULL(32)
611 #define SKL_SNOOP_MISS			BIT_ULL(33)
612 #define SKL_SNOOP_HIT_NO_FWD		BIT_ULL(34)
613 #define SKL_SNOOP_HIT_WITH_FWD		BIT_ULL(35)
614 #define SKL_SNOOP_HITM			BIT_ULL(36)
615 #define SKL_SNOOP_NON_DRAM		BIT_ULL(37)
616 #define SKL_ANY_SNOOP			(SKL_SPL_HIT|SKL_SNOOP_NONE| \
617 					 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
618 					 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
619 					 SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM)
620 #define SKL_DEMAND_READ			SKL_DEMAND_DATA_RD
621 #define SKL_SNOOP_DRAM			(SKL_SNOOP_NONE| \
622 					 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
623 					 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
624 					 SKL_SNOOP_HITM|SKL_SPL_HIT)
625 #define SKL_DEMAND_WRITE		SKL_DEMAND_RFO
626 #define SKL_LLC_ACCESS			SKL_ANY_RESPONSE
627 #define SKL_L3_MISS_REMOTE		(SKL_L3_MISS_REMOTE_HOP0_DRAM| \
628 					 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
629 					 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
630 
631 static __initconst const u64 skl_hw_cache_event_ids
632 				[PERF_COUNT_HW_CACHE_MAX]
633 				[PERF_COUNT_HW_CACHE_OP_MAX]
634 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
635 {
636  [ C(L1D ) ] = {
637 	[ C(OP_READ) ] = {
638 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_INST_RETIRED.ALL_LOADS */
639 		[ C(RESULT_MISS)   ] = 0x151,	/* L1D.REPLACEMENT */
640 	},
641 	[ C(OP_WRITE) ] = {
642 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_INST_RETIRED.ALL_STORES */
643 		[ C(RESULT_MISS)   ] = 0x0,
644 	},
645 	[ C(OP_PREFETCH) ] = {
646 		[ C(RESULT_ACCESS) ] = 0x0,
647 		[ C(RESULT_MISS)   ] = 0x0,
648 	},
649  },
650  [ C(L1I ) ] = {
651 	[ C(OP_READ) ] = {
652 		[ C(RESULT_ACCESS) ] = 0x0,
653 		[ C(RESULT_MISS)   ] = 0x283,	/* ICACHE_64B.MISS */
654 	},
655 	[ C(OP_WRITE) ] = {
656 		[ C(RESULT_ACCESS) ] = -1,
657 		[ C(RESULT_MISS)   ] = -1,
658 	},
659 	[ C(OP_PREFETCH) ] = {
660 		[ C(RESULT_ACCESS) ] = 0x0,
661 		[ C(RESULT_MISS)   ] = 0x0,
662 	},
663  },
664  [ C(LL  ) ] = {
665 	[ C(OP_READ) ] = {
666 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
667 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
668 	},
669 	[ C(OP_WRITE) ] = {
670 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
671 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
672 	},
673 	[ C(OP_PREFETCH) ] = {
674 		[ C(RESULT_ACCESS) ] = 0x0,
675 		[ C(RESULT_MISS)   ] = 0x0,
676 	},
677  },
678  [ C(DTLB) ] = {
679 	[ C(OP_READ) ] = {
680 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_INST_RETIRED.ALL_LOADS */
681 		[ C(RESULT_MISS)   ] = 0xe08,	/* DTLB_LOAD_MISSES.WALK_COMPLETED */
682 	},
683 	[ C(OP_WRITE) ] = {
684 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_INST_RETIRED.ALL_STORES */
685 		[ C(RESULT_MISS)   ] = 0xe49,	/* DTLB_STORE_MISSES.WALK_COMPLETED */
686 	},
687 	[ C(OP_PREFETCH) ] = {
688 		[ C(RESULT_ACCESS) ] = 0x0,
689 		[ C(RESULT_MISS)   ] = 0x0,
690 	},
691  },
692  [ C(ITLB) ] = {
693 	[ C(OP_READ) ] = {
694 		[ C(RESULT_ACCESS) ] = 0x2085,	/* ITLB_MISSES.STLB_HIT */
695 		[ C(RESULT_MISS)   ] = 0xe85,	/* ITLB_MISSES.WALK_COMPLETED */
696 	},
697 	[ C(OP_WRITE) ] = {
698 		[ C(RESULT_ACCESS) ] = -1,
699 		[ C(RESULT_MISS)   ] = -1,
700 	},
701 	[ C(OP_PREFETCH) ] = {
702 		[ C(RESULT_ACCESS) ] = -1,
703 		[ C(RESULT_MISS)   ] = -1,
704 	},
705  },
706  [ C(BPU ) ] = {
707 	[ C(OP_READ) ] = {
708 		[ C(RESULT_ACCESS) ] = 0xc4,	/* BR_INST_RETIRED.ALL_BRANCHES */
709 		[ C(RESULT_MISS)   ] = 0xc5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
710 	},
711 	[ C(OP_WRITE) ] = {
712 		[ C(RESULT_ACCESS) ] = -1,
713 		[ C(RESULT_MISS)   ] = -1,
714 	},
715 	[ C(OP_PREFETCH) ] = {
716 		[ C(RESULT_ACCESS) ] = -1,
717 		[ C(RESULT_MISS)   ] = -1,
718 	},
719  },
720  [ C(NODE) ] = {
721 	[ C(OP_READ) ] = {
722 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
723 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
724 	},
725 	[ C(OP_WRITE) ] = {
726 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
727 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
728 	},
729 	[ C(OP_PREFETCH) ] = {
730 		[ C(RESULT_ACCESS) ] = 0x0,
731 		[ C(RESULT_MISS)   ] = 0x0,
732 	},
733  },
734 };
735 
736 static __initconst const u64 skl_hw_cache_extra_regs
737 				[PERF_COUNT_HW_CACHE_MAX]
738 				[PERF_COUNT_HW_CACHE_OP_MAX]
739 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
740 {
741  [ C(LL  ) ] = {
742 	[ C(OP_READ) ] = {
743 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
744 				       SKL_LLC_ACCESS|SKL_ANY_SNOOP,
745 		[ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
746 				       SKL_L3_MISS|SKL_ANY_SNOOP|
747 				       SKL_SUPPLIER_NONE,
748 	},
749 	[ C(OP_WRITE) ] = {
750 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
751 				       SKL_LLC_ACCESS|SKL_ANY_SNOOP,
752 		[ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
753 				       SKL_L3_MISS|SKL_ANY_SNOOP|
754 				       SKL_SUPPLIER_NONE,
755 	},
756 	[ C(OP_PREFETCH) ] = {
757 		[ C(RESULT_ACCESS) ] = 0x0,
758 		[ C(RESULT_MISS)   ] = 0x0,
759 	},
760  },
761  [ C(NODE) ] = {
762 	[ C(OP_READ) ] = {
763 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
764 				       SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
765 		[ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
766 				       SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
767 	},
768 	[ C(OP_WRITE) ] = {
769 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
770 				       SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
771 		[ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
772 				       SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
773 	},
774 	[ C(OP_PREFETCH) ] = {
775 		[ C(RESULT_ACCESS) ] = 0x0,
776 		[ C(RESULT_MISS)   ] = 0x0,
777 	},
778  },
779 };
780 
781 #define SNB_DMND_DATA_RD	(1ULL << 0)
782 #define SNB_DMND_RFO		(1ULL << 1)
783 #define SNB_DMND_IFETCH		(1ULL << 2)
784 #define SNB_DMND_WB		(1ULL << 3)
785 #define SNB_PF_DATA_RD		(1ULL << 4)
786 #define SNB_PF_RFO		(1ULL << 5)
787 #define SNB_PF_IFETCH		(1ULL << 6)
788 #define SNB_LLC_DATA_RD		(1ULL << 7)
789 #define SNB_LLC_RFO		(1ULL << 8)
790 #define SNB_LLC_IFETCH		(1ULL << 9)
791 #define SNB_BUS_LOCKS		(1ULL << 10)
792 #define SNB_STRM_ST		(1ULL << 11)
793 #define SNB_OTHER		(1ULL << 15)
794 #define SNB_RESP_ANY		(1ULL << 16)
795 #define SNB_NO_SUPP		(1ULL << 17)
796 #define SNB_LLC_HITM		(1ULL << 18)
797 #define SNB_LLC_HITE		(1ULL << 19)
798 #define SNB_LLC_HITS		(1ULL << 20)
799 #define SNB_LLC_HITF		(1ULL << 21)
800 #define SNB_LOCAL		(1ULL << 22)
801 #define SNB_REMOTE		(0xffULL << 23)
802 #define SNB_SNP_NONE		(1ULL << 31)
803 #define SNB_SNP_NOT_NEEDED	(1ULL << 32)
804 #define SNB_SNP_MISS		(1ULL << 33)
805 #define SNB_NO_FWD		(1ULL << 34)
806 #define SNB_SNP_FWD		(1ULL << 35)
807 #define SNB_HITM		(1ULL << 36)
808 #define SNB_NON_DRAM		(1ULL << 37)
809 
810 #define SNB_DMND_READ		(SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
811 #define SNB_DMND_WRITE		(SNB_DMND_RFO|SNB_LLC_RFO)
812 #define SNB_DMND_PREFETCH	(SNB_PF_DATA_RD|SNB_PF_RFO)
813 
814 #define SNB_SNP_ANY		(SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
815 				 SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
816 				 SNB_HITM)
817 
818 #define SNB_DRAM_ANY		(SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
819 #define SNB_DRAM_REMOTE		(SNB_REMOTE|SNB_SNP_ANY)
820 
821 #define SNB_L3_ACCESS		SNB_RESP_ANY
822 #define SNB_L3_MISS		(SNB_DRAM_ANY|SNB_NON_DRAM)
823 
824 static __initconst const u64 snb_hw_cache_extra_regs
825 				[PERF_COUNT_HW_CACHE_MAX]
826 				[PERF_COUNT_HW_CACHE_OP_MAX]
827 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
828 {
829  [ C(LL  ) ] = {
830 	[ C(OP_READ) ] = {
831 		[ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
832 		[ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_L3_MISS,
833 	},
834 	[ C(OP_WRITE) ] = {
835 		[ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
836 		[ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_L3_MISS,
837 	},
838 	[ C(OP_PREFETCH) ] = {
839 		[ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
840 		[ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
841 	},
842  },
843  [ C(NODE) ] = {
844 	[ C(OP_READ) ] = {
845 		[ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
846 		[ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
847 	},
848 	[ C(OP_WRITE) ] = {
849 		[ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
850 		[ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
851 	},
852 	[ C(OP_PREFETCH) ] = {
853 		[ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
854 		[ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
855 	},
856  },
857 };
858 
859 static __initconst const u64 snb_hw_cache_event_ids
860 				[PERF_COUNT_HW_CACHE_MAX]
861 				[PERF_COUNT_HW_CACHE_OP_MAX]
862 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
863 {
864  [ C(L1D) ] = {
865 	[ C(OP_READ) ] = {
866 		[ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS        */
867 		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPLACEMENT              */
868 	},
869 	[ C(OP_WRITE) ] = {
870 		[ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES       */
871 		[ C(RESULT_MISS)   ] = 0x0851, /* L1D.ALL_M_REPLACEMENT        */
872 	},
873 	[ C(OP_PREFETCH) ] = {
874 		[ C(RESULT_ACCESS) ] = 0x0,
875 		[ C(RESULT_MISS)   ] = 0x024e, /* HW_PRE_REQ.DL1_MISS          */
876 	},
877  },
878  [ C(L1I ) ] = {
879 	[ C(OP_READ) ] = {
880 		[ C(RESULT_ACCESS) ] = 0x0,
881 		[ C(RESULT_MISS)   ] = 0x0280, /* ICACHE.MISSES */
882 	},
883 	[ C(OP_WRITE) ] = {
884 		[ C(RESULT_ACCESS) ] = -1,
885 		[ C(RESULT_MISS)   ] = -1,
886 	},
887 	[ C(OP_PREFETCH) ] = {
888 		[ C(RESULT_ACCESS) ] = 0x0,
889 		[ C(RESULT_MISS)   ] = 0x0,
890 	},
891  },
892  [ C(LL  ) ] = {
893 	[ C(OP_READ) ] = {
894 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
895 		[ C(RESULT_ACCESS) ] = 0x01b7,
896 		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
897 		[ C(RESULT_MISS)   ] = 0x01b7,
898 	},
899 	[ C(OP_WRITE) ] = {
900 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
901 		[ C(RESULT_ACCESS) ] = 0x01b7,
902 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
903 		[ C(RESULT_MISS)   ] = 0x01b7,
904 	},
905 	[ C(OP_PREFETCH) ] = {
906 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
907 		[ C(RESULT_ACCESS) ] = 0x01b7,
908 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
909 		[ C(RESULT_MISS)   ] = 0x01b7,
910 	},
911  },
912  [ C(DTLB) ] = {
913 	[ C(OP_READ) ] = {
914 		[ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
915 		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
916 	},
917 	[ C(OP_WRITE) ] = {
918 		[ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
919 		[ C(RESULT_MISS)   ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
920 	},
921 	[ C(OP_PREFETCH) ] = {
922 		[ C(RESULT_ACCESS) ] = 0x0,
923 		[ C(RESULT_MISS)   ] = 0x0,
924 	},
925  },
926  [ C(ITLB) ] = {
927 	[ C(OP_READ) ] = {
928 		[ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT         */
929 		[ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK    */
930 	},
931 	[ C(OP_WRITE) ] = {
932 		[ C(RESULT_ACCESS) ] = -1,
933 		[ C(RESULT_MISS)   ] = -1,
934 	},
935 	[ C(OP_PREFETCH) ] = {
936 		[ C(RESULT_ACCESS) ] = -1,
937 		[ C(RESULT_MISS)   ] = -1,
938 	},
939  },
940  [ C(BPU ) ] = {
941 	[ C(OP_READ) ] = {
942 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
943 		[ C(RESULT_MISS)   ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
944 	},
945 	[ C(OP_WRITE) ] = {
946 		[ C(RESULT_ACCESS) ] = -1,
947 		[ C(RESULT_MISS)   ] = -1,
948 	},
949 	[ C(OP_PREFETCH) ] = {
950 		[ C(RESULT_ACCESS) ] = -1,
951 		[ C(RESULT_MISS)   ] = -1,
952 	},
953  },
954  [ C(NODE) ] = {
955 	[ C(OP_READ) ] = {
956 		[ C(RESULT_ACCESS) ] = 0x01b7,
957 		[ C(RESULT_MISS)   ] = 0x01b7,
958 	},
959 	[ C(OP_WRITE) ] = {
960 		[ C(RESULT_ACCESS) ] = 0x01b7,
961 		[ C(RESULT_MISS)   ] = 0x01b7,
962 	},
963 	[ C(OP_PREFETCH) ] = {
964 		[ C(RESULT_ACCESS) ] = 0x01b7,
965 		[ C(RESULT_MISS)   ] = 0x01b7,
966 	},
967  },
968 
969 };
970 
971 /*
972  * Notes on the events:
973  * - data reads do not include code reads (comparable to earlier tables)
974  * - data counts include speculative execution (except L1 write, dtlb, bpu)
975  * - remote node access includes remote memory, remote cache, remote mmio.
976  * - prefetches are not included in the counts because they are not
977  *   reliably counted.
978  */
979 
980 #define HSW_DEMAND_DATA_RD		BIT_ULL(0)
981 #define HSW_DEMAND_RFO			BIT_ULL(1)
982 #define HSW_ANY_RESPONSE		BIT_ULL(16)
983 #define HSW_SUPPLIER_NONE		BIT_ULL(17)
984 #define HSW_L3_MISS_LOCAL_DRAM		BIT_ULL(22)
985 #define HSW_L3_MISS_REMOTE_HOP0		BIT_ULL(27)
986 #define HSW_L3_MISS_REMOTE_HOP1		BIT_ULL(28)
987 #define HSW_L3_MISS_REMOTE_HOP2P	BIT_ULL(29)
988 #define HSW_L3_MISS			(HSW_L3_MISS_LOCAL_DRAM| \
989 					 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
990 					 HSW_L3_MISS_REMOTE_HOP2P)
991 #define HSW_SNOOP_NONE			BIT_ULL(31)
992 #define HSW_SNOOP_NOT_NEEDED		BIT_ULL(32)
993 #define HSW_SNOOP_MISS			BIT_ULL(33)
994 #define HSW_SNOOP_HIT_NO_FWD		BIT_ULL(34)
995 #define HSW_SNOOP_HIT_WITH_FWD		BIT_ULL(35)
996 #define HSW_SNOOP_HITM			BIT_ULL(36)
997 #define HSW_SNOOP_NON_DRAM		BIT_ULL(37)
998 #define HSW_ANY_SNOOP			(HSW_SNOOP_NONE| \
999 					 HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
1000 					 HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
1001 					 HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
1002 #define HSW_SNOOP_DRAM			(HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
1003 #define HSW_DEMAND_READ			HSW_DEMAND_DATA_RD
1004 #define HSW_DEMAND_WRITE		HSW_DEMAND_RFO
1005 #define HSW_L3_MISS_REMOTE		(HSW_L3_MISS_REMOTE_HOP0|\
1006 					 HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
1007 #define HSW_LLC_ACCESS			HSW_ANY_RESPONSE
1008 
1009 #define BDW_L3_MISS_LOCAL		BIT(26)
1010 #define BDW_L3_MISS			(BDW_L3_MISS_LOCAL| \
1011 					 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
1012 					 HSW_L3_MISS_REMOTE_HOP2P)
1013 
1014 
1015 static __initconst const u64 hsw_hw_cache_event_ids
1016 				[PERF_COUNT_HW_CACHE_MAX]
1017 				[PERF_COUNT_HW_CACHE_OP_MAX]
1018 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1019 {
1020  [ C(L1D ) ] = {
1021 	[ C(OP_READ) ] = {
1022 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1023 		[ C(RESULT_MISS)   ] = 0x151,	/* L1D.REPLACEMENT */
1024 	},
1025 	[ C(OP_WRITE) ] = {
1026 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1027 		[ C(RESULT_MISS)   ] = 0x0,
1028 	},
1029 	[ C(OP_PREFETCH) ] = {
1030 		[ C(RESULT_ACCESS) ] = 0x0,
1031 		[ C(RESULT_MISS)   ] = 0x0,
1032 	},
1033  },
1034  [ C(L1I ) ] = {
1035 	[ C(OP_READ) ] = {
1036 		[ C(RESULT_ACCESS) ] = 0x0,
1037 		[ C(RESULT_MISS)   ] = 0x280,	/* ICACHE.MISSES */
1038 	},
1039 	[ C(OP_WRITE) ] = {
1040 		[ C(RESULT_ACCESS) ] = -1,
1041 		[ C(RESULT_MISS)   ] = -1,
1042 	},
1043 	[ C(OP_PREFETCH) ] = {
1044 		[ C(RESULT_ACCESS) ] = 0x0,
1045 		[ C(RESULT_MISS)   ] = 0x0,
1046 	},
1047  },
1048  [ C(LL  ) ] = {
1049 	[ C(OP_READ) ] = {
1050 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
1051 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
1052 	},
1053 	[ C(OP_WRITE) ] = {
1054 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
1055 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
1056 	},
1057 	[ C(OP_PREFETCH) ] = {
1058 		[ C(RESULT_ACCESS) ] = 0x0,
1059 		[ C(RESULT_MISS)   ] = 0x0,
1060 	},
1061  },
1062  [ C(DTLB) ] = {
1063 	[ C(OP_READ) ] = {
1064 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1065 		[ C(RESULT_MISS)   ] = 0x108,	/* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
1066 	},
1067 	[ C(OP_WRITE) ] = {
1068 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1069 		[ C(RESULT_MISS)   ] = 0x149,	/* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
1070 	},
1071 	[ C(OP_PREFETCH) ] = {
1072 		[ C(RESULT_ACCESS) ] = 0x0,
1073 		[ C(RESULT_MISS)   ] = 0x0,
1074 	},
1075  },
1076  [ C(ITLB) ] = {
1077 	[ C(OP_READ) ] = {
1078 		[ C(RESULT_ACCESS) ] = 0x6085,	/* ITLB_MISSES.STLB_HIT */
1079 		[ C(RESULT_MISS)   ] = 0x185,	/* ITLB_MISSES.MISS_CAUSES_A_WALK */
1080 	},
1081 	[ C(OP_WRITE) ] = {
1082 		[ C(RESULT_ACCESS) ] = -1,
1083 		[ C(RESULT_MISS)   ] = -1,
1084 	},
1085 	[ C(OP_PREFETCH) ] = {
1086 		[ C(RESULT_ACCESS) ] = -1,
1087 		[ C(RESULT_MISS)   ] = -1,
1088 	},
1089  },
1090  [ C(BPU ) ] = {
1091 	[ C(OP_READ) ] = {
1092 		[ C(RESULT_ACCESS) ] = 0xc4,	/* BR_INST_RETIRED.ALL_BRANCHES */
1093 		[ C(RESULT_MISS)   ] = 0xc5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
1094 	},
1095 	[ C(OP_WRITE) ] = {
1096 		[ C(RESULT_ACCESS) ] = -1,
1097 		[ C(RESULT_MISS)   ] = -1,
1098 	},
1099 	[ C(OP_PREFETCH) ] = {
1100 		[ C(RESULT_ACCESS) ] = -1,
1101 		[ C(RESULT_MISS)   ] = -1,
1102 	},
1103  },
1104  [ C(NODE) ] = {
1105 	[ C(OP_READ) ] = {
1106 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
1107 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
1108 	},
1109 	[ C(OP_WRITE) ] = {
1110 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
1111 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
1112 	},
1113 	[ C(OP_PREFETCH) ] = {
1114 		[ C(RESULT_ACCESS) ] = 0x0,
1115 		[ C(RESULT_MISS)   ] = 0x0,
1116 	},
1117  },
1118 };
1119 
1120 static __initconst const u64 hsw_hw_cache_extra_regs
1121 				[PERF_COUNT_HW_CACHE_MAX]
1122 				[PERF_COUNT_HW_CACHE_OP_MAX]
1123 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1124 {
1125  [ C(LL  ) ] = {
1126 	[ C(OP_READ) ] = {
1127 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
1128 				       HSW_LLC_ACCESS,
1129 		[ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
1130 				       HSW_L3_MISS|HSW_ANY_SNOOP,
1131 	},
1132 	[ C(OP_WRITE) ] = {
1133 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
1134 				       HSW_LLC_ACCESS,
1135 		[ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
1136 				       HSW_L3_MISS|HSW_ANY_SNOOP,
1137 	},
1138 	[ C(OP_PREFETCH) ] = {
1139 		[ C(RESULT_ACCESS) ] = 0x0,
1140 		[ C(RESULT_MISS)   ] = 0x0,
1141 	},
1142  },
1143  [ C(NODE) ] = {
1144 	[ C(OP_READ) ] = {
1145 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
1146 				       HSW_L3_MISS_LOCAL_DRAM|
1147 				       HSW_SNOOP_DRAM,
1148 		[ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
1149 				       HSW_L3_MISS_REMOTE|
1150 				       HSW_SNOOP_DRAM,
1151 	},
1152 	[ C(OP_WRITE) ] = {
1153 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
1154 				       HSW_L3_MISS_LOCAL_DRAM|
1155 				       HSW_SNOOP_DRAM,
1156 		[ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
1157 				       HSW_L3_MISS_REMOTE|
1158 				       HSW_SNOOP_DRAM,
1159 	},
1160 	[ C(OP_PREFETCH) ] = {
1161 		[ C(RESULT_ACCESS) ] = 0x0,
1162 		[ C(RESULT_MISS)   ] = 0x0,
1163 	},
1164  },
1165 };
1166 
1167 static __initconst const u64 westmere_hw_cache_event_ids
1168 				[PERF_COUNT_HW_CACHE_MAX]
1169 				[PERF_COUNT_HW_CACHE_OP_MAX]
1170 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1171 {
1172  [ C(L1D) ] = {
1173 	[ C(OP_READ) ] = {
1174 		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1175 		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
1176 	},
1177 	[ C(OP_WRITE) ] = {
1178 		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1179 		[ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
1180 	},
1181 	[ C(OP_PREFETCH) ] = {
1182 		[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
1183 		[ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
1184 	},
1185  },
1186  [ C(L1I ) ] = {
1187 	[ C(OP_READ) ] = {
1188 		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
1189 		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
1190 	},
1191 	[ C(OP_WRITE) ] = {
1192 		[ C(RESULT_ACCESS) ] = -1,
1193 		[ C(RESULT_MISS)   ] = -1,
1194 	},
1195 	[ C(OP_PREFETCH) ] = {
1196 		[ C(RESULT_ACCESS) ] = 0x0,
1197 		[ C(RESULT_MISS)   ] = 0x0,
1198 	},
1199  },
1200  [ C(LL  ) ] = {
1201 	[ C(OP_READ) ] = {
1202 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1203 		[ C(RESULT_ACCESS) ] = 0x01b7,
1204 		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1205 		[ C(RESULT_MISS)   ] = 0x01b7,
1206 	},
1207 	/*
1208 	 * Use RFO, not WRITEBACK, because a write miss would typically occur
1209 	 * on RFO.
1210 	 */
1211 	[ C(OP_WRITE) ] = {
1212 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1213 		[ C(RESULT_ACCESS) ] = 0x01b7,
1214 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1215 		[ C(RESULT_MISS)   ] = 0x01b7,
1216 	},
1217 	[ C(OP_PREFETCH) ] = {
1218 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1219 		[ C(RESULT_ACCESS) ] = 0x01b7,
1220 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1221 		[ C(RESULT_MISS)   ] = 0x01b7,
1222 	},
1223  },
1224  [ C(DTLB) ] = {
1225 	[ C(OP_READ) ] = {
1226 		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1227 		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
1228 	},
1229 	[ C(OP_WRITE) ] = {
1230 		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1231 		[ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
1232 	},
1233 	[ C(OP_PREFETCH) ] = {
1234 		[ C(RESULT_ACCESS) ] = 0x0,
1235 		[ C(RESULT_MISS)   ] = 0x0,
1236 	},
1237  },
1238  [ C(ITLB) ] = {
1239 	[ C(OP_READ) ] = {
1240 		[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
1241 		[ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.ANY              */
1242 	},
1243 	[ C(OP_WRITE) ] = {
1244 		[ C(RESULT_ACCESS) ] = -1,
1245 		[ C(RESULT_MISS)   ] = -1,
1246 	},
1247 	[ C(OP_PREFETCH) ] = {
1248 		[ C(RESULT_ACCESS) ] = -1,
1249 		[ C(RESULT_MISS)   ] = -1,
1250 	},
1251  },
1252  [ C(BPU ) ] = {
1253 	[ C(OP_READ) ] = {
1254 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1255 		[ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1256 	},
1257 	[ C(OP_WRITE) ] = {
1258 		[ C(RESULT_ACCESS) ] = -1,
1259 		[ C(RESULT_MISS)   ] = -1,
1260 	},
1261 	[ C(OP_PREFETCH) ] = {
1262 		[ C(RESULT_ACCESS) ] = -1,
1263 		[ C(RESULT_MISS)   ] = -1,
1264 	},
1265  },
1266  [ C(NODE) ] = {
1267 	[ C(OP_READ) ] = {
1268 		[ C(RESULT_ACCESS) ] = 0x01b7,
1269 		[ C(RESULT_MISS)   ] = 0x01b7,
1270 	},
1271 	[ C(OP_WRITE) ] = {
1272 		[ C(RESULT_ACCESS) ] = 0x01b7,
1273 		[ C(RESULT_MISS)   ] = 0x01b7,
1274 	},
1275 	[ C(OP_PREFETCH) ] = {
1276 		[ C(RESULT_ACCESS) ] = 0x01b7,
1277 		[ C(RESULT_MISS)   ] = 0x01b7,
1278 	},
1279  },
1280 };
1281 
1282 /*
1283  * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
1284  * See IA32 SDM Vol 3B 30.6.1.3
1285  */
1286 
1287 #define NHM_DMND_DATA_RD	(1 << 0)
1288 #define NHM_DMND_RFO		(1 << 1)
1289 #define NHM_DMND_IFETCH		(1 << 2)
1290 #define NHM_DMND_WB		(1 << 3)
1291 #define NHM_PF_DATA_RD		(1 << 4)
1292 #define NHM_PF_DATA_RFO		(1 << 5)
1293 #define NHM_PF_IFETCH		(1 << 6)
1294 #define NHM_OFFCORE_OTHER	(1 << 7)
1295 #define NHM_UNCORE_HIT		(1 << 8)
1296 #define NHM_OTHER_CORE_HIT_SNP	(1 << 9)
1297 #define NHM_OTHER_CORE_HITM	(1 << 10)
1298         			/* reserved */
1299 #define NHM_REMOTE_CACHE_FWD	(1 << 12)
1300 #define NHM_REMOTE_DRAM		(1 << 13)
1301 #define NHM_LOCAL_DRAM		(1 << 14)
1302 #define NHM_NON_DRAM		(1 << 15)
1303 
1304 #define NHM_LOCAL		(NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
1305 #define NHM_REMOTE		(NHM_REMOTE_DRAM)
1306 
1307 #define NHM_DMND_READ		(NHM_DMND_DATA_RD)
1308 #define NHM_DMND_WRITE		(NHM_DMND_RFO|NHM_DMND_WB)
1309 #define NHM_DMND_PREFETCH	(NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
1310 
1311 #define NHM_L3_HIT	(NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
1312 #define NHM_L3_MISS	(NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
1313 #define NHM_L3_ACCESS	(NHM_L3_HIT|NHM_L3_MISS)
1314 
1315 static __initconst const u64 nehalem_hw_cache_extra_regs
1316 				[PERF_COUNT_HW_CACHE_MAX]
1317 				[PERF_COUNT_HW_CACHE_OP_MAX]
1318 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1319 {
1320  [ C(LL  ) ] = {
1321 	[ C(OP_READ) ] = {
1322 		[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
1323 		[ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_L3_MISS,
1324 	},
1325 	[ C(OP_WRITE) ] = {
1326 		[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
1327 		[ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_L3_MISS,
1328 	},
1329 	[ C(OP_PREFETCH) ] = {
1330 		[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
1331 		[ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
1332 	},
1333  },
1334  [ C(NODE) ] = {
1335 	[ C(OP_READ) ] = {
1336 		[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
1337 		[ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_REMOTE,
1338 	},
1339 	[ C(OP_WRITE) ] = {
1340 		[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
1341 		[ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_REMOTE,
1342 	},
1343 	[ C(OP_PREFETCH) ] = {
1344 		[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
1345 		[ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_REMOTE,
1346 	},
1347  },
1348 };
1349 
1350 static __initconst const u64 nehalem_hw_cache_event_ids
1351 				[PERF_COUNT_HW_CACHE_MAX]
1352 				[PERF_COUNT_HW_CACHE_OP_MAX]
1353 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1354 {
1355  [ C(L1D) ] = {
1356 	[ C(OP_READ) ] = {
1357 		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1358 		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
1359 	},
1360 	[ C(OP_WRITE) ] = {
1361 		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1362 		[ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
1363 	},
1364 	[ C(OP_PREFETCH) ] = {
1365 		[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
1366 		[ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
1367 	},
1368  },
1369  [ C(L1I ) ] = {
1370 	[ C(OP_READ) ] = {
1371 		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
1372 		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
1373 	},
1374 	[ C(OP_WRITE) ] = {
1375 		[ C(RESULT_ACCESS) ] = -1,
1376 		[ C(RESULT_MISS)   ] = -1,
1377 	},
1378 	[ C(OP_PREFETCH) ] = {
1379 		[ C(RESULT_ACCESS) ] = 0x0,
1380 		[ C(RESULT_MISS)   ] = 0x0,
1381 	},
1382  },
1383  [ C(LL  ) ] = {
1384 	[ C(OP_READ) ] = {
1385 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1386 		[ C(RESULT_ACCESS) ] = 0x01b7,
1387 		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1388 		[ C(RESULT_MISS)   ] = 0x01b7,
1389 	},
1390 	/*
1391 	 * Use RFO, not WRITEBACK, because a write miss would typically occur
1392 	 * on RFO.
