xref: /linux/arch/x86/events/intel/core.c (revision 4e0ae876f77bc01a7e77724dea57b4b82bd53244)
1 /*
2  * Per core/cpu state
3  *
4  * Used to coordinate shared registers between HT threads or
5  * among events on a single PMU.
6  */
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/stddef.h>
11 #include <linux/types.h>
12 #include <linux/init.h>
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/nmi.h>
16 
17 #include <asm/cpufeature.h>
18 #include <asm/hardirq.h>
19 #include <asm/intel-family.h>
20 #include <asm/apic.h>
21 #include <asm/cpu_device_id.h>
22 
23 #include "../perf_event.h"
24 
25 /*
26  * Intel PerfMon, used on Core and later.
27  */
28 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
29 {
30 	[PERF_COUNT_HW_CPU_CYCLES]		= 0x003c,
31 	[PERF_COUNT_HW_INSTRUCTIONS]		= 0x00c0,
32 	[PERF_COUNT_HW_CACHE_REFERENCES]	= 0x4f2e,
33 	[PERF_COUNT_HW_CACHE_MISSES]		= 0x412e,
34 	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS]	= 0x00c4,
35 	[PERF_COUNT_HW_BRANCH_MISSES]		= 0x00c5,
36 	[PERF_COUNT_HW_BUS_CYCLES]		= 0x013c,
37 	[PERF_COUNT_HW_REF_CPU_CYCLES]		= 0x0300, /* pseudo-encoding */
38 };
39 
40 static struct event_constraint intel_core_event_constraints[] __read_mostly =
41 {
42 	INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
43 	INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
44 	INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
45 	INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
46 	INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
47 	INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
48 	EVENT_CONSTRAINT_END
49 };
50 
51 static struct event_constraint intel_core2_event_constraints[] __read_mostly =
52 {
53 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
54 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
55 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
56 	INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
57 	INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
58 	INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
59 	INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
60 	INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
61 	INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
62 	INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
63 	INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
64 	INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
65 	INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
66 	EVENT_CONSTRAINT_END
67 };
68 
69 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
70 {
71 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
72 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
73 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
74 	INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
75 	INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
76 	INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
77 	INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
78 	INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
79 	INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
80 	INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
81 	INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
82 	EVENT_CONSTRAINT_END
83 };
84 
85 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
86 {
87 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
88 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
89 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
90 	EVENT_EXTRA_END
91 };
92 
93 static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
94 {
95 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
96 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
97 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
98 	INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
99 	INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
100 	INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
101 	INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
102 	EVENT_CONSTRAINT_END
103 };
104 
105 static struct event_constraint intel_snb_event_constraints[] __read_mostly =
106 {
107 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
108 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
109 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
110 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
111 	INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
112 	INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
113 	INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
114 	INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
115 	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
116 	INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
117 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
118 	INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
119 
120 	/*
121 	 * When HT is off these events can only run on the bottom 4 counters
122 	 * When HT is on, they are impacted by the HT bug and require EXCL access
123 	 */
124 	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
125 	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
126 	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
127 	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
128 
129 	EVENT_CONSTRAINT_END
130 };
131 
132 static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
133 {
134 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
135 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
136 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
137 	INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
138 	INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMTPY */
139 	INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
140 	INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
141 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
142 	INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
143 	INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
144 	INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
145 	INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
146 	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
147 
148 	/*
149 	 * When HT is off these events can only run on the bottom 4 counters
150 	 * When HT is on, they are impacted by the HT bug and require EXCL access
151 	 */
152 	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
153 	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
154 	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
155 	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
156 
157 	EVENT_CONSTRAINT_END
158 };
159 
160 static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
161 {
162 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
163 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
164 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
165 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
166 	EVENT_EXTRA_END
167 };
168 
169 static struct event_constraint intel_v1_event_constraints[] __read_mostly =
170 {
171 	EVENT_CONSTRAINT_END
172 };
173 
174 static struct event_constraint intel_gen_event_constraints[] __read_mostly =
175 {
176 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
177 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
178 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
179 	EVENT_CONSTRAINT_END
180 };
181 
182 static struct event_constraint intel_slm_event_constraints[] __read_mostly =
183 {
184 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
185 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
186 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
187 	EVENT_CONSTRAINT_END
188 };
189 
190 static struct event_constraint intel_skl_event_constraints[] = {
191 	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
192 	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
193 	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
194 	INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2),	/* INST_RETIRED.PREC_DIST */
195 
196 	/*
197 	 * when HT is off, these can only run on the bottom 4 counters
198 	 */
199 	INTEL_EVENT_CONSTRAINT(0xd0, 0xf),	/* MEM_INST_RETIRED.* */
200 	INTEL_EVENT_CONSTRAINT(0xd1, 0xf),	/* MEM_LOAD_RETIRED.* */
201 	INTEL_EVENT_CONSTRAINT(0xd2, 0xf),	/* MEM_LOAD_L3_HIT_RETIRED.* */
202 	INTEL_EVENT_CONSTRAINT(0xcd, 0xf),	/* MEM_TRANS_RETIRED.* */
203 	INTEL_EVENT_CONSTRAINT(0xc6, 0xf),	/* FRONTEND_RETIRED.* */
204 
205 	EVENT_CONSTRAINT_END
206 };
207 
208 static struct extra_reg intel_knl_extra_regs[] __read_mostly = {
209 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x799ffbb6e7ull, RSP_0),
210 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x399ffbffe7ull, RSP_1),
211 	EVENT_EXTRA_END
212 };
213 
214 static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
215 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
216 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
217 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
218 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
219 	EVENT_EXTRA_END
220 };
221 
222 static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
223 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
224 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
225 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
226 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
227 	EVENT_EXTRA_END
228 };
229 
230 static struct extra_reg intel_skl_extra_regs[] __read_mostly = {
231 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
232 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
233 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
234 	/*
235 	 * Note the low 8 bits eventsel code is not a continuous field, containing
236 	 * some #GPing bits. These are masked out.
237 	 */
238 	INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
239 	EVENT_EXTRA_END
240 };
241 
242 EVENT_ATTR_STR(mem-loads,	mem_ld_nhm,	"event=0x0b,umask=0x10,ldlat=3");
243 EVENT_ATTR_STR(mem-loads,	mem_ld_snb,	"event=0xcd,umask=0x1,ldlat=3");
244 EVENT_ATTR_STR(mem-stores,	mem_st_snb,	"event=0xcd,umask=0x2");
245 
246 static struct attribute *nhm_mem_events_attrs[] = {
247 	EVENT_PTR(mem_ld_nhm),
248 	NULL,
249 };
250 
251 /*
252  * topdown events for Intel Core CPUs.
253  *
254  * The events are all in slots, which is a free slot in a 4 wide
255  * pipeline. Some events are already reported in slots, for cycle
256  * events we multiply by the pipeline width (4).
257  *
258  * With Hyper Threading on, topdown metrics are either summed or averaged
259  * between the threads of a core: (count_t0 + count_t1).
260  *
261  * For the average case the metric is always scaled to pipeline width,
262  * so we use factor 2 ((count_t0 + count_t1) / 2 * 4)
263  */
264 
265 EVENT_ATTR_STR_HT(topdown-total-slots, td_total_slots,
266 	"event=0x3c,umask=0x0",			/* cpu_clk_unhalted.thread */
267 	"event=0x3c,umask=0x0,any=1");		/* cpu_clk_unhalted.thread_any */
268 EVENT_ATTR_STR_HT(topdown-total-slots.scale, td_total_slots_scale, "4", "2");
269 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued,
270 	"event=0xe,umask=0x1");			/* uops_issued.any */
271 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired,
272 	"event=0xc2,umask=0x2");		/* uops_retired.retire_slots */
273 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles,
274 	"event=0x9c,umask=0x1");		/* idq_uops_not_delivered_core */
275 EVENT_ATTR_STR_HT(topdown-recovery-bubbles, td_recovery_bubbles,
276 	"event=0xd,umask=0x3,cmask=1",		/* int_misc.recovery_cycles */
277 	"event=0xd,umask=0x3,cmask=1,any=1");	/* int_misc.recovery_cycles_any */
278 EVENT_ATTR_STR_HT(topdown-recovery-bubbles.scale, td_recovery_bubbles_scale,
279 	"4", "2");
280 
281 static struct attribute *snb_events_attrs[] = {
282 	EVENT_PTR(td_slots_issued),
283 	EVENT_PTR(td_slots_retired),
284 	EVENT_PTR(td_fetch_bubbles),
285 	EVENT_PTR(td_total_slots),
286 	EVENT_PTR(td_total_slots_scale),
287 	EVENT_PTR(td_recovery_bubbles),
288 	EVENT_PTR(td_recovery_bubbles_scale),
289 	NULL,
290 };
291 
292 static struct attribute *snb_mem_events_attrs[] = {
293 	EVENT_PTR(mem_ld_snb),
294 	EVENT_PTR(mem_st_snb),
295 	NULL,
296 };
297 
298 static struct event_constraint intel_hsw_event_constraints[] = {
299 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
300 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
301 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
302 	INTEL_UEVENT_CONSTRAINT(0x148, 0x4),	/* L1D_PEND_MISS.PENDING */
303 	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
304 	INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
305 	/* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
306 	INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
307 	/* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
308 	INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
309 	/* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
310 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
311 
312 	/*
313 	 * When HT is off these events can only run on the bottom 4 counters
314 	 * When HT is on, they are impacted by the HT bug and require EXCL access
315 	 */
316 	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
317 	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
318 	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
319 	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
320 
321 	EVENT_CONSTRAINT_END
322 };
323 
324 static struct event_constraint intel_bdw_event_constraints[] = {
325 	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
326 	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
327 	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
328 	INTEL_UEVENT_CONSTRAINT(0x148, 0x4),	/* L1D_PEND_MISS.PENDING */
329 	INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4),	/* CYCLE_ACTIVITY.CYCLES_L1D_MISS */
330 	/*
331 	 * when HT is off, these can only run on the bottom 4 counters
332 	 */
333 	INTEL_EVENT_CONSTRAINT(0xd0, 0xf),	/* MEM_INST_RETIRED.* */
334 	INTEL_EVENT_CONSTRAINT(0xd1, 0xf),	/* MEM_LOAD_RETIRED.* */
335 	INTEL_EVENT_CONSTRAINT(0xd2, 0xf),	/* MEM_LOAD_L3_HIT_RETIRED.* */
336 	INTEL_EVENT_CONSTRAINT(0xcd, 0xf),	/* MEM_TRANS_RETIRED.* */
337 	EVENT_CONSTRAINT_END
338 };
339 
340 static u64 intel_pmu_event_map(int hw_event)
341 {
342 	return intel_perfmon_event_map[hw_event];
343 }
344 
345 /*
346  * Notes on the events:
347  * - data reads do not include code reads (comparable to earlier tables)
348  * - data counts include speculative execution (except L1 write, dtlb, bpu)
349  * - remote node access includes remote memory, remote cache, remote mmio.
350  * - prefetches are not included in the counts.
351  * - icache miss does not include decoded icache
352  */
353 
354 #define SKL_DEMAND_DATA_RD		BIT_ULL(0)
355 #define SKL_DEMAND_RFO			BIT_ULL(1)
356 #define SKL_ANY_RESPONSE		BIT_ULL(16)
357 #define SKL_SUPPLIER_NONE		BIT_ULL(17)
358 #define SKL_L3_MISS_LOCAL_DRAM		BIT_ULL(26)
359 #define SKL_L3_MISS_REMOTE_HOP0_DRAM	BIT_ULL(27)
360 #define SKL_L3_MISS_REMOTE_HOP1_DRAM	BIT_ULL(28)
361 #define SKL_L3_MISS_REMOTE_HOP2P_DRAM	BIT_ULL(29)
362 #define SKL_L3_MISS			(SKL_L3_MISS_LOCAL_DRAM| \
363 					 SKL_L3_MISS_REMOTE_HOP0_DRAM| \
364 					 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
365 					 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
366 #define SKL_SPL_HIT			BIT_ULL(30)
367 #define SKL_SNOOP_NONE			BIT_ULL(31)
368 #define SKL_SNOOP_NOT_NEEDED		BIT_ULL(32)
369 #define SKL_SNOOP_MISS			BIT_ULL(33)
370 #define SKL_SNOOP_HIT_NO_FWD		BIT_ULL(34)
371 #define SKL_SNOOP_HIT_WITH_FWD		BIT_ULL(35)
372 #define SKL_SNOOP_HITM			BIT_ULL(36)
373 #define SKL_SNOOP_NON_DRAM		BIT_ULL(37)
374 #define SKL_ANY_SNOOP			(SKL_SPL_HIT|SKL_SNOOP_NONE| \
375 					 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
376 					 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
377 					 SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM)
378 #define SKL_DEMAND_READ			SKL_DEMAND_DATA_RD
379 #define SKL_SNOOP_DRAM			(SKL_SNOOP_NONE| \
380 					 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
381 					 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
382 					 SKL_SNOOP_HITM|SKL_SPL_HIT)
383 #define SKL_DEMAND_WRITE		SKL_DEMAND_RFO
384 #define SKL_LLC_ACCESS			SKL_ANY_RESPONSE
385 #define SKL_L3_MISS_REMOTE		(SKL_L3_MISS_REMOTE_HOP0_DRAM| \
386 					 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
387 					 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
388 
389 static __initconst const u64 skl_hw_cache_event_ids
390 				[PERF_COUNT_HW_CACHE_MAX]
391 				[PERF_COUNT_HW_CACHE_OP_MAX]
392 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
393 {
394  [ C(L1D ) ] = {
395 	[ C(OP_READ) ] = {
396 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_INST_RETIRED.ALL_LOADS */
397 		[ C(RESULT_MISS)   ] = 0x151,	/* L1D.REPLACEMENT */
398 	},
399 	[ C(OP_WRITE) ] = {
400 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_INST_RETIRED.ALL_STORES */
401 		[ C(RESULT_MISS)   ] = 0x0,
402 	},
403 	[ C(OP_PREFETCH) ] = {
404 		[ C(RESULT_ACCESS) ] = 0x0,
405 		[ C(RESULT_MISS)   ] = 0x0,
406 	},
407  },
408  [ C(L1I ) ] = {
409 	[ C(OP_READ) ] = {
410 		[ C(RESULT_ACCESS) ] = 0x0,
411 		[ C(RESULT_MISS)   ] = 0x283,	/* ICACHE_64B.MISS */
412 	},
413 	[ C(OP_WRITE) ] = {
414 		[ C(RESULT_ACCESS) ] = -1,
415 		[ C(RESULT_MISS)   ] = -1,
416 	},
417 	[ C(OP_PREFETCH) ] = {
418 		[ C(RESULT_ACCESS) ] = 0x0,
419 		[ C(RESULT_MISS)   ] = 0x0,
420 	},
421  },
422  [ C(LL  ) ] = {
423 	[ C(OP_READ) ] = {
424 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
425 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
426 	},
427 	[ C(OP_WRITE) ] = {
428 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
429 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
430 	},
431 	[ C(OP_PREFETCH) ] = {
432 		[ C(RESULT_ACCESS) ] = 0x0,
433 		[ C(RESULT_MISS)   ] = 0x0,
434 	},
435  },
436  [ C(DTLB) ] = {
437 	[ C(OP_READ) ] = {
438 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_INST_RETIRED.ALL_LOADS */
439 		[ C(RESULT_MISS)   ] = 0xe08,	/* DTLB_LOAD_MISSES.WALK_COMPLETED */
440 	},
441 	[ C(OP_WRITE) ] = {
442 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_INST_RETIRED.ALL_STORES */
443 		[ C(RESULT_MISS)   ] = 0xe49,	/* DTLB_STORE_MISSES.WALK_COMPLETED */
444 	},
445 	[ C(OP_PREFETCH) ] = {
446 		[ C(RESULT_ACCESS) ] = 0x0,
447 		[ C(RESULT_MISS)   ] = 0x0,
448 	},
449  },
450  [ C(ITLB) ] = {
451 	[ C(OP_READ) ] = {
452 		[ C(RESULT_ACCESS) ] = 0x2085,	/* ITLB_MISSES.STLB_HIT */
453 		[ C(RESULT_MISS)   ] = 0xe85,	/* ITLB_MISSES.WALK_COMPLETED */
454 	},
455 	[ C(OP_WRITE) ] = {
456 		[ C(RESULT_ACCESS) ] = -1,
457 		[ C(RESULT_MISS)   ] = -1,
458 	},
459 	[ C(OP_PREFETCH) ] = {
460 		[ C(RESULT_ACCESS) ] = -1,
461 		[ C(RESULT_MISS)   ] = -1,
462 	},
463  },
464  [ C(BPU ) ] = {
465 	[ C(OP_READ) ] = {
466 		[ C(RESULT_ACCESS) ] = 0xc4,	/* BR_INST_RETIRED.ALL_BRANCHES */
467 		[ C(RESULT_MISS)   ] = 0xc5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
468 	},
469 	[ C(OP_WRITE) ] = {
470 		[ C(RESULT_ACCESS) ] = -1,
471 		[ C(RESULT_MISS)   ] = -1,
472 	},
473 	[ C(OP_PREFETCH) ] = {
474 		[ C(RESULT_ACCESS) ] = -1,
475 		[ C(RESULT_MISS)   ] = -1,
476 	},
477  },
478  [ C(NODE) ] = {
479 	[ C(OP_READ) ] = {
480 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
481 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
482 	},
483 	[ C(OP_WRITE) ] = {
484 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
485 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
486 	},
487 	[ C(OP_PREFETCH) ] = {
488 		[ C(RESULT_ACCESS) ] = 0x0,
489 		[ C(RESULT_MISS)   ] = 0x0,
490 	},
491  },
492 };
493 
494 static __initconst const u64 skl_hw_cache_extra_regs
495 				[PERF_COUNT_HW_CACHE_MAX]
496 				[PERF_COUNT_HW_CACHE_OP_MAX]
497 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
498 {
499  [ C(LL  ) ] = {
500 	[ C(OP_READ) ] = {
501 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
502 				       SKL_LLC_ACCESS|SKL_ANY_SNOOP,
503 		[ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
504 				       SKL_L3_MISS|SKL_ANY_SNOOP|
505 				       SKL_SUPPLIER_NONE,
506 	},
507 	[ C(OP_WRITE) ] = {
508 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
509 				       SKL_LLC_ACCESS|SKL_ANY_SNOOP,
510 		[ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
511 				       SKL_L3_MISS|SKL_ANY_SNOOP|
512 				       SKL_SUPPLIER_NONE,
513 	},
514 	[ C(OP_PREFETCH) ] = {
515 		[ C(RESULT_ACCESS) ] = 0x0,
516 		[ C(RESULT_MISS)   ] = 0x0,
517 	},
518  },
519  [ C(NODE) ] = {
520 	[ C(OP_READ) ] = {
521 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
522 				       SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
523 		[ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
524 				       SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
525 	},
526 	[ C(OP_WRITE) ] = {
527 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
528 				       SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
529 		[ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
530 				       SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
531 	},
532 	[ C(OP_PREFETCH) ] = {
533 		[ C(RESULT_ACCESS) ] = 0x0,
534 		[ C(RESULT_MISS)   ] = 0x0,
535 	},
536  },
537 };
538 
539 #define SNB_DMND_DATA_RD	(1ULL << 0)
540 #define SNB_DMND_RFO		(1ULL << 1)
541 #define SNB_DMND_IFETCH		(1ULL << 2)
542 #define SNB_DMND_WB		(1ULL << 3)
543 #define SNB_PF_DATA_RD		(1ULL << 4)
544 #define SNB_PF_RFO		(1ULL << 5)
545 #define SNB_PF_IFETCH		(1ULL << 6)
546 #define SNB_LLC_DATA_RD		(1ULL << 7)
547 #define SNB_LLC_RFO		(1ULL << 8)
548 #define SNB_LLC_IFETCH		(1ULL << 9)
549 #define SNB_BUS_LOCKS		(1ULL << 10)
550 #define SNB_STRM_ST		(1ULL << 11)
551 #define SNB_OTHER		(1ULL << 15)
552 #define SNB_RESP_ANY		(1ULL << 16)
553 #define SNB_NO_SUPP		(1ULL << 17)
554 #define SNB_LLC_HITM		(1ULL << 18)
555 #define SNB_LLC_HITE		(1ULL << 19)
556 #define SNB_LLC_HITS		(1ULL << 20)
557 #define SNB_LLC_HITF		(1ULL << 21)
558 #define SNB_LOCAL		(1ULL << 22)
559 #define SNB_REMOTE		(0xffULL << 23)
560 #define SNB_SNP_NONE		(1ULL << 31)
561 #define SNB_SNP_NOT_NEEDED	(1ULL << 32)
562 #define SNB_SNP_MISS		(1ULL << 33)
563 #define SNB_NO_FWD		(1ULL << 34)
564 #define SNB_SNP_FWD		(1ULL << 35)
565 #define SNB_HITM		(1ULL << 36)
566 #define SNB_NON_DRAM		(1ULL << 37)
567 
568 #define SNB_DMND_READ		(SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
569 #define SNB_DMND_WRITE		(SNB_DMND_RFO|SNB_LLC_RFO)
570 #define SNB_DMND_PREFETCH	(SNB_PF_DATA_RD|SNB_PF_RFO)
571 
572 #define SNB_SNP_ANY		(SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
573 				 SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
574 				 SNB_HITM)
575 
576 #define SNB_DRAM_ANY		(SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
577 #define SNB_DRAM_REMOTE		(SNB_REMOTE|SNB_SNP_ANY)
578 
579 #define SNB_L3_ACCESS		SNB_RESP_ANY
580 #define SNB_L3_MISS		(SNB_DRAM_ANY|SNB_NON_DRAM)
581 
582 static __initconst const u64 snb_hw_cache_extra_regs
583 				[PERF_COUNT_HW_CACHE_MAX]
584 				[PERF_COUNT_HW_CACHE_OP_MAX]
585 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
586 {
587  [ C(LL  ) ] = {
588 	[ C(OP_READ) ] = {
589 		[ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
590 		[ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_L3_MISS,
591 	},
592 	[ C(OP_WRITE) ] = {
593 		[ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
594 		[ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_L3_MISS,
595 	},
596 	[ C(OP_PREFETCH) ] = {
597 		[ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
598 		[ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
599 	},
600  },
601  [ C(NODE) ] = {
602 	[ C(OP_READ) ] = {
603 		[ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
604 		[ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
605 	},
606 	[ C(OP_WRITE) ] = {
607 		[ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
608 		[ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
609 	},
610 	[ C(OP_PREFETCH) ] = {
611 		[ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
612 		[ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
613 	},
614  },
615 };
616 
617 static __initconst const u64 snb_hw_cache_event_ids
618 				[PERF_COUNT_HW_CACHE_MAX]
619 				[PERF_COUNT_HW_CACHE_OP_MAX]
620 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
621 {
622  [ C(L1D) ] = {
623 	[ C(OP_READ) ] = {
624 		[ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS        */
625 		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPLACEMENT              */
626 	},
627 	[ C(OP_WRITE) ] = {
628 		[ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES       */
629 		[ C(RESULT_MISS)   ] = 0x0851, /* L1D.ALL_M_REPLACEMENT        */
630 	},
631 	[ C(OP_PREFETCH) ] = {
632 		[ C(RESULT_ACCESS) ] = 0x0,
633 		[ C(RESULT_MISS)   ] = 0x024e, /* HW_PRE_REQ.DL1_MISS          */
634 	},
635  },
636  [ C(L1I ) ] = {
637 	[ C(OP_READ) ] = {
638 		[ C(RESULT_ACCESS) ] = 0x0,
639 		[ C(RESULT_MISS)   ] = 0x0280, /* ICACHE.MISSES */
640 	},
641 	[ C(OP_WRITE) ] = {
642 		[ C(RESULT_ACCESS) ] = -1,
643 		[ C(RESULT_MISS)   ] = -1,
644 	},
645 	[ C(OP_PREFETCH) ] = {
646 		[ C(RESULT_ACCESS) ] = 0x0,
647 		[ C(RESULT_MISS)   ] = 0x0,
648 	},
649  },
650  [ C(LL  ) ] = {
651 	[ C(OP_READ) ] = {
652 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
653 		[ C(RESULT_ACCESS) ] = 0x01b7,
654 		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
655 		[ C(RESULT_MISS)   ] = 0x01b7,
656 	},
657 	[ C(OP_WRITE) ] = {
658 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
659 		[ C(RESULT_ACCESS) ] = 0x01b7,
660 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
661 		[ C(RESULT_MISS)   ] = 0x01b7,
662 	},
663 	[ C(OP_PREFETCH) ] = {
664 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
665 		[ C(RESULT_ACCESS) ] = 0x01b7,
666 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
667 		[ C(RESULT_MISS)   ] = 0x01b7,
668 	},
669  },
670  [ C(DTLB) ] = {
671 	[ C(OP_READ) ] = {
672 		[ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
673 		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
674 	},
675 	[ C(OP_WRITE) ] = {
676 		[ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
677 		[ C(RESULT_MISS)   ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
678 	},
679 	[ C(OP_PREFETCH) ] = {
680 		[ C(RESULT_ACCESS) ] = 0x0,
681 		[ C(RESULT_MISS)   ] = 0x0,
682 	},
683  },
684  [ C(ITLB) ] = {
685 	[ C(OP_READ) ] = {
686 		[ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT         */
687 		[ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK    */
688 	},
689 	[ C(OP_WRITE) ] = {
690 		[ C(RESULT_ACCESS) ] = -1,
691 		[ C(RESULT_MISS)   ] = -1,
692 	},
693 	[ C(OP_PREFETCH) ] = {
694 		[ C(RESULT_ACCESS) ] = -1,
695 		[ C(RESULT_MISS)   ] = -1,
696 	},
697  },
698  [ C(BPU ) ] = {
699 	[ C(OP_READ) ] = {
700 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
701 		[ C(RESULT_MISS)   ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
702 	},
703 	[ C(OP_WRITE) ] = {
704 		[ C(RESULT_ACCESS) ] = -1,
705 		[ C(RESULT_MISS)   ] = -1,
706 	},
707 	[ C(OP_PREFETCH) ] = {
708 		[ C(RESULT_ACCESS) ] = -1,
709 		[ C(RESULT_MISS)   ] = -1,
710 	},
711  },
712  [ C(NODE) ] = {
713 	[ C(OP_READ) ] = {
714 		[ C(RESULT_ACCESS) ] = 0x01b7,
715 		[ C(RESULT_MISS)   ] = 0x01b7,
716 	},
717 	[ C(OP_WRITE) ] = {
718 		[ C(RESULT_ACCESS) ] = 0x01b7,
719 		[ C(RESULT_MISS)   ] = 0x01b7,
720 	},
721 	[ C(OP_PREFETCH) ] = {
722 		[ C(RESULT_ACCESS) ] = 0x01b7,
723 		[ C(RESULT_MISS)   ] = 0x01b7,
724 	},
725  },
726 
727 };
728 
729 /*
730  * Notes on the events:
731  * - data reads do not include code reads (comparable to earlier tables)
732  * - data counts include speculative execution (except L1 write, dtlb, bpu)
733  * - remote node access includes remote memory, remote cache, remote mmio.
