1 /* 2 * Performance events x86 architecture code 3 * 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2009 Jaswinder Singh Rajput 7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter 8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra 9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com> 10 * Copyright (C) 2009 Google, Inc., Stephane Eranian 11 * 12 * For licencing details see kernel-base/COPYING 13 */ 14 15 #include <linux/perf_event.h> 16 #include <linux/capability.h> 17 #include <linux/notifier.h> 18 #include <linux/hardirq.h> 19 #include <linux/kprobes.h> 20 #include <linux/export.h> 21 #include <linux/init.h> 22 #include <linux/kdebug.h> 23 #include <linux/sched/mm.h> 24 #include <linux/sched/clock.h> 25 #include <linux/uaccess.h> 26 #include <linux/slab.h> 27 #include <linux/cpu.h> 28 #include <linux/bitops.h> 29 #include <linux/device.h> 30 #include <linux/nospec.h> 31 #include <linux/static_call.h> 32 33 #include <asm/apic.h> 34 #include <asm/stacktrace.h> 35 #include <asm/msr.h> 36 #include <asm/nmi.h> 37 #include <asm/smp.h> 38 #include <asm/alternative.h> 39 #include <asm/mmu_context.h> 40 #include <asm/tlbflush.h> 41 #include <asm/timer.h> 42 #include <asm/desc.h> 43 #include <asm/ldt.h> 44 #include <asm/unwind.h> 45 #include <asm/uprobes.h> 46 #include <asm/ibt.h> 47 48 #include "perf_event.h" 49 50 struct x86_pmu x86_pmu __read_mostly; 51 static struct pmu pmu; 52 53 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { 54 .enabled = 1, 55 .pmu = &pmu, 56 }; 57 58 DEFINE_STATIC_KEY_FALSE(rdpmc_never_available_key); 59 DEFINE_STATIC_KEY_FALSE(rdpmc_always_available_key); 60 DEFINE_STATIC_KEY_FALSE(perf_is_hybrid); 61 62 /* 63 * This here uses DEFINE_STATIC_CALL_NULL() to get a static_call defined 64 * from just a typename, as opposed to an actual function. 65 */ 66 DEFINE_STATIC_CALL_NULL(x86_pmu_handle_irq, *x86_pmu.handle_irq); 67 DEFINE_STATIC_CALL_NULL(x86_pmu_disable_all, *x86_pmu.disable_all); 68 DEFINE_STATIC_CALL_NULL(x86_pmu_enable_all, *x86_pmu.enable_all); 69 DEFINE_STATIC_CALL_NULL(x86_pmu_enable, *x86_pmu.enable); 70 DEFINE_STATIC_CALL_NULL(x86_pmu_disable, *x86_pmu.disable); 71 72 DEFINE_STATIC_CALL_NULL(x86_pmu_assign, *x86_pmu.assign); 73 74 DEFINE_STATIC_CALL_NULL(x86_pmu_add, *x86_pmu.add); 75 DEFINE_STATIC_CALL_NULL(x86_pmu_del, *x86_pmu.del); 76 DEFINE_STATIC_CALL_NULL(x86_pmu_read, *x86_pmu.read); 77 78 DEFINE_STATIC_CALL_NULL(x86_pmu_set_period, *x86_pmu.set_period); 79 DEFINE_STATIC_CALL_NULL(x86_pmu_update, *x86_pmu.update); 80 DEFINE_STATIC_CALL_NULL(x86_pmu_limit_period, *x86_pmu.limit_period); 81 82 DEFINE_STATIC_CALL_NULL(x86_pmu_schedule_events, *x86_pmu.schedule_events); 83 DEFINE_STATIC_CALL_NULL(x86_pmu_get_event_constraints, *x86_pmu.get_event_constraints); 84 DEFINE_STATIC_CALL_NULL(x86_pmu_put_event_constraints, *x86_pmu.put_event_constraints); 85 86 DEFINE_STATIC_CALL_NULL(x86_pmu_start_scheduling, *x86_pmu.start_scheduling); 87 DEFINE_STATIC_CALL_NULL(x86_pmu_commit_scheduling, *x86_pmu.commit_scheduling); 88 DEFINE_STATIC_CALL_NULL(x86_pmu_stop_scheduling, *x86_pmu.stop_scheduling); 89 90 DEFINE_STATIC_CALL_NULL(x86_pmu_sched_task, *x86_pmu.sched_task); 91 92 DEFINE_STATIC_CALL_NULL(x86_pmu_drain_pebs, *x86_pmu.drain_pebs); 93 DEFINE_STATIC_CALL_NULL(x86_pmu_pebs_aliases, *x86_pmu.pebs_aliases); 94 95 DEFINE_STATIC_CALL_NULL(x86_pmu_filter, *x86_pmu.filter); 96 97 DEFINE_STATIC_CALL_NULL(x86_pmu_late_setup, *x86_pmu.late_setup); 98 99 DEFINE_STATIC_CALL_NULL(x86_pmu_pebs_enable, *x86_pmu.pebs_enable); 100 DEFINE_STATIC_CALL_NULL(x86_pmu_pebs_disable, *x86_pmu.pebs_disable); 101 DEFINE_STATIC_CALL_NULL(x86_pmu_pebs_enable_all, *x86_pmu.pebs_enable_all); 102 DEFINE_STATIC_CALL_NULL(x86_pmu_pebs_disable_all, *x86_pmu.pebs_disable_all); 103 104 /* 105 * This one is magic, it will get called even when PMU init fails (because 106 * there is no PMU), in which case it should simply return NULL. 107 */ 108 DEFINE_STATIC_CALL_RET0(x86_pmu_guest_get_msrs, *x86_pmu.guest_get_msrs); 109 110 u64 __read_mostly hw_cache_event_ids 111 [PERF_COUNT_HW_CACHE_MAX] 112 [PERF_COUNT_HW_CACHE_OP_MAX] 113 [PERF_COUNT_HW_CACHE_RESULT_MAX]; 114 u64 __read_mostly hw_cache_extra_regs 115 [PERF_COUNT_HW_CACHE_MAX] 116 [PERF_COUNT_HW_CACHE_OP_MAX] 117 [PERF_COUNT_HW_CACHE_RESULT_MAX]; 118 119 /* 120 * Propagate event elapsed time into the generic event. 121 * Can only be executed on the CPU where the event is active. 122 * Returns the delta events processed. 123 */ 124 u64 x86_perf_event_update(struct perf_event *event) 125 { 126 struct hw_perf_event *hwc = &event->hw; 127 int shift = 64 - x86_pmu.cntval_bits; 128 u64 prev_raw_count, new_raw_count; 129 u64 delta; 130 131 if (unlikely(!hwc->event_base)) 132 return 0; 133 134 /* 135 * Careful: an NMI might modify the previous event value. 136 * 137 * Our tactic to handle this is to first atomically read and 138 * exchange a new raw count - then add that new-prev delta 139 * count to the generic event atomically: 140 */ 141 prev_raw_count = local64_read(&hwc->prev_count); 142 do { 143 new_raw_count = rdpmc(hwc->event_base_rdpmc); 144 } while (!local64_try_cmpxchg(&hwc->prev_count, 145 &prev_raw_count, new_raw_count)); 146 147 /* 148 * Now we have the new raw value and have updated the prev 149 * timestamp already. We can now calculate the elapsed delta 150 * (event-)time and add that to the generic event. 151 * 152 * Careful, not all hw sign-extends above the physical width 153 * of the count. 