1393 	 */
1394 	[ C(OP_WRITE) ] = {
1395 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1396 		[ C(RESULT_ACCESS) ] = 0x01b7,
1397 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1398 		[ C(RESULT_MISS)   ] = 0x01b7,
1399 	},
1400 	[ C(OP_PREFETCH) ] = {
1401 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1402 		[ C(RESULT_ACCESS) ] = 0x01b7,
1403 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1404 		[ C(RESULT_MISS)   ] = 0x01b7,
1405 	},
1406  },
1407  [ C(DTLB) ] = {
1408 	[ C(OP_READ) ] = {
1409 		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI   (alias)  */
1410 		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
1411 	},
1412 	[ C(OP_WRITE) ] = {
1413 		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI   (alias)  */
1414 		[ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
1415 	},
1416 	[ C(OP_PREFETCH) ] = {
1417 		[ C(RESULT_ACCESS) ] = 0x0,
1418 		[ C(RESULT_MISS)   ] = 0x0,
1419 	},
1420  },
1421  [ C(ITLB) ] = {
1422 	[ C(OP_READ) ] = {
1423 		[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
1424 		[ C(RESULT_MISS)   ] = 0x20c8, /* ITLB_MISS_RETIRED            */
1425 	},
1426 	[ C(OP_WRITE) ] = {
1427 		[ C(RESULT_ACCESS) ] = -1,
1428 		[ C(RESULT_MISS)   ] = -1,
1429 	},
1430 	[ C(OP_PREFETCH) ] = {
1431 		[ C(RESULT_ACCESS) ] = -1,
1432 		[ C(RESULT_MISS)   ] = -1,
1433 	},
1434  },
1435  [ C(BPU ) ] = {
1436 	[ C(OP_READ) ] = {
1437 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1438 		[ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1439 	},
1440 	[ C(OP_WRITE) ] = {
1441 		[ C(RESULT_ACCESS) ] = -1,
1442 		[ C(RESULT_MISS)   ] = -1,
1443 	},
1444 	[ C(OP_PREFETCH) ] = {
1445 		[ C(RESULT_ACCESS) ] = -1,
1446 		[ C(RESULT_MISS)   ] = -1,
1447 	},
1448  },
1449  [ C(NODE) ] = {
1450 	[ C(OP_READ) ] = {
1451 		[ C(RESULT_ACCESS) ] = 0x01b7,
1452 		[ C(RESULT_MISS)   ] = 0x01b7,
1453 	},
1454 	[ C(OP_WRITE) ] = {
1455 		[ C(RESULT_ACCESS) ] = 0x01b7,
1456 		[ C(RESULT_MISS)   ] = 0x01b7,
1457 	},
1458 	[ C(OP_PREFETCH) ] = {
1459 		[ C(RESULT_ACCESS) ] = 0x01b7,
1460 		[ C(RESULT_MISS)   ] = 0x01b7,
1461 	},
1462  },
1463 };
1464 
1465 static __initconst const u64 core2_hw_cache_event_ids
1466 				[PERF_COUNT_HW_CACHE_MAX]
1467 				[PERF_COUNT_HW_CACHE_OP_MAX]
1468 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1469 {
1470  [ C(L1D) ] = {
1471 	[ C(OP_READ) ] = {
1472 		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI          */
1473 		[ C(RESULT_MISS)   ] = 0x0140, /* L1D_CACHE_LD.I_STATE       */
1474 	},
1475 	[ C(OP_WRITE) ] = {
1476 		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI          */
1477 		[ C(RESULT_MISS)   ] = 0x0141, /* L1D_CACHE_ST.I_STATE       */
1478 	},
1479 	[ C(OP_PREFETCH) ] = {
1480 		[ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS      */
1481 		[ C(RESULT_MISS)   ] = 0,
1482 	},
1483  },
1484  [ C(L1I ) ] = {
1485 	[ C(OP_READ) ] = {
1486 		[ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS                  */
1487 		[ C(RESULT_MISS)   ] = 0x0081, /* L1I.MISSES                 */
1488 	},
1489 	[ C(OP_WRITE) ] = {
1490 		[ C(RESULT_ACCESS) ] = -1,
1491 		[ C(RESULT_MISS)   ] = -1,
1492 	},
1493 	[ C(OP_PREFETCH) ] = {
1494 		[ C(RESULT_ACCESS) ] = 0,
1495 		[ C(RESULT_MISS)   ] = 0,
1496 	},
1497  },
1498  [ C(LL  ) ] = {
1499 	[ C(OP_READ) ] = {
1500 		[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1501 		[ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1502 	},
1503 	[ C(OP_WRITE) ] = {
1504 		[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1505 		[ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1506 	},
1507 	[ C(OP_PREFETCH) ] = {
1508 		[ C(RESULT_ACCESS) ] = 0,
1509 		[ C(RESULT_MISS)   ] = 0,
1510 	},
1511  },
1512  [ C(DTLB) ] = {
1513 	[ C(OP_READ) ] = {
1514 		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI  (alias) */
1515 		[ C(RESULT_MISS)   ] = 0x0208, /* DTLB_MISSES.MISS_LD        */
1516 	},
1517 	[ C(OP_WRITE) ] = {
1518 		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI  (alias) */
1519 		[ C(RESULT_MISS)   ] = 0x0808, /* DTLB_MISSES.MISS_ST        */
1520 	},
1521 	[ C(OP_PREFETCH) ] = {
1522 		[ C(RESULT_ACCESS) ] = 0,
1523 		[ C(RESULT_MISS)   ] = 0,
1524 	},
1525  },
1526  [ C(ITLB) ] = {
1527 	[ C(OP_READ) ] = {
1528 		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1529 		[ C(RESULT_MISS)   ] = 0x1282, /* ITLBMISSES                 */
1530 	},
1531 	[ C(OP_WRITE) ] = {
1532 		[ C(RESULT_ACCESS) ] = -1,
1533 		[ C(RESULT_MISS)   ] = -1,
1534 	},
1535 	[ C(OP_PREFETCH) ] = {
1536 		[ C(RESULT_ACCESS) ] = -1,
1537 		[ C(RESULT_MISS)   ] = -1,
1538 	},
1539  },
1540  [ C(BPU ) ] = {
1541 	[ C(OP_READ) ] = {
1542 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1543 		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1544 	},
1545 	[ C(OP_WRITE) ] = {
1546 		[ C(RESULT_ACCESS) ] = -1,
1547 		[ C(RESULT_MISS)   ] = -1,
1548 	},
1549 	[ C(OP_PREFETCH) ] = {
1550 		[ C(RESULT_ACCESS) ] = -1,
1551 		[ C(RESULT_MISS)   ] = -1,
1552 	},
1553  },
1554 };
1555 
1556 static __initconst const u64 atom_hw_cache_event_ids
1557 				[PERF_COUNT_HW_CACHE_MAX]
1558 				[PERF_COUNT_HW_CACHE_OP_MAX]
1559 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1560 {
1561  [ C(L1D) ] = {
1562 	[ C(OP_READ) ] = {
1563 		[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD               */
1564 		[ C(RESULT_MISS)   ] = 0,
1565 	},
1566 	[ C(OP_WRITE) ] = {
1567 		[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST               */
1568 		[ C(RESULT_MISS)   ] = 0,
1569 	},
1570 	[ C(OP_PREFETCH) ] = {
1571 		[ C(RESULT_ACCESS) ] = 0x0,
1572 		[ C(RESULT_MISS)   ] = 0,
1573 	},
1574  },
1575  [ C(L1I ) ] = {
1576 	[ C(OP_READ) ] = {
1577 		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                  */
1578 		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                 */
1579 	},
1580 	[ C(OP_WRITE) ] = {
1581 		[ C(RESULT_ACCESS) ] = -1,
1582 		[ C(RESULT_MISS)   ] = -1,
1583 	},
1584 	[ C(OP_PREFETCH) ] = {
1585 		[ C(RESULT_ACCESS) ] = 0,
1586 		[ C(RESULT_MISS)   ] = 0,
1587 	},
1588  },
1589  [ C(LL  ) ] = {
1590 	[ C(OP_READ) ] = {
1591 		[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1592 		[ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1593 	},
1594 	[ C(OP_WRITE) ] = {
1595 		[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1596 		[ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1597 	},
1598 	[ C(OP_PREFETCH) ] = {
1599 		[ C(RESULT_ACCESS) ] = 0,
1600 		[ C(RESULT_MISS)   ] = 0,
1601 	},
1602  },
1603  [ C(DTLB) ] = {
1604 	[ C(OP_READ) ] = {
1605 		[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI  (alias) */
1606 		[ C(RESULT_MISS)   ] = 0x0508, /* DTLB_MISSES.MISS_LD        */
1607 	},
1608 	[ C(OP_WRITE) ] = {
1609 		[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI  (alias) */
1610 		[ C(RESULT_MISS)   ] = 0x0608, /* DTLB_MISSES.MISS_ST        */
1611 	},
1612 	[ C(OP_PREFETCH) ] = {
1613 		[ C(RESULT_ACCESS) ] = 0,
1614 		[ C(RESULT_MISS)   ] = 0,
1615 	},
1616  },
1617  [ C(ITLB) ] = {
1618 	[ C(OP_READ) ] = {
1619 		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1620 		[ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES                */
1621 	},
1622 	[ C(OP_WRITE) ] = {
1623 		[ C(RESULT_ACCESS) ] = -1,
1624 		[ C(RESULT_MISS)   ] = -1,
1625 	},
1626 	[ C(OP_PREFETCH) ] = {
1627 		[ C(RESULT_ACCESS) ] = -1,
1628 		[ C(RESULT_MISS)   ] = -1,
1629 	},
1630  },
1631  [ C(BPU ) ] = {
1632 	[ C(OP_READ) ] = {
1633 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1634 		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1635 	},
1636 	[ C(OP_WRITE) ] = {
1637 		[ C(RESULT_ACCESS) ] = -1,
1638 		[ C(RESULT_MISS)   ] = -1,
1639 	},
1640 	[ C(OP_PREFETCH) ] = {
1641 		[ C(RESULT_ACCESS) ] = -1,
1642 		[ C(RESULT_MISS)   ] = -1,
1643 	},
1644  },
1645 };
1646 
1647 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_slm, "event=0x3c");
1648 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_slm, "2");
1649 /* no_alloc_cycles.not_delivered */
1650 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_slm,
1651 	       "event=0xca,umask=0x50");
1652 EVENT_ATTR_STR(topdown-fetch-bubbles.scale, td_fetch_bubbles_scale_slm, "2");
1653 /* uops_retired.all */
1654 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_slm,
1655 	       "event=0xc2,umask=0x10");
1656 /* uops_retired.all */
1657 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_slm,
1658 	       "event=0xc2,umask=0x10");
1659 
1660 static struct attribute *slm_events_attrs[] = {
1661 	EVENT_PTR(td_total_slots_slm),
1662 	EVENT_PTR(td_total_slots_scale_slm),
1663 	EVENT_PTR(td_fetch_bubbles_slm),
1664 	EVENT_PTR(td_fetch_bubbles_scale_slm),
1665 	EVENT_PTR(td_slots_issued_slm),
1666 	EVENT_PTR(td_slots_retired_slm),
1667 	NULL
1668 };
1669 
1670 static struct extra_reg intel_slm_extra_regs[] __read_mostly =
1671 {
1672 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1673 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
1674 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1),
1675 	EVENT_EXTRA_END
1676 };
1677 
1678 #define SLM_DMND_READ		SNB_DMND_DATA_RD
1679 #define SLM_DMND_WRITE		SNB_DMND_RFO
1680 #define SLM_DMND_PREFETCH	(SNB_PF_DATA_RD|SNB_PF_RFO)
1681 
1682 #define SLM_SNP_ANY		(SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
1683 #define SLM_LLC_ACCESS		SNB_RESP_ANY
1684 #define SLM_LLC_MISS		(SLM_SNP_ANY|SNB_NON_DRAM)
1685 
1686 static __initconst const u64 slm_hw_cache_extra_regs
1687 				[PERF_COUNT_HW_CACHE_MAX]
1688 				[PERF_COUNT_HW_CACHE_OP_MAX]
1689 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1690 {
1691  [ C(LL  ) ] = {
1692 	[ C(OP_READ) ] = {
1693 		[ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
1694 		[ C(RESULT_MISS)   ] = 0,
1695 	},
1696 	[ C(OP_WRITE) ] = {
1697 		[ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
1698 		[ C(RESULT_MISS)   ] = SLM_DMND_WRITE|SLM_LLC_MISS,
1699 	},
1700 	[ C(OP_PREFETCH) ] = {
1701 		[ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
1702 		[ C(RESULT_MISS)   ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
1703 	},
1704  },
1705 };
1706 
1707 static __initconst const u64 slm_hw_cache_event_ids
1708 				[PERF_COUNT_HW_CACHE_MAX]
1709 				[PERF_COUNT_HW_CACHE_OP_MAX]
1710 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1711 {
1712  [ C(L1D) ] = {
1713 	[ C(OP_READ) ] = {
1714 		[ C(RESULT_ACCESS) ] = 0,
1715 		[ C(RESULT_MISS)   ] = 0x0104, /* LD_DCU_MISS */
1716 	},
1717 	[ C(OP_WRITE) ] = {
1718 		[ C(RESULT_ACCESS) ] = 0,
1719 		[ C(RESULT_MISS)   ] = 0,
1720 	},
1721 	[ C(OP_PREFETCH) ] = {
1722 		[ C(RESULT_ACCESS) ] = 0,
1723 		[ C(RESULT_MISS)   ] = 0,
1724 	},
1725  },
1726  [ C(L1I ) ] = {
1727 	[ C(OP_READ) ] = {
1728 		[ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
1729 		[ C(RESULT_MISS)   ] = 0x0280, /* ICACGE.MISSES */
1730 	},
1731 	[ C(OP_WRITE) ] = {
1732 		[ C(RESULT_ACCESS) ] = -1,
1733 		[ C(RESULT_MISS)   ] = -1,
1734 	},
1735 	[ C(OP_PREFETCH) ] = {
1736 		[ C(RESULT_ACCESS) ] = 0,
1737 		[ C(RESULT_MISS)   ] = 0,
1738 	},
1739  },
1740  [ C(LL  ) ] = {
1741 	[ C(OP_READ) ] = {
1742 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1743 		[ C(RESULT_ACCESS) ] = 0x01b7,
1744 		[ C(RESULT_MISS)   ] = 0,
1745 	},
1746 	[ C(OP_WRITE) ] = {
1747 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1748 		[ C(RESULT_ACCESS) ] = 0x01b7,
1749 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1750 		[ C(RESULT_MISS)   ] = 0x01b7,
1751 	},
1752 	[ C(OP_PREFETCH) ] = {
1753 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1754 		[ C(RESULT_ACCESS) ] = 0x01b7,
1755 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1756 		[ C(RESULT_MISS)   ] = 0x01b7,
1757 	},
1758  },
1759  [ C(DTLB) ] = {
1760 	[ C(OP_READ) ] = {
1761 		[ C(RESULT_ACCESS) ] = 0,
1762 		[ C(RESULT_MISS)   ] = 0x0804, /* LD_DTLB_MISS */
1763 	},
1764 	[ C(OP_WRITE) ] = {
1765 		[ C(RESULT_ACCESS) ] = 0,
1766 		[ C(RESULT_MISS)   ] = 0,
1767 	},
1768 	[ C(OP_PREFETCH) ] = {
1769 		[ C(RESULT_ACCESS) ] = 0,
1770 		[ C(RESULT_MISS)   ] = 0,
1771 	},
1772  },
1773  [ C(ITLB) ] = {
1774 	[ C(OP_READ) ] = {
1775 		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1776 		[ C(RESULT_MISS)   ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
1777 	},
1778 	[ C(OP_WRITE) ] = {
1779 		[ C(RESULT_ACCESS) ] = -1,
1780 		[ C(RESULT_MISS)   ] = -1,
1781 	},
1782 	[ C(OP_PREFETCH) ] = {
1783 		[ C(RESULT_ACCESS) ] = -1,
1784 		[ C(RESULT_MISS)   ] = -1,
1785 	},
1786  },
1787  [ C(BPU ) ] = {
1788 	[ C(OP_READ) ] = {
1789 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1790 		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1791 	},
1792 	[ C(OP_WRITE) ] = {
1793 		[ C(RESULT_ACCESS) ] = -1,
1794 		[ C(RESULT_MISS)   ] = -1,
1795 	},
1796 	[ C(OP_PREFETCH) ] = {
1797 		[ C(RESULT_ACCESS) ] = -1,
1798 		[ C(RESULT_MISS)   ] = -1,
1799 	},
1800  },
1801 };
1802 
1803 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_glm, "event=0x3c");
1804 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_glm, "3");
1805 /* UOPS_NOT_DELIVERED.ANY */
1806 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_glm, "event=0x9c");
1807 /* ISSUE_SLOTS_NOT_CONSUMED.RECOVERY */
1808 EVENT_ATTR_STR(topdown-recovery-bubbles, td_recovery_bubbles_glm, "event=0xca,umask=0x02");
1809 /* UOPS_RETIRED.ANY */
1810 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_glm, "event=0xc2");
1811 /* UOPS_ISSUED.ANY */
1812 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_glm, "event=0x0e");
1813 
1814 static struct attribute *glm_events_attrs[] = {
1815 	EVENT_PTR(td_total_slots_glm),
1816 	EVENT_PTR(td_total_slots_scale_glm),
1817 	EVENT_PTR(td_fetch_bubbles_glm),
1818 	EVENT_PTR(td_recovery_bubbles_glm),
1819 	EVENT_PTR(td_slots_issued_glm),
1820 	EVENT_PTR(td_slots_retired_glm),
1821 	NULL
1822 };
1823 
1824 static struct extra_reg intel_glm_extra_regs[] __read_mostly = {
1825 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1826 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x760005ffbfull, RSP_0),
1827 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x360005ffbfull, RSP_1),
1828 	EVENT_EXTRA_END
1829 };
1830 
1831 #define GLM_DEMAND_DATA_RD		BIT_ULL(0)
1832 #define GLM_DEMAND_RFO			BIT_ULL(1)
1833 #define GLM_ANY_RESPONSE		BIT_ULL(16)
1834 #define GLM_SNP_NONE_OR_MISS		BIT_ULL(33)
1835 #define GLM_DEMAND_READ			GLM_DEMAND_DATA_RD
1836 #define GLM_DEMAND_WRITE		GLM_DEMAND_RFO
1837 #define GLM_DEMAND_PREFETCH		(SNB_PF_DATA_RD|SNB_PF_RFO)
1838 #define GLM_LLC_ACCESS			GLM_ANY_RESPONSE
1839 #define GLM_SNP_ANY			(GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM)
1840 #define GLM_LLC_MISS			(GLM_SNP_ANY|SNB_NON_DRAM)
1841 
1842 static __initconst const u64 glm_hw_cache_event_ids
1843 				[PERF_COUNT_HW_CACHE_MAX]
1844 				[PERF_COUNT_HW_CACHE_OP_MAX]
1845 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1846 	[C(L1D)] = {
1847 		[C(OP_READ)] = {
1848 			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1849 			[C(RESULT_MISS)]	= 0x0,
1850 		},
1851 		[C(OP_WRITE)] = {
1852 			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1853 			[C(RESULT_MISS)]	= 0x0,
1854 		},
1855 		[C(OP_PREFETCH)] = {
1856 			[C(RESULT_ACCESS)]	= 0x0,
1857 			[C(RESULT_MISS)]	= 0x0,
1858 		},
1859 	},
1860 	[C(L1I)] = {
1861 		[C(OP_READ)] = {
1862 			[C(RESULT_ACCESS)]	= 0x0380,	/* ICACHE.ACCESSES */
1863 			[C(RESULT_MISS)]	= 0x0280,	/* ICACHE.MISSES */
1864 		},
1865 		[C(OP_WRITE)] = {
1866 			[C(RESULT_ACCESS)]	= -1,
1867 			[C(RESULT_MISS)]	= -1,
1868 		},
1869 		[C(OP_PREFETCH)] = {
1870 			[C(RESULT_ACCESS)]	= 0x0,
1871 			[C(RESULT_MISS)]	= 0x0,
1872 		},
1873 	},
1874 	[C(LL)] = {
1875 		[C(OP_READ)] = {
1876 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1877 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1878 		},
1879 		[C(OP_WRITE)] = {
1880 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1881 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1882 		},
1883 		[C(OP_PREFETCH)] = {
1884 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1885 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1886 		},
1887 	},
1888 	[C(DTLB)] = {
1889 		[C(OP_READ)] = {
1890 			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1891 			[C(RESULT_MISS)]	= 0x0,
1892 		},
1893 		[C(OP_WRITE)] = {
1894 			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1895 			[C(RESULT_MISS)]	= 0x0,
1896 		},
1897 		[C(OP_PREFETCH)] = {
1898 			[C(RESULT_ACCESS)]	= 0x0,
1899 			[C(RESULT_MISS)]	= 0x0,
1900 		},
1901 	},
1902 	[C(ITLB)] = {
1903 		[C(OP_READ)] = {
1904 			[C(RESULT_ACCESS)]	= 0x00c0,	/* INST_RETIRED.ANY_P */
1905 			[C(RESULT_MISS)]	= 0x0481,	/* ITLB.MISS */
1906 		},
1907 		[C(OP_WRITE)] = {
1908 			[C(RESULT_ACCESS)]	= -1,
1909 			[C(RESULT_MISS)]	= -1,
1910 		},
1911 		[C(OP_PREFETCH)] = {
1912 			[C(RESULT_ACCESS)]	= -1,
1913 			[C(RESULT_MISS)]	= -1,
1914 		},
1915 	},
1916 	[C(BPU)] = {
1917 		[C(OP_READ)] = {
1918 			[C(RESULT_ACCESS)]	= 0x00c4,	/* BR_INST_RETIRED.ALL_BRANCHES */
1919 			[C(RESULT_MISS)]	= 0x00c5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
1920 		},
1921 		[C(OP_WRITE)] = {
1922 			[C(RESULT_ACCESS)]	= -1,
1923 			[C(RESULT_MISS)]	= -1,
1924 		},
1925 		[C(OP_PREFETCH)] = {
1926 			[C(RESULT_ACCESS)]	= -1,
1927 			[C(RESULT_MISS)]	= -1,
1928 		},
1929 	},
1930 };
1931 
1932 static __initconst const u64 glm_hw_cache_extra_regs
1933 				[PERF_COUNT_HW_CACHE_MAX]
1934 				[PERF_COUNT_HW_CACHE_OP_MAX]
1935 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1936 	[C(LL)] = {
1937 		[C(OP_READ)] = {
1938 			[C(RESULT_ACCESS)]	= GLM_DEMAND_READ|
1939 						  GLM_LLC_ACCESS,
1940 			[C(RESULT_MISS)]	= GLM_DEMAND_READ|
1941 						  GLM_LLC_MISS,
1942 		},
1943 		[C(OP_WRITE)] = {
1944 			[C(RESULT_ACCESS)]	= GLM_DEMAND_WRITE|
1945 						  GLM_LLC_ACCESS,
1946 			[C(RESULT_MISS)]	= GLM_DEMAND_WRITE|
1947 						  GLM_LLC_MISS,
1948 		},
1949 		[C(OP_PREFETCH)] = {
1950 			[C(RESULT_ACCESS)]	= GLM_DEMAND_PREFETCH|
1951 						  GLM_LLC_ACCESS,
1952 			[C(RESULT_MISS)]	= GLM_DEMAND_PREFETCH|
1953 						  GLM_LLC_MISS,
1954 		},
1955 	},
1956 };
1957 
1958 static __initconst const u64 glp_hw_cache_event_ids
1959 				[PERF_COUNT_HW_CACHE_MAX]
1960 				[PERF_COUNT_HW_CACHE_OP_MAX]
1961 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1962 	[C(L1D)] = {
1963 		[C(OP_READ)] = {
1964 			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1965 			[C(RESULT_MISS)]	= 0x0,
1966 		},
1967 		[C(OP_WRITE)] = {
1968 			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1969 			[C(RESULT_MISS)]	= 0x0,
1970 		},
1971 		[C(OP_PREFETCH)] = {
1972 			[C(RESULT_ACCESS)]	= 0x0,
1973 			[C(RESULT_MISS)]	= 0x0,
1974 		},
1975 	},
1976 	[C(L1I)] = {
1977 		[C(OP_READ)] = {
1978 			[C(RESULT_ACCESS)]	= 0x0380,	/* ICACHE.ACCESSES */
1979 			[C(RESULT_MISS)]	= 0x0280,	/* ICACHE.MISSES */
1980 		},
1981 		[C(OP_WRITE)] = {
1982 			[C(RESULT_ACCESS)]	= -1,
1983 			[C(RESULT_MISS)]	= -1,
1984 		},
1985 		[C(OP_PREFETCH)] = {
1986 			[C(RESULT_ACCESS)]	= 0x0,
1987 			[C(RESULT_MISS)]	= 0x0,
1988 		},
1989 	},
1990 	[C(LL)] = {
1991 		[C(OP_READ)] = {
1992 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1993 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1994 		},
1995 		[C(OP_WRITE)] = {
1996 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1997 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1998 		},
1999 		[C(OP_PREFETCH)] = {
2000 			[C(RESULT_ACCESS)]	= 0x0,
2001 			[C(RESULT_MISS)]	= 0x0,
2002 		},
2003 	},
2004 	[C(DTLB)] = {
2005 		[C(OP_READ)] = {
2006 			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
2007 			[C(RESULT_MISS)]	= 0xe08,	/* DTLB_LOAD_MISSES.WALK_COMPLETED */
2008 		},
2009 		[C(OP_WRITE)] = {
2010 			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
2011 			[C(RESULT_MISS)]	= 0xe49,	/* DTLB_STORE_MISSES.WALK_COMPLETED */
2012 		},
2013 		[C(OP_PREFETCH)] = {
2014 			[C(RESULT_ACCESS)]	= 0x0,
2015 			[C(RESULT_MISS)]	= 0x0,
2016 		},
2017 	},
2018 	[C(ITLB)] = {
2019 		[C(OP_READ)] = {
2020 			[C(RESULT_ACCESS)]	= 0x00c0,	/* INST_RETIRED.ANY_P */
2021 			[C(RESULT_MISS)]	= 0x0481,	/* ITLB.MISS */
2022 		},
2023 		[C(OP_WRITE)] = {
2024 			[C(RESULT_ACCESS)]	= -1,
2025 			[C(RESULT_MISS)]	= -1,
2026 		},
2027 		[C(OP_PREFETCH)] = {
2028 			[C(RESULT_ACCESS)]	= -1,
2029 			[C(RESULT_MISS)]	= -1,
2030 		},
2031 	},
2032 	[C(BPU)] = {
2033 		[C(OP_READ)] = {
2034 			[C(RESULT_ACCESS)]	= 0x00c4,	/* BR_INST_RETIRED.ALL_BRANCHES */
2035 			[C(RESULT_MISS)]	= 0x00c5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
2036 		},
2037 		[C(OP_WRITE)] = {
2038 			[C(RESULT_ACCESS)]	= -1,
2039 			[C(RESULT_MISS)]	= -1,
2040 		},
2041 		[C(OP_PREFETCH)] = {
2042 			[C(RESULT_ACCESS)]	= -1,
2043 			[C(RESULT_MISS)]	= -1,
2044 		},
2045 	},
2046 };
2047 
2048 static __initconst const u64 glp_hw_cache_extra_regs
2049 				[PERF_COUNT_HW_CACHE_MAX]
2050 				[PERF_COUNT_HW_CACHE_OP_MAX]
2051 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2052 	[C(LL)] = {
2053 		[C(OP_READ)] = {
2054 			[C(RESULT_ACCESS)]	= GLM_DEMAND_READ|
2055 						  GLM_LLC_ACCESS,
2056 			[C(RESULT_MISS)]	= GLM_DEMAND_READ|
2057 						  GLM_LLC_MISS,
2058 		},
2059 		[C(OP_WRITE)] = {
2060 			[C(RESULT_ACCESS)]	= GLM_DEMAND_WRITE|
2061 						  GLM_LLC_ACCESS,
2062 			[C(RESULT_MISS)]	= GLM_DEMAND_WRITE|
2063 						  GLM_LLC_MISS,
2064 		},
2065 		[C(OP_PREFETCH)] = {
2066 			[C(RESULT_ACCESS)]	= 0x0,
2067 			[C(RESULT_MISS)]	= 0x0,
2068 		},
2069 	},
2070 };
2071 
2072 #define TNT_LOCAL_DRAM			BIT_ULL(26)
2073 #define TNT_DEMAND_READ			GLM_DEMAND_DATA_RD
2074 #define TNT_DEMAND_WRITE		GLM_DEMAND_RFO
2075 #define TNT_LLC_ACCESS			GLM_ANY_RESPONSE
2076 #define TNT_SNP_ANY			(SNB_SNP_NOT_NEEDED|SNB_SNP_MISS| \
2077 					 SNB_NO_FWD|SNB_SNP_FWD|SNB_HITM)
2078 #define TNT_LLC_MISS			(TNT_SNP_ANY|SNB_NON_DRAM|TNT_LOCAL_DRAM)
2079 
2080 static __initconst const u64 tnt_hw_cache_extra_regs
2081 				[PERF_COUNT_HW_CACHE_MAX]
2082 				[PERF_COUNT_HW_CACHE_OP_MAX]
2083 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2084 	[C(LL)] = {
2085 		[C(OP_READ)] = {
2086 			[C(RESULT_ACCESS)]	= TNT_DEMAND_READ|
2087 						  TNT_LLC_ACCESS,
2088 			[C(RESULT_MISS)]	= TNT_DEMAND_READ|
2089 						  TNT_LLC_MISS,
2090 		},
2091 		[C(OP_WRITE)] = {
2092 			[C(RESULT_ACCESS)]	= TNT_DEMAND_WRITE|
2093 						  TNT_LLC_ACCESS,
2094 			[C(RESULT_MISS)]	= TNT_DEMAND_WRITE|
2095 						  TNT_LLC_MISS,
2096 		},
2097 		[C(OP_PREFETCH)] = {
2098 			[C(RESULT_ACCESS)]	= 0x0,
2099 			[C(RESULT_MISS)]	= 0x0,
2100 		},
2101 	},
2102 };
2103 
2104 EVENT_ATTR_STR(topdown-fe-bound,       td_fe_bound_tnt,        "event=0x71,umask=0x0");
2105 EVENT_ATTR_STR(topdown-retiring,       td_retiring_tnt,        "event=0xc2,umask=0x0");
2106 EVENT_ATTR_STR(topdown-bad-spec,       td_bad_spec_tnt,        "event=0x73,umask=0x6");
2107 EVENT_ATTR_STR(topdown-be-bound,       td_be_bound_tnt,        "event=0x74,umask=0x0");
2108 
2109 static struct attribute *tnt_events_attrs[] = {
2110 	EVENT_PTR(td_fe_bound_tnt),
2111 	EVENT_PTR(td_retiring_tnt),
2112 	EVENT_PTR(td_bad_spec_tnt),
2113 	EVENT_PTR(td_be_bound_tnt),
2114 	NULL,
2115 };
2116 
2117 static struct extra_reg intel_tnt_extra_regs[] __read_mostly = {
2118 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
2119 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x800ff0ffffff9fffull, RSP_0),
2120 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0xff0ffffff9fffull, RSP_1),
2121 	EVENT_EXTRA_END
2122 };
2123 
2124 EVENT_ATTR_STR(mem-loads,	mem_ld_grt,	"event=0xd0,umask=0x5,ldlat=3");
2125 EVENT_ATTR_STR(mem-stores,	mem_st_grt,	"event=0xd0,umask=0x6");
2126 
2127 static struct attribute *grt_mem_attrs[] = {
2128 	EVENT_PTR(mem_ld_grt),
2129 	EVENT_PTR(mem_st_grt),
2130 	NULL
2131 };
2132 
2133 static struct extra_reg intel_grt_extra_regs[] __read_mostly = {
2134 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
2135 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
2136 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
2137 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x5d0),
2138 	EVENT_EXTRA_END
2139 };
2140 
2141 EVENT_ATTR_STR(topdown-retiring,       td_retiring_cmt,        "event=0x72,umask=0x0");
2142 EVENT_ATTR_STR(topdown-bad-spec,       td_bad_spec_cmt,        "event=0x73,umask=0x0");
2143 
2144 static struct attribute *cmt_events_attrs[] = {
2145 	EVENT_PTR(td_fe_bound_tnt),
2146 	EVENT_PTR(td_retiring_cmt),
2147 	EVENT_PTR(td_bad_spec_cmt),
2148 	EVENT_PTR(td_be_bound_tnt),
2149 	NULL
2150 };
2151 
2152 static struct extra_reg intel_cmt_extra_regs[] __read_mostly = {
2153 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
2154 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x800ff3ffffffffffull, RSP_0),
2155 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0xff3ffffffffffull, RSP_1),
2156 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x5d0),
2157 	INTEL_UEVENT_EXTRA_REG(0x0127, MSR_SNOOP_RSP_0, 0xffffffffffffffffull, SNOOP_0),
2158 	INTEL_UEVENT_EXTRA_REG(0x0227, MSR_SNOOP_RSP_1, 0xffffffffffffffffull, SNOOP_1),
2159 	EVENT_EXTRA_END
2160 };
2161 
2162 #define KNL_OT_L2_HITE		BIT_ULL(19) /* Other Tile L2 Hit */
2163 #define KNL_OT_L2_HITF		BIT_ULL(20) /* Other Tile L2 Hit */
2164 #define KNL_MCDRAM_LOCAL	BIT_ULL(21)
2165 #define KNL_MCDRAM_FAR		BIT_ULL(22)
2166 #define KNL_DDR_LOCAL		BIT_ULL(23)
2167 #define KNL_DDR_FAR		BIT_ULL(24)
2168 #define KNL_DRAM_ANY		(KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \
2169 				    KNL_DDR_LOCAL | KNL_DDR_FAR)
2170 #define KNL_L2_READ		SLM_DMND_READ
2171 #define KNL_L2_WRITE		SLM_DMND_WRITE
2172 #define KNL_L2_PREFETCH		SLM_DMND_PREFETCH
2173 #define KNL_L2_ACCESS		SLM_LLC_ACCESS
2174 #define KNL_L2_MISS		(KNL_OT_L2_HITE | KNL_OT_L2_HITF | \
2175 				   KNL_DRAM_ANY | SNB_SNP_ANY | \
2176 						  SNB_NON_DRAM)
2177 
2178 static __initconst const u64 knl_hw_cache_extra_regs
2179 				[PERF_COUNT_HW_CACHE_MAX]
2180 				[PERF_COUNT_HW_CACHE_OP_MAX]
2181 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2182 	[C(LL)] = {
2183 		[C(OP_READ)] = {
2184 			[C(RESULT_ACCESS)] = KNL_L2_READ | KNL_L2_ACCESS,
2185 			[C(RESULT_MISS)]   = 0,
2186 		},
2187 		[C(OP_WRITE)] = {
2188 			[C(RESULT_ACCESS)] = KNL_L2_WRITE | KNL_L2_ACCESS,
2189 			[C(RESULT_MISS)]   = KNL_L2_WRITE | KNL_L2_MISS,
2190 		},
2191 		[C(OP_PREFETCH)] = {
2192 			[C(RESULT_ACCESS)] = KNL_L2_PREFETCH | KNL_L2_ACCESS,
2193 			[C(RESULT_MISS)]   = KNL_L2_PREFETCH | KNL_L2_MISS,
2194 		},
2195 	},
2196 };
2197 
2198 /*
2199  * Used from PMIs where the LBRs are already disabled.