734  * - prefetches are not included in the counts because they are not
735  *   reliably counted.
736  */
737 
738 #define HSW_DEMAND_DATA_RD		BIT_ULL(0)
739 #define HSW_DEMAND_RFO			BIT_ULL(1)
740 #define HSW_ANY_RESPONSE		BIT_ULL(16)
741 #define HSW_SUPPLIER_NONE		BIT_ULL(17)
742 #define HSW_L3_MISS_LOCAL_DRAM		BIT_ULL(22)
743 #define HSW_L3_MISS_REMOTE_HOP0		BIT_ULL(27)
744 #define HSW_L3_MISS_REMOTE_HOP1		BIT_ULL(28)
745 #define HSW_L3_MISS_REMOTE_HOP2P	BIT_ULL(29)
746 #define HSW_L3_MISS			(HSW_L3_MISS_LOCAL_DRAM| \
747 					 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
748 					 HSW_L3_MISS_REMOTE_HOP2P)
749 #define HSW_SNOOP_NONE			BIT_ULL(31)
750 #define HSW_SNOOP_NOT_NEEDED		BIT_ULL(32)
751 #define HSW_SNOOP_MISS			BIT_ULL(33)
752 #define HSW_SNOOP_HIT_NO_FWD		BIT_ULL(34)
753 #define HSW_SNOOP_HIT_WITH_FWD		BIT_ULL(35)
754 #define HSW_SNOOP_HITM			BIT_ULL(36)
755 #define HSW_SNOOP_NON_DRAM		BIT_ULL(37)
756 #define HSW_ANY_SNOOP			(HSW_SNOOP_NONE| \
757 					 HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
758 					 HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
759 					 HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
760 #define HSW_SNOOP_DRAM			(HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
761 #define HSW_DEMAND_READ			HSW_DEMAND_DATA_RD
762 #define HSW_DEMAND_WRITE		HSW_DEMAND_RFO
763 #define HSW_L3_MISS_REMOTE		(HSW_L3_MISS_REMOTE_HOP0|\
764 					 HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
765 #define HSW_LLC_ACCESS			HSW_ANY_RESPONSE
766 
767 #define BDW_L3_MISS_LOCAL		BIT(26)
768 #define BDW_L3_MISS			(BDW_L3_MISS_LOCAL| \
769 					 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
770 					 HSW_L3_MISS_REMOTE_HOP2P)
771 
772 
773 static __initconst const u64 hsw_hw_cache_event_ids
774 				[PERF_COUNT_HW_CACHE_MAX]
775 				[PERF_COUNT_HW_CACHE_OP_MAX]
776 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
777 {
778  [ C(L1D ) ] = {
779 	[ C(OP_READ) ] = {
780 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
781 		[ C(RESULT_MISS)   ] = 0x151,	/* L1D.REPLACEMENT */
782 	},
783 	[ C(OP_WRITE) ] = {
784 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
785 		[ C(RESULT_MISS)   ] = 0x0,
786 	},
787 	[ C(OP_PREFETCH) ] = {
788 		[ C(RESULT_ACCESS) ] = 0x0,
789 		[ C(RESULT_MISS)   ] = 0x0,
790 	},
791  },
792  [ C(L1I ) ] = {
793 	[ C(OP_READ) ] = {
794 		[ C(RESULT_ACCESS) ] = 0x0,
795 		[ C(RESULT_MISS)   ] = 0x280,	/* ICACHE.MISSES */
796 	},
797 	[ C(OP_WRITE) ] = {
798 		[ C(RESULT_ACCESS) ] = -1,
799 		[ C(RESULT_MISS)   ] = -1,
800 	},
801 	[ C(OP_PREFETCH) ] = {
802 		[ C(RESULT_ACCESS) ] = 0x0,
803 		[ C(RESULT_MISS)   ] = 0x0,
804 	},
805  },
806  [ C(LL  ) ] = {
807 	[ C(OP_READ) ] = {
808 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
809 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
810 	},
811 	[ C(OP_WRITE) ] = {
812 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
813 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
814 	},
815 	[ C(OP_PREFETCH) ] = {
816 		[ C(RESULT_ACCESS) ] = 0x0,
817 		[ C(RESULT_MISS)   ] = 0x0,
818 	},
819  },
820  [ C(DTLB) ] = {
821 	[ C(OP_READ) ] = {
822 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
823 		[ C(RESULT_MISS)   ] = 0x108,	/* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
824 	},
825 	[ C(OP_WRITE) ] = {
826 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
827 		[ C(RESULT_MISS)   ] = 0x149,	/* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
828 	},
829 	[ C(OP_PREFETCH) ] = {
830 		[ C(RESULT_ACCESS) ] = 0x0,
831 		[ C(RESULT_MISS)   ] = 0x0,
832 	},
833  },
834  [ C(ITLB) ] = {
835 	[ C(OP_READ) ] = {
836 		[ C(RESULT_ACCESS) ] = 0x6085,	/* ITLB_MISSES.STLB_HIT */
837 		[ C(RESULT_MISS)   ] = 0x185,	/* ITLB_MISSES.MISS_CAUSES_A_WALK */
838 	},
839 	[ C(OP_WRITE) ] = {
840 		[ C(RESULT_ACCESS) ] = -1,
841 		[ C(RESULT_MISS)   ] = -1,
842 	},
843 	[ C(OP_PREFETCH) ] = {
844 		[ C(RESULT_ACCESS) ] = -1,
845 		[ C(RESULT_MISS)   ] = -1,
846 	},
847  },
848  [ C(BPU ) ] = {
849 	[ C(OP_READ) ] = {
850 		[ C(RESULT_ACCESS) ] = 0xc4,	/* BR_INST_RETIRED.ALL_BRANCHES */
851 		[ C(RESULT_MISS)   ] = 0xc5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
852 	},
853 	[ C(OP_WRITE) ] = {
854 		[ C(RESULT_ACCESS) ] = -1,
855 		[ C(RESULT_MISS)   ] = -1,
856 	},
857 	[ C(OP_PREFETCH) ] = {
858 		[ C(RESULT_ACCESS) ] = -1,
859 		[ C(RESULT_MISS)   ] = -1,
860 	},
861  },
862  [ C(NODE) ] = {
863 	[ C(OP_READ) ] = {
864 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
865 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
866 	},
867 	[ C(OP_WRITE) ] = {
868 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
869 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
870 	},
871 	[ C(OP_PREFETCH) ] = {
872 		[ C(RESULT_ACCESS) ] = 0x0,
873 		[ C(RESULT_MISS)   ] = 0x0,
874 	},
875  },
876 };
877 
878 static __initconst const u64 hsw_hw_cache_extra_regs
879 				[PERF_COUNT_HW_CACHE_MAX]
880 				[PERF_COUNT_HW_CACHE_OP_MAX]
881 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
882 {
883  [ C(LL  ) ] = {
884 	[ C(OP_READ) ] = {
885 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
886 				       HSW_LLC_ACCESS,
887 		[ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
888 				       HSW_L3_MISS|HSW_ANY_SNOOP,
889 	},
890 	[ C(OP_WRITE) ] = {
891 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
892 				       HSW_LLC_ACCESS,
893 		[ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
894 				       HSW_L3_MISS|HSW_ANY_SNOOP,
895 	},
896 	[ C(OP_PREFETCH) ] = {
897 		[ C(RESULT_ACCESS) ] = 0x0,
898 		[ C(RESULT_MISS)   ] = 0x0,
899 	},
900  },
901  [ C(NODE) ] = {
902 	[ C(OP_READ) ] = {
903 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
904 				       HSW_L3_MISS_LOCAL_DRAM|
905 				       HSW_SNOOP_DRAM,
906 		[ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
907 				       HSW_L3_MISS_REMOTE|
908 				       HSW_SNOOP_DRAM,
909 	},
910 	[ C(OP_WRITE) ] = {
911 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
912 				       HSW_L3_MISS_LOCAL_DRAM|
913 				       HSW_SNOOP_DRAM,
914 		[ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
915 				       HSW_L3_MISS_REMOTE|
916 				       HSW_SNOOP_DRAM,
917 	},
918 	[ C(OP_PREFETCH) ] = {
919 		[ C(RESULT_ACCESS) ] = 0x0,
920 		[ C(RESULT_MISS)   ] = 0x0,
921 	},
922  },
923 };
924 
925 static __initconst const u64 westmere_hw_cache_event_ids
926 				[PERF_COUNT_HW_CACHE_MAX]
927 				[PERF_COUNT_HW_CACHE_OP_MAX]
928 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
929 {
930  [ C(L1D) ] = {
931 	[ C(OP_READ) ] = {
932 		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
933 		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
934 	},
935 	[ C(OP_WRITE) ] = {
936 		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
937 		[ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
938 	},
939 	[ C(OP_PREFETCH) ] = {
940 		[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
941 		[ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
942 	},
943  },
944  [ C(L1I ) ] = {
945 	[ C(OP_READ) ] = {
946 		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
947 		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
948 	},
949 	[ C(OP_WRITE) ] = {
950 		[ C(RESULT_ACCESS) ] = -1,
951 		[ C(RESULT_MISS)   ] = -1,
952 	},
953 	[ C(OP_PREFETCH) ] = {
954 		[ C(RESULT_ACCESS) ] = 0x0,
955 		[ C(RESULT_MISS)   ] = 0x0,
956 	},
957  },
958  [ C(LL  ) ] = {
959 	[ C(OP_READ) ] = {
960 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
961 		[ C(RESULT_ACCESS) ] = 0x01b7,
962 		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
963 		[ C(RESULT_MISS)   ] = 0x01b7,
964 	},
965 	/*
966 	 * Use RFO, not WRITEBACK, because a write miss would typically occur
967 	 * on RFO.
968 	 */
969 	[ C(OP_WRITE) ] = {
970 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
971 		[ C(RESULT_ACCESS) ] = 0x01b7,
972 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
973 		[ C(RESULT_MISS)   ] = 0x01b7,
974 	},
975 	[ C(OP_PREFETCH) ] = {
976 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
977 		[ C(RESULT_ACCESS) ] = 0x01b7,
978 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
979 		[ C(RESULT_MISS)   ] = 0x01b7,
980 	},
981  },
982  [ C(DTLB) ] = {
983 	[ C(OP_READ) ] = {
984 		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
985 		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
986 	},
987 	[ C(OP_WRITE) ] = {
988 		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
989 		[ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
990 	},
991 	[ C(OP_PREFETCH) ] = {
992 		[ C(RESULT_ACCESS) ] = 0x0,
993 		[ C(RESULT_MISS)   ] = 0x0,
994 	},
995  },
996  [ C(ITLB) ] = {
997 	[ C(OP_READ) ] = {
998 		[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
999 		[ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.ANY              */
1000 	},
1001 	[ C(OP_WRITE) ] = {
1002 		[ C(RESULT_ACCESS) ] = -1,
1003 		[ C(RESULT_MISS)   ] = -1,
1004 	},
1005 	[ C(OP_PREFETCH) ] = {
1006 		[ C(RESULT_ACCESS) ] = -1,
1007 		[ C(RESULT_MISS)   ] = -1,
1008 	},
1009  },
1010  [ C(BPU ) ] = {
1011 	[ C(OP_READ) ] = {
1012 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1013 		[ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1014 	},
1015 	[ C(OP_WRITE) ] = {
1016 		[ C(RESULT_ACCESS) ] = -1,
1017 		[ C(RESULT_MISS)   ] = -1,
1018 	},
1019 	[ C(OP_PREFETCH) ] = {
1020 		[ C(RESULT_ACCESS) ] = -1,
1021 		[ C(RESULT_MISS)   ] = -1,
1022 	},
1023  },
1024  [ C(NODE) ] = {
1025 	[ C(OP_READ) ] = {
1026 		[ C(RESULT_ACCESS) ] = 0x01b7,
1027 		[ C(RESULT_MISS)   ] = 0x01b7,
1028 	},
1029 	[ C(OP_WRITE) ] = {
1030 		[ C(RESULT_ACCESS) ] = 0x01b7,
1031 		[ C(RESULT_MISS)   ] = 0x01b7,
1032 	},
1033 	[ C(OP_PREFETCH) ] = {
1034 		[ C(RESULT_ACCESS) ] = 0x01b7,
1035 		[ C(RESULT_MISS)   ] = 0x01b7,
1036 	},
1037  },
1038 };
1039 
1040 /*
1041  * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
1042  * See IA32 SDM Vol 3B 30.6.1.3
1043  */
1044 
1045 #define NHM_DMND_DATA_RD	(1 << 0)
1046 #define NHM_DMND_RFO		(1 << 1)
1047 #define NHM_DMND_IFETCH		(1 << 2)
1048 #define NHM_DMND_WB		(1 << 3)
1049 #define NHM_PF_DATA_RD		(1 << 4)
1050 #define NHM_PF_DATA_RFO		(1 << 5)
1051 #define NHM_PF_IFETCH		(1 << 6)
1052 #define NHM_OFFCORE_OTHER	(1 << 7)
1053 #define NHM_UNCORE_HIT		(1 << 8)
1054 #define NHM_OTHER_CORE_HIT_SNP	(1 << 9)
1055 #define NHM_OTHER_CORE_HITM	(1 << 10)
1056         			/* reserved */
1057 #define NHM_REMOTE_CACHE_FWD	(1 << 12)
1058 #define NHM_REMOTE_DRAM		(1 << 13)
1059 #define NHM_LOCAL_DRAM		(1 << 14)
1060 #define NHM_NON_DRAM		(1 << 15)
1061 
1062 #define NHM_LOCAL		(NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
1063 #define NHM_REMOTE		(NHM_REMOTE_DRAM)
1064 
1065 #define NHM_DMND_READ		(NHM_DMND_DATA_RD)
1066 #define NHM_DMND_WRITE		(NHM_DMND_RFO|NHM_DMND_WB)
1067 #define NHM_DMND_PREFETCH	(NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
1068 
1069 #define NHM_L3_HIT	(NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
1070 #define NHM_L3_MISS	(NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
1071 #define NHM_L3_ACCESS	(NHM_L3_HIT|NHM_L3_MISS)
1072 
1073 static __initconst const u64 nehalem_hw_cache_extra_regs
1074 				[PERF_COUNT_HW_CACHE_MAX]
1075 				[PERF_COUNT_HW_CACHE_OP_MAX]
1076 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1077 {
1078  [ C(LL  ) ] = {
1079 	[ C(OP_READ) ] = {
1080 		[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
1081 		[ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_L3_MISS,
1082 	},
1083 	[ C(OP_WRITE) ] = {
1084 		[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
1085 		[ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_L3_MISS,
1086 	},
1087 	[ C(OP_PREFETCH) ] = {
1088 		[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
1089 		[ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
1090 	},
1091  },
1092  [ C(NODE) ] = {
1093 	[ C(OP_READ) ] = {
1094 		[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
1095 		[ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_REMOTE,
1096 	},
1097 	[ C(OP_WRITE) ] = {
1098 		[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
1099 		[ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_REMOTE,
1100 	},
1101 	[ C(OP_PREFETCH) ] = {
1102 		[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
1103 		[ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_REMOTE,
1104 	},
1105  },
1106 };
1107 
1108 static __initconst const u64 nehalem_hw_cache_event_ids
1109 				[PERF_COUNT_HW_CACHE_MAX]
1110 				[PERF_COUNT_HW_CACHE_OP_MAX]
1111 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1112 {
1113  [ C(L1D) ] = {
1114 	[ C(OP_READ) ] = {
1115 		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1116 		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
1117 	},
1118 	[ C(OP_WRITE) ] = {
1119 		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1120 		[ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
1121 	},
1122 	[ C(OP_PREFETCH) ] = {
1123 		[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
1124 		[ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
1125 	},
1126  },
1127  [ C(L1I ) ] = {
1128 	[ C(OP_READ) ] = {
1129 		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
1130 		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
1131 	},
1132 	[ C(OP_WRITE) ] = {
1133 		[ C(RESULT_ACCESS) ] = -1,
1134 		[ C(RESULT_MISS)   ] = -1,
1135 	},
1136 	[ C(OP_PREFETCH) ] = {
1137 		[ C(RESULT_ACCESS) ] = 0x0,
1138 		[ C(RESULT_MISS)   ] = 0x0,
1139 	},
1140  },
1141  [ C(LL  ) ] = {
1142 	[ C(OP_READ) ] = {
1143 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1144 		[ C(RESULT_ACCESS) ] = 0x01b7,
1145 		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1146 		[ C(RESULT_MISS)   ] = 0x01b7,
1147 	},
1148 	/*
1149 	 * Use RFO, not WRITEBACK, because a write miss would typically occur
1150 	 * on RFO.
