xref: /linux/arch/x86/events/intel/core.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * Per core/cpu state
3  *
4  * Used to coordinate shared registers between HT threads or
5  * among events on a single PMU.
6  */
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/stddef.h>
11 #include <linux/types.h>
12 #include <linux/init.h>
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/nmi.h>
16 
17 #include <asm/cpufeature.h>
18 #include <asm/hardirq.h>
19 #include <asm/apic.h>
20 
21 #include "../perf_event.h"
22 
23 /*
24  * Intel PerfMon, used on Core and later.
25  */
26 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
27 {
28 	[PERF_COUNT_HW_CPU_CYCLES]		= 0x003c,
29 	[PERF_COUNT_HW_INSTRUCTIONS]		= 0x00c0,
30 	[PERF_COUNT_HW_CACHE_REFERENCES]	= 0x4f2e,
31 	[PERF_COUNT_HW_CACHE_MISSES]		= 0x412e,
32 	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS]	= 0x00c4,
33 	[PERF_COUNT_HW_BRANCH_MISSES]		= 0x00c5,
34 	[PERF_COUNT_HW_BUS_CYCLES]		= 0x013c,
35 	[PERF_COUNT_HW_REF_CPU_CYCLES]		= 0x0300, /* pseudo-encoding */
36 };
37 
38 static struct event_constraint intel_core_event_constraints[] __read_mostly =
39 {
40 	INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
41 	INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
42 	INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
43 	INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
44 	INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
45 	INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
46 	EVENT_CONSTRAINT_END
47 };
48 
49 static struct event_constraint intel_core2_event_constraints[] __read_mostly =
50 {
51 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
52 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
53 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
54 	INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
55 	INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
56 	INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
57 	INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
58 	INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
59 	INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
60 	INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
61 	INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
62 	INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
63 	INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
64 	EVENT_CONSTRAINT_END
65 };
66 
67 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
68 {
69 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
70 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
71 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
72 	INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
73 	INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
74 	INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
75 	INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
76 	INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
77 	INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
78 	INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
79 	INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
80 	EVENT_CONSTRAINT_END
81 };
82 
83 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
84 {
85 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
86 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
87 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
88 	EVENT_EXTRA_END
89 };
90 
91 static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
92 {
93 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
94 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
95 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
96 	INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
97 	INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
98 	INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
99 	INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
100 	EVENT_CONSTRAINT_END
101 };
102 
103 static struct event_constraint intel_snb_event_constraints[] __read_mostly =
104 {
105 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
106 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
107 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
108 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
109 	INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
110 	INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
111 	INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
112 	INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
113 	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
114 	INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
115 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
116 	INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
117 
118 	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
119 	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
120 	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
121 	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
122 
123 	EVENT_CONSTRAINT_END
124 };
125 
126 static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
127 {
128 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
129 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
130 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
131 	INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
132 	INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMTPY */
133 	INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
134 	INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
135 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
136 	INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
137 	INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
138 	INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
139 	INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
140 	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
141 
142 	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
143 	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
144 	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
145 	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
146 
147 	EVENT_CONSTRAINT_END
148 };
149 
150 static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
151 {
152 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
153 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
154 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
155 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
156 	EVENT_EXTRA_END
157 };
158 
159 static struct event_constraint intel_v1_event_constraints[] __read_mostly =
160 {
161 	EVENT_CONSTRAINT_END
162 };
163 
164 static struct event_constraint intel_gen_event_constraints[] __read_mostly =
165 {
166 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
167 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
168 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
169 	EVENT_CONSTRAINT_END
170 };
171 
172 static struct event_constraint intel_slm_event_constraints[] __read_mostly =
173 {
174 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
175 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
176 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
177 	EVENT_CONSTRAINT_END
178 };
179 
180 struct event_constraint intel_skl_event_constraints[] = {
181 	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
182 	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
183 	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
184 	INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2),	/* INST_RETIRED.PREC_DIST */
185 	EVENT_CONSTRAINT_END
186 };
187 
188 static struct extra_reg intel_knl_extra_regs[] __read_mostly = {
189 	INTEL_UEVENT_EXTRA_REG(0x01b7,
190 			       MSR_OFFCORE_RSP_0, 0x7f9ffbffffull, RSP_0),
191 	INTEL_UEVENT_EXTRA_REG(0x02b7,
192 			       MSR_OFFCORE_RSP_1, 0x3f9ffbffffull, RSP_1),
193 	EVENT_EXTRA_END
194 };
195 
196 static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
197 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
198 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
199 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
200 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
201 	EVENT_EXTRA_END
202 };
203 
204 static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
205 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
206 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
207 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
208 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
209 	EVENT_EXTRA_END
210 };
211 
212 static struct extra_reg intel_skl_extra_regs[] __read_mostly = {
213 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
214 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
215 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
216 	/*
217 	 * Note the low 8 bits eventsel code is not a continuous field, containing
218 	 * some #GPing bits. These are masked out.
219 	 */
220 	INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
221 	EVENT_EXTRA_END
222 };
223 
224 EVENT_ATTR_STR(mem-loads,	mem_ld_nhm,	"event=0x0b,umask=0x10,ldlat=3");
225 EVENT_ATTR_STR(mem-loads,	mem_ld_snb,	"event=0xcd,umask=0x1,ldlat=3");
226 EVENT_ATTR_STR(mem-stores,	mem_st_snb,	"event=0xcd,umask=0x2");
227 
228 struct attribute *nhm_events_attrs[] = {
229 	EVENT_PTR(mem_ld_nhm),
230 	NULL,
231 };
232 
233 struct attribute *snb_events_attrs[] = {
234 	EVENT_PTR(mem_ld_snb),
235 	EVENT_PTR(mem_st_snb),
236 	NULL,
237 };
238 
239 static struct event_constraint intel_hsw_event_constraints[] = {
240 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
241 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
242 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
243 	INTEL_UEVENT_CONSTRAINT(0x148, 0x4),	/* L1D_PEND_MISS.PENDING */
244 	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
245 	INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
246 	/* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
247 	INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
248 	/* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
249 	INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
250 	/* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
251 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
252 
253 	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
254 	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
255 	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
256 	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
257 
258 	EVENT_CONSTRAINT_END
259 };
260 
261 struct event_constraint intel_bdw_event_constraints[] = {
262 	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
263 	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
264 	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
265 	INTEL_UEVENT_CONSTRAINT(0x148, 0x4),	/* L1D_PEND_MISS.PENDING */
266 	INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4),	/* CYCLE_ACTIVITY.CYCLES_L1D_MISS */
267 	EVENT_CONSTRAINT_END
268 };
269 
270 static u64 intel_pmu_event_map(int hw_event)
271 {
272 	return intel_perfmon_event_map[hw_event];
273 }
274 
275 /*
276  * Notes on the events:
277  * - data reads do not include code reads (comparable to earlier tables)
278  * - data counts include speculative execution (except L1 write, dtlb, bpu)
279  * - remote node access includes remote memory, remote cache, remote mmio.
280  * - prefetches are not included in the counts.
281  * - icache miss does not include decoded icache
282  */
283 
284 #define SKL_DEMAND_DATA_RD		BIT_ULL(0)
285 #define SKL_DEMAND_RFO			BIT_ULL(1)
286 #define SKL_ANY_RESPONSE		BIT_ULL(16)
287 #define SKL_SUPPLIER_NONE		BIT_ULL(17)
288 #define SKL_L3_MISS_LOCAL_DRAM		BIT_ULL(26)
289 #define SKL_L3_MISS_REMOTE_HOP0_DRAM	BIT_ULL(27)
290 #define SKL_L3_MISS_REMOTE_HOP1_DRAM	BIT_ULL(28)
291 #define SKL_L3_MISS_REMOTE_HOP2P_DRAM	BIT_ULL(29)
292 #define SKL_L3_MISS			(SKL_L3_MISS_LOCAL_DRAM| \
293 					 SKL_L3_MISS_REMOTE_HOP0_DRAM| \
294 					 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
295 					 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
296 #define SKL_SPL_HIT			BIT_ULL(30)
297 #define SKL_SNOOP_NONE			BIT_ULL(31)
298 #define SKL_SNOOP_NOT_NEEDED		BIT_ULL(32)
299 #define SKL_SNOOP_MISS			BIT_ULL(33)
300 #define SKL_SNOOP_HIT_NO_FWD		BIT_ULL(34)
301 #define SKL_SNOOP_HIT_WITH_FWD		BIT_ULL(35)
302 #define SKL_SNOOP_HITM			BIT_ULL(36)
303 #define SKL_SNOOP_NON_DRAM		BIT_ULL(37)
304 #define SKL_ANY_SNOOP			(SKL_SPL_HIT|SKL_SNOOP_NONE| \
305 					 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
306 					 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
307 					 SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM)
308 #define SKL_DEMAND_READ			SKL_DEMAND_DATA_RD
309 #define SKL_SNOOP_DRAM			(SKL_SNOOP_NONE| \
310 					 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
311 					 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
312 					 SKL_SNOOP_HITM|SKL_SPL_HIT)
313 #define SKL_DEMAND_WRITE		SKL_DEMAND_RFO
314 #define SKL_LLC_ACCESS			SKL_ANY_RESPONSE
315 #define SKL_L3_MISS_REMOTE		(SKL_L3_MISS_REMOTE_HOP0_DRAM| \
316 					 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
317 					 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
318 
319 static __initconst const u64 skl_hw_cache_event_ids
320 				[PERF_COUNT_HW_CACHE_MAX]
321 				[PERF_COUNT_HW_CACHE_OP_MAX]
322 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
323 {
324  [ C(L1D ) ] = {
325 	[ C(OP_READ) ] = {
326 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_INST_RETIRED.ALL_LOADS */
327 		[ C(RESULT_MISS)   ] = 0x151,	/* L1D.REPLACEMENT */
328 	},
329 	[ C(OP_WRITE) ] = {
330 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_INST_RETIRED.ALL_STORES */
331 		[ C(RESULT_MISS)   ] = 0x0,
332 	},
333 	[ C(OP_PREFETCH) ] = {
334 		[ C(RESULT_ACCESS) ] = 0x0,
335 		[ C(RESULT_MISS)   ] = 0x0,
336 	},
337  },
338  [ C(L1I ) ] = {
339 	[ C(OP_READ) ] = {
340 		[ C(RESULT_ACCESS) ] = 0x0,
341 		[ C(RESULT_MISS)   ] = 0x283,	/* ICACHE_64B.MISS */
342 	},
343 	[ C(OP_WRITE) ] = {
344 		[ C(RESULT_ACCESS) ] = -1,
345 		[ C(RESULT_MISS)   ] = -1,
346 	},
347 	[ C(OP_PREFETCH) ] = {
348 		[ C(RESULT_ACCESS) ] = 0x0,
349 		[ C(RESULT_MISS)   ] = 0x0,
350 	},
351  },
352  [ C(LL  ) ] = {
353 	[ C(OP_READ) ] = {
354 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
355 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
356 	},
357 	[ C(OP_WRITE) ] = {
358 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
359 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
360 	},
361 	[ C(OP_PREFETCH) ] = {
362 		[ C(RESULT_ACCESS) ] = 0x0,
363 		[ C(RESULT_MISS)   ] = 0x0,
364 	},
365  },
366  [ C(DTLB) ] = {
367 	[ C(OP_READ) ] = {
368 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_INST_RETIRED.ALL_LOADS */
369 		[ C(RESULT_MISS)   ] = 0x608,	/* DTLB_LOAD_MISSES.WALK_COMPLETED */
370 	},
371 	[ C(OP_WRITE) ] = {
372 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_INST_RETIRED.ALL_STORES */
373 		[ C(RESULT_MISS)   ] = 0x649,	/* DTLB_STORE_MISSES.WALK_COMPLETED */
374 	},
375 	[ C(OP_PREFETCH) ] = {
376 		[ C(RESULT_ACCESS) ] = 0x0,
377 		[ C(RESULT_MISS)   ] = 0x0,
378 	},
379  },
380  [ C(ITLB) ] = {
381 	[ C(OP_READ) ] = {
382 		[ C(RESULT_ACCESS) ] = 0x2085,	/* ITLB_MISSES.STLB_HIT */
383 		[ C(RESULT_MISS)   ] = 0xe85,	/* ITLB_MISSES.WALK_COMPLETED */
384 	},
385 	[ C(OP_WRITE) ] = {
386 		[ C(RESULT_ACCESS) ] = -1,
387 		[ C(RESULT_MISS)   ] = -1,
388 	},
389 	[ C(OP_PREFETCH) ] = {
390 		[ C(RESULT_ACCESS) ] = -1,
391 		[ C(RESULT_MISS)   ] = -1,
392 	},
393  },
394  [ C(BPU ) ] = {
395 	[ C(OP_READ) ] = {
396 		[ C(RESULT_ACCESS) ] = 0xc4,	/* BR_INST_RETIRED.ALL_BRANCHES */
397 		[ C(RESULT_MISS)   ] = 0xc5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
398 	},
399 	[ C(OP_WRITE) ] = {
400 		[ C(RESULT_ACCESS) ] = -1,
401 		[ C(RESULT_MISS)   ] = -1,
402 	},
403 	[ C(OP_PREFETCH) ] = {
404 		[ C(RESULT_ACCESS) ] = -1,
405 		[ C(RESULT_MISS)   ] = -1,
406 	},
407  },
408  [ C(NODE) ] = {
409 	[ C(OP_READ) ] = {
410 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
411 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
412 	},
413 	[ C(OP_WRITE) ] = {
414 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
415 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
416 	},
417 	[ C(OP_PREFETCH) ] = {
418 		[ C(RESULT_ACCESS) ] = 0x0,
419 		[ C(RESULT_MISS)   ] = 0x0,
420 	},
421  },
422 };
423 
424 static __initconst const u64 skl_hw_cache_extra_regs
425 				[PERF_COUNT_HW_CACHE_MAX]
426 				[PERF_COUNT_HW_CACHE_OP_MAX]
427 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
428 {
429  [ C(LL  ) ] = {
430 	[ C(OP_READ) ] = {
431 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
432 				       SKL_LLC_ACCESS|SKL_ANY_SNOOP,
433 		[ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
434 				       SKL_L3_MISS|SKL_ANY_SNOOP|
435 				       SKL_SUPPLIER_NONE,
436 	},
437 	[ C(OP_WRITE) ] = {
438 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
439 				       SKL_LLC_ACCESS|SKL_ANY_SNOOP,
440 		[ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
441 				       SKL_L3_MISS|SKL_ANY_SNOOP|
442 				       SKL_SUPPLIER_NONE,
443 	},
444 	[ C(OP_PREFETCH) ] = {
445 		[ C(RESULT_ACCESS) ] = 0x0,
446 		[ C(RESULT_MISS)   ] = 0x0,
447 	},
448  },
449  [ C(NODE) ] = {
450 	[ C(OP_READ) ] = {
451 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
452 				       SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
453 		[ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
454 				       SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
455 	},
456 	[ C(OP_WRITE) ] = {
457 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
458 				       SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
459 		[ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
460 				       SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
461 	},
462 	[ C(OP_PREFETCH) ] = {
463 		[ C(RESULT_ACCESS) ] = 0x0,
464 		[ C(RESULT_MISS)   ] = 0x0,
465 	},
466  },
467 };
468 
469 #define SNB_DMND_DATA_RD	(1ULL << 0)
470 #define SNB_DMND_RFO		(1ULL << 1)
471 #define SNB_DMND_IFETCH		(1ULL << 2)
472 #define SNB_DMND_WB		(1ULL << 3)
473 #define SNB_PF_DATA_RD		(1ULL << 4)
474 #define SNB_PF_RFO		(1ULL << 5)
475 #define SNB_PF_IFETCH		(1ULL << 6)
476 #define SNB_LLC_DATA_RD		(1ULL << 7)
477 #define SNB_LLC_RFO		(1ULL << 8)
478 #define SNB_LLC_IFETCH		(1ULL << 9)
479 #define SNB_BUS_LOCKS		(1ULL << 10)
480 #define SNB_STRM_ST		(1ULL << 11)
481 #define SNB_OTHER		(1ULL << 15)
482 #define SNB_RESP_ANY		(1ULL << 16)
483 #define SNB_NO_SUPP		(1ULL << 17)
484 #define SNB_LLC_HITM		(1ULL << 18)
485 #define SNB_LLC_HITE		(1ULL << 19)
486 #define SNB_LLC_HITS		(1ULL << 20)
487 #define SNB_LLC_HITF		(1ULL << 21)
488 #define SNB_LOCAL		(1ULL << 22)
489 #define SNB_REMOTE		(0xffULL << 23)
490 #define SNB_SNP_NONE		(1ULL << 31)
491 #define SNB_SNP_NOT_NEEDED	(1ULL << 32)
492 #define SNB_SNP_MISS		(1ULL << 33)
493 #define SNB_NO_FWD		(1ULL << 34)
494 #define SNB_SNP_FWD		(1ULL << 35)
495 #define SNB_HITM		(1ULL << 36)
496 #define SNB_NON_DRAM		(1ULL << 37)
497 
498 #define SNB_DMND_READ		(SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
499 #define SNB_DMND_WRITE		(SNB_DMND_RFO|SNB_LLC_RFO)
500 #define SNB_DMND_PREFETCH	(SNB_PF_DATA_RD|SNB_PF_RFO)
501 
502 #define SNB_SNP_ANY		(SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
503 				 SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
504 				 SNB_HITM)
505 
506 #define SNB_DRAM_ANY		(SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
507 #define SNB_DRAM_REMOTE		(SNB_REMOTE|SNB_SNP_ANY)
508 
509 #define SNB_L3_ACCESS		SNB_RESP_ANY
510 #define SNB_L3_MISS		(SNB_DRAM_ANY|SNB_NON_DRAM)
511 
512 static __initconst const u64 snb_hw_cache_extra_regs
513 				[PERF_COUNT_HW_CACHE_MAX]
514 				[PERF_COUNT_HW_CACHE_OP_MAX]
515 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
516 {
517  [ C(LL  ) ] = {
518 	[ C(OP_READ) ] = {
519 		[ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
520 		[ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_L3_MISS,
521 	},
522 	[ C(OP_WRITE) ] = {
523 		[ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
524 		[ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_L3_MISS,
525 	},
526 	[ C(OP_PREFETCH) ] = {
527 		[ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
528 		[ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
529 	},
530  },
531  [ C(NODE) ] = {
532 	[ C(OP_READ) ] = {
533 		[ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
534 		[ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
535 	},
536 	[ C(OP_WRITE) ] = {
537 		[ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
538 		[ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
539 	},
540 	[ C(OP_PREFETCH) ] = {
541 		[ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
542 		[ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
543 	},
544  },
545 };
546 
547 static __initconst const u64 snb_hw_cache_event_ids
548 				[PERF_COUNT_HW_CACHE_MAX]
549 				[PERF_COUNT_HW_CACHE_OP_MAX]
550 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
551 {
552  [ C(L1D) ] = {
553 	[ C(OP_READ) ] = {
554 		[ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS        */
555 		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPLACEMENT              */
556 	},
557 	[ C(OP_WRITE) ] = {
558 		[ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES       */
559 		[ C(RESULT_MISS)   ] = 0x0851, /* L1D.ALL_M_REPLACEMENT        */
560 	},
561 	[ C(OP_PREFETCH) ] = {
562 		[ C(RESULT_ACCESS) ] = 0x0,
563 		[ C(RESULT_MISS)   ] = 0x024e, /* HW_PRE_REQ.DL1_MISS          */
564 	},
565  },
566  [ C(L1I ) ] = {
567 	[ C(OP_READ) ] = {
568 		[ C(RESULT_ACCESS) ] = 0x0,
569 		[ C(RESULT_MISS)   ] = 0x0280, /* ICACHE.MISSES */
570 	},
571 	[ C(OP_WRITE) ] = {
572 		[ C(RESULT_ACCESS) ] = -1,
573 		[ C(RESULT_MISS)   ] = -1,
574 	},
575 	[ C(OP_PREFETCH) ] = {
576 		[ C(RESULT_ACCESS) ] = 0x0,
577 		[ C(RESULT_MISS)   ] = 0x0,
578 	},
579  },
580  [ C(LL  ) ] = {
581 	[ C(OP_READ) ] = {
582 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
583 		[ C(RESULT_ACCESS) ] = 0x01b7,
584 		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
585 		[ C(RESULT_MISS)   ] = 0x01b7,
586 	},
587 	[ C(OP_WRITE) ] = {
588 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
589 		[ C(RESULT_ACCESS) ] = 0x01b7,
590 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
591 		[ C(RESULT_MISS)   ] = 0x01b7,
592 	},
593 	[ C(OP_PREFETCH) ] = {
594 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
595 		[ C(RESULT_ACCESS) ] = 0x01b7,
596 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
597 		[ C(RESULT_MISS)   ] = 0x01b7,
598 	},
599  },
600  [ C(DTLB) ] = {
601 	[ C(OP_READ) ] = {
602 		[ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
603 		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
604 	},
605 	[ C(OP_WRITE) ] = {
606 		[ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
607 		[ C(RESULT_MISS)   ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
608 	},
609 	[ C(OP_PREFETCH) ] = {
610 		[ C(RESULT_ACCESS) ] = 0x0,
611 		[ C(RESULT_MISS)   ] = 0x0,
612 	},
613  },
614  [ C(ITLB) ] = {
615 	[ C(OP_READ) ] = {
616 		[ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT         */
617 		[ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK    */
618 	},
619 	[ C(OP_WRITE) ] = {
620 		[ C(RESULT_ACCESS) ] = -1,
621 		[ C(RESULT_MISS)   ] = -1,
622 	},
623 	[ C(OP_PREFETCH) ] = {
624 		[ C(RESULT_ACCESS) ] = -1,
625 		[ C(RESULT_MISS)   ] = -1,
626 	},
627  },
628  [ C(BPU ) ] = {
629 	[ C(OP_READ) ] = {
630 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
631 		[ C(RESULT_MISS)   ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
632 	},
633 	[ C(OP_WRITE) ] = {
634 		[ C(RESULT_ACCESS) ] = -1,
635 		[ C(RESULT_MISS)   ] = -1,
636 	},
637 	[ C(OP_PREFETCH) ] = {
638 		[ C(RESULT_ACCESS) ] = -1,
639 		[ C(RESULT_MISS)   ] = -1,
640 	},
641  },
642  [ C(NODE) ] = {
643 	[ C(OP_READ) ] = {
644 		[ C(RESULT_ACCESS) ] = 0x01b7,
645 		[ C(RESULT_MISS)   ] = 0x01b7,
646 	},
647 	[ C(OP_WRITE) ] = {
648 		[ C(RESULT_ACCESS) ] = 0x01b7,
649 		[ C(RESULT_MISS)   ] = 0x01b7,
650 	},
651 	[ C(OP_PREFETCH) ] = {
652 		[ C(RESULT_ACCESS) ] = 0x01b7,
653 		[ C(RESULT_MISS)   ] = 0x01b7,
654 	},
655  },
656 
657 };
658 
659 /*
660  * Notes on the events:
661  * - data reads do not include code reads (comparable to earlier tables)
662  * - data counts include speculative execution (except L1 write, dtlb, bpu)
663  * - remote node access includes remote memory, remote cache, remote mmio.