154 */ 155 delta = (new_raw_count << shift) - (prev_raw_count << shift); 156 delta >>= shift; 157 158 local64_add(delta, &event->count); 159 local64_sub(delta, &hwc->period_left); 160 161 return new_raw_count; 162 } 163 164 /* 165 * Find and validate any extra registers to set up. 166 */ 167 static int x86_pmu_extra_regs(u64 config, struct perf_event *event) 168 { 169 struct extra_reg *extra_regs = hybrid(event->pmu, extra_regs); 170 struct hw_perf_event_extra *reg; 171 struct extra_reg *er; 172 173 reg = &event->hw.extra_reg; 174 175 if (!extra_regs) 176 return 0; 177 178 for (er = extra_regs; er->msr; er++) { 179 if (er->event != (config & er->config_mask)) 180 continue; 181 if (event->attr.config1 & ~er->valid_mask) 182 return -EINVAL; 183 /* Check if the extra msrs can be safely accessed*/ 184 if (!er->extra_msr_access) 185 return -ENXIO; 186 187 reg->idx = er->idx; 188 reg->config = event->attr.config1; 189 reg->reg = er->msr; 190 break; 191 } 192 return 0; 193 } 194 195 static atomic_t active_events; 196 static atomic_t pmc_refcount; 197 static DEFINE_MUTEX(pmc_reserve_mutex); 198 199 #ifdef CONFIG_X86_LOCAL_APIC 200 201 static inline u64 get_possible_counter_mask(void) 202 { 203 u64 cntr_mask = x86_pmu.cntr_mask64; 204 int i; 205 206 if (!is_hybrid()) 207 return cntr_mask; 208 209 for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) 210 cntr_mask |= x86_pmu.hybrid_pmu[i].cntr_mask64; 211 212 return cntr_mask; 213 } 214 215 static bool reserve_pmc_hardware(void) 216 { 217 u64 cntr_mask = get_possible_counter_mask(); 218 int i, end; 219 220 for_each_set_bit(i, (unsigned long *)&cntr_mask, X86_PMC_IDX_MAX) { 221 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i))) 222 goto perfctr_fail; 223 } 224 225 for_each_set_bit(i, (unsigned long *)&cntr_mask, X86_PMC_IDX_MAX) { 226 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i))) 227 goto eventsel_fail; 228 } 229 230 return true; 231 232 eventsel_fail: 233 end = i; 234 for_each_set_bit(i, (unsigned long *)&cntr_mask, end) 235 release_evntsel_nmi(x86_pmu_config_addr(i)); 236 i = X86_PMC_IDX_MAX; 237 238 perfctr_fail: 239 end = i; 240 for_each_set_bit(i, (unsigned long *)&cntr_mask, end) 241 release_perfctr_nmi(x86_pmu_event_addr(i)); 242 243 return false; 244 } 245 246 static void release_pmc_hardware(void) 247 { 248 u64 cntr_mask = get_possible_counter_mask(); 249 int i; 250 251 for_each_set_bit(i, (unsigned long *)&cntr_mask, X86_PMC_IDX_MAX) { 252 release_perfctr_nmi(x86_pmu_event_addr(i)); 253 release_evntsel_nmi(x86_pmu_config_addr(i)); 254 } 255 } 256 257 #else 258 259 static bool reserve_pmc_hardware(void) { return true; } 260 static void release_pmc_hardware(void) {} 261 262 #endif 263 264 bool check_hw_exists(struct pmu *pmu, unsigned long *cntr_mask, 265 unsigned long *fixed_cntr_mask) 266 { 267 u64 val, val_fail = -1, val_new= ~0; 268 int i, reg, reg_fail = -1, ret = 0; 269 int bios_fail = 0; 270 int reg_safe = -1; 271 272 /* 273 * Check to see if the BIOS enabled any of the counters, if so 274 * complain and bail. 275 */ 276 for_each_set_bit(i, cntr_mask, X86_PMC_IDX_MAX) { 277 reg = x86_pmu_config_addr(i); 278 ret = rdmsrq_safe(reg, &val); 279 if (ret) 280 goto msr_fail; 281 if (val & ARCH_PERFMON_EVENTSEL_ENABLE) { 282 bios_fail = 1; 283 val_fail = val; 284 reg_fail = reg; 285 } else { 286 reg_safe = i; 287 } 288 } 289 290 if (*(u64 *)fixed_cntr_mask) { 291 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL; 292 ret = rdmsrq_safe(reg, &val); 293 if (ret) 294 goto msr_fail; 295 for_each_set_bit(i, fixed_cntr_mask, X86_PMC_IDX_MAX) { 296 if (fixed_counter_disabled(i, pmu)) 297 continue; 298 if (val & (0x03ULL << i*4)) { 299 bios_fail = 1; 300 val_fail = val; 301 reg_fail = reg; 302 } 303 } 304 } 305 306 /* 307 * If all the counters are enabled, the below test will always 308 * fail. The tools will also become useless in this scenario. 309 * Just fail and disable the hardware counters. 310 */ 311 312 if (reg_safe == -1) { 313 reg = reg_safe; 314 goto msr_fail; 315 } 316 317 /* 318 * Read the current value, change it and read it back to see if it 319 * matches, this is needed to detect certain hardware emulators 320 * (qemu/kvm) that don't trap on the MSR access and always return 0s. 321 */ 322 reg = x86_pmu_event_addr(reg_safe); 323 if (rdmsrq_safe(reg, &val)) 324 goto msr_fail; 325 val ^= 0xffffUL; 326 ret = wrmsrq_safe(reg, val); 327 ret |= rdmsrq_safe(reg, &val_new); 328 if (ret || val != val_new) 329 goto msr_fail; 330 331 /* 332 * We still allow the PMU driver to operate: 333 */ 334 if (bios_fail) { 335 pr_cont("Broken BIOS detected, complain to your hardware vendor.\n"); 336 pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n", 337 reg_fail, val_fail); 338 } 339 340 return true; 341 342 msr_fail: 343 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) { 344 pr_cont("PMU not available due to virtualization, using software events only.\n"); 345 } else { 346 pr_cont("Broken PMU hardware detected, using software events only.\n"); 347 pr_err("Failed to access perfctr msr (MSR %x is %Lx)\n", 348 reg, val_new); 349 } 350 351 return false; 352 } 353 354 static void hw_perf_event_destroy(struct perf_event *event) 355 { 356 x86_release_hardware(); 357 atomic_dec(&active_events); 358 } 359 360 void hw_perf_lbr_event_destroy(struct perf_event *event) 361 { 362 hw_perf_event_destroy(event); 363 364 /* undo the lbr/bts event accounting */ 365 x86_del_exclusive(x86_lbr_exclusive_lbr); 366 } 367 368 static inline int x86_pmu_initialized(void) 369 { 370 return x86_pmu.handle_irq != NULL; 371 } 372 373 static inline int 374 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event) 375 { 376 struct perf_event_attr *attr = &event->attr; 377 unsigned int cache_type, cache_op, cache_result; 378 u64 config, val; 379 380 config = attr->config; 381 382 cache_type = (config >> 0) & 0xff; 383 if (cache_type >= PERF_COUNT_HW_CACHE_MAX) 384 return -EINVAL; 385 cache_type = array_index_nospec(cache_type, PERF_COUNT_HW_CACHE_MAX); 386 387 cache_op = (config >> 8) & 0xff; 388 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX) 389 return -EINVAL; 390 cache_op = array_index_nospec(cache_op, PERF_COUNT_HW_CACHE_OP_MAX); 391 392 cache_result = (config >> 16) & 0xff; 393 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX) 394 return -EINVAL; 395 cache_result = array_index_nospec(cache_result, PERF_COUNT_HW_CACHE_RESULT_MAX); 396 397 val = hybrid_var(event->pmu, hw_cache_event_ids)[cache_type][cache_op][cache_result]; 