2200  *
2201  * This function could be called consecutively. It is required to remain in
2202  * disabled state if called consecutively.
2203  *
2204  * During consecutive calls, the same disable value will be written to related
2205  * registers, so the PMU state remains unchanged.
2206  *
2207  * intel_bts events don't coexist with intel PMU's BTS events because of
2208  * x86_add_exclusive(x86_lbr_exclusive_lbr); there's no need to keep them
2209  * disabled around intel PMU's event batching etc, only inside the PMI handler.
2210  *
2211  * Avoid PEBS_ENABLE MSR access in PMIs.
2212  * The GLOBAL_CTRL has been disabled. All the counters do not count anymore.
2213  * It doesn't matter if the PEBS is enabled or not.
2214  * Usually, the PEBS status are not changed in PMIs. It's unnecessary to
2215  * access PEBS_ENABLE MSR in disable_all()/enable_all().
2216  * However, there are some cases which may change PEBS status, e.g. PMI
2217  * throttle. The PEBS_ENABLE should be updated where the status changes.
2218  */
2219 static __always_inline void __intel_pmu_disable_all(bool bts)
2220 {
2221 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2222 
2223 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
2224 
2225 	if (bts && test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
2226 		intel_pmu_disable_bts();
2227 }
2228 
2229 static __always_inline void intel_pmu_disable_all(void)
2230 {
2231 	__intel_pmu_disable_all(true);
2232 	intel_pmu_pebs_disable_all();
2233 	intel_pmu_lbr_disable_all();
2234 }
2235 
2236 static void __intel_pmu_enable_all(int added, bool pmi)
2237 {
2238 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2239 	u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
2240 
2241 	intel_pmu_lbr_enable_all(pmi);
2242 
2243 	if (cpuc->fixed_ctrl_val != cpuc->active_fixed_ctrl_val) {
2244 		wrmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, cpuc->fixed_ctrl_val);
2245 		cpuc->active_fixed_ctrl_val = cpuc->fixed_ctrl_val;
2246 	}
2247 
2248 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
2249 	       intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
2250 
2251 	if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
2252 		struct perf_event *event =
2253 			cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
2254 
2255 		if (WARN_ON_ONCE(!event))
2256 			return;
2257 
2258 		intel_pmu_enable_bts(event->hw.config);
2259 	}
2260 }
2261 
2262 static void intel_pmu_enable_all(int added)
2263 {
2264 	intel_pmu_pebs_enable_all();
2265 	__intel_pmu_enable_all(added, false);
2266 }
2267 
2268 static noinline int
2269 __intel_pmu_snapshot_branch_stack(struct perf_branch_entry *entries,
2270 				  unsigned int cnt, unsigned long flags)
2271 {
2272 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2273 
2274 	intel_pmu_lbr_read();
2275 	cnt = min_t(unsigned int, cnt, x86_pmu.lbr_nr);
2276 
2277 	memcpy(entries, cpuc->lbr_entries, sizeof(struct perf_branch_entry) * cnt);
2278 	intel_pmu_enable_all(0);
2279 	local_irq_restore(flags);
2280 	return cnt;
2281 }
2282 
2283 static int
2284 intel_pmu_snapshot_branch_stack(struct perf_branch_entry *entries, unsigned int cnt)
2285 {
2286 	unsigned long flags;
2287 
2288 	/* must not have branches... */
2289 	local_irq_save(flags);
2290 	__intel_pmu_disable_all(false); /* we don't care about BTS */
2291 	__intel_pmu_lbr_disable();
2292 	/*            ... until here */
2293 	return __intel_pmu_snapshot_branch_stack(entries, cnt, flags);
2294 }
2295 
2296 static int
2297 intel_pmu_snapshot_arch_branch_stack(struct perf_branch_entry *entries, unsigned int cnt)
2298 {
2299 	unsigned long flags;
2300 
2301 	/* must not have branches... */
2302 	local_irq_save(flags);
2303 	__intel_pmu_disable_all(false); /* we don't care about BTS */
2304 	__intel_pmu_arch_lbr_disable();
2305 	/*            ... until here */
2306 	return __intel_pmu_snapshot_branch_stack(entries, cnt, flags);
2307 }
2308 
2309 /*
2310  * Workaround for:
2311  *   Intel Errata AAK100 (model 26)
2312  *   Intel Errata AAP53  (model 30)
2313  *   Intel Errata BD53   (model 44)
2314  *
2315  * The official story:
2316  *   These chips need to be 'reset' when adding counters by programming the
2317  *   magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
2318  *   in sequence on the same PMC or on different PMCs.
2319  *
2320  * In practice it appears some of these events do in fact count, and
2321  * we need to program all 4 events.
2322  */
2323 static void intel_pmu_nhm_workaround(void)
2324 {
2325 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2326 	static const unsigned long nhm_magic[4] = {
2327 		0x4300B5,
2328 		0x4300D2,
2329 		0x4300B1,
2330 		0x4300B1
2331 	};
2332 	struct perf_event *event;
2333 	int i;
2334 
2335 	/*
2336 	 * The Errata requires below steps:
2337 	 * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
2338 	 * 2) Configure 4 PERFEVTSELx with the magic events and clear
2339 	 *    the corresponding PMCx;
2340 	 * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
2341 	 * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
2342 	 * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
2343 	 */
2344 
2345 	/*
2346 	 * The real steps we choose are a little different from above.
2347 	 * A) To reduce MSR operations, we don't run step 1) as they
2348 	 *    are already cleared before this function is called;
2349 	 * B) Call x86_perf_event_update to save PMCx before configuring
2350 	 *    PERFEVTSELx with magic number;
2351 	 * C) With step 5), we do clear only when the PERFEVTSELx is
2352 	 *    not used currently.
2353 	 * D) Call x86_perf_event_set_period to restore PMCx;
2354 	 */
2355 
2356 	/* We always operate 4 pairs of PERF Counters */
2357 	for (i = 0; i < 4; i++) {
2358 		event = cpuc->events[i];
2359 		if (event)
2360 			static_call(x86_pmu_update)(event);
2361 	}
2362 
2363 	for (i = 0; i < 4; i++) {
2364 		wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
2365 		wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
2366 	}
2367 
2368 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
2369 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
2370 
2371 	for (i = 0; i < 4; i++) {
2372 		event = cpuc->events[i];
2373 
2374 		if (event) {
2375 			static_call(x86_pmu_set_period)(event);
2376 			__x86_pmu_enable_event(&event->hw,
2377 					ARCH_PERFMON_EVENTSEL_ENABLE);
2378 		} else
2379 			wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
2380 	}
2381 }
2382 
2383 static void intel_pmu_nhm_enable_all(int added)
2384 {
2385 	if (added)
2386 		intel_pmu_nhm_workaround();
2387 	intel_pmu_enable_all(added);
2388 }
2389 
2390 static void intel_set_tfa(struct cpu_hw_events *cpuc, bool on)
2391 {
2392 	u64 val = on ? MSR_TFA_RTM_FORCE_ABORT : 0;
2393 
2394 	if (cpuc->tfa_shadow != val) {
2395 		cpuc->tfa_shadow = val;
2396 		wrmsrl(MSR_TSX_FORCE_ABORT, val);
2397 	}
2398 }
2399 
2400 static void intel_tfa_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
2401 {
2402 	/*
2403 	 * We're going to use PMC3, make sure TFA is set before we touch it.
2404 	 */
2405 	if (cntr == 3)
2406 		intel_set_tfa(cpuc, true);
2407 }
2408 
2409 static void intel_tfa_pmu_enable_all(int added)
2410 {
2411 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2412 
2413 	/*
2414 	 * If we find PMC3 is no longer used when we enable the PMU, we can
2415 	 * clear TFA.
2416 	 */
2417 	if (!test_bit(3, cpuc->active_mask))
2418 		intel_set_tfa(cpuc, false);
2419 
2420 	intel_pmu_enable_all(added);
2421 }
2422 
2423 static inline u64 intel_pmu_get_status(void)
2424 {
2425 	u64 status;
2426 
2427 	rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
2428 
2429 	return status;
2430 }
2431 
2432 static inline void intel_pmu_ack_status(u64 ack)
2433 {
2434 	wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
2435 }
2436 
2437 static inline bool event_is_checkpointed(struct perf_event *event)
2438 {
2439 	return unlikely(event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
2440 }
2441 
2442 static inline void intel_set_masks(struct perf_event *event, int idx)
2443 {
2444 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2445 
2446 	if (event->attr.exclude_host)
2447 		__set_bit(idx, (unsigned long *)&cpuc->intel_ctrl_guest_mask);
2448 	if (event->attr.exclude_guest)
2449 		__set_bit(idx, (unsigned long *)&cpuc->intel_ctrl_host_mask);
2450 	if (event_is_checkpointed(event))
2451 		__set_bit(idx, (unsigned long *)&cpuc->intel_cp_status);
2452 }
2453 
2454 static inline void intel_clear_masks(struct perf_event *event, int idx)
2455 {
2456 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2457 
2458 	__clear_bit(idx, (unsigned long *)&cpuc->intel_ctrl_guest_mask);
2459 	__clear_bit(idx, (unsigned long *)&cpuc->intel_ctrl_host_mask);
2460 	__clear_bit(idx, (unsigned long *)&cpuc->intel_cp_status);
2461 }
2462 
2463 static void intel_pmu_disable_fixed(struct perf_event *event)
2464 {
2465 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2466 	struct hw_perf_event *hwc = &event->hw;
2467 	int idx = hwc->idx;
2468 	u64 mask;
2469 
2470 	if (is_topdown_idx(idx)) {
2471 		struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2472 
2473 		/*
2474 		 * When there are other active TopDown events,
2475 		 * don't disable the fixed counter 3.
2476 		 */
2477 		if (*(u64 *)cpuc->active_mask & INTEL_PMC_OTHER_TOPDOWN_BITS(idx))
2478 			return;
2479 		idx = INTEL_PMC_IDX_FIXED_SLOTS;
2480 	}
2481 
2482 	intel_clear_masks(event, idx);
2483 
2484 	mask = intel_fixed_bits_by_idx(idx - INTEL_PMC_IDX_FIXED, INTEL_FIXED_BITS_MASK);
2485 	cpuc->fixed_ctrl_val &= ~mask;
2486 }
2487 
2488 static void intel_pmu_disable_event(struct perf_event *event)
2489 {
2490 	struct hw_perf_event *hwc = &event->hw;
2491 	int idx = hwc->idx;
2492 
2493 	switch (idx) {
2494 	case 0 ... INTEL_PMC_IDX_FIXED - 1:
2495 		intel_clear_masks(event, idx);
2496 		x86_pmu_disable_event(event);
2497 		break;
2498 	case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS - 1:
2499 	case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
2500 		intel_pmu_disable_fixed(event);
2501 		break;
2502 	case INTEL_PMC_IDX_FIXED_BTS:
2503 		intel_pmu_disable_bts();
2504 		intel_pmu_drain_bts_buffer();
2505 		return;
2506 	case INTEL_PMC_IDX_FIXED_VLBR:
2507 		intel_clear_masks(event, idx);
2508 		break;
2509 	default:
2510 		intel_clear_masks(event, idx);
2511 		pr_warn("Failed to disable the event with invalid index %d\n",
2512 			idx);
2513 		return;
2514 	}
2515 
2516 	/*
2517 	 * Needs to be called after x86_pmu_disable_event,
2518 	 * so we don't trigger the event without PEBS bit set.
2519 	 */
2520 	if (unlikely(event->attr.precise_ip))
2521 		intel_pmu_pebs_disable(event);
2522 }
2523 
2524 static void intel_pmu_assign_event(struct perf_event *event, int idx)
2525 {
2526 	if (is_pebs_pt(event))
2527 		perf_report_aux_output_id(event, idx);
2528 }
2529 
2530 static void intel_pmu_del_event(struct perf_event *event)
2531 {
2532 	if (needs_branch_stack(event))
2533 		intel_pmu_lbr_del(event);
2534 	if (event->attr.precise_ip)
2535 		intel_pmu_pebs_del(event);
2536 }
2537 
2538 static int icl_set_topdown_event_period(struct perf_event *event)
2539 {
2540 	struct hw_perf_event *hwc = &event->hw;
2541 	s64 left = local64_read(&hwc->period_left);
2542 
2543 	/*
2544 	 * The values in PERF_METRICS MSR are derived from fixed counter 3.
2545 	 * Software should start both registers, PERF_METRICS and fixed
2546 	 * counter 3, from zero.
2547 	 * Clear PERF_METRICS and Fixed counter 3 in initialization.
2548 	 * After that, both MSRs will be cleared for each read.
2549 	 * Don't need to clear them again.
2550 	 */
2551 	if (left == x86_pmu.max_period) {
2552 		wrmsrl(MSR_CORE_PERF_FIXED_CTR3, 0);
2553 		wrmsrl(MSR_PERF_METRICS, 0);
2554 		hwc->saved_slots = 0;
2555 		hwc->saved_metric = 0;
2556 	}
2557 
2558 	if ((hwc->saved_slots) && is_slots_event(event)) {
2559 		wrmsrl(MSR_CORE_PERF_FIXED_CTR3, hwc->saved_slots);
2560 		wrmsrl(MSR_PERF_METRICS, hwc->saved_metric);
2561 	}
2562 
2563 	perf_event_update_userpage(event);
2564 
2565 	return 0;
2566 }
2567 
2568 DEFINE_STATIC_CALL(intel_pmu_set_topdown_event_period, x86_perf_event_set_period);
2569 
2570 static inline u64 icl_get_metrics_event_value(u64 metric, u64 slots, int idx)
2571 {
2572 	u32 val;
2573 
2574 	/*
2575 	 * The metric is reported as an 8bit integer fraction
2576 	 * summing up to 0xff.
2577 	 * slots-in-metric = (Metric / 0xff) * slots
2578 	 */
2579 	val = (metric >> ((idx - INTEL_PMC_IDX_METRIC_BASE) * 8)) & 0xff;
2580 	return  mul_u64_u32_div(slots, val, 0xff);
2581 }
2582 
2583 static u64 icl_get_topdown_value(struct perf_event *event,
2584 				       u64 slots, u64 metrics)
2585 {
2586 	int idx = event->hw.idx;
2587 	u64 delta;
2588 
2589 	if (is_metric_idx(idx))
2590 		delta = icl_get_metrics_event_value(metrics, slots, idx);
2591 	else
2592 		delta = slots;
2593 
2594 	return delta;
2595 }
2596 
2597 static void __icl_update_topdown_event(struct perf_event *event,
2598 				       u64 slots, u64 metrics,
2599 				       u64 last_slots, u64 last_metrics)
2600 {
2601 	u64 delta, last = 0;
2602 
2603 	delta = icl_get_topdown_value(event, slots, metrics);
2604 	if (last_slots)
2605 		last = icl_get_topdown_value(event, last_slots, last_metrics);
2606 
2607 	/*
2608 	 * The 8bit integer fraction of metric may be not accurate,
2609 	 * especially when the changes is very small.
2610 	 * For example, if only a few bad_spec happens, the fraction
2611 	 * may be reduced from 1 to 0. If so, the bad_spec event value
2612 	 * will be 0 which is definitely less than the last value.
2613 	 * Avoid update event->count for this case.
2614 	 */
2615 	if (delta > last) {
2616 		delta -= last;
2617 		local64_add(delta, &event->count);
2618 	}
2619 }
2620 
2621 static void update_saved_topdown_regs(struct perf_event *event, u64 slots,
2622 				      u64 metrics, int metric_end)
2623 {
2624 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2625 	struct perf_event *other;
2626 	int idx;
2627 
2628 	event->hw.saved_slots = slots;
2629 	event->hw.saved_metric = metrics;
2630 
2631 	for_each_set_bit(idx, cpuc->active_mask, metric_end + 1) {
2632 		if (!is_topdown_idx(idx))
2633 			continue;
2634 		other = cpuc->events[idx];
2635 		other->hw.saved_slots = slots;
2636 		other->hw.saved_metric = metrics;
2637 	}
2638 }
2639 
2640 /*
2641  * Update all active Topdown events.
2642  *
2643  * The PERF_METRICS and Fixed counter 3 are read separately. The values may be
2644  * modify by a NMI. PMU has to be disabled before calling this function.
2645  */
2646 
2647 static u64 intel_update_topdown_event(struct perf_event *event, int metric_end)
2648 {
2649 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2650 	struct perf_event *other;
2651 	u64 slots, metrics;
2652 	bool reset = true;
2653 	int idx;
2654 
2655 	/* read Fixed counter 3 */
2656 	rdpmcl((3 | INTEL_PMC_FIXED_RDPMC_BASE), slots);
2657 	if (!slots)
2658 		return 0;
2659 
2660 	/* read PERF_METRICS */
2661 	rdpmcl(INTEL_PMC_FIXED_RDPMC_METRICS, metrics);
2662 
2663 	for_each_set_bit(idx, cpuc->active_mask, metric_end + 1) {
2664 		if (!is_topdown_idx(idx))
2665 			continue;
2666 		other = cpuc->events[idx];
2667 		__icl_update_topdown_event(other, slots, metrics,
2668 					   event ? event->hw.saved_slots : 0,
2669 					   event ? event->hw.saved_metric : 0);
2670 	}
2671 
2672 	/*
2673 	 * Check and update this event, which may have been cleared
2674 	 * in active_mask e.g. x86_pmu_stop()
2675 	 */
2676 	if (event && !test_bit(event->hw.idx, cpuc->active_mask)) {
2677 		__icl_update_topdown_event(event, slots, metrics,
2678 					   event->hw.saved_slots,
2679 					   event->hw.saved_metric);
2680 
2681 		/*
2682 		 * In x86_pmu_stop(), the event is cleared in active_mask first,
2683 		 * then drain the delta, which indicates context switch for
2684 		 * counting.
2685 		 * Save metric and slots for context switch.
2686 		 * Don't need to reset the PERF_METRICS and Fixed counter 3.
2687 		 * Because the values will be restored in next schedule in.
2688 		 */
2689 		update_saved_topdown_regs(event, slots, metrics, metric_end);
2690 		reset = false;
2691 	}
2692 
2693 	if (reset) {
2694 		/* The fixed counter 3 has to be written before the PERF_METRICS. */
2695 		wrmsrl(MSR_CORE_PERF_FIXED_CTR3, 0);
2696 		wrmsrl(MSR_PERF_METRICS, 0);
2697 		if (event)
2698 			update_saved_topdown_regs(event, 0, 0, metric_end);
2699 	}
2700 
2701 	return slots;
2702 }
2703 
2704 static u64 icl_update_topdown_event(struct perf_event *event)
2705 {
2706 	return intel_update_topdown_event(event, INTEL_PMC_IDX_METRIC_BASE +
2707 						 x86_pmu.num_topdown_events - 1);
2708 }
2709 
2710 DEFINE_STATIC_CALL(intel_pmu_update_topdown_event, x86_perf_event_update);
2711 
2712 static void intel_pmu_read_topdown_event(struct perf_event *event)
2713 {
2714 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2715 
2716 	/* Only need to call update_topdown_event() once for group read. */
2717 	if ((cpuc->txn_flags & PERF_PMU_TXN_READ) &&
2718 	    !is_slots_event(event))
2719 		return;
2720 
2721 	perf_pmu_disable(event->pmu);
2722 	static_call(intel_pmu_update_topdown_event)(event);
2723 	perf_pmu_enable(event->pmu);
2724 }
2725 
2726 static void intel_pmu_read_event(struct perf_event *event)
2727 {
2728 	if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
2729 		intel_pmu_auto_reload_read(event);
2730 	else if (is_topdown_count(event))
2731 		intel_pmu_read_topdown_event(event);
2732 	else
2733 		x86_perf_event_update(event);
2734 }
2735 
2736 static void intel_pmu_enable_fixed(struct perf_event *event)
2737 {
2738 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2739 	struct hw_perf_event *hwc = &event->hw;
2740 	u64 mask, bits = 0;
2741 	int idx = hwc->idx;
2742 
2743 	if (is_topdown_idx(idx)) {
2744 		struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2745 		/*
2746 		 * When there are other active TopDown events,
2747 		 * don't enable the fixed counter 3 again.
2748 		 */
2749 		if (*(u64 *)cpuc->active_mask & INTEL_PMC_OTHER_TOPDOWN_BITS(idx))
2750 			return;
2751 
2752 		idx = INTEL_PMC_IDX_FIXED_SLOTS;
2753 	}
2754 
2755 	intel_set_masks(event, idx);
2756 
2757 	/*
2758 	 * Enable IRQ generation (0x8), if not PEBS,
2759 	 * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
2760 	 * if requested:
2761 	 */
2762 	if (!event->attr.precise_ip)
2763 		bits |= INTEL_FIXED_0_ENABLE_PMI;
2764 	if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
2765 		bits |= INTEL_FIXED_0_USER;
2766 	if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
2767 		bits |= INTEL_FIXED_0_KERNEL;
2768 
2769 	/*
2770 	 * ANY bit is supported in v3 and up
2771 	 */
2772 	if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
2773 		bits |= INTEL_FIXED_0_ANYTHREAD;
2774 
2775 	idx -= INTEL_PMC_IDX_FIXED;
2776 	bits = intel_fixed_bits_by_idx(idx, bits);
2777 	mask = intel_fixed_bits_by_idx(idx, INTEL_FIXED_BITS_MASK);
2778 
2779 	if (x86_pmu.intel_cap.pebs_baseline && event->attr.precise_ip) {
2780 		bits |= intel_fixed_bits_by_idx(idx, ICL_FIXED_0_ADAPTIVE);
2781 		mask |= intel_fixed_bits_by_idx(idx, ICL_FIXED_0_ADAPTIVE);
2782 	}
2783 
2784 	cpuc->fixed_ctrl_val &= ~mask;
2785 	cpuc->fixed_ctrl_val |= bits;
2786 }
2787 
2788 static void intel_pmu_enable_event(struct perf_event *event)
2789 {
2790 	struct hw_perf_event *hwc = &event->hw;
2791 	int idx = hwc->idx;
2792 
2793 	if (unlikely(event->attr.precise_ip))
2794 		intel_pmu_pebs_enable(event);
2795 
2796 	switch (idx) {
2797 	case 0 ... INTEL_PMC_IDX_FIXED - 1:
2798 		intel_set_masks(event, idx);
2799 		__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
2800 		break;
2801 	case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS - 1:
2802 	case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
2803 		intel_pmu_enable_fixed(event);
2804 		break;
2805 	case INTEL_PMC_IDX_FIXED_BTS:
2806 		if (!__this_cpu_read(cpu_hw_events.enabled))
2807 			return;
2808 		intel_pmu_enable_bts(hwc->config);
2809 		break;
2810 	case INTEL_PMC_IDX_FIXED_VLBR:
2811 		intel_set_masks(event, idx);
2812 		break;
2813 	default:
2814 		pr_warn("Failed to enable the event with invalid index %d\n",
2815 			idx);
2816 	}
2817 }
2818 
2819 static void intel_pmu_add_event(struct perf_event *event)
2820 {
2821 	if (event->attr.precise_ip)
2822 		intel_pmu_pebs_add(event);
2823 	if (needs_branch_stack(event))
2824 		intel_pmu_lbr_add(event);
2825 }
2826 
2827 /*
2828  * Save and restart an expired event. Called by NMI contexts,
2829  * so it has to be careful about preempting normal event ops:
2830  */
2831 int intel_pmu_save_and_restart(struct perf_event *event)
2832 {
2833 	static_call(x86_pmu_update)(event);
2834 	/*
2835 	 * For a checkpointed counter always reset back to 0.  This
2836 	 * avoids a situation where the counter overflows, aborts the
2837 	 * transaction and is then set back to shortly before the
2838 	 * overflow, and overflows and aborts again.
2839 	 */
2840 	if (unlikely(event_is_checkpointed(event))) {
2841 		/* No race with NMIs because the counter should not be armed */
2842 		wrmsrl(event->hw.event_base, 0);
2843 		local64_set(&event->hw.prev_count, 0);
2844 	}
2845 	return static_call(x86_pmu_set_period)(event);
2846 }
2847 
2848 static int intel_pmu_set_period(struct perf_event *event)
2849 {
2850 	if (unlikely(is_topdown_count(event)))
2851 		return static_call(intel_pmu_set_topdown_event_period)(event);
2852 
2853 	return x86_perf_event_set_period(event);
2854 }
2855 
2856 static u64 intel_pmu_update(struct perf_event *event)
2857 {
2858 	if (unlikely(is_topdown_count(event)))
2859 		return static_call(intel_pmu_update_topdown_event)(event);
2860 
2861 	return x86_perf_event_update(event);
2862 }
2863 
2864 static void intel_pmu_reset(void)
2865 {
2866 	struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
2867 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2868 	int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
2869 	int num_counters = hybrid(cpuc->pmu, num_counters);
2870 	unsigned long flags;
2871 	int idx;
2872 
2873 	if (!num_counters)
2874 		return;
2875 
2876 	local_irq_save(flags);
2877 
2878 	pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
2879 
2880 	for (idx = 0; idx < num_counters; idx++) {
2881 		wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
2882 		wrmsrl_safe(x86_pmu_event_addr(idx),  0ull);
2883 	}
2884 	for (idx = 0; idx < num_counters_fixed; idx++) {
2885 		if (fixed_counter_disabled(idx, cpuc->pmu))
2886 			continue;
2887 		wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
2888 	}
2889 
2890 	if (ds)
2891 		ds->bts_index = ds->bts_buffer_base;
2892 
2893 	/* Ack all overflows and disable fixed counters */
2894 	if (x86_pmu.version >= 2) {
2895 		intel_pmu_ack_status(intel_pmu_get_status());
2896 		wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
2897 	}
2898 
2899 	/* Reset LBRs and LBR freezing */
2900 	if (x86_pmu.lbr_nr) {
2901 		update_debugctlmsr(get_debugctlmsr() &
2902 			~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
2903 	}
2904 
2905 	local_irq_restore(flags);
2906 }
2907 
2908 /*
2909  * We may be running with guest PEBS events created by KVM, and the
2910  * PEBS records are logged into the guest's DS and invisible to host.
2911  *
2912  * In the case of guest PEBS overflow, we only trigger a fake event
2913  * to emulate the PEBS overflow PMI for guest PEBS counters in KVM.
2914  * The guest will then vm-entry and check the guest DS area to read
2915  * the guest PEBS records.
2916  *
2917  * The contents and other behavior of the guest event do not matter.
2918  */
2919 static void x86_pmu_handle_guest_pebs(struct pt_regs *regs,
2920 				      struct perf_sample_data *data)
2921 {
2922 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2923 	u64 guest_pebs_idxs = cpuc->pebs_enabled & ~cpuc->intel_ctrl_host_mask;
2924 	struct perf_event *event = NULL;
2925 	int bit;
2926 
2927 	if (!unlikely(perf_guest_state()))
2928 		return;
2929 
2930 	if (!x86_pmu.pebs_ept || !x86_pmu.pebs_active ||
2931 	    !guest_pebs_idxs)
2932 		return;
2933 
2934 	for_each_set_bit(bit, (unsigned long *)&guest_pebs_idxs,
2935 			 INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed) {
2936 		event = cpuc->events[bit];
2937 		if (!event->attr.precise_ip)
2938 			continue;
2939 
2940 		perf_sample_data_init(data, 0, event->hw.last_period);
2941 		if (perf_event_overflow(event, data, regs))
2942 			x86_pmu_stop(event, 0);
2943 
2944 		/* Inject one fake event is enough. */
2945 		break;
2946 	}
2947 }
2948 
2949 static int handle_pmi_common(struct pt_regs *regs, u64 status)
2950 {
2951 	struct perf_sample_data data;
2952 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2953 	int bit;
2954 	int handled = 0;
2955 	u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
2956 
2957 	inc_irq_stat(apic_perf_irqs);
2958 
2959 	/*
2960 	 * Ignore a range of extra bits in status that do not indicate
2961 	 * overflow by themselves.