664  * - prefetches are not included in the counts because they are not
665  *   reliably counted.
666  */
667 
668 #define HSW_DEMAND_DATA_RD		BIT_ULL(0)
669 #define HSW_DEMAND_RFO			BIT_ULL(1)
670 #define HSW_ANY_RESPONSE		BIT_ULL(16)
671 #define HSW_SUPPLIER_NONE		BIT_ULL(17)
672 #define HSW_L3_MISS_LOCAL_DRAM		BIT_ULL(22)
673 #define HSW_L3_MISS_REMOTE_HOP0		BIT_ULL(27)
674 #define HSW_L3_MISS_REMOTE_HOP1		BIT_ULL(28)
675 #define HSW_L3_MISS_REMOTE_HOP2P	BIT_ULL(29)
676 #define HSW_L3_MISS			(HSW_L3_MISS_LOCAL_DRAM| \
677 					 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
678 					 HSW_L3_MISS_REMOTE_HOP2P)
679 #define HSW_SNOOP_NONE			BIT_ULL(31)
680 #define HSW_SNOOP_NOT_NEEDED		BIT_ULL(32)
681 #define HSW_SNOOP_MISS			BIT_ULL(33)
682 #define HSW_SNOOP_HIT_NO_FWD		BIT_ULL(34)
683 #define HSW_SNOOP_HIT_WITH_FWD		BIT_ULL(35)
684 #define HSW_SNOOP_HITM			BIT_ULL(36)
685 #define HSW_SNOOP_NON_DRAM		BIT_ULL(37)
686 #define HSW_ANY_SNOOP			(HSW_SNOOP_NONE| \
687 					 HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
688 					 HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
689 					 HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
690 #define HSW_SNOOP_DRAM			(HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
691 #define HSW_DEMAND_READ			HSW_DEMAND_DATA_RD
692 #define HSW_DEMAND_WRITE		HSW_DEMAND_RFO
693 #define HSW_L3_MISS_REMOTE		(HSW_L3_MISS_REMOTE_HOP0|\
694 					 HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
695 #define HSW_LLC_ACCESS			HSW_ANY_RESPONSE
696 
697 #define BDW_L3_MISS_LOCAL		BIT(26)
698 #define BDW_L3_MISS			(BDW_L3_MISS_LOCAL| \
699 					 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
700 					 HSW_L3_MISS_REMOTE_HOP2P)
701 
702 
703 static __initconst const u64 hsw_hw_cache_event_ids
704 				[PERF_COUNT_HW_CACHE_MAX]
705 				[PERF_COUNT_HW_CACHE_OP_MAX]
706 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
707 {
708  [ C(L1D ) ] = {
709 	[ C(OP_READ) ] = {
710 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
711 		[ C(RESULT_MISS)   ] = 0x151,	/* L1D.REPLACEMENT */
712 	},
713 	[ C(OP_WRITE) ] = {
714 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
715 		[ C(RESULT_MISS)   ] = 0x0,
716 	},
717 	[ C(OP_PREFETCH) ] = {
718 		[ C(RESULT_ACCESS) ] = 0x0,
719 		[ C(RESULT_MISS)   ] = 0x0,
720 	},
721  },
722  [ C(L1I ) ] = {
723 	[ C(OP_READ) ] = {
724 		[ C(RESULT_ACCESS) ] = 0x0,
725 		[ C(RESULT_MISS)   ] = 0x280,	/* ICACHE.MISSES */
726 	},
727 	[ C(OP_WRITE) ] = {
728 		[ C(RESULT_ACCESS) ] = -1,
729 		[ C(RESULT_MISS)   ] = -1,
730 	},
731 	[ C(OP_PREFETCH) ] = {
732 		[ C(RESULT_ACCESS) ] = 0x0,
733 		[ C(RESULT_MISS)   ] = 0x0,
734 	},
735  },
736  [ C(LL  ) ] = {
737 	[ C(OP_READ) ] = {
738 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
739 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
740 	},
741 	[ C(OP_WRITE) ] = {
742 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
743 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
744 	},
745 	[ C(OP_PREFETCH) ] = {
746 		[ C(RESULT_ACCESS) ] = 0x0,
747 		[ C(RESULT_MISS)   ] = 0x0,
748 	},
749  },
750  [ C(DTLB) ] = {
751 	[ C(OP_READ) ] = {
752 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
753 		[ C(RESULT_MISS)   ] = 0x108,	/* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
754 	},
755 	[ C(OP_WRITE) ] = {
756 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
757 		[ C(RESULT_MISS)   ] = 0x149,	/* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
758 	},
759 	[ C(OP_PREFETCH) ] = {
760 		[ C(RESULT_ACCESS) ] = 0x0,
761 		[ C(RESULT_MISS)   ] = 0x0,
762 	},
763  },
764  [ C(ITLB) ] = {
765 	[ C(OP_READ) ] = {
766 		[ C(RESULT_ACCESS) ] = 0x6085,	/* ITLB_MISSES.STLB_HIT */
767 		[ C(RESULT_MISS)   ] = 0x185,	/* ITLB_MISSES.MISS_CAUSES_A_WALK */
768 	},
769 	[ C(OP_WRITE) ] = {
770 		[ C(RESULT_ACCESS) ] = -1,
771 		[ C(RESULT_MISS)   ] = -1,
772 	},
773 	[ C(OP_PREFETCH) ] = {
774 		[ C(RESULT_ACCESS) ] = -1,
775 		[ C(RESULT_MISS)   ] = -1,
776 	},
777  },
778  [ C(BPU ) ] = {
779 	[ C(OP_READ) ] = {
780 		[ C(RESULT_ACCESS) ] = 0xc4,	/* BR_INST_RETIRED.ALL_BRANCHES */
781 		[ C(RESULT_MISS)   ] = 0xc5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
782 	},
783 	[ C(OP_WRITE) ] = {
784 		[ C(RESULT_ACCESS) ] = -1,
785 		[ C(RESULT_MISS)   ] = -1,
786 	},
787 	[ C(OP_PREFETCH) ] = {
788 		[ C(RESULT_ACCESS) ] = -1,
789 		[ C(RESULT_MISS)   ] = -1,
790 	},
791  },
792  [ C(NODE) ] = {
793 	[ C(OP_READ) ] = {
794 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
795 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
796 	},
797 	[ C(OP_WRITE) ] = {
798 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
799 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
800 	},
801 	[ C(OP_PREFETCH) ] = {
802 		[ C(RESULT_ACCESS) ] = 0x0,
803 		[ C(RESULT_MISS)   ] = 0x0,
804 	},
805  },
806 };
807 
808 static __initconst const u64 hsw_hw_cache_extra_regs
809 				[PERF_COUNT_HW_CACHE_MAX]
810 				[PERF_COUNT_HW_CACHE_OP_MAX]
811 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
812 {
813  [ C(LL  ) ] = {
814 	[ C(OP_READ) ] = {
815 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
816 				       HSW_LLC_ACCESS,
817 		[ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
818 				       HSW_L3_MISS|HSW_ANY_SNOOP,
819 	},
820 	[ C(OP_WRITE) ] = {
821 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
822 				       HSW_LLC_ACCESS,
823 		[ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
824 				       HSW_L3_MISS|HSW_ANY_SNOOP,
825 	},
826 	[ C(OP_PREFETCH) ] = {
827 		[ C(RESULT_ACCESS) ] = 0x0,
828 		[ C(RESULT_MISS)   ] = 0x0,
829 	},
830  },
831  [ C(NODE) ] = {
832 	[ C(OP_READ) ] = {
833 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
834 				       HSW_L3_MISS_LOCAL_DRAM|
835 				       HSW_SNOOP_DRAM,
836 		[ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
837 				       HSW_L3_MISS_REMOTE|
838 				       HSW_SNOOP_DRAM,
839 	},
840 	[ C(OP_WRITE) ] = {
841 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
842 				       HSW_L3_MISS_LOCAL_DRAM|
843 				       HSW_SNOOP_DRAM,
844 		[ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
845 				       HSW_L3_MISS_REMOTE|
846 				       HSW_SNOOP_DRAM,
847 	},
848 	[ C(OP_PREFETCH) ] = {
849 		[ C(RESULT_ACCESS) ] = 0x0,
850 		[ C(RESULT_MISS)   ] = 0x0,
851 	},
852  },
853 };
854 
855 static __initconst const u64 westmere_hw_cache_event_ids
856 				[PERF_COUNT_HW_CACHE_MAX]
857 				[PERF_COUNT_HW_CACHE_OP_MAX]
858 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
859 {
860  [ C(L1D) ] = {
861 	[ C(OP_READ) ] = {
862 		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
863 		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
864 	},
865 	[ C(OP_WRITE) ] = {
866 		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
867 		[ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
868 	},
869 	[ C(OP_PREFETCH) ] = {
870 		[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
871 		[ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
872 	},
873  },
874  [ C(L1I ) ] = {
875 	[ C(OP_READ) ] = {
876 		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
877 		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
878 	},
879 	[ C(OP_WRITE) ] = {
880 		[ C(RESULT_ACCESS) ] = -1,
881 		[ C(RESULT_MISS)   ] = -1,
882 	},
883 	[ C(OP_PREFETCH) ] = {
884 		[ C(RESULT_ACCESS) ] = 0x0,
885 		[ C(RESULT_MISS)   ] = 0x0,
886 	},
887  },
888  [ C(LL  ) ] = {
889 	[ C(OP_READ) ] = {
890 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
891 		[ C(RESULT_ACCESS) ] = 0x01b7,
892 		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
893 		[ C(RESULT_MISS)   ] = 0x01b7,
894 	},
895 	/*
896 	 * Use RFO, not WRITEBACK, because a write miss would typically occur
897 	 * on RFO.