398 if (val == 0) 399 return -ENOENT; 400 401 if (val == -1) 402 return -EINVAL; 403 404 hwc->config |= val; 405 attr->config1 = hybrid_var(event->pmu, hw_cache_extra_regs)[cache_type][cache_op][cache_result]; 406 return x86_pmu_extra_regs(val, event); 407 } 408 409 int x86_reserve_hardware(void) 410 { 411 int err = 0; 412 413 if (!atomic_inc_not_zero(&pmc_refcount)) { 414 mutex_lock(&pmc_reserve_mutex); 415 if (atomic_read(&pmc_refcount) == 0) { 416 if (!reserve_pmc_hardware()) { 417 err = -EBUSY; 418 } else { 419 reserve_ds_buffers(); 420 reserve_lbr_buffers(); 421 } 422 } 423 if (!err) 424 atomic_inc(&pmc_refcount); 425 mutex_unlock(&pmc_reserve_mutex); 426 } 427 428 return err; 429 } 430 431 void x86_release_hardware(void) 432 { 433 if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) { 434 release_pmc_hardware(); 435 release_ds_buffers(); 436 release_lbr_buffers(); 437 mutex_unlock(&pmc_reserve_mutex); 438 } 439 } 440 441 /* 442 * Check if we can create event of a certain type (that no conflicting events 443 * are present). 444 */ 445 int x86_add_exclusive(unsigned int what) 446 { 447 int i; 448 449 /* 450 * When lbr_pt_coexist we allow PT to coexist with either LBR or BTS. 451 * LBR and BTS are still mutually exclusive. 452 */ 453 if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt) 454 goto out; 455 456 if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) { 457 mutex_lock(&pmc_reserve_mutex); 458 for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) { 459 if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i])) 460 goto fail_unlock; 461 } 462 atomic_inc(&x86_pmu.lbr_exclusive[what]); 463 mutex_unlock(&pmc_reserve_mutex); 464 } 465 466 out: 467 atomic_inc(&active_events); 468 return 0; 469 470 fail_unlock: 471 mutex_unlock(&pmc_reserve_mutex); 472 return -EBUSY; 473 } 474 475 void x86_del_exclusive(unsigned int what) 476 { 477 atomic_dec(&active_events); 478 479 /* 480 * See the comment in x86_add_exclusive(). 481 */ 482 if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt) 483 return; 484 485 atomic_dec(&x86_pmu.lbr_exclusive[what]); 486 } 487 488 int x86_setup_perfctr(struct perf_event *event) 489 { 490 struct perf_event_attr *attr = &event->attr; 491 struct hw_perf_event *hwc = &event->hw; 492 u64 config; 493 494 if (!is_sampling_event(event)) { 495 hwc->sample_period = x86_pmu.max_period; 496 hwc->last_period = hwc->sample_period; 497 local64_set(&hwc->period_left, hwc->sample_period); 498 } 499 500 if (attr->type == event->pmu->type) 501 return x86_pmu_extra_regs(event->attr.config, event); 502 503 if (attr->type == PERF_TYPE_HW_CACHE) 504 return set_ext_hw_attr(hwc, event); 505 506 if (attr->config >= x86_pmu.max_events) 507 return -EINVAL; 508 509 attr->config = array_index_nospec((unsigned long)attr->config, x86_pmu.max_events); 510 511 /* 512 * The generic map: 513 */ 514 config = x86_pmu.event_map(attr->config); 515 516 if (config == 0) 517 return -ENOENT; 518 519 if (config == -1LL) 520 return -EINVAL; 521 522 hwc->config |= config; 523 524 return 0; 525 } 526 527 /* 528 * check that branch_sample_type is compatible with 529 * settings needed for precise_ip > 1 which implies 530 * using the LBR to capture ALL taken branches at the 531 * priv levels of the measurement 532 */ 533 static inline int precise_br_compat(struct perf_event *event) 534 { 535 u64 m = event->attr.branch_sample_type; 536 u64 b = 0; 537 538 /* must capture all branches */ 539 if (!(m & PERF_SAMPLE_BRANCH_ANY)) 540 return 0; 541 542 m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER; 543 544 if (!event->attr.exclude_user) 545 b |= PERF_SAMPLE_BRANCH_USER; 546 547 if (!event->attr.exclude_kernel) 548 b |= PERF_SAMPLE_BRANCH_KERNEL; 549 550 /* 551 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86 552 */ 553 554 return m == b; 555 } 556 557 int x86_pmu_max_precise(void) 558 { 559 int precise = 0; 560 561 /* Support for constant skid */ 562 if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) { 563 precise++; 564 565 /* Support for IP fixup */ 566 if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2) 567 precise++; 568 569 if (x86_pmu.pebs_prec_dist) 570 precise++; 571 } 572 return precise; 573 } 574 575 int x86_pmu_hw_config(struct perf_event *event) 576 { 577 if (event->attr.precise_ip) { 578 int precise = x86_pmu_max_precise(); 579 580 if (event->attr.precise_ip > precise) 581 return -EOPNOTSUPP; 582 583 /* There's no sense in having PEBS for non sampling events: */ 584 if (!is_sampling_event(event)) 585 return -EINVAL; 586 } 587 /* 588 * check that PEBS LBR correction does not conflict with 589 * whatever the user is asking with attr->branch_sample_type 590 */ 591 if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) { 592 u64 *br_type = &event->attr.branch_sample_type; 593 594 if (has_branch_stack(event)) { 595 if (!precise_br_compat(event)) 596 return -EOPNOTSUPP; 597 598 /* branch_sample_type is compatible */ 599 600 } else { 601 /* 602 * user did not specify branch_sample_type 603 * 604 * For PEBS fixups, we capture all 605 * the branches at the priv level of the 606 * event. 607 */ 608 *br_type = PERF_SAMPLE_BRANCH_ANY; 609 610 if (!event->attr.exclude_user) 611 *br_type |= PERF_SAMPLE_BRANCH_USER; 612 613 if (!event->attr.exclude_kernel) 614 *br_type |= PERF_SAMPLE_BRANCH_KERNEL; 615 } 616 } 617 618 if (branch_sample_call_stack(event)) 619 event->attach_state |= PERF_ATTACH_TASK_DATA; 620 621 /* 622 * Generate PMC IRQs: 623 * (keep 'enabled' bit clear for now) 624 */ 625 event->hw.config = ARCH_PERFMON_EVENTSEL_INT; 626 627 /* 628 * Count user and OS events unless requested not to 629 */ 630 if (!event->attr.exclude_user) 631 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR; 632 if (!event->attr.exclude_kernel) 633 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS; 634 635 if (event->attr.type == event->pmu->type) 636 event->hw.config |= x86_pmu_get_event_config(event); 637 638 if (is_sampling_event(event) && !event->attr.freq && x86_pmu.limit_period) { 639 s64 left = event->attr.sample_period; 640 x86_pmu.limit_period(event, &left); 641 if (left > event->attr.sample_period) 642 return -EINVAL; 643 } 644 645 /* sample_regs_user never support XMM registers */ 646 if (unlikely(event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK)) 647 return -EINVAL; 648 /* 649 * Besides the general purpose registers, XMM registers may 650 * be collected in PEBS on some platforms, e.g. Icelake 651 */ 652 if (unlikely(event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK)) { 653 if (!