2962 	 */
2963 	status &= ~(GLOBAL_STATUS_COND_CHG |
2964 		    GLOBAL_STATUS_ASIF |
2965 		    GLOBAL_STATUS_LBRS_FROZEN);
2966 	if (!status)
2967 		return 0;
2968 	/*
2969 	 * In case multiple PEBS events are sampled at the same time,
2970 	 * it is possible to have GLOBAL_STATUS bit 62 set indicating
2971 	 * PEBS buffer overflow and also seeing at most 3 PEBS counters
2972 	 * having their bits set in the status register. This is a sign
2973 	 * that there was at least one PEBS record pending at the time
2974 	 * of the PMU interrupt. PEBS counters must only be processed
2975 	 * via the drain_pebs() calls and not via the regular sample
2976 	 * processing loop coming after that the function, otherwise
2977 	 * phony regular samples may be generated in the sampling buffer
2978 	 * not marked with the EXACT tag. Another possibility is to have
2979 	 * one PEBS event and at least one non-PEBS event which overflows
2980 	 * while PEBS has armed. In this case, bit 62 of GLOBAL_STATUS will
2981 	 * not be set, yet the overflow status bit for the PEBS counter will
2982 	 * be on Skylake.
2983 	 *
2984 	 * To avoid this problem, we systematically ignore the PEBS-enabled
2985 	 * counters from the GLOBAL_STATUS mask and we always process PEBS
2986 	 * events via drain_pebs().
2987 	 */
2988 	status &= ~(cpuc->pebs_enabled & x86_pmu.pebs_capable);
2989 
2990 	/*
2991 	 * PEBS overflow sets bit 62 in the global status register
2992 	 */
2993 	if (__test_and_clear_bit(GLOBAL_STATUS_BUFFER_OVF_BIT, (unsigned long *)&status)) {
2994 		u64 pebs_enabled = cpuc->pebs_enabled;
2995 
2996 		handled++;
2997 		x86_pmu_handle_guest_pebs(regs, &data);
2998 		x86_pmu.drain_pebs(regs, &data);
2999 		status &= intel_ctrl | GLOBAL_STATUS_TRACE_TOPAPMI;
3000 
3001 		/*
3002 		 * PMI throttle may be triggered, which stops the PEBS event.
3003 		 * Although cpuc->pebs_enabled is updated accordingly, the
3004 		 * MSR_IA32_PEBS_ENABLE is not updated. Because the
3005 		 * cpuc->enabled has been forced to 0 in PMI.
3006 		 * Update the MSR if pebs_enabled is changed.
3007 		 */
3008 		if (pebs_enabled != cpuc->pebs_enabled)
3009 			wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
3010 	}
3011 
3012 	/*
3013 	 * Intel PT
3014 	 */
3015 	if (__test_and_clear_bit(GLOBAL_STATUS_TRACE_TOPAPMI_BIT, (unsigned long *)&status)) {
3016 		handled++;
3017 		if (!perf_guest_handle_intel_pt_intr())
3018 			intel_pt_interrupt();
3019 	}
3020 
3021 	/*
3022 	 * Intel Perf metrics
3023 	 */
3024 	if (__test_and_clear_bit(GLOBAL_STATUS_PERF_METRICS_OVF_BIT, (unsigned long *)&status)) {
3025 		handled++;
3026 		static_call(intel_pmu_update_topdown_event)(NULL);
3027 	}
3028 
3029 	/*
3030 	 * Checkpointed counters can lead to 'spurious' PMIs because the
3031 	 * rollback caused by the PMI will have cleared the overflow status
3032 	 * bit. Therefore always force probe these counters.
3033 	 */
3034 	status |= cpuc->intel_cp_status;
3035 
3036 	for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
3037 		struct perf_event *event = cpuc->events[bit];
3038 
3039 		handled++;
3040 
3041 		if (!test_bit(bit, cpuc->active_mask))
3042 			continue;
3043 
3044 		if (!intel_pmu_save_and_restart(event))
3045 			continue;
3046 
3047 		perf_sample_data_init(&data, 0, event->hw.last_period);
3048 
3049 		if (has_branch_stack(event))
3050 			perf_sample_save_brstack(&data, event, &cpuc->lbr_stack);
3051 
3052 		if (perf_event_overflow(event, &data, regs))
3053 			x86_pmu_stop(event, 0);
3054 	}
3055 
3056 	return handled;
3057 }
3058 
3059 /*
3060  * This handler is triggered by the local APIC, so the APIC IRQ handling
3061  * rules apply:
3062  */
3063 static int intel_pmu_handle_irq(struct pt_regs *regs)
3064 {
3065 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3066 	bool late_ack = hybrid_bit(cpuc->pmu, late_ack);
3067 	bool mid_ack = hybrid_bit(cpuc->pmu, mid_ack);
3068 	int loops;
3069 	u64 status;
3070 	int handled;
3071 	int pmu_enabled;
3072 
3073 	/*
3074 	 * Save the PMU state.
3075 	 * It needs to be restored when leaving the handler.
3076 	 */
3077 	pmu_enabled = cpuc->enabled;
3078 	/*
3079 	 * In general, the early ACK is only applied for old platforms.
3080 	 * For the big core starts from Haswell, the late ACK should be
3081 	 * applied.
3082 	 * For the small core after Tremont, we have to do the ACK right
3083 	 * before re-enabling counters, which is in the middle of the
3084 	 * NMI handler.
3085 	 */
3086 	if (!late_ack && !mid_ack)
3087 		apic_write(APIC_LVTPC, APIC_DM_NMI);
3088 	intel_bts_disable_local();
3089 	cpuc->enabled = 0;
3090 	__intel_pmu_disable_all(true);
3091 	handled = intel_pmu_drain_bts_buffer();
3092 	handled += intel_bts_interrupt();
3093 	status = intel_pmu_get_status();
3094 	if (!status)
3095 		goto done;
3096 
3097 	loops = 0;
3098 again:
3099 	intel_pmu_lbr_read();
3100 	intel_pmu_ack_status(status);
3101 	if (++loops > 100) {
3102 		static bool warned;
3103 
3104 		if (!warned) {
3105 			WARN(1, "perfevents: irq loop stuck!\n");
3106 			perf_event_print_debug();
3107 			warned = true;
3108 		}
3109 		intel_pmu_reset();
3110 		goto done;
3111 	}
3112 
3113 	handled += handle_pmi_common(regs, status);
3114 
3115 	/*
3116 	 * Repeat if there is more work to be done:
3117 	 */
3118 	status = intel_pmu_get_status();
3119 	if (status)
3120 		goto again;
3121 
3122 done:
3123 	if (mid_ack)
3124 		apic_write(APIC_LVTPC, APIC_DM_NMI);
3125 	/* Only restore PMU state when it's active. See x86_pmu_disable(). */
3126 	cpuc->enabled = pmu_enabled;
3127 	if (pmu_enabled)
3128 		__intel_pmu_enable_all(0, true);
3129 	intel_bts_enable_local();
3130 
3131 	/*
3132 	 * Only unmask the NMI after the overflow counters
3133 	 * have been reset. This avoids spurious NMIs on
3134 	 * Haswell CPUs.
3135 	 */
3136 	if (late_ack)
3137 		apic_write(APIC_LVTPC, APIC_DM_NMI);
3138 	return handled;
3139 }
3140 
3141 static struct event_constraint *
3142 intel_bts_constraints(struct perf_event *event)
3143 {
3144 	if (unlikely(intel_pmu_has_bts(event)))
3145 		return &bts_constraint;
3146 
3147 	return NULL;
3148 }
3149 
3150 /*
3151  * Note: matches a fake event, like Fixed2.
3152  */
3153 static struct event_constraint *
3154 intel_vlbr_constraints(struct perf_event *event)
3155 {
3156 	struct event_constraint *c = &vlbr_constraint;
3157 
3158 	if (unlikely(constraint_match(c, event->hw.config))) {
3159 		event->hw.flags |= c->flags;
3160 		return c;
3161 	}
3162 
3163 	return NULL;
3164 }
3165 
3166 static int intel_alt_er(struct cpu_hw_events *cpuc,
3167 			int idx, u64 config)
3168 {
3169 	struct extra_reg *extra_regs = hybrid(cpuc->pmu, extra_regs);
3170 	int alt_idx = idx;
3171 
3172 	if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
3173 		return idx;
3174 
3175 	if (idx == EXTRA_REG_RSP_0)
3176 		alt_idx = EXTRA_REG_RSP_1;
3177 
3178 	if (idx == EXTRA_REG_RSP_1)
3179 		alt_idx = EXTRA_REG_RSP_0;
3180 
3181 	if (config & ~extra_regs[alt_idx].valid_mask)
3182 		return idx;
3183 
3184 	return alt_idx;
3185 }
3186 
3187 static void intel_fixup_er(struct perf_event *event, int idx)
3188 {
3189 	struct extra_reg *extra_regs = hybrid(event->pmu, extra_regs);
3190 	event->hw.extra_reg.idx = idx;
3191 
3192 	if (idx == EXTRA_REG_RSP_0) {
3193 		event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
3194 		event->hw.config |= extra_regs[EXTRA_REG_RSP_0].event;
3195 		event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
3196 	} else if (idx == EXTRA_REG_RSP_1) {
3197 		event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
3198 		event->hw.config |= extra_regs[EXTRA_REG_RSP_1].event;
3199 		event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
3200 	}
3201 }
3202 
3203 /*
3204  * manage allocation of shared extra msr for certain events
3205  *
3206  * sharing can be:
3207  * per-cpu: to be shared between the various events on a single PMU
3208  * per-core: per-cpu + shared by HT threads
3209  */
3210 static struct event_constraint *
3211 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
3212 				   struct perf_event *event,
3213 				   struct hw_perf_event_extra *reg)
3214 {
3215 	struct event_constraint *c = &emptyconstraint;
3216 	struct er_account *era;
3217 	unsigned long flags;
3218 	int idx = reg->idx;
3219 
3220 	/*
3221 	 * reg->alloc can be set due to existing state, so for fake cpuc we
3222 	 * need to ignore this, otherwise we might fail to allocate proper fake
3223 	 * state for this extra reg constraint. Also see the comment below.
3224 	 */
3225 	if (reg->alloc && !cpuc->is_fake)
3226 		return NULL; /* call x86_get_event_constraint() */
3227 
3228 again:
3229 	era = &cpuc->shared_regs->regs[idx];
3230 	/*
3231 	 * we use spin_lock_irqsave() to avoid lockdep issues when
3232 	 * passing a fake cpuc
3233 	 */
3234 	raw_spin_lock_irqsave(&era->lock, flags);
3235 
3236 	if (!atomic_read(&era->ref) || era->config == reg->config) {
3237 
3238 		/*
3239 		 * If its a fake cpuc -- as per validate_{group,event}() we
3240 		 * shouldn't touch event state and we can avoid doing so
3241 		 * since both will only call get_event_constraints() once
3242 		 * on each event, this avoids the need for reg->alloc.
3243 		 *
3244 		 * Not doing the ER fixup will only result in era->reg being
3245 		 * wrong, but since we won't actually try and program hardware
3246 		 * this isn't a problem either.
3247 		 */
3248 		if (!cpuc->is_fake) {
3249 			if (idx != reg->idx)
3250 				intel_fixup_er(event, idx);
3251 
3252 			/*
3253 			 * x86_schedule_events() can call get_event_constraints()
3254 			 * multiple times on events in the case of incremental
3255 			 * scheduling(). reg->alloc ensures we only do the ER
3256 			 * allocation once.
3257 			 */
3258 			reg->alloc = 1;
3259 		}
3260 
3261 		/* lock in msr value */
3262 		era->config = reg->config;
3263 		era->reg = reg->reg;
3264 
3265 		/* one more user */
3266 		atomic_inc(&era->ref);
3267 
3268 		/*
3269 		 * need to call x86_get_event_constraint()
3270 		 * to check if associated event has constraints
3271 		 */
3272 		c = NULL;
3273 	} else {
3274 		idx = intel_alt_er(cpuc, idx, reg->config);
3275 		if (idx != reg->idx) {
3276 			raw_spin_unlock_irqrestore(&era->lock, flags);
3277 			goto again;
3278 		}
3279 	}
3280 	raw_spin_unlock_irqrestore(&era->lock, flags);
3281 
3282 	return c;
3283 }
3284 
3285 static void
3286 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
3287 				   struct hw_perf_event_extra *reg)
3288 {
3289 	struct er_account *era;
3290 
3291 	/*
3292 	 * Only put constraint if extra reg was actually allocated. Also takes
3293 	 * care of event which do not use an extra shared reg.
3294 	 *
3295 	 * Also, if this is a fake cpuc we shouldn't touch any event state
3296 	 * (reg->alloc) and we don't care about leaving inconsistent cpuc state
3297 	 * either since it'll be thrown out.
3298 	 */
3299 	if (!reg->alloc || cpuc->is_fake)
3300 		return;
3301 
3302 	era = &cpuc->shared_regs->regs[reg->idx];
3303 
3304 	/* one fewer user */
3305 	atomic_dec(&era->ref);
3306 
3307 	/* allocate again next time */
3308 	reg->alloc = 0;
3309 }
3310 
3311 static struct event_constraint *
3312 intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
3313 			      struct perf_event *event)
3314 {
3315 	struct event_constraint *c = NULL, *d;
3316 	struct hw_perf_event_extra *xreg, *breg;
3317 
3318 	xreg = &event->hw.extra_reg;
3319 	if (xreg->idx != EXTRA_REG_NONE) {
3320 		c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
3321 		if (c == &emptyconstraint)
3322 			return c;
3323 	}
3324 	breg = &event->hw.branch_reg;
3325 	if (breg->idx != EXTRA_REG_NONE) {
3326 		d = __intel_shared_reg_get_constraints(cpuc, event, breg);
3327 		if (d == &emptyconstraint) {
3328 			__intel_shared_reg_put_constraints(cpuc, xreg);
3329 			c = d;
3330 		}
3331 	}
3332 	return c;
3333 }
3334 
3335 struct event_constraint *
3336 x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3337 			  struct perf_event *event)
3338 {
3339 	struct event_constraint *event_constraints = hybrid(cpuc->pmu, event_constraints);
3340 	struct event_constraint *c;
3341 
3342 	if (event_constraints) {
3343 		for_each_event_constraint(c, event_constraints) {
3344 			if (constraint_match(c, event->hw.config)) {
3345 				event->hw.flags |= c->flags;
3346 				return c;
3347 			}
3348 		}
3349 	}
3350 
3351 	return &hybrid_var(cpuc->pmu, unconstrained);
3352 }
3353 
3354 static struct event_constraint *
3355 __intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3356 			    struct perf_event *event)
3357 {
3358 	struct event_constraint *c;
3359 
3360 	c = intel_vlbr_constraints(event);
3361 	if (c)
3362 		return c;
3363 
3364 	c = intel_bts_constraints(event);
3365 	if (c)
3366 		return c;
3367 
3368 	c = intel_shared_regs_constraints(cpuc, event);
3369 	if (c)
3370 		return c;
3371 
3372 	c = intel_pebs_constraints(event);
3373 	if (c)
3374 		return c;
3375 
3376 	return x86_get_event_constraints(cpuc, idx, event);
3377 }
3378 
3379 static void
3380 intel_start_scheduling(struct cpu_hw_events *cpuc)
3381 {
3382 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3383 	struct intel_excl_states *xl;
3384 	int tid = cpuc->excl_thread_id;
3385 
3386 	/*
3387 	 * nothing needed if in group validation mode
3388 	 */
3389 	if (cpuc->is_fake || !is_ht_workaround_enabled())
3390 		return;
3391 
3392 	/*
3393 	 * no exclusion needed
3394 	 */
3395 	if (WARN_ON_ONCE(!excl_cntrs))
3396 		return;
3397 
3398 	xl = &excl_cntrs->states[tid];
3399 
3400 	xl->sched_started = true;
3401 	/*
3402 	 * lock shared state until we are done scheduling
3403 	 * in stop_event_scheduling()
3404 	 * makes scheduling appear as a transaction
3405 	 */
3406 	raw_spin_lock(&excl_cntrs->lock);
3407 }
3408 
3409 static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
3410 {
3411 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3412 	struct event_constraint *c = cpuc->event_constraint[idx];
3413 	struct intel_excl_states *xl;
3414 	int tid = cpuc->excl_thread_id;
3415 
3416 	if (cpuc->is_fake || !is_ht_workaround_enabled())
3417 		return;
3418 
3419 	if (WARN_ON_ONCE(!excl_cntrs))
3420 		return;
3421 
3422 	if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
3423 		return;
3424 
3425 	xl = &excl_cntrs->states[tid];
3426 
3427 	lockdep_assert_held(&excl_cntrs->lock);
3428 
3429 	if (c->flags & PERF_X86_EVENT_EXCL)
3430 		xl->state[cntr] = INTEL_EXCL_EXCLUSIVE;
3431 	else
3432 		xl->state[cntr] = INTEL_EXCL_SHARED;
3433 }
3434 
3435 static void
3436 intel_stop_scheduling(struct cpu_hw_events *cpuc)
3437 {
3438 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3439 	struct intel_excl_states *xl;
3440 	int tid = cpuc->excl_thread_id;
3441 
3442 	/*
3443 	 * nothing needed if in group validation mode
3444 	 */
3445 	if (cpuc->is_fake || !is_ht_workaround_enabled())
3446 		return;
3447 	/*
3448 	 * no exclusion needed
3449 	 */
3450 	if (WARN_ON_ONCE(!excl_cntrs))
3451 		return;
3452 
3453 	xl = &excl_cntrs->states[tid];
3454 
3455 	xl->sched_started = false;
3456 	/*
3457 	 * release shared state lock (acquired in intel_start_scheduling())
3458 	 */
3459 	raw_spin_unlock(&excl_cntrs->lock);
3460 }
3461 
3462 static struct event_constraint *
3463 dyn_constraint(struct cpu_hw_events *cpuc, struct event_constraint *c, int idx)
3464 {
3465 	WARN_ON_ONCE(!cpuc->constraint_list);
3466 
3467 	if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
3468 		struct event_constraint *cx;
3469 
3470 		/*
3471 		 * grab pre-allocated constraint entry
3472 		 */
3473 		cx = &cpuc->constraint_list[idx];
3474 
3475 		/*
3476 		 * initialize dynamic constraint
3477 		 * with static constraint
3478 		 */
3479 		*cx = *c;
3480 
3481 		/*
3482 		 * mark constraint as dynamic
3483 		 */
3484 		cx->flags |= PERF_X86_EVENT_DYNAMIC;
3485 		c = cx;
3486 	}
3487 
3488 	return c;
3489 }
3490 
3491 static struct event_constraint *
3492 intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
3493 			   int idx, struct event_constraint *c)
3494 {
3495 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3496 	struct intel_excl_states *xlo;
3497 	int tid = cpuc->excl_thread_id;
3498 	int is_excl, i, w;
3499 
3500 	/*
3501 	 * validating a group does not require
3502 	 * enforcing cross-thread  exclusion
3503 	 */
3504 	if (cpuc->is_fake || !is_ht_workaround_enabled())
3505 		return c;
3506 
3507 	/*
3508 	 * no exclusion needed
3509 	 */
3510 	if (WARN_ON_ONCE(!excl_cntrs))
3511 		return c;
3512 
3513 	/*
3514 	 * because we modify the constraint, we need
3515 	 * to make a copy. Static constraints come
3516 	 * from static const tables.
3517 	 *
3518 	 * only needed when constraint has not yet
3519 	 * been cloned (marked dynamic)
3520 	 */
3521 	c = dyn_constraint(cpuc, c, idx);
3522 
3523 	/*
3524 	 * From here on, the constraint is dynamic.
3525 	 * Either it was just allocated above, or it
3526 	 * was allocated during a earlier invocation
3527 	 * of this function
3528 	 */
3529 
3530 	/*
3531 	 * state of sibling HT
3532 	 */
3533 	xlo = &excl_cntrs->states[tid ^ 1];
3534 
3535 	/*
3536 	 * event requires exclusive counter access
3537 	 * across HT threads
3538 	 */
3539 	is_excl = c->flags & PERF_X86_EVENT_EXCL;
3540 	if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) {
3541 		event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT;
3542 		if (!cpuc->n_excl++)
3543 			WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1);
3544 	}
3545 
3546 	/*
3547 	 * Modify static constraint with current dynamic
3548 	 * state of thread
3549 	 *
3550 	 * EXCLUSIVE: sibling counter measuring exclusive event
3551 	 * SHARED   : sibling counter measuring non-exclusive event
3552 	 * UNUSED   : sibling counter unused
3553 	 */
3554 	w = c->weight;
3555 	for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) {
3556 		/*
3557 		 * exclusive event in sibling counter
3558 		 * our corresponding counter cannot be used
3559 		 * regardless of our event
3560 		 */
3561 		if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE) {
3562 			__clear_bit(i, c->idxmsk);
3563 			w--;
3564 			continue;
3565 		}
3566 		/*
3567 		 * if measuring an exclusive event, sibling
3568 		 * measuring non-exclusive, then counter cannot
3569 		 * be used
3570 		 */
3571 		if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED) {
3572 			__clear_bit(i, c->idxmsk);
3573 			w--;
3574 			continue;
3575 		}
3576 	}
3577 
3578 	/*
3579 	 * if we return an empty mask, then switch
3580 	 * back to static empty constraint to avoid
3581 	 * the cost of freeing later on
3582 	 */
3583 	if (!w)
3584 		c = &emptyconstraint;
3585 
3586 	c->weight = w;
3587 
3588 	return c;
3589 }
3590 
3591 static struct event_constraint *
3592 intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3593 			    struct perf_event *event)
3594 {
3595 	struct event_constraint *c1, *c2;
3596 
3597 	c1 = cpuc->event_constraint[idx];
3598 
3599 	/*
3600 	 * first time only
3601 	 * - static constraint: no change across incremental scheduling calls
3602 	 * - dynamic constraint: handled by intel_get_excl_constraints()
3603 	 */
3604 	c2 = __intel_get_event_constraints(cpuc, idx, event);
3605 	if (c1) {
3606 	        WARN_ON_ONCE(!(c1->flags & PERF_X86_EVENT_DYNAMIC));
3607 		bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
3608 		c1->weight = c2->weight;
3609 		c2 = c1;
3610 	}
3611 
3612 	if (cpuc->excl_cntrs)
3613 		return intel_get_excl_constraints(cpuc, event, idx, c2);
3614 
3615 	return c2;
3616 }
3617 
3618 static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
3619 		struct perf_event *event)
3620 {
3621 	struct hw_perf_event *hwc = &event->hw;
3622 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3623 	int tid = cpuc->excl_thread_id;
3624 	struct intel_excl_states *xl;
3625 
3626 	/*
3627 	 * nothing needed if in group validation mode
3628 	 */
3629 	if (cpuc->is_fake)
3630 		return;
3631 
3632 	if (WARN_ON_ONCE(!excl_cntrs))
3633 		return;
3634 
3635 	if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) {
3636 		hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT;
3637 		if (!--cpuc->n_excl)
3638 			WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0);
3639 	}
3640 
3641 	/*
3642 	 * If event was actually assigned, then mark the counter state as
3643 	 * unused now.
3644 	 */
3645 	if (hwc->idx >= 0) {
3646 		xl = &excl_cntrs->states[tid];
3647 
3648 		/*
3649 		 * put_constraint may be called from x86_schedule_events()
3650 		 * which already has the lock held so here make locking
3651 		 * conditional.
3652 		 */
3653 		if (!xl->sched_started)
3654 			raw_spin_lock(&excl_cntrs->lock);
3655 
3656 		xl->state[hwc->idx] = INTEL_EXCL_UNUSED;
3657 
3658 		if (!xl->sched_started)
3659 			raw_spin_unlock(&excl_cntrs->lock);
3660 	}
3661 }
3662 
3663 static void
3664 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
3665 					struct perf_event *event)
3666 {
3667 	struct hw_perf_event_extra *reg;
3668 
3669 	reg = &event->hw.extra_reg;
3670 	if (reg->idx != EXTRA_REG_NONE)
3671 		__intel_shared_reg_put_constraints(cpuc, reg);
3672 
3673 	reg = &event->hw.branch_reg;
3674 	if (reg->idx != EXTRA_REG_NONE)
3675 		__intel_shared_reg_put_constraints(cpuc, reg);
3676 }
3677 
3678 static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
3679 					struct perf_event *event)
3680 {
3681 	intel_put_shared_regs_event_constraints(cpuc, event);
3682 
3683 	/*
3684 	 * is PMU has exclusive counter restrictions, then
3685 	 * all events are subject to and must call the
3686 	 * put_excl_constraints() routine
3687 	 */
3688 	if (cpuc->excl_cntrs)
3689 		intel_put_excl_constraints(cpuc, event);
3690 }
3691 
3692 static void intel_pebs_aliases_core2(struct perf_event *event)
3693 {
3694 	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3695 		/*
3696 		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3697 		 * (0x003c) so that we can use it with PEBS.
3698 		 *
3699 		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3700 		 * PEBS capable. However we can use INST_RETIRED.ANY_P
3701 		 * (0x00c0), which is a PEBS capable event, to get the same
3702 		 * count.
3703 		 *
3704 		 * INST_RETIRED.ANY_P counts the number of cycles that retires
3705 		 * CNTMASK instructions. By setting CNTMASK to a value (16)
3706 		 * larger than the maximum number of instructions that can be
3707 		 * retired per cycle (4) and then inverting the condition, we
3708 		 * count all cycles that retire 16 or less instructions, which
3709 		 * is every cycle.
3710 		 *
3711 		 * Thereby we gain a PEBS capable cycle counter.
3712 		 */
3713 		u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
3714 
3715 		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3716 		event->hw.config = alt_config;
3717 	}
3718 }
3719 
3720 static void intel_pebs_aliases_snb(struct perf_event *event)
3721 {
3722 	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3723 		/*
3724 		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3725 		 * (0x003c) so that we can use it with PEBS.
3726 		 *
3727 		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3728 		 * PEBS capable. However we can use UOPS_RETIRED.ALL
3729 		 * (0x01c2), which is a PEBS capable event, to get the same
3730 		 * count.
3731 		 *
3732 		 * UOPS_RETIRED.ALL counts the number of cycles that retires
3733 		 * CNTMASK micro-ops. By setting CNTMASK to a value (16)
3734 		 * larger than the maximum number of micro-ops that can be
3735 		 * retired per cycle (4) and then inverting the condition, we
3736 		 * count all cycles that retire 16 or less micro-ops, which
3737 		 * is every cycle.
3738 		 *
3739 		 * Thereby we gain a PEBS capable cycle counter.
3740 		 */
3741 		u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
3742 
3743 		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3744 		event->hw.config = alt_config;
3745 	}
3746 }
3747 
3748 static void intel_pebs_aliases_precdist(struct perf_event *event)
3749 {
3750 	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3751 		/*
3752 		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3753 		 * (0x003c) so that we can use it with PEBS.
3754 		 *
3755 		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3756 		 * PEBS capable. However we can use INST_RETIRED.PREC_DIST
3757 		 * (0x01c0), which is a PEBS capable event, to get the same
3758 		 * count.
3759 		 *
3760 		 * The PREC_DIST event has special support to minimize sample
3761 		 * shadowing effects. One drawback is that it can be
3762 		 * only programmed on counter 1, but that seems like an
3763 		 * acceptable trade off.
3764 		 */
3765 		u64 alt_config = X86_CONFIG(.event=0xc0, .umask=0x01, .inv=1, .cmask=16);
3766 
3767 		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3768 		event->hw.config = alt_config;
3769 	}
3770 }
3771 
3772 static void intel_pebs_aliases_ivb(struct perf_event *event)
3773 {
3774 	if (event->attr.precise_ip < 3)
3775 		return intel_pebs_aliases_snb(event);
3776 	return intel_pebs_aliases_precdist(event);
3777 }
3778 
3779 static void intel_pebs_aliases_skl(struct perf_event *event)
3780 {
3781 	if (event->attr.precise_ip < 3)
3782 		return intel_pebs_aliases_core2(event);
3783 	return intel_pebs_aliases_precdist(event);
3784 }
3785 
3786 static unsigned long intel_pmu_large_pebs_flags(struct perf_event *event)
3787 {
3788 	unsigned long flags = x86_pmu.large_pebs_flags;
3789 
3790 	if (event->attr.use_clockid)
3791 		flags &= ~PERF_SAMPLE_TIME;
3792 	if (!event->attr.exclude_kernel)
3793 		flags &= ~PERF_SAMPLE_REGS_USER;
3794 	if (event->attr.sample_regs_user & ~PEBS_GP_REGS)
3795 		flags &= ~(PERF_SAMPLE_REGS_USER | PERF_SAMPLE_REGS_INTR);
3796 	return flags;
3797 }
3798 
3799 static int intel_pmu_bts_config(struct perf_event *event)
3800 {
3801 	struct perf_event_attr *attr = &event->attr;
3802 
3803 	if (unlikely(intel_pmu_has_bts(event))) {
3804 		/* BTS is not supported by this architecture. */
3805 		if (!x86_pmu.bts_active)
3806 			return -EOPNOTSUPP;
3807 
3808 		/* BTS is currently only allowed for user-mode. */
3809 		if (!attr->exclude_kernel)
3810 			return -EOPNOTSUPP;
3811 
3812 		/* BTS is not allowed for precise events. */
3813 		if (attr->precise_ip)
3814 			return -EOPNOTSUPP;
3815 
3816 		/* disallow bts if conflicting events are present */
3817 		if (x86_add_exclusive(x86_lbr_exclusive_lbr))
3818 			return -EBUSY;
3819 
3820 		event->destroy = hw_perf_lbr_event_destroy;
3821 	}
3822 
3823 	return 0;
3824 }
3825 
3826 static int core_pmu_hw_config(struct perf_event *event)
3827 {
3828 	int ret = x86_pmu_hw_config(event);
3829 
3830 	if (ret)
3831 		return ret;
3832 
3833 	return intel_pmu_bts_config(event);
3834 }
3835 
3836 #define INTEL_TD_METRIC_AVAILABLE_MAX	(INTEL_TD_METRIC_RETIRING + \
3837 					 ((x86_pmu.num_topdown_events - 1) << 8))
3838 
3839 static bool is_available_metric_event(struct perf_event *event)
3840 {
3841 	return is_metric_event(event) &&
3842 		event->attr.config <= INTEL_TD_METRIC_AVAILABLE_MAX;
3843 }
3844 
3845 static inline bool is_mem_loads_event(struct perf_event *event)
3846 {
3847 	return (event->attr.config & INTEL_ARCH_EVENT_MASK) == X86_CONFIG(.event=0xcd, .umask=0x01);
3848 }
3849 
3850 static inline bool is_mem_loads_aux_event(struct perf_event *event)
3851 {
3852 	return (event->attr.config & INTEL_ARCH_EVENT_MASK) == X86_CONFIG(.event=0x03, .umask=0x82);
3853 }
3854 
3855 static inline bool require_mem_loads_aux_event(struct perf_event *event)
3856 {
3857 	if (!(x86_pmu.flags & PMU_FL_MEM_LOADS_AUX))
3858 		return false;
3859 
3860 	if (is_hybrid())
3861 		return hybrid_pmu(event->pmu)->pmu_type == hybrid_big;
3862 
3863 	return true;
3864 }
3865 
3866 static inline bool intel_pmu_has_cap(struct perf_event *event, int idx)
3867 {
3868 	union perf_capabilities *intel_cap = &hybrid(event->pmu, intel_cap);
3869 
3870 	return test_bit(idx, (unsigned long *)&intel_cap->capabilities);
3871 }
3872 
3873 static int intel_pmu_hw_config(struct perf_event *event)
3874 {
3875 	int ret = x86_pmu_hw_config(event);
3876 
3877 	if (ret)
3878 		return ret;
3879 
3880 	ret = intel_pmu_bts_config(event);
3881 	if (ret)
3882 		return ret;
3883 
3884 	if (event->attr.precise_ip) {
3885 		if ((event->attr.config & INTEL_ARCH_EVENT_MASK) == INTEL_FIXED_VLBR_EVENT)
3886 			return -EINVAL;
3887 
3888 		if (!(event->attr.freq || (event->attr.wakeup_events && !event->attr.watermark))) {
3889 			event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD;
3890 			if (!(event->attr.sample_type &
3891 			      ~intel_pmu_large_pebs_flags(event))) {
3892 				event->hw.flags |= PERF_X86_EVENT_LARGE_PEBS;
3893 				event->attach_state |= PERF_ATTACH_SCHED_CB;
3894 			}
3895 		}
3896 		if (x86_pmu.pebs_aliases)
3897 			x86_pmu.pebs_aliases(event);
3898 	}
3899 
3900 	if (needs_branch_stack(event)) {
3901 		ret = intel_pmu_setup_lbr_filter(event);
3902 		if (ret)
3903 			return ret;
3904 		event->attach_state |= PERF_ATTACH_SCHED_CB;
3905 
3906 		/*
3907 		 * BTS is set up earlier in this path, so don't account twice
3908 		 */
3909 		if (!unlikely(intel_pmu_has_bts(event))) {
3910 			/* disallow lbr if conflicting events are present */
3911 			if (x86_add_exclusive(x86_lbr_exclusive_lbr))
3912 				return -EBUSY;
3913 
3914 			event->destroy = hw_perf_lbr_event_destroy;
3915 		}
3916 	}
3917 
3918 	if (event->attr.aux_output) {
3919 		if (!event->attr.precise_ip)
3920 			return -EINVAL;
3921 
3922 		event->hw.flags |= PERF_X86_EVENT_PEBS_VIA_PT;
3923 	}
3924 
3925 	if ((event->attr.type == PERF_TYPE_HARDWARE) ||
3926 	    (event->attr.type == PERF_TYPE_HW_CACHE))
3927 		return 0;
3928 
3929 	/*
3930 	 * Config Topdown slots and metric events
3931 	 *
3932 	 * The slots event on Fixed Counter 3 can support sampling,
3933 	 * which will be handled normally in x86_perf_event_update().