1151 	 */
1152 	[ C(OP_WRITE) ] = {
1153 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1154 		[ C(RESULT_ACCESS) ] = 0x01b7,
1155 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1156 		[ C(RESULT_MISS)   ] = 0x01b7,
1157 	},
1158 	[ C(OP_PREFETCH) ] = {
1159 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1160 		[ C(RESULT_ACCESS) ] = 0x01b7,
1161 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1162 		[ C(RESULT_MISS)   ] = 0x01b7,
1163 	},
1164  },
1165  [ C(DTLB) ] = {
1166 	[ C(OP_READ) ] = {
1167 		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI   (alias)  */
1168 		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
1169 	},
1170 	[ C(OP_WRITE) ] = {
1171 		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI   (alias)  */
1172 		[ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
1173 	},
1174 	[ C(OP_PREFETCH) ] = {
1175 		[ C(RESULT_ACCESS) ] = 0x0,
1176 		[ C(RESULT_MISS)   ] = 0x0,
1177 	},
1178  },
1179  [ C(ITLB) ] = {
1180 	[ C(OP_READ) ] = {
1181 		[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
1182 		[ C(RESULT_MISS)   ] = 0x20c8, /* ITLB_MISS_RETIRED            */
1183 	},
1184 	[ C(OP_WRITE) ] = {
1185 		[ C(RESULT_ACCESS) ] = -1,
1186 		[ C(RESULT_MISS)   ] = -1,
1187 	},
1188 	[ C(OP_PREFETCH) ] = {
1189 		[ C(RESULT_ACCESS) ] = -1,
1190 		[ C(RESULT_MISS)   ] = -1,
1191 	},
1192  },
1193  [ C(BPU ) ] = {
1194 	[ C(OP_READ) ] = {
1195 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1196 		[ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1197 	},
1198 	[ C(OP_WRITE) ] = {
1199 		[ C(RESULT_ACCESS) ] = -1,
1200 		[ C(RESULT_MISS)   ] = -1,
1201 	},
1202 	[ C(OP_PREFETCH) ] = {
1203 		[ C(RESULT_ACCESS) ] = -1,
1204 		[ C(RESULT_MISS)   ] = -1,
1205 	},
1206  },
1207  [ C(NODE) ] = {
1208 	[ C(OP_READ) ] = {
1209 		[ C(RESULT_ACCESS) ] = 0x01b7,
1210 		[ C(RESULT_MISS)   ] = 0x01b7,
1211 	},
1212 	[ C(OP_WRITE) ] = {
1213 		[ C(RESULT_ACCESS) ] = 0x01b7,
1214 		[ C(RESULT_MISS)   ] = 0x01b7,
1215 	},
1216 	[ C(OP_PREFETCH) ] = {
1217 		[ C(RESULT_ACCESS) ] = 0x01b7,
1218 		[ C(RESULT_MISS)   ] = 0x01b7,
1219 	},
1220  },
1221 };
1222 
1223 static __initconst const u64 core2_hw_cache_event_ids
1224 				[PERF_COUNT_HW_CACHE_MAX]
1225 				[PERF_COUNT_HW_CACHE_OP_MAX]
1226 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1227 {
1228  [ C(L1D) ] = {
1229 	[ C(OP_READ) ] = {
1230 		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI          */
1231 		[ C(RESULT_MISS)   ] = 0x0140, /* L1D_CACHE_LD.I_STATE       */
1232 	},
1233 	[ C(OP_WRITE) ] = {
1234 		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI          */
1235 		[ C(RESULT_MISS)   ] = 0x0141, /* L1D_CACHE_ST.I_STATE       */
1236 	},
1237 	[ C(OP_PREFETCH) ] = {
1238 		[ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS      */
1239 		[ C(RESULT_MISS)   ] = 0,
1240 	},
1241  },
1242  [ C(L1I ) ] = {
1243 	[ C(OP_READ) ] = {
1244 		[ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS                  */
1245 		[ C(RESULT_MISS)   ] = 0x0081, /* L1I.MISSES                 */
1246 	},
1247 	[ C(OP_WRITE) ] = {
1248 		[ C(RESULT_ACCESS) ] = -1,
1249 		[ C(RESULT_MISS)   ] = -1,
1250 	},
1251 	[ C(OP_PREFETCH) ] = {
1252 		[ C(RESULT_ACCESS) ] = 0,
1253 		[ C(RESULT_MISS)   ] = 0,
1254 	},
1255  },
1256  [ C(LL  ) ] = {
1257 	[ C(OP_READ) ] = {
1258 		[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1259 		[ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1260 	},
1261 	[ C(OP_WRITE) ] = {
1262 		[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1263 		[ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1264 	},
1265 	[ C(OP_PREFETCH) ] = {
1266 		[ C(RESULT_ACCESS) ] = 0,
1267 		[ C(RESULT_MISS)   ] = 0,
1268 	},
1269  },
1270  [ C(DTLB) ] = {
1271 	[ C(OP_READ) ] = {
1272 		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI  (alias) */
1273 		[ C(RESULT_MISS)   ] = 0x0208, /* DTLB_MISSES.MISS_LD        */
1274 	},
1275 	[ C(OP_WRITE) ] = {
1276 		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI  (alias) */
1277 		[ C(RESULT_MISS)   ] = 0x0808, /* DTLB_MISSES.MISS_ST        */
1278 	},
1279 	[ C(OP_PREFETCH) ] = {
1280 		[ C(RESULT_ACCESS) ] = 0,
1281 		[ C(RESULT_MISS)   ] = 0,
1282 	},
1283  },
1284  [ C(ITLB) ] = {
1285 	[ C(OP_READ) ] = {
1286 		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1287 		[ C(RESULT_MISS)   ] = 0x1282, /* ITLBMISSES                 */
1288 	},
1289 	[ C(OP_WRITE) ] = {
1290 		[ C(RESULT_ACCESS) ] = -1,
1291 		[ C(RESULT_MISS)   ] = -1,
1292 	},
1293 	[ C(OP_PREFETCH) ] = {
1294 		[ C(RESULT_ACCESS) ] = -1,
1295 		[ C(RESULT_MISS)   ] = -1,
1296 	},
1297  },
1298  [ C(BPU ) ] = {
1299 	[ C(OP_READ) ] = {
1300 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1301 		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1302 	},
1303 	[ C(OP_WRITE) ] = {
1304 		[ C(RESULT_ACCESS) ] = -1,
1305 		[ C(RESULT_MISS)   ] = -1,
1306 	},
1307 	[ C(OP_PREFETCH) ] = {
1308 		[ C(RESULT_ACCESS) ] = -1,
1309 		[ C(RESULT_MISS)   ] = -1,
1310 	},
1311  },
1312 };
1313 
1314 static __initconst const u64 atom_hw_cache_event_ids
1315 				[PERF_COUNT_HW_CACHE_MAX]
1316 				[PERF_COUNT_HW_CACHE_OP_MAX]
1317 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1318 {
1319  [ C(L1D) ] = {
1320 	[ C(OP_READ) ] = {
1321 		[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD               */
1322 		[ C(RESULT_MISS)   ] = 0,
1323 	},
1324 	[ C(OP_WRITE) ] = {
1325 		[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST               */
1326 		[ C(RESULT_MISS)   ] = 0,
1327 	},
1328 	[ C(OP_PREFETCH) ] = {
1329 		[ C(RESULT_ACCESS) ] = 0x0,
1330 		[ C(RESULT_MISS)   ] = 0,
1331 	},
1332  },
1333  [ C(L1I ) ] = {
1334 	[ C(OP_READ) ] = {
1335 		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                  */
1336 		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                 */
1337 	},
1338 	[ C(OP_WRITE) ] = {
1339 		[ C(RESULT_ACCESS) ] = -1,
1340 		[ C(RESULT_MISS)   ] = -1,
1341 	},
1342 	[ C(OP_PREFETCH) ] = {
1343 		[ C(RESULT_ACCESS) ] = 0,
1344 		[ C(RESULT_MISS)   ] = 0,
1345 	},
1346  },
1347  [ C(LL  ) ] = {
1348 	[ C(OP_READ) ] = {
1349 		[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1350 		[ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1351 	},
1352 	[ C(OP_WRITE) ] = {
1353 		[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1354 		[ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1355 	},
1356 	[ C(OP_PREFETCH) ] = {
1357 		[ C(RESULT_ACCESS) ] = 0,
1358 		[ C(RESULT_MISS)   ] = 0,
1359 	},
1360  },
1361  [ C(DTLB) ] = {
1362 	[ C(OP_READ) ] = {
1363 		[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI  (alias) */
1364 		[ C(RESULT_MISS)   ] = 0x0508, /* DTLB_MISSES.MISS_LD        */
1365 	},
1366 	[ C(OP_WRITE) ] = {
1367 		[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI  (alias) */
1368 		[ C(RESULT_MISS)   ] = 0x0608, /* DTLB_MISSES.MISS_ST        */
1369 	},
1370 	[ C(OP_PREFETCH) ] = {
1371 		[ C(RESULT_ACCESS) ] = 0,
1372 		[ C(RESULT_MISS)   ] = 0,
1373 	},
1374  },
1375  [ C(ITLB) ] = {
1376 	[ C(OP_READ) ] = {
1377 		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1378 		[ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES                */
1379 	},
1380 	[ C(OP_WRITE) ] = {
1381 		[ C(RESULT_ACCESS) ] = -1,
1382 		[ C(RESULT_MISS)   ] = -1,
1383 	},
1384 	[ C(OP_PREFETCH) ] = {
1385 		[ C(RESULT_ACCESS) ] = -1,
1386 		[ C(RESULT_MISS)   ] = -1,
1387 	},
1388  },
1389  [ C(BPU ) ] = {
1390 	[ C(OP_READ) ] = {
1391 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1392 		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1393 	},
1394 	[ C(OP_WRITE) ] = {
1395 		[ C(RESULT_ACCESS) ] = -1,
1396 		[ C(RESULT_MISS)   ] = -1,
1397 	},
1398 	[ C(OP_PREFETCH) ] = {
1399 		[ C(RESULT_ACCESS) ] = -1,
1400 		[ C(RESULT_MISS)   ] = -1,
1401 	},
1402  },
1403 };
1404 
1405 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_slm, "event=0x3c");
1406 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_slm, "2");
1407 /* no_alloc_cycles.not_delivered */
1408 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_slm,
1409 	       "event=0xca,umask=0x50");
1410 EVENT_ATTR_STR(topdown-fetch-bubbles.scale, td_fetch_bubbles_scale_slm, "2");
1411 /* uops_retired.all */
1412 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_slm,
1413 	       "event=0xc2,umask=0x10");
1414 /* uops_retired.all */
1415 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_slm,
1416 	       "event=0xc2,umask=0x10");
1417 
1418 static struct attribute *slm_events_attrs[] = {
1419 	EVENT_PTR(td_total_slots_slm),
1420 	EVENT_PTR(td_total_slots_scale_slm),
1421 	EVENT_PTR(td_fetch_bubbles_slm),
1422 	EVENT_PTR(td_fetch_bubbles_scale_slm),
1423 	EVENT_PTR(td_slots_issued_slm),
1424 	EVENT_PTR(td_slots_retired_slm),
1425 	NULL
1426 };
1427 
1428 static struct extra_reg intel_slm_extra_regs[] __read_mostly =
1429 {
1430 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1431 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
1432 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1),
1433 	EVENT_EXTRA_END
1434 };
1435 
1436 #define SLM_DMND_READ		SNB_DMND_DATA_RD
1437 #define SLM_DMND_WRITE		SNB_DMND_RFO
1438 #define SLM_DMND_PREFETCH	(SNB_PF_DATA_RD|SNB_PF_RFO)
1439 
1440 #define SLM_SNP_ANY		(SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
1441 #define SLM_LLC_ACCESS		SNB_RESP_ANY
1442 #define SLM_LLC_MISS		(SLM_SNP_ANY|SNB_NON_DRAM)
1443 
1444 static __initconst const u64 slm_hw_cache_extra_regs
1445 				[PERF_COUNT_HW_CACHE_MAX]
1446 				[PERF_COUNT_HW_CACHE_OP_MAX]
1447 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1448 {
1449  [ C(LL  ) ] = {
1450 	[ C(OP_READ) ] = {
1451 		[ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
1452 		[ C(RESULT_MISS)   ] = 0,
1453 	},
1454 	[ C(OP_WRITE) ] = {
1455 		[ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
1456 		[ C(RESULT_MISS)   ] = SLM_DMND_WRITE|SLM_LLC_MISS,
1457 	},
1458 	[ C(OP_PREFETCH) ] = {
1459 		[ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
1460 		[ C(RESULT_MISS)   ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
1461 	},
1462  },
1463 };
1464 
1465 static __initconst const u64 slm_hw_cache_event_ids
1466 				[PERF_COUNT_HW_CACHE_MAX]
1467 				[PERF_COUNT_HW_CACHE_OP_MAX]
1468 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1469 {
1470  [ C(L1D) ] = {
1471 	[ C(OP_READ) ] = {
1472 		[ C(RESULT_ACCESS) ] = 0,
1473 		[ C(RESULT_MISS)   ] = 0x0104, /* LD_DCU_MISS */
1474 	},
1475 	[ C(OP_WRITE) ] = {
1476 		[ C(RESULT_ACCESS) ] = 0,
1477 		[ C(RESULT_MISS)   ] = 0,
1478 	},
1479 	[ C(OP_PREFETCH) ] = {
1480 		[ C(RESULT_ACCESS) ] = 0,
1481 		[ C(RESULT_MISS)   ] = 0,
1482 	},
1483  },
1484  [ C(L1I ) ] = {
1485 	[ C(OP_READ) ] = {
1486 		[ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
1487 		[ C(RESULT_MISS)   ] = 0x0280, /* ICACGE.MISSES */
1488 	},
1489 	[ C(OP_WRITE) ] = {
1490 		[ C(RESULT_ACCESS) ] = -1,
1491 		[ C(RESULT_MISS)   ] = -1,
1492 	},
1493 	[ C(OP_PREFETCH) ] = {
1494 		[ C(RESULT_ACCESS) ] = 0,
1495 		[ C(RESULT_MISS)   ] = 0,
1496 	},
1497  },
1498  [ C(LL  ) ] = {
1499 	[ C(OP_READ) ] = {
1500 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1501 		[ C(RESULT_ACCESS) ] = 0x01b7,
1502 		[ C(RESULT_MISS)   ] = 0,
1503 	},
1504 	[ C(OP_WRITE) ] = {
1505 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1506 		[ C(RESULT_ACCESS) ] = 0x01b7,
1507 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1508 		[ C(RESULT_MISS)   ] = 0x01b7,
1509 	},
1510 	[ C(OP_PREFETCH) ] = {
1511 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1512 		[ C(RESULT_ACCESS) ] = 0x01b7,
1513 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1514 		[ C(RESULT_MISS)   ] = 0x01b7,
1515 	},
1516  },
1517  [ C(DTLB) ] = {
1518 	[ C(OP_READ) ] = {
1519 		[ C(RESULT_ACCESS) ] = 0,
1520 		[ C(RESULT_MISS)   ] = 0x0804, /* LD_DTLB_MISS */
1521 	},
1522 	[ C(OP_WRITE) ] = {
1523 		[ C(RESULT_ACCESS) ] = 0,
1524 		[ C(RESULT_MISS)   ] = 0,
1525 	},
1526 	[ C(OP_PREFETCH) ] = {
1527 		[ C(RESULT_ACCESS) ] = 0,
1528 		[ C(RESULT_MISS)   ] = 0,
1529 	},
1530  },
1531  [ C(ITLB) ] = {
1532 	[ C(OP_READ) ] = {
1533 		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1534 		[ C(RESULT_MISS)   ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
1535 	},
1536 	[ C(OP_WRITE) ] = {
1537 		[ C(RESULT_ACCESS) ] = -1,
1538 		[ C(RESULT_MISS)   ] = -1,
1539 	},
1540 	[ C(OP_PREFETCH) ] = {
1541 		[ C(RESULT_ACCESS) ] = -1,
1542 		[ C(RESULT_MISS)   ] = -1,
1543 	},
1544  },
1545  [ C(BPU ) ] = {
1546 	[ C(OP_READ) ] = {
1547 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1548 		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1549 	},
1550 	[ C(OP_WRITE) ] = {
1551 		[ C(RESULT_ACCESS) ] = -1,
1552 		[ C(RESULT_MISS)   ] = -1,
1553 	},
1554 	[ C(OP_PREFETCH) ] = {
1555 		[ C(RESULT_ACCESS) ] = -1,
1556 		[ C(RESULT_MISS)   ] = -1,
1557 	},
1558  },
1559 };
1560 
1561 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_glm, "event=0x3c");
1562 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_glm, "3");
1563 /* UOPS_NOT_DELIVERED.ANY */
1564 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_glm, "event=0x9c");
1565 /* ISSUE_SLOTS_NOT_CONSUMED.RECOVERY */
1566 EVENT_ATTR_STR(topdown-recovery-bubbles, td_recovery_bubbles_glm, "event=0xca,umask=0x02");
1567 /* UOPS_RETIRED.ANY */
1568 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_glm, "event=0xc2");
1569 /* UOPS_ISSUED.ANY */
1570 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_glm, "event=0x0e");
1571 
1572 static struct attribute *glm_events_attrs[] = {
1573 	EVENT_PTR(td_total_slots_glm),
1574 	EVENT_PTR(td_total_slots_scale_glm),
1575 	EVENT_PTR(td_fetch_bubbles_glm),
1576 	EVENT_PTR(td_recovery_bubbles_glm),
1577 	EVENT_PTR(td_slots_issued_glm),
1578 	EVENT_PTR(td_slots_retired_glm),
1579 	NULL
1580 };
1581 
1582 static struct extra_reg intel_glm_extra_regs[] __read_mostly = {
1583 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1584 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x760005ffbfull, RSP_0),
1585 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x360005ffbfull, RSP_1),
1586 	EVENT_EXTRA_END
1587 };
1588 
1589 #define GLM_DEMAND_DATA_RD		BIT_ULL(0)
1590 #define GLM_DEMAND_RFO			BIT_ULL(1)
1591 #define GLM_ANY_RESPONSE		BIT_ULL(16)
1592 #define GLM_SNP_NONE_OR_MISS		BIT_ULL(33)
1593 #define GLM_DEMAND_READ			GLM_DEMAND_DATA_RD
1594 #define GLM_DEMAND_WRITE		GLM_DEMAND_RFO
1595 #define GLM_DEMAND_PREFETCH		(SNB_PF_DATA_RD|SNB_PF_RFO)
1596 #define GLM_LLC_ACCESS			GLM_ANY_RESPONSE
1597 #define GLM_SNP_ANY			(GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM)
1598 #define GLM_LLC_MISS			(GLM_SNP_ANY|SNB_NON_DRAM)
1599 
1600 static __initconst const u64 glm_hw_cache_event_ids
1601 				[PERF_COUNT_HW_CACHE_MAX]
1602 				[PERF_COUNT_HW_CACHE_OP_MAX]
1603 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1604 	[C(L1D)] = {
1605 		[C(OP_READ)] = {
1606 			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1607 			[C(RESULT_MISS)]	= 0x0,
1608 		},
1609 		[C(OP_WRITE)] = {
1610 			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1611 			[C(RESULT_MISS)]	= 0x0,
1612 		},
1613 		[C(OP_PREFETCH)] = {
1614 			[C(RESULT_ACCESS)]	= 0x0,
1615 			[C(RESULT_MISS)]	= 0x0,
1616 		},
1617 	},
1618 	[C(L1I)] = {
1619 		[C(OP_READ)] = {
1620 			[C(RESULT_ACCESS)]	= 0x0380,	/* ICACHE.ACCESSES */
1621 			[C(RESULT_MISS)]	= 0x0280,	/* ICACHE.MISSES */
1622 		},
1623 		[C(OP_WRITE)] = {
1624 			[C(RESULT_ACCESS)]	= -1,
1625 			[C(RESULT_MISS)]	= -1,
1626 		},
1627 		[C(OP_PREFETCH)] = {
1628 			[C(RESULT_ACCESS)]	= 0x0,
1629 			[C(RESULT_MISS)]	= 0x0,
1630 		},
1631 	},
1632 	[C(LL)] = {
1633 		[C(OP_READ)] = {
1634 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1635 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1636 		},
1637 		[C(OP_WRITE)] = {
1638 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1639 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1640 		},
1641 		[C(OP_PREFETCH)] = {
1642 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1643 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1644 		},
1645 	},
1646 	[C(DTLB)] = {
1647 		[C(OP_READ)] = {
1648 			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1649 			[C(RESULT_MISS)]	= 0x0,
1650 		},
1651 		[C(OP_WRITE)] = {
1652 			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1653 			[C(RESULT_MISS)]	= 0x0,
1654 		},
1655 		[C(OP_PREFETCH)] = {
1656 			[C(RESULT_ACCESS)]	= 0x0,
1657 			[C(RESULT_MISS)]	= 0x0,
1658 		},
1659 	},
1660 	[C(ITLB)] = {
1661 		[C(OP_READ)] = {
1662 			[C(RESULT_ACCESS)]	= 0x00c0,	/* INST_RETIRED.ANY_P */
1663 			[C(RESULT_MISS)]	= 0x0481,	/* ITLB.MISS */
1664 		},
1665 		[C(OP_WRITE)] = {
1666 			[C(RESULT_ACCESS)]	= -1,
1667 			[C(RESULT_MISS)]	= -1,
1668 		},
1669 		[C(OP_PREFETCH)] = {
1670 			[C(RESULT_ACCESS)]	= -1,
1671 			[C(RESULT_MISS)]	= -1,
1672 		},
1673 	},
1674 	[C(BPU)] = {
1675 		[C(OP_READ)] = {
1676 			[C(RESULT_ACCESS)]	= 0x00c4,	/* BR_INST_RETIRED.ALL_BRANCHES */
1677 			[C(RESULT_MISS)]	= 0x00c5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
1678 		},
1679 		[C(OP_WRITE)] = {
1680 			[C(RESULT_ACCESS)]	= -1,
1681 			[C(RESULT_MISS)]	= -1,
1682 		},
1683 		[C(OP_PREFETCH)] = {
1684 			[C(RESULT_ACCESS)]	= -1,
1685 			[C(RESULT_MISS)]	= -1,
1686 		},
1687 	},
1688 };
1689 
1690 static __initconst const u64 glm_hw_cache_extra_regs
1691 				[PERF_COUNT_HW_CACHE_MAX]
1692 				[PERF_COUNT_HW_CACHE_OP_MAX]
1693 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1694 	[C(LL)] = {
1695 		[C(OP_READ)] = {
1696 			[C(RESULT_ACCESS)]	= GLM_DEMAND_READ|
1697 						  GLM_LLC_ACCESS,
1698 			[C(RESULT_MISS)]	= GLM_DEMAND_READ|
1699 						  GLM_LLC_MISS,
1700 		},
1701 		[C(OP_WRITE)] = {
1702 			[C(RESULT_ACCESS)]	= GLM_DEMAND_WRITE|
1703 						  GLM_LLC_ACCESS,
1704 			[C(RESULT_MISS)]	= GLM_DEMAND_WRITE|
1705 						  GLM_LLC_MISS,
1706 		},
1707 		[C(OP_PREFETCH)] = {
1708 			[C(RESULT_ACCESS)]	= GLM_DEMAND_PREFETCH|
1709 						  GLM_LLC_ACCESS,
1710 			[C(RESULT_MISS)]	= GLM_DEMAND_PREFETCH|
1711 						  GLM_LLC_MISS,
1712 		},
1713 	},
1714 };
1715 
1716 static __initconst const u64 glp_hw_cache_event_ids
1717 				[PERF_COUNT_HW_CACHE_MAX]
1718 				[PERF_COUNT_HW_CACHE_OP_MAX]
1719 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1720 	[C(L1D)] = {
1721 		[C(OP_READ)] = {
1722 			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1723 			[C(RESULT_MISS)]	= 0x0,
1724 		},
1725 		[C(OP_WRITE)] = {
1726 			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1727 			[C(RESULT_MISS)]	= 0x0,
1728 		},
1729 		[C(OP_PREFETCH)] = {
1730 			[C(RESULT_ACCESS)]	= 0x0,
1731 			[C(RESULT_MISS)]	= 0x0,
1732 		},
1733 	},
1734 	[C(L1I)] = {
1735 		[C(OP_READ)] = {
1736 			[C(RESULT_ACCESS)]	= 0x0380,	/* ICACHE.ACCESSES */
1737 			[C(RESULT_MISS)]	= 0x0280,	/* ICACHE.MISSES */
1738 		},
1739 		[C(OP_WRITE)] = {
1740 			[C(RESULT_ACCESS)]	= -1,
1741 			[C(RESULT_MISS)]	= -1,
1742 		},
1743 		[C(OP_PREFETCH)] = {
1744 			[C(RESULT_ACCESS)]	= 0x0,
1745 			[C(RESULT_MISS)]	= 0x0,
1746 		},
1747 	},
1748 	[C(LL)] = {
1749 		[C(OP_READ)] = {
1750 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1751 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1752 		},
1753 		[C(OP_WRITE)] = {
1754 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1755 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1756 		},
1757 		[C(OP_PREFETCH)] = {
1758 			[C(RESULT_ACCESS)]	= 0x0,
1759 			[C(RESULT_MISS)]	= 0x0,
1760 		},
1761 	},
1762 	[C(DTLB)] = {
1763 		[C(OP_READ)] = {
1764 			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1765 			[C(RESULT_MISS)]	= 0xe08,	/* DTLB_LOAD_MISSES.WALK_COMPLETED */
1766 		},
1767 		[C(OP_WRITE)] = {
1768 			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1769 			[C(RESULT_MISS)]	= 0xe49,	/* DTLB_STORE_MISSES.WALK_COMPLETED */
1770 		},
1771 		[C(OP_PREFETCH)] = {
1772 			[C(RESULT_ACCESS)]	= 0x0,
1773 			[C(RESULT_MISS)]	= 0x0,
1774 		},
1775 	},
1776 	[C(ITLB)] = {
1777 		[C(OP_READ)] = {
1778 			[C(RESULT_ACCESS)]	= 0x00c0,	/* INST_RETIRED.ANY_P */
1779 			[C(RESULT_MISS)]	= 0x0481,	/* ITLB.MISS */
1780 		},
1781 		[C(OP_WRITE)] = {
1782 			[C(RESULT_ACCESS)]	= -1,
1783 			[C(RESULT_MISS)]	= -1,
1784 		},
1785 		[C(OP_PREFETCH)] = {
1786 			[C(RESULT_ACCESS)]	= -1,
1787 			[C(RESULT_MISS)]	= -1,
1788 		},
1789 	},
1790 	[C(BPU)] = {
1791 		[C(OP_READ)] = {
1792 			[C(RESULT_ACCESS)]	= 0x00c4,	/* BR_INST_RETIRED.ALL_BRANCHES */
1793 			[C(RESULT_MISS)]	= 0x00c5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
1794 		},
1795 		[C(OP_WRITE)] = {
1796 			[C(RESULT_ACCESS)]	= -1,
1797 			[C(RESULT_MISS)]	= -1,
1798 		},
1799 		[C(OP_PREFETCH)] = {
1800 			[C(RESULT_ACCESS)]	= -1,
1801 			[C(RESULT_MISS)]	= -1,
1802 		},
1803 	},
1804 };
1805 
1806 static __initconst const u64 glp_hw_cache_extra_regs
1807 				[PERF_COUNT_HW_CACHE_MAX]
1808 				[PERF_COUNT_HW_CACHE_OP_MAX]
1809 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1810 	[C(LL)] = {
1811 		[C(OP_READ)] = {
1812 			[C(RESULT_ACCESS)]	= GLM_DEMAND_READ|
1813 						  GLM_LLC_ACCESS,
1814 			[C(RESULT_MISS)]	= GLM_DEMAND_READ|
1815 						  GLM_LLC_MISS,
1816 		},
1817 		[C(OP_WRITE)] = {
1818 			[C(RESULT_ACCESS)]	= GLM_DEMAND_WRITE|
1819 						  GLM_LLC_ACCESS,
1820 			[C(RESULT_MISS)]	= GLM_DEMAND_WRITE|
1821 						  GLM_LLC_MISS,
1822 		},
1823 		[C(OP_PREFETCH)] = {
1824 			[C(RESULT_ACCESS)]	= 0x0,
1825 			[C(RESULT_MISS)]	= 0x0,
1826 		},
1827 	},
1828 };
1829 
1830 #define KNL_OT_L2_HITE		BIT_ULL(19) /* Other Tile L2 Hit */
1831 #define KNL_OT_L2_HITF		BIT_ULL(20) /* Other Tile L2 Hit */
1832 #define KNL_MCDRAM_LOCAL	BIT_ULL(21)
1833 #define KNL_MCDRAM_FAR		BIT_ULL(22)
1834 #define KNL_DDR_LOCAL		BIT_ULL(23)
1835 #define KNL_DDR_FAR		BIT_ULL(24)
1836 #define KNL_DRAM_ANY		(KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \
1837 				    KNL_DDR_LOCAL | KNL_DDR_FAR)
1838 #define KNL_L2_READ		SLM_DMND_READ
1839 #define KNL_L2_WRITE		SLM_DMND_WRITE
1840 #define KNL_L2_PREFETCH		SLM_DMND_PREFETCH
1841 #define KNL_L2_ACCESS		SLM_LLC_ACCESS
1842 #define KNL_L2_MISS		(KNL_OT_L2_HITE | KNL_OT_L2_HITF | \
1843 				   KNL_DRAM_ANY | SNB_SNP_ANY | \
1844 						  SNB_NON_DRAM)
1845 
1846 static __initconst const u64 knl_hw_cache_extra_regs
1847 				[PERF_COUNT_HW_CACHE_MAX]
1848 				[PERF_COUNT_HW_CACHE_OP_MAX]
1849 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1850 	[C(LL)] = {
1851 		[C(OP_READ)] = {
1852 			[C(RESULT_ACCESS)] = KNL_L2_READ | KNL_L2_ACCESS,
1853 			[C(RESULT_MISS)]   = 0,
1854 		},
1855 		[C(OP_WRITE)] = {
1856 			[C(RESULT_ACCESS)] = KNL_L2_WRITE | KNL_L2_ACCESS,
1857 			[C(RESULT_MISS)]   = KNL_L2_WRITE | KNL_L2_MISS,
1858 		},
1859 		[C(OP_PREFETCH)] = {
1860 			[C(RESULT_ACCESS)] = KNL_L2_PREFETCH | KNL_L2_ACCESS,
1861 			[C(RESULT_MISS)]   = KNL_L2_PREFETCH | KNL_L2_MISS,
1862 		},
1863 	},
1864 };
1865 
1866 /*
1867  * Used from PMIs where the LBRs are already disabled.