(event->pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS)) 654 return -EINVAL; 655 656 if (!event->attr.precise_ip) 657 return -EINVAL; 658 } 659 660 return x86_setup_perfctr(event); 661 } 662 663 /* 664 * Setup the hardware configuration for a given attr_type 665 */ 666 static int __x86_pmu_event_init(struct perf_event *event) 667 { 668 int err; 669 670 if (!x86_pmu_initialized()) 671 return -ENODEV; 672 673 err = x86_reserve_hardware(); 674 if (err) 675 return err; 676 677 atomic_inc(&active_events); 678 event->destroy = hw_perf_event_destroy; 679 680 event->hw.idx = -1; 681 event->hw.last_cpu = -1; 682 event->hw.last_tag = ~0ULL; 683 event->hw.dyn_constraint = ~0ULL; 684 685 /* mark unused */ 686 event->hw.extra_reg.idx = EXTRA_REG_NONE; 687 event->hw.branch_reg.idx = EXTRA_REG_NONE; 688 689 return x86_pmu.hw_config(event); 690 } 691 692 void x86_pmu_disable_all(void) 693 { 694 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 695 int idx; 696 697 for_each_set_bit(idx, x86_pmu.cntr_mask, X86_PMC_IDX_MAX) { 698 struct hw_perf_event *hwc = &cpuc->events[idx]->hw; 699 u64 val; 700 701 if (!test_bit(idx, cpuc->active_mask)) 702 continue; 703 rdmsrq(x86_pmu_config_addr(idx), val); 704 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE)) 705 continue; 706 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE; 707 wrmsrq(x86_pmu_config_addr(idx), val); 708 if (is_counter_pair(hwc)) 709 wrmsrq(x86_pmu_config_addr(idx + 1), 0); 710 } 711 } 712 713 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr, void *data) 714 { 715 return static_call(x86_pmu_guest_get_msrs)(nr, data); 716 } 717 EXPORT_SYMBOL_GPL(perf_guest_get_msrs); 718 719 /* 720 * There may be PMI landing after enabled=0. The PMI hitting could be before or 721 * after disable_all. 722 * 723 * If PMI hits before disable_all, the PMU will be disabled in the NMI handler. 724 * It will not be re-enabled in the NMI handler again, because enabled=0. After 725 * handling the NMI, disable_all will be called, which will not change the 726 * state either. If PMI hits after disable_all, the PMU is already disabled 727 * before entering NMI handler. The NMI handler will not change the state 728 * either. 729 * 730 * So either situation is harmless. 731 */ 732 static void x86_pmu_disable(struct pmu *pmu) 733 { 734 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 735 736 if (!x86_pmu_initialized()) 737 return; 738 739 if (!cpuc->enabled) 740 return; 741 742 cpuc->n_added = 0; 743 cpuc->enabled = 0; 744 barrier(); 745 746 static_call(x86_pmu_disable_all)(); 747 } 748 749 void x86_pmu_enable_all(int added) 750 { 751 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 752 int idx; 753 754 for_each_set_bit(idx, x86_pmu.cntr_mask, X86_PMC_IDX_MAX) { 755 struct hw_perf_event *hwc = &cpuc->events[idx]->hw; 756 757 if (!test_bit(idx, cpuc->active_mask)) 758 continue; 759 760 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE); 761 } 762 } 763 764 int is_x86_event(struct perf_event *event) 765 { 766 /* 767 * For a non-hybrid platforms, the type of X86 pmu is 768 * always PERF_TYPE_RAW. 769 * For a hybrid platform, the PERF_PMU_CAP_EXTENDED_HW_TYPE 770 * is a unique capability for the X86 PMU. 771 * Use them to detect a X86 event. 772 */ 773 if (event->pmu->type == PERF_TYPE_RAW || 774 event->pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE) 775 return true; 776 777 return false; 778 } 779 780 struct pmu *x86_get_pmu(unsigned int cpu) 781 { 782 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu); 783 784 /* 785 * All CPUs of the hybrid type have been offline. 786 * The x86_get_pmu() should not be invoked. 787 */ 788 if (WARN_ON_ONCE(!cpuc->pmu)) 789 return &pmu; 790 791 return cpuc->pmu; 792 } 793 /* 794 * Event scheduler state: 795 * 796 * Assign events iterating over all events and counters, beginning 797 * with events with least weights first. Keep the current iterator 798 * state in struct sched_state. 799 */ 800 struct sched_state { 801 int weight; 802 int event; /* event index */ 803 int counter; /* counter index */ 804 int unassigned; /* number of events to be assigned left */ 805 int nr_gp; /* number of GP counters used */ 806 u64 used; 807 }; 808 809 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */ 810 #define SCHED_STATES_MAX 2 811 812 struct perf_sched { 813 int max_weight; 814 int max_events; 815 int max_gp; 816 int saved_states; 817 struct event_constraint **constraints; 818 struct sched_state state; 819 struct sched_state saved[SCHED_STATES_MAX]; 820 }; 821 822 /* 823 * Initialize iterator that runs through all events and counters. 824 */ 825 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints, 826 int num, int wmin, int wmax, int gpmax) 827 { 828 int idx; 829 830 memset(sched, 0, sizeof(*sched)); 831 sched->max_events = num; 832 sched->max_weight = wmax; 833 sched->max_gp = gpmax; 834 sched->constraints = constraints; 835 836 for (idx = 0; idx < num; idx++) { 837 if (constraints[idx]->weight == wmin) 838 break; 839 } 840 841 sched->state.event = idx; /* start with min weight */ 842 sched->state.weight = wmin; 843 sched->state.unassigned = num; 844 } 845 846 static void perf_sched_save_state(struct perf_sched *sched) 847 { 848 if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX)) 849 return; 850 851 sched->saved[sched->saved_states] = sched->state; 852 sched->saved_states++; 853 } 854 855 static bool perf_sched_restore_state(struct perf_sched *sched) 856 { 857 if (!sched->saved_states) 858 return false; 859 860 sched->saved_states--; 861 sched->state = sched->saved[sched->saved_states]; 862 863 /* this assignment didn't work out */ 864 /* XXX broken vs EVENT_PAIR */ 865 sched->state.used &= ~BIT_ULL(sched->state.counter); 866 867 /* try the next one */ 868 sched->state.counter++; 869 870 return true; 871 } 872 873 /* 874 * Select a counter for the current event to schedule. Return true on 875 * success. 