3934 	 *
3935 	 * Metric events don't support sampling and require being paired
3936 	 * with a slots event as group leader. When the slots event
3937 	 * is used in a metrics group, it too cannot support sampling.
3938 	 */
3939 	if (intel_pmu_has_cap(event, PERF_CAP_METRICS_IDX) && is_topdown_event(event)) {
3940 		if (event->attr.config1 || event->attr.config2)
3941 			return -EINVAL;
3942 
3943 		/*
3944 		 * The TopDown metrics events and slots event don't
3945 		 * support any filters.
3946 		 */
3947 		if (event->attr.config & X86_ALL_EVENT_FLAGS)
3948 			return -EINVAL;
3949 
3950 		if (is_available_metric_event(event)) {
3951 			struct perf_event *leader = event->group_leader;
3952 
3953 			/* The metric events don't support sampling. */
3954 			if (is_sampling_event(event))
3955 				return -EINVAL;
3956 
3957 			/* The metric events require a slots group leader. */
3958 			if (!is_slots_event(leader))
3959 				return -EINVAL;
3960 
3961 			/*
3962 			 * The leader/SLOTS must not be a sampling event for
3963 			 * metric use; hardware requires it starts at 0 when used
3964 			 * in conjunction with MSR_PERF_METRICS.
3965 			 */
3966 			if (is_sampling_event(leader))
3967 				return -EINVAL;
3968 
3969 			event->event_caps |= PERF_EV_CAP_SIBLING;
3970 			/*
3971 			 * Only once we have a METRICs sibling do we
3972 			 * need TopDown magic.
3973 			 */
3974 			leader->hw.flags |= PERF_X86_EVENT_TOPDOWN;
3975 			event->hw.flags  |= PERF_X86_EVENT_TOPDOWN;
3976 		}
3977 	}
3978 
3979 	/*
3980 	 * The load latency event X86_CONFIG(.event=0xcd, .umask=0x01) on SPR
3981 	 * doesn't function quite right. As a work-around it needs to always be
3982 	 * co-scheduled with a auxiliary event X86_CONFIG(.event=0x03, .umask=0x82).
3983 	 * The actual count of this second event is irrelevant it just needs
3984 	 * to be active to make the first event function correctly.
3985 	 *
3986 	 * In a group, the auxiliary event must be in front of the load latency
3987 	 * event. The rule is to simplify the implementation of the check.
3988 	 * That's because perf cannot have a complete group at the moment.
3989 	 */
3990 	if (require_mem_loads_aux_event(event) &&
3991 	    (event->attr.sample_type & PERF_SAMPLE_DATA_SRC) &&
3992 	    is_mem_loads_event(event)) {
3993 		struct perf_event *leader = event->group_leader;
3994 		struct perf_event *sibling = NULL;
3995 
3996 		/*
3997 		 * When this memload event is also the first event (no group
3998 		 * exists yet), then there is no aux event before it.
3999 		 */
4000 		if (leader == event)
4001 			return -ENODATA;
4002 
4003 		if (!is_mem_loads_aux_event(leader)) {
4004 			for_each_sibling_event(sibling, leader) {
4005 				if (is_mem_loads_aux_event(sibling))
4006 					break;
4007 			}
4008 			if (list_entry_is_head(sibling, &leader->sibling_list, sibling_list))
4009 				return -ENODATA;
4010 		}
4011 	}
4012 
4013 	if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
4014 		return 0;
4015 
4016 	if (x86_pmu.version < 3)
4017 		return -EINVAL;
4018 
4019 	ret = perf_allow_cpu(&event->attr);
4020 	if (ret)
4021 		return ret;
4022 
4023 	event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
4024 
4025 	return 0;
4026 }
4027 
4028 /*
4029  * Currently, the only caller of this function is the atomic_switch_perf_msrs().
4030  * The host perf conext helps to prepare the values of the real hardware for
4031  * a set of msrs that need to be switched atomically in a vmx transaction.
4032  *
4033  * For example, the pseudocode needed to add a new msr should look like:
4034  *
4035  * arr[(*nr)++] = (struct perf_guest_switch_msr){
4036  *	.msr = the hardware msr address,
4037  *	.host = the value the hardware has when it doesn't run a guest,
4038  *	.guest = the value the hardware has when it runs a guest,
4039  * };
4040  *
4041  * These values have nothing to do with the emulated values the guest sees
4042  * when it uses {RD,WR}MSR, which should be handled by the KVM context,
4043  * specifically in the intel_pmu_{get,set}_msr().
4044  */
4045 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr, void *data)
4046 {
4047 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
4048 	struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
4049 	struct kvm_pmu *kvm_pmu = (struct kvm_pmu *)data;
4050 	u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
4051 	u64 pebs_mask = cpuc->pebs_enabled & x86_pmu.pebs_capable;
4052 	int global_ctrl, pebs_enable;
4053 
4054 	/*
4055 	 * In addition to obeying exclude_guest/exclude_host, remove bits being
4056 	 * used for PEBS when running a guest, because PEBS writes to virtual
4057 	 * addresses (not physical addresses).
4058 	 */
4059 	*nr = 0;
4060 	global_ctrl = (*nr)++;
4061 	arr[global_ctrl] = (struct perf_guest_switch_msr){
4062 		.msr = MSR_CORE_PERF_GLOBAL_CTRL,
4063 		.host = intel_ctrl & ~cpuc->intel_ctrl_guest_mask,
4064 		.guest = intel_ctrl & ~cpuc->intel_ctrl_host_mask & ~pebs_mask,
4065 	};
4066 
4067 	if (!x86_pmu.pebs)
4068 		return arr;
4069 
4070 	/*
4071 	 * If PMU counter has PEBS enabled it is not enough to
4072 	 * disable counter on a guest entry since PEBS memory
4073 	 * write can overshoot guest entry and corrupt guest
4074 	 * memory. Disabling PEBS solves the problem.
4075 	 *
4076 	 * Don't do this if the CPU already enforces it.
4077 	 */
4078 	if (x86_pmu.pebs_no_isolation) {
4079 		arr[(*nr)++] = (struct perf_guest_switch_msr){
4080 			.msr = MSR_IA32_PEBS_ENABLE,
4081 			.host = cpuc->pebs_enabled,
4082 			.guest = 0,
4083 		};
4084 		return arr;
4085 	}
4086 
4087 	if (!kvm_pmu || !x86_pmu.pebs_ept)
4088 		return arr;
4089 
4090 	arr[(*nr)++] = (struct perf_guest_switch_msr){
4091 		.msr = MSR_IA32_DS_AREA,
4092 		.host = (unsigned long)cpuc->ds,
4093 		.guest = kvm_pmu->ds_area,
4094 	};
4095 
4096 	if (x86_pmu.intel_cap.pebs_baseline) {
4097 		arr[(*nr)++] = (struct perf_guest_switch_msr){
4098 			.msr = MSR_PEBS_DATA_CFG,
4099 			.host = cpuc->active_pebs_data_cfg,
4100 			.guest = kvm_pmu->pebs_data_cfg,
4101 		};
4102 	}
4103 
4104 	pebs_enable = (*nr)++;
4105 	arr[pebs_enable] = (struct perf_guest_switch_msr){
4106 		.msr = MSR_IA32_PEBS_ENABLE,
4107 		.host = cpuc->pebs_enabled & ~cpuc->intel_ctrl_guest_mask,
4108 		.guest = pebs_mask & ~cpuc->intel_ctrl_host_mask,
4109 	};
4110 
4111 	if (arr[pebs_enable].host) {
4112 		/* Disable guest PEBS if host PEBS is enabled. */
4113 		arr[pebs_enable].guest = 0;
4114 	} else {
4115 		/* Disable guest PEBS thoroughly for cross-mapped PEBS counters. */
4116 		arr[pebs_enable].guest &= ~kvm_pmu->host_cross_mapped_mask;
4117 		arr[global_ctrl].guest &= ~kvm_pmu->host_cross_mapped_mask;
4118 		/* Set hw GLOBAL_CTRL bits for PEBS counter when it runs for guest */
4119 		arr[global_ctrl].guest |= arr[pebs_enable].guest;
4120 	}
4121 
4122 	return arr;
4123 }
4124 
4125 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr, void *data)
4126 {
4127 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
4128 	struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
4129 	int idx;
4130 
4131 	for (idx = 0; idx < x86_pmu.num_counters; idx++)  {
4132 		struct perf_event *event = cpuc->events[idx];
4133 
4134 		arr[idx].msr = x86_pmu_config_addr(idx);
4135 		arr[idx].host = arr[idx].guest = 0;
4136 
4137 		if (!test_bit(idx, cpuc->active_mask))
4138 			continue;
4139 
4140 		arr[idx].host = arr[idx].guest =
4141 			event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
4142 
4143 		if (event->attr.exclude_host)
4144 			arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
4145 		else if (event->attr.exclude_guest)
4146 			arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
4147 	}
4148 
4149 	*nr = x86_pmu.num_counters;
4150 	return arr;
4151 }
4152 
4153 static void core_pmu_enable_event(struct perf_event *event)
4154 {
4155 	if (!event->attr.exclude_host)
4156 		x86_pmu_enable_event(event);
4157 }
4158 
4159 static void core_pmu_enable_all(int added)
4160 {
4161 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
4162 	int idx;
4163 
4164 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
4165 		struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
4166 
4167 		if (!test_bit(idx, cpuc->active_mask) ||
4168 				cpuc->events[idx]->attr.exclude_host)
4169 			continue;
4170 
4171 		__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
4172 	}
4173 }
4174 
4175 static int hsw_hw_config(struct perf_event *event)
4176 {
4177 	int ret = intel_pmu_hw_config(event);
4178 
4179 	if (ret)
4180 		return ret;
4181 	if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
4182 		return 0;
4183 	event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
4184 
4185 	/*
4186 	 * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
4187 	 * PEBS or in ANY thread mode. Since the results are non-sensical forbid
4188 	 * this combination.
4189 	 */
4190 	if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
4191 	     ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
4192 	      event->attr.precise_ip > 0))
4193 		return -EOPNOTSUPP;
4194 
4195 	if (event_is_checkpointed(event)) {
4196 		/*
4197 		 * Sampling of checkpointed events can cause situations where
4198 		 * the CPU constantly aborts because of a overflow, which is
4199 		 * then checkpointed back and ignored. Forbid checkpointing
4200 		 * for sampling.
4201 		 *
4202 		 * But still allow a long sampling period, so that perf stat
4203 		 * from KVM works.
4204 		 */
4205 		if (event->attr.sample_period > 0 &&
4206 		    event->attr.sample_period < 0x7fffffff)
4207 			return -EOPNOTSUPP;
4208 	}
4209 	return 0;
4210 }
4211 
4212 static struct event_constraint counter0_constraint =
4213 			INTEL_ALL_EVENT_CONSTRAINT(0, 0x1);
4214 
4215 static struct event_constraint counter1_constraint =
4216 			INTEL_ALL_EVENT_CONSTRAINT(0, 0x2);
4217 
4218 static struct event_constraint counter0_1_constraint =
4219 			INTEL_ALL_EVENT_CONSTRAINT(0, 0x3);
4220 
4221 static struct event_constraint counter2_constraint =
4222 			EVENT_CONSTRAINT(0, 0x4, 0);
4223 
4224 static struct event_constraint fixed0_constraint =
4225 			FIXED_EVENT_CONSTRAINT(0x00c0, 0);
4226 
4227 static struct event_constraint fixed0_counter0_constraint =
4228 			INTEL_ALL_EVENT_CONSTRAINT(0, 0x100000001ULL);
4229 
4230 static struct event_constraint fixed0_counter0_1_constraint =
4231 			INTEL_ALL_EVENT_CONSTRAINT(0, 0x100000003ULL);
4232 
4233 static struct event_constraint counters_1_7_constraint =
4234 			INTEL_ALL_EVENT_CONSTRAINT(0, 0xfeULL);
4235 
4236 static struct event_constraint *
4237 hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4238 			  struct perf_event *event)
4239 {
4240 	struct event_constraint *c;
4241 
4242 	c = intel_get_event_constraints(cpuc, idx, event);
4243 
4244 	/* Handle special quirk on in_tx_checkpointed only in counter 2 */
4245 	if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
4246 		if (c->idxmsk64 & (1U << 2))
4247 			return &counter2_constraint;
4248 		return &emptyconstraint;
4249 	}
4250 
4251 	return c;
4252 }
4253 
4254 static struct event_constraint *
4255 icl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4256 			  struct perf_event *event)
4257 {
4258 	/*
4259 	 * Fixed counter 0 has less skid.
4260 	 * Force instruction:ppp in Fixed counter 0
4261 	 */
4262 	if ((event->attr.precise_ip == 3) &&
4263 	    constraint_match(&fixed0_constraint, event->hw.config))
4264 		return &fixed0_constraint;
4265 
4266 	return hsw_get_event_constraints(cpuc, idx, event);
4267 }
4268 
4269 static struct event_constraint *
4270 glc_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4271 			  struct perf_event *event)
4272 {
4273 	struct event_constraint *c;
4274 
4275 	c = icl_get_event_constraints(cpuc, idx, event);
4276 
4277 	/*
4278 	 * The :ppp indicates the Precise Distribution (PDist) facility, which
4279 	 * is only supported on the GP counter 0. If a :ppp event which is not
4280 	 * available on the GP counter 0, error out.
4281 	 * Exception: Instruction PDIR is only available on the fixed counter 0.
4282 	 */
4283 	if ((event->attr.precise_ip == 3) &&
4284 	    !constraint_match(&fixed0_constraint, event->hw.config)) {
4285 		if (c->idxmsk64 & BIT_ULL(0))
4286 			return &counter0_constraint;
4287 
4288 		return &emptyconstraint;
4289 	}
4290 
4291 	return c;
4292 }
4293 
4294 static struct event_constraint *
4295 glp_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4296 			  struct perf_event *event)
4297 {
4298 	struct event_constraint *c;
4299 
4300 	/* :ppp means to do reduced skid PEBS which is PMC0 only. */
4301 	if (event->attr.precise_ip == 3)
4302 		return &counter0_constraint;
4303 
4304 	c = intel_get_event_constraints(cpuc, idx, event);
4305 
4306 	return c;
4307 }
4308 
4309 static struct event_constraint *
4310 tnt_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4311 			  struct perf_event *event)
4312 {
4313 	struct event_constraint *c;
4314 
4315 	c = intel_get_event_constraints(cpuc, idx, event);
4316 
4317 	/*
4318 	 * :ppp means to do reduced skid PEBS,
4319 	 * which is available on PMC0 and fixed counter 0.
4320 	 */
4321 	if (event->attr.precise_ip == 3) {
4322 		/* Force instruction:ppp on PMC0 and Fixed counter 0 */
4323 		if (constraint_match(&fixed0_constraint, event->hw.config))
4324 			return &fixed0_counter0_constraint;
4325 
4326 		return &counter0_constraint;
4327 	}
4328 
4329 	return c;
4330 }
4331 
4332 static bool allow_tsx_force_abort = true;
4333 
4334 static struct event_constraint *
4335 tfa_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4336 			  struct perf_event *event)
4337 {
4338 	struct event_constraint *c = hsw_get_event_constraints(cpuc, idx, event);
4339 
4340 	/*
4341 	 * Without TFA we must not use PMC3.
4342 	 */
4343 	if (!allow_tsx_force_abort && test_bit(3, c->idxmsk)) {
4344 		c = dyn_constraint(cpuc, c, idx);
4345 		c->idxmsk64 &= ~(1ULL << 3);
4346 		c->weight--;
4347 	}
4348 
4349 	return c;
4350 }
4351 
4352 static struct event_constraint *
4353 adl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4354 			  struct perf_event *event)
4355 {
4356 	struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
4357 
4358 	if (pmu->pmu_type == hybrid_big)
4359 		return glc_get_event_constraints(cpuc, idx, event);
4360 	else if (pmu->pmu_type == hybrid_small)
4361 		return tnt_get_event_constraints(cpuc, idx, event);
4362 
4363 	WARN_ON(1);
4364 	return &emptyconstraint;
4365 }
4366 
4367 static struct event_constraint *
4368 cmt_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4369 			  struct perf_event *event)
4370 {
4371 	struct event_constraint *c;
4372 
4373 	c = intel_get_event_constraints(cpuc, idx, event);
4374 
4375 	/*
4376 	 * The :ppp indicates the Precise Distribution (PDist) facility, which
4377 	 * is only supported on the GP counter 0 & 1 and Fixed counter 0.
4378 	 * If a :ppp event which is not available on the above eligible counters,
4379 	 * error out.
4380 	 */
4381 	if (event->attr.precise_ip == 3) {
4382 		/* Force instruction:ppp on PMC0, 1 and Fixed counter 0 */
4383 		if (constraint_match(&fixed0_constraint, event->hw.config))
4384 			return &fixed0_counter0_1_constraint;
4385 
4386 		switch (c->idxmsk64 & 0x3ull) {
4387 		case 0x1:
4388 			return &counter0_constraint;
4389 		case 0x2:
4390 			return &counter1_constraint;
4391 		case 0x3:
4392 			return &counter0_1_constraint;
4393 		}
4394 		return &emptyconstraint;
4395 	}
4396 
4397 	return c;
4398 }
4399 
4400 static struct event_constraint *
4401 rwc_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4402 			  struct perf_event *event)
4403 {
4404 	struct event_constraint *c;
4405 
4406 	c = glc_get_event_constraints(cpuc, idx, event);
4407 
4408 	/* The Retire Latency is not supported by the fixed counter 0. */
4409 	if (event->attr.precise_ip &&
4410 	    (event->attr.sample_type & PERF_SAMPLE_WEIGHT_TYPE) &&
4411 	    constraint_match(&fixed0_constraint, event->hw.config)) {
4412 		/*
4413 		 * The Instruction PDIR is only available
4414 		 * on the fixed counter 0. Error out for this case.
4415 		 */
4416 		if (event->attr.precise_ip == 3)
4417 			return &emptyconstraint;
4418 		return &counters_1_7_constraint;
4419 	}
4420 
4421 	return c;
4422 }
4423 
4424 static struct event_constraint *
4425 mtl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4426 			  struct perf_event *event)
4427 {
4428 	struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
4429 
4430 	if (pmu->pmu_type == hybrid_big)
4431 		return rwc_get_event_constraints(cpuc, idx, event);
4432 	if (pmu->pmu_type == hybrid_small)
4433 		return cmt_get_event_constraints(cpuc, idx, event);
4434 
4435 	WARN_ON(1);
4436 	return &emptyconstraint;
4437 }
4438 
4439 static int adl_hw_config(struct perf_event *event)
4440 {
4441 	struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
4442 
4443 	if (pmu->pmu_type == hybrid_big)
4444 		return hsw_hw_config(event);
4445 	else if (pmu->pmu_type == hybrid_small)
4446 		return intel_pmu_hw_config(event);
4447 
4448 	WARN_ON(1);
4449 	return -EOPNOTSUPP;
4450 }
4451 
4452 static enum hybrid_cpu_type adl_get_hybrid_cpu_type(void)
4453 {
4454 	return HYBRID_INTEL_CORE;
4455 }
4456 
4457 /*
4458  * Broadwell:
4459  *
4460  * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
4461  * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
4462  * the two to enforce a minimum period of 128 (the smallest value that has bits
4463  * 0-5 cleared and >= 100).
4464  *
4465  * Because of how the code in x86_perf_event_set_period() works, the truncation
4466  * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
4467  * to make up for the 'lost' events due to carrying the 'error' in period_left.
4468  *
4469  * Therefore the effective (average) period matches the requested period,
4470  * despite coarser hardware granularity.
4471  */
4472 static void bdw_limit_period(struct perf_event *event, s64 *left)
4473 {
4474 	if ((event->hw.config & INTEL_ARCH_EVENT_MASK) ==
4475 			X86_CONFIG(.event=0xc0, .umask=0x01)) {
4476 		if (*left < 128)
4477 			*left = 128;
4478 		*left &= ~0x3fULL;
4479 	}
4480 }
4481 
4482 static void nhm_limit_period(struct perf_event *event, s64 *left)
4483 {
4484 	*left = max(*left, 32LL);
4485 }
4486 
4487 static void glc_limit_period(struct perf_event *event, s64 *left)
4488 {
4489 	if (event->attr.precise_ip == 3)
4490 		*left = max(*left, 128LL);
4491 }
4492 
4493 PMU_FORMAT_ATTR(event,	"config:0-7"	);
4494 PMU_FORMAT_ATTR(umask,	"config:8-15"	);
4495 PMU_FORMAT_ATTR(edge,	"config:18"	);
4496 PMU_FORMAT_ATTR(pc,	"config:19"	);
4497 PMU_FORMAT_ATTR(any,	"config:21"	); /* v3 + */
4498 PMU_FORMAT_ATTR(inv,	"config:23"	);
4499 PMU_FORMAT_ATTR(cmask,	"config:24-31"	);
4500 PMU_FORMAT_ATTR(in_tx,  "config:32");
4501 PMU_FORMAT_ATTR(in_tx_cp, "config:33");
4502 
4503 static struct attribute *intel_arch_formats_attr[] = {
4504 	&format_attr_event.attr,
4505 	&format_attr_umask.attr,
4506 	&format_attr_edge.attr,
4507 	&format_attr_pc.attr,
4508 	&format_attr_inv.attr,
4509 	&format_attr_cmask.attr,
4510 	NULL,
4511 };
4512 
4513 ssize_t intel_event_sysfs_show(char *page, u64 config)
4514 {
4515 	u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
4516 
4517 	return x86_event_sysfs_show(page, config, event);
4518 }
4519 
4520 static struct intel_shared_regs *allocate_shared_regs(int cpu)
4521 {
4522 	struct intel_shared_regs *regs;
4523 	int i;
4524 
4525 	regs = kzalloc_node(sizeof(struct intel_shared_regs),
4526 			    GFP_KERNEL, cpu_to_node(cpu));
4527 	if (regs) {
4528 		/*
4529 		 * initialize the locks to keep lockdep happy
4530 		 */
4531 		for (i = 0; i < EXTRA_REG_MAX; i++)
4532 			raw_spin_lock_init(&regs->regs[i].lock);
4533 
4534 		regs->core_id = -1;
4535 	}
4536 	return regs;
4537 }
4538 
4539 static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
4540 {
4541 	struct intel_excl_cntrs *c;
4542 
4543 	c = kzalloc_node(sizeof(struct intel_excl_cntrs),
4544 			 GFP_KERNEL, cpu_to_node(cpu));
4545 	if (c) {
4546 		raw_spin_lock_init(&c->lock);
4547 		c->core_id = -1;
4548 	}
4549 	return c;
4550 }
4551 
4552 
4553 int intel_cpuc_prepare(struct cpu_hw_events *cpuc, int cpu)
4554 {
4555 	cpuc->pebs_record_size = x86_pmu.pebs_record_size;
4556 
4557 	if (is_hybrid() || x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
4558 		cpuc->shared_regs = allocate_shared_regs(cpu);
4559 		if (!cpuc->shared_regs)
4560 			goto err;
4561 	}
4562 
4563 	if (x86_pmu.flags & (PMU_FL_EXCL_CNTRS | PMU_FL_TFA)) {
4564 		size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);
4565 
4566 		cpuc->constraint_list = kzalloc_node(sz, GFP_KERNEL, cpu_to_node(cpu));
4567 		if (!cpuc->constraint_list)
4568 			goto err_shared_regs;
4569 	}
4570 
4571 	if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
4572 		cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
4573 		if (!cpuc->excl_cntrs)
4574 			goto err_constraint_list;
4575 
4576 		cpuc->excl_thread_id = 0;
4577 	}
4578 
4579 	return 0;
4580 
4581 err_constraint_list:
4582 	kfree(cpuc->constraint_list);
4583 	cpuc->constraint_list = NULL;
4584 
4585 err_shared_regs:
4586 	kfree(cpuc->shared_regs);
4587 	cpuc->shared_regs = NULL;
4588 
4589 err:
4590 	return -ENOMEM;
4591 }
4592 
4593 static int intel_pmu_cpu_prepare(int cpu)
4594 {
4595 	return intel_cpuc_prepare(&per_cpu(cpu_hw_events, cpu), cpu);
4596 }
4597 
4598 static void flip_smm_bit(void *data)
4599 {
4600 	unsigned long set = *(unsigned long *)data;
4601 
4602 	if (set > 0) {
4603 		msr_set_bit(MSR_IA32_DEBUGCTLMSR,
4604 			    DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
4605 	} else {
4606 		msr_clear_bit(MSR_IA32_DEBUGCTLMSR,
4607 			      DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
4608 	}
4609 }
4610 
4611 static void intel_pmu_check_num_counters(int *num_counters,
4612 					 int *num_counters_fixed,
4613 					 u64 *intel_ctrl, u64 fixed_mask);
4614 
4615 static void intel_pmu_check_event_constraints(struct event_constraint *event_constraints,
4616 					      int num_counters,
4617 					      int num_counters_fixed,
4618 					      u64 intel_ctrl);
4619 
4620 static void intel_pmu_check_extra_regs(struct extra_reg *extra_regs);
4621 
4622 static inline bool intel_pmu_broken_perf_cap(void)
4623 {
4624 	/* The Perf Metric (Bit 15) is always cleared */
4625 	if ((boot_cpu_data.x86_model == INTEL_FAM6_METEORLAKE) ||
4626 	    (boot_cpu_data.x86_model == INTEL_FAM6_METEORLAKE_L))
4627 		return true;
4628 
4629 	return false;
4630 }
4631 
4632 static void update_pmu_cap(struct x86_hybrid_pmu *pmu)
4633 {
4634 	unsigned int sub_bitmaps = cpuid_eax(ARCH_PERFMON_EXT_LEAF);
4635 	unsigned int eax, ebx, ecx, edx;
4636 
4637 	if (sub_bitmaps & ARCH_PERFMON_NUM_COUNTER_LEAF_BIT) {
4638 		cpuid_count(ARCH_PERFMON_EXT_LEAF, ARCH_PERFMON_NUM_COUNTER_LEAF,
4639 			    &eax, &ebx, &ecx, &edx);
4640 		pmu->num_counters = fls(eax);
4641 		pmu->num_counters_fixed = fls(ebx);
4642 	}
4643 
4644 
4645 	if (!intel_pmu_broken_perf_cap()) {
4646 		/* Perf Metric (Bit 15) and PEBS via PT (Bit 16) are hybrid enumeration */
4647 		rdmsrl(MSR_IA32_PERF_CAPABILITIES, pmu->intel_cap.capabilities);
4648 	}
4649 }
4650 
4651 static void intel_pmu_check_hybrid_pmus(struct x86_hybrid_pmu *pmu)
4652 {
4653 	intel_pmu_check_num_counters(&pmu->num_counters, &pmu->num_counters_fixed,
4654 				     &pmu->intel_ctrl, (1ULL << pmu->num_counters_fixed) - 1);
4655 	pmu->max_pebs_events = min_t(unsigned, MAX_PEBS_EVENTS, pmu->num_counters);
4656 	pmu->unconstrained = (struct event_constraint)
4657 			     __EVENT_CONSTRAINT(0, (1ULL << pmu->num_counters) - 1,
4658 						0, pmu->num_counters, 0, 0);
4659 
4660 	if (pmu->intel_cap.perf_metrics)
4661 		pmu->intel_ctrl |= 1ULL << GLOBAL_CTRL_EN_PERF_METRICS;
4662 	else
4663 		pmu->intel_ctrl &= ~(1ULL << GLOBAL_CTRL_EN_PERF_METRICS);
4664 
4665 	if (pmu->intel_cap.pebs_output_pt_available)
4666 		pmu->pmu.capabilities |= PERF_PMU_CAP_AUX_OUTPUT;
4667 	else
4668 		pmu->pmu.capabilities &= ~PERF_PMU_CAP_AUX_OUTPUT;
4669 
4670 	intel_pmu_check_event_constraints(pmu->event_constraints,
4671 					  pmu->num_counters,
4672 					  pmu->num_counters_fixed,
4673 					  pmu->intel_ctrl);
4674 
4675 	intel_pmu_check_extra_regs(pmu->extra_regs);
4676 }
4677 
4678 static struct x86_hybrid_pmu *find_hybrid_pmu_for_cpu(void)
4679 {
4680 	u8 cpu_type = get_this_hybrid_cpu_type();
4681 	int i;
4682 
4683 	/*
4684 	 * This is running on a CPU model that is known to have hybrid
4685 	 * configurations. But the CPU told us it is not hybrid, shame
4686 	 * on it. There should be a fixup function provided for these
4687 	 * troublesome CPUs (->get_hybrid_cpu_type).