898 	 */
899 	[ C(OP_WRITE) ] = {
900 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
901 		[ C(RESULT_ACCESS) ] = 0x01b7,
902 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
903 		[ C(RESULT_MISS)   ] = 0x01b7,
904 	},
905 	[ C(OP_PREFETCH) ] = {
906 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
907 		[ C(RESULT_ACCESS) ] = 0x01b7,
908 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
909 		[ C(RESULT_MISS)   ] = 0x01b7,
910 	},
911  },
912  [ C(DTLB) ] = {
913 	[ C(OP_READ) ] = {
914 		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
915 		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
916 	},
917 	[ C(OP_WRITE) ] = {
918 		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
919 		[ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
920 	},
921 	[ C(OP_PREFETCH) ] = {
922 		[ C(RESULT_ACCESS) ] = 0x0,
923 		[ C(RESULT_MISS)   ] = 0x0,
924 	},
925  },
926  [ C(ITLB) ] = {
927 	[ C(OP_READ) ] = {
928 		[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
929 		[ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.ANY              */
930 	},
931 	[ C(OP_WRITE) ] = {
932 		[ C(RESULT_ACCESS) ] = -1,
933 		[ C(RESULT_MISS)   ] = -1,
934 	},
935 	[ C(OP_PREFETCH) ] = {
936 		[ C(RESULT_ACCESS) ] = -1,
937 		[ C(RESULT_MISS)   ] = -1,
938 	},
939  },
940  [ C(BPU ) ] = {
941 	[ C(OP_READ) ] = {
942 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
943 		[ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
944 	},
945 	[ C(OP_WRITE) ] = {
946 		[ C(RESULT_ACCESS) ] = -1,
947 		[ C(RESULT_MISS)   ] = -1,
948 	},
949 	[ C(OP_PREFETCH) ] = {
950 		[ C(RESULT_ACCESS) ] = -1,
951 		[ C(RESULT_MISS)   ] = -1,
952 	},
953  },
954  [ C(NODE) ] = {
955 	[ C(OP_READ) ] = {
956 		[ C(RESULT_ACCESS) ] = 0x01b7,
957 		[ C(RESULT_MISS)   ] = 0x01b7,
958 	},
959 	[ C(OP_WRITE) ] = {
960 		[ C(RESULT_ACCESS) ] = 0x01b7,
961 		[ C(RESULT_MISS)   ] = 0x01b7,
962 	},
963 	[ C(OP_PREFETCH) ] = {
964 		[ C(RESULT_ACCESS) ] = 0x01b7,
965 		[ C(RESULT_MISS)   ] = 0x01b7,
966 	},
967  },
968 };
969 
970 /*
971  * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
972  * See IA32 SDM Vol 3B 30.6.1.3
973  */
974 
975 #define NHM_DMND_DATA_RD	(1 << 0)
976 #define NHM_DMND_RFO		(1 << 1)
977 #define NHM_DMND_IFETCH		(1 << 2)
978 #define NHM_DMND_WB		(1 << 3)
979 #define NHM_PF_DATA_RD		(1 << 4)
980 #define NHM_PF_DATA_RFO		(1 << 5)
981 #define NHM_PF_IFETCH		(1 << 6)
982 #define NHM_OFFCORE_OTHER	(1 << 7)
983 #define NHM_UNCORE_HIT		(1 << 8)
984 #define NHM_OTHER_CORE_HIT_SNP	(1 << 9)
985 #define NHM_OTHER_CORE_HITM	(1 << 10)
986         			/* reserved */
987 #define NHM_REMOTE_CACHE_FWD	(1 << 12)
988 #define NHM_REMOTE_DRAM		(1 << 13)
989 #define NHM_LOCAL_DRAM		(1 << 14)
990 #define NHM_NON_DRAM		(1 << 15)
991 
992 #define NHM_LOCAL		(NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
993 #define NHM_REMOTE		(NHM_REMOTE_DRAM)
994 
995 #define NHM_DMND_READ		(NHM_DMND_DATA_RD)
996 #define NHM_DMND_WRITE		(NHM_DMND_RFO|NHM_DMND_WB)
997 #define NHM_DMND_PREFETCH	(NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
998 
999 #define NHM_L3_HIT	(NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
1000 #define NHM_L3_MISS	(NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
1001 #define NHM_L3_ACCESS	(NHM_L3_HIT|NHM_L3_MISS)
1002 
1003 static __initconst const u64 nehalem_hw_cache_extra_regs
1004 				[PERF_COUNT_HW_CACHE_MAX]
1005 				[PERF_COUNT_HW_CACHE_OP_MAX]
1006 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1007 {
1008  [ C(LL  ) ] = {
1009 	[ C(OP_READ) ] = {
1010 		[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
1011 		[ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_L3_MISS,
1012 	},
1013 	[ C(OP_WRITE) ] = {
1014 		[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
1015 		[ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_L3_MISS,
1016 	},
1017 	[ C(OP_PREFETCH) ] = {
1018 		[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
1019 		[ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
1020 	},
1021  },
1022  [ C(NODE) ] = {
1023 	[ C(OP_READ) ] = {
1024 		[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
1025 		[ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_REMOTE,
1026 	},
1027 	[ C(OP_WRITE) ] = {
1028 		[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
1029 		[ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_REMOTE,
1030 	},
1031 	[ C(OP_PREFETCH) ] = {
1032 		[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
1033 		[ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_REMOTE,
1034 	},
1035  },
1036 };
1037 
1038 static __initconst const u64 nehalem_hw_cache_event_ids
1039 				[PERF_COUNT_HW_CACHE_MAX]
1040 				[PERF_COUNT_HW_CACHE_OP_MAX]
1041 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1042 {
1043  [ C(L1D) ] = {
1044 	[ C(OP_READ) ] = {
1045 		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1046 		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
1047 	},
1048 	[ C(OP_WRITE) ] = {
1049 		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1050 		[ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
1051 	},
1052 	[ C(OP_PREFETCH) ] = {
1053 		[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
1054 		[ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
1055 	},
1056  },
1057  [ C(L1I ) ] = {
1058 	[ C(OP_READ) ] = {
1059 		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
1060 		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
1061 	},
1062 	[ C(OP_WRITE) ] = {
1063 		[ C(RESULT_ACCESS) ] = -1,
1064 		[ C(RESULT_MISS)   ] = -1,
1065 	},
1066 	[ C(OP_PREFETCH) ] = {
1067 		[ C(RESULT_ACCESS) ] = 0x0,
1068 		[ C(RESULT_MISS)   ] = 0x0,
1069 	},
1070  },
1071  [ C(LL  ) ] = {
1072 	[ C(OP_READ) ] = {
1073 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1074 		[ C(RESULT_ACCESS) ] = 0x01b7,
1075 		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1076 		[ C(RESULT_MISS)   ] = 0x01b7,
1077 	},
1078 	/*
1079 	 * Use RFO, not WRITEBACK, because a write miss would typically occur
1080 	 * on RFO.
1081 	 */
1082 	[ C(OP_WRITE) ] = {
1083 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1084 		[ C(RESULT_ACCESS) ] = 0x01b7,
1085 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1086 		[ C(RESULT_MISS)   ] = 0x01b7,
1087 	},
1088 	[ C(OP_PREFETCH) ] = {
1089 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1090 		[ C(RESULT_ACCESS) ] = 0x01b7,
1091 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1092 		[ C(RESULT_MISS)   ] = 0x01b7,
1093 	},
1094  },
1095  [ C(DTLB) ] = {
1096 	[ C(OP_READ) ] = {
1097 		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI   (alias)  */
1098 		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
1099 	},
1100 	[ C(OP_WRITE) ] = {
1101 		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI   (alias)  */
1102 		[ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
1103 	},
1104 	[ C(OP_PREFETCH) ] = {
1105 		[ C(RESULT_ACCESS) ] = 0x0,
1106 		[ C(RESULT_MISS)   ] = 0x0,
1107 	},
1108  },
1109  [ C(ITLB) ] = {
1110 	[ C(OP_READ) ] = {
1111 		[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
1112 		[ C(RESULT_MISS)   ] = 0x20c8, /* ITLB_MISS_RETIRED            */
1113 	},
1114 	[ C(OP_WRITE) ] = {
1115 		[ C(RESULT_ACCESS) ] = -1,
1116 		[ C(RESULT_MISS)   ] = -1,
1117 	},
1118 	[ C(OP_PREFETCH) ] = {
1119 		[ C(RESULT_ACCESS) ] = -1,
1120 		[ C(RESULT_MISS)   ] = -1,
1121 	},
1122  },
1123  [ C(BPU ) ] = {
1124 	[ C(OP_READ) ] = {
1125 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1126 		[ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1127 	},
1128 	[ C(OP_WRITE) ] = {
1129 		[ C(RESULT_ACCESS) ] = -1,
1130 		[ C(RESULT_MISS)   ] = -1,
1131 	},
1132 	[ C(OP_PREFETCH) ] = {
1133 		[ C(RESULT_ACCESS) ] = -1,
1134 		[ C(RESULT_MISS)   ] = -1,
1135 	},
1136  },
1137  [ C(NODE) ] = {
1138 	[ C(OP_READ) ] = {
1139 		[ C(RESULT_ACCESS) ] = 0x01b7,
1140 		[ C(RESULT_MISS)   ] = 0x01b7,
1141 	},
1142 	[ C(OP_WRITE) ] = {
1143 		[ C(RESULT_ACCESS) ] = 0x01b7,
1144 		[ C(RESULT_MISS)   ] = 0x01b7,
1145 	},
1146 	[ C(OP_PREFETCH) ] = {
1147 		[ C(RESULT_ACCESS) ] = 0x01b7,
1148 		[ C(RESULT_MISS)   ] = 0x01b7,
1149 	},
1150  },
1151 };
1152 
1153 static __initconst const u64 core2_hw_cache_event_ids
1154 				[PERF_COUNT_HW_CACHE_MAX]
1155 				[PERF_COUNT_HW_CACHE_OP_MAX]
1156 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1157 {
1158  [ C(L1D) ] = {
1159 	[ C(OP_READ) ] = {
1160 		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI          */
1161 		[ C(RESULT_MISS)   ] = 0x0140, /* L1D_CACHE_LD.I_STATE       */
1162 	},
1163 	[ C(OP_WRITE) ] = {
1164 		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI          */
1165 		[ C(RESULT_MISS)   ] = 0x0141, /* L1D_CACHE_ST.I_STATE       */
1166 	},
1167 	[ C(OP_PREFETCH) ] = {
1168 		[ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS      */
1169 		[ C(RESULT_MISS)   ] = 0,
1170 	},
1171  },
1172  [ C(L1I ) ] = {
1173 	[ C(OP_READ) ] = {
1174 		[ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS                  */
1175 		[ C(RESULT_MISS)   ] = 0x0081, /* L1I.MISSES                 */
1176 	},
1177 	[ C(OP_WRITE) ] = {
1178 		[ C(RESULT_ACCESS) ] = -1,
1179 		[ C(RESULT_MISS)   ] = -1,
1180 	},
1181 	[ C(OP_PREFETCH) ] = {
1182 		[ C(RESULT_ACCESS) ] = 0,
1183 		[ C(RESULT_MISS)   ] = 0,
1184 	},
1185  },
1186  [ C(LL  ) ] = {
1187 	[ C(OP_READ) ] = {
1188 		[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1189 		[ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1190 	},
1191 	[ C(OP_WRITE) ] = {
1192 		[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1193 		[ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1194 	},
1195 	[ C(OP_PREFETCH) ] = {
1196 		[ C(RESULT_ACCESS) ] = 0,
1197 		[ C(RESULT_MISS)   ] = 0,
1198 	},
1199  },
1200  [ C(DTLB) ] = {
1201 	[ C(OP_READ) ] = {
1202 		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI  (alias) */
1203 		[ C(RESULT_MISS)   ] = 0x0208, /* DTLB_MISSES.MISS_LD        */
1204 	},
1205 	[ C(OP_WRITE) ] = {
1206 		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI  (alias) */
1207 		[ C(RESULT_MISS)   ] = 0x0808, /* DTLB_MISSES.MISS_ST        */
1208 	},
1209 	[ C(OP_PREFETCH) ] = {
1210 		[ C(RESULT_ACCESS) ] = 0,
1211 		[ C(RESULT_MISS)   ] = 0,
1212 	},
1213  },
1214  [ C(ITLB) ] = {
1215 	[ C(OP_READ) ] = {
1216 		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1217 		[ C(RESULT_MISS)   ] = 0x1282, /* ITLBMISSES                 */
1218 	},
1219 	[ C(OP_WRITE) ] = {
1220 		[ C(RESULT_ACCESS) ] = -1,
1221 		[ C(RESULT_MISS)   ] = -1,
1222 	},
1223 	[ C(OP_PREFETCH) ] = {
1224 		[ C(RESULT_ACCESS) ] = -1,
1225 		[ C(RESULT_MISS)   ] = -1,
1226 	},
1227  },
1228  [ C(BPU ) ] = {
1229 	[ C(OP_READ) ] = {
1230 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1231 		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1232 	},
1233 	[ C(OP_WRITE) ] = {
1234 		[ C(RESULT_ACCESS) ] = -1,
1235 		[ C(RESULT_MISS)   ] = -1,
1236 	},
1237 	[ C(OP_PREFETCH) ] = {
1238 		[ C(RESULT_ACCESS) ] = -1,
1239 		[ C(RESULT_MISS)   ] = -1,
1240 	},
1241  },
1242 };
1243 
1244 static __initconst const u64 atom_hw_cache_event_ids
1245 				[PERF_COUNT_HW_CACHE_MAX]
1246 				[PERF_COUNT_HW_CACHE_OP_MAX]
1247 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1248 {
1249  [ C(L1D) ] = {
1250 	[ C(OP_READ) ] = {
1251 		[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD               */
1252 		[ C(RESULT_MISS)   ] = 0,
1253 	},
1254 	[ C(OP_WRITE) ] = {
1255 		[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST               */
1256 		[ C(RESULT_MISS)   ] = 0,
1257 	},
1258 	[ C(OP_PREFETCH) ] = {
1259 		[ C(RESULT_ACCESS) ] = 0x0,
1260 		[ C(RESULT_MISS)   ] = 0,
1261 	},
1262  },
1263  [ C(L1I ) ] = {
1264 	[ C(OP_READ) ] = {
1265 		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                  */
1266 		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                 */
1267 	},
1268 	[ C(OP_WRITE) ] = {
1269 		[ C(RESULT_ACCESS) ] = -1,
1270 		[ C(RESULT_MISS)   ] = -1,
1271 	},
1272 	[ C(OP_PREFETCH) ] = {
1273 		[ C(RESULT_ACCESS) ] = 0,
1274 		[ C(RESULT_MISS)   ] = 0,
1275 	},
1276  },
1277  [ C(LL  ) ] = {
1278 	[ C(OP_READ) ] = {
1279 		[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1280 		[ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1281 	},
1282 	[ C(OP_WRITE) ] = {
1283 		[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1284 		[ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1285 	},
1286 	[ C(OP_PREFETCH) ] = {
1287 		[ C(RESULT_ACCESS) ] = 0,
1288 		[ C(RESULT_MISS)   ] = 0,
1289 	},
1290  },
1291  [ C(DTLB) ] = {
1292 	[ C(OP_READ) ] = {
1293 		[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI  (alias) */
1294 		[ C(RESULT_MISS)   ] = 0x0508, /* DTLB_MISSES.MISS_LD        */
1295 	},
1296 	[ C(OP_WRITE) ] = {
1297 		[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI  (alias) */
1298 		[ C(RESULT_MISS)   ] = 0x0608, /* DTLB_MISSES.MISS_ST        */
1299 	},
1300 	[ C(OP_PREFETCH) ] = {
1301 		[ C(RESULT_ACCESS) ] = 0,
1302 		[ C(RESULT_MISS)   ] = 0,
1303 	},
1304  },
1305  [ C(ITLB) ] = {
1306 	[ C(OP_READ) ] = {
1307 		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1308 		[ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES                */
1309 	},
1310 	[ C(OP_WRITE) ] = {
1311 		[ C(RESULT_ACCESS) ] = -1,
1312 		[ C(RESULT_MISS)   ] = -1,
1313 	},
1314 	[ C(OP_PREFETCH) ] = {
1315 		[ C(RESULT_ACCESS) ] = -1,
1316 		[ C(RESULT_MISS)   ] = -1,
1317 	},
1318  },
1319  [ C(BPU ) ] = {
1320 	[ C(OP_READ) ] = {
1321 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1322 		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1323 	},
1324 	[ C(OP_WRITE) ] = {
1325 		[ C(RESULT_ACCESS) ] = -1,
1326 		[ C(RESULT_MISS)   ] = -1,
1327 	},
1328 	[ C(OP_PREFETCH) ] = {
1329 		[ C(RESULT_ACCESS) ] = -1,
1330 		[ C(RESULT_MISS)   ] = -1,
1331 	},
1332  },
1333 };
1334 
1335 static struct extra_reg intel_slm_extra_regs[] __read_mostly =
1336 {
1337 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1338 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
1339 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1),
1340 	EVENT_EXTRA_END
1341 };
1342 
1343 #define SLM_DMND_READ		SNB_DMND_DATA_RD
1344 #define SLM_DMND_WRITE		SNB_DMND_RFO
1345 #define SLM_DMND_PREFETCH	(SNB_PF_DATA_RD|SNB_PF_RFO)
1346 
1347 #define SLM_SNP_ANY		(SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
1348 #define SLM_LLC_ACCESS		SNB_RESP_ANY
1349 #define SLM_LLC_MISS		(SLM_SNP_ANY|SNB_NON_DRAM)
1350 
1351 static __initconst const u64 slm_hw_cache_extra_regs
1352 				[PERF_COUNT_HW_CACHE_MAX]
1353 				[PERF_COUNT_HW_CACHE_OP_MAX]
1354 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1355 {
1356  [ C(LL  ) ] = {
1357 	[ C(OP_READ) ] = {
1358 		[ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
1359 		[ C(RESULT_MISS)   ] = 0,
1360 	},
1361 	[ C(OP_WRITE) ] = {
1362 		[ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
1363 		[ C(RESULT_MISS)   ] = SLM_DMND_WRITE|SLM_LLC_MISS,
1364 	},
1365 	[ C(OP_PREFETCH) ] = {
1366 		[ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
1367 		[ C(RESULT_MISS)   ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
1368 	},
1369  },
1370 };
1371 
1372 static __initconst const u64 slm_hw_cache_event_ids
1373 				[PERF_COUNT_HW_CACHE_MAX]
1374 				[PERF_COUNT_HW_CACHE_OP_MAX]
1375 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1376 {
1377  [ C(L1D) ] = {
1378 	[ C(OP_READ) ] = {
1379 		[ C(RESULT_ACCESS) ] = 0,
1380 		[ C(RESULT_MISS)   ] = 0x0104, /* LD_DCU_MISS */
1381 	},
1382 	[ C(OP_WRITE) ] = {
1383 		[ C(RESULT_ACCESS) ] = 0,
1384 		[ C(RESULT_MISS)   ] = 0,
1385 	},
1386 	[ C(OP_PREFETCH) ] = {
1387 		[ C(RESULT_ACCESS) ] = 0,
1388 		[ C(RESULT_MISS)   ] = 0,
1389 	},
1390  },
1391  [ C(L1I ) ] = {
1392 	[ C(OP_READ) ] = {
1393 		[ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
1394 		[ C(RESULT_MISS)   ] = 0x0280, /* ICACGE.MISSES */
1395 	},
1396 	[ C(OP_WRITE) ] = {
1397 		[ C(RESULT_ACCESS) ] = -1,
1398 		[ C(RESULT_MISS)   ] = -1,
1399 	},
1400 	[ C(OP_PREFETCH) ] = {
1401 		[ C(RESULT_ACCESS) ] = 0,
1402 		[ C(RESULT_MISS)   ] = 0,
1403 	},
1404  },
1405  [ C(LL  ) ] = {
1406 	[ C(OP_READ) ] = {