876 */ 877 static bool __perf_sched_find_counter(struct perf_sched *sched) 878 { 879 struct event_constraint *c; 880 int idx; 881 882 if (!sched->state.unassigned) 883 return false; 884 885 if (sched->state.event >= sched->max_events) 886 return false; 887 888 c = sched->constraints[sched->state.event]; 889 /* Prefer fixed purpose counters */ 890 if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) { 891 idx = INTEL_PMC_IDX_FIXED; 892 for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) { 893 u64 mask = BIT_ULL(idx); 894 895 if (sched->state.used & mask) 896 continue; 897 898 sched->state.used |= mask; 899 goto done; 900 } 901 } 902 903 /* Grab the first unused counter starting with idx */ 904 idx = sched->state.counter; 905 for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) { 906 u64 mask = BIT_ULL(idx); 907 908 if (c->flags & PERF_X86_EVENT_PAIR) 909 mask |= mask << 1; 910 911 if (sched->state.used & mask) 912 continue; 913 914 if (sched->state.nr_gp++ >= sched->max_gp) 915 return false; 916 917 sched->state.used |= mask; 918 goto done; 919 } 920 921 return false; 922 923 done: 924 sched->state.counter = idx; 925 926 if (c->overlap) 927 perf_sched_save_state(sched); 928 929 return true; 930 } 931 932 static bool perf_sched_find_counter(struct perf_sched *sched) 933 { 934 while (!__perf_sched_find_counter(sched)) { 935 if (!perf_sched_restore_state(sched)) 936 return false; 937 } 938 939 return true; 940 } 941 942 /* 943 * Go through all unassigned events and find the next one to schedule. 944 * Take events with the least weight first. Return true on success. 945 */ 946 static bool perf_sched_next_event(struct perf_sched *sched) 947 { 948 struct event_constraint *c; 949 950 if (!sched->state.unassigned || !--sched->state.unassigned) 951 return false; 952 953 do { 954 /* next event */ 955 sched->state.event++; 956 if (sched->state.event >= sched->max_events) { 957 /* next weight */ 958 sched->state.event = 0; 959 sched->state.weight++; 960 if (sched->state.weight > sched->max_weight) 961 return false; 962 } 963 c = sched->constraints[sched->state.event]; 964 } while (c->weight != sched->state.weight); 965 966 sched->state.counter = 0; /* start with first counter */ 967 968 return true; 969 } 970 971 /* 972 * Assign a counter for each event. 973 */ 974 int perf_assign_events(struct event_constraint **constraints, int n, 975 int wmin, int wmax, int gpmax, int *assign) 976 { 977 struct perf_sched sched; 978 979 perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax); 980 981 do { 982 if (!perf_sched_find_counter(&sched)) 983 break; /* failed */ 984 if (assign) 985 assign[sched.state.event] = sched.state.counter; 986 } while (perf_sched_next_event(&sched)); 987 988 return sched.state.unassigned; 989 } 990 EXPORT_SYMBOL_GPL(perf_assign_events); 991 992 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign) 993 { 994 struct event_constraint *c; 995 struct perf_event *e; 996 int n0, i, wmin, wmax, unsched = 0; 997 struct hw_perf_event *hwc; 998 u64 used_mask = 0; 999 1000 /* 1001 * Compute the number of events already present; see x86_pmu_add(), 1002 * validate_group() and x86_pmu_commit_txn(). For the former two 1003 * cpuc->n_events hasn't been updated yet, while for the latter 1004 * cpuc->n_txn contains the number of events added in the current 1005 * transaction. 1006 */ 1007 n0 = cpuc->n_events; 1008 if (cpuc->txn_flags & PERF_PMU_TXN_ADD) 1009 n0 -= cpuc->n_txn; 1010 1011 static_call_cond(x86_pmu_start_scheduling)(cpuc); 1012 1013 for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) { 1014 c = cpuc->event_constraint[i]; 1015 1016 /* 1017 * Previously scheduled events should have a cached constraint, 1018 * while new events should not have one. 1019 */ 1020 WARN_ON_ONCE((c && i >= n0) || (!c && i < n0)); 1021 1022 /* 1023 * Request constraints for new events; or for those events that 1024 * have a dynamic constraint -- for those the constraint can 1025 * change due to external factors (sibling state, allow_tfa). 1026 */ 1027 if (!c || (c->flags & PERF_X86_EVENT_DYNAMIC)) { 1028 c = static_call(x86_pmu_get_event_constraints)(cpuc, i, cpuc->event_list[i]); 1029 cpuc->event_constraint[i] = c; 1030 } 1031 1032 wmin = min(wmin, c->weight); 1033 wmax = max(wmax, c->weight); 1034 } 1035 1036 /* 1037 * fastpath, try to reuse previous register 1038 */ 1039 for (i = 0; i < n; i++) { 1040 u64 mask; 1041 1042 hwc = &cpuc->event_list[i]->hw; 1043 c = cpuc->event_constraint[i]; 1044 1045 /* never assigned */ 1046 if (hwc->idx == -1) 1047 break; 1048 1049 /* constraint still honored */ 1050 if (!test_bit(hwc->idx, c->idxmsk)) 1051 break; 1052 1053 mask = BIT_ULL(hwc->idx); 1054 if (is_counter_pair(hwc)) 1055 mask |= mask << 1; 1056 1057 /* not already used */ 1058 if (used_mask & mask) 1059 break; 1060 1061 used_mask |= mask; 1062 1063 if (assign) 1064 assign[i] = hwc->idx; 1065 } 1066 1067 /* slow path */ 1068 if (i != n) { 1069 int gpmax = x86_pmu_max_num_counters(cpuc->pmu); 1070 1071 /* 1072 * Do not allow scheduling of more than half the available 1073 * generic counters. 1074 * 1075 * This helps avoid counter starvation of sibling thread by 1076 * ensuring at most half the counters cannot be in exclusive 1077 * mode. There is no designated counters for the limits. Any 1078 * N/2 counters can be used. This helps with events with 1079 * specific counter constraints. 