4688 	 */
4689 	if (cpu_type == HYBRID_INTEL_NONE) {
4690 		if (x86_pmu.get_hybrid_cpu_type)
4691 			cpu_type = x86_pmu.get_hybrid_cpu_type();
4692 		else
4693 			return NULL;
4694 	}
4695 
4696 	/*
4697 	 * This essentially just maps between the 'hybrid_cpu_type'
4698 	 * and 'hybrid_pmu_type' enums:
4699 	 */
4700 	for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
4701 		enum hybrid_pmu_type pmu_type = x86_pmu.hybrid_pmu[i].pmu_type;
4702 
4703 		if (cpu_type == HYBRID_INTEL_CORE &&
4704 		    pmu_type == hybrid_big)
4705 			return &x86_pmu.hybrid_pmu[i];
4706 		if (cpu_type == HYBRID_INTEL_ATOM &&
4707 		    pmu_type == hybrid_small)
4708 			return &x86_pmu.hybrid_pmu[i];
4709 	}
4710 
4711 	return NULL;
4712 }
4713 
4714 static bool init_hybrid_pmu(int cpu)
4715 {
4716 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
4717 	struct x86_hybrid_pmu *pmu = find_hybrid_pmu_for_cpu();
4718 
4719 	if (WARN_ON_ONCE(!pmu || (pmu->pmu.type == -1))) {
4720 		cpuc->pmu = NULL;
4721 		return false;
4722 	}
4723 
4724 	/* Only check and dump the PMU information for the first CPU */
4725 	if (!cpumask_empty(&pmu->supported_cpus))
4726 		goto end;
4727 
4728 	if (this_cpu_has(X86_FEATURE_ARCH_PERFMON_EXT))
4729 		update_pmu_cap(pmu);
4730 
4731 	intel_pmu_check_hybrid_pmus(pmu);
4732 
4733 	if (!check_hw_exists(&pmu->pmu, pmu->num_counters, pmu->num_counters_fixed))
4734 		return false;
4735 
4736 	pr_info("%s PMU driver: ", pmu->name);
4737 
4738 	if (pmu->intel_cap.pebs_output_pt_available)
4739 		pr_cont("PEBS-via-PT ");
4740 
4741 	pr_cont("\n");
4742 
4743 	x86_pmu_show_pmu_cap(pmu->num_counters, pmu->num_counters_fixed,
4744 			     pmu->intel_ctrl);
4745 
4746 end:
4747 	cpumask_set_cpu(cpu, &pmu->supported_cpus);
4748 	cpuc->pmu = &pmu->pmu;
4749 
4750 	return true;
4751 }
4752 
4753 static void intel_pmu_cpu_starting(int cpu)
4754 {
4755 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
4756 	int core_id = topology_core_id(cpu);
4757 	int i;
4758 
4759 	if (is_hybrid() && !init_hybrid_pmu(cpu))
4760 		return;
4761 
4762 	init_debug_store_on_cpu(cpu);
4763 	/*
4764 	 * Deal with CPUs that don't clear their LBRs on power-up.
4765 	 */
4766 	intel_pmu_lbr_reset();
4767 
4768 	cpuc->lbr_sel = NULL;
4769 
4770 	if (x86_pmu.flags & PMU_FL_TFA) {
4771 		WARN_ON_ONCE(cpuc->tfa_shadow);
4772 		cpuc->tfa_shadow = ~0ULL;
4773 		intel_set_tfa(cpuc, false);
4774 	}
4775 
4776 	if (x86_pmu.version > 1)
4777 		flip_smm_bit(&x86_pmu.attr_freeze_on_smi);
4778 
4779 	/*
4780 	 * Disable perf metrics if any added CPU doesn't support it.
4781 	 *
4782 	 * Turn off the check for a hybrid architecture, because the
4783 	 * architecture MSR, MSR_IA32_PERF_CAPABILITIES, only indicate
4784 	 * the architecture features. The perf metrics is a model-specific
4785 	 * feature for now. The corresponding bit should always be 0 on
4786 	 * a hybrid platform, e.g., Alder Lake.
4787 	 */
4788 	if (!is_hybrid() && x86_pmu.intel_cap.perf_metrics) {
4789 		union perf_capabilities perf_cap;
4790 
4791 		rdmsrl(MSR_IA32_PERF_CAPABILITIES, perf_cap.capabilities);
4792 		if (!perf_cap.perf_metrics) {
4793 			x86_pmu.intel_cap.perf_metrics = 0;
4794 			x86_pmu.intel_ctrl &= ~(1ULL << GLOBAL_CTRL_EN_PERF_METRICS);
4795 		}
4796 	}
4797 
4798 	if (!cpuc->shared_regs)
4799 		return;
4800 
4801 	if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
4802 		for_each_cpu(i, topology_sibling_cpumask(cpu)) {
4803 			struct intel_shared_regs *pc;
4804 
4805 			pc = per_cpu(cpu_hw_events, i).shared_regs;
4806 			if (pc && pc->core_id == core_id) {
4807 				cpuc->kfree_on_online[0] = cpuc->shared_regs;
4808 				cpuc->shared_regs = pc;
4809 				break;
4810 			}
4811 		}
4812 		cpuc->shared_regs->core_id = core_id;
4813 		cpuc->shared_regs->refcnt++;
4814 	}
4815 
4816 	if (x86_pmu.lbr_sel_map)
4817 		cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
4818 
4819 	if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
4820 		for_each_cpu(i, topology_sibling_cpumask(cpu)) {
4821 			struct cpu_hw_events *sibling;
4822 			struct intel_excl_cntrs *c;
4823 
4824 			sibling = &per_cpu(cpu_hw_events, i);
4825 			c = sibling->excl_cntrs;
4826 			if (c && c->core_id == core_id) {
4827 				cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
4828 				cpuc->excl_cntrs = c;
4829 				if (!sibling->excl_thread_id)
4830 					cpuc->excl_thread_id = 1;
4831 				break;
4832 			}
4833 		}
4834 		cpuc->excl_cntrs->core_id = core_id;
4835 		cpuc->excl_cntrs->refcnt++;
4836 	}
4837 }
4838 
4839 static void free_excl_cntrs(struct cpu_hw_events *cpuc)
4840 {
4841 	struct intel_excl_cntrs *c;
4842 
4843 	c = cpuc->excl_cntrs;
4844 	if (c) {
4845 		if (c->core_id == -1 || --c->refcnt == 0)
4846 			kfree(c);
4847 		cpuc->excl_cntrs = NULL;
4848 	}
4849 
4850 	kfree(cpuc->constraint_list);
4851 	cpuc->constraint_list = NULL;
4852 }
4853 
4854 static void intel_pmu_cpu_dying(int cpu)
4855 {
4856 	fini_debug_store_on_cpu(cpu);
4857 }
4858 
4859 void intel_cpuc_finish(struct cpu_hw_events *cpuc)
4860 {
4861 	struct intel_shared_regs *pc;
4862 
4863 	pc = cpuc->shared_regs;
4864 	if (pc) {
4865 		if (pc->core_id == -1 || --pc->refcnt == 0)
4866 			kfree(pc);
4867 		cpuc->shared_regs = NULL;
4868 	}
4869 
4870 	free_excl_cntrs(cpuc);
4871 }
4872 
4873 static void intel_pmu_cpu_dead(int cpu)
4874 {
4875 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
4876 
4877 	intel_cpuc_finish(cpuc);
4878 
4879 	if (is_hybrid() && cpuc->pmu)
4880 		cpumask_clear_cpu(cpu, &hybrid_pmu(cpuc->pmu)->supported_cpus);
4881 }
4882 
4883 static void intel_pmu_sched_task(struct perf_event_pmu_context *pmu_ctx,
4884 				 bool sched_in)
4885 {
4886 	intel_pmu_pebs_sched_task(pmu_ctx, sched_in);
4887 	intel_pmu_lbr_sched_task(pmu_ctx, sched_in);
4888 }
4889 
4890 static void intel_pmu_swap_task_ctx(struct perf_event_pmu_context *prev_epc,
4891 				    struct perf_event_pmu_context *next_epc)
4892 {
4893 	intel_pmu_lbr_swap_task_ctx(prev_epc, next_epc);
4894 }
4895 
4896 static int intel_pmu_check_period(struct perf_event *event, u64 value)
4897 {
4898 	return intel_pmu_has_bts_period(event, value) ? -EINVAL : 0;
4899 }
4900 
4901 static void intel_aux_output_init(void)
4902 {
4903 	/* Refer also intel_pmu_aux_output_match() */
4904 	if (x86_pmu.intel_cap.pebs_output_pt_available)
4905 		x86_pmu.assign = intel_pmu_assign_event;
4906 }
4907 
4908 static int intel_pmu_aux_output_match(struct perf_event *event)
4909 {
4910 	/* intel_pmu_assign_event() is needed, refer intel_aux_output_init() */
4911 	if (!x86_pmu.intel_cap.pebs_output_pt_available)
4912 		return 0;
4913 
4914 	return is_intel_pt_event(event);
4915 }
4916 
4917 static void intel_pmu_filter(struct pmu *pmu, int cpu, bool *ret)
4918 {
4919 	struct x86_hybrid_pmu *hpmu = hybrid_pmu(pmu);
4920 
4921 	*ret = !cpumask_test_cpu(cpu, &hpmu->supported_cpus);
4922 }
4923 
4924 PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
4925 
4926 PMU_FORMAT_ATTR(ldlat, "config1:0-15");
4927 
4928 PMU_FORMAT_ATTR(frontend, "config1:0-23");
4929 
4930 PMU_FORMAT_ATTR(snoop_rsp, "config1:0-63");
4931 
4932 static struct attribute *intel_arch3_formats_attr[] = {
4933 	&format_attr_event.attr,
4934 	&format_attr_umask.attr,
4935 	&format_attr_edge.attr,
4936 	&format_attr_pc.attr,
4937 	&format_attr_any.attr,
4938 	&format_attr_inv.attr,
4939 	&format_attr_cmask.attr,
4940 	NULL,
4941 };
4942 
4943 static struct attribute *hsw_format_attr[] = {
4944 	&format_attr_in_tx.attr,
4945 	&format_attr_in_tx_cp.attr,
4946 	&format_attr_offcore_rsp.attr,
4947 	&format_attr_ldlat.attr,
4948 	NULL
4949 };
4950 
4951 static struct attribute *nhm_format_attr[] = {
4952 	&format_attr_offcore_rsp.attr,
4953 	&format_attr_ldlat.attr,
4954 	NULL
4955 };
4956 
4957 static struct attribute *slm_format_attr[] = {
4958 	&format_attr_offcore_rsp.attr,
4959 	NULL
4960 };
4961 
4962 static struct attribute *cmt_format_attr[] = {
4963 	&format_attr_offcore_rsp.attr,
4964 	&format_attr_ldlat.attr,
4965 	&format_attr_snoop_rsp.attr,
4966 	NULL
4967 };
4968 
4969 static struct attribute *skl_format_attr[] = {
4970 	&format_attr_frontend.attr,
4971 	NULL,
4972 };
4973 
4974 static __initconst const struct x86_pmu core_pmu = {
4975 	.name			= "core",
4976 	.handle_irq		= x86_pmu_handle_irq,
4977 	.disable_all		= x86_pmu_disable_all,
4978 	.enable_all		= core_pmu_enable_all,
4979 	.enable			= core_pmu_enable_event,
4980 	.disable		= x86_pmu_disable_event,
4981 	.hw_config		= core_pmu_hw_config,
4982 	.schedule_events	= x86_schedule_events,
4983 	.eventsel		= MSR_ARCH_PERFMON_EVENTSEL0,
4984 	.perfctr		= MSR_ARCH_PERFMON_PERFCTR0,
4985 	.event_map		= intel_pmu_event_map,
4986 	.max_events		= ARRAY_SIZE(intel_perfmon_event_map),
4987 	.apic			= 1,
4988 	.large_pebs_flags	= LARGE_PEBS_FLAGS,
4989 
4990 	/*
4991 	 * Intel PMCs cannot be accessed sanely above 32-bit width,
4992 	 * so we install an artificial 1<<31 period regardless of
4993 	 * the generic event period:
4994 	 */
4995 	.max_period		= (1ULL<<31) - 1,
4996 	.get_event_constraints	= intel_get_event_constraints,
4997 	.put_event_constraints	= intel_put_event_constraints,
4998 	.event_constraints	= intel_core_event_constraints,
4999 	.guest_get_msrs		= core_guest_get_msrs,
5000 	.format_attrs		= intel_arch_formats_attr,
5001 	.events_sysfs_show	= intel_event_sysfs_show,
5002 
5003 	/*
5004 	 * Virtual (or funny metal) CPU can define x86_pmu.extra_regs
5005 	 * together with PMU version 1 and thus be using core_pmu with
5006 	 * shared_regs. We need following callbacks here to allocate
5007 	 * it properly.
5008 	 */
5009 	.cpu_prepare		= intel_pmu_cpu_prepare,
5010 	.cpu_starting		= intel_pmu_cpu_starting,
5011 	.cpu_dying		= intel_pmu_cpu_dying,
5012 	.cpu_dead		= intel_pmu_cpu_dead,
5013 
5014 	.check_period		= intel_pmu_check_period,
5015 
5016 	.lbr_reset		= intel_pmu_lbr_reset_64,
5017 	.lbr_read		= intel_pmu_lbr_read_64,
5018 	.lbr_save		= intel_pmu_lbr_save,
5019 	.lbr_restore		= intel_pmu_lbr_restore,
5020 };
5021 
5022 static __initconst const struct x86_pmu intel_pmu = {
5023 	.name			= "Intel",
5024 	.handle_irq		= intel_pmu_handle_irq,
5025 	.disable_all		= intel_pmu_disable_all,
5026 	.enable_all		= intel_pmu_enable_all,
5027 	.enable			= intel_pmu_enable_event,
5028 	.disable		= intel_pmu_disable_event,
5029 	.add			= intel_pmu_add_event,
5030 	.del			= intel_pmu_del_event,
5031 	.read			= intel_pmu_read_event,
5032 	.set_period		= intel_pmu_set_period,
5033 	.update			= intel_pmu_update,
5034 	.hw_config		= intel_pmu_hw_config,
5035 	.schedule_events	= x86_schedule_events,
5036 	.eventsel		= MSR_ARCH_PERFMON_EVENTSEL0,
5037 	.perfctr		= MSR_ARCH_PERFMON_PERFCTR0,
5038 	.event_map		= intel_pmu_event_map,
5039 	.max_events		= ARRAY_SIZE(intel_perfmon_event_map),
5040 	.apic			= 1,
5041 	.large_pebs_flags	= LARGE_PEBS_FLAGS,
5042 	/*
5043 	 * Intel PMCs cannot be accessed sanely above 32 bit width,
5044 	 * so we install an artificial 1<<31 period regardless of
5045 	 * the generic event period:
5046 	 */
5047 	.max_period		= (1ULL << 31) - 1,
5048 	.get_event_constraints	= intel_get_event_constraints,
5049 	.put_event_constraints	= intel_put_event_constraints,
5050 	.pebs_aliases		= intel_pebs_aliases_core2,
5051 
5052 	.format_attrs		= intel_arch3_formats_attr,
5053 	.events_sysfs_show	= intel_event_sysfs_show,
5054 
5055 	.cpu_prepare		= intel_pmu_cpu_prepare,
5056 	.cpu_starting		= intel_pmu_cpu_starting,
5057 	.cpu_dying		= intel_pmu_cpu_dying,
5058 	.cpu_dead		= intel_pmu_cpu_dead,
5059 
5060 	.guest_get_msrs		= intel_guest_get_msrs,
5061 	.sched_task		= intel_pmu_sched_task,
5062 	.swap_task_ctx		= intel_pmu_swap_task_ctx,
5063 
5064 	.check_period		= intel_pmu_check_period,
5065 
5066 	.aux_output_match	= intel_pmu_aux_output_match,
5067 
5068 	.lbr_reset		= intel_pmu_lbr_reset_64,
5069 	.lbr_read		= intel_pmu_lbr_read_64,
5070 	.lbr_save		= intel_pmu_lbr_save,
5071 	.lbr_restore		= intel_pmu_lbr_restore,
5072 
5073 	/*
5074 	 * SMM has access to all 4 rings and while traditionally SMM code only
5075 	 * ran in CPL0, 2021-era firmware is starting to make use of CPL3 in SMM.
5076 	 *
5077 	 * Since the EVENTSEL.{USR,OS} CPL filtering makes no distinction
5078 	 * between SMM or not, this results in what should be pure userspace
5079 	 * counters including SMM data.
5080 	 *
5081 	 * This is a clear privilege issue, therefore globally disable
5082 	 * counting SMM by default.
5083 	 */
5084 	.attr_freeze_on_smi	= 1,
5085 };
5086 
5087 static __init void intel_clovertown_quirk(void)
5088 {
5089 	/*
5090 	 * PEBS is unreliable due to:
5091 	 *
5092 	 *   AJ67  - PEBS may experience CPL leaks
5093 	 *   AJ68  - PEBS PMI may be delayed by one event
5094 	 *   AJ69  - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
5095 	 *   AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
5096 	 *
5097 	 * AJ67 could be worked around by restricting the OS/USR flags.
5098 	 * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
5099 	 *
5100 	 * AJ106 could possibly be worked around by not allowing LBR
5101 	 *       usage from PEBS, including the fixup.
5102 	 * AJ68  could possibly be worked around by always programming
5103 	 *	 a pebs_event_reset[0] value and coping with the lost events.
5104 	 *
5105 	 * But taken together it might just make sense to not enable PEBS on
5106 	 * these chips.
5107 	 */
5108 	pr_warn("PEBS disabled due to CPU errata\n");
5109 	x86_pmu.pebs = 0;
5110 	x86_pmu.pebs_constraints = NULL;
5111 }
5112 
5113 static const struct x86_cpu_desc isolation_ucodes[] = {
5114 	INTEL_CPU_DESC(INTEL_FAM6_HASWELL,		 3, 0x0000001f),
5115 	INTEL_CPU_DESC(INTEL_FAM6_HASWELL_L,		 1, 0x0000001e),
5116 	INTEL_CPU_DESC(INTEL_FAM6_HASWELL_G,		 1, 0x00000015),
5117 	INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X,		 2, 0x00000037),
5118 	INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X,		 4, 0x0000000a),
5119 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL,		 4, 0x00000023),
5120 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_G,		 1, 0x00000014),
5121 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,		 2, 0x00000010),
5122 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,		 3, 0x07000009),
5123 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,		 4, 0x0f000009),
5124 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,		 5, 0x0e000002),
5125 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_X,		 1, 0x0b000014),
5126 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,		 3, 0x00000021),
5127 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,		 4, 0x00000000),
5128 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,		 5, 0x00000000),
5129 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,		 6, 0x00000000),
5130 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,		 7, 0x00000000),
5131 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,		11, 0x00000000),
5132 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_L,		 3, 0x0000007c),
5133 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE,		 3, 0x0000007c),
5134 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,		 9, 0x0000004e),
5135 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,		 9, 0x0000004e),
5136 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,		10, 0x0000004e),
5137 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,		11, 0x0000004e),
5138 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,		12, 0x0000004e),
5139 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,		10, 0x0000004e),
5140 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,		11, 0x0000004e),
5141 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,		12, 0x0000004e),
5142 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,		13, 0x0000004e),
5143 	{}
5144 };
5145 
5146 static void intel_check_pebs_isolation(void)
5147 {
5148 	x86_pmu.pebs_no_isolation = !x86_cpu_has_min_microcode_rev(isolation_ucodes);
5149 }
5150 
5151 static __init void intel_pebs_isolation_quirk(void)
5152 {
5153 	WARN_ON_ONCE(x86_pmu.check_microcode);
5154 	x86_pmu.check_microcode = intel_check_pebs_isolation;
5155 	intel_check_pebs_isolation();
5156 }
5157 
5158 static const struct x86_cpu_desc pebs_ucodes[] = {
5159 	INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE,		7, 0x00000028),
5160 	INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X,	6, 0x00000618),
5161 	INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X,	7, 0x0000070c),
5162 	{}
5163 };
5164 
5165 static bool intel_snb_pebs_broken(void)
5166 {
5167 	return !x86_cpu_has_min_microcode_rev(pebs_ucodes);
5168 }
5169 
5170 static void intel_snb_check_microcode(void)
5171 {
5172 	if (intel_snb_pebs_broken() == x86_pmu.pebs_broken)
5173 		return;
5174 
5175 	/*
5176 	 * Serialized by the microcode lock..
5177 	 */
5178 	if (x86_pmu.pebs_broken) {
5179 		pr_info("PEBS enabled due to microcode update\n");
5180 		x86_pmu.pebs_broken = 0;
5181 	} else {
5182 		pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
5183 		x86_pmu.pebs_broken = 1;
5184 	}
5185 }
5186 
5187 static bool is_lbr_from(unsigned long msr)
5188 {
5189 	unsigned long lbr_from_nr = x86_pmu.lbr_from + x86_pmu.lbr_nr;
5190 
5191 	return x86_pmu.lbr_from <= msr && msr < lbr_from_nr;
5192 }
5193 
5194 /*
5195  * Under certain circumstances, access certain MSR may cause #GP.
5196  * The function tests if the input MSR can be safely accessed.
5197  */
5198 static bool check_msr(unsigned long msr, u64 mask)
5199 {
5200 	u64 val_old, val_new, val_tmp;
5201 
5202 	/*
5203 	 * Disable the check for real HW, so we don't
5204 	 * mess with potentially enabled registers:
5205 	 */
5206 	if (!boot_cpu_has(X86_FEATURE_HYPERVISOR))
5207 		return true;
5208 
5209 	/*
5210 	 * Read the current value, change it and read it back to see if it
5211 	 * matches, this is needed to detect certain hardware emulators
5212 	 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
5213 	 */
5214 	if (rdmsrl_safe(msr, &val_old))
5215 		return false;
5216 
5217 	/*
5218 	 * Only change the bits which can be updated by wrmsrl.
5219 	 */
5220 	val_tmp = val_old ^ mask;
5221 
5222 	if (is_lbr_from(msr))
5223 		val_tmp = lbr_from_signext_quirk_wr(val_tmp);
5224 
5225 	if (wrmsrl_safe(msr, val_tmp) ||
5226 	    rdmsrl_safe(msr, &val_new))
5227 		return false;
5228 
5229 	/*
5230 	 * Quirk only affects validation in wrmsr(), so wrmsrl()'s value
5231 	 * should equal rdmsrl()'s even with the quirk.
5232 	 */
5233 	if (val_new != val_tmp)
5234 		return false;
5235 
5236 	if (is_lbr_from(msr))
5237 		val_old = lbr_from_signext_quirk_wr(val_old);
5238 
5239 	/* Here it's sure that the MSR can be safely accessed.
5240 	 * Restore the old value and return.
5241 	 */
5242 	wrmsrl(msr, val_old);
5243 
5244 	return true;
5245 }
5246 
5247 static __init void intel_sandybridge_quirk(void)
5248 {
5249 	x86_pmu.check_microcode = intel_snb_check_microcode;
5250 	cpus_read_lock();
5251 	intel_snb_check_microcode();
5252 	cpus_read_unlock();
5253 }
5254 
5255 static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
5256 	{ PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
5257 	{ PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
5258 	{ PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
5259 	{ PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
5260 	{ PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
5261 	{ PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
5262 	{ PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
5263 };
5264 
5265 static __init void intel_arch_events_quirk(void)
5266 {
5267 	int bit;
5268 
5269 	/* disable event that reported as not present by cpuid */
5270 	for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
5271 		intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
5272 		pr_warn("CPUID marked event: \'%s\' unavailable\n",
5273 			intel_arch_events_map[bit].name);
5274 	}
5275 }
5276 
5277 static __init void intel_nehalem_quirk(void)
5278 {
5279 	union cpuid10_ebx ebx;
5280 
5281 	ebx.full = x86_pmu.events_maskl;
5282 	if (ebx.split.no_branch_misses_retired) {
5283 		/*
5284 		 * Erratum AAJ80 detected, we work it around by using
5285 		 * the BR_MISP_EXEC.ANY event. This will over-count
5286 		 * branch-misses, but it's still much better than the
5287 		 * architectural event which is often completely bogus:
5288 		 */
5289 		intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
5290 		ebx.split.no_branch_misses_retired = 0;
5291 		x86_pmu.events_maskl = ebx.full;
5292 		pr_info("CPU erratum AAJ80 worked around\n");
5293 	}
5294 }
5295 
5296 /*
5297  * enable software workaround for errata:
5298  * SNB: BJ122
5299  * IVB: BV98
5300  * HSW: HSD29
5301  *
5302  * Only needed when HT is enabled. However detecting
5303  * if HT is enabled is difficult (model specific). So instead,
5304  * we enable the workaround in the early boot, and verify if
5305  * it is needed in a later initcall phase once we have valid
5306  * topology information to check if HT is actually enabled
5307  */
5308 static __init void intel_ht_bug(void)
5309 {
5310 	x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED;
5311 
5312 	x86_pmu.start_scheduling = intel_start_scheduling;
5313 	x86_pmu.commit_scheduling = intel_commit_scheduling;
5314 	x86_pmu.stop_scheduling = intel_stop_scheduling;
5315 }
5316 
5317 EVENT_ATTR_STR(mem-loads,	mem_ld_hsw,	"event=0xcd,umask=0x1,ldlat=3");
5318 EVENT_ATTR_STR(mem-stores,	mem_st_hsw,	"event=0xd0,umask=0x82")
5319 
5320 /* Haswell special events */
5321 EVENT_ATTR_STR(tx-start,	tx_start,	"event=0xc9,umask=0x1");
5322 EVENT_ATTR_STR(tx-commit,	tx_commit,	"event=0xc9,umask=0x2");
5323 EVENT_ATTR_STR(tx-abort,	tx_abort,	"event=0xc9,umask=0x4");
5324 EVENT_ATTR_STR(tx-capacity,	tx_capacity,	"event=0x54,umask=0x2");
5325 EVENT_ATTR_STR(tx-conflict,	tx_conflict,	"event=0x54,umask=0x1");
5326 EVENT_ATTR_STR(el-start,	el_start,	"event=0xc8,umask=0x1");
5327 EVENT_ATTR_STR(el-commit,	el_commit,	"event=0xc8,umask=0x2");
5328 EVENT_ATTR_STR(el-abort,	el_abort,	"event=0xc8,umask=0x4");
5329 EVENT_ATTR_STR(el-capacity,	el_capacity,	"event=0x54,umask=0x2");
5330 EVENT_ATTR_STR(el-conflict,	el_conflict,	"event=0x54,umask=0x1");
5331 EVENT_ATTR_STR(cycles-t,	cycles_t,	"event=0x3c,in_tx=1");
5332 EVENT_ATTR_STR(cycles-ct,	cycles_ct,	"event=0x3c,in_tx=1,in_tx_cp=1");
5333 
5334 static struct attribute *hsw_events_attrs[] = {
5335 	EVENT_PTR(td_slots_issued),
5336 	EVENT_PTR(td_slots_retired),
5337 	EVENT_PTR(td_fetch_bubbles),
5338 	EVENT_PTR(td_total_slots),
5339 	EVENT_PTR(td_total_slots_scale),
5340 	EVENT_PTR(td_recovery_bubbles),
5341 	EVENT_PTR(td_recovery_bubbles_scale),
5342 	NULL
5343 };
5344 
5345 static struct attribute *hsw_mem_events_attrs[] = {
5346 	EVENT_PTR(mem_ld_hsw),
5347 	EVENT_PTR(mem_st_hsw),
5348 	NULL,
5349 };
5350 
5351 static struct attribute *hsw_tsx_events_attrs[] = {
5352 	EVENT_PTR(tx_start),
5353 	EVENT_PTR(tx_commit),
5354 	EVENT_PTR(tx_abort),
5355 	EVENT_PTR(tx_capacity),
5356 	EVENT_PTR(tx_conflict),
5357 	EVENT_PTR(el_start),
5358 	EVENT_PTR(el_commit),
5359 	EVENT_PTR(el_abort),
5360 	EVENT_PTR(el_capacity),
5361 	EVENT_PTR(el_conflict),
5362 	EVENT_PTR(cycles_t),
5363 	EVENT_PTR(cycles_ct),
5364 	NULL
5365 };
5366 
5367 EVENT_ATTR_STR(tx-capacity-read,  tx_capacity_read,  "event=0x54,umask=0x80");
5368 EVENT_ATTR_STR(tx-capacity-write, tx_capacity_write, "event=0x54,umask=0x2");
5369 EVENT_ATTR_STR(el-capacity-read,  el_capacity_read,  "event=0x54,umask=0x80");
5370 EVENT_ATTR_STR(el-capacity-write, el_capacity_write, "event=0x54,umask=0x2");
5371 
5372 static struct attribute *icl_events_attrs[] = {
5373 	EVENT_PTR(mem_ld_hsw),
5374 	EVENT_PTR(mem_st_hsw),
5375 	NULL,
5376 };
5377 
5378 static struct attribute *icl_td_events_attrs[] = {
5379 	EVENT_PTR(slots),
5380 	EVENT_PTR(td_retiring),
5381 	EVENT_PTR(td_bad_spec),
5382 	EVENT_PTR(td_fe_bound),
5383 	EVENT_PTR(td_be_bound),
5384 	NULL,
5385 };
5386 
5387 static struct attribute *icl_tsx_events_attrs[] = {
5388 	EVENT_PTR(tx_start),
5389 	EVENT_PTR(tx_abort),
5390 	EVENT_PTR(tx_commit),
5391 	EVENT_PTR(tx_capacity_read),
5392 	EVENT_PTR(tx_capacity_write),
5393 	EVENT_PTR(tx_conflict),
5394 	EVENT_PTR(el_start),
5395 	EVENT_PTR(el_abort),
5396 	EVENT_PTR(el_commit),
5397 	EVENT_PTR(el_capacity_read),
5398 	EVENT_PTR(el_capacity_write),
5399 	EVENT_PTR(el_conflict),
5400 	EVENT_PTR(cycles_t),
5401 	EVENT_PTR(cycles_ct),
5402 	NULL,
5403 };
5404 
5405 
5406 EVENT_ATTR_STR(mem-stores,	mem_st_spr,	"event=0xcd,umask=0x2");
5407 EVENT_ATTR_STR(mem-loads-aux,	mem_ld_aux,	"event=0x03,umask=0x82");
5408 
5409 static struct attribute *glc_events_attrs[] = {
5410 	EVENT_PTR(mem_ld_hsw),
5411 	EVENT_PTR(mem_st_spr),
5412 	EVENT_PTR(mem_ld_aux),
5413 	NULL,
5414 };
5415 
5416 static struct attribute *glc_td_events_attrs[] = {
5417 	EVENT_PTR(slots),
5418 	EVENT_PTR(td_retiring),
5419 	EVENT_PTR(td_bad_spec),
5420 	EVENT_PTR(td_fe_bound),
5421 	EVENT_PTR(td_be_bound),
5422 	EVENT_PTR(td_heavy_ops),
5423 	EVENT_PTR(td_br_mispredict),
5424 	EVENT_PTR(td_fetch_lat),
5425 	EVENT_PTR(td_mem_bound),
5426 	NULL,
5427 };
5428 
5429 static struct attribute *glc_tsx_events_attrs[] = {
5430 	EVENT_PTR(tx_start),
5431 	EVENT_PTR(tx_abort),
5432 	EVENT_PTR(tx_commit),
5433 	EVENT_PTR(tx_capacity_read),
5434 	EVENT_PTR(tx_capacity_write),
5435 	EVENT_PTR(tx_conflict),
5436 	EVENT_PTR(cycles_t),
5437 	EVENT_PTR(cycles_ct),
5438 	NULL,
5439 };
5440 
5441 static ssize_t freeze_on_smi_show(struct device *cdev,
5442 				  struct device_attribute *attr,
5443 				  char *buf)
5444 {
5445 	return sprintf(buf, "%lu\n", x86_pmu.attr_freeze_on_smi);
5446 }
5447 
5448 static DEFINE_MUTEX(freeze_on_smi_mutex);
5449 
5450 static ssize_t freeze_on_smi_store(struct device *cdev,
5451 				   struct device_attribute *attr,
5452 				   const char *buf, size_t count)
5453 {
5454 	unsigned long val;
5455 	ssize_t ret;
5456 
5457 	ret = kstrtoul(buf, 0, &val);
5458 	if (ret)
5459 		return ret;
5460 
5461 	if (val > 1)
5462 		return -EINVAL;
5463 
5464 	mutex_lock(&freeze_on_smi_mutex);
5465 
5466 	if (x86_pmu.attr_freeze_on_smi == val)
5467 		goto done;
5468 
5469 	x86_pmu.attr_freeze_on_smi = val;
5470 
5471 	cpus_read_lock();
5472 	on_each_cpu(flip_smm_bit, &val, 1);
5473 	cpus_read_unlock();
5474 done:
5475 	mutex_unlock(&freeze_on_smi_mutex);
5476 
5477 	return count;
5478 }
5479 
5480 static void update_tfa_sched(void *ignored)
5481 {
5482 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
5483 
5484 	/*
5485 	 * check if PMC3 is used
5486 	 * and if so force schedule out for all event types all contexts
5487 	 */
5488 	if (test_bit(3, cpuc->active_mask))