1868  *
1869  * This function could be called consecutively. It is required to remain in
1870  * disabled state if called consecutively.
1871  *
1872  * During consecutive calls, the same disable value will be written to related
1873  * registers, so the PMU state remains unchanged.
1874  *
1875  * intel_bts events don't coexist with intel PMU's BTS events because of
1876  * x86_add_exclusive(x86_lbr_exclusive_lbr); there's no need to keep them
1877  * disabled around intel PMU's event batching etc, only inside the PMI handler.
1878  */
1879 static void __intel_pmu_disable_all(void)
1880 {
1881 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1882 
1883 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
1884 
1885 	if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
1886 		intel_pmu_disable_bts();
1887 
1888 	intel_pmu_pebs_disable_all();
1889 }
1890 
1891 static void intel_pmu_disable_all(void)
1892 {
1893 	__intel_pmu_disable_all();
1894 	intel_pmu_lbr_disable_all();
1895 }
1896 
1897 static void __intel_pmu_enable_all(int added, bool pmi)
1898 {
1899 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1900 
1901 	intel_pmu_pebs_enable_all();
1902 	intel_pmu_lbr_enable_all(pmi);
1903 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
1904 			x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
1905 
1906 	if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
1907 		struct perf_event *event =
1908 			cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
1909 
1910 		if (WARN_ON_ONCE(!event))
1911 			return;
1912 
1913 		intel_pmu_enable_bts(event->hw.config);
1914 	}
1915 }
1916 
1917 static void intel_pmu_enable_all(int added)
1918 {
1919 	__intel_pmu_enable_all(added, false);
1920 }
1921 
1922 /*
1923  * Workaround for:
1924  *   Intel Errata AAK100 (model 26)
1925  *   Intel Errata AAP53  (model 30)
1926  *   Intel Errata BD53   (model 44)
1927  *
1928  * The official story:
1929  *   These chips need to be 'reset' when adding counters by programming the
1930  *   magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
1931  *   in sequence on the same PMC or on different PMCs.
1932  *
1933  * In practise it appears some of these events do in fact count, and
1934  * we need to program all 4 events.
1935  */
1936 static void intel_pmu_nhm_workaround(void)
1937 {
1938 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1939 	static const unsigned long nhm_magic[4] = {
1940 		0x4300B5,
1941 		0x4300D2,
1942 		0x4300B1,
1943 		0x4300B1
1944 	};
1945 	struct perf_event *event;
1946 	int i;
1947 
1948 	/*
1949 	 * The Errata requires below steps:
1950 	 * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
1951 	 * 2) Configure 4 PERFEVTSELx with the magic events and clear
1952 	 *    the corresponding PMCx;
1953 	 * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
1954 	 * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
1955 	 * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
1956 	 */
1957 
1958 	/*
1959 	 * The real steps we choose are a little different from above.
1960 	 * A) To reduce MSR operations, we don't run step 1) as they
1961 	 *    are already cleared before this function is called;
1962 	 * B) Call x86_perf_event_update to save PMCx before configuring
1963 	 *    PERFEVTSELx with magic number;
1964 	 * C) With step 5), we do clear only when the PERFEVTSELx is
1965 	 *    not used currently.
1966 	 * D) Call x86_perf_event_set_period to restore PMCx;
1967 	 */
1968 
1969 	/* We always operate 4 pairs of PERF Counters */
1970 	for (i = 0; i < 4; i++) {
1971 		event = cpuc->events[i];
1972 		if (event)
1973 			x86_perf_event_update(event);
1974 	}
1975 
1976 	for (i = 0; i < 4; i++) {
1977 		wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
1978 		wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
1979 	}
1980 
1981 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
1982 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
1983 
1984 	for (i = 0; i < 4; i++) {
1985 		event = cpuc->events[i];
1986 
1987 		if (event) {
1988 			x86_perf_event_set_period(event);
1989 			__x86_pmu_enable_event(&event->hw,
1990 					ARCH_PERFMON_EVENTSEL_ENABLE);
1991 		} else
1992 			wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
1993 	}
1994 }
1995 
1996 static void intel_pmu_nhm_enable_all(int added)
1997 {
1998 	if (added)
1999 		intel_pmu_nhm_workaround();
2000 	intel_pmu_enable_all(added);
2001 }
2002 
2003 static void intel_set_tfa(struct cpu_hw_events *cpuc, bool on)
2004 {
2005 	u64 val = on ? MSR_TFA_RTM_FORCE_ABORT : 0;
2006 
2007 	if (cpuc->tfa_shadow != val) {
2008 		cpuc->tfa_shadow = val;
2009 		wrmsrl(MSR_TSX_FORCE_ABORT, val);
2010 	}
2011 }
2012 
2013 static void intel_tfa_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
2014 {
2015 	/*
2016 	 * We're going to use PMC3, make sure TFA is set before we touch it.
2017 	 */
2018 	if (cntr == 3 && !cpuc->is_fake)
2019 		intel_set_tfa(cpuc, true);
2020 }
2021 
2022 static void intel_tfa_pmu_enable_all(int added)
2023 {
2024 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2025 
2026 	/*
2027 	 * If we find PMC3 is no longer used when we enable the PMU, we can
2028 	 * clear TFA.
2029 	 */
2030 	if (!test_bit(3, cpuc->active_mask))
2031 		intel_set_tfa(cpuc, false);
2032 
2033 	intel_pmu_enable_all(added);
2034 }
2035 
2036 static void enable_counter_freeze(void)
2037 {
2038 	update_debugctlmsr(get_debugctlmsr() |
2039 			DEBUGCTLMSR_FREEZE_PERFMON_ON_PMI);
2040 }
2041 
2042 static void disable_counter_freeze(void)
2043 {
2044 	update_debugctlmsr(get_debugctlmsr() &
2045 			~DEBUGCTLMSR_FREEZE_PERFMON_ON_PMI);
2046 }
2047 
2048 static inline u64 intel_pmu_get_status(void)
2049 {
2050 	u64 status;
2051 
2052 	rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
2053 
2054 	return status;
2055 }
2056 
2057 static inline void intel_pmu_ack_status(u64 ack)
2058 {
2059 	wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
2060 }
2061 
2062 static void intel_pmu_disable_fixed(struct hw_perf_event *hwc)
2063 {
2064 	int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
2065 	u64 ctrl_val, mask;
2066 
2067 	mask = 0xfULL << (idx * 4);
2068 
2069 	rdmsrl(hwc->config_base, ctrl_val);
2070 	ctrl_val &= ~mask;
2071 	wrmsrl(hwc->config_base, ctrl_val);
2072 }
2073 
2074 static inline bool event_is_checkpointed(struct perf_event *event)
2075 {
2076 	return (event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
2077 }
2078 
2079 static void intel_pmu_disable_event(struct perf_event *event)
2080 {
2081 	struct hw_perf_event *hwc = &event->hw;
2082 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2083 
2084 	if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
2085 		intel_pmu_disable_bts();
2086 		intel_pmu_drain_bts_buffer();
2087 		return;
2088 	}
2089 
2090 	cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx);
2091 	cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx);
2092 	cpuc->intel_cp_status &= ~(1ull << hwc->idx);
2093 
2094 	if (unlikely(event->attr.precise_ip))
2095 		intel_pmu_pebs_disable(event);
2096 
2097 	if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
2098 		intel_pmu_disable_fixed(hwc);
2099 		return;
2100 	}
2101 
2102 	x86_pmu_disable_event(event);
2103 }
2104 
2105 static void intel_pmu_del_event(struct perf_event *event)
2106 {
2107 	if (needs_branch_stack(event))
2108 		intel_pmu_lbr_del(event);
2109 	if (event->attr.precise_ip)
2110 		intel_pmu_pebs_del(event);
2111 }
2112 
2113 static void intel_pmu_read_event(struct perf_event *event)
2114 {
2115 	if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
2116 		intel_pmu_auto_reload_read(event);
2117 	else
2118 		x86_perf_event_update(event);
2119 }
2120 
2121 static void intel_pmu_enable_fixed(struct perf_event *event)
2122 {
2123 	struct hw_perf_event *hwc = &event->hw;
2124 	int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
2125 	u64 ctrl_val, mask, bits = 0;
2126 
2127 	/*
2128 	 * Enable IRQ generation (0x8), if not PEBS,
2129 	 * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
2130 	 * if requested:
2131 	 */
2132 	if (!event->attr.precise_ip)
2133 		bits |= 0x8;
2134 	if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
2135 		bits |= 0x2;
2136 	if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
2137 		bits |= 0x1;
2138 
2139 	/*
2140 	 * ANY bit is supported in v3 and up
2141 	 */
2142 	if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
2143 		bits |= 0x4;
2144 
2145 	bits <<= (idx * 4);
2146 	mask = 0xfULL << (idx * 4);
2147 
2148 	rdmsrl(hwc->config_base, ctrl_val);
2149 	ctrl_val &= ~mask;
2150 	ctrl_val |= bits;
2151 	wrmsrl(hwc->config_base, ctrl_val);
2152 }
2153 
2154 static void intel_pmu_enable_event(struct perf_event *event)
2155 {
2156 	struct hw_perf_event *hwc = &event->hw;
2157 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2158 
2159 	if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
2160 		if (!__this_cpu_read(cpu_hw_events.enabled))
2161 			return;
2162 
2163 		intel_pmu_enable_bts(hwc->config);
2164 		return;
2165 	}
2166 
2167 	if (event->attr.exclude_host)
2168 		cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx);
2169 	if (event->attr.exclude_guest)
2170 		cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx);
2171 
2172 	if (unlikely(event_is_checkpointed(event)))
2173 		cpuc->intel_cp_status |= (1ull << hwc->idx);
2174 
2175 	if (unlikely(event->attr.precise_ip))
2176 		intel_pmu_pebs_enable(event);
2177 
2178 	if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
2179 		intel_pmu_enable_fixed(event);
2180 		return;
2181 	}
2182 
2183 	__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
2184 }
2185 
2186 static void intel_pmu_add_event(struct perf_event *event)
2187 {
2188 	if (event->attr.precise_ip)
2189 		intel_pmu_pebs_add(event);
2190 	if (needs_branch_stack(event))
2191 		intel_pmu_lbr_add(event);
2192 }
2193 
2194 /*
2195  * Save and restart an expired event. Called by NMI contexts,
2196  * so it has to be careful about preempting normal event ops:
2197  */
2198 int intel_pmu_save_and_restart(struct perf_event *event)
2199 {
2200 	x86_perf_event_update(event);
2201 	/*
2202 	 * For a checkpointed counter always reset back to 0.  This
2203 	 * avoids a situation where the counter overflows, aborts the
2204 	 * transaction and is then set back to shortly before the
2205 	 * overflow, and overflows and aborts again.
2206 	 */
2207 	if (unlikely(event_is_checkpointed(event))) {
2208 		/* No race with NMIs because the counter should not be armed */
2209 		wrmsrl(event->hw.event_base, 0);
2210 		local64_set(&event->hw.prev_count, 0);
2211 	}
2212 	return x86_perf_event_set_period(event);
2213 }
2214 
2215 static void intel_pmu_reset(void)
2216 {
2217 	struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
2218 	unsigned long flags;
2219 	int idx;
2220 
2221 	if (!x86_pmu.num_counters)
2222 		return;
2223 
2224 	local_irq_save(flags);
2225 
2226 	pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
2227 
2228 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
2229 		wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
2230 		wrmsrl_safe(x86_pmu_event_addr(idx),  0ull);
2231 	}
2232 	for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
2233 		wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
2234 
2235 	if (ds)
2236 		ds->bts_index = ds->bts_buffer_base;
2237 
2238 	/* Ack all overflows and disable fixed counters */
2239 	if (x86_pmu.version >= 2) {
2240 		intel_pmu_ack_status(intel_pmu_get_status());
2241 		wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
2242 	}
2243 
2244 	/* Reset LBRs and LBR freezing */
2245 	if (x86_pmu.lbr_nr) {
2246 		update_debugctlmsr(get_debugctlmsr() &
2247 			~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
2248 	}
2249 
2250 	local_irq_restore(flags);
2251 }
2252 
2253 static int handle_pmi_common(struct pt_regs *regs, u64 status)
2254 {
2255 	struct perf_sample_data data;
2256 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2257 	int bit;
2258 	int handled = 0;
2259 
2260 	inc_irq_stat(apic_perf_irqs);
2261 
2262 	/*
2263 	 * Ignore a range of extra bits in status that do not indicate
2264 	 * overflow by themselves.
2265 	 */
2266 	status &= ~(GLOBAL_STATUS_COND_CHG |
2267 		    GLOBAL_STATUS_ASIF |
2268 		    GLOBAL_STATUS_LBRS_FROZEN);
2269 	if (!status)
2270 		return 0;
2271 	/*
2272 	 * In case multiple PEBS events are sampled at the same time,
2273 	 * it is possible to have GLOBAL_STATUS bit 62 set indicating
2274 	 * PEBS buffer overflow and also seeing at most 3 PEBS counters
2275 	 * having their bits set in the status register. This is a sign
2276 	 * that there was at least one PEBS record pending at the time
2277 	 * of the PMU interrupt. PEBS counters must only be processed
2278 	 * via the drain_pebs() calls and not via the regular sample
2279 	 * processing loop coming after that the function, otherwise
2280 	 * phony regular samples may be generated in the sampling buffer
2281 	 * not marked with the EXACT tag. Another possibility is to have
2282 	 * one PEBS event and at least one non-PEBS event whic hoverflows
2283 	 * while PEBS has armed. In this case, bit 62 of GLOBAL_STATUS will
2284 	 * not be set, yet the overflow status bit for the PEBS counter will
2285 	 * be on Skylake.
2286 	 *
2287 	 * To avoid this problem, we systematically ignore the PEBS-enabled
2288 	 * counters from the GLOBAL_STATUS mask and we always process PEBS
2289 	 * events via drain_pebs().
2290 	 */
2291 	if (x86_pmu.flags & PMU_FL_PEBS_ALL)
2292 		status &= ~cpuc->pebs_enabled;
2293 	else
2294 		status &= ~(cpuc->pebs_enabled & PEBS_COUNTER_MASK);
2295 
2296 	/*
2297 	 * PEBS overflow sets bit 62 in the global status register
2298 	 */
2299 	if (__test_and_clear_bit(62, (unsigned long *)&status)) {
2300 		handled++;
2301 		x86_pmu.drain_pebs(regs);
2302 		status &= x86_pmu.intel_ctrl | GLOBAL_STATUS_TRACE_TOPAPMI;
2303 	}
2304 
2305 	/*
2306 	 * Intel PT
2307 	 */
2308 	if (__test_and_clear_bit(55, (unsigned long *)&status)) {
2309 		handled++;
2310 		intel_pt_interrupt();
2311 	}
2312 
2313 	/*
2314 	 * Checkpointed counters can lead to 'spurious' PMIs because the
2315 	 * rollback caused by the PMI will have cleared the overflow status
2316 	 * bit. Therefore always force probe these counters.
2317 	 */
2318 	status |= cpuc->intel_cp_status;
2319 
2320 	for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
2321 		struct perf_event *event = cpuc->events[bit];
2322 
2323 		handled++;
2324 
2325 		if (!test_bit(bit, cpuc->active_mask))
2326 			continue;
2327 
2328 		if (!intel_pmu_save_and_restart(event))
2329 			continue;
2330 
2331 		perf_sample_data_init(&data, 0, event->hw.last_period);
2332 
2333 		if (has_branch_stack(event))
2334 			data.br_stack = &cpuc->lbr_stack;
2335 
2336 		if (perf_event_overflow(event, &data, regs))
2337 			x86_pmu_stop(event, 0);
2338 	}
2339 
2340 	return handled;
2341 }
2342 
2343 static bool disable_counter_freezing = true;
2344 static int __init intel_perf_counter_freezing_setup(char *s)
2345 {
2346 	bool res;
2347 
2348 	if (kstrtobool(s, &res))
2349 		return -EINVAL;
2350 
2351 	disable_counter_freezing = !res;
2352 	return 1;
2353 }
2354 __setup("perf_v4_pmi=", intel_perf_counter_freezing_setup);
2355 
2356 /*
2357  * Simplified handler for Arch Perfmon v4:
2358  * - We rely on counter freezing/unfreezing to enable/disable the PMU.
2359  * This is done automatically on PMU ack.
2360  * - Ack the PMU only after the APIC.