1407 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1408 		[ C(RESULT_ACCESS) ] = 0x01b7,
1409 		[ C(RESULT_MISS)   ] = 0,
1410 	},
1411 	[ C(OP_WRITE) ] = {
1412 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1413 		[ C(RESULT_ACCESS) ] = 0x01b7,
1414 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1415 		[ C(RESULT_MISS)   ] = 0x01b7,
1416 	},
1417 	[ C(OP_PREFETCH) ] = {
1418 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1419 		[ C(RESULT_ACCESS) ] = 0x01b7,
1420 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1421 		[ C(RESULT_MISS)   ] = 0x01b7,
1422 	},
1423  },
1424  [ C(DTLB) ] = {
1425 	[ C(OP_READ) ] = {
1426 		[ C(RESULT_ACCESS) ] = 0,
1427 		[ C(RESULT_MISS)   ] = 0x0804, /* LD_DTLB_MISS */
1428 	},
1429 	[ C(OP_WRITE) ] = {
1430 		[ C(RESULT_ACCESS) ] = 0,
1431 		[ C(RESULT_MISS)   ] = 0,
1432 	},
1433 	[ C(OP_PREFETCH) ] = {
1434 		[ C(RESULT_ACCESS) ] = 0,
1435 		[ C(RESULT_MISS)   ] = 0,
1436 	},
1437  },
1438  [ C(ITLB) ] = {
1439 	[ C(OP_READ) ] = {
1440 		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1441 		[ C(RESULT_MISS)   ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
1442 	},
1443 	[ C(OP_WRITE) ] = {
1444 		[ C(RESULT_ACCESS) ] = -1,
1445 		[ C(RESULT_MISS)   ] = -1,
1446 	},
1447 	[ C(OP_PREFETCH) ] = {
1448 		[ C(RESULT_ACCESS) ] = -1,
1449 		[ C(RESULT_MISS)   ] = -1,
1450 	},
1451  },
1452  [ C(BPU ) ] = {
1453 	[ C(OP_READ) ] = {
1454 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1455 		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1456 	},
1457 	[ C(OP_WRITE) ] = {
1458 		[ C(RESULT_ACCESS) ] = -1,
1459 		[ C(RESULT_MISS)   ] = -1,
1460 	},
1461 	[ C(OP_PREFETCH) ] = {
1462 		[ C(RESULT_ACCESS) ] = -1,
1463 		[ C(RESULT_MISS)   ] = -1,
1464 	},
1465  },
1466 };
1467 
1468 static struct extra_reg intel_glm_extra_regs[] __read_mostly = {
1469 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1470 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x760005ffbfull, RSP_0),
1471 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x360005ffbfull, RSP_1),
1472 	EVENT_EXTRA_END
1473 };
1474 
1475 #define GLM_DEMAND_DATA_RD		BIT_ULL(0)
1476 #define GLM_DEMAND_RFO			BIT_ULL(1)
1477 #define GLM_ANY_RESPONSE		BIT_ULL(16)
1478 #define GLM_SNP_NONE_OR_MISS		BIT_ULL(33)
1479 #define GLM_DEMAND_READ			GLM_DEMAND_DATA_RD
1480 #define GLM_DEMAND_WRITE		GLM_DEMAND_RFO
1481 #define GLM_DEMAND_PREFETCH		(SNB_PF_DATA_RD|SNB_PF_RFO)
1482 #define GLM_LLC_ACCESS			GLM_ANY_RESPONSE
1483 #define GLM_SNP_ANY			(GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM)
1484 #define GLM_LLC_MISS			(GLM_SNP_ANY|SNB_NON_DRAM)
1485 
1486 static __initconst const u64 glm_hw_cache_event_ids
1487 				[PERF_COUNT_HW_CACHE_MAX]
1488 				[PERF_COUNT_HW_CACHE_OP_MAX]
1489 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1490 	[C(L1D)] = {
1491 		[C(OP_READ)] = {
1492 			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1493 			[C(RESULT_MISS)]	= 0x0,
1494 		},
1495 		[C(OP_WRITE)] = {
1496 			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1497 			[C(RESULT_MISS)]	= 0x0,
1498 		},
1499 		[C(OP_PREFETCH)] = {
1500 			[C(RESULT_ACCESS)]	= 0x0,
1501 			[C(RESULT_MISS)]	= 0x0,
1502 		},
1503 	},
1504 	[C(L1I)] = {
1505 		[C(OP_READ)] = {
1506 			[C(RESULT_ACCESS)]	= 0x0380,	/* ICACHE.ACCESSES */
1507 			[C(RESULT_MISS)]	= 0x0280,	/* ICACHE.MISSES */
1508 		},
1509 		[C(OP_WRITE)] = {
1510 			[C(RESULT_ACCESS)]	= -1,
1511 			[C(RESULT_MISS)]	= -1,
1512 		},
1513 		[C(OP_PREFETCH)] = {
1514 			[C(RESULT_ACCESS)]	= 0x0,
1515 			[C(RESULT_MISS)]	= 0x0,
1516 		},
1517 	},
1518 	[C(LL)] = {
1519 		[C(OP_READ)] = {
1520 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1521 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1522 		},
1523 		[C(OP_WRITE)] = {
1524 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1525 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1526 		},
1527 		[C(OP_PREFETCH)] = {
1528 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1529 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1530 		},
1531 	},
1532 	[C(DTLB)] = {
1533 		[C(OP_READ)] = {
1534 			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1535 			[C(RESULT_MISS)]	= 0x0,
1536 		},
1537 		[C(OP_WRITE)] = {
1538 			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1539 			[C(RESULT_MISS)]	= 0x0,
1540 		},
1541 		[C(OP_PREFETCH)] = {
1542 			[C(RESULT_ACCESS)]	= 0x0,
1543 			[C(RESULT_MISS)]	= 0x0,
1544 		},
1545 	},
1546 	[C(ITLB)] = {
1547 		[C(OP_READ)] = {
1548 			[C(RESULT_ACCESS)]	= 0x00c0,	/* INST_RETIRED.ANY_P */
1549 			[C(RESULT_MISS)]	= 0x0481,	/* ITLB.MISS */
1550 		},
1551 		[C(OP_WRITE)] = {
1552 			[C(RESULT_ACCESS)]	= -1,
1553 			[C(RESULT_MISS)]	= -1,
1554 		},
1555 		[C(OP_PREFETCH)] = {
1556 			[C(RESULT_ACCESS)]	= -1,
1557 			[C(RESULT_MISS)]	= -1,
1558 		},
1559 	},
1560 	[C(BPU)] = {
1561 		[C(OP_READ)] = {
1562 			[C(RESULT_ACCESS)]	= 0x00c4,	/* BR_INST_RETIRED.ALL_BRANCHES */
1563 			[C(RESULT_MISS)]	= 0x00c5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
1564 		},
1565 		[C(OP_WRITE)] = {
1566 			[C(RESULT_ACCESS)]	= -1,
1567 			[C(RESULT_MISS)]	= -1,
1568 		},
1569 		[C(OP_PREFETCH)] = {
1570 			[C(RESULT_ACCESS)]	= -1,
1571 			[C(RESULT_MISS)]	= -1,
1572 		},
1573 	},
1574 };
1575 
1576 static __initconst const u64 glm_hw_cache_extra_regs
1577 				[PERF_COUNT_HW_CACHE_MAX]
1578 				[PERF_COUNT_HW_CACHE_OP_MAX]
1579 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1580 	[C(LL)] = {
1581 		[C(OP_READ)] = {
1582 			[C(RESULT_ACCESS)]	= GLM_DEMAND_READ|
1583 						  GLM_LLC_ACCESS,
1584 			[C(RESULT_MISS)]	= GLM_DEMAND_READ|
1585 						  GLM_LLC_MISS,
1586 		},
1587 		[C(OP_WRITE)] = {
1588 			[C(RESULT_ACCESS)]	= GLM_DEMAND_WRITE|
1589 						  GLM_LLC_ACCESS,
1590 			[C(RESULT_MISS)]	= GLM_DEMAND_WRITE|
1591 						  GLM_LLC_MISS,
1592 		},
1593 		[C(OP_PREFETCH)] = {
1594 			[C(RESULT_ACCESS)]	= GLM_DEMAND_PREFETCH|
1595 						  GLM_LLC_ACCESS,
1596 			[C(RESULT_MISS)]	= GLM_DEMAND_PREFETCH|
1597 						  GLM_LLC_MISS,
1598 		},
1599 	},
1600 };
1601 
1602 #define KNL_OT_L2_HITE		BIT_ULL(19) /* Other Tile L2 Hit */
1603 #define KNL_OT_L2_HITF		BIT_ULL(20) /* Other Tile L2 Hit */
1604 #define KNL_MCDRAM_LOCAL	BIT_ULL(21)
1605 #define KNL_MCDRAM_FAR		BIT_ULL(22)
1606 #define KNL_DDR_LOCAL		BIT_ULL(23)
1607 #define KNL_DDR_FAR		BIT_ULL(24)
1608 #define KNL_DRAM_ANY		(KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \
1609 				    KNL_DDR_LOCAL | KNL_DDR_FAR)
1610 #define KNL_L2_READ		SLM_DMND_READ
1611 #define KNL_L2_WRITE		SLM_DMND_WRITE
1612 #define KNL_L2_PREFETCH		SLM_DMND_PREFETCH
1613 #define KNL_L2_ACCESS		SLM_LLC_ACCESS
1614 #define KNL_L2_MISS		(KNL_OT_L2_HITE | KNL_OT_L2_HITF | \
1615 				   KNL_DRAM_ANY | SNB_SNP_ANY | \
1616 						  SNB_NON_DRAM)
1617 
1618 static __initconst const u64 knl_hw_cache_extra_regs
1619 				[PERF_COUNT_HW_CACHE_MAX]
1620 				[PERF_COUNT_HW_CACHE_OP_MAX]
1621 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1622 	[C(LL)] = {
1623 		[C(OP_READ)] = {
1624 			[C(RESULT_ACCESS)] = KNL_L2_READ | KNL_L2_ACCESS,
1625 			[C(RESULT_MISS)]   = 0,
1626 		},
1627 		[C(OP_WRITE)] = {
1628 			[C(RESULT_ACCESS)] = KNL_L2_WRITE | KNL_L2_ACCESS,
1629 			[C(RESULT_MISS)]   = KNL_L2_WRITE | KNL_L2_MISS,
1630 		},
1631 		[C(OP_PREFETCH)] = {
1632 			[C(RESULT_ACCESS)] = KNL_L2_PREFETCH | KNL_L2_ACCESS,
1633 			[C(RESULT_MISS)]   = KNL_L2_PREFETCH | KNL_L2_MISS,
1634 		},
1635 	},
1636 };
1637 
1638 /*
1639  * Used from PMIs where the LBRs are already disabled.
1640  *
1641  * This function could be called consecutively. It is required to remain in
1642  * disabled state if called consecutively.
1643  *
1644  * During consecutive calls, the same disable value will be written to related
1645  * registers, so the PMU state remains unchanged. hw.state in
1646  * intel_bts_disable_local will remain PERF_HES_STOPPED too in consecutive
1647  * calls.
1648  */
1649 static void __intel_pmu_disable_all(void)
1650 {
1651 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1652 
1653 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
1654 
1655 	if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
1656 		intel_pmu_disable_bts();
1657 	else
1658 		intel_bts_disable_local();
1659 
1660 	intel_pmu_pebs_disable_all();
1661 }
1662 
1663 static void intel_pmu_disable_all(void)
1664 {
1665 	__intel_pmu_disable_all();
1666 	intel_pmu_lbr_disable_all();
1667 }
1668 
1669 static void __intel_pmu_enable_all(int added, bool pmi)
1670 {
1671 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1672 
1673 	intel_pmu_pebs_enable_all();
1674 	intel_pmu_lbr_enable_all(pmi);
1675 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
1676 			x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
1677 
1678 	if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
1679 		struct perf_event *event =
1680 			cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
1681 
1682 		if (WARN_ON_ONCE(!event))
1683 			return;
1684 
1685 		intel_pmu_enable_bts(event->hw.config);
1686 	} else
1687 		intel_bts_enable_local();
1688 }
1689 
1690 static void intel_pmu_enable_all(int added)
1691 {
1692 	__intel_pmu_enable_all(added, false);
1693 }
1694 
1695 /*
1696  * Workaround for:
1697  *   Intel Errata AAK100 (model 26)
1698  *   Intel Errata AAP53  (model 30)
1699  *   Intel Errata BD53   (model 44)
1700  *
1701  * The official story:
1702  *   These chips need to be 'reset' when adding counters by programming the
1703  *   magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
1704  *   in sequence on the same PMC or on different PMCs.
1705  *
1706  * In practise it appears some of these events do in fact count, and
1707  * we need to programm all 4 events.
1708  */
1709 static void intel_pmu_nhm_workaround(void)
1710 {
1711 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1712 	static const unsigned long nhm_magic[4] = {
1713 		0x4300B5,
1714 		0x4300D2,
1715 		0x4300B1,
1716 		0x4300B1
1717 	};
1718 	struct perf_event *event;
1719 	int i;
1720 
1721 	/*
1722 	 * The Errata requires below steps:
1723 	 * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
1724 	 * 2) Configure 4 PERFEVTSELx with the magic events and clear
1725 	 *    the corresponding PMCx;
1726 	 * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
1727 	 * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
1728 	 * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
1729 	 */
1730 
1731 	/*
1732 	 * The real steps we choose are a little different from above.
1733 	 * A) To reduce MSR operations, we don't run step 1) as they
1734 	 *    are already cleared before this function is called;
1735 	 * B) Call x86_perf_event_update to save PMCx before configuring
1736 	 *    PERFEVTSELx with magic number;
1737 	 * C) With step 5), we do clear only when the PERFEVTSELx is
1738 	 *    not used currently.
1739 	 * D) Call x86_perf_event_set_period to restore PMCx;
1740 	 */
1741 
1742 	/* We always operate 4 pairs of PERF Counters */
1743 	for (i = 0; i < 4; i++) {
1744 		event = cpuc->events[i];
1745 		if (event)
1746 			x86_perf_event_update(event);
1747 	}
1748 
1749 	for (i = 0; i < 4; i++) {
1750 		wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
1751 		wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
1752 	}
1753 
1754 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
1755 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
1756 
1757 	for (i = 0; i < 4; i++) {
1758 		event = cpuc->events[i];
1759 
1760 		if (event) {
1761 			x86_perf_event_set_period(event);
1762 			__x86_pmu_enable_event(&event->hw,
1763 					ARCH_PERFMON_EVENTSEL_ENABLE);
1764 		} else
1765 			wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
1766 	}
1767 }
1768 
1769 static void intel_pmu_nhm_enable_all(int added)
1770 {
1771 	if (added)
1772 		intel_pmu_nhm_workaround();
1773 	intel_pmu_enable_all(added);
1774 }
1775 
1776 static inline u64 intel_pmu_get_status(void)
1777 {
1778 	u64 status;
1779 
1780 	rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1781 
1782 	return status;
1783 }
1784 
1785 static inline void intel_pmu_ack_status(u64 ack)
1786 {
1787 	wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
1788 }
1789 
1790 static void intel_pmu_disable_fixed(struct hw_perf_event *hwc)
1791 {
1792 	int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
1793 	u64 ctrl_val, mask;
1794 
1795 	mask = 0xfULL << (idx * 4);
1796 
1797 	rdmsrl(hwc->config_base, ctrl_val);
1798 	ctrl_val &= ~mask;
1799 	wrmsrl(hwc->config_base, ctrl_val);
1800 }
1801 
1802 static inline bool event_is_checkpointed(struct perf_event *event)
1803 {
1804 	return (event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
1805 }
1806 
1807 static void intel_pmu_disable_event(struct perf_event *event)
1808 {
1809 	struct hw_perf_event *hwc = &event->hw;
1810 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1811 
1812 	if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
1813 		intel_pmu_disable_bts();
1814 		intel_pmu_drain_bts_buffer();
1815 		return;
1816 	}
1817 
1818 	cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx);
1819 	cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx);
1820 	cpuc->intel_cp_status &= ~(1ull << hwc->idx);
1821 
1822 	/*
1823 	 * must disable before any actual event
1824 	 * because any event may be combined with LBR
1825 	 */
1826 	if (needs_branch_stack(event))
1827 		intel_pmu_lbr_disable(event);
1828 
1829 	if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
1830 		intel_pmu_disable_fixed(hwc);
1831 		return;
1832 	}
1833 
1834 	x86_pmu_disable_event(event);
1835 
1836 	if (unlikely(event->attr.precise_ip))
1837 		intel_pmu_pebs_disable(event);
1838 }
1839 
1840 static void intel_pmu_enable_fixed(struct hw_perf_event *hwc)
1841 {
1842 	int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
1843 	u64 ctrl_val, bits, mask;
1844 
1845 	/*
1846 	 * Enable IRQ generation (0x8),
1847 	 * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
1848 	 * if requested:
1849 	 */
1850 	bits = 0x8ULL;
1851 	if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
1852 		bits |= 0x2;
1853 	if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
1854 		bits |= 0x1;
1855 
1856 	/*
1857 	 * ANY bit is supported in v3 and up
1858 	 */
1859 	if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
1860 		bits |= 0x4;
1861 
1862 	bits <<= (idx * 4);
1863 	mask = 0xfULL << (idx * 4);
1864 
1865 	rdmsrl(hwc->config_base, ctrl_val);
1866 	ctrl_val &= ~mask;
1867 	ctrl_val |= bits;
1868 	wrmsrl(hwc->config_base, ctrl_val);
1869 }
1870 
1871 static void intel_pmu_enable_event(struct perf_event *event)
1872 {
1873 	struct hw_perf_event *hwc = &event->hw;
1874 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1875 
1876 	if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
1877 		if (!__this_cpu_read(cpu_hw_events.enabled))
1878 			return;
1879 
1880 		intel_pmu_enable_bts(hwc->config);
1881 		return;
1882 	}
1883 	/*
1884 	 * must enabled before any actual event
1885 	 * because any event may be combined with LBR
1886 	 */
1887 	if (needs_branch_stack(event))
1888 		intel_pmu_lbr_enable(event);
1889 
1890 	if (event->attr.exclude_host)
1891 		cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx);
1892 	if (event->attr.exclude_guest)
1893 		cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx);
1894 
1895 	if (unlikely(event_is_checkpointed(event)))
1896 		cpuc->intel_cp_status |= (1ull << hwc->idx);
1897 
1898 	if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
1899 		intel_pmu_enable_fixed(hwc);
1900 		return;
1901 	}
1902 
1903 	if (unlikely(event->attr.precise_ip))
1904 		intel_pmu_pebs_enable(event);
1905 
1906 	__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
1907 }
1908 
1909 /*
1910  * Save and restart an expired event. Called by NMI contexts,
1911  * so it has to be careful about preempting normal event ops:
1912  */
1913 int intel_pmu_save_and_restart(struct perf_event *event)
1914 {
1915 	x86_perf_event_update(event);
1916 	/*
1917 	 * For a checkpointed counter always reset back to 0.  This
1918 	 * avoids a situation where the counter overflows, aborts the
1919 	 * transaction and is then set back to shortly before the
1920 	 * overflow, and overflows and aborts again.