5489 		perf_pmu_resched(x86_get_pmu(smp_processor_id()));
5490 }
5491 
5492 static ssize_t show_sysctl_tfa(struct device *cdev,
5493 			      struct device_attribute *attr,
5494 			      char *buf)
5495 {
5496 	return snprintf(buf, 40, "%d\n", allow_tsx_force_abort);
5497 }
5498 
5499 static ssize_t set_sysctl_tfa(struct device *cdev,
5500 			      struct device_attribute *attr,
5501 			      const char *buf, size_t count)
5502 {
5503 	bool val;
5504 	ssize_t ret;
5505 
5506 	ret = kstrtobool(buf, &val);
5507 	if (ret)
5508 		return ret;
5509 
5510 	/* no change */
5511 	if (val == allow_tsx_force_abort)
5512 		return count;
5513 
5514 	allow_tsx_force_abort = val;
5515 
5516 	cpus_read_lock();
5517 	on_each_cpu(update_tfa_sched, NULL, 1);
5518 	cpus_read_unlock();
5519 
5520 	return count;
5521 }
5522 
5523 
5524 static DEVICE_ATTR_RW(freeze_on_smi);
5525 
5526 static ssize_t branches_show(struct device *cdev,
5527 			     struct device_attribute *attr,
5528 			     char *buf)
5529 {
5530 	return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu.lbr_nr);
5531 }
5532 
5533 static DEVICE_ATTR_RO(branches);
5534 
5535 static struct attribute *lbr_attrs[] = {
5536 	&dev_attr_branches.attr,
5537 	NULL
5538 };
5539 
5540 static char pmu_name_str[30];
5541 
5542 static ssize_t pmu_name_show(struct device *cdev,
5543 			     struct device_attribute *attr,
5544 			     char *buf)
5545 {
5546 	return snprintf(buf, PAGE_SIZE, "%s\n", pmu_name_str);
5547 }
5548 
5549 static DEVICE_ATTR_RO(pmu_name);
5550 
5551 static struct attribute *intel_pmu_caps_attrs[] = {
5552        &dev_attr_pmu_name.attr,
5553        NULL
5554 };
5555 
5556 static DEVICE_ATTR(allow_tsx_force_abort, 0644,
5557 		   show_sysctl_tfa,
5558 		   set_sysctl_tfa);
5559 
5560 static struct attribute *intel_pmu_attrs[] = {
5561 	&dev_attr_freeze_on_smi.attr,
5562 	&dev_attr_allow_tsx_force_abort.attr,
5563 	NULL,
5564 };
5565 
5566 static umode_t
5567 tsx_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5568 {
5569 	return boot_cpu_has(X86_FEATURE_RTM) ? attr->mode : 0;
5570 }
5571 
5572 static umode_t
5573 pebs_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5574 {
5575 	return x86_pmu.pebs ? attr->mode : 0;
5576 }
5577 
5578 static umode_t
5579 mem_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5580 {
5581 	if (attr == &event_attr_mem_ld_aux.attr.attr)
5582 		return x86_pmu.flags & PMU_FL_MEM_LOADS_AUX ? attr->mode : 0;
5583 
5584 	return pebs_is_visible(kobj, attr, i);
5585 }
5586 
5587 static umode_t
5588 lbr_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5589 {
5590 	return x86_pmu.lbr_nr ? attr->mode : 0;
5591 }
5592 
5593 static umode_t
5594 exra_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5595 {
5596 	return x86_pmu.version >= 2 ? attr->mode : 0;
5597 }
5598 
5599 static umode_t
5600 default_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5601 {
5602 	if (attr == &dev_attr_allow_tsx_force_abort.attr)
5603 		return x86_pmu.flags & PMU_FL_TFA ? attr->mode : 0;
5604 
5605 	return attr->mode;
5606 }
5607 
5608 static struct attribute_group group_events_td  = {
5609 	.name = "events",
5610 };
5611 
5612 static struct attribute_group group_events_mem = {
5613 	.name       = "events",
5614 	.is_visible = mem_is_visible,
5615 };
5616 
5617 static struct attribute_group group_events_tsx = {
5618 	.name       = "events",
5619 	.is_visible = tsx_is_visible,
5620 };
5621 
5622 static struct attribute_group group_caps_gen = {
5623 	.name  = "caps",
5624 	.attrs = intel_pmu_caps_attrs,
5625 };
5626 
5627 static struct attribute_group group_caps_lbr = {
5628 	.name       = "caps",
5629 	.attrs	    = lbr_attrs,
5630 	.is_visible = lbr_is_visible,
5631 };
5632 
5633 static struct attribute_group group_format_extra = {
5634 	.name       = "format",
5635 	.is_visible = exra_is_visible,
5636 };
5637 
5638 static struct attribute_group group_format_extra_skl = {
5639 	.name       = "format",
5640 	.is_visible = exra_is_visible,
5641 };
5642 
5643 static struct attribute_group group_default = {
5644 	.attrs      = intel_pmu_attrs,
5645 	.is_visible = default_is_visible,
5646 };
5647 
5648 static const struct attribute_group *attr_update[] = {
5649 	&group_events_td,
5650 	&group_events_mem,
5651 	&group_events_tsx,
5652 	&group_caps_gen,
5653 	&group_caps_lbr,
5654 	&group_format_extra,
5655 	&group_format_extra_skl,
5656 	&group_default,
5657 	NULL,
5658 };
5659 
5660 EVENT_ATTR_STR_HYBRID(slots,                 slots_adl,        "event=0x00,umask=0x4",                       hybrid_big);
5661 EVENT_ATTR_STR_HYBRID(topdown-retiring,      td_retiring_adl,  "event=0xc2,umask=0x0;event=0x00,umask=0x80", hybrid_big_small);
5662 EVENT_ATTR_STR_HYBRID(topdown-bad-spec,      td_bad_spec_adl,  "event=0x73,umask=0x0;event=0x00,umask=0x81", hybrid_big_small);
5663 EVENT_ATTR_STR_HYBRID(topdown-fe-bound,      td_fe_bound_adl,  "event=0x71,umask=0x0;event=0x00,umask=0x82", hybrid_big_small);
5664 EVENT_ATTR_STR_HYBRID(topdown-be-bound,      td_be_bound_adl,  "event=0x74,umask=0x0;event=0x00,umask=0x83", hybrid_big_small);
5665 EVENT_ATTR_STR_HYBRID(topdown-heavy-ops,     td_heavy_ops_adl, "event=0x00,umask=0x84",                      hybrid_big);
5666 EVENT_ATTR_STR_HYBRID(topdown-br-mispredict, td_br_mis_adl,    "event=0x00,umask=0x85",                      hybrid_big);
5667 EVENT_ATTR_STR_HYBRID(topdown-fetch-lat,     td_fetch_lat_adl, "event=0x00,umask=0x86",                      hybrid_big);
5668 EVENT_ATTR_STR_HYBRID(topdown-mem-bound,     td_mem_bound_adl, "event=0x00,umask=0x87",                      hybrid_big);
5669 
5670 static struct attribute *adl_hybrid_events_attrs[] = {
5671 	EVENT_PTR(slots_adl),
5672 	EVENT_PTR(td_retiring_adl),
5673 	EVENT_PTR(td_bad_spec_adl),
5674 	EVENT_PTR(td_fe_bound_adl),
5675 	EVENT_PTR(td_be_bound_adl),
5676 	EVENT_PTR(td_heavy_ops_adl),
5677 	EVENT_PTR(td_br_mis_adl),
5678 	EVENT_PTR(td_fetch_lat_adl),
5679 	EVENT_PTR(td_mem_bound_adl),
5680 	NULL,
5681 };
5682 
5683 /* Must be in IDX order */
5684 EVENT_ATTR_STR_HYBRID(mem-loads,     mem_ld_adl,     "event=0xd0,umask=0x5,ldlat=3;event=0xcd,umask=0x1,ldlat=3", hybrid_big_small);
5685 EVENT_ATTR_STR_HYBRID(mem-stores,    mem_st_adl,     "event=0xd0,umask=0x6;event=0xcd,umask=0x2",                 hybrid_big_small);
5686 EVENT_ATTR_STR_HYBRID(mem-loads-aux, mem_ld_aux_adl, "event=0x03,umask=0x82",                                     hybrid_big);
5687 
5688 static struct attribute *adl_hybrid_mem_attrs[] = {
5689 	EVENT_PTR(mem_ld_adl),
5690 	EVENT_PTR(mem_st_adl),
5691 	EVENT_PTR(mem_ld_aux_adl),
5692 	NULL,
5693 };
5694 
5695 static struct attribute *mtl_hybrid_mem_attrs[] = {
5696 	EVENT_PTR(mem_ld_adl),
5697 	EVENT_PTR(mem_st_adl),
5698 	NULL
5699 };
5700 
5701 EVENT_ATTR_STR_HYBRID(tx-start,          tx_start_adl,          "event=0xc9,umask=0x1",          hybrid_big);
5702 EVENT_ATTR_STR_HYBRID(tx-commit,         tx_commit_adl,         "event=0xc9,umask=0x2",          hybrid_big);
5703 EVENT_ATTR_STR_HYBRID(tx-abort,          tx_abort_adl,          "event=0xc9,umask=0x4",          hybrid_big);
5704 EVENT_ATTR_STR_HYBRID(tx-conflict,       tx_conflict_adl,       "event=0x54,umask=0x1",          hybrid_big);
5705 EVENT_ATTR_STR_HYBRID(cycles-t,          cycles_t_adl,          "event=0x3c,in_tx=1",            hybrid_big);
5706 EVENT_ATTR_STR_HYBRID(cycles-ct,         cycles_ct_adl,         "event=0x3c,in_tx=1,in_tx_cp=1", hybrid_big);
5707 EVENT_ATTR_STR_HYBRID(tx-capacity-read,  tx_capacity_read_adl,  "event=0x54,umask=0x80",         hybrid_big);
5708 EVENT_ATTR_STR_HYBRID(tx-capacity-write, tx_capacity_write_adl, "event=0x54,umask=0x2",          hybrid_big);
5709 
5710 static struct attribute *adl_hybrid_tsx_attrs[] = {
5711 	EVENT_PTR(tx_start_adl),
5712 	EVENT_PTR(tx_abort_adl),
5713 	EVENT_PTR(tx_commit_adl),
5714 	EVENT_PTR(tx_capacity_read_adl),
5715 	EVENT_PTR(tx_capacity_write_adl),
5716 	EVENT_PTR(tx_conflict_adl),
5717 	EVENT_PTR(cycles_t_adl),
5718 	EVENT_PTR(cycles_ct_adl),
5719 	NULL,
5720 };
5721 
5722 FORMAT_ATTR_HYBRID(in_tx,       hybrid_big);
5723 FORMAT_ATTR_HYBRID(in_tx_cp,    hybrid_big);
5724 FORMAT_ATTR_HYBRID(offcore_rsp, hybrid_big_small);
5725 FORMAT_ATTR_HYBRID(ldlat,       hybrid_big_small);
5726 FORMAT_ATTR_HYBRID(frontend,    hybrid_big);
5727 
5728 #define ADL_HYBRID_RTM_FORMAT_ATTR	\
5729 	FORMAT_HYBRID_PTR(in_tx),	\
5730 	FORMAT_HYBRID_PTR(in_tx_cp)
5731 
5732 #define ADL_HYBRID_FORMAT_ATTR		\
5733 	FORMAT_HYBRID_PTR(offcore_rsp),	\
5734 	FORMAT_HYBRID_PTR(ldlat),	\
5735 	FORMAT_HYBRID_PTR(frontend)
5736 
5737 static struct attribute *adl_hybrid_extra_attr_rtm[] = {
5738 	ADL_HYBRID_RTM_FORMAT_ATTR,
5739 	ADL_HYBRID_FORMAT_ATTR,
5740 	NULL
5741 };
5742 
5743 static struct attribute *adl_hybrid_extra_attr[] = {
5744 	ADL_HYBRID_FORMAT_ATTR,
5745 	NULL
5746 };
5747 
5748 FORMAT_ATTR_HYBRID(snoop_rsp,	hybrid_small);
5749 
5750 static struct attribute *mtl_hybrid_extra_attr_rtm[] = {
5751 	ADL_HYBRID_RTM_FORMAT_ATTR,
5752 	ADL_HYBRID_FORMAT_ATTR,
5753 	FORMAT_HYBRID_PTR(snoop_rsp),
5754 	NULL
5755 };
5756 
5757 static struct attribute *mtl_hybrid_extra_attr[] = {
5758 	ADL_HYBRID_FORMAT_ATTR,
5759 	FORMAT_HYBRID_PTR(snoop_rsp),
5760 	NULL
5761 };
5762 
5763 static bool is_attr_for_this_pmu(struct kobject *kobj, struct attribute *attr)
5764 {
5765 	struct device *dev = kobj_to_dev(kobj);
5766 	struct x86_hybrid_pmu *pmu =
5767 		container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5768 	struct perf_pmu_events_hybrid_attr *pmu_attr =
5769 		container_of(attr, struct perf_pmu_events_hybrid_attr, attr.attr);
5770 
5771 	return pmu->pmu_type & pmu_attr->pmu_type;
5772 }
5773 
5774 static umode_t hybrid_events_is_visible(struct kobject *kobj,
5775 					struct attribute *attr, int i)
5776 {
5777 	return is_attr_for_this_pmu(kobj, attr) ? attr->mode : 0;
5778 }
5779 
5780 static inline int hybrid_find_supported_cpu(struct x86_hybrid_pmu *pmu)
5781 {
5782 	int cpu = cpumask_first(&pmu->supported_cpus);
5783 
5784 	return (cpu >= nr_cpu_ids) ? -1 : cpu;
5785 }
5786 
5787 static umode_t hybrid_tsx_is_visible(struct kobject *kobj,
5788 				     struct attribute *attr, int i)
5789 {
5790 	struct device *dev = kobj_to_dev(kobj);
5791 	struct x86_hybrid_pmu *pmu =
5792 		 container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5793 	int cpu = hybrid_find_supported_cpu(pmu);
5794 
5795 	return (cpu >= 0) && is_attr_for_this_pmu(kobj, attr) && cpu_has(&cpu_data(cpu), X86_FEATURE_RTM) ? attr->mode : 0;
5796 }
5797 
5798 static umode_t hybrid_format_is_visible(struct kobject *kobj,
5799 					struct attribute *attr, int i)
5800 {
5801 	struct device *dev = kobj_to_dev(kobj);
5802 	struct x86_hybrid_pmu *pmu =
5803 		container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5804 	struct perf_pmu_format_hybrid_attr *pmu_attr =
5805 		container_of(attr, struct perf_pmu_format_hybrid_attr, attr.attr);
5806 	int cpu = hybrid_find_supported_cpu(pmu);
5807 
5808 	return (cpu >= 0) && (pmu->pmu_type & pmu_attr->pmu_type) ? attr->mode : 0;
5809 }
5810 
5811 static struct attribute_group hybrid_group_events_td  = {
5812 	.name		= "events",
5813 	.is_visible	= hybrid_events_is_visible,
5814 };
5815 
5816 static struct attribute_group hybrid_group_events_mem = {
5817 	.name		= "events",
5818 	.is_visible	= hybrid_events_is_visible,
5819 };
5820 
5821 static struct attribute_group hybrid_group_events_tsx = {
5822 	.name		= "events",
5823 	.is_visible	= hybrid_tsx_is_visible,
5824 };
5825 
5826 static struct attribute_group hybrid_group_format_extra = {
5827 	.name		= "format",
5828 	.is_visible	= hybrid_format_is_visible,
5829 };
5830 
5831 static ssize_t intel_hybrid_get_attr_cpus(struct device *dev,
5832 					  struct device_attribute *attr,
5833 					  char *buf)
5834 {
5835 	struct x86_hybrid_pmu *pmu =
5836 		container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5837 
5838 	return cpumap_print_to_pagebuf(true, buf, &pmu->supported_cpus);
5839 }
5840 
5841 static DEVICE_ATTR(cpus, S_IRUGO, intel_hybrid_get_attr_cpus, NULL);
5842 static struct attribute *intel_hybrid_cpus_attrs[] = {
5843 	&dev_attr_cpus.attr,
5844 	NULL,
5845 };
5846 
5847 static struct attribute_group hybrid_group_cpus = {
5848 	.attrs		= intel_hybrid_cpus_attrs,
5849 };
5850 
5851 static const struct attribute_group *hybrid_attr_update[] = {
5852 	&hybrid_group_events_td,
5853 	&hybrid_group_events_mem,
5854 	&hybrid_group_events_tsx,
5855 	&group_caps_gen,
5856 	&group_caps_lbr,
5857 	&hybrid_group_format_extra,
5858 	&group_default,
5859 	&hybrid_group_cpus,
5860 	NULL,
5861 };
5862 
5863 static struct attribute *empty_attrs;
5864 
5865 static void intel_pmu_check_num_counters(int *num_counters,
5866 					 int *num_counters_fixed,
5867 					 u64 *intel_ctrl, u64 fixed_mask)
5868 {
5869 	if (*num_counters > INTEL_PMC_MAX_GENERIC) {
5870 		WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
5871 		     *num_counters, INTEL_PMC_MAX_GENERIC);
5872 		*num_counters = INTEL_PMC_MAX_GENERIC;
5873 	}
5874 	*intel_ctrl = (1ULL << *num_counters) - 1;
5875 
5876 	if (*num_counters_fixed > INTEL_PMC_MAX_FIXED) {
5877 		WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
5878 		     *num_counters_fixed, INTEL_PMC_MAX_FIXED);
5879 		*num_counters_fixed = INTEL_PMC_MAX_FIXED;
5880 	}
5881 
5882 	*intel_ctrl |= fixed_mask << INTEL_PMC_IDX_FIXED;
5883 }
5884 
5885 static void intel_pmu_check_event_constraints(struct event_constraint *event_constraints,
5886 					      int num_counters,
5887 					      int num_counters_fixed,
5888 					      u64 intel_ctrl)
5889 {
5890 	struct event_constraint *c;
5891 
5892 	if (!event_constraints)
5893 		return;
5894 
5895 	/*
5896 	 * event on fixed counter2 (REF_CYCLES) only works on this
5897 	 * counter, so do not extend mask to generic counters
5898 	 */
5899 	for_each_event_constraint(c, event_constraints) {
5900 		/*
5901 		 * Don't extend the topdown slots and metrics
5902 		 * events to the generic counters.
5903 		 */
5904 		if (c->idxmsk64 & INTEL_PMC_MSK_TOPDOWN) {
5905 			/*
5906 			 * Disable topdown slots and metrics events,
5907 			 * if slots event is not in CPUID.
5908 			 */
5909 			if (!(INTEL_PMC_MSK_FIXED_SLOTS & intel_ctrl))
5910 				c->idxmsk64 = 0;
5911 			c->weight = hweight64(c->idxmsk64);
5912 			continue;
5913 		}
5914 
5915 		if (c->cmask == FIXED_EVENT_FLAGS) {
5916 			/* Disabled fixed counters which are not in CPUID */
5917 			c->idxmsk64 &= intel_ctrl;
5918 
5919 			/*
5920 			 * Don't extend the pseudo-encoding to the
5921 			 * generic counters
5922 			 */
5923 			if (!use_fixed_pseudo_encoding(c->code))
5924 				c->idxmsk64 |= (1ULL << num_counters) - 1;
5925 		}
5926 		c->idxmsk64 &=
5927 			~(~0ULL << (INTEL_PMC_IDX_FIXED + num_counters_fixed));
5928 		c->weight = hweight64(c->idxmsk64);
5929 	}
5930 }
5931 
5932 static void intel_pmu_check_extra_regs(struct extra_reg *extra_regs)
5933 {
5934 	struct extra_reg *er;
5935 
5936 	/*
5937 	 * Access extra MSR may cause #GP under certain circumstances.
5938 	 * E.g. KVM doesn't support offcore event
5939 	 * Check all extra_regs here.
5940 	 */
5941 	if (!extra_regs)
5942 		return;
5943 
5944 	for (er = extra_regs; er->msr; er++) {
5945 		er->extra_msr_access = check_msr(er->msr, 0x11UL);
5946 		/* Disable LBR select mapping */
5947 		if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
5948 			x86_pmu.lbr_sel_map = NULL;
5949 	}
5950 }
5951 
5952 static const struct { enum hybrid_pmu_type id; char *name; } intel_hybrid_pmu_type_map[] __initconst = {
5953 	{ hybrid_small, "cpu_atom" },
5954 	{ hybrid_big, "cpu_core" },
5955 };
5956 
5957 static __always_inline int intel_pmu_init_hybrid(enum hybrid_pmu_type pmus)
5958 {
5959 	unsigned long pmus_mask = pmus;
5960 	struct x86_hybrid_pmu *pmu;
5961 	int idx = 0, bit;
5962 
5963 	x86_pmu.num_hybrid_pmus = hweight_long(pmus_mask);
5964 	x86_pmu.hybrid_pmu = kcalloc(x86_pmu.num_hybrid_pmus,
5965 				     sizeof(struct x86_hybrid_pmu),
5966 				     GFP_KERNEL);
5967 	if (!x86_pmu.hybrid_pmu)
5968 		return -ENOMEM;
5969 
5970 	static_branch_enable(&perf_is_hybrid);
5971 	x86_pmu.filter = intel_pmu_filter;
5972 
5973 	for_each_set_bit(bit, &pmus_mask, ARRAY_SIZE(intel_hybrid_pmu_type_map)) {
5974 		pmu = &x86_pmu.hybrid_pmu[idx++];
5975 		pmu->pmu_type = intel_hybrid_pmu_type_map[bit].id;
5976 		pmu->name = intel_hybrid_pmu_type_map[bit].name;
5977 
5978 		pmu->num_counters = x86_pmu.num_counters;
5979 		pmu->num_counters_fixed = x86_pmu.num_counters_fixed;
5980 		pmu->max_pebs_events = min_t(unsigned, MAX_PEBS_EVENTS, pmu->num_counters);
5981 		pmu->unconstrained = (struct event_constraint)
5982 				     __EVENT_CONSTRAINT(0, (1ULL << pmu->num_counters) - 1,
5983 							0, pmu->num_counters, 0, 0);
5984 
5985 		pmu->intel_cap.capabilities = x86_pmu.intel_cap.capabilities;
5986 		if (pmu->pmu_type & hybrid_small) {
5987 			pmu->intel_cap.perf_metrics = 0;
5988 			pmu->intel_cap.pebs_output_pt_available = 1;
5989 			pmu->mid_ack = true;
5990 		} else if (pmu->pmu_type & hybrid_big) {
5991 			pmu->intel_cap.perf_metrics = 1;
5992 			pmu->intel_cap.pebs_output_pt_available = 0;
5993 			pmu->late_ack = true;
5994 		}
5995 	}
5996 
5997 	return 0;
5998 }
5999 
6000 static __always_inline void intel_pmu_ref_cycles_ext(void)
6001 {
6002 	if (!(x86_pmu.events_maskl & (INTEL_PMC_MSK_FIXED_REF_CYCLES >> INTEL_PMC_IDX_FIXED)))
6003 		intel_perfmon_event_map[PERF_COUNT_HW_REF_CPU_CYCLES] = 0x013c;
6004 }
6005 
6006 static __always_inline void intel_pmu_init_glc(struct pmu *pmu)
6007 {
6008 	x86_pmu.late_ack = true;
6009 	x86_pmu.limit_period = glc_limit_period;
6010 	x86_pmu.pebs_aliases = NULL;
6011 	x86_pmu.pebs_prec_dist = true;
6012 	x86_pmu.pebs_block = true;
6013 	x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6014 	x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6015 	x86_pmu.flags |= PMU_FL_INSTR_LATENCY;
6016 	x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
6017 	x86_pmu.lbr_pt_coexist = true;
6018 	x86_pmu.num_topdown_events = 8;
6019 	static_call_update(intel_pmu_update_topdown_event,
6020 			   &icl_update_topdown_event);
6021 	static_call_update(intel_pmu_set_topdown_event_period,
6022 			   &icl_set_topdown_event_period);
6023 
6024 	memcpy(hybrid_var(pmu, hw_cache_event_ids), glc_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6025 	memcpy(hybrid_var(pmu, hw_cache_extra_regs), glc_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6026 	hybrid(pmu, event_constraints) = intel_glc_event_constraints;
6027 	hybrid(pmu, pebs_constraints) = intel_glc_pebs_event_constraints;
6028 
6029 	intel_pmu_ref_cycles_ext();
6030 }
6031 
6032 static __always_inline void intel_pmu_init_grt(struct pmu *pmu)
6033 {
6034 	x86_pmu.mid_ack = true;
6035 	x86_pmu.limit_period = glc_limit_period;
6036 	x86_pmu.pebs_aliases = NULL;
6037 	x86_pmu.pebs_prec_dist = true;
6038 	x86_pmu.pebs_block = true;
6039 	x86_pmu.lbr_pt_coexist = true;
6040 	x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6041 	x86_pmu.flags |= PMU_FL_INSTR_LATENCY;
6042 
6043 	memcpy(hybrid_var(pmu, hw_cache_event_ids), glp_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6044 	memcpy(hybrid_var(pmu, hw_cache_extra_regs), tnt_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6045 	hybrid_var(pmu, hw_cache_event_ids)[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
6046 	hybrid(pmu, event_constraints) = intel_grt_event_constraints;
6047 	hybrid(pmu, pebs_constraints) = intel_grt_pebs_event_constraints;
6048 	hybrid(pmu, extra_regs) = intel_grt_extra_regs;
6049 
6050 	intel_pmu_ref_cycles_ext();
6051 }
6052 
6053 __init int intel_pmu_init(void)
6054 {
6055 	struct attribute **extra_skl_attr = &empty_attrs;
6056 	struct attribute **extra_attr = &empty_attrs;
6057 	struct attribute **td_attr    = &empty_attrs;
6058 	struct attribute **mem_attr   = &empty_attrs;
6059 	struct attribute **tsx_attr   = &empty_attrs;
6060 	union cpuid10_edx edx;
6061 	union cpuid10_eax eax;
6062 	union cpuid10_ebx ebx;
6063 	unsigned int fixed_mask;
6064 	bool pmem = false;
6065 	int version, i;
6066 	char *name;
6067 	struct x86_hybrid_pmu *pmu;
6068 
6069 	if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
6070 		switch (boot_cpu_data.x86) {
6071 		case 0x6:
6072 			return p6_pmu_init();
6073 		case 0xb:
6074 			return knc_pmu_init();
6075 		case 0xf:
6076 			return p4_pmu_init();
6077 		}
6078 		return -ENODEV;
6079 	}
6080 
6081 	/*
6082 	 * Check whether the Architectural PerfMon supports
6083 	 * Branch Misses Retired hw_event or not.
6084 	 */
6085 	cpuid(10, &eax.full, &ebx.full, &fixed_mask, &edx.full);
6086 	if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
6087 		return -ENODEV;
6088 
6089 	version = eax.split.version_id;
6090 	if (version < 2)
6091 		x86_pmu = core_pmu;
6092 	else
6093 		x86_pmu = intel_pmu;
6094 
6095 	x86_pmu.version			= version;
6096 	x86_pmu.num_counters		= eax.split.num_counters;
6097 	x86_pmu.cntval_bits		= eax.split.bit_width;
6098 	x86_pmu.cntval_mask		= (1ULL << eax.split.bit_width) - 1;
6099 
6100 	x86_pmu.events_maskl		= ebx.full;
6101 	x86_pmu.events_mask_len		= eax.split.mask_length;
6102 
6103 	x86_pmu.max_pebs_events		= min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
6104 	x86_pmu.pebs_capable		= PEBS_COUNTER_MASK;
6105 
6106 	/*
6107 	 * Quirk: v2 perfmon does not report fixed-purpose events, so
6108 	 * assume at least 3 events, when not running in a hypervisor:
6109 	 */
6110 	if (version > 1 && version < 5) {
6111 		int assume = 3 * !boot_cpu_has(X86_FEATURE_HYPERVISOR);
6112 
6113 		x86_pmu.num_counters_fixed =
6114 			max((int)edx.split.num_counters_fixed, assume);
6115 
6116 		fixed_mask = (1L << x86_pmu.num_counters_fixed) - 1;
6117 	} else if (version >= 5)
6118 		x86_pmu.num_counters_fixed = fls(fixed_mask);
6119 
6120 	if (boot_cpu_has(X86_FEATURE_PDCM)) {
6121 		u64 capabilities;
6122 
6123 		rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
6124 		x86_pmu.intel_cap.capabilities = capabilities;
6125 	}
6126 
6127 	if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32) {
6128 		x86_pmu.lbr_reset = intel_pmu_lbr_reset_32;
6129 		x86_pmu.lbr_read = intel_pmu_lbr_read_32;
6130 	}
6131 
6132 	if (boot_cpu_has(X86_FEATURE_ARCH_LBR))
6133 		intel_pmu_arch_lbr_init();
6134 
6135 	intel_ds_init();
6136 
6137 	x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
6138 
6139 	if (version >= 5) {
6140 		x86_pmu.intel_cap.anythread_deprecated = edx.split.anythread_deprecated;
6141 		if (x86_pmu.intel_cap.anythread_deprecated)
6142 			pr_cont(" AnyThread deprecated, ");
6143 	}
6144 
6145 	/*
6146 	 * Install the hw-cache-events table:
6147 	 */
6148 	switch (boot_cpu_data.x86_model) {
6149 	case INTEL_FAM6_CORE_YONAH:
6150 		pr_cont("Core events, ");
6151 		name = "core";
6152 		break;
6153 
6154 	case INTEL_FAM6_CORE2_MEROM:
6155 		x86_add_quirk(intel_clovertown_quirk);
6156 		fallthrough;
6157 
6158 	case INTEL_FAM6_CORE2_MEROM_L:
6159 	case INTEL_FAM6_CORE2_PENRYN:
6160 	case INTEL_FAM6_CORE2_DUNNINGTON:
6161 		memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
6162 		       sizeof(hw_cache_event_ids));
6163 
6164 		intel_pmu_lbr_init_core();
6165 
6166 		x86_pmu.event_constraints = intel_core2_event_constraints;
6167 		x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
6168 		pr_cont("Core2 events, ");
6169 		name = "core2";
6170 		break;
6171 
6172 	case INTEL_FAM6_NEHALEM:
6173 	case INTEL_FAM6_NEHALEM_EP:
6174 	case INTEL_FAM6_NEHALEM_EX:
6175 		memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
6176 		       sizeof(hw_cache_event_ids));
6177 		memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
6178 		       sizeof(hw_cache_extra_regs));
6179 
6180 		intel_pmu_lbr_init_nhm();
6181 
6182 		x86_pmu.event_constraints = intel_nehalem_event_constraints;
6183 		x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
6184 		x86_pmu.enable_all = intel_pmu_nhm_enable_all;
6185 		x86_pmu.extra_regs = intel_nehalem_extra_regs;
6186 		x86_pmu.limit_period = nhm_limit_period;
6187 
6188 		mem_attr = nhm_mem_events_attrs;
6189 
6190 		/* UOPS_ISSUED.STALLED_CYCLES */
6191 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
6192 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
6193 		/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
6194 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
6195 			X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
6196 
6197 		intel_pmu_pebs_data_source_nhm();
6198 		x86_add_quirk(intel_nehalem_quirk);
6199 		x86_pmu.pebs_no_tlb = 1;
6200 		extra_attr = nhm_format_attr;
6201 
6202 		pr_cont("Nehalem events, ");
6203 		name = "nehalem";
6204 		break;
6205 
6206 	case INTEL_FAM6_ATOM_BONNELL:
6207 	case INTEL_FAM6_ATOM_BONNELL_MID:
6208 	case INTEL_FAM6_ATOM_SALTWELL:
6209 	case INTEL_FAM6_ATOM_SALTWELL_MID:
6210 	case INTEL_FAM6_ATOM_SALTWELL_TABLET:
6211 		memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
6212 		       sizeof(hw_cache_event_ids));
6213 
6214 		intel_pmu_lbr_init_atom();
6215 
6216 		x86_pmu.event_constraints = intel_gen_event_constraints;
6217 		x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
6218 		x86_pmu.pebs_aliases = intel_pebs_aliases_core2;
6219 		pr_cont("Atom events, ");
6220 		name = "bonnell";
6221 		break;
6222 
6223 	case INTEL_FAM6_ATOM_SILVERMONT:
6224 	case INTEL_FAM6_ATOM_SILVERMONT_D:
6225 	case INTEL_FAM6_ATOM_SILVERMONT_MID:
6226 	case INTEL_FAM6_ATOM_AIRMONT:
6227 	case INTEL_FAM6_ATOM_AIRMONT_MID:
6228 		memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
6229 			sizeof(hw_cache_event_ids));
6230 		memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
6231 		       sizeof(hw_cache_extra_regs));
6232 
6233 		intel_pmu_lbr_init_slm();
6234 
6235 		x86_pmu.event_constraints = intel_slm_event_constraints;
6236 		x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
6237 		x86_pmu.extra_regs = intel_slm_extra_regs;
6238 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6239 		td_attr = slm_events_attrs;
6240 		extra_attr = slm_format_attr;
6241 		pr_cont("Silvermont events, ");
6242 		name = "silvermont";
6243 		break;
6244 
6245 	case INTEL_FAM6_ATOM_GOLDMONT:
6246 	case INTEL_FAM6_ATOM_GOLDMONT_D:
6247 		memcpy(hw_cache_event_ids, glm_hw_cache_event_ids,
6248 		       sizeof(hw_cache_event_ids));
6249 		memcpy(hw_cache_extra_regs, glm_hw_cache_extra_regs,
6250 		       sizeof(hw_cache_extra_regs));
6251 
6252 		intel_pmu_lbr_init_skl();
6253 
6254 		x86_pmu.event_constraints = intel_slm_event_constraints;
6255 		x86_pmu.pebs_constraints = intel_glm_pebs_event_constraints;
6256 		x86_pmu.extra_regs = intel_glm_extra_regs;
6257 		/*
6258 		 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
6259 		 * for precise cycles.