2361  */
2362 
2363 static int intel_pmu_handle_irq_v4(struct pt_regs *regs)
2364 {
2365 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2366 	int handled = 0;
2367 	bool bts = false;
2368 	u64 status;
2369 	int pmu_enabled = cpuc->enabled;
2370 	int loops = 0;
2371 
2372 	/* PMU has been disabled because of counter freezing */
2373 	cpuc->enabled = 0;
2374 	if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
2375 		bts = true;
2376 		intel_bts_disable_local();
2377 		handled = intel_pmu_drain_bts_buffer();
2378 		handled += intel_bts_interrupt();
2379 	}
2380 	status = intel_pmu_get_status();
2381 	if (!status)
2382 		goto done;
2383 again:
2384 	intel_pmu_lbr_read();
2385 	if (++loops > 100) {
2386 		static bool warned;
2387 
2388 		if (!warned) {
2389 			WARN(1, "perfevents: irq loop stuck!\n");
2390 			perf_event_print_debug();
2391 			warned = true;
2392 		}
2393 		intel_pmu_reset();
2394 		goto done;
2395 	}
2396 
2397 
2398 	handled += handle_pmi_common(regs, status);
2399 done:
2400 	/* Ack the PMI in the APIC */
2401 	apic_write(APIC_LVTPC, APIC_DM_NMI);
2402 
2403 	/*
2404 	 * The counters start counting immediately while ack the status.
2405 	 * Make it as close as possible to IRET. This avoids bogus
2406 	 * freezing on Skylake CPUs.
2407 	 */
2408 	if (status) {
2409 		intel_pmu_ack_status(status);
2410 	} else {
2411 		/*
2412 		 * CPU may issues two PMIs very close to each other.
2413 		 * When the PMI handler services the first one, the
2414 		 * GLOBAL_STATUS is already updated to reflect both.
2415 		 * When it IRETs, the second PMI is immediately
2416 		 * handled and it sees clear status. At the meantime,
2417 		 * there may be a third PMI, because the freezing bit
2418 		 * isn't set since the ack in first PMI handlers.
2419 		 * Double check if there is more work to be done.
2420 		 */
2421 		status = intel_pmu_get_status();
2422 		if (status)
2423 			goto again;
2424 	}
2425 
2426 	if (bts)
2427 		intel_bts_enable_local();
2428 	cpuc->enabled = pmu_enabled;
2429 	return handled;
2430 }
2431 
2432 /*
2433  * This handler is triggered by the local APIC, so the APIC IRQ handling
2434  * rules apply:
2435  */
2436 static int intel_pmu_handle_irq(struct pt_regs *regs)
2437 {
2438 	struct cpu_hw_events *cpuc;
2439 	int loops;
2440 	u64 status;
2441 	int handled;
2442 	int pmu_enabled;
2443 
2444 	cpuc = this_cpu_ptr(&cpu_hw_events);
2445 
2446 	/*
2447 	 * Save the PMU state.
2448 	 * It needs to be restored when leaving the handler.
2449 	 */
2450 	pmu_enabled = cpuc->enabled;
2451 	/*
2452 	 * No known reason to not always do late ACK,
2453 	 * but just in case do it opt-in.
2454 	 */
2455 	if (!x86_pmu.late_ack)
2456 		apic_write(APIC_LVTPC, APIC_DM_NMI);
2457 	intel_bts_disable_local();
2458 	cpuc->enabled = 0;
2459 	__intel_pmu_disable_all();
2460 	handled = intel_pmu_drain_bts_buffer();
2461 	handled += intel_bts_interrupt();
2462 	status = intel_pmu_get_status();
2463 	if (!status)
2464 		goto done;
2465 
2466 	loops = 0;
2467 again:
2468 	intel_pmu_lbr_read();
2469 	intel_pmu_ack_status(status);
2470 	if (++loops > 100) {
2471 		static bool warned;
2472 
2473 		if (!warned) {
2474 			WARN(1, "perfevents: irq loop stuck!\n");
2475 			perf_event_print_debug();
2476 			warned = true;
2477 		}
2478 		intel_pmu_reset();
2479 		goto done;
2480 	}
2481 
2482 	handled += handle_pmi_common(regs, status);
2483 
2484 	/*
2485 	 * Repeat if there is more work to be done:
2486 	 */
2487 	status = intel_pmu_get_status();
2488 	if (status)
2489 		goto again;
2490 
2491 done:
2492 	/* Only restore PMU state when it's active. See x86_pmu_disable(). */
2493 	cpuc->enabled = pmu_enabled;
2494 	if (pmu_enabled)
2495 		__intel_pmu_enable_all(0, true);
2496 	intel_bts_enable_local();
2497 
2498 	/*
2499 	 * Only unmask the NMI after the overflow counters
2500 	 * have been reset. This avoids spurious NMIs on
2501 	 * Haswell CPUs.
2502 	 */
2503 	if (x86_pmu.late_ack)
2504 		apic_write(APIC_LVTPC, APIC_DM_NMI);
2505 	return handled;
2506 }
2507 
2508 static struct event_constraint *
2509 intel_bts_constraints(struct perf_event *event)
2510 {
2511 	if (unlikely(intel_pmu_has_bts(event)))
2512 		return &bts_constraint;
2513 
2514 	return NULL;
2515 }
2516 
2517 static int intel_alt_er(int idx, u64 config)
2518 {
2519 	int alt_idx = idx;
2520 
2521 	if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
2522 		return idx;
2523 
2524 	if (idx == EXTRA_REG_RSP_0)
2525 		alt_idx = EXTRA_REG_RSP_1;
2526 
2527 	if (idx == EXTRA_REG_RSP_1)
2528 		alt_idx = EXTRA_REG_RSP_0;
2529 
2530 	if (config & ~x86_pmu.extra_regs[alt_idx].valid_mask)
2531 		return idx;
2532 
2533 	return alt_idx;
2534 }
2535 
2536 static void intel_fixup_er(struct perf_event *event, int idx)
2537 {
2538 	event->hw.extra_reg.idx = idx;
2539 
2540 	if (idx == EXTRA_REG_RSP_0) {
2541 		event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
2542 		event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_0].event;
2543 		event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
2544 	} else if (idx == EXTRA_REG_RSP_1) {
2545 		event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
2546 		event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_1].event;
2547 		event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
2548 	}
2549 }
2550 
2551 /*
2552  * manage allocation of shared extra msr for certain events
2553  *
2554  * sharing can be:
2555  * per-cpu: to be shared between the various events on a single PMU
2556  * per-core: per-cpu + shared by HT threads
2557  */
2558 static struct event_constraint *
2559 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
2560 				   struct perf_event *event,
2561 				   struct hw_perf_event_extra *reg)
2562 {
2563 	struct event_constraint *c = &emptyconstraint;
2564 	struct er_account *era;
2565 	unsigned long flags;
2566 	int idx = reg->idx;
2567 
2568 	/*
2569 	 * reg->alloc can be set due to existing state, so for fake cpuc we
2570 	 * need to ignore this, otherwise we might fail to allocate proper fake
2571 	 * state for this extra reg constraint. Also see the comment below.
2572 	 */
2573 	if (reg->alloc && !cpuc->is_fake)
2574 		return NULL; /* call x86_get_event_constraint() */
2575 
2576 again:
2577 	era = &cpuc->shared_regs->regs[idx];
2578 	/*
2579 	 * we use spin_lock_irqsave() to avoid lockdep issues when
2580 	 * passing a fake cpuc
2581 	 */
2582 	raw_spin_lock_irqsave(&era->lock, flags);
2583 
2584 	if (!atomic_read(&era->ref) || era->config == reg->config) {
2585 
2586 		/*
2587 		 * If its a fake cpuc -- as per validate_{group,event}() we
2588 		 * shouldn't touch event state and we can avoid doing so
2589 		 * since both will only call get_event_constraints() once
2590 		 * on each event, this avoids the need for reg->alloc.
2591 		 *
2592 		 * Not doing the ER fixup will only result in era->reg being
2593 		 * wrong, but since we won't actually try and program hardware
2594 		 * this isn't a problem either.
2595 		 */
2596 		if (!cpuc->is_fake) {
2597 			if (idx != reg->idx)
2598 				intel_fixup_er(event, idx);
2599 
2600 			/*
2601 			 * x86_schedule_events() can call get_event_constraints()
2602 			 * multiple times on events in the case of incremental
2603 			 * scheduling(). reg->alloc ensures we only do the ER
2604 			 * allocation once.
2605 			 */
2606 			reg->alloc = 1;
2607 		}
2608 
2609 		/* lock in msr value */
2610 		era->config = reg->config;
2611 		era->reg = reg->reg;
2612 
2613 		/* one more user */
2614 		atomic_inc(&era->ref);
2615 
2616 		/*
2617 		 * need to call x86_get_event_constraint()
2618 		 * to check if associated event has constraints
2619 		 */
2620 		c = NULL;
2621 	} else {
2622 		idx = intel_alt_er(idx, reg->config);
2623 		if (idx != reg->idx) {
2624 			raw_spin_unlock_irqrestore(&era->lock, flags);
2625 			goto again;
2626 		}
2627 	}
2628 	raw_spin_unlock_irqrestore(&era->lock, flags);
2629 
2630 	return c;
2631 }
2632 
2633 static void
2634 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
2635 				   struct hw_perf_event_extra *reg)
2636 {
2637 	struct er_account *era;
2638 
2639 	/*
2640 	 * Only put constraint if extra reg was actually allocated. Also takes
2641 	 * care of event which do not use an extra shared reg.
2642 	 *
2643 	 * Also, if this is a fake cpuc we shouldn't touch any event state
2644 	 * (reg->alloc) and we don't care about leaving inconsistent cpuc state
2645 	 * either since it'll be thrown out.
2646 	 */
2647 	if (!reg->alloc || cpuc->is_fake)
2648 		return;
2649 
2650 	era = &cpuc->shared_regs->regs[reg->idx];
2651 
2652 	/* one fewer user */
2653 	atomic_dec(&era->ref);
2654 
2655 	/* allocate again next time */
2656 	reg->alloc = 0;
2657 }
2658 
2659 static struct event_constraint *
2660 intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
2661 			      struct perf_event *event)
2662 {
2663 	struct event_constraint *c = NULL, *d;
2664 	struct hw_perf_event_extra *xreg, *breg;
2665 
2666 	xreg = &event->hw.extra_reg;
2667 	if (xreg->idx != EXTRA_REG_NONE) {
2668 		c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
2669 		if (c == &emptyconstraint)
2670 			return c;
2671 	}
2672 	breg = &event->hw.branch_reg;
2673 	if (breg->idx != EXTRA_REG_NONE) {
2674 		d = __intel_shared_reg_get_constraints(cpuc, event, breg);
2675 		if (d == &emptyconstraint) {
2676 			__intel_shared_reg_put_constraints(cpuc, xreg);
2677 			c = d;
2678 		}
2679 	}
2680 	return c;
2681 }
2682 
2683 struct event_constraint *
2684 x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2685 			  struct perf_event *event)
2686 {
2687 	struct event_constraint *c;
2688 
2689 	if (x86_pmu.event_constraints) {
2690 		for_each_event_constraint(c, x86_pmu.event_constraints) {
2691 			if ((event->hw.config & c->cmask) == c->code) {
2692 				event->hw.flags |= c->flags;
2693 				return c;
2694 			}
2695 		}
2696 	}
2697 
2698 	return &unconstrained;
2699 }
2700 
2701 static struct event_constraint *
2702 __intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2703 			    struct perf_event *event)
2704 {
2705 	struct event_constraint *c;
2706 
2707 	c = intel_bts_constraints(event);
2708 	if (c)
2709 		return c;
2710 
2711 	c = intel_shared_regs_constraints(cpuc, event);
2712 	if (c)
2713 		return c;
2714 
2715 	c = intel_pebs_constraints(event);
2716 	if (c)
2717 		return c;
2718 
2719 	return x86_get_event_constraints(cpuc, idx, event);
2720 }
2721 
2722 static void
2723 intel_start_scheduling(struct cpu_hw_events *cpuc)
2724 {
2725 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2726 	struct intel_excl_states *xl;
2727 	int tid = cpuc->excl_thread_id;
2728 
2729 	/*
2730 	 * nothing needed if in group validation mode
2731 	 */
2732 	if (cpuc->is_fake || !is_ht_workaround_enabled())
2733 		return;
2734 
2735 	/*
2736 	 * no exclusion needed
2737 	 */
2738 	if (WARN_ON_ONCE(!excl_cntrs))
2739 		return;
2740 
2741 	xl = &excl_cntrs->states[tid];
2742 
2743 	xl->sched_started = true;
2744 	/*
2745 	 * lock shared state until we are done scheduling
2746 	 * in stop_event_scheduling()
2747 	 * makes scheduling appear as a transaction
2748 	 */
2749 	raw_spin_lock(&excl_cntrs->lock);
2750 }
2751 
2752 static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
2753 {
2754 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2755 	struct event_constraint *c = cpuc->event_constraint[idx];
2756 	struct intel_excl_states *xl;
2757 	int tid = cpuc->excl_thread_id;
2758 
2759 	if (cpuc->is_fake || !is_ht_workaround_enabled())
2760 		return;
2761 
2762 	if (WARN_ON_ONCE(!excl_cntrs))
2763 		return;
2764 
2765 	if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
2766 		return;
2767 
2768 	xl = &excl_cntrs->states[tid];
2769 
2770 	lockdep_assert_held(&excl_cntrs->lock);
2771 
2772 	if (c->flags & PERF_X86_EVENT_EXCL)
2773 		xl->state[cntr] = INTEL_EXCL_EXCLUSIVE;
2774 	else
2775 		xl->state[cntr] = INTEL_EXCL_SHARED;
2776 }
2777 
2778 static void
2779 intel_stop_scheduling(struct cpu_hw_events *cpuc)
2780 {
2781 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2782 	struct intel_excl_states *xl;
2783 	int tid = cpuc->excl_thread_id;
2784 
2785 	/*
2786 	 * nothing needed if in group validation mode
2787 	 */
2788 	if (cpuc->is_fake || !is_ht_workaround_enabled())
2789 		return;
2790 	/*
2791 	 * no exclusion needed
2792 	 */
2793 	if (WARN_ON_ONCE(!excl_cntrs))
2794 		return;
2795 
2796 	xl = &excl_cntrs->states[tid];
2797 
2798 	xl->sched_started = false;
2799 	/*
2800 	 * release shared state lock (acquired in intel_start_scheduling())
2801 	 */
2802 	raw_spin_unlock(&excl_cntrs->lock);
2803 }
2804 
2805 static struct event_constraint *
2806 dyn_constraint(struct cpu_hw_events *cpuc, struct event_constraint *c, int idx)
2807 {
2808 	WARN_ON_ONCE(!cpuc->constraint_list);
2809 
2810 	if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
2811 		struct event_constraint *cx;
2812 
2813 		/*
2814 		 * grab pre-allocated constraint entry
2815 		 */
2816 		cx = &cpuc->constraint_list[idx];
2817 
2818 		/*
2819 		 * initialize dynamic constraint
2820 		 * with static constraint
2821 		 */
2822 		*cx = *c;
2823 
2824 		/*
2825 		 * mark constraint as dynamic
2826 		 */
2827 		cx->flags |= PERF_X86_EVENT_DYNAMIC;
2828 		c = cx;
2829 	}
2830 
2831 	return c;
2832 }
2833 
2834 static struct event_constraint *
2835 intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
2836 			   int idx, struct event_constraint *c)
2837 {
2838 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2839 	struct intel_excl_states *xlo;
2840 	int tid = cpuc->excl_thread_id;
2841 	int is_excl, i;
2842 
2843 	/*
2844 	 * validating a group does not require
2845 	 * enforcing cross-thread  exclusion
2846 	 */
2847 	if (cpuc->is_fake || !is_ht_workaround_enabled())
2848 		return c;
2849 
2850 	/*
2851 	 * no exclusion needed
2852 	 */
2853 	if (WARN_ON_ONCE(!excl_cntrs))
2854 		return c;
2855 
2856 	/*
2857 	 * because we modify the constraint, we need
2858 	 * to make a copy. Static constraints come
2859 	 * from static const tables.
2860 	 *
2861 	 * only needed when constraint has not yet
2862 	 * been cloned (marked dynamic)
2863 	 */
2864 	c = dyn_constraint(cpuc, c, idx);
2865 
2866 	/*
2867 	 * From here on, the constraint is dynamic.
2868 	 * Either it was just allocated above, or it
2869 	 * was allocated during a earlier invocation
2870 	 * of this function
2871 	 */
2872 
2873 	/*
2874 	 * state of sibling HT
2875 	 */
2876 	xlo = &excl_cntrs->states[tid ^ 1];
2877 
2878 	/*
2879 	 * event requires exclusive counter access
2880 	 * across HT threads
2881 	 */
2882 	is_excl = c->flags & PERF_X86_EVENT_EXCL;
2883 	if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) {
2884 		event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT;
2885 		if (!cpuc->n_excl++)
2886 			WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1);
2887 	}
2888 
2889 	/*
2890 	 * Modify static constraint with current dynamic
2891 	 * state of thread
2892 	 *
2893 	 * EXCLUSIVE: sibling counter measuring exclusive event
2894 	 * SHARED   : sibling counter measuring non-exclusive event
2895 	 * UNUSED   : sibling counter unused
2896 	 */
2897 	for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) {
2898 		/*
2899 		 * exclusive event in sibling counter
2900 		 * our corresponding counter cannot be used
2901 		 * regardless of our event
2902 		 */
2903 		if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE)
2904 			__clear_bit(i, c->idxmsk);
2905 		/*
2906 		 * if measuring an exclusive event, sibling
2907 		 * measuring non-exclusive, then counter cannot
2908 		 * be used
2909 		 */
2910 		if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED)
2911 			__clear_bit(i, c->idxmsk);
2912 	}
2913 
2914 	/*
2915 	 * recompute actual bit weight for scheduling algorithm
2916 	 */
2917 	c->weight = hweight64(c->idxmsk64);
2918 
2919 	/*
2920 	 * if we return an empty mask, then switch
2921 	 * back to static empty constraint to avoid
2922 	 * the cost of freeing later on
2923 	 */
2924 	if (c->weight == 0)
2925 		c = &emptyconstraint;
2926 
2927 	return c;
2928 }
2929 
2930 static struct event_constraint *
2931 intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2932 			    struct perf_event *event)
2933 {
2934 	struct event_constraint *c1 = NULL;
2935 	struct event_constraint *c2;
2936 
2937 	if (idx >= 0) /* fake does < 0 */
2938 		c1 = cpuc->event_constraint[idx];
2939 
2940 	/*
2941 	 * first time only
2942 	 * - static constraint: no change across incremental scheduling calls
2943 	 * - dynamic constraint: handled by intel_get_excl_constraints()
2944 	 */
2945 	c2 = __intel_get_event_constraints(cpuc, idx, event);
2946 	if (c1 && (c1->flags & PERF_X86_EVENT_DYNAMIC)) {
2947 		bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
2948 		c1->weight = c2->weight;
2949 		c2 = c1;
2950 	}
2951 
2952 	if (cpuc->excl_cntrs)
2953 		return intel_get_excl_constraints(cpuc, event, idx, c2);
2954 
2955 	return c2;
2956 }
2957 
2958 static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
2959 		struct perf_event *event)
2960 {
2961 	struct hw_perf_event *hwc = &event->hw;
2962 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2963 	int tid = cpuc->excl_thread_id;
2964 	struct intel_excl_states *xl;
2965 
2966 	/*
2967 	 * nothing needed if in group validation mode
2968 	 */
2969 	if (cpuc->is_fake)
2970 		return;
2971 
2972 	if (WARN_ON_ONCE(!excl_cntrs))
2973 		return;
2974 
2975 	if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) {
2976 		hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT;
2977 		if (!--cpuc->n_excl)
2978 			WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0);
2979 	}
2980 
2981 	/*
2982 	 * If event was actually assigned, then mark the counter state as
2983 	 * unused now.
2984 	 */
2985 	if (hwc->idx >= 0) {
2986 		xl = &excl_cntrs->states[tid];
2987 
2988 		/*
2989 		 * put_constraint may be called from x86_schedule_events()
2990 		 * which already has the lock held so here make locking
2991 		 * conditional.
2992 		 */
2993 		if (!xl->sched_started)
2994 			raw_spin_lock(&excl_cntrs->lock);
2995 
2996 		xl->state[hwc->idx] = INTEL_EXCL_UNUSED;
2997 
2998 		if (!xl->sched_started)
2999 			raw_spin_unlock(&excl_cntrs->lock);
3000 	}
3001 }
3002 
3003 static void
3004 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
3005 					struct perf_event *event)
3006 {
3007 	struct hw_perf_event_extra *reg;
3008 
3009 	reg = &event->hw.extra_reg;
3010 	if (reg->idx != EXTRA_REG_NONE)
3011 		__intel_shared_reg_put_constraints(cpuc, reg);
3012 
3013 	reg = &event->hw.branch_reg;
3014 	if (reg->idx != EXTRA_REG_NONE)
3015 		__intel_shared_reg_put_constraints(cpuc, reg);
3016 }
3017 
3018 static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
3019 					struct perf_event *event)
3020 {
3021 	intel_put_shared_regs_event_constraints(cpuc, event);
3022 
3023 	/*
3024 	 * is PMU has exclusive counter restrictions, then
3025 	 * all events are subject to and must call the
3026 	 * put_excl_constraints() routine
3027 	 */
3028 	if (cpuc->excl_cntrs)
3029 		intel_put_excl_constraints(cpuc, event);
3030 }
3031 
3032 static void intel_pebs_aliases_core2(struct perf_event *event)
3033 {
3034 	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3035 		/*
3036 		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3037 		 * (0x003c) so that we can use it with PEBS.
3038 		 *
3039 		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3040 		 * PEBS capable. However we can use INST_RETIRED.ANY_P
3041 		 * (0x00c0), which is a PEBS capable event, to get the same
3042 		 * count.
3043 		 *
3044 		 * INST_RETIRED.ANY_P counts the number of cycles that retires
3045 		 * CNTMASK instructions. By setting CNTMASK to a value (16)
3046 		 * larger than the maximum number of instructions that can be
3047 		 * retired per cycle (4) and then inverting the condition, we
3048 		 * count all cycles that retire 16 or less instructions, which
3049 		 * is every cycle.
3050 		 *
3051 		 * Thereby we gain a PEBS capable cycle counter.
3052 		 */
3053 		u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
3054 
3055 		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3056 		event->hw.config = alt_config;
3057 	}
3058 }
3059 
3060 static void intel_pebs_aliases_snb(struct perf_event *event)
3061 {
3062 	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3063 		/*
3064 		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3065 		 * (0x003c) so that we can use it with PEBS.
3066 		 *
3067 		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3068 		 * PEBS capable. However we can use UOPS_RETIRED.ALL
3069 		 * (0x01c2), which is a PEBS capable event, to get the same
3070 		 * count.