1921 	 */
1922 	if (unlikely(event_is_checkpointed(event))) {
1923 		/* No race with NMIs because the counter should not be armed */
1924 		wrmsrl(event->hw.event_base, 0);
1925 		local64_set(&event->hw.prev_count, 0);
1926 	}
1927 	return x86_perf_event_set_period(event);
1928 }
1929 
1930 static void intel_pmu_reset(void)
1931 {
1932 	struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
1933 	unsigned long flags;
1934 	int idx;
1935 
1936 	if (!x86_pmu.num_counters)
1937 		return;
1938 
1939 	local_irq_save(flags);
1940 
1941 	pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
1942 
1943 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1944 		wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
1945 		wrmsrl_safe(x86_pmu_event_addr(idx),  0ull);
1946 	}
1947 	for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
1948 		wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
1949 
1950 	if (ds)
1951 		ds->bts_index = ds->bts_buffer_base;
1952 
1953 	/* Ack all overflows and disable fixed counters */
1954 	if (x86_pmu.version >= 2) {
1955 		intel_pmu_ack_status(intel_pmu_get_status());
1956 		wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
1957 	}
1958 
1959 	/* Reset LBRs and LBR freezing */
1960 	if (x86_pmu.lbr_nr) {
1961 		update_debugctlmsr(get_debugctlmsr() &
1962 			~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
1963 	}
1964 
1965 	local_irq_restore(flags);
1966 }
1967 
1968 /*
1969  * This handler is triggered by the local APIC, so the APIC IRQ handling
1970  * rules apply:
1971  */
1972 static int intel_pmu_handle_irq(struct pt_regs *regs)
1973 {
1974 	struct perf_sample_data data;
1975 	struct cpu_hw_events *cpuc;
1976 	int bit, loops;
1977 	u64 status;
1978 	int handled;
1979 
1980 	cpuc = this_cpu_ptr(&cpu_hw_events);
1981 
1982 	/*
1983 	 * No known reason to not always do late ACK,
1984 	 * but just in case do it opt-in.
1985 	 */
1986 	if (!x86_pmu.late_ack)
1987 		apic_write(APIC_LVTPC, APIC_DM_NMI);
1988 	__intel_pmu_disable_all();
1989 	handled = intel_pmu_drain_bts_buffer();
1990 	handled += intel_bts_interrupt();
1991 	status = intel_pmu_get_status();
1992 	if (!status)
1993 		goto done;
1994 
1995 	loops = 0;
1996 again:
1997 	intel_pmu_lbr_read();
1998 	intel_pmu_ack_status(status);
1999 	if (++loops > 100) {
2000 		static bool warned = false;
2001 		if (!warned) {
2002 			WARN(1, "perfevents: irq loop stuck!\n");
2003 			perf_event_print_debug();
2004 			warned = true;
2005 		}
2006 		intel_pmu_reset();
2007 		goto done;
2008 	}
2009 
2010 	inc_irq_stat(apic_perf_irqs);
2011 
2012 
2013 	/*
2014 	 * Ignore a range of extra bits in status that do not indicate
2015 	 * overflow by themselves.
2016 	 */
2017 	status &= ~(GLOBAL_STATUS_COND_CHG |
2018 		    GLOBAL_STATUS_ASIF |
2019 		    GLOBAL_STATUS_LBRS_FROZEN);
2020 	if (!status)
2021 		goto done;
2022 
2023 	/*
2024 	 * PEBS overflow sets bit 62 in the global status register
2025 	 */
2026 	if (__test_and_clear_bit(62, (unsigned long *)&status)) {
2027 		handled++;
2028 		x86_pmu.drain_pebs(regs);
2029 		/*
2030 		 * There are cases where, even though, the PEBS ovfl bit is set
2031 		 * in GLOBAL_OVF_STATUS, the PEBS events may also have their
2032 		 * overflow bits set for their counters. We must clear them
2033 		 * here because they have been processed as exact samples in
2034 		 * the drain_pebs() routine. They must not be processed again
2035 		 * in the for_each_bit_set() loop for regular samples below.
2036 		 */
2037 		status &= ~cpuc->pebs_enabled;
2038 		status &= x86_pmu.intel_ctrl | GLOBAL_STATUS_TRACE_TOPAPMI;
2039 	}
2040 
2041 	/*
2042 	 * Intel PT
2043 	 */
2044 	if (__test_and_clear_bit(55, (unsigned long *)&status)) {
2045 		handled++;
2046 		intel_pt_interrupt();
2047 	}
2048 
2049 	/*
2050 	 * Checkpointed counters can lead to 'spurious' PMIs because the
2051 	 * rollback caused by the PMI will have cleared the overflow status
2052 	 * bit. Therefore always force probe these counters.
2053 	 */
2054 	status |= cpuc->intel_cp_status;
2055 
2056 	for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
2057 		struct perf_event *event = cpuc->events[bit];
2058 
2059 		handled++;
2060 
2061 		if (!test_bit(bit, cpuc->active_mask))
2062 			continue;
2063 
2064 		if (!intel_pmu_save_and_restart(event))
2065 			continue;
2066 
2067 		perf_sample_data_init(&data, 0, event->hw.last_period);
2068 
2069 		if (has_branch_stack(event))
2070 			data.br_stack = &cpuc->lbr_stack;
2071 
2072 		if (perf_event_overflow(event, &data, regs))
2073 			x86_pmu_stop(event, 0);
2074 	}
2075 
2076 	/*
2077 	 * Repeat if there is more work to be done:
2078 	 */
2079 	status = intel_pmu_get_status();
2080 	if (status)
2081 		goto again;
2082 
2083 done:
2084 	/* Only restore PMU state when it's active. See x86_pmu_disable(). */
2085 	if (cpuc->enabled)
2086 		__intel_pmu_enable_all(0, true);
2087 
2088 	/*
2089 	 * Only unmask the NMI after the overflow counters
2090 	 * have been reset. This avoids spurious NMIs on
2091 	 * Haswell CPUs.
2092 	 */
2093 	if (x86_pmu.late_ack)
2094 		apic_write(APIC_LVTPC, APIC_DM_NMI);
2095 	return handled;
2096 }
2097 
2098 static struct event_constraint *
2099 intel_bts_constraints(struct perf_event *event)
2100 {
2101 	struct hw_perf_event *hwc = &event->hw;
2102 	unsigned int hw_event, bts_event;
2103 
2104 	if (event->attr.freq)
2105 		return NULL;
2106 
2107 	hw_event = hwc->config & INTEL_ARCH_EVENT_MASK;
2108 	bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
2109 
2110 	if (unlikely(hw_event == bts_event && hwc->sample_period == 1))
2111 		return &bts_constraint;
2112 
2113 	return NULL;
2114 }
2115 
2116 static int intel_alt_er(int idx, u64 config)
2117 {
2118 	int alt_idx = idx;
2119 
2120 	if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
2121 		return idx;
2122 
2123 	if (idx == EXTRA_REG_RSP_0)
2124 		alt_idx = EXTRA_REG_RSP_1;
2125 
2126 	if (idx == EXTRA_REG_RSP_1)
2127 		alt_idx = EXTRA_REG_RSP_0;
2128 
2129 	if (config & ~x86_pmu.extra_regs[alt_idx].valid_mask)
2130 		return idx;
2131 
2132 	return alt_idx;
2133 }
2134 
2135 static void intel_fixup_er(struct perf_event *event, int idx)
2136 {
2137 	event->hw.extra_reg.idx = idx;
2138 
2139 	if (idx == EXTRA_REG_RSP_0) {
2140 		event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
2141 		event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_0].event;
2142 		event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
2143 	} else if (idx == EXTRA_REG_RSP_1) {
2144 		event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
2145 		event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_1].event;
2146 		event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
2147 	}
2148 }
2149 
2150 /*
2151  * manage allocation of shared extra msr for certain events
2152  *
2153  * sharing can be:
2154  * per-cpu: to be shared between the various events on a single PMU
2155  * per-core: per-cpu + shared by HT threads
2156  */
2157 static struct event_constraint *
2158 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
2159 				   struct perf_event *event,
2160 				   struct hw_perf_event_extra *reg)
2161 {
2162 	struct event_constraint *c = &emptyconstraint;
2163 	struct er_account *era;
2164 	unsigned long flags;
2165 	int idx = reg->idx;
2166 
2167 	/*
2168 	 * reg->alloc can be set due to existing state, so for fake cpuc we
2169 	 * need to ignore this, otherwise we might fail to allocate proper fake
2170 	 * state for this extra reg constraint. Also see the comment below.
2171 	 */
2172 	if (reg->alloc && !cpuc->is_fake)
2173 		return NULL; /* call x86_get_event_constraint() */
2174 
2175 again:
2176 	era = &cpuc->shared_regs->regs[idx];
2177 	/*
2178 	 * we use spin_lock_irqsave() to avoid lockdep issues when
2179 	 * passing a fake cpuc
2180 	 */
2181 	raw_spin_lock_irqsave(&era->lock, flags);
2182 
2183 	if (!atomic_read(&era->ref) || era->config == reg->config) {
2184 
2185 		/*
2186 		 * If its a fake cpuc -- as per validate_{group,event}() we
2187 		 * shouldn't touch event state and we can avoid doing so
2188 		 * since both will only call get_event_constraints() once
2189 		 * on each event, this avoids the need for reg->alloc.
2190 		 *
2191 		 * Not doing the ER fixup will only result in era->reg being
2192 		 * wrong, but since we won't actually try and program hardware
2193 		 * this isn't a problem either.
2194 		 */
2195 		if (!cpuc->is_fake) {
2196 			if (idx != reg->idx)
2197 				intel_fixup_er(event, idx);
2198 
2199 			/*
2200 			 * x86_schedule_events() can call get_event_constraints()
2201 			 * multiple times on events in the case of incremental
2202 			 * scheduling(). reg->alloc ensures we only do the ER
2203 			 * allocation once.
2204 			 */
2205 			reg->alloc = 1;
2206 		}
2207 
2208 		/* lock in msr value */
2209 		era->config = reg->config;
2210 		era->reg = reg->reg;
2211 
2212 		/* one more user */
2213 		atomic_inc(&era->ref);
2214 
2215 		/*
2216 		 * need to call x86_get_event_constraint()
2217 		 * to check if associated event has constraints
2218 		 */
2219 		c = NULL;
2220 	} else {
2221 		idx = intel_alt_er(idx, reg->config);
2222 		if (idx != reg->idx) {
2223 			raw_spin_unlock_irqrestore(&era->lock, flags);
2224 			goto again;
2225 		}
2226 	}
2227 	raw_spin_unlock_irqrestore(&era->lock, flags);
2228 
2229 	return c;
2230 }
2231 
2232 static void
2233 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
2234 				   struct hw_perf_event_extra *reg)
2235 {
2236 	struct er_account *era;
2237 
2238 	/*
2239 	 * Only put constraint if extra reg was actually allocated. Also takes
2240 	 * care of event which do not use an extra shared reg.
2241 	 *
2242 	 * Also, if this is a fake cpuc we shouldn't touch any event state
2243 	 * (reg->alloc) and we don't care about leaving inconsistent cpuc state
2244 	 * either since it'll be thrown out.
2245 	 */
2246 	if (!reg->alloc || cpuc->is_fake)
2247 		return;
2248 
2249 	era = &cpuc->shared_regs->regs[reg->idx];
2250 
2251 	/* one fewer user */
2252 	atomic_dec(&era->ref);
2253 
2254 	/* allocate again next time */
2255 	reg->alloc = 0;
2256 }
2257 
2258 static struct event_constraint *
2259 intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
2260 			      struct perf_event *event)
2261 {
2262 	struct event_constraint *c = NULL, *d;
2263 	struct hw_perf_event_extra *xreg, *breg;
2264 
2265 	xreg = &event->hw.extra_reg;
2266 	if (xreg->idx != EXTRA_REG_NONE) {
2267 		c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
2268 		if (c == &emptyconstraint)
2269 			return c;
2270 	}
2271 	breg = &event->hw.branch_reg;
2272 	if (breg->idx != EXTRA_REG_NONE) {
2273 		d = __intel_shared_reg_get_constraints(cpuc, event, breg);
2274 		if (d == &emptyconstraint) {
2275 			__intel_shared_reg_put_constraints(cpuc, xreg);
2276 			c = d;
2277 		}
2278 	}
2279 	return c;
2280 }
2281 
2282 struct event_constraint *
2283 x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2284 			  struct perf_event *event)
2285 {
2286 	struct event_constraint *c;
2287 
2288 	if (x86_pmu.event_constraints) {
2289 		for_each_event_constraint(c, x86_pmu.event_constraints) {
2290 			if ((event->hw.config & c->cmask) == c->code) {
2291 				event->hw.flags |= c->flags;
2292 				return c;
2293 			}
2294 		}
2295 	}
2296 
2297 	return &unconstrained;
2298 }
2299 
2300 static struct event_constraint *
2301 __intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2302 			    struct perf_event *event)
2303 {
2304 	struct event_constraint *c;
2305 
2306 	c = intel_bts_constraints(event);
2307 	if (c)
2308 		return c;
2309 
2310 	c = intel_shared_regs_constraints(cpuc, event);
2311 	if (c)
2312 		return c;
2313 
2314 	c = intel_pebs_constraints(event);
2315 	if (c)
2316 		return c;
2317 
2318 	return x86_get_event_constraints(cpuc, idx, event);
2319 }
2320 
2321 static void
2322 intel_start_scheduling(struct cpu_hw_events *cpuc)
2323 {
2324 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2325 	struct intel_excl_states *xl;
2326 	int tid = cpuc->excl_thread_id;
2327 
2328 	/*
2329 	 * nothing needed if in group validation mode
2330 	 */
2331 	if (cpuc->is_fake || !is_ht_workaround_enabled())
2332 		return;
2333 
2334 	/*
2335 	 * no exclusion needed
2336 	 */
2337 	if (WARN_ON_ONCE(!excl_cntrs))
2338 		return;
2339 
2340 	xl = &excl_cntrs->states[tid];
2341 
2342 	xl->sched_started = true;
2343 	/*
2344 	 * lock shared state until we are done scheduling
2345 	 * in stop_event_scheduling()
2346 	 * makes scheduling appear as a transaction
2347 	 */
2348 	raw_spin_lock(&excl_cntrs->lock);
2349 }
2350 
2351 static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
2352 {
2353 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2354 	struct event_constraint *c = cpuc->event_constraint[idx];
2355 	struct intel_excl_states *xl;
2356 	int tid = cpuc->excl_thread_id;
2357 
2358 	if (cpuc->is_fake || !is_ht_workaround_enabled())
2359 		return;
2360 
2361 	if (WARN_ON_ONCE(!excl_cntrs))
2362 		return;
2363 
2364 	if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
2365 		return;
2366 
2367 	xl = &excl_cntrs->states[tid];
2368 
2369 	lockdep_assert_held(&excl_cntrs->lock);
2370 
2371 	if (c->flags & PERF_X86_EVENT_EXCL)
2372 		xl->state[cntr] = INTEL_EXCL_EXCLUSIVE;
2373 	else
2374 		xl->state[cntr] = INTEL_EXCL_SHARED;
2375 }
2376 
2377 static void
2378 intel_stop_scheduling(struct cpu_hw_events *cpuc)
2379 {
2380 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2381 	struct intel_excl_states *xl;
2382 	int tid = cpuc->excl_thread_id;
2383 
2384 	/*
2385 	 * nothing needed if in group validation mode
2386 	 */
2387 	if (cpuc->is_fake || !is_ht_workaround_enabled())
2388 		return;
2389 	/*
2390 	 * no exclusion needed
2391 	 */
2392 	if (WARN_ON_ONCE(!excl_cntrs))
2393 		return;
2394 
2395 	xl = &excl_cntrs->states[tid];
2396 
2397 	xl->sched_started = false;
2398 	/*
2399 	 * release shared state lock (acquired in intel_start_scheduling())
2400 	 */
2401 	raw_spin_unlock(&excl_cntrs->lock);
2402 }
2403 
2404 static struct event_constraint *
2405 intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
2406 			   int idx, struct event_constraint *c)
2407 {
2408 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2409 	struct intel_excl_states *xlo;
2410 	int tid = cpuc->excl_thread_id;
2411 	int is_excl, i;
2412 
2413 	/*
2414 	 * validating a group does not require
2415 	 * enforcing cross-thread  exclusion
2416 	 */
2417 	if (cpuc->is_fake || !is_ht_workaround_enabled())
2418 		return c;
2419 
2420 	/*
2421 	 * no exclusion needed
2422 	 */
2423 	if (WARN_ON_ONCE(!excl_cntrs))
2424 		return c;
2425 
2426 	/*
2427 	 * because we modify the constraint, we need
2428 	 * to make a copy. Static constraints come
2429 	 * from static const tables.
2430 	 *
2431 	 * only needed when constraint has not yet
2432 	 * been cloned (marked dynamic)
2433 	 */
2434 	if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
2435 		struct event_constraint *cx;
2436 
2437 		/*
2438 		 * grab pre-allocated constraint entry
2439 		 */
2440 		cx = &cpuc->constraint_list[idx];
2441 
2442 		/*
2443 		 * initialize dynamic constraint
2444 		 * with static constraint
2445 		 */
2446 		*cx = *c;
2447 
2448 		/*
2449 		 * mark constraint as dynamic, so we
2450 		 * can free it later on
2451 		 */
2452 		cx->flags |= PERF_X86_EVENT_DYNAMIC;
2453 		c = cx;
2454 	}
2455 
2456 	/*
2457 	 * From here on, the constraint is dynamic.