6260 		 * :pp is identical to :ppp
6261 		 */
6262 		x86_pmu.pebs_aliases = NULL;
6263 		x86_pmu.pebs_prec_dist = true;
6264 		x86_pmu.lbr_pt_coexist = true;
6265 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6266 		td_attr = glm_events_attrs;
6267 		extra_attr = slm_format_attr;
6268 		pr_cont("Goldmont events, ");
6269 		name = "goldmont";
6270 		break;
6271 
6272 	case INTEL_FAM6_ATOM_GOLDMONT_PLUS:
6273 		memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
6274 		       sizeof(hw_cache_event_ids));
6275 		memcpy(hw_cache_extra_regs, glp_hw_cache_extra_regs,
6276 		       sizeof(hw_cache_extra_regs));
6277 
6278 		intel_pmu_lbr_init_skl();
6279 
6280 		x86_pmu.event_constraints = intel_slm_event_constraints;
6281 		x86_pmu.extra_regs = intel_glm_extra_regs;
6282 		/*
6283 		 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
6284 		 * for precise cycles.
6285 		 */
6286 		x86_pmu.pebs_aliases = NULL;
6287 		x86_pmu.pebs_prec_dist = true;
6288 		x86_pmu.lbr_pt_coexist = true;
6289 		x86_pmu.pebs_capable = ~0ULL;
6290 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6291 		x86_pmu.flags |= PMU_FL_PEBS_ALL;
6292 		x86_pmu.get_event_constraints = glp_get_event_constraints;
6293 		td_attr = glm_events_attrs;
6294 		/* Goldmont Plus has 4-wide pipeline */
6295 		event_attr_td_total_slots_scale_glm.event_str = "4";
6296 		extra_attr = slm_format_attr;
6297 		pr_cont("Goldmont plus events, ");
6298 		name = "goldmont_plus";
6299 		break;
6300 
6301 	case INTEL_FAM6_ATOM_TREMONT_D:
6302 	case INTEL_FAM6_ATOM_TREMONT:
6303 	case INTEL_FAM6_ATOM_TREMONT_L:
6304 		x86_pmu.late_ack = true;
6305 		memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
6306 		       sizeof(hw_cache_event_ids));
6307 		memcpy(hw_cache_extra_regs, tnt_hw_cache_extra_regs,
6308 		       sizeof(hw_cache_extra_regs));
6309 		hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
6310 
6311 		intel_pmu_lbr_init_skl();
6312 
6313 		x86_pmu.event_constraints = intel_slm_event_constraints;
6314 		x86_pmu.extra_regs = intel_tnt_extra_regs;
6315 		/*
6316 		 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
6317 		 * for precise cycles.
6318 		 */
6319 		x86_pmu.pebs_aliases = NULL;
6320 		x86_pmu.pebs_prec_dist = true;
6321 		x86_pmu.lbr_pt_coexist = true;
6322 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6323 		x86_pmu.get_event_constraints = tnt_get_event_constraints;
6324 		td_attr = tnt_events_attrs;
6325 		extra_attr = slm_format_attr;
6326 		pr_cont("Tremont events, ");
6327 		name = "Tremont";
6328 		break;
6329 
6330 	case INTEL_FAM6_ATOM_GRACEMONT:
6331 		intel_pmu_init_grt(NULL);
6332 		intel_pmu_pebs_data_source_grt();
6333 		x86_pmu.pebs_latency_data = adl_latency_data_small;
6334 		x86_pmu.get_event_constraints = tnt_get_event_constraints;
6335 		td_attr = tnt_events_attrs;
6336 		mem_attr = grt_mem_attrs;
6337 		extra_attr = nhm_format_attr;
6338 		pr_cont("Gracemont events, ");
6339 		name = "gracemont";
6340 		break;
6341 
6342 	case INTEL_FAM6_ATOM_CRESTMONT:
6343 	case INTEL_FAM6_ATOM_CRESTMONT_X:
6344 		intel_pmu_init_grt(NULL);
6345 		x86_pmu.extra_regs = intel_cmt_extra_regs;
6346 		intel_pmu_pebs_data_source_cmt();
6347 		x86_pmu.pebs_latency_data = mtl_latency_data_small;
6348 		x86_pmu.get_event_constraints = cmt_get_event_constraints;
6349 		td_attr = cmt_events_attrs;
6350 		mem_attr = grt_mem_attrs;
6351 		extra_attr = cmt_format_attr;
6352 		pr_cont("Crestmont events, ");
6353 		name = "crestmont";
6354 		break;
6355 
6356 	case INTEL_FAM6_WESTMERE:
6357 	case INTEL_FAM6_WESTMERE_EP:
6358 	case INTEL_FAM6_WESTMERE_EX:
6359 		memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
6360 		       sizeof(hw_cache_event_ids));
6361 		memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
6362 		       sizeof(hw_cache_extra_regs));
6363 
6364 		intel_pmu_lbr_init_nhm();
6365 
6366 		x86_pmu.event_constraints = intel_westmere_event_constraints;
6367 		x86_pmu.enable_all = intel_pmu_nhm_enable_all;
6368 		x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
6369 		x86_pmu.extra_regs = intel_westmere_extra_regs;
6370 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6371 
6372 		mem_attr = nhm_mem_events_attrs;
6373 
6374 		/* UOPS_ISSUED.STALLED_CYCLES */
6375 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
6376 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
6377 		/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
6378 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
6379 			X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
6380 
6381 		intel_pmu_pebs_data_source_nhm();
6382 		extra_attr = nhm_format_attr;
6383 		pr_cont("Westmere events, ");
6384 		name = "westmere";
6385 		break;
6386 
6387 	case INTEL_FAM6_SANDYBRIDGE:
6388 	case INTEL_FAM6_SANDYBRIDGE_X:
6389 		x86_add_quirk(intel_sandybridge_quirk);
6390 		x86_add_quirk(intel_ht_bug);
6391 		memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
6392 		       sizeof(hw_cache_event_ids));
6393 		memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
6394 		       sizeof(hw_cache_extra_regs));
6395 
6396 		intel_pmu_lbr_init_snb();
6397 
6398 		x86_pmu.event_constraints = intel_snb_event_constraints;
6399 		x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
6400 		x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
6401 		if (boot_cpu_data.x86_model == INTEL_FAM6_SANDYBRIDGE_X)
6402 			x86_pmu.extra_regs = intel_snbep_extra_regs;
6403 		else
6404 			x86_pmu.extra_regs = intel_snb_extra_regs;
6405 
6406 
6407 		/* all extra regs are per-cpu when HT is on */
6408 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6409 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6410 
6411 		td_attr  = snb_events_attrs;
6412 		mem_attr = snb_mem_events_attrs;
6413 
6414 		/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
6415 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
6416 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
6417 		/* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
6418 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
6419 			X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
6420 
6421 		extra_attr = nhm_format_attr;
6422 
6423 		pr_cont("SandyBridge events, ");
6424 		name = "sandybridge";
6425 		break;
6426 
6427 	case INTEL_FAM6_IVYBRIDGE:
6428 	case INTEL_FAM6_IVYBRIDGE_X:
6429 		x86_add_quirk(intel_ht_bug);
6430 		memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
6431 		       sizeof(hw_cache_event_ids));
6432 		/* dTLB-load-misses on IVB is different than SNB */
6433 		hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
6434 
6435 		memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
6436 		       sizeof(hw_cache_extra_regs));
6437 
6438 		intel_pmu_lbr_init_snb();
6439 
6440 		x86_pmu.event_constraints = intel_ivb_event_constraints;
6441 		x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
6442 		x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
6443 		x86_pmu.pebs_prec_dist = true;
6444 		if (boot_cpu_data.x86_model == INTEL_FAM6_IVYBRIDGE_X)
6445 			x86_pmu.extra_regs = intel_snbep_extra_regs;
6446 		else
6447 			x86_pmu.extra_regs = intel_snb_extra_regs;
6448 		/* all extra regs are per-cpu when HT is on */
6449 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6450 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6451 
6452 		td_attr  = snb_events_attrs;
6453 		mem_attr = snb_mem_events_attrs;
6454 
6455 		/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
6456 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
6457 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
6458 
6459 		extra_attr = nhm_format_attr;
6460 
6461 		pr_cont("IvyBridge events, ");
6462 		name = "ivybridge";
6463 		break;
6464 
6465 
6466 	case INTEL_FAM6_HASWELL:
6467 	case INTEL_FAM6_HASWELL_X:
6468 	case INTEL_FAM6_HASWELL_L:
6469 	case INTEL_FAM6_HASWELL_G:
6470 		x86_add_quirk(intel_ht_bug);
6471 		x86_add_quirk(intel_pebs_isolation_quirk);
6472 		x86_pmu.late_ack = true;
6473 		memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6474 		memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6475 
6476 		intel_pmu_lbr_init_hsw();
6477 
6478 		x86_pmu.event_constraints = intel_hsw_event_constraints;
6479 		x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
6480 		x86_pmu.extra_regs = intel_snbep_extra_regs;
6481 		x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
6482 		x86_pmu.pebs_prec_dist = true;
6483 		/* all extra regs are per-cpu when HT is on */
6484 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6485 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6486 
6487 		x86_pmu.hw_config = hsw_hw_config;
6488 		x86_pmu.get_event_constraints = hsw_get_event_constraints;
6489 		x86_pmu.lbr_double_abort = true;
6490 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6491 			hsw_format_attr : nhm_format_attr;
6492 		td_attr  = hsw_events_attrs;
6493 		mem_attr = hsw_mem_events_attrs;
6494 		tsx_attr = hsw_tsx_events_attrs;
6495 		pr_cont("Haswell events, ");
6496 		name = "haswell";
6497 		break;
6498 
6499 	case INTEL_FAM6_BROADWELL:
6500 	case INTEL_FAM6_BROADWELL_D:
6501 	case INTEL_FAM6_BROADWELL_G:
6502 	case INTEL_FAM6_BROADWELL_X:
6503 		x86_add_quirk(intel_pebs_isolation_quirk);
6504 		x86_pmu.late_ack = true;
6505 		memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6506 		memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6507 
6508 		/* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
6509 		hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
6510 									 BDW_L3_MISS|HSW_SNOOP_DRAM;
6511 		hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
6512 									  HSW_SNOOP_DRAM;
6513 		hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
6514 									     BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
6515 		hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
6516 									      BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
6517 
6518 		intel_pmu_lbr_init_hsw();
6519 
6520 		x86_pmu.event_constraints = intel_bdw_event_constraints;
6521 		x86_pmu.pebs_constraints = intel_bdw_pebs_event_constraints;
6522 		x86_pmu.extra_regs = intel_snbep_extra_regs;
6523 		x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
6524 		x86_pmu.pebs_prec_dist = true;
6525 		/* all extra regs are per-cpu when HT is on */
6526 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6527 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6528 
6529 		x86_pmu.hw_config = hsw_hw_config;
6530 		x86_pmu.get_event_constraints = hsw_get_event_constraints;
6531 		x86_pmu.limit_period = bdw_limit_period;
6532 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6533 			hsw_format_attr : nhm_format_attr;
6534 		td_attr  = hsw_events_attrs;
6535 		mem_attr = hsw_mem_events_attrs;
6536 		tsx_attr = hsw_tsx_events_attrs;
6537 		pr_cont("Broadwell events, ");
6538 		name = "broadwell";
6539 		break;
6540 
6541 	case INTEL_FAM6_XEON_PHI_KNL:
6542 	case INTEL_FAM6_XEON_PHI_KNM:
6543 		memcpy(hw_cache_event_ids,
6544 		       slm_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6545 		memcpy(hw_cache_extra_regs,
6546 		       knl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6547 		intel_pmu_lbr_init_knl();
6548 
6549 		x86_pmu.event_constraints = intel_slm_event_constraints;
6550 		x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
6551 		x86_pmu.extra_regs = intel_knl_extra_regs;
6552 
6553 		/* all extra regs are per-cpu when HT is on */
6554 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6555 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6556 		extra_attr = slm_format_attr;
6557 		pr_cont("Knights Landing/Mill events, ");
6558 		name = "knights-landing";
6559 		break;
6560 
6561 	case INTEL_FAM6_SKYLAKE_X:
6562 		pmem = true;
6563 		fallthrough;
6564 	case INTEL_FAM6_SKYLAKE_L:
6565 	case INTEL_FAM6_SKYLAKE:
6566 	case INTEL_FAM6_KABYLAKE_L:
6567 	case INTEL_FAM6_KABYLAKE:
6568 	case INTEL_FAM6_COMETLAKE_L:
6569 	case INTEL_FAM6_COMETLAKE:
6570 		x86_add_quirk(intel_pebs_isolation_quirk);
6571 		x86_pmu.late_ack = true;
6572 		memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6573 		memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6574 		intel_pmu_lbr_init_skl();
6575 
6576 		/* INT_MISC.RECOVERY_CYCLES has umask 1 in Skylake */
6577 		event_attr_td_recovery_bubbles.event_str_noht =
6578 			"event=0xd,umask=0x1,cmask=1";
6579 		event_attr_td_recovery_bubbles.event_str_ht =
6580 			"event=0xd,umask=0x1,cmask=1,any=1";
6581 
6582 		x86_pmu.event_constraints = intel_skl_event_constraints;
6583 		x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints;
6584 		x86_pmu.extra_regs = intel_skl_extra_regs;
6585 		x86_pmu.pebs_aliases = intel_pebs_aliases_skl;
6586 		x86_pmu.pebs_prec_dist = true;
6587 		/* all extra regs are per-cpu when HT is on */
6588 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6589 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6590 
6591 		x86_pmu.hw_config = hsw_hw_config;
6592 		x86_pmu.get_event_constraints = hsw_get_event_constraints;
6593 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6594 			hsw_format_attr : nhm_format_attr;
6595 		extra_skl_attr = skl_format_attr;
6596 		td_attr  = hsw_events_attrs;
6597 		mem_attr = hsw_mem_events_attrs;
6598 		tsx_attr = hsw_tsx_events_attrs;
6599 		intel_pmu_pebs_data_source_skl(pmem);
6600 
6601 		/*
6602 		 * Processors with CPUID.RTM_ALWAYS_ABORT have TSX deprecated by default.
6603 		 * TSX force abort hooks are not required on these systems. Only deploy
6604 		 * workaround when microcode has not enabled X86_FEATURE_RTM_ALWAYS_ABORT.
6605 		 */
6606 		if (boot_cpu_has(X86_FEATURE_TSX_FORCE_ABORT) &&
6607 		   !boot_cpu_has(X86_FEATURE_RTM_ALWAYS_ABORT)) {
6608 			x86_pmu.flags |= PMU_FL_TFA;
6609 			x86_pmu.get_event_constraints = tfa_get_event_constraints;
6610 			x86_pmu.enable_all = intel_tfa_pmu_enable_all;
6611 			x86_pmu.commit_scheduling = intel_tfa_commit_scheduling;
6612 		}
6613 
6614 		pr_cont("Skylake events, ");
6615 		name = "skylake";
6616 		break;
6617 
6618 	case INTEL_FAM6_ICELAKE_X:
6619 	case INTEL_FAM6_ICELAKE_D:
6620 		x86_pmu.pebs_ept = 1;
6621 		pmem = true;
6622 		fallthrough;
6623 	case INTEL_FAM6_ICELAKE_L:
6624 	case INTEL_FAM6_ICELAKE:
6625 	case INTEL_FAM6_TIGERLAKE_L:
6626 	case INTEL_FAM6_TIGERLAKE:
6627 	case INTEL_FAM6_ROCKETLAKE:
6628 		x86_pmu.late_ack = true;
6629 		memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6630 		memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6631 		hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
6632 		intel_pmu_lbr_init_skl();
6633 
6634 		x86_pmu.event_constraints = intel_icl_event_constraints;
6635 		x86_pmu.pebs_constraints = intel_icl_pebs_event_constraints;
6636 		x86_pmu.extra_regs = intel_icl_extra_regs;
6637 		x86_pmu.pebs_aliases = NULL;
6638 		x86_pmu.pebs_prec_dist = true;
6639 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6640 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6641 
6642 		x86_pmu.hw_config = hsw_hw_config;
6643 		x86_pmu.get_event_constraints = icl_get_event_constraints;
6644 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6645 			hsw_format_attr : nhm_format_attr;
6646 		extra_skl_attr = skl_format_attr;
6647 		mem_attr = icl_events_attrs;
6648 		td_attr = icl_td_events_attrs;
6649 		tsx_attr = icl_tsx_events_attrs;
6650 		x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
6651 		x86_pmu.lbr_pt_coexist = true;
6652 		intel_pmu_pebs_data_source_skl(pmem);
6653 		x86_pmu.num_topdown_events = 4;
6654 		static_call_update(intel_pmu_update_topdown_event,
6655 				   &icl_update_topdown_event);
6656 		static_call_update(intel_pmu_set_topdown_event_period,
6657 				   &icl_set_topdown_event_period);
6658 		pr_cont("Icelake events, ");
6659 		name = "icelake";
6660 		break;
6661 
6662 	case INTEL_FAM6_SAPPHIRERAPIDS_X:
6663 	case INTEL_FAM6_EMERALDRAPIDS_X:
6664 		x86_pmu.flags |= PMU_FL_MEM_LOADS_AUX;
6665 		x86_pmu.extra_regs = intel_glc_extra_regs;
6666 		fallthrough;
6667 	case INTEL_FAM6_GRANITERAPIDS_X:
6668 	case INTEL_FAM6_GRANITERAPIDS_D:
6669 		intel_pmu_init_glc(NULL);
6670 		if (!x86_pmu.extra_regs)
6671 			x86_pmu.extra_regs = intel_rwc_extra_regs;
6672 		x86_pmu.pebs_ept = 1;
6673 		x86_pmu.hw_config = hsw_hw_config;
6674 		x86_pmu.get_event_constraints = glc_get_event_constraints;
6675 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6676 			hsw_format_attr : nhm_format_attr;
6677 		extra_skl_attr = skl_format_attr;
6678 		mem_attr = glc_events_attrs;
6679 		td_attr = glc_td_events_attrs;
6680 		tsx_attr = glc_tsx_events_attrs;
6681 		intel_pmu_pebs_data_source_skl(true);
6682 		pr_cont("Sapphire Rapids events, ");
6683 		name = "sapphire_rapids";
6684 		break;
6685 
6686 	case INTEL_FAM6_ALDERLAKE:
6687 	case INTEL_FAM6_ALDERLAKE_L:
6688 	case INTEL_FAM6_RAPTORLAKE:
6689 	case INTEL_FAM6_RAPTORLAKE_P:
6690 	case INTEL_FAM6_RAPTORLAKE_S:
6691 		/*
6692 		 * Alder Lake has 2 types of CPU, core and atom.
6693 		 *
6694 		 * Initialize the common PerfMon capabilities here.
6695 		 */
6696 		intel_pmu_init_hybrid(hybrid_big_small);
6697 
6698 		x86_pmu.pebs_latency_data = adl_latency_data_small;
6699 		x86_pmu.get_event_constraints = adl_get_event_constraints;
6700 		x86_pmu.hw_config = adl_hw_config;
6701 		x86_pmu.get_hybrid_cpu_type = adl_get_hybrid_cpu_type;
6702 
6703 		td_attr = adl_hybrid_events_attrs;
6704 		mem_attr = adl_hybrid_mem_attrs;
6705 		tsx_attr = adl_hybrid_tsx_attrs;
6706 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6707 			adl_hybrid_extra_attr_rtm : adl_hybrid_extra_attr;
6708 
6709 		/* Initialize big core specific PerfMon capabilities.*/
6710 		pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX];
6711 		intel_pmu_init_glc(&pmu->pmu);
6712 		if (cpu_feature_enabled(X86_FEATURE_HYBRID_CPU)) {
6713 			pmu->num_counters = x86_pmu.num_counters + 2;
6714 			pmu->num_counters_fixed = x86_pmu.num_counters_fixed + 1;
6715 		} else {
6716 			pmu->num_counters = x86_pmu.num_counters;
6717 			pmu->num_counters_fixed = x86_pmu.num_counters_fixed;
6718 		}
6719 
6720 		/*
6721 		 * Quirk: For some Alder Lake machine, when all E-cores are disabled in
6722 		 * a BIOS, the leaf 0xA will enumerate all counters of P-cores. However,
6723 		 * the X86_FEATURE_HYBRID_CPU is still set. The above codes will
6724 		 * mistakenly add extra counters for P-cores. Correct the number of
6725 		 * counters here.
6726 		 */
6727 		if ((pmu->num_counters > 8) || (pmu->num_counters_fixed > 4)) {
6728 			pmu->num_counters = x86_pmu.num_counters;
6729 			pmu->num_counters_fixed = x86_pmu.num_counters_fixed;
6730 		}
6731 
6732 		pmu->max_pebs_events = min_t(unsigned, MAX_PEBS_EVENTS, pmu->num_counters);
6733 		pmu->unconstrained = (struct event_constraint)
6734 					__EVENT_CONSTRAINT(0, (1ULL << pmu->num_counters) - 1,
6735 							   0, pmu->num_counters, 0, 0);
6736 		pmu->extra_regs = intel_glc_extra_regs;
6737 
6738 		/* Initialize Atom core specific PerfMon capabilities.*/
6739 		pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX];
6740 		intel_pmu_init_grt(&pmu->pmu);
6741 
6742 		x86_pmu.flags |= PMU_FL_MEM_LOADS_AUX;
6743 		intel_pmu_pebs_data_source_adl();
6744 		pr_cont("Alderlake Hybrid events, ");
6745 		name = "alderlake_hybrid";
6746 		break;
6747 
6748 	case INTEL_FAM6_METEORLAKE:
6749 	case INTEL_FAM6_METEORLAKE_L:
6750 		intel_pmu_init_hybrid(hybrid_big_small);
6751 
6752 		x86_pmu.pebs_latency_data = mtl_latency_data_small;
6753 		x86_pmu.get_event_constraints = mtl_get_event_constraints;
6754 		x86_pmu.hw_config = adl_hw_config;
6755 
6756 		td_attr = adl_hybrid_events_attrs;
6757 		mem_attr = mtl_hybrid_mem_attrs;
6758 		tsx_attr = adl_hybrid_tsx_attrs;
6759 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6760 			mtl_hybrid_extra_attr_rtm : mtl_hybrid_extra_attr;
6761 
6762 		/* Initialize big core specific PerfMon capabilities.*/
6763 		pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX];
6764 		intel_pmu_init_glc(&pmu->pmu);
6765 		pmu->extra_regs = intel_rwc_extra_regs;
6766 
6767 		/* Initialize Atom core specific PerfMon capabilities.*/
6768 		pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX];
6769 		intel_pmu_init_grt(&pmu->pmu);
6770 		pmu->extra_regs = intel_cmt_extra_regs;
6771 
6772 		intel_pmu_pebs_data_source_mtl();
6773 		pr_cont("Meteorlake Hybrid events, ");
6774 		name = "meteorlake_hybrid";
6775 		break;
6776 
6777 	default:
6778 		switch (x86_pmu.version) {
6779 		case 1:
6780 			x86_pmu.event_constraints = intel_v1_event_constraints;
6781 			pr_cont("generic architected perfmon v1, ");
6782 			name = "generic_arch_v1";
6783 			break;
6784 		case 2:
6785 		case 3:
6786 		case 4:
6787 			/*
6788 			 * default constraints for v2 and up
6789 			 */
6790 			x86_pmu.event_constraints = intel_gen_event_constraints;
6791 			pr_cont("generic architected perfmon, ");
6792 			name = "generic_arch_v2+";
6793 			break;
6794 		default:
6795 			/*
6796 			 * The default constraints for v5 and up can support up to
6797 			 * 16 fixed counters. For the fixed counters 4 and later,
6798 			 * the pseudo-encoding is applied.
6799 			 * The constraints may be cut according to the CPUID enumeration
6800 			 * by inserting the EVENT_CONSTRAINT_END.
6801 			 */
6802 			if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED)
6803 				x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
6804 			intel_v5_gen_event_constraints[x86_pmu.num_counters_fixed].weight = -1;
6805 			x86_pmu.event_constraints = intel_v5_gen_event_constraints;
6806 			pr_cont("generic architected perfmon, ");
6807 			name = "generic_arch_v5+";
6808 			break;
6809 		}
6810 	}
6811 
6812 	snprintf(pmu_name_str, sizeof(pmu_name_str), "%s", name);
6813 
6814 	if (!is_hybrid()) {
6815 		group_events_td.attrs  = td_attr;
6816 		group_events_mem.attrs = mem_attr;
6817 		group_events_tsx.attrs = tsx_attr;
6818 		group_format_extra.attrs = extra_attr;
6819 		group_format_extra_skl.attrs = extra_skl_attr;
6820 
6821 		x86_pmu.attr_update = attr_update;
6822 	} else {
6823 		hybrid_group_events_td.attrs  = td_attr;
6824 		hybrid_group_events_mem.attrs = mem_attr;
6825 		hybrid_group_events_tsx.attrs = tsx_attr;
6826 		hybrid_group_format_extra.attrs = extra_attr;
6827 
6828 		x86_pmu.attr_update = hybrid_attr_update;
6829 	}
6830 
6831 	intel_pmu_check_num_counters(&x86_pmu.num_counters,
6832 				     &x86_pmu.num_counters_fixed,
6833 				     &x86_pmu.intel_ctrl,
6834 				     (u64)fixed_mask);
6835 
6836 	/* AnyThread may be deprecated on arch perfmon v5 or later */
6837 	if (x86_pmu.intel_cap.anythread_deprecated)
6838 		x86_pmu.format_attrs = intel_arch_formats_attr;
6839 
6840 	intel_pmu_check_event_constraints(x86_pmu.event_constraints,
6841 					  x86_pmu.num_counters,
6842 					  x86_pmu.num_counters_fixed,
6843 					  x86_pmu.intel_ctrl);
6844 	/*
6845 	 * Access LBR MSR may cause #GP under certain circumstances.
6846 	 * Check all LBR MSR here.
6847 	 * Disable LBR access if any LBR MSRs can not be accessed.
6848 	 */
6849 	if (x86_pmu.lbr_tos && !check_msr(x86_pmu.lbr_tos, 0x3UL))
6850 		x86_pmu.lbr_nr = 0;
6851 	for (i = 0; i < x86_pmu.lbr_nr; i++) {
6852 		if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
6853 		      check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
6854 			x86_pmu.lbr_nr = 0;
6855 	}
6856 
6857 	if (x86_pmu.lbr_nr) {
6858 		intel_pmu_lbr_init();
6859 
6860 		pr_cont("%d-deep LBR, ", x86_pmu.lbr_nr);
6861 
6862 		/* only support branch_stack snapshot for perfmon >= v2 */
6863 		if (x86_pmu.disable_all == intel_pmu_disable_all) {
6864 			if (boot_cpu_has(X86_FEATURE_ARCH_LBR)) {
6865 				static_call_update(perf_snapshot_branch_stack,
6866 						   intel_pmu_snapshot_arch_branch_stack);
6867 			} else {
6868 				static_call_update(perf_snapshot_branch_stack,
6869 						   intel_pmu_snapshot_branch_stack);
6870 			}
6871 		}
6872 	}
6873 
6874 	intel_pmu_check_extra_regs(x86_pmu.extra_regs);
6875 
6876 	/* Support full width counters using alternative MSR range */
6877 	if (x86_pmu.intel_cap.full_width_write) {
6878 		x86_pmu.max_period = x86_pmu.cntval_mask >> 1;
6879 		x86_pmu.perfctr = MSR_IA32_PMC0;
6880 		pr_cont("full-width counters, ");
6881 	}
6882 
6883 	if (!is_hybrid() && x86_pmu.intel_cap.perf_metrics)
6884 		x86_pmu.intel_ctrl |= 1ULL << GLOBAL_CTRL_EN_PERF_METRICS;
6885 
6886 	if (x86_pmu.intel_cap.pebs_timing_info)
6887 		x86_pmu.flags |= PMU_FL_RETIRE_LATENCY;
6888 
6889 	intel_aux_output_init();
6890 
6891 	return 0;
6892 }
6893 
6894 /*
6895  * HT bug: phase 2 init
6896  * Called once we have valid topology information to check
6897  * whether or not HT is enabled
6898  * If HT is off, then we disable the workaround
6899  */
6900 static __init int fixup_ht_bug(void)
6901 {
6902 	int c;
6903 	/*
6904 	 * problem not present on this CPU model, nothing to do
6905 	 */
6906 	if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED))
6907 		return 0;
6908 
6909 	if (topology_max_smt_threads() > 1) {
6910 		pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
6911 		return 0;
6912 	}
6913 
6914 	cpus_read_lock();
6915 
6916 	hardlockup_detector_perf_stop();
6917 
6918 	x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED);
6919 
6920 	x86_pmu.start_scheduling = NULL;
6921 	x86_pmu.commit_scheduling = NULL;
6922 	x86_pmu.stop_scheduling = NULL;
6923 
6924 	hardlockup_detector_perf_restart();
6925 
6926 	for_each_online_cpu(c)
6927 		free_excl_cntrs(&per_cpu(cpu_hw_events, c));
6928 
6929 	cpus_read_unlock();
6930 	pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
6931 	return 0;
6932 }
6933 subsys_initcall(fixup_ht_bug)
6934