3071 		 *
3072 		 * UOPS_RETIRED.ALL counts the number of cycles that retires
3073 		 * CNTMASK micro-ops. By setting CNTMASK to a value (16)
3074 		 * larger than the maximum number of micro-ops that can be
3075 		 * retired per cycle (4) and then inverting the condition, we
3076 		 * count all cycles that retire 16 or less micro-ops, which
3077 		 * is every cycle.
3078 		 *
3079 		 * Thereby we gain a PEBS capable cycle counter.
3080 		 */
3081 		u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
3082 
3083 		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3084 		event->hw.config = alt_config;
3085 	}
3086 }
3087 
3088 static void intel_pebs_aliases_precdist(struct perf_event *event)
3089 {
3090 	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3091 		/*
3092 		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3093 		 * (0x003c) so that we can use it with PEBS.
3094 		 *
3095 		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3096 		 * PEBS capable. However we can use INST_RETIRED.PREC_DIST
3097 		 * (0x01c0), which is a PEBS capable event, to get the same
3098 		 * count.
3099 		 *
3100 		 * The PREC_DIST event has special support to minimize sample
3101 		 * shadowing effects. One drawback is that it can be
3102 		 * only programmed on counter 1, but that seems like an
3103 		 * acceptable trade off.
3104 		 */
3105 		u64 alt_config = X86_CONFIG(.event=0xc0, .umask=0x01, .inv=1, .cmask=16);
3106 
3107 		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3108 		event->hw.config = alt_config;
3109 	}
3110 }
3111 
3112 static void intel_pebs_aliases_ivb(struct perf_event *event)
3113 {
3114 	if (event->attr.precise_ip < 3)
3115 		return intel_pebs_aliases_snb(event);
3116 	return intel_pebs_aliases_precdist(event);
3117 }
3118 
3119 static void intel_pebs_aliases_skl(struct perf_event *event)
3120 {
3121 	if (event->attr.precise_ip < 3)
3122 		return intel_pebs_aliases_core2(event);
3123 	return intel_pebs_aliases_precdist(event);
3124 }
3125 
3126 static unsigned long intel_pmu_large_pebs_flags(struct perf_event *event)
3127 {
3128 	unsigned long flags = x86_pmu.large_pebs_flags;
3129 
3130 	if (event->attr.use_clockid)
3131 		flags &= ~PERF_SAMPLE_TIME;
3132 	if (!event->attr.exclude_kernel)
3133 		flags &= ~PERF_SAMPLE_REGS_USER;
3134 	if (event->attr.sample_regs_user & ~PEBS_REGS)
3135 		flags &= ~(PERF_SAMPLE_REGS_USER | PERF_SAMPLE_REGS_INTR);
3136 	return flags;
3137 }
3138 
3139 static int intel_pmu_bts_config(struct perf_event *event)
3140 {
3141 	struct perf_event_attr *attr = &event->attr;
3142 
3143 	if (unlikely(intel_pmu_has_bts(event))) {
3144 		/* BTS is not supported by this architecture. */
3145 		if (!x86_pmu.bts_active)
3146 			return -EOPNOTSUPP;
3147 
3148 		/* BTS is currently only allowed for user-mode. */
3149 		if (!attr->exclude_kernel)
3150 			return -EOPNOTSUPP;
3151 
3152 		/* BTS is not allowed for precise events. */
3153 		if (attr->precise_ip)
3154 			return -EOPNOTSUPP;
3155 
3156 		/* disallow bts if conflicting events are present */
3157 		if (x86_add_exclusive(x86_lbr_exclusive_lbr))
3158 			return -EBUSY;
3159 
3160 		event->destroy = hw_perf_lbr_event_destroy;
3161 	}
3162 
3163 	return 0;
3164 }
3165 
3166 static int core_pmu_hw_config(struct perf_event *event)
3167 {
3168 	int ret = x86_pmu_hw_config(event);
3169 
3170 	if (ret)
3171 		return ret;
3172 
3173 	return intel_pmu_bts_config(event);
3174 }
3175 
3176 static int intel_pmu_hw_config(struct perf_event *event)
3177 {
3178 	int ret = x86_pmu_hw_config(event);
3179 
3180 	if (ret)
3181 		return ret;
3182 
3183 	ret = intel_pmu_bts_config(event);
3184 	if (ret)
3185 		return ret;
3186 
3187 	if (event->attr.precise_ip) {
3188 		if (!event->attr.freq) {
3189 			event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD;
3190 			if (!(event->attr.sample_type &
3191 			      ~intel_pmu_large_pebs_flags(event)))
3192 				event->hw.flags |= PERF_X86_EVENT_LARGE_PEBS;
3193 		}
3194 		if (x86_pmu.pebs_aliases)
3195 			x86_pmu.pebs_aliases(event);
3196 
3197 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3198 			event->attr.sample_type |= __PERF_SAMPLE_CALLCHAIN_EARLY;
3199 	}
3200 
3201 	if (needs_branch_stack(event)) {
3202 		ret = intel_pmu_setup_lbr_filter(event);
3203 		if (ret)
3204 			return ret;
3205 
3206 		/*
3207 		 * BTS is set up earlier in this path, so don't account twice
3208 		 */
3209 		if (!unlikely(intel_pmu_has_bts(event))) {
3210 			/* disallow lbr if conflicting events are present */
3211 			if (x86_add_exclusive(x86_lbr_exclusive_lbr))
3212 				return -EBUSY;
3213 
3214 			event->destroy = hw_perf_lbr_event_destroy;
3215 		}
3216 	}
3217 
3218 	if (event->attr.type != PERF_TYPE_RAW)
3219 		return 0;
3220 
3221 	if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
3222 		return 0;
3223 
3224 	if (x86_pmu.version < 3)
3225 		return -EINVAL;
3226 
3227 	if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3228 		return -EACCES;
3229 
3230 	event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
3231 
3232 	return 0;
3233 }
3234 
3235 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
3236 {
3237 	if (x86_pmu.guest_get_msrs)
3238 		return x86_pmu.guest_get_msrs(nr);
3239 	*nr = 0;
3240 	return NULL;
3241 }
3242 EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
3243 
3244 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
3245 {
3246 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3247 	struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
3248 
3249 	arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
3250 	arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
3251 	arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;
3252 	if (x86_pmu.flags & PMU_FL_PEBS_ALL)
3253 		arr[0].guest &= ~cpuc->pebs_enabled;
3254 	else
3255 		arr[0].guest &= ~(cpuc->pebs_enabled & PEBS_COUNTER_MASK);
3256 	*nr = 1;
3257 
3258 	if (x86_pmu.pebs && x86_pmu.pebs_no_isolation) {
3259 		/*
3260 		 * If PMU counter has PEBS enabled it is not enough to
3261 		 * disable counter on a guest entry since PEBS memory
3262 		 * write can overshoot guest entry and corrupt guest
3263 		 * memory. Disabling PEBS solves the problem.
3264 		 *
3265 		 * Don't do this if the CPU already enforces it.
3266 		 */
3267 		arr[1].msr = MSR_IA32_PEBS_ENABLE;
3268 		arr[1].host = cpuc->pebs_enabled;
3269 		arr[1].guest = 0;
3270 		*nr = 2;
3271 	}
3272 
3273 	return arr;
3274 }
3275 
3276 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
3277 {
3278 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3279 	struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
3280 	int idx;
3281 
3282 	for (idx = 0; idx < x86_pmu.num_counters; idx++)  {
3283 		struct perf_event *event = cpuc->events[idx];
3284 
3285 		arr[idx].msr = x86_pmu_config_addr(idx);
3286 		arr[idx].host = arr[idx].guest = 0;
3287 
3288 		if (!test_bit(idx, cpuc->active_mask))
3289 			continue;
3290 
3291 		arr[idx].host = arr[idx].guest =
3292 			event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
3293 
3294 		if (event->attr.exclude_host)
3295 			arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
3296 		else if (event->attr.exclude_guest)
3297 			arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
3298 	}
3299 
3300 	*nr = x86_pmu.num_counters;
3301 	return arr;
3302 }
3303 
3304 static void core_pmu_enable_event(struct perf_event *event)
3305 {
3306 	if (!event->attr.exclude_host)
3307 		x86_pmu_enable_event(event);
3308 }
3309 
3310 static void core_pmu_enable_all(int added)
3311 {
3312 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3313 	int idx;
3314 
3315 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
3316 		struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
3317 
3318 		if (!test_bit(idx, cpuc->active_mask) ||
3319 				cpuc->events[idx]->attr.exclude_host)
3320 			continue;
3321 
3322 		__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
3323 	}
3324 }
3325 
3326 static int hsw_hw_config(struct perf_event *event)
3327 {
3328 	int ret = intel_pmu_hw_config(event);
3329 
3330 	if (ret)
3331 		return ret;
3332 	if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
3333 		return 0;
3334 	event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
3335 
3336 	/*
3337 	 * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
3338 	 * PEBS or in ANY thread mode. Since the results are non-sensical forbid
3339 	 * this combination.
3340 	 */
3341 	if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
3342 	     ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
3343 	      event->attr.precise_ip > 0))
3344 		return -EOPNOTSUPP;
3345 
3346 	if (event_is_checkpointed(event)) {
3347 		/*
3348 		 * Sampling of checkpointed events can cause situations where
3349 		 * the CPU constantly aborts because of a overflow, which is
3350 		 * then checkpointed back and ignored. Forbid checkpointing
3351 		 * for sampling.
3352 		 *
3353 		 * But still allow a long sampling period, so that perf stat
3354 		 * from KVM works.
3355 		 */
3356 		if (event->attr.sample_period > 0 &&
3357 		    event->attr.sample_period < 0x7fffffff)
3358 			return -EOPNOTSUPP;
3359 	}
3360 	return 0;
3361 }
3362 
3363 static struct event_constraint counter0_constraint =
3364 			INTEL_ALL_EVENT_CONSTRAINT(0, 0x1);
3365 
3366 static struct event_constraint counter2_constraint =
3367 			EVENT_CONSTRAINT(0, 0x4, 0);
3368 
3369 static struct event_constraint *
3370 hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3371 			  struct perf_event *event)
3372 {
3373 	struct event_constraint *c;
3374 
3375 	c = intel_get_event_constraints(cpuc, idx, event);
3376 
3377 	/* Handle special quirk on in_tx_checkpointed only in counter 2 */
3378 	if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
3379 		if (c->idxmsk64 & (1U << 2))
3380 			return &counter2_constraint;
3381 		return &emptyconstraint;
3382 	}
3383 
3384 	return c;
3385 }
3386 
3387 static struct event_constraint *
3388 glp_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3389 			  struct perf_event *event)
3390 {
3391 	struct event_constraint *c;
3392 
3393 	/* :ppp means to do reduced skid PEBS which is PMC0 only. */
3394 	if (event->attr.precise_ip == 3)
3395 		return &counter0_constraint;
3396 
3397 	c = intel_get_event_constraints(cpuc, idx, event);
3398 
3399 	return c;
3400 }
3401 
3402 static bool allow_tsx_force_abort = true;
3403 
3404 static struct event_constraint *
3405 tfa_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3406 			  struct perf_event *event)
3407 {
3408 	struct event_constraint *c = hsw_get_event_constraints(cpuc, idx, event);
3409 
3410 	/*
3411 	 * Without TFA we must not use PMC3.
3412 	 */
3413 	if (!allow_tsx_force_abort && test_bit(3, c->idxmsk) && idx >= 0) {
3414 		c = dyn_constraint(cpuc, c, idx);
3415 		c->idxmsk64 &= ~(1ULL << 3);
3416 		c->weight--;
3417 	}
3418 
3419 	return c;
3420 }
3421 
3422 /*
3423  * Broadwell:
3424  *
3425  * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
3426  * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
3427  * the two to enforce a minimum period of 128 (the smallest value that has bits
3428  * 0-5 cleared and >= 100).
3429  *
3430  * Because of how the code in x86_perf_event_set_period() works, the truncation
3431  * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
3432  * to make up for the 'lost' events due to carrying the 'error' in period_left.
3433  *
3434  * Therefore the effective (average) period matches the requested period,
3435  * despite coarser hardware granularity.
3436  */
3437 static u64 bdw_limit_period(struct perf_event *event, u64 left)
3438 {
3439 	if ((event->hw.config & INTEL_ARCH_EVENT_MASK) ==
3440 			X86_CONFIG(.event=0xc0, .umask=0x01)) {
3441 		if (left < 128)
3442 			left = 128;
3443 		left &= ~0x3fULL;
3444 	}
3445 	return left;
3446 }
3447 
3448 PMU_FORMAT_ATTR(event,	"config:0-7"	);
3449 PMU_FORMAT_ATTR(umask,	"config:8-15"	);
3450 PMU_FORMAT_ATTR(edge,	"config:18"	);
3451 PMU_FORMAT_ATTR(pc,	"config:19"	);
3452 PMU_FORMAT_ATTR(any,	"config:21"	); /* v3 + */
3453 PMU_FORMAT_ATTR(inv,	"config:23"	);
3454 PMU_FORMAT_ATTR(cmask,	"config:24-31"	);
3455 PMU_FORMAT_ATTR(in_tx,  "config:32");
3456 PMU_FORMAT_ATTR(in_tx_cp, "config:33");
3457 
3458 static struct attribute *intel_arch_formats_attr[] = {
3459 	&format_attr_event.attr,
3460 	&format_attr_umask.attr,
3461 	&format_attr_edge.attr,
3462 	&format_attr_pc.attr,
3463 	&format_attr_inv.attr,
3464 	&format_attr_cmask.attr,
3465 	NULL,
3466 };
3467 
3468 ssize_t intel_event_sysfs_show(char *page, u64 config)
3469 {
3470 	u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
3471 
3472 	return x86_event_sysfs_show(page, config, event);
3473 }
3474 
3475 static struct intel_shared_regs *allocate_shared_regs(int cpu)
3476 {
3477 	struct intel_shared_regs *regs;
3478 	int i;
3479 
3480 	regs = kzalloc_node(sizeof(struct intel_shared_regs),
3481 			    GFP_KERNEL, cpu_to_node(cpu));
3482 	if (regs) {
3483 		/*
3484 		 * initialize the locks to keep lockdep happy
3485 		 */
3486 		for (i = 0; i < EXTRA_REG_MAX; i++)
3487 			raw_spin_lock_init(&regs->regs[i].lock);
3488 
3489 		regs->core_id = -1;
3490 	}
3491 	return regs;
3492 }
3493 
3494 static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
3495 {
3496 	struct intel_excl_cntrs *c;
3497 
3498 	c = kzalloc_node(sizeof(struct intel_excl_cntrs),
3499 			 GFP_KERNEL, cpu_to_node(cpu));
3500 	if (c) {
3501 		raw_spin_lock_init(&c->lock);
3502 		c->core_id = -1;
3503 	}
3504 	return c;
3505 }
3506 
3507 
3508 int intel_cpuc_prepare(struct cpu_hw_events *cpuc, int cpu)
3509 {
3510 	if (x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
3511 		cpuc->shared_regs = allocate_shared_regs(cpu);
3512 		if (!cpuc->shared_regs)
3513 			goto err;
3514 	}
3515 
3516 	if (x86_pmu.flags & (PMU_FL_EXCL_CNTRS | PMU_FL_TFA)) {
3517 		size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);
3518 
3519 		cpuc->constraint_list = kzalloc_node(sz, GFP_KERNEL, cpu_to_node(cpu));
3520 		if (!cpuc->constraint_list)
3521 			goto err_shared_regs;
3522 	}
3523 
3524 	if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
3525 		cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
3526 		if (!cpuc->excl_cntrs)
3527 			goto err_constraint_list;
3528 
3529 		cpuc->excl_thread_id = 0;
3530 	}
3531 
3532 	return 0;
3533 
3534 err_constraint_list:
3535 	kfree(cpuc->constraint_list);
3536 	cpuc->constraint_list = NULL;
3537 
3538 err_shared_regs:
3539 	kfree(cpuc->shared_regs);
3540 	cpuc->shared_regs = NULL;
3541 
3542 err:
3543 	return -ENOMEM;
3544 }
3545 
3546 static int intel_pmu_cpu_prepare(int cpu)
3547 {
3548 	return intel_cpuc_prepare(&per_cpu(cpu_hw_events, cpu), cpu);
3549 }
3550 
3551 static void flip_smm_bit(void *data)
3552 {
3553 	unsigned long set = *(unsigned long *)data;
3554 
3555 	if (set > 0) {
3556 		msr_set_bit(MSR_IA32_DEBUGCTLMSR,
3557 			    DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
3558 	} else {
3559 		msr_clear_bit(MSR_IA32_DEBUGCTLMSR,
3560 			      DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
3561 	}
3562 }
3563 
3564 static void intel_pmu_cpu_starting(int cpu)
3565 {
3566 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
3567 	int core_id = topology_core_id(cpu);
3568 	int i;
3569 
3570 	init_debug_store_on_cpu(cpu);
3571 	/*
3572 	 * Deal with CPUs that don't clear their LBRs on power-up.
3573 	 */
3574 	intel_pmu_lbr_reset();
3575 
3576 	cpuc->lbr_sel = NULL;
3577 
3578 	if (x86_pmu.version > 1)
3579 		flip_smm_bit(&x86_pmu.attr_freeze_on_smi);
3580 
3581 	if (x86_pmu.counter_freezing)
3582 		enable_counter_freeze();
3583 
3584 	if (!cpuc->shared_regs)
3585 		return;
3586 
3587 	if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
3588 		for_each_cpu(i, topology_sibling_cpumask(cpu)) {
3589 			struct intel_shared_regs *pc;
3590 
3591 			pc = per_cpu(cpu_hw_events, i).shared_regs;
3592 			if (pc && pc->core_id == core_id) {
3593 				cpuc->kfree_on_online[0] = cpuc->shared_regs;
3594 				cpuc->shared_regs = pc;
3595 				break;
3596 			}
3597 		}
3598 		cpuc->shared_regs->core_id = core_id;
3599 		cpuc->shared_regs->refcnt++;
3600 	}
3601 
3602 	if (x86_pmu.lbr_sel_map)
3603 		cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
3604 
3605 	if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
3606 		for_each_cpu(i, topology_sibling_cpumask(cpu)) {
3607 			struct cpu_hw_events *sibling;
3608 			struct intel_excl_cntrs *c;
3609 
3610 			sibling = &per_cpu(cpu_hw_events, i);
3611 			c = sibling->excl_cntrs;
3612 			if (c && c->core_id == core_id) {
3613 				cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
3614 				cpuc->excl_cntrs = c;
3615 				if (!sibling->excl_thread_id)
3616 					cpuc->excl_thread_id = 1;
3617 				break;
3618 			}
3619 		}
3620 		cpuc->excl_cntrs->core_id = core_id;
3621 		cpuc->excl_cntrs->refcnt++;
3622 	}
3623 }
3624 
3625 static void free_excl_cntrs(struct cpu_hw_events *cpuc)
3626 {
3627 	struct intel_excl_cntrs *c;
3628 
3629 	c = cpuc->excl_cntrs;
3630 	if (c) {
3631 		if (c->core_id == -1 || --c->refcnt == 0)
3632 			kfree(c);
3633 		cpuc->excl_cntrs = NULL;
3634 	}
3635 
3636 	kfree(cpuc->constraint_list);
3637 	cpuc->constraint_list = NULL;
3638 }
3639 
3640 static void intel_pmu_cpu_dying(int cpu)
3641 {
3642 	fini_debug_store_on_cpu(cpu);
3643 
3644 	if (x86_pmu.counter_freezing)
3645 		disable_counter_freeze();
3646 }
3647 
3648 void intel_cpuc_finish(struct cpu_hw_events *cpuc)
3649 {
3650 	struct intel_shared_regs *pc;
3651 
3652 	pc = cpuc->shared_regs;
3653 	if (pc) {
3654 		if (pc->core_id == -1 || --pc->refcnt == 0)
3655 			kfree(pc);
3656 		cpuc->shared_regs = NULL;
3657 	}
3658 
3659 	free_excl_cntrs(cpuc);
3660 }
3661 
3662 static void intel_pmu_cpu_dead(int cpu)
3663 {
3664 	intel_cpuc_finish(&per_cpu(cpu_hw_events, cpu));
3665 }
3666 
3667 static void intel_pmu_sched_task(struct perf_event_context *ctx,
3668 				 bool sched_in)
3669 {
3670 	intel_pmu_pebs_sched_task(ctx, sched_in);
3671 	intel_pmu_lbr_sched_task(ctx, sched_in);
3672 }
3673 
3674 static int intel_pmu_check_period(struct perf_event *event, u64 value)
3675 {
3676 	return intel_pmu_has_bts_period(event, value) ? -EINVAL : 0;
3677 }
3678 
3679 PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
3680 
3681 PMU_FORMAT_ATTR(ldlat, "config1:0-15");
3682 
3683 PMU_FORMAT_ATTR(frontend, "config1:0-23");
3684 
3685 static struct attribute *intel_arch3_formats_attr[] = {
3686 	&format_attr_event.attr,
3687 	&format_attr_umask.attr,
3688 	&format_attr_edge.attr,
3689 	&format_attr_pc.attr,
3690 	&format_attr_any.attr,
3691 	&format_attr_inv.attr,
3692 	&format_attr_cmask.attr,
3693 	NULL,
3694 };
3695 
3696 static struct attribute *hsw_format_attr[] = {
3697 	&format_attr_in_tx.attr,
3698 	&format_attr_in_tx_cp.attr,
3699 	&format_attr_offcore_rsp.attr,
3700 	&format_attr_ldlat.attr,
3701 	NULL
3702 };
3703 
3704 static struct attribute *nhm_format_attr[] = {
3705 	&format_attr_offcore_rsp.attr,
3706 	&format_attr_ldlat.attr,
3707 	NULL
3708 };
3709 
3710 static struct attribute *slm_format_attr[] = {
3711 	&format_attr_offcore_rsp.attr,
3712 	NULL
3713 };
3714 
3715 static struct attribute *skl_format_attr[] = {
3716 	&format_attr_frontend.attr,
3717 	NULL,
3718 };
3719 
3720 static __initconst const struct x86_pmu core_pmu = {
3721 	.name			= "core",
3722 	.handle_irq		= x86_pmu_handle_irq,
3723 	.disable_all		= x86_pmu_disable_all,
3724 	.enable_all		= core_pmu_enable_all,
3725 	.enable			= core_pmu_enable_event,
3726 	.disable		= x86_pmu_disable_event,
3727 	.hw_config		= core_pmu_hw_config,
3728 	.schedule_events	= x86_schedule_events,
3729 	.eventsel		= MSR_ARCH_PERFMON_EVENTSEL0,
3730 	.perfctr		= MSR_ARCH_PERFMON_PERFCTR0,
3731 	.event_map		= intel_pmu_event_map,
3732 	.max_events		= ARRAY_SIZE(intel_perfmon_event_map),
3733 	.apic			= 1,
3734 	.large_pebs_flags	= LARGE_PEBS_FLAGS,
3735 
3736 	/*
3737 	 * Intel PMCs cannot be accessed sanely above 32-bit width,
3738 	 * so we install an artificial 1<<31 period regardless of
3739 	 * the generic event period:
3740 	 */
3741 	.max_period		= (1ULL<<31) - 1,
3742 	.get_event_constraints	= intel_get_event_constraints,
3743 	.put_event_constraints	= intel_put_event_constraints,
3744 	.event_constraints	= intel_core_event_constraints,
3745 	.guest_get_msrs		= core_guest_get_msrs,
3746 	.format_attrs		= intel_arch_formats_attr,
3747 	.events_sysfs_show	= intel_event_sysfs_show,
3748 
3749 	/*
3750 	 * Virtual (or funny metal) CPU can define x86_pmu.extra_regs
3751 	 * together with PMU version 1 and thus be using core_pmu with
3752 	 * shared_regs. We need following callbacks here to allocate
3753 	 * it properly.