1080 */ 1081 if (is_ht_workaround_enabled() && !cpuc->is_fake && 1082 READ_ONCE(cpuc->excl_cntrs->exclusive_present)) 1083 gpmax /= 2; 1084 1085 /* 1086 * Reduce the amount of available counters to allow fitting 1087 * the extra Merge events needed by large increment events. 1088 */ 1089 if (x86_pmu.flags & PMU_FL_PAIR) { 1090 gpmax -= cpuc->n_pair; 1091 WARN_ON(gpmax <= 0); 1092 } 1093 1094 unsched = perf_assign_events(cpuc->event_constraint, n, wmin, 1095 wmax, gpmax, assign); 1096 } 1097 1098 /* 1099 * In case of success (unsched = 0), mark events as committed, 1100 * so we do not put_constraint() in case new events are added 1101 * and fail to be scheduled 1102 * 1103 * We invoke the lower level commit callback to lock the resource 1104 * 1105 * We do not need to do all of this in case we are called to 1106 * validate an event group (assign == NULL) 1107 */ 1108 if (!unsched && assign) { 1109 for (i = 0; i < n; i++) 1110 static_call_cond(x86_pmu_commit_scheduling)(cpuc, i, assign[i]); 1111 } else { 1112 for (i = n0; i < n; i++) { 1113 e = cpuc->event_list[i]; 1114 1115 /* 1116 * release events that failed scheduling 1117 */ 1118 static_call_cond(x86_pmu_put_event_constraints)(cpuc, e); 1119 1120 cpuc->event_constraint[i] = NULL; 1121 } 1122 } 1123 1124 static_call_cond(x86_pmu_stop_scheduling)(cpuc); 1125 1126 return unsched ? -EINVAL : 0; 1127 } 1128 1129 static int add_nr_metric_event(struct cpu_hw_events *cpuc, 1130 struct perf_event *event) 1131 { 1132 if (is_metric_event(event)) { 1133 if (cpuc->n_metric == INTEL_TD_METRIC_NUM) 1134 return -EINVAL; 1135 cpuc->n_metric++; 1136 cpuc->n_txn_metric++; 1137 } 1138 1139 return 0; 1140 } 1141 1142 static void del_nr_metric_event(struct cpu_hw_events *cpuc, 1143 struct perf_event *event) 1144 { 1145 if (is_metric_event(event)) 1146 cpuc->n_metric--; 1147 } 1148 1149 static int collect_event(struct cpu_hw_events *cpuc, struct perf_event *event, 1150 int max_count, int n) 1151 { 1152 union perf_capabilities intel_cap = hybrid(cpuc->pmu, intel_cap); 1153 1154 if (intel_cap.perf_metrics && add_nr_metric_event(cpuc, event)) 1155 return -EINVAL; 1156 1157 if (n >= max_count + cpuc->n_metric) 1158 return -EINVAL; 1159 1160 cpuc->event_list[n] = event; 1161 if (is_counter_pair(&event->hw)) { 1162 cpuc->n_pair++; 1163 cpuc->n_txn_pair++; 1164 } 1165 1166 return 0; 1167 } 1168 1169 /* 1170 * dogrp: true if must collect siblings events (group) 1171 * returns total number of events and error code 1172 */ 1173 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp) 1174 { 1175 struct perf_event *event; 1176 int n, max_count; 1177 1178 max_count = x86_pmu_num_counters(cpuc->pmu) + x86_pmu_num_counters_fixed(cpuc->pmu); 1179 1180 /* current number of events already accepted */ 1181 n = cpuc->n_events; 1182 if (!cpuc->n_events) 1183 cpuc->pebs_output = 0; 1184 1185 if (!cpuc->is_fake && leader->attr.precise_ip) { 1186 /* 1187 * For PEBS->PT, if !aux_event, the group leader (PT) went 1188 * away, the group was broken down and this singleton event 1189 * can't schedule any more. 1190 */ 1191 if (is_pebs_pt(leader) && !leader->aux_event) 1192 return -EINVAL; 1193 1194 /* 1195 * pebs_output: 0: no PEBS so far, 1: PT, 2: DS 1196 */ 1197 if (cpuc->pebs_output && 1198 cpuc->pebs_output != is_pebs_pt(leader) + 1) 1199 return -EINVAL; 1200 1201 cpuc->pebs_output = is_pebs_pt(leader) + 1; 1202 } 1203 1204 if (is_x86_event(leader)) { 1205 if (collect_event(cpuc, leader, max_count, n)) 1206 return -EINVAL; 1207 n++; 1208 } 1209 1210 if (!dogrp) 1211 return n; 1212 1213 for_each_sibling_event(event, leader) { 1214 if (!is_x86_event(event) || event->state <= PERF_EVENT_STATE_OFF) 1215 continue; 1216 1217 if (collect_event(cpuc, event, max_count, n)) 1218 return -EINVAL; 1219 1220 n++; 1221 } 1222 return n; 1223 } 1224 1225 static inline void x86_assign_hw_event(struct perf_event *event, 1226 struct cpu_hw_events *cpuc, int i) 1227 { 1228 struct hw_perf_event *hwc = &event->hw; 1229 int idx; 1230 1231 idx = hwc->idx = cpuc->assign[i]; 1232 hwc->last_cpu = smp_processor_id(); 1233 hwc->last_tag = ++cpuc->tags[i]; 1234 1235 static_call_cond(x86_pmu_assign)(event, idx); 1236 1237 switch (hwc->idx) { 1238 case INTEL_PMC_IDX_FIXED_BTS: 1239 case INTEL_PMC_IDX_FIXED_VLBR: 1240 hwc->config_base = 0; 1241 hwc->event_base = 0; 1242 break; 1243 1244 case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END: 1245 /* All the metric events are mapped onto the fixed counter 3. */ 1246 idx = INTEL_PMC_IDX_FIXED_SLOTS; 1247 fallthrough; 1248 case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS-1: 1249 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL; 1250 hwc->event_base = x86_pmu_fixed_ctr_addr(idx - INTEL_PMC_IDX_FIXED); 1251 hwc->event_base_rdpmc = (idx - INTEL_PMC_IDX_FIXED) | 1252 INTEL_PMC_FIXED_RDPMC_BASE; 1253 break; 1254 1255 default: 1256 hwc->config_base = x86_pmu_config_addr(hwc->idx); 1257 hwc->event_base = x86_pmu_event_addr(hwc->idx); 1258 hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx); 1259 break; 1260 } 1261 } 1262 1263 /** 1264 * x86_perf_rdpmc_index - Return PMC counter used for event 1265 * @event: the perf_event to which the PMC counter was assigned 1266 * 1267 * The counter assigned to this performance event may change if interrupts 1268 * are enabled. This counter should thus never be used while interrupts are 1269 * enabled. Before this function is used to obtain the assigned counter the 1270 * event should be checked for validity using, for example, 1271 * perf_event_read_local(), within the same interrupt disabled section in 1272 * which this counter is planned to be used. 1273 * 1274 * Return: The index of the performance monitoring counter assigned to 1275 * @perf_event. 