2458 	 * Either it was just allocated above, or it
2459 	 * was allocated during a earlier invocation
2460 	 * of this function
2461 	 */
2462 
2463 	/*
2464 	 * state of sibling HT
2465 	 */
2466 	xlo = &excl_cntrs->states[tid ^ 1];
2467 
2468 	/*
2469 	 * event requires exclusive counter access
2470 	 * across HT threads
2471 	 */
2472 	is_excl = c->flags & PERF_X86_EVENT_EXCL;
2473 	if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) {
2474 		event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT;
2475 		if (!cpuc->n_excl++)
2476 			WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1);
2477 	}
2478 
2479 	/*
2480 	 * Modify static constraint with current dynamic
2481 	 * state of thread
2482 	 *
2483 	 * EXCLUSIVE: sibling counter measuring exclusive event
2484 	 * SHARED   : sibling counter measuring non-exclusive event
2485 	 * UNUSED   : sibling counter unused
2486 	 */
2487 	for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) {
2488 		/*
2489 		 * exclusive event in sibling counter
2490 		 * our corresponding counter cannot be used
2491 		 * regardless of our event
2492 		 */
2493 		if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE)
2494 			__clear_bit(i, c->idxmsk);
2495 		/*
2496 		 * if measuring an exclusive event, sibling
2497 		 * measuring non-exclusive, then counter cannot
2498 		 * be used
2499 		 */
2500 		if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED)
2501 			__clear_bit(i, c->idxmsk);
2502 	}
2503 
2504 	/*
2505 	 * recompute actual bit weight for scheduling algorithm
2506 	 */
2507 	c->weight = hweight64(c->idxmsk64);
2508 
2509 	/*
2510 	 * if we return an empty mask, then switch
2511 	 * back to static empty constraint to avoid
2512 	 * the cost of freeing later on
2513 	 */
2514 	if (c->weight == 0)
2515 		c = &emptyconstraint;
2516 
2517 	return c;
2518 }
2519 
2520 static struct event_constraint *
2521 intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2522 			    struct perf_event *event)
2523 {
2524 	struct event_constraint *c1 = NULL;
2525 	struct event_constraint *c2;
2526 
2527 	if (idx >= 0) /* fake does < 0 */
2528 		c1 = cpuc->event_constraint[idx];
2529 
2530 	/*
2531 	 * first time only
2532 	 * - static constraint: no change across incremental scheduling calls
2533 	 * - dynamic constraint: handled by intel_get_excl_constraints()
2534 	 */
2535 	c2 = __intel_get_event_constraints(cpuc, idx, event);
2536 	if (c1 && (c1->flags & PERF_X86_EVENT_DYNAMIC)) {
2537 		bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
2538 		c1->weight = c2->weight;
2539 		c2 = c1;
2540 	}
2541 
2542 	if (cpuc->excl_cntrs)
2543 		return intel_get_excl_constraints(cpuc, event, idx, c2);
2544 
2545 	return c2;
2546 }
2547 
2548 static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
2549 		struct perf_event *event)
2550 {
2551 	struct hw_perf_event *hwc = &event->hw;
2552 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2553 	int tid = cpuc->excl_thread_id;
2554 	struct intel_excl_states *xl;
2555 
2556 	/*
2557 	 * nothing needed if in group validation mode
2558 	 */
2559 	if (cpuc->is_fake)
2560 		return;
2561 
2562 	if (WARN_ON_ONCE(!excl_cntrs))
2563 		return;
2564 
2565 	if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) {
2566 		hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT;
2567 		if (!--cpuc->n_excl)
2568 			WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0);
2569 	}
2570 
2571 	/*
2572 	 * If event was actually assigned, then mark the counter state as
2573 	 * unused now.
2574 	 */
2575 	if (hwc->idx >= 0) {
2576 		xl = &excl_cntrs->states[tid];
2577 
2578 		/*
2579 		 * put_constraint may be called from x86_schedule_events()
2580 		 * which already has the lock held so here make locking
2581 		 * conditional.
2582 		 */
2583 		if (!xl->sched_started)
2584 			raw_spin_lock(&excl_cntrs->lock);
2585 
2586 		xl->state[hwc->idx] = INTEL_EXCL_UNUSED;
2587 
2588 		if (!xl->sched_started)
2589 			raw_spin_unlock(&excl_cntrs->lock);
2590 	}
2591 }
2592 
2593 static void
2594 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
2595 					struct perf_event *event)
2596 {
2597 	struct hw_perf_event_extra *reg;
2598 
2599 	reg = &event->hw.extra_reg;
2600 	if (reg->idx != EXTRA_REG_NONE)
2601 		__intel_shared_reg_put_constraints(cpuc, reg);
2602 
2603 	reg = &event->hw.branch_reg;
2604 	if (reg->idx != EXTRA_REG_NONE)
2605 		__intel_shared_reg_put_constraints(cpuc, reg);
2606 }
2607 
2608 static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
2609 					struct perf_event *event)
2610 {
2611 	intel_put_shared_regs_event_constraints(cpuc, event);
2612 
2613 	/*
2614 	 * is PMU has exclusive counter restrictions, then
2615 	 * all events are subject to and must call the
2616 	 * put_excl_constraints() routine
2617 	 */
2618 	if (cpuc->excl_cntrs)
2619 		intel_put_excl_constraints(cpuc, event);
2620 }
2621 
2622 static void intel_pebs_aliases_core2(struct perf_event *event)
2623 {
2624 	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
2625 		/*
2626 		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
2627 		 * (0x003c) so that we can use it with PEBS.
2628 		 *
2629 		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
2630 		 * PEBS capable. However we can use INST_RETIRED.ANY_P
2631 		 * (0x00c0), which is a PEBS capable event, to get the same
2632 		 * count.
2633 		 *
2634 		 * INST_RETIRED.ANY_P counts the number of cycles that retires
2635 		 * CNTMASK instructions. By setting CNTMASK to a value (16)
2636 		 * larger than the maximum number of instructions that can be
2637 		 * retired per cycle (4) and then inverting the condition, we
2638 		 * count all cycles that retire 16 or less instructions, which
2639 		 * is every cycle.
2640 		 *
2641 		 * Thereby we gain a PEBS capable cycle counter.
2642 		 */
2643 		u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
2644 
2645 		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
2646 		event->hw.config = alt_config;
2647 	}
2648 }
2649 
2650 static void intel_pebs_aliases_snb(struct perf_event *event)
2651 {
2652 	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
2653 		/*
2654 		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
2655 		 * (0x003c) so that we can use it with PEBS.
2656 		 *
2657 		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
2658 		 * PEBS capable. However we can use UOPS_RETIRED.ALL
2659 		 * (0x01c2), which is a PEBS capable event, to get the same
2660 		 * count.
2661 		 *
2662 		 * UOPS_RETIRED.ALL counts the number of cycles that retires
2663 		 * CNTMASK micro-ops. By setting CNTMASK to a value (16)
2664 		 * larger than the maximum number of micro-ops that can be
2665 		 * retired per cycle (4) and then inverting the condition, we
2666 		 * count all cycles that retire 16 or less micro-ops, which
2667 		 * is every cycle.
2668 		 *
2669 		 * Thereby we gain a PEBS capable cycle counter.
2670 		 */
2671 		u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
2672 
2673 		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
2674 		event->hw.config = alt_config;
2675 	}
2676 }
2677 
2678 static void intel_pebs_aliases_precdist(struct perf_event *event)
2679 {
2680 	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
2681 		/*
2682 		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
2683 		 * (0x003c) so that we can use it with PEBS.
2684 		 *
2685 		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
2686 		 * PEBS capable. However we can use INST_RETIRED.PREC_DIST
2687 		 * (0x01c0), which is a PEBS capable event, to get the same
2688 		 * count.
2689 		 *
2690 		 * The PREC_DIST event has special support to minimize sample
2691 		 * shadowing effects. One drawback is that it can be
2692 		 * only programmed on counter 1, but that seems like an
2693 		 * acceptable trade off.
2694 		 */
2695 		u64 alt_config = X86_CONFIG(.event=0xc0, .umask=0x01, .inv=1, .cmask=16);
2696 
2697 		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
2698 		event->hw.config = alt_config;
2699 	}
2700 }
2701 
2702 static void intel_pebs_aliases_ivb(struct perf_event *event)
2703 {
2704 	if (event->attr.precise_ip < 3)
2705 		return intel_pebs_aliases_snb(event);
2706 	return intel_pebs_aliases_precdist(event);
2707 }
2708 
2709 static void intel_pebs_aliases_skl(struct perf_event *event)
2710 {
2711 	if (event->attr.precise_ip < 3)
2712 		return intel_pebs_aliases_core2(event);
2713 	return intel_pebs_aliases_precdist(event);
2714 }
2715 
2716 static unsigned long intel_pmu_free_running_flags(struct perf_event *event)
2717 {
2718 	unsigned long flags = x86_pmu.free_running_flags;
2719 
2720 	if (event->attr.use_clockid)
2721 		flags &= ~PERF_SAMPLE_TIME;
2722 	return flags;
2723 }
2724 
2725 static int intel_pmu_hw_config(struct perf_event *event)
2726 {
2727 	int ret = x86_pmu_hw_config(event);
2728 
2729 	if (ret)
2730 		return ret;
2731 
2732 	if (event->attr.precise_ip) {
2733 		if (!event->attr.freq) {
2734 			event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD;
2735 			if (!(event->attr.sample_type &
2736 			      ~intel_pmu_free_running_flags(event)))
2737 				event->hw.flags |= PERF_X86_EVENT_FREERUNNING;
2738 		}
2739 		if (x86_pmu.pebs_aliases)
2740 			x86_pmu.pebs_aliases(event);
2741 	}
2742 
2743 	if (needs_branch_stack(event)) {
2744 		ret = intel_pmu_setup_lbr_filter(event);
2745 		if (ret)
2746 			return ret;
2747 
2748 		/*
2749 		 * BTS is set up earlier in this path, so don't account twice
2750 		 */
2751 		if (!intel_pmu_has_bts(event)) {
2752 			/* disallow lbr if conflicting events are present */
2753 			if (x86_add_exclusive(x86_lbr_exclusive_lbr))
2754 				return -EBUSY;
2755 
2756 			event->destroy = hw_perf_lbr_event_destroy;
2757 		}
2758 	}
2759 
2760 	if (event->attr.type != PERF_TYPE_RAW)
2761 		return 0;
2762 
2763 	if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
2764 		return 0;
2765 
2766 	if (x86_pmu.version < 3)
2767 		return -EINVAL;
2768 
2769 	if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2770 		return -EACCES;
2771 
2772 	event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
2773 
2774 	return 0;
2775 }
2776 
2777 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
2778 {
2779 	if (x86_pmu.guest_get_msrs)
2780 		return x86_pmu.guest_get_msrs(nr);
2781 	*nr = 0;
2782 	return NULL;
2783 }
2784 EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
2785 
2786 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
2787 {
2788 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2789 	struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
2790 
2791 	arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
2792 	arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
2793 	arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;
2794 	/*
2795 	 * If PMU counter has PEBS enabled it is not enough to disable counter
2796 	 * on a guest entry since PEBS memory write can overshoot guest entry
2797 	 * and corrupt guest memory. Disabling PEBS solves the problem.
2798 	 */
2799 	arr[1].msr = MSR_IA32_PEBS_ENABLE;
2800 	arr[1].host = cpuc->pebs_enabled;
2801 	arr[1].guest = 0;
2802 
2803 	*nr = 2;
2804 	return arr;
2805 }
2806 
2807 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
2808 {
2809 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2810 	struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
2811 	int idx;
2812 
2813 	for (idx = 0; idx < x86_pmu.num_counters; idx++)  {
2814 		struct perf_event *event = cpuc->events[idx];
2815 
2816 		arr[idx].msr = x86_pmu_config_addr(idx);
2817 		arr[idx].host = arr[idx].guest = 0;
2818 
2819 		if (!test_bit(idx, cpuc->active_mask))
2820 			continue;
2821 
2822 		arr[idx].host = arr[idx].guest =
2823 			event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
2824 
2825 		if (event->attr.exclude_host)
2826 			arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
2827 		else if (event->attr.exclude_guest)
2828 			arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
2829 	}
2830 
2831 	*nr = x86_pmu.num_counters;
2832 	return arr;
2833 }
2834 
2835 static void core_pmu_enable_event(struct perf_event *event)
2836 {
2837 	if (!event->attr.exclude_host)
2838 		x86_pmu_enable_event(event);
2839 }
2840 
2841 static void core_pmu_enable_all(int added)
2842 {
2843 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2844 	int idx;
2845 
2846 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
2847 		struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
2848 
2849 		if (!test_bit(idx, cpuc->active_mask) ||
2850 				cpuc->events[idx]->attr.exclude_host)
2851 			continue;
2852 
2853 		__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
2854 	}
2855 }
2856 
2857 static int hsw_hw_config(struct perf_event *event)
2858 {
2859 	int ret = intel_pmu_hw_config(event);
2860 
2861 	if (ret)
2862 		return ret;
2863 	if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
2864 		return 0;
2865 	event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
2866 
2867 	/*
2868 	 * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
2869 	 * PEBS or in ANY thread mode. Since the results are non-sensical forbid
2870 	 * this combination.
2871 	 */
2872 	if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
2873 	     ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
2874 	      event->attr.precise_ip > 0))
2875 		return -EOPNOTSUPP;
2876 
2877 	if (event_is_checkpointed(event)) {
2878 		/*
2879 		 * Sampling of checkpointed events can cause situations where
2880 		 * the CPU constantly aborts because of a overflow, which is
2881 		 * then checkpointed back and ignored. Forbid checkpointing
2882 		 * for sampling.
2883 		 *
2884 		 * But still allow a long sampling period, so that perf stat
2885 		 * from KVM works.
2886 		 */
2887 		if (event->attr.sample_period > 0 &&
2888 		    event->attr.sample_period < 0x7fffffff)
2889 			return -EOPNOTSUPP;
2890 	}
2891 	return 0;
2892 }
2893 
2894 static struct event_constraint counter2_constraint =
2895 			EVENT_CONSTRAINT(0, 0x4, 0);
2896 
2897 static struct event_constraint *
2898 hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2899 			  struct perf_event *event)
2900 {
2901 	struct event_constraint *c;
2902 
2903 	c = intel_get_event_constraints(cpuc, idx, event);
2904 
2905 	/* Handle special quirk on in_tx_checkpointed only in counter 2 */
2906 	if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
2907 		if (c->idxmsk64 & (1U << 2))
2908 			return &counter2_constraint;
2909 		return &emptyconstraint;
2910 	}
2911 
2912 	return c;
2913 }
2914 
2915 /*
2916  * Broadwell:
2917  *
2918  * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
2919  * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
2920  * the two to enforce a minimum period of 128 (the smallest value that has bits
2921  * 0-5 cleared and >= 100).
2922  *
2923  * Because of how the code in x86_perf_event_set_period() works, the truncation
2924  * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
2925  * to make up for the 'lost' events due to carrying the 'error' in period_left.
2926  *
2927  * Therefore the effective (average) period matches the requested period,
2928  * despite coarser hardware granularity.
2929  */
2930 static unsigned bdw_limit_period(struct perf_event *event, unsigned left)
2931 {
2932 	if ((event->hw.config & INTEL_ARCH_EVENT_MASK) ==
2933 			X86_CONFIG(.event=0xc0, .umask=0x01)) {
2934 		if (left < 128)
2935 			left = 128;
2936 		left &= ~0x3fu;
2937 	}
2938 	return left;
2939 }
2940 
2941 PMU_FORMAT_ATTR(event,	"config:0-7"	);
2942 PMU_FORMAT_ATTR(umask,	"config:8-15"	);
2943 PMU_FORMAT_ATTR(edge,	"config:18"	);
2944 PMU_FORMAT_ATTR(pc,	"config:19"	);
2945 PMU_FORMAT_ATTR(any,	"config:21"	); /* v3 + */
2946 PMU_FORMAT_ATTR(inv,	"config:23"	);
2947 PMU_FORMAT_ATTR(cmask,	"config:24-31"	);
2948 PMU_FORMAT_ATTR(in_tx,  "config:32");
2949 PMU_FORMAT_ATTR(in_tx_cp, "config:33");
2950 
2951 static struct attribute *intel_arch_formats_attr[] = {
2952 	&format_attr_event.attr,
2953 	&format_attr_umask.attr,
2954 	&format_attr_edge.attr,
2955 	&format_attr_pc.attr,
2956 	&format_attr_inv.attr,
2957 	&format_attr_cmask.attr,
2958 	NULL,
2959 };
2960 
2961 ssize_t intel_event_sysfs_show(char *page, u64 config)
2962 {
2963 	u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
2964 
2965 	return x86_event_sysfs_show(page, config, event);
2966 }
2967 
2968 struct intel_shared_regs *allocate_shared_regs(int cpu)
2969 {
2970 	struct intel_shared_regs *regs;
2971 	int i;
2972 
2973 	regs = kzalloc_node(sizeof(struct intel_shared_regs),
2974 			    GFP_KERNEL, cpu_to_node(cpu));
2975 	if (regs) {
2976 		/*
2977 		 * initialize the locks to keep lockdep happy
2978 		 */
2979 		for (i = 0; i < EXTRA_REG_MAX; i++)
2980 			raw_spin_lock_init(&regs->regs[i].lock);
2981 
2982 		regs->core_id = -1;
2983 	}
2984 	return regs;
2985 }
2986 
2987 static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
2988 {
2989 	struct intel_excl_cntrs *c;
2990 
2991 	c = kzalloc_node(sizeof(struct intel_excl_cntrs),
2992 			 GFP_KERNEL, cpu_to_node(cpu));
2993 	if (c) {
2994 		raw_spin_lock_init(&c->lock);
2995 		c->core_id = -1;
2996 	}
2997 	return c;
2998 }
2999 
3000 static int intel_pmu_cpu_prepare(int cpu)
3001 {
3002 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
3003 
3004 	if (x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
3005 		cpuc->shared_regs = allocate_shared_regs(cpu);
3006 		if (!cpuc->shared_regs)
3007 			goto err;
3008 	}
3009 
3010 	if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
3011 		size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);
3012 
3013 		cpuc->constraint_list = kzalloc(sz, GFP_KERNEL);
3014 		if (!cpuc->constraint_list)
3015 			goto err_shared_regs;
3016 
3017 		cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
3018 		if (!cpuc->excl_cntrs)
3019 			goto err_constraint_list;
3020 
3021 		cpuc->excl_thread_id = 0;
3022 	}
3023 
3024 	return NOTIFY_OK;
3025 
3026 err_constraint_list:
3027 	kfree(cpuc->constraint_list);
3028 	cpuc->constraint_list = NULL;
3029 
3030 err_shared_regs:
3031 	kfree(cpuc->shared_regs);
3032 	cpuc->shared_regs = NULL;
3033 
3034 err:
3035 	return NOTIFY_BAD;
3036 }
3037 
3038 static void intel_pmu_cpu_starting(int cpu)
3039 {
3040 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
3041 	int core_id = topology_core_id(cpu);
3042 	int i;
3043 
3044 	init_debug_store_on_cpu(cpu);
3045 	/*
3046 	 * Deal with CPUs that don't clear their LBRs on power-up.