3754 	 */
3755 	.cpu_prepare		= intel_pmu_cpu_prepare,
3756 	.cpu_starting		= intel_pmu_cpu_starting,
3757 	.cpu_dying		= intel_pmu_cpu_dying,
3758 	.cpu_dead		= intel_pmu_cpu_dead,
3759 
3760 	.check_period		= intel_pmu_check_period,
3761 };
3762 
3763 static struct attribute *intel_pmu_attrs[];
3764 
3765 static __initconst const struct x86_pmu intel_pmu = {
3766 	.name			= "Intel",
3767 	.handle_irq		= intel_pmu_handle_irq,
3768 	.disable_all		= intel_pmu_disable_all,
3769 	.enable_all		= intel_pmu_enable_all,
3770 	.enable			= intel_pmu_enable_event,
3771 	.disable		= intel_pmu_disable_event,
3772 	.add			= intel_pmu_add_event,
3773 	.del			= intel_pmu_del_event,
3774 	.read			= intel_pmu_read_event,
3775 	.hw_config		= intel_pmu_hw_config,
3776 	.schedule_events	= x86_schedule_events,
3777 	.eventsel		= MSR_ARCH_PERFMON_EVENTSEL0,
3778 	.perfctr		= MSR_ARCH_PERFMON_PERFCTR0,
3779 	.event_map		= intel_pmu_event_map,
3780 	.max_events		= ARRAY_SIZE(intel_perfmon_event_map),
3781 	.apic			= 1,
3782 	.large_pebs_flags	= LARGE_PEBS_FLAGS,
3783 	/*
3784 	 * Intel PMCs cannot be accessed sanely above 32 bit width,
3785 	 * so we install an artificial 1<<31 period regardless of
3786 	 * the generic event period:
3787 	 */
3788 	.max_period		= (1ULL << 31) - 1,
3789 	.get_event_constraints	= intel_get_event_constraints,
3790 	.put_event_constraints	= intel_put_event_constraints,
3791 	.pebs_aliases		= intel_pebs_aliases_core2,
3792 
3793 	.format_attrs		= intel_arch3_formats_attr,
3794 	.events_sysfs_show	= intel_event_sysfs_show,
3795 
3796 	.attrs			= intel_pmu_attrs,
3797 
3798 	.cpu_prepare		= intel_pmu_cpu_prepare,
3799 	.cpu_starting		= intel_pmu_cpu_starting,
3800 	.cpu_dying		= intel_pmu_cpu_dying,
3801 	.cpu_dead		= intel_pmu_cpu_dead,
3802 
3803 	.guest_get_msrs		= intel_guest_get_msrs,
3804 	.sched_task		= intel_pmu_sched_task,
3805 
3806 	.check_period		= intel_pmu_check_period,
3807 };
3808 
3809 static __init void intel_clovertown_quirk(void)
3810 {
3811 	/*
3812 	 * PEBS is unreliable due to:
3813 	 *
3814 	 *   AJ67  - PEBS may experience CPL leaks
3815 	 *   AJ68  - PEBS PMI may be delayed by one event
3816 	 *   AJ69  - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
3817 	 *   AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
3818 	 *
3819 	 * AJ67 could be worked around by restricting the OS/USR flags.
3820 	 * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
3821 	 *
3822 	 * AJ106 could possibly be worked around by not allowing LBR
3823 	 *       usage from PEBS, including the fixup.
3824 	 * AJ68  could possibly be worked around by always programming
3825 	 *	 a pebs_event_reset[0] value and coping with the lost events.
3826 	 *
3827 	 * But taken together it might just make sense to not enable PEBS on
3828 	 * these chips.
3829 	 */
3830 	pr_warn("PEBS disabled due to CPU errata\n");
3831 	x86_pmu.pebs = 0;
3832 	x86_pmu.pebs_constraints = NULL;
3833 }
3834 
3835 static const struct x86_cpu_desc isolation_ucodes[] = {
3836 	INTEL_CPU_DESC(INTEL_FAM6_HASWELL_CORE,		 3, 0x0000001f),
3837 	INTEL_CPU_DESC(INTEL_FAM6_HASWELL_ULT,		 1, 0x0000001e),
3838 	INTEL_CPU_DESC(INTEL_FAM6_HASWELL_GT3E,		 1, 0x00000015),
3839 	INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X,		 2, 0x00000037),
3840 	INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X,		 4, 0x0000000a),
3841 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_CORE,	 4, 0x00000023),
3842 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_GT3E,	 1, 0x00000014),
3843 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_XEON_D,	 2, 0x00000010),
3844 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_XEON_D,	 3, 0x07000009),
3845 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_XEON_D,	 4, 0x0f000009),
3846 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_XEON_D,	 5, 0x0e000002),
3847 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_X,		 2, 0x0b000014),
3848 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,		 3, 0x00000021),
3849 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,		 4, 0x00000000),
3850 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_MOBILE,	 3, 0x0000007c),
3851 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_DESKTOP,	 3, 0x0000007c),
3852 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_DESKTOP,	 9, 0x0000004e),
3853 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_MOBILE,	 9, 0x0000004e),
3854 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_MOBILE,	10, 0x0000004e),
3855 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_MOBILE,	11, 0x0000004e),
3856 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_MOBILE,	12, 0x0000004e),
3857 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_DESKTOP,	10, 0x0000004e),
3858 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_DESKTOP,	11, 0x0000004e),
3859 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_DESKTOP,	12, 0x0000004e),
3860 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_DESKTOP,	13, 0x0000004e),
3861 	{}
3862 };
3863 
3864 static void intel_check_pebs_isolation(void)
3865 {
3866 	x86_pmu.pebs_no_isolation = !x86_cpu_has_min_microcode_rev(isolation_ucodes);
3867 }
3868 
3869 static __init void intel_pebs_isolation_quirk(void)
3870 {
3871 	WARN_ON_ONCE(x86_pmu.check_microcode);
3872 	x86_pmu.check_microcode = intel_check_pebs_isolation;
3873 	intel_check_pebs_isolation();
3874 }
3875 
3876 static const struct x86_cpu_desc pebs_ucodes[] = {
3877 	INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE,		7, 0x00000028),
3878 	INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X,	6, 0x00000618),
3879 	INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X,	7, 0x0000070c),
3880 	{}
3881 };
3882 
3883 static bool intel_snb_pebs_broken(void)
3884 {
3885 	return !x86_cpu_has_min_microcode_rev(pebs_ucodes);
3886 }
3887 
3888 static void intel_snb_check_microcode(void)
3889 {
3890 	if (intel_snb_pebs_broken() == x86_pmu.pebs_broken)
3891 		return;
3892 
3893 	/*
3894 	 * Serialized by the microcode lock..
3895 	 */
3896 	if (x86_pmu.pebs_broken) {
3897 		pr_info("PEBS enabled due to microcode update\n");
3898 		x86_pmu.pebs_broken = 0;
3899 	} else {
3900 		pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
3901 		x86_pmu.pebs_broken = 1;
3902 	}
3903 }
3904 
3905 static bool is_lbr_from(unsigned long msr)
3906 {
3907 	unsigned long lbr_from_nr = x86_pmu.lbr_from + x86_pmu.lbr_nr;
3908 
3909 	return x86_pmu.lbr_from <= msr && msr < lbr_from_nr;
3910 }
3911 
3912 /*
3913  * Under certain circumstances, access certain MSR may cause #GP.
3914  * The function tests if the input MSR can be safely accessed.
3915  */
3916 static bool check_msr(unsigned long msr, u64 mask)
3917 {
3918 	u64 val_old, val_new, val_tmp;
3919 
3920 	/*
3921 	 * Read the current value, change it and read it back to see if it
3922 	 * matches, this is needed to detect certain hardware emulators
3923 	 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
3924 	 */
3925 	if (rdmsrl_safe(msr, &val_old))
3926 		return false;
3927 
3928 	/*
3929 	 * Only change the bits which can be updated by wrmsrl.
3930 	 */
3931 	val_tmp = val_old ^ mask;
3932 
3933 	if (is_lbr_from(msr))
3934 		val_tmp = lbr_from_signext_quirk_wr(val_tmp);
3935 
3936 	if (wrmsrl_safe(msr, val_tmp) ||
3937 	    rdmsrl_safe(msr, &val_new))
3938 		return false;
3939 
3940 	/*
3941 	 * Quirk only affects validation in wrmsr(), so wrmsrl()'s value
3942 	 * should equal rdmsrl()'s even with the quirk.
3943 	 */
3944 	if (val_new != val_tmp)
3945 		return false;
3946 
3947 	if (is_lbr_from(msr))
3948 		val_old = lbr_from_signext_quirk_wr(val_old);
3949 
3950 	/* Here it's sure that the MSR can be safely accessed.
3951 	 * Restore the old value and return.
3952 	 */
3953 	wrmsrl(msr, val_old);
3954 
3955 	return true;
3956 }
3957 
3958 static __init void intel_sandybridge_quirk(void)
3959 {
3960 	x86_pmu.check_microcode = intel_snb_check_microcode;
3961 	cpus_read_lock();
3962 	intel_snb_check_microcode();
3963 	cpus_read_unlock();
3964 }
3965 
3966 static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
3967 	{ PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
3968 	{ PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
3969 	{ PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
3970 	{ PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
3971 	{ PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
3972 	{ PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
3973 	{ PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
3974 };
3975 
3976 static __init void intel_arch_events_quirk(void)
3977 {
3978 	int bit;
3979 
3980 	/* disable event that reported as not presend by cpuid */
3981 	for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
3982 		intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
3983 		pr_warn("CPUID marked event: \'%s\' unavailable\n",
3984 			intel_arch_events_map[bit].name);
3985 	}
3986 }
3987 
3988 static __init void intel_nehalem_quirk(void)
3989 {
3990 	union cpuid10_ebx ebx;
3991 
3992 	ebx.full = x86_pmu.events_maskl;
3993 	if (ebx.split.no_branch_misses_retired) {
3994 		/*
3995 		 * Erratum AAJ80 detected, we work it around by using
3996 		 * the BR_MISP_EXEC.ANY event. This will over-count
3997 		 * branch-misses, but it's still much better than the
3998 		 * architectural event which is often completely bogus:
3999 		 */
4000 		intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
4001 		ebx.split.no_branch_misses_retired = 0;
4002 		x86_pmu.events_maskl = ebx.full;
4003 		pr_info("CPU erratum AAJ80 worked around\n");
4004 	}
4005 }
4006 
4007 static const struct x86_cpu_desc counter_freezing_ucodes[] = {
4008 	INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT,	 2, 0x0000000e),
4009 	INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT,	 9, 0x0000002e),
4010 	INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT,	10, 0x00000008),
4011 	INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT_X,	 1, 0x00000028),
4012 	INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT_PLUS,	 1, 0x00000028),
4013 	INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT_PLUS,	 8, 0x00000006),
4014 	{}
4015 };
4016 
4017 static bool intel_counter_freezing_broken(void)
4018 {
4019 	return !x86_cpu_has_min_microcode_rev(counter_freezing_ucodes);
4020 }
4021 
4022 static __init void intel_counter_freezing_quirk(void)
4023 {
4024 	/* Check if it's already disabled */
4025 	if (disable_counter_freezing)
4026 		return;
4027 
4028 	/*
4029 	 * If the system starts with the wrong ucode, leave the
4030 	 * counter-freezing feature permanently disabled.
4031 	 */
4032 	if (intel_counter_freezing_broken()) {
4033 		pr_info("PMU counter freezing disabled due to CPU errata,"
4034 			"please upgrade microcode\n");
4035 		x86_pmu.counter_freezing = false;
4036 		x86_pmu.handle_irq = intel_pmu_handle_irq;
4037 	}
4038 }
4039 
4040 /*
4041  * enable software workaround for errata:
4042  * SNB: BJ122
4043  * IVB: BV98
4044  * HSW: HSD29
4045  *
4046  * Only needed when HT is enabled. However detecting
4047  * if HT is enabled is difficult (model specific). So instead,
4048  * we enable the workaround in the early boot, and verify if
4049  * it is needed in a later initcall phase once we have valid
4050  * topology information to check if HT is actually enabled
4051  */
4052 static __init void intel_ht_bug(void)
4053 {
4054 	x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED;
4055 
4056 	x86_pmu.start_scheduling = intel_start_scheduling;
4057 	x86_pmu.commit_scheduling = intel_commit_scheduling;
4058 	x86_pmu.stop_scheduling = intel_stop_scheduling;
4059 }
4060 
4061 EVENT_ATTR_STR(mem-loads,	mem_ld_hsw,	"event=0xcd,umask=0x1,ldlat=3");
4062 EVENT_ATTR_STR(mem-stores,	mem_st_hsw,	"event=0xd0,umask=0x82")
4063 
4064 /* Haswell special events */
4065 EVENT_ATTR_STR(tx-start,	tx_start,	"event=0xc9,umask=0x1");
4066 EVENT_ATTR_STR(tx-commit,	tx_commit,	"event=0xc9,umask=0x2");
4067 EVENT_ATTR_STR(tx-abort,	tx_abort,	"event=0xc9,umask=0x4");
4068 EVENT_ATTR_STR(tx-capacity,	tx_capacity,	"event=0x54,umask=0x2");
4069 EVENT_ATTR_STR(tx-conflict,	tx_conflict,	"event=0x54,umask=0x1");
4070 EVENT_ATTR_STR(el-start,	el_start,	"event=0xc8,umask=0x1");
4071 EVENT_ATTR_STR(el-commit,	el_commit,	"event=0xc8,umask=0x2");
4072 EVENT_ATTR_STR(el-abort,	el_abort,	"event=0xc8,umask=0x4");
4073 EVENT_ATTR_STR(el-capacity,	el_capacity,	"event=0x54,umask=0x2");
4074 EVENT_ATTR_STR(el-conflict,	el_conflict,	"event=0x54,umask=0x1");
4075 EVENT_ATTR_STR(cycles-t,	cycles_t,	"event=0x3c,in_tx=1");
4076 EVENT_ATTR_STR(cycles-ct,	cycles_ct,	"event=0x3c,in_tx=1,in_tx_cp=1");
4077 
4078 static struct attribute *hsw_events_attrs[] = {
4079 	EVENT_PTR(td_slots_issued),
4080 	EVENT_PTR(td_slots_retired),
4081 	EVENT_PTR(td_fetch_bubbles),
4082 	EVENT_PTR(td_total_slots),
4083 	EVENT_PTR(td_total_slots_scale),
4084 	EVENT_PTR(td_recovery_bubbles),
4085 	EVENT_PTR(td_recovery_bubbles_scale),
4086 	NULL
4087 };
4088 
4089 static struct attribute *hsw_mem_events_attrs[] = {
4090 	EVENT_PTR(mem_ld_hsw),
4091 	EVENT_PTR(mem_st_hsw),
4092 	NULL,
4093 };
4094 
4095 static struct attribute *hsw_tsx_events_attrs[] = {
4096 	EVENT_PTR(tx_start),
4097 	EVENT_PTR(tx_commit),
4098 	EVENT_PTR(tx_abort),
4099 	EVENT_PTR(tx_capacity),
4100 	EVENT_PTR(tx_conflict),
4101 	EVENT_PTR(el_start),
4102 	EVENT_PTR(el_commit),
4103 	EVENT_PTR(el_abort),
4104 	EVENT_PTR(el_capacity),
4105 	EVENT_PTR(el_conflict),
4106 	EVENT_PTR(cycles_t),
4107 	EVENT_PTR(cycles_ct),
4108 	NULL
4109 };
4110 
4111 static ssize_t freeze_on_smi_show(struct device *cdev,
4112 				  struct device_attribute *attr,
4113 				  char *buf)
4114 {
4115 	return sprintf(buf, "%lu\n", x86_pmu.attr_freeze_on_smi);
4116 }
4117 
4118 static DEFINE_MUTEX(freeze_on_smi_mutex);
4119 
4120 static ssize_t freeze_on_smi_store(struct device *cdev,
4121 				   struct device_attribute *attr,
4122 				   const char *buf, size_t count)
4123 {
4124 	unsigned long val;
4125 	ssize_t ret;
4126 
4127 	ret = kstrtoul(buf, 0, &val);
4128 	if (ret)
4129 		return ret;
4130 
4131 	if (val > 1)
4132 		return -EINVAL;
4133 
4134 	mutex_lock(&freeze_on_smi_mutex);
4135 
4136 	if (x86_pmu.attr_freeze_on_smi == val)
4137 		goto done;
4138 
4139 	x86_pmu.attr_freeze_on_smi = val;
4140 
4141 	get_online_cpus();
4142 	on_each_cpu(flip_smm_bit, &val, 1);
4143 	put_online_cpus();
4144 done:
4145 	mutex_unlock(&freeze_on_smi_mutex);
4146 
4147 	return count;
4148 }
4149 
4150 static DEVICE_ATTR_RW(freeze_on_smi);
4151 
4152 static ssize_t branches_show(struct device *cdev,
4153 			     struct device_attribute *attr,
4154 			     char *buf)
4155 {
4156 	return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu.lbr_nr);
4157 }
4158 
4159 static DEVICE_ATTR_RO(branches);
4160 
4161 static struct attribute *lbr_attrs[] = {
4162 	&dev_attr_branches.attr,
4163 	NULL
4164 };
4165 
4166 static char pmu_name_str[30];
4167 
4168 static ssize_t pmu_name_show(struct device *cdev,
4169 			     struct device_attribute *attr,
4170 			     char *buf)
4171 {
4172 	return snprintf(buf, PAGE_SIZE, "%s\n", pmu_name_str);
4173 }
4174 
4175 static DEVICE_ATTR_RO(pmu_name);
4176 
4177 static struct attribute *intel_pmu_caps_attrs[] = {
4178        &dev_attr_pmu_name.attr,
4179        NULL
4180 };
4181 
4182 static DEVICE_BOOL_ATTR(allow_tsx_force_abort, 0644, allow_tsx_force_abort);
4183 
4184 static struct attribute *intel_pmu_attrs[] = {
4185 	&dev_attr_freeze_on_smi.attr,
4186 	NULL, /* &dev_attr_allow_tsx_force_abort.attr.attr */
4187 	NULL,
4188 };
4189 
4190 static __init struct attribute **
4191 get_events_attrs(struct attribute **base,
4192 		 struct attribute **mem,
4193 		 struct attribute **tsx)
4194 {
4195 	struct attribute **attrs = base;
4196 	struct attribute **old;
4197 
4198 	if (mem && x86_pmu.pebs)
4199 		attrs = merge_attr(attrs, mem);
4200 
4201 	if (tsx && boot_cpu_has(X86_FEATURE_RTM)) {
4202 		old = attrs;
4203 		attrs = merge_attr(attrs, tsx);
4204 		if (old != base)
4205 			kfree(old);
4206 	}
4207 
4208 	return attrs;
4209 }
4210 
4211 __init int intel_pmu_init(void)
4212 {
4213 	struct attribute **extra_attr = NULL;
4214 	struct attribute **mem_attr = NULL;
4215 	struct attribute **tsx_attr = NULL;
4216 	struct attribute **to_free = NULL;
4217 	union cpuid10_edx edx;
4218 	union cpuid10_eax eax;
4219 	union cpuid10_ebx ebx;
4220 	struct event_constraint *c;
4221 	unsigned int unused;
4222 	struct extra_reg *er;
4223 	int version, i;
4224 	char *name;
4225 
4226 	if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
4227 		switch (boot_cpu_data.x86) {
4228 		case 0x6:
4229 			return p6_pmu_init();
4230 		case 0xb:
4231 			return knc_pmu_init();
4232 		case 0xf:
4233 			return p4_pmu_init();
4234 		}
4235 		return -ENODEV;
4236 	}
4237 
4238 	/*
4239 	 * Check whether the Architectural PerfMon supports
4240 	 * Branch Misses Retired hw_event or not.