1276 */ 1277 int x86_perf_rdpmc_index(struct perf_event *event) 1278 { 1279 lockdep_assert_irqs_disabled(); 1280 1281 return event->hw.event_base_rdpmc; 1282 } 1283 1284 static inline int match_prev_assignment(struct hw_perf_event *hwc, 1285 struct cpu_hw_events *cpuc, 1286 int i) 1287 { 1288 return hwc->idx == cpuc->assign[i] && 1289 hwc->last_cpu == smp_processor_id() && 1290 hwc->last_tag == cpuc->tags[i]; 1291 } 1292 1293 static void x86_pmu_start(struct perf_event *event, int flags); 1294 1295 static void x86_pmu_enable(struct pmu *pmu) 1296 { 1297 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1298 struct perf_event *event; 1299 struct hw_perf_event *hwc; 1300 int i, added = cpuc->n_added; 1301 1302 if (!x86_pmu_initialized()) 1303 return; 1304 1305 if (cpuc->enabled) 1306 return; 1307 1308 if (cpuc->n_added) { 1309 int n_running = cpuc->n_events - cpuc->n_added; 1310 1311 /* 1312 * The late setup (after counters are scheduled) 1313 * is required for some cases, e.g., PEBS counters 1314 * snapshotting. Because an accurate counter index 1315 * is needed. 1316 */ 1317 static_call_cond(x86_pmu_late_setup)(); 1318 1319 /* 1320 * apply assignment obtained either from 1321 * hw_perf_group_sched_in() or x86_pmu_enable() 1322 * 1323 * step1: save events moving to new counters 1324 */ 1325 for (i = 0; i < n_running; i++) { 1326 event = cpuc->event_list[i]; 1327 hwc = &event->hw; 1328 1329 /* 1330 * we can avoid reprogramming counter if: 1331 * - assigned same counter as last time 1332 * - running on same CPU as last time 1333 * - no other event has used the counter since 1334 */ 1335 if (hwc->idx == -1 || 1336 match_prev_assignment(hwc, cpuc, i)) 1337 continue; 1338 1339 /* 1340 * Ensure we don't accidentally enable a stopped 1341 * counter simply because we rescheduled. 1342 */ 1343 if (hwc->state & PERF_HES_STOPPED) 1344 hwc->state |= PERF_HES_ARCH; 1345 1346 x86_pmu_stop(event, PERF_EF_UPDATE); 1347 } 1348 1349 /* 1350 * step2: reprogram moved events into new counters 1351 */ 1352 for (i = 0; i < cpuc->n_events; i++) { 1353 event = cpuc->event_list[i]; 1354 hwc = &event->hw; 1355 1356 if (!match_prev_assignment(hwc, cpuc, i)) 1357 x86_assign_hw_event(event, cpuc, i); 1358 else if (i < n_running) 1359 continue; 1360 1361 if (hwc->state & PERF_HES_ARCH) 1362 continue; 1363 1364 /* 1365 * if cpuc->enabled = 0, then no wrmsr as 1366 * per x86_pmu_enable_event() 1367 */ 1368 x86_pmu_start(event, PERF_EF_RELOAD); 1369 } 1370 cpuc->n_added = 0; 1371 perf_events_lapic_init(); 1372 } 1373 1374 cpuc->enabled = 1; 1375 barrier(); 1376 1377 static_call(x86_pmu_enable_all)(added); 1378 } 1379 1380 DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left); 1381 1382 /* 1383 * Set the next IRQ period, based on the hwc->period_left value. 1384 * To be called with the event disabled in hw: 1385 */ 1386 int x86_perf_event_set_period(struct perf_event *event) 1387 { 1388 struct hw_perf_event *hwc = &event->hw; 1389 s64 left = local64_read(&hwc->period_left); 1390 s64 period = hwc->sample_period; 1391 int ret = 0, idx = hwc->idx; 1392 1393 if (unlikely(!hwc->event_base)) 1394 return 0; 1395 1396 /* 1397 * If we are way outside a reasonable range then just skip forward: 1398 */ 1399 if (unlikely(left <= -period)) { 1400 left = period; 1401 local64_set(&hwc->period_left, left); 1402 hwc->last_period = period; 1403 ret = 1; 1404 } 1405 1406 if (unlikely(left <= 0)) { 1407 left += period; 1408 local64_set(&hwc->period_left, left); 1409 hwc->last_period = period; 1410 ret = 1; 1411 } 1412 /* 1413 * Quirk: certain CPUs dont like it if just 1 hw_event is left: 1414 */ 1415 if (unlikely(left < 2)) 1416 left = 2; 1417 1418 if (left > x86_pmu.max_period) 1419 left = x86_pmu.max_period; 1420 1421 static_call_cond(x86_pmu_limit_period)(event, &left); 1422 1423 this_cpu_write(pmc_prev_left[idx], left); 1424 1425 /* 1426 * The hw event starts counting from this event offset, 1427 * mark it to be able to extra future deltas: 1428 */ 1429 local64_set(&hwc->prev_count, (u64)-left); 1430 1431 wrmsrq(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask); 1432 1433 /* 1434 * Sign extend the Merge event counter's upper 16 bits since 1435 * we currently declare a 48-bit counter width 1436 */ 1437 if (is_counter_pair(hwc)) 1438 wrmsrq(x86_pmu_event_addr(idx + 1), 0xffff); 1439 1440 perf_event_update_userpage(event); 1441 1442 return ret; 1443 } 1444 1445 void x86_pmu_enable_event(struct perf_event *event) 1446 { 1447 if (__this_cpu_read(cpu_hw_events.enabled)) 1448 __x86_pmu_enable_event(&event->hw, 1449 ARCH_PERFMON_EVENTSEL_ENABLE); 1450 } 1451 1452 /* 1453 * Add a single event to the PMU. 1454 * 1455 * The event is added to the group of enabled events 1456 * but only if it can be scheduled with existing events. 1457 */ 1458 static int x86_pmu_add(struct perf_event *event, int flags) 1459 { 1460 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1461 struct hw_perf_event *hwc; 1462 int assign[X86_PMC_IDX_MAX]; 1463 int n, n0, ret; 1464 1465 hwc = &event->hw; 1466 1467 n0 = cpuc->n_events; 1468 ret = n = collect_events(cpuc, event, false); 1469 if (ret < 0) 1470 goto out; 1471 1472 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED; 1473 if (!(flags & PERF_EF_START)) 1474 hwc->state |= PERF_HES_ARCH; 1475 1476 /* 1477 * If group events scheduling transaction was started, 1478 * skip the schedulability test here, it will be performed 1479 * at commit time (->commit_txn) as a whole. 1480 * 1481 * If commit fails, we'll call ->del() on all events 1482 * for which ->add() was called. 1483 */ 1484 if (cpuc->txn_flags & PERF_PMU_TXN_ADD) 1485 goto done_collect; 1486 1487 ret = static_call(x86_pmu_schedule_events)(cpuc, n, assign); 1488 if (ret) 1489 goto out; 1490 /* 1491 * copy new assignment, now we know it is possible 1492 * will be used by hw_perf_enable() 1493 */ 1494 memcpy(cpuc->assign, assign, n*sizeof(int)); 1495 1496 done_collect: 1497 /* 1498 * Commit the collect_events() state. See x86_pmu_del() and 1499 * x86_pmu_*_txn(). 