3047 	 */
3048 	intel_pmu_lbr_reset();
3049 
3050 	cpuc->lbr_sel = NULL;
3051 
3052 	if (!cpuc->shared_regs)
3053 		return;
3054 
3055 	if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
3056 		for_each_cpu(i, topology_sibling_cpumask(cpu)) {
3057 			struct intel_shared_regs *pc;
3058 
3059 			pc = per_cpu(cpu_hw_events, i).shared_regs;
3060 			if (pc && pc->core_id == core_id) {
3061 				cpuc->kfree_on_online[0] = cpuc->shared_regs;
3062 				cpuc->shared_regs = pc;
3063 				break;
3064 			}
3065 		}
3066 		cpuc->shared_regs->core_id = core_id;
3067 		cpuc->shared_regs->refcnt++;
3068 	}
3069 
3070 	if (x86_pmu.lbr_sel_map)
3071 		cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
3072 
3073 	if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
3074 		for_each_cpu(i, topology_sibling_cpumask(cpu)) {
3075 			struct intel_excl_cntrs *c;
3076 
3077 			c = per_cpu(cpu_hw_events, i).excl_cntrs;
3078 			if (c && c->core_id == core_id) {
3079 				cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
3080 				cpuc->excl_cntrs = c;
3081 				cpuc->excl_thread_id = 1;
3082 				break;
3083 			}
3084 		}
3085 		cpuc->excl_cntrs->core_id = core_id;
3086 		cpuc->excl_cntrs->refcnt++;
3087 	}
3088 }
3089 
3090 static void free_excl_cntrs(int cpu)
3091 {
3092 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
3093 	struct intel_excl_cntrs *c;
3094 
3095 	c = cpuc->excl_cntrs;
3096 	if (c) {
3097 		if (c->core_id == -1 || --c->refcnt == 0)
3098 			kfree(c);
3099 		cpuc->excl_cntrs = NULL;
3100 		kfree(cpuc->constraint_list);
3101 		cpuc->constraint_list = NULL;
3102 	}
3103 }
3104 
3105 static void intel_pmu_cpu_dying(int cpu)
3106 {
3107 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
3108 	struct intel_shared_regs *pc;
3109 
3110 	pc = cpuc->shared_regs;
3111 	if (pc) {
3112 		if (pc->core_id == -1 || --pc->refcnt == 0)
3113 			kfree(pc);
3114 		cpuc->shared_regs = NULL;
3115 	}
3116 
3117 	free_excl_cntrs(cpu);
3118 
3119 	fini_debug_store_on_cpu(cpu);
3120 }
3121 
3122 static void intel_pmu_sched_task(struct perf_event_context *ctx,
3123 				 bool sched_in)
3124 {
3125 	if (x86_pmu.pebs_active)
3126 		intel_pmu_pebs_sched_task(ctx, sched_in);
3127 	if (x86_pmu.lbr_nr)
3128 		intel_pmu_lbr_sched_task(ctx, sched_in);
3129 }
3130 
3131 PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
3132 
3133 PMU_FORMAT_ATTR(ldlat, "config1:0-15");
3134 
3135 PMU_FORMAT_ATTR(frontend, "config1:0-23");
3136 
3137 static struct attribute *intel_arch3_formats_attr[] = {
3138 	&format_attr_event.attr,
3139 	&format_attr_umask.attr,
3140 	&format_attr_edge.attr,
3141 	&format_attr_pc.attr,
3142 	&format_attr_any.attr,
3143 	&format_attr_inv.attr,
3144 	&format_attr_cmask.attr,
3145 	&format_attr_in_tx.attr,
3146 	&format_attr_in_tx_cp.attr,
3147 
3148 	&format_attr_offcore_rsp.attr, /* XXX do NHM/WSM + SNB breakout */
3149 	&format_attr_ldlat.attr, /* PEBS load latency */
3150 	NULL,
3151 };
3152 
3153 static struct attribute *skl_format_attr[] = {
3154 	&format_attr_frontend.attr,
3155 	NULL,
3156 };
3157 
3158 static __initconst const struct x86_pmu core_pmu = {
3159 	.name			= "core",
3160 	.handle_irq		= x86_pmu_handle_irq,
3161 	.disable_all		= x86_pmu_disable_all,
3162 	.enable_all		= core_pmu_enable_all,
3163 	.enable			= core_pmu_enable_event,
3164 	.disable		= x86_pmu_disable_event,
3165 	.hw_config		= x86_pmu_hw_config,
3166 	.schedule_events	= x86_schedule_events,
3167 	.eventsel		= MSR_ARCH_PERFMON_EVENTSEL0,
3168 	.perfctr		= MSR_ARCH_PERFMON_PERFCTR0,
3169 	.event_map		= intel_pmu_event_map,
3170 	.max_events		= ARRAY_SIZE(intel_perfmon_event_map),
3171 	.apic			= 1,
3172 	.free_running_flags	= PEBS_FREERUNNING_FLAGS,
3173 
3174 	/*
3175 	 * Intel PMCs cannot be accessed sanely above 32-bit width,
3176 	 * so we install an artificial 1<<31 period regardless of
3177 	 * the generic event period:
3178 	 */
3179 	.max_period		= (1ULL<<31) - 1,
3180 	.get_event_constraints	= intel_get_event_constraints,
3181 	.put_event_constraints	= intel_put_event_constraints,
3182 	.event_constraints	= intel_core_event_constraints,
3183 	.guest_get_msrs		= core_guest_get_msrs,
3184 	.format_attrs		= intel_arch_formats_attr,
3185 	.events_sysfs_show	= intel_event_sysfs_show,
3186 
3187 	/*
3188 	 * Virtual (or funny metal) CPU can define x86_pmu.extra_regs
3189 	 * together with PMU version 1 and thus be using core_pmu with
3190 	 * shared_regs. We need following callbacks here to allocate
3191 	 * it properly.
3192 	 */
3193 	.cpu_prepare		= intel_pmu_cpu_prepare,
3194 	.cpu_starting		= intel_pmu_cpu_starting,
3195 	.cpu_dying		= intel_pmu_cpu_dying,
3196 };
3197 
3198 static __initconst const struct x86_pmu intel_pmu = {
3199 	.name			= "Intel",
3200 	.handle_irq		= intel_pmu_handle_irq,
3201 	.disable_all		= intel_pmu_disable_all,
3202 	.enable_all		= intel_pmu_enable_all,
3203 	.enable			= intel_pmu_enable_event,
3204 	.disable		= intel_pmu_disable_event,
3205 	.hw_config		= intel_pmu_hw_config,
3206 	.schedule_events	= x86_schedule_events,
3207 	.eventsel		= MSR_ARCH_PERFMON_EVENTSEL0,
3208 	.perfctr		= MSR_ARCH_PERFMON_PERFCTR0,
3209 	.event_map		= intel_pmu_event_map,
3210 	.max_events		= ARRAY_SIZE(intel_perfmon_event_map),
3211 	.apic			= 1,
3212 	.free_running_flags	= PEBS_FREERUNNING_FLAGS,
3213 	/*
3214 	 * Intel PMCs cannot be accessed sanely above 32 bit width,
3215 	 * so we install an artificial 1<<31 period regardless of
3216 	 * the generic event period:
3217 	 */
3218 	.max_period		= (1ULL << 31) - 1,
3219 	.get_event_constraints	= intel_get_event_constraints,
3220 	.put_event_constraints	= intel_put_event_constraints,
3221 	.pebs_aliases		= intel_pebs_aliases_core2,
3222 
3223 	.format_attrs		= intel_arch3_formats_attr,
3224 	.events_sysfs_show	= intel_event_sysfs_show,
3225 
3226 	.cpu_prepare		= intel_pmu_cpu_prepare,
3227 	.cpu_starting		= intel_pmu_cpu_starting,
3228 	.cpu_dying		= intel_pmu_cpu_dying,
3229 	.guest_get_msrs		= intel_guest_get_msrs,
3230 	.sched_task		= intel_pmu_sched_task,
3231 };
3232 
3233 static __init void intel_clovertown_quirk(void)
3234 {
3235 	/*
3236 	 * PEBS is unreliable due to:
3237 	 *
3238 	 *   AJ67  - PEBS may experience CPL leaks
3239 	 *   AJ68  - PEBS PMI may be delayed by one event
3240 	 *   AJ69  - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
3241 	 *   AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
3242 	 *
3243 	 * AJ67 could be worked around by restricting the OS/USR flags.
3244 	 * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
3245 	 *
3246 	 * AJ106 could possibly be worked around by not allowing LBR
3247 	 *       usage from PEBS, including the fixup.
3248 	 * AJ68  could possibly be worked around by always programming
3249 	 *	 a pebs_event_reset[0] value and coping with the lost events.
3250 	 *
3251 	 * But taken together it might just make sense to not enable PEBS on
3252 	 * these chips.
3253 	 */
3254 	pr_warn("PEBS disabled due to CPU errata\n");
3255 	x86_pmu.pebs = 0;
3256 	x86_pmu.pebs_constraints = NULL;
3257 }
3258 
3259 static int intel_snb_pebs_broken(int cpu)
3260 {
3261 	u32 rev = UINT_MAX; /* default to broken for unknown models */
3262 
3263 	switch (cpu_data(cpu).x86_model) {
3264 	case 42: /* SNB */
3265 		rev = 0x28;
3266 		break;
3267 
3268 	case 45: /* SNB-EP */
3269 		switch (cpu_data(cpu).x86_mask) {
3270 		case 6: rev = 0x618; break;
3271 		case 7: rev = 0x70c; break;
3272 		}
3273 	}
3274 
3275 	return (cpu_data(cpu).microcode < rev);
3276 }
3277 
3278 static void intel_snb_check_microcode(void)
3279 {
3280 	int pebs_broken = 0;
3281 	int cpu;
3282 
3283 	get_online_cpus();
3284 	for_each_online_cpu(cpu) {
3285 		if ((pebs_broken = intel_snb_pebs_broken(cpu)))
3286 			break;
3287 	}
3288 	put_online_cpus();
3289 
3290 	if (pebs_broken == x86_pmu.pebs_broken)
3291 		return;
3292 
3293 	/*
3294 	 * Serialized by the microcode lock..
3295 	 */
3296 	if (x86_pmu.pebs_broken) {
3297 		pr_info("PEBS enabled due to microcode update\n");
3298 		x86_pmu.pebs_broken = 0;
3299 	} else {
3300 		pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
3301 		x86_pmu.pebs_broken = 1;
3302 	}
3303 }
3304 
3305 /*
3306  * Under certain circumstances, access certain MSR may cause #GP.
3307  * The function tests if the input MSR can be safely accessed.
3308  */
3309 static bool check_msr(unsigned long msr, u64 mask)
3310 {
3311 	u64 val_old, val_new, val_tmp;
3312 
3313 	/*
3314 	 * Read the current value, change it and read it back to see if it
3315 	 * matches, this is needed to detect certain hardware emulators
3316 	 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
3317 	 */
3318 	if (rdmsrl_safe(msr, &val_old))
3319 		return false;
3320 
3321 	/*
3322 	 * Only change the bits which can be updated by wrmsrl.
3323 	 */
3324 	val_tmp = val_old ^ mask;
3325 	if (wrmsrl_safe(msr, val_tmp) ||
3326 	    rdmsrl_safe(msr, &val_new))
3327 		return false;
3328 
3329 	if (val_new != val_tmp)
3330 		return false;
3331 
3332 	/* Here it's sure that the MSR can be safely accessed.
3333 	 * Restore the old value and return.
3334 	 */
3335 	wrmsrl(msr, val_old);
3336 
3337 	return true;
3338 }
3339 
3340 static __init void intel_sandybridge_quirk(void)
3341 {
3342 	x86_pmu.check_microcode = intel_snb_check_microcode;
3343 	intel_snb_check_microcode();
3344 }
3345 
3346 static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
3347 	{ PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
3348 	{ PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
3349 	{ PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
3350 	{ PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
3351 	{ PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
3352 	{ PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
3353 	{ PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
3354 };
3355 
3356 static __init void intel_arch_events_quirk(void)
3357 {
3358 	int bit;
3359 
3360 	/* disable event that reported as not presend by cpuid */
3361 	for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
3362 		intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
3363 		pr_warn("CPUID marked event: \'%s\' unavailable\n",
3364 			intel_arch_events_map[bit].name);
3365 	}
3366 }
3367 
3368 static __init void intel_nehalem_quirk(void)
3369 {
3370 	union cpuid10_ebx ebx;
3371 
3372 	ebx.full = x86_pmu.events_maskl;
3373 	if (ebx.split.no_branch_misses_retired) {
3374 		/*
3375 		 * Erratum AAJ80 detected, we work it around by using
3376 		 * the BR_MISP_EXEC.ANY event. This will over-count
3377 		 * branch-misses, but it's still much better than the
3378 		 * architectural event which is often completely bogus:
3379 		 */
3380 		intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
3381 		ebx.split.no_branch_misses_retired = 0;
3382 		x86_pmu.events_maskl = ebx.full;
3383 		pr_info("CPU erratum AAJ80 worked around\n");
3384 	}
3385 }
3386 
3387 /*
3388  * enable software workaround for errata:
3389  * SNB: BJ122
3390  * IVB: BV98
3391  * HSW: HSD29
3392  *
3393  * Only needed when HT is enabled. However detecting
3394  * if HT is enabled is difficult (model specific). So instead,
3395  * we enable the workaround in the early boot, and verify if
3396  * it is needed in a later initcall phase once we have valid
3397  * topology information to check if HT is actually enabled
3398  */
3399 static __init void intel_ht_bug(void)
3400 {
3401 	x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED;
3402 
3403 	x86_pmu.start_scheduling = intel_start_scheduling;
3404 	x86_pmu.commit_scheduling = intel_commit_scheduling;
3405 	x86_pmu.stop_scheduling = intel_stop_scheduling;
3406 }
3407 
3408 EVENT_ATTR_STR(mem-loads,	mem_ld_hsw,	"event=0xcd,umask=0x1,ldlat=3");
3409 EVENT_ATTR_STR(mem-stores,	mem_st_hsw,	"event=0xd0,umask=0x82")
3410 
3411 /* Haswell special events */
3412 EVENT_ATTR_STR(tx-start,	tx_start,	"event=0xc9,umask=0x1");
3413 EVENT_ATTR_STR(tx-commit,	tx_commit,	"event=0xc9,umask=0x2");
3414 EVENT_ATTR_STR(tx-abort,	tx_abort,	"event=0xc9,umask=0x4");
3415 EVENT_ATTR_STR(tx-capacity,	tx_capacity,	"event=0x54,umask=0x2");
3416 EVENT_ATTR_STR(tx-conflict,	tx_conflict,	"event=0x54,umask=0x1");
3417 EVENT_ATTR_STR(el-start,	el_start,	"event=0xc8,umask=0x1");
3418 EVENT_ATTR_STR(el-commit,	el_commit,	"event=0xc8,umask=0x2");
3419 EVENT_ATTR_STR(el-abort,	el_abort,	"event=0xc8,umask=0x4");
3420 EVENT_ATTR_STR(el-capacity,	el_capacity,	"event=0x54,umask=0x2");
3421 EVENT_ATTR_STR(el-conflict,	el_conflict,	"event=0x54,umask=0x1");
3422 EVENT_ATTR_STR(cycles-t,	cycles_t,	"event=0x3c,in_tx=1");
3423 EVENT_ATTR_STR(cycles-ct,	cycles_ct,	"event=0x3c,in_tx=1,in_tx_cp=1");
3424 
3425 static struct attribute *hsw_events_attrs[] = {
3426 	EVENT_PTR(tx_start),
3427 	EVENT_PTR(tx_commit),
3428 	EVENT_PTR(tx_abort),
3429 	EVENT_PTR(tx_capacity),
3430 	EVENT_PTR(tx_conflict),
3431 	EVENT_PTR(el_start),
3432 	EVENT_PTR(el_commit),
3433 	EVENT_PTR(el_abort),
3434 	EVENT_PTR(el_capacity),
3435 	EVENT_PTR(el_conflict),
3436 	EVENT_PTR(cycles_t),
3437 	EVENT_PTR(cycles_ct),
3438 	EVENT_PTR(mem_ld_hsw),
3439 	EVENT_PTR(mem_st_hsw),
3440 	NULL
3441 };
3442 
3443 __init int intel_pmu_init(void)
3444 {
3445 	union cpuid10_edx edx;
3446 	union cpuid10_eax eax;
3447 	union cpuid10_ebx ebx;
3448 	struct event_constraint *c;
3449 	unsigned int unused;
3450 	struct extra_reg *er;
3451 	int version, i;
3452 
3453 	if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
3454 		switch (boot_cpu_data.x86) {
3455 		case 0x6:
3456 			return p6_pmu_init();
3457 		case 0xb:
3458 			return knc_pmu_init();
3459 		case 0xf:
3460 			return p4_pmu_init();
3461 		}
3462 		return -ENODEV;
3463 	}
3464 
3465 	/*
3466 	 * Check whether the Architectural PerfMon supports
3467 	 * Branch Misses Retired hw_event or not.