4241 	 */
4242 	cpuid(10, &eax.full, &ebx.full, &unused, &edx.full);
4243 	if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
4244 		return -ENODEV;
4245 
4246 	version = eax.split.version_id;
4247 	if (version < 2)
4248 		x86_pmu = core_pmu;
4249 	else
4250 		x86_pmu = intel_pmu;
4251 
4252 	x86_pmu.version			= version;
4253 	x86_pmu.num_counters		= eax.split.num_counters;
4254 	x86_pmu.cntval_bits		= eax.split.bit_width;
4255 	x86_pmu.cntval_mask		= (1ULL << eax.split.bit_width) - 1;
4256 
4257 	x86_pmu.events_maskl		= ebx.full;
4258 	x86_pmu.events_mask_len		= eax.split.mask_length;
4259 
4260 	x86_pmu.max_pebs_events		= min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
4261 
4262 	/*
4263 	 * Quirk: v2 perfmon does not report fixed-purpose events, so
4264 	 * assume at least 3 events, when not running in a hypervisor:
4265 	 */
4266 	if (version > 1) {
4267 		int assume = 3 * !boot_cpu_has(X86_FEATURE_HYPERVISOR);
4268 
4269 		x86_pmu.num_counters_fixed =
4270 			max((int)edx.split.num_counters_fixed, assume);
4271 	}
4272 
4273 	if (version >= 4)
4274 		x86_pmu.counter_freezing = !disable_counter_freezing;
4275 
4276 	if (boot_cpu_has(X86_FEATURE_PDCM)) {
4277 		u64 capabilities;
4278 
4279 		rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
4280 		x86_pmu.intel_cap.capabilities = capabilities;
4281 	}
4282 
4283 	intel_ds_init();
4284 
4285 	x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
4286 
4287 	/*
4288 	 * Install the hw-cache-events table:
4289 	 */
4290 	switch (boot_cpu_data.x86_model) {
4291 	case INTEL_FAM6_CORE_YONAH:
4292 		pr_cont("Core events, ");
4293 		name = "core";
4294 		break;
4295 
4296 	case INTEL_FAM6_CORE2_MEROM:
4297 		x86_add_quirk(intel_clovertown_quirk);
4298 		/* fall through */
4299 
4300 	case INTEL_FAM6_CORE2_MEROM_L:
4301 	case INTEL_FAM6_CORE2_PENRYN:
4302 	case INTEL_FAM6_CORE2_DUNNINGTON:
4303 		memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
4304 		       sizeof(hw_cache_event_ids));
4305 
4306 		intel_pmu_lbr_init_core();
4307 
4308 		x86_pmu.event_constraints = intel_core2_event_constraints;
4309 		x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
4310 		pr_cont("Core2 events, ");
4311 		name = "core2";
4312 		break;
4313 
4314 	case INTEL_FAM6_NEHALEM:
4315 	case INTEL_FAM6_NEHALEM_EP:
4316 	case INTEL_FAM6_NEHALEM_EX:
4317 		memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
4318 		       sizeof(hw_cache_event_ids));
4319 		memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
4320 		       sizeof(hw_cache_extra_regs));
4321 
4322 		intel_pmu_lbr_init_nhm();
4323 
4324 		x86_pmu.event_constraints = intel_nehalem_event_constraints;
4325 		x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
4326 		x86_pmu.enable_all = intel_pmu_nhm_enable_all;
4327 		x86_pmu.extra_regs = intel_nehalem_extra_regs;
4328 
4329 		mem_attr = nhm_mem_events_attrs;
4330 
4331 		/* UOPS_ISSUED.STALLED_CYCLES */
4332 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
4333 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
4334 		/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
4335 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
4336 			X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
4337 
4338 		intel_pmu_pebs_data_source_nhm();
4339 		x86_add_quirk(intel_nehalem_quirk);
4340 		x86_pmu.pebs_no_tlb = 1;
4341 		extra_attr = nhm_format_attr;
4342 
4343 		pr_cont("Nehalem events, ");
4344 		name = "nehalem";
4345 		break;
4346 
4347 	case INTEL_FAM6_ATOM_BONNELL:
4348 	case INTEL_FAM6_ATOM_BONNELL_MID:
4349 	case INTEL_FAM6_ATOM_SALTWELL:
4350 	case INTEL_FAM6_ATOM_SALTWELL_MID:
4351 	case INTEL_FAM6_ATOM_SALTWELL_TABLET:
4352 		memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
4353 		       sizeof(hw_cache_event_ids));
4354 
4355 		intel_pmu_lbr_init_atom();
4356 
4357 		x86_pmu.event_constraints = intel_gen_event_constraints;
4358 		x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
4359 		x86_pmu.pebs_aliases = intel_pebs_aliases_core2;
4360 		pr_cont("Atom events, ");
4361 		name = "bonnell";
4362 		break;
4363 
4364 	case INTEL_FAM6_ATOM_SILVERMONT:
4365 	case INTEL_FAM6_ATOM_SILVERMONT_X:
4366 	case INTEL_FAM6_ATOM_SILVERMONT_MID:
4367 	case INTEL_FAM6_ATOM_AIRMONT:
4368 	case INTEL_FAM6_ATOM_AIRMONT_MID:
4369 		memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
4370 			sizeof(hw_cache_event_ids));
4371 		memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
4372 		       sizeof(hw_cache_extra_regs));
4373 
4374 		intel_pmu_lbr_init_slm();
4375 
4376 		x86_pmu.event_constraints = intel_slm_event_constraints;
4377 		x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
4378 		x86_pmu.extra_regs = intel_slm_extra_regs;
4379 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4380 		x86_pmu.cpu_events = slm_events_attrs;
4381 		extra_attr = slm_format_attr;
4382 		pr_cont("Silvermont events, ");
4383 		name = "silvermont";
4384 		break;
4385 
4386 	case INTEL_FAM6_ATOM_GOLDMONT:
4387 	case INTEL_FAM6_ATOM_GOLDMONT_X:
4388 		x86_add_quirk(intel_counter_freezing_quirk);
4389 		memcpy(hw_cache_event_ids, glm_hw_cache_event_ids,
4390 		       sizeof(hw_cache_event_ids));
4391 		memcpy(hw_cache_extra_regs, glm_hw_cache_extra_regs,
4392 		       sizeof(hw_cache_extra_regs));
4393 
4394 		intel_pmu_lbr_init_skl();
4395 
4396 		x86_pmu.event_constraints = intel_slm_event_constraints;
4397 		x86_pmu.pebs_constraints = intel_glm_pebs_event_constraints;
4398 		x86_pmu.extra_regs = intel_glm_extra_regs;
4399 		/*
4400 		 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
4401 		 * for precise cycles.
4402 		 * :pp is identical to :ppp
4403 		 */
4404 		x86_pmu.pebs_aliases = NULL;
4405 		x86_pmu.pebs_prec_dist = true;
4406 		x86_pmu.lbr_pt_coexist = true;
4407 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4408 		x86_pmu.cpu_events = glm_events_attrs;
4409 		extra_attr = slm_format_attr;
4410 		pr_cont("Goldmont events, ");
4411 		name = "goldmont";
4412 		break;
4413 
4414 	case INTEL_FAM6_ATOM_GOLDMONT_PLUS:
4415 		x86_add_quirk(intel_counter_freezing_quirk);
4416 		memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
4417 		       sizeof(hw_cache_event_ids));
4418 		memcpy(hw_cache_extra_regs, glp_hw_cache_extra_regs,
4419 		       sizeof(hw_cache_extra_regs));
4420 
4421 		intel_pmu_lbr_init_skl();
4422 
4423 		x86_pmu.event_constraints = intel_slm_event_constraints;
4424 		x86_pmu.extra_regs = intel_glm_extra_regs;
4425 		/*
4426 		 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
4427 		 * for precise cycles.
4428 		 */
4429 		x86_pmu.pebs_aliases = NULL;
4430 		x86_pmu.pebs_prec_dist = true;
4431 		x86_pmu.lbr_pt_coexist = true;
4432 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4433 		x86_pmu.flags |= PMU_FL_PEBS_ALL;
4434 		x86_pmu.get_event_constraints = glp_get_event_constraints;
4435 		x86_pmu.cpu_events = glm_events_attrs;
4436 		/* Goldmont Plus has 4-wide pipeline */
4437 		event_attr_td_total_slots_scale_glm.event_str = "4";
4438 		extra_attr = slm_format_attr;
4439 		pr_cont("Goldmont plus events, ");
4440 		name = "goldmont_plus";
4441 		break;
4442 
4443 	case INTEL_FAM6_WESTMERE:
4444 	case INTEL_FAM6_WESTMERE_EP:
4445 	case INTEL_FAM6_WESTMERE_EX:
4446 		memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
4447 		       sizeof(hw_cache_event_ids));
4448 		memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
4449 		       sizeof(hw_cache_extra_regs));
4450 
4451 		intel_pmu_lbr_init_nhm();
4452 
4453 		x86_pmu.event_constraints = intel_westmere_event_constraints;
4454 		x86_pmu.enable_all = intel_pmu_nhm_enable_all;
4455 		x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
4456 		x86_pmu.extra_regs = intel_westmere_extra_regs;
4457 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4458 
4459 		mem_attr = nhm_mem_events_attrs;
4460 
4461 		/* UOPS_ISSUED.STALLED_CYCLES */
4462 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
4463 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
4464 		/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
4465 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
4466 			X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
4467 
4468 		intel_pmu_pebs_data_source_nhm();
4469 		extra_attr = nhm_format_attr;
4470 		pr_cont("Westmere events, ");
4471 		name = "westmere";
4472 		break;
4473 
4474 	case INTEL_FAM6_SANDYBRIDGE:
4475 	case INTEL_FAM6_SANDYBRIDGE_X:
4476 		x86_add_quirk(intel_sandybridge_quirk);
4477 		x86_add_quirk(intel_ht_bug);
4478 		memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
4479 		       sizeof(hw_cache_event_ids));
4480 		memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
4481 		       sizeof(hw_cache_extra_regs));
4482 
4483 		intel_pmu_lbr_init_snb();
4484 
4485 		x86_pmu.event_constraints = intel_snb_event_constraints;
4486 		x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
4487 		x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
4488 		if (boot_cpu_data.x86_model == INTEL_FAM6_SANDYBRIDGE_X)
4489 			x86_pmu.extra_regs = intel_snbep_extra_regs;
4490 		else
4491 			x86_pmu.extra_regs = intel_snb_extra_regs;
4492 
4493 
4494 		/* all extra regs are per-cpu when HT is on */
4495 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4496 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4497 
4498 		x86_pmu.cpu_events = snb_events_attrs;
4499 		mem_attr = snb_mem_events_attrs;
4500 
4501 		/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
4502 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
4503 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
4504 		/* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
4505 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
4506 			X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
4507 
4508 		extra_attr = nhm_format_attr;
4509 
4510 		pr_cont("SandyBridge events, ");
4511 		name = "sandybridge";
4512 		break;
4513 
4514 	case INTEL_FAM6_IVYBRIDGE:
4515 	case INTEL_FAM6_IVYBRIDGE_X:
4516 		x86_add_quirk(intel_ht_bug);
4517 		memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
4518 		       sizeof(hw_cache_event_ids));
4519 		/* dTLB-load-misses on IVB is different than SNB */
4520 		hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
4521 
4522 		memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
4523 		       sizeof(hw_cache_extra_regs));
4524 
4525 		intel_pmu_lbr_init_snb();
4526 
4527 		x86_pmu.event_constraints = intel_ivb_event_constraints;
4528 		x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
4529 		x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
4530 		x86_pmu.pebs_prec_dist = true;
4531 		if (boot_cpu_data.x86_model == INTEL_FAM6_IVYBRIDGE_X)
4532 			x86_pmu.extra_regs = intel_snbep_extra_regs;
4533 		else
4534 			x86_pmu.extra_regs = intel_snb_extra_regs;
4535 		/* all extra regs are per-cpu when HT is on */
4536 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4537 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4538 
4539 		x86_pmu.cpu_events = snb_events_attrs;
4540 		mem_attr = snb_mem_events_attrs;
4541 
4542 		/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
4543 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
4544 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
4545 
4546 		extra_attr = nhm_format_attr;
4547 
4548 		pr_cont("IvyBridge events, ");
4549 		name = "ivybridge";
4550 		break;
4551 
4552 
4553 	case INTEL_FAM6_HASWELL_CORE:
4554 	case INTEL_FAM6_HASWELL_X:
4555 	case INTEL_FAM6_HASWELL_ULT:
4556 	case INTEL_FAM6_HASWELL_GT3E:
4557 		x86_add_quirk(intel_ht_bug);
4558 		x86_add_quirk(intel_pebs_isolation_quirk);
4559 		x86_pmu.late_ack = true;
4560 		memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
4561 		memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
4562 
4563 		intel_pmu_lbr_init_hsw();
4564 
4565 		x86_pmu.event_constraints = intel_hsw_event_constraints;
4566 		x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
4567 		x86_pmu.extra_regs = intel_snbep_extra_regs;
4568 		x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
4569 		x86_pmu.pebs_prec_dist = true;
4570 		/* all extra regs are per-cpu when HT is on */
4571 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4572 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4573 
4574 		x86_pmu.hw_config = hsw_hw_config;
4575 		x86_pmu.get_event_constraints = hsw_get_event_constraints;
4576 		x86_pmu.cpu_events = hsw_events_attrs;
4577 		x86_pmu.lbr_double_abort = true;
4578 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
4579 			hsw_format_attr : nhm_format_attr;
4580 		mem_attr = hsw_mem_events_attrs;
4581 		tsx_attr = hsw_tsx_events_attrs;
4582 		pr_cont("Haswell events, ");
4583 		name = "haswell";
4584 		break;
4585 
4586 	case INTEL_FAM6_BROADWELL_CORE:
4587 	case INTEL_FAM6_BROADWELL_XEON_D:
4588 	case INTEL_FAM6_BROADWELL_GT3E:
4589 	case INTEL_FAM6_BROADWELL_X:
4590 		x86_add_quirk(intel_pebs_isolation_quirk);
4591 		x86_pmu.late_ack = true;
4592 		memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
4593 		memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
4594 
4595 		/* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
4596 		hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
4597 									 BDW_L3_MISS|HSW_SNOOP_DRAM;
4598 		hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
4599 									  HSW_SNOOP_DRAM;
4600 		hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
4601 									     BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
4602 		hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
4603 									      BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
4604 
4605 		intel_pmu_lbr_init_hsw();
4606 
4607 		x86_pmu.event_constraints = intel_bdw_event_constraints;
4608 		x86_pmu.pebs_constraints = intel_bdw_pebs_event_constraints;
4609 		x86_pmu.extra_regs = intel_snbep_extra_regs;
4610 		x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
4611 		x86_pmu.pebs_prec_dist = true;
4612 		/* all extra regs are per-cpu when HT is on */
4613 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4614 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4615 
4616 		x86_pmu.hw_config = hsw_hw_config;
4617 		x86_pmu.get_event_constraints = hsw_get_event_constraints;
4618 		x86_pmu.cpu_events = hsw_events_attrs;
4619 		x86_pmu.limit_period = bdw_limit_period;
4620 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
4621 			hsw_format_attr : nhm_format_attr;
4622 		mem_attr = hsw_mem_events_attrs;
4623 		tsx_attr = hsw_tsx_events_attrs;
4624 		pr_cont("Broadwell events, ");
4625 		name = "broadwell";
4626 		break;
4627 
4628 	case INTEL_FAM6_XEON_PHI_KNL:
4629 	case INTEL_FAM6_XEON_PHI_KNM:
4630 		memcpy(hw_cache_event_ids,
4631 		       slm_hw_cache_event_ids, sizeof(hw_cache_event_ids));
4632 		memcpy(hw_cache_extra_regs,
4633 		       knl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
4634 		intel_pmu_lbr_init_knl();
4635 
4636 		x86_pmu.event_constraints = intel_slm_event_constraints;
4637 		x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
4638 		x86_pmu.extra_regs = intel_knl_extra_regs;
4639 
4640 		/* all extra regs are per-cpu when HT is on */
4641 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4642 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4643 		extra_attr = slm_format_attr;
4644 		pr_cont("Knights Landing/Mill events, ");
4645 		name = "knights-landing";
4646 		break;
4647 
4648 	case INTEL_FAM6_SKYLAKE_MOBILE:
4649 	case INTEL_FAM6_SKYLAKE_DESKTOP:
4650 	case INTEL_FAM6_SKYLAKE_X:
4651 	case INTEL_FAM6_KABYLAKE_MOBILE:
4652 	case INTEL_FAM6_KABYLAKE_DESKTOP:
4653 		x86_add_quirk(intel_pebs_isolation_quirk);
4654 		x86_pmu.late_ack = true;
4655 		memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
4656 		memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
4657 		intel_pmu_lbr_init_skl();
4658 
4659 		/* INT_MISC.RECOVERY_CYCLES has umask 1 in Skylake */
4660 		event_attr_td_recovery_bubbles.event_str_noht =
4661 			"event=0xd,umask=0x1,cmask=1";
4662 		event_attr_td_recovery_bubbles.event_str_ht =
4663 			"event=0xd,umask=0x1,cmask=1,any=1";
4664 
4665 		x86_pmu.event_constraints = intel_skl_event_constraints;
4666 		x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints;
4667 		x86_pmu.extra_regs = intel_skl_extra_regs;
4668 		x86_pmu.pebs_aliases = intel_pebs_aliases_skl;
4669 		x86_pmu.pebs_prec_dist = true;
4670 		/* all extra regs are per-cpu when HT is on */
4671 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4672 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4673 
4674 		x86_pmu.hw_config = hsw_hw_config;
4675 		x86_pmu.get_event_constraints = hsw_get_event_constraints;
4676 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
4677 			hsw_format_attr : nhm_format_attr;
4678 		extra_attr = merge_attr(extra_attr, skl_format_attr);
4679 		to_free = extra_attr;
4680 		x86_pmu.cpu_events = hsw_events_attrs;
4681 		mem_attr = hsw_mem_events_attrs;
4682 		tsx_attr = hsw_tsx_events_attrs;
4683 		intel_pmu_pebs_data_source_skl(
4684 			boot_cpu_data.x86_model == INTEL_FAM6_SKYLAKE_X);
4685 
4686 		if (boot_cpu_has(X86_FEATURE_TSX_FORCE_ABORT)) {
4687 			x86_pmu.flags |= PMU_FL_TFA;
4688 			x86_pmu.get_event_constraints = tfa_get_event_constraints;
4689 			x86_pmu.enable_all = intel_tfa_pmu_enable_all;
4690 			x86_pmu.commit_scheduling = intel_tfa_commit_scheduling;
4691 			intel_pmu_attrs[1] = &dev_attr_allow_tsx_force_abort.attr.attr;
4692 		}
4693 
4694 		pr_cont("Skylake events, ");
4695 		name = "skylake";
4696 		break;
4697 
4698 	default:
4699 		switch (x86_pmu.version) {
4700 		case 1:
4701 			x86_pmu.event_constraints = intel_v1_event_constraints;
4702 			pr_cont("generic architected perfmon v1, ");
4703 			name = "generic_arch_v1";
4704 			break;
4705 		default:
4706 			/*
4707 			 * default constraints for v2 and up
4708 			 */
4709 			x86_pmu.event_constraints = intel_gen_event_constraints;
4710 			pr_cont("generic architected perfmon, ");
4711 			name = "generic_arch_v2+";
4712 			break;
4713 		}
4714 	}
4715 
4716 	snprintf(pmu_name_str, sizeof(pmu_name_str), "%s", name);
4717 
4718 	if (version >= 2 && extra_attr) {
4719 		x86_pmu.format_attrs = merge_attr(intel_arch3_formats_attr,
4720 						  extra_attr);
4721 		WARN_ON(!x86_pmu.format_attrs);
4722 	}
4723 
4724 	x86_pmu.cpu_events = get_events_attrs(x86_pmu.cpu_events,
4725 					      mem_attr, tsx_attr);
4726 
4727 	if (x86_pmu.num_counters > INTEL_PMC_MAX_GENERIC) {
4728 		WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
4729 		     x86_pmu.num_counters, INTEL_PMC_MAX_GENERIC);
4730 		x86_pmu.num_counters = INTEL_PMC_MAX_GENERIC;
4731 	}
4732 	x86_pmu.intel_ctrl = (1ULL << x86_pmu.num_counters) - 1;
4733 
4734 	if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED) {
4735 		WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
4736 		     x86_pmu.num_counters_fixed, INTEL_PMC_MAX_FIXED);
4737 		x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
4738 	}
4739 
4740 	x86_pmu.intel_ctrl |=
4741 		((1LL << x86_pmu.num_counters_fixed)-1) << INTEL_PMC_IDX_FIXED;
4742 
4743 	if (x86_pmu.event_constraints) {
4744 		/*
4745 		 * event on fixed counter2 (REF_CYCLES) only works on this
4746 		 * counter, so do not extend mask to generic counters
4747 		 */
4748 		for_each_event_constraint(c, x86_pmu.event_constraints) {
4749 			if (c->cmask == FIXED_EVENT_FLAGS
4750 			    && c->idxmsk64 != INTEL_PMC_MSK_FIXED_REF_CYCLES) {
4751 				c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
4752 			}
4753 			c->idxmsk64 &=
4754 				~(~0ULL << (INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed));
4755 			c->weight = hweight64(c->idxmsk64);
4756 		}
4757 	}
4758 
4759 	/*
4760 	 * Access LBR MSR may cause #GP under certain circumstances.
4761 	 * E.g. KVM doesn't support LBR MSR
4762 	 * Check all LBT MSR here.
4763 	 * Disable LBR access if any LBR MSRs can not be accessed.
4764 	 */
4765 	if (x86_pmu.lbr_nr && !check_msr(x86_pmu.lbr_tos, 0x3UL))
4766 		x86_pmu.lbr_nr = 0;
4767 	for (i = 0; i < x86_pmu.lbr_nr; i++) {
4768 		if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
4769 		      check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
4770 			x86_pmu.lbr_nr = 0;
4771 	}
4772 
4773 	x86_pmu.caps_attrs = intel_pmu_caps_attrs;
4774 
4775 	if (x86_pmu.lbr_nr) {
4776 		x86_pmu.caps_attrs = merge_attr(x86_pmu.caps_attrs, lbr_attrs);
4777 		pr_cont("%d-deep LBR, ", x86_pmu.lbr_nr);
4778 	}
4779 
4780 	/*
4781 	 * Access extra MSR may cause #GP under certain circumstances.
4782 	 * E.g. KVM doesn't support offcore event
4783 	 * Check all extra_regs here.
4784 	 */
4785 	if (x86_pmu.extra_regs) {
4786 		for (er = x86_pmu.extra_regs; er->msr; er++) {
4787 			er->extra_msr_access = check_msr(er->msr, 0x11UL);
4788 			/* Disable LBR select mapping */
4789 			if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
4790 				x86_pmu.lbr_sel_map = NULL;
4791 		}
4792 	}
4793 
4794 	/* Support full width counters using alternative MSR range */
4795 	if (x86_pmu.intel_cap.full_width_write) {
4796 		x86_pmu.max_period = x86_pmu.cntval_mask >> 1;
4797 		x86_pmu.perfctr = MSR_IA32_PMC0;
4798 		pr_cont("full-width counters, ");
4799 	}
4800 
4801 	/*
4802 	 * For arch perfmon 4 use counter freezing to avoid
4803 	 * several MSR accesses in the PMI.
4804 	 */
4805 	if (x86_pmu.counter_freezing)
4806 		x86_pmu.handle_irq = intel_pmu_handle_irq_v4;
4807 
4808 	kfree(to_free);
4809 	return 0;
4810 }
4811 
4812 /*
4813  * HT bug: phase 2 init
4814  * Called once we have valid topology information to check
4815  * whether or not HT is enabled
4816  * If HT is off, then we disable the workaround
4817  */
4818 static __init int fixup_ht_bug(void)
4819 {
4820 	int c;
4821 	/*
4822 	 * problem not present on this CPU model, nothing to do
4823 	 */
4824 	if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED))
4825 		return 0;
4826 
4827 	if (topology_max_smt_threads() > 1) {
4828 		pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
4829 		return 0;
4830 	}
4831 
4832 	cpus_read_lock();
4833 
4834 	hardlockup_detector_perf_stop();
4835 
4836 	x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED);
4837 
4838 	x86_pmu.start_scheduling = NULL;
4839 	x86_pmu.commit_scheduling = NULL;
4840 	x86_pmu.stop_scheduling = NULL;
4841 
4842 	hardlockup_detector_perf_restart();
4843 
4844 	for_each_online_cpu(c)
4845 		free_excl_cntrs(&per_cpu(cpu_hw_events, c));
4846 
4847 	cpus_read_unlock();
4848 	pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
4849 	return 0;
4850 }
4851 subsys_initcall(fixup_ht_bug)
4852