1500 */ 1501 cpuc->n_events = n; 1502 cpuc->n_added += n - n0; 1503 cpuc->n_txn += n - n0; 1504 1505 /* 1506 * This is before x86_pmu_enable() will call x86_pmu_start(), 1507 * so we enable LBRs before an event needs them etc.. 1508 */ 1509 static_call_cond(x86_pmu_add)(event); 1510 1511 ret = 0; 1512 out: 1513 return ret; 1514 } 1515 1516 static void x86_pmu_start(struct perf_event *event, int flags) 1517 { 1518 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1519 int idx = event->hw.idx; 1520 1521 if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED))) 1522 return; 1523 1524 if (WARN_ON_ONCE(idx == -1)) 1525 return; 1526 1527 if (flags & PERF_EF_RELOAD) { 1528 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE)); 1529 static_call(x86_pmu_set_period)(event); 1530 } 1531 1532 event->hw.state = 0; 1533 1534 cpuc->events[idx] = event; 1535 __set_bit(idx, cpuc->active_mask); 1536 static_call(x86_pmu_enable)(event); 1537 perf_event_update_userpage(event); 1538 } 1539 1540 void perf_event_print_debug(void) 1541 { 1542 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed; 1543 unsigned long *cntr_mask, *fixed_cntr_mask; 1544 struct event_constraint *pebs_constraints; 1545 struct cpu_hw_events *cpuc; 1546 u64 pebs, debugctl; 1547 int cpu, idx; 1548 1549 guard(irqsave)(); 1550 1551 cpu = smp_processor_id(); 1552 cpuc = &per_cpu(cpu_hw_events, cpu); 1553 cntr_mask = hybrid(cpuc->pmu, cntr_mask); 1554 fixed_cntr_mask = hybrid(cpuc->pmu, fixed_cntr_mask); 1555 pebs_constraints = hybrid(cpuc->pmu, pebs_constraints); 1556 1557 if (!*(u64 *)cntr_mask) 1558 return; 1559 1560 if (x86_pmu.version >= 2) { 1561 rdmsrq(MSR_CORE_PERF_GLOBAL_CTRL, ctrl); 1562 rdmsrq(MSR_CORE_PERF_GLOBAL_STATUS, status); 1563 rdmsrq(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow); 1564 rdmsrq(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed); 1565 1566 pr_info("\n"); 1567 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl); 1568 pr_info("CPU#%d: status: %016llx\n", cpu, status); 1569 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow); 1570 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed); 1571 if (pebs_constraints) { 1572 rdmsrq(MSR_IA32_PEBS_ENABLE, pebs); 1573 pr_info("CPU#%d: pebs: %016llx\n", cpu, pebs); 1574 } 1575 if (x86_pmu.lbr_nr) { 1576 rdmsrq(MSR_IA32_DEBUGCTLMSR, debugctl); 1577 pr_info("CPU#%d: debugctl: %016llx\n", cpu, debugctl); 1578 } 1579 } 1580 pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask); 1581 1582 for_each_set_bit(idx, cntr_mask, X86_PMC_IDX_MAX) { 1583 rdmsrq(x86_pmu_config_addr(idx), pmc_ctrl); 1584 rdmsrq(x86_pmu_event_addr(idx), pmc_count); 1585 1586 prev_left = per_cpu(pmc_prev_left[idx], cpu); 1587 1588 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n", 1589 cpu, idx, pmc_ctrl); 1590 pr_info("CPU#%d: gen-PMC%d count: %016llx\n", 1591 cpu, idx, pmc_count); 1592 pr_info("CPU#%d: gen-PMC%d left: %016llx\n", 1593 cpu, idx, prev_left); 1594 } 1595 for_each_set_bit(idx, fixed_cntr_mask, X86_PMC_IDX_MAX) { 1596 if (fixed_counter_disabled(idx, cpuc->pmu)) 1597 continue; 1598 rdmsrq(x86_pmu_fixed_ctr_addr(idx), pmc_count); 1599 1600 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n", 1601 cpu, idx, pmc_count); 1602 } 1603 } 1604 1605 void x86_pmu_stop(struct perf_event *event, int flags) 1606 { 1607 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1608 struct hw_perf_event *hwc = &event->hw; 1609 1610 if (test_bit(hwc->idx, cpuc->active_mask)) { 1611 static_call(x86_pmu_disable)(event); 1612 __clear_bit(hwc->idx, cpuc->active_mask); 1613 cpuc->events[hwc->idx] = NULL; 1614 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED); 1615 hwc->state |= PERF_HES_STOPPED; 1616 } 1617 1618 if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) { 1619 /* 1620 * Drain the remaining delta count out of a event 1621 * that we are disabling: 1622 */ 1623 static_call(x86_pmu_update)(event); 1624 hwc->state |= PERF_HES_UPTODATE; 1625 } 1626 } 1627 1628 static void x86_pmu_del(struct perf_event *event, int flags) 1629 { 1630 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1631 union perf_capabilities intel_cap = hybrid(cpuc->pmu, intel_cap); 1632 int i; 1633 1634 /* 1635 * If we're called during a txn, we only need to undo x86_pmu.add. 1636 * The events never got scheduled and ->cancel_txn will truncate 1637 * the event_list. 1638 * 1639 * XXX assumes any ->del() called during a TXN will only be on 1640 * an event added during that same TXN. 1641 */ 1642 if (cpuc->txn_flags & PERF_PMU_TXN_ADD) 1643 goto do_del; 1644 1645 __set_bit(event->hw.idx, cpuc->dirty); 1646 1647 /* 1648 * Not a TXN, therefore cleanup properly. 1649 */ 1650 x86_pmu_stop(event, PERF_EF_UPDATE); 1651 1652 for (i = 0; i < cpuc->n_events; i++) { 1653 if (event == cpuc->event_list[i]) 1654 break; 1655 } 1656 1657 if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */ 1658 return; 1659 1660 /* If we have a newly added event; make sure to decrease n_added. */ 1661 if (i >= cpuc->n_events - cpuc->n_added) 1662 --cpuc->n_added; 1663 1664 static_call_cond(x86_pmu_put_event_constraints)(cpuc, event); 1665 1666 /* Delete the array entry. */ 1667 while (++i < cpuc->n_events) { 1668 cpuc->event_list[i-1] = cpuc->event_list[i]; 1669 cpuc->event_constraint[i-1] = cpuc->event_constraint[i]; 1670 cpuc->assign[i-1] = cpuc->assign[i]; 1671 } 1672 cpuc->event_constraint[i-1] = NULL; 1673 --cpuc->n_events; 1674 if (intel_cap.perf_metrics) 1675 del_nr_metric_event(cpuc, event); 1676 1677 perf_event_update_userpage(event); 1678 1679 do_del: 1680 1681 /* 1682 * This is after x86_pmu_stop(); so we disable LBRs after any 1683 * event can need them etc.. 1684 */ 1685 static_call_cond(x86_pmu_del)(event); 1686 } 1687 1688 int x86_pmu_handle_irq(struct pt_regs *regs) 1689 { 1690 struct perf_sample_data data; 1691 struct cpu_hw_events *cpuc; 1692 struct perf_event *event; 1693 int idx, handled = 0; 1694 u64 last_period; 1695 u64 val; 1696 1697 cpuc = this_cpu_ptr(&cpu_hw_events); 1698 1699 /* 1700 * Some chipsets need to unmask the LVTPC in a particular spot 1701 * inside the nmi handler. As a result, the unmasking was pushed 1702 * into all the nmi handlers. 1703 * 1704 * This generic handler doesn't seem to