3468 	 */
3469 	cpuid(10, &eax.full, &ebx.full, &unused, &edx.full);
3470 	if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
3471 		return -ENODEV;
3472 
3473 	version = eax.split.version_id;
3474 	if (version < 2)
3475 		x86_pmu = core_pmu;
3476 	else
3477 		x86_pmu = intel_pmu;
3478 
3479 	x86_pmu.version			= version;
3480 	x86_pmu.num_counters		= eax.split.num_counters;
3481 	x86_pmu.cntval_bits		= eax.split.bit_width;
3482 	x86_pmu.cntval_mask		= (1ULL << eax.split.bit_width) - 1;
3483 
3484 	x86_pmu.events_maskl		= ebx.full;
3485 	x86_pmu.events_mask_len		= eax.split.mask_length;
3486 
3487 	x86_pmu.max_pebs_events		= min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
3488 
3489 	/*
3490 	 * Quirk: v2 perfmon does not report fixed-purpose events, so
3491 	 * assume at least 3 events:
3492 	 */
3493 	if (version > 1)
3494 		x86_pmu.num_counters_fixed = max((int)edx.split.num_counters_fixed, 3);
3495 
3496 	if (boot_cpu_has(X86_FEATURE_PDCM)) {
3497 		u64 capabilities;
3498 
3499 		rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
3500 		x86_pmu.intel_cap.capabilities = capabilities;
3501 	}
3502 
3503 	intel_ds_init();
3504 
3505 	x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
3506 
3507 	/*
3508 	 * Install the hw-cache-events table:
3509 	 */
3510 	switch (boot_cpu_data.x86_model) {
3511 	case 14: /* 65nm Core "Yonah" */
3512 		pr_cont("Core events, ");
3513 		break;
3514 
3515 	case 15: /* 65nm Core2 "Merom"          */
3516 		x86_add_quirk(intel_clovertown_quirk);
3517 	case 22: /* 65nm Core2 "Merom-L"        */
3518 	case 23: /* 45nm Core2 "Penryn"         */
3519 	case 29: /* 45nm Core2 "Dunnington (MP) */
3520 		memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
3521 		       sizeof(hw_cache_event_ids));
3522 
3523 		intel_pmu_lbr_init_core();
3524 
3525 		x86_pmu.event_constraints = intel_core2_event_constraints;
3526 		x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
3527 		pr_cont("Core2 events, ");
3528 		break;
3529 
3530 	case 30: /* 45nm Nehalem    */
3531 	case 26: /* 45nm Nehalem-EP */
3532 	case 46: /* 45nm Nehalem-EX */
3533 		memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
3534 		       sizeof(hw_cache_event_ids));
3535 		memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
3536 		       sizeof(hw_cache_extra_regs));
3537 
3538 		intel_pmu_lbr_init_nhm();
3539 
3540 		x86_pmu.event_constraints = intel_nehalem_event_constraints;
3541 		x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
3542 		x86_pmu.enable_all = intel_pmu_nhm_enable_all;
3543 		x86_pmu.extra_regs = intel_nehalem_extra_regs;
3544 
3545 		x86_pmu.cpu_events = nhm_events_attrs;
3546 
3547 		/* UOPS_ISSUED.STALLED_CYCLES */
3548 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3549 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
3550 		/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
3551 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
3552 			X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
3553 
3554 		intel_pmu_pebs_data_source_nhm();
3555 		x86_add_quirk(intel_nehalem_quirk);
3556 
3557 		pr_cont("Nehalem events, ");
3558 		break;
3559 
3560 	case 28: /* 45nm Atom "Pineview"   */
3561 	case 38: /* 45nm Atom "Lincroft"   */
3562 	case 39: /* 32nm Atom "Penwell"    */
3563 	case 53: /* 32nm Atom "Cloverview" */
3564 	case 54: /* 32nm Atom "Cedarview"  */
3565 		memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
3566 		       sizeof(hw_cache_event_ids));
3567 
3568 		intel_pmu_lbr_init_atom();
3569 
3570 		x86_pmu.event_constraints = intel_gen_event_constraints;
3571 		x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
3572 		x86_pmu.pebs_aliases = intel_pebs_aliases_core2;
3573 		pr_cont("Atom events, ");
3574 		break;
3575 
3576 	case 55: /* 22nm Atom "Silvermont"                */
3577 	case 76: /* 14nm Atom "Airmont"                   */
3578 	case 77: /* 22nm Atom "Silvermont Avoton/Rangely" */
3579 		memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
3580 			sizeof(hw_cache_event_ids));
3581 		memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
3582 		       sizeof(hw_cache_extra_regs));
3583 
3584 		intel_pmu_lbr_init_slm();
3585 
3586 		x86_pmu.event_constraints = intel_slm_event_constraints;
3587 		x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
3588 		x86_pmu.extra_regs = intel_slm_extra_regs;
3589 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3590 		pr_cont("Silvermont events, ");
3591 		break;
3592 
3593 	case 92: /* 14nm Atom "Goldmont" */
3594 	case 95: /* 14nm Atom "Goldmont Denverton" */
3595 		memcpy(hw_cache_event_ids, glm_hw_cache_event_ids,
3596 		       sizeof(hw_cache_event_ids));
3597 		memcpy(hw_cache_extra_regs, glm_hw_cache_extra_regs,
3598 		       sizeof(hw_cache_extra_regs));
3599 
3600 		intel_pmu_lbr_init_skl();
3601 
3602 		x86_pmu.event_constraints = intel_slm_event_constraints;
3603 		x86_pmu.pebs_constraints = intel_glm_pebs_event_constraints;
3604 		x86_pmu.extra_regs = intel_glm_extra_regs;
3605 		/*
3606 		 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
3607 		 * for precise cycles.
3608 		 * :pp is identical to :ppp
3609 		 */
3610 		x86_pmu.pebs_aliases = NULL;
3611 		x86_pmu.pebs_prec_dist = true;
3612 		x86_pmu.lbr_pt_coexist = true;
3613 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3614 		pr_cont("Goldmont events, ");
3615 		break;
3616 
3617 	case 37: /* 32nm Westmere    */
3618 	case 44: /* 32nm Westmere-EP */
3619 	case 47: /* 32nm Westmere-EX */
3620 		memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
3621 		       sizeof(hw_cache_event_ids));
3622 		memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
3623 		       sizeof(hw_cache_extra_regs));
3624 
3625 		intel_pmu_lbr_init_nhm();
3626 
3627 		x86_pmu.event_constraints = intel_westmere_event_constraints;
3628 		x86_pmu.enable_all = intel_pmu_nhm_enable_all;
3629 		x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
3630 		x86_pmu.extra_regs = intel_westmere_extra_regs;
3631 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3632 
3633 		x86_pmu.cpu_events = nhm_events_attrs;
3634 
3635 		/* UOPS_ISSUED.STALLED_CYCLES */
3636 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3637 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
3638 		/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
3639 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
3640 			X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
3641 
3642 		intel_pmu_pebs_data_source_nhm();
3643 		pr_cont("Westmere events, ");
3644 		break;
3645 
3646 	case 42: /* 32nm SandyBridge         */
3647 	case 45: /* 32nm SandyBridge-E/EN/EP */
3648 		x86_add_quirk(intel_sandybridge_quirk);
3649 		x86_add_quirk(intel_ht_bug);
3650 		memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
3651 		       sizeof(hw_cache_event_ids));
3652 		memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
3653 		       sizeof(hw_cache_extra_regs));
3654 
3655 		intel_pmu_lbr_init_snb();
3656 
3657 		x86_pmu.event_constraints = intel_snb_event_constraints;
3658 		x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
3659 		x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
3660 		if (boot_cpu_data.x86_model == 45)
3661 			x86_pmu.extra_regs = intel_snbep_extra_regs;
3662 		else
3663 			x86_pmu.extra_regs = intel_snb_extra_regs;
3664 
3665 
3666 		/* all extra regs are per-cpu when HT is on */
3667 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3668 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3669 
3670 		x86_pmu.cpu_events = snb_events_attrs;
3671 
3672 		/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
3673 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3674 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
3675 		/* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
3676 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
3677 			X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
3678 
3679 		pr_cont("SandyBridge events, ");
3680 		break;
3681 
3682 	case 58: /* 22nm IvyBridge       */
3683 	case 62: /* 22nm IvyBridge-EP/EX */
3684 		x86_add_quirk(intel_ht_bug);
3685 		memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
3686 		       sizeof(hw_cache_event_ids));
3687 		/* dTLB-load-misses on IVB is different than SNB */
3688 		hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
3689 
3690 		memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
3691 		       sizeof(hw_cache_extra_regs));
3692 
3693 		intel_pmu_lbr_init_snb();
3694 
3695 		x86_pmu.event_constraints = intel_ivb_event_constraints;
3696 		x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
3697 		x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
3698 		x86_pmu.pebs_prec_dist = true;
3699 		if (boot_cpu_data.x86_model == 62)
3700 			x86_pmu.extra_regs = intel_snbep_extra_regs;
3701 		else
3702 			x86_pmu.extra_regs = intel_snb_extra_regs;
3703 		/* all extra regs are per-cpu when HT is on */
3704 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3705 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3706 
3707 		x86_pmu.cpu_events = snb_events_attrs;
3708 
3709 		/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
3710 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3711 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
3712 
3713 		pr_cont("IvyBridge events, ");
3714 		break;
3715 
3716 
3717 	case 60: /* 22nm Haswell Core */
3718 	case 63: /* 22nm Haswell Server */
3719 	case 69: /* 22nm Haswell ULT */
3720 	case 70: /* 22nm Haswell + GT3e (Intel Iris Pro graphics) */
3721 		x86_add_quirk(intel_ht_bug);
3722 		x86_pmu.late_ack = true;
3723 		memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
3724 		memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
3725 
3726 		intel_pmu_lbr_init_hsw();
3727 
3728 		x86_pmu.event_constraints = intel_hsw_event_constraints;
3729 		x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
3730 		x86_pmu.extra_regs = intel_snbep_extra_regs;
3731 		x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
3732 		x86_pmu.pebs_prec_dist = true;
3733 		/* all extra regs are per-cpu when HT is on */
3734 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3735 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3736 
3737 		x86_pmu.hw_config = hsw_hw_config;
3738 		x86_pmu.get_event_constraints = hsw_get_event_constraints;
3739 		x86_pmu.cpu_events = hsw_events_attrs;
3740 		x86_pmu.lbr_double_abort = true;
3741 		pr_cont("Haswell events, ");
3742 		break;
3743 
3744 	case 61: /* 14nm Broadwell Core-M */
3745 	case 86: /* 14nm Broadwell Xeon D */
3746 	case 71: /* 14nm Broadwell + GT3e (Intel Iris Pro graphics) */
3747 	case 79: /* 14nm Broadwell Server */
3748 		x86_pmu.late_ack = true;
3749 		memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
3750 		memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
3751 
3752 		/* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
3753 		hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
3754 									 BDW_L3_MISS|HSW_SNOOP_DRAM;
3755 		hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
3756 									  HSW_SNOOP_DRAM;
3757 		hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
3758 									     BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
3759 		hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
3760 									      BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
3761 
3762 		intel_pmu_lbr_init_hsw();
3763 
3764 		x86_pmu.event_constraints = intel_bdw_event_constraints;
3765 		x86_pmu.pebs_constraints = intel_bdw_pebs_event_constraints;
3766 		x86_pmu.extra_regs = intel_snbep_extra_regs;
3767 		x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
3768 		x86_pmu.pebs_prec_dist = true;
3769 		/* all extra regs are per-cpu when HT is on */
3770 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3771 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3772 
3773 		x86_pmu.hw_config = hsw_hw_config;
3774 		x86_pmu.get_event_constraints = hsw_get_event_constraints;
3775 		x86_pmu.cpu_events = hsw_events_attrs;
3776 		x86_pmu.limit_period = bdw_limit_period;
3777 		pr_cont("Broadwell events, ");
3778 		break;
3779 
3780 	case 87: /* Knights Landing Xeon Phi */
3781 		memcpy(hw_cache_event_ids,
3782 		       slm_hw_cache_event_ids, sizeof(hw_cache_event_ids));
3783 		memcpy(hw_cache_extra_regs,
3784 		       knl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
3785 		intel_pmu_lbr_init_knl();
3786 
3787 		x86_pmu.event_constraints = intel_slm_event_constraints;
3788 		x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
3789 		x86_pmu.extra_regs = intel_knl_extra_regs;
3790 
3791 		/* all extra regs are per-cpu when HT is on */
3792 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3793 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3794 
3795 		pr_cont("Knights Landing events, ");
3796 		break;
3797 
3798 	case 142: /* 14nm Kabylake Mobile */
3799 	case 158: /* 14nm Kabylake Desktop */
3800 	case 78: /* 14nm Skylake Mobile */
3801 	case 94: /* 14nm Skylake Desktop */
3802 	case 85: /* 14nm Skylake Server */
3803 		x86_pmu.late_ack = true;
3804 		memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
3805 		memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
3806 		intel_pmu_lbr_init_skl();
3807 
3808 		x86_pmu.event_constraints = intel_skl_event_constraints;
3809 		x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints;
3810 		x86_pmu.extra_regs = intel_skl_extra_regs;
3811 		x86_pmu.pebs_aliases = intel_pebs_aliases_skl;
3812 		x86_pmu.pebs_prec_dist = true;
3813 		/* all extra regs are per-cpu when HT is on */
3814 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3815 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3816 
3817 		x86_pmu.hw_config = hsw_hw_config;
3818 		x86_pmu.get_event_constraints = hsw_get_event_constraints;
3819 		x86_pmu.format_attrs = merge_attr(intel_arch3_formats_attr,
3820 						  skl_format_attr);
3821 		WARN_ON(!x86_pmu.format_attrs);
3822 		x86_pmu.cpu_events = hsw_events_attrs;
3823 		pr_cont("Skylake events, ");
3824 		break;
3825 
3826 	default:
3827 		switch (x86_pmu.version) {
3828 		case 1:
3829 			x86_pmu.event_constraints = intel_v1_event_constraints;
3830 			pr_cont("generic architected perfmon v1, ");
3831 			break;
3832 		default:
3833 			/*
3834 			 * default constraints for v2 and up
3835 			 */
3836 			x86_pmu.event_constraints = intel_gen_event_constraints;
3837 			pr_cont("generic architected perfmon, ");
3838 			break;
3839 		}
3840 	}
3841 
3842 	if (x86_pmu.num_counters > INTEL_PMC_MAX_GENERIC) {
3843 		WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
3844 		     x86_pmu.num_counters, INTEL_PMC_MAX_GENERIC);
3845 		x86_pmu.num_counters = INTEL_PMC_MAX_GENERIC;
3846 	}
3847 	x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
3848 
3849 	if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED) {
3850 		WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
3851 		     x86_pmu.num_counters_fixed, INTEL_PMC_MAX_FIXED);
3852 		x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
3853 	}
3854 
3855 	x86_pmu.intel_ctrl |=
3856 		((1LL << x86_pmu.num_counters_fixed)-1) << INTEL_PMC_IDX_FIXED;
3857 
3858 	if (x86_pmu.event_constraints) {
3859 		/*
3860 		 * event on fixed counter2 (REF_CYCLES) only works on this
3861 		 * counter, so do not extend mask to generic counters
3862 		 */
3863 		for_each_event_constraint(c, x86_pmu.event_constraints) {
3864 			if (c->cmask == FIXED_EVENT_FLAGS
3865 			    && c->idxmsk64 != INTEL_PMC_MSK_FIXED_REF_CYCLES) {
3866 				c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
3867 			}
3868 			c->idxmsk64 &=
3869 				~(~0ULL << (INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed));
3870 			c->weight = hweight64(c->idxmsk64);
3871 		}
3872 	}
3873 
3874 	/*
3875 	 * Access LBR MSR may cause #GP under certain circumstances.
3876 	 * E.g. KVM doesn't support LBR MSR
3877 	 * Check all LBT MSR here.
3878 	 * Disable LBR access if any LBR MSRs can not be accessed.
3879 	 */
3880 	if (x86_pmu.lbr_nr && !check_msr(x86_pmu.lbr_tos, 0x3UL))
3881 		x86_pmu.lbr_nr = 0;
3882 	for (i = 0; i < x86_pmu.lbr_nr; i++) {
3883 		if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
3884 		      check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
3885 			x86_pmu.lbr_nr = 0;
3886 	}
3887 
3888 	/*
3889 	 * Access extra MSR may cause #GP under certain circumstances.
3890 	 * E.g. KVM doesn't support offcore event
3891 	 * Check all extra_regs here.
3892 	 */
3893 	if (x86_pmu.extra_regs) {
3894 		for (er = x86_pmu.extra_regs; er->msr; er++) {
3895 			er->extra_msr_access = check_msr(er->msr, 0x11UL);
3896 			/* Disable LBR select mapping */
3897 			if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
3898 				x86_pmu.lbr_sel_map = NULL;
3899 		}
3900 	}
3901 
3902 	/* Support full width counters using alternative MSR range */
3903 	if (x86_pmu.intel_cap.full_width_write) {
3904 		x86_pmu.max_period = x86_pmu.cntval_mask;
3905 		x86_pmu.perfctr = MSR_IA32_PMC0;
3906 		pr_cont("full-width counters, ");
3907 	}
3908 
3909 	return 0;
3910 }
3911 
3912 /*
3913  * HT bug: phase 2 init
3914  * Called once we have valid topology information to check
3915  * whether or not HT is enabled
3916  * If HT is off, then we disable the workaround
3917  */
3918 static __init int fixup_ht_bug(void)
3919 {
3920 	int cpu = smp_processor_id();
3921 	int w, c;
3922 	/*
3923 	 * problem not present on this CPU model, nothing to do
3924 	 */
3925 	if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED))
3926 		return 0;
3927 
3928 	w = cpumask_weight(topology_sibling_cpumask(cpu));
3929 	if (w > 1) {
3930 		pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
3931 		return 0;
3932 	}
3933 
3934 	if (lockup_detector_suspend() != 0) {
3935 		pr_debug("failed to disable PMU erratum BJ122, BV98, HSD29 workaround\n");
3936 		return 0;
3937 	}
3938 
3939 	x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED);
3940 
3941 	x86_pmu.start_scheduling = NULL;
3942 	x86_pmu.commit_scheduling = NULL;
3943 	x86_pmu.stop_scheduling = NULL;
3944 
3945 	lockup_detector_resume();
3946 
3947 	get_online_cpus();
3948 
3949 	for_each_online_cpu(c) {
3950 		free_excl_cntrs(c);
3951 	}
3952 
3953 	put_online_cpus();
3954 	pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
3955 	return 0;
3956 }
3957 subsys_initcall(fixup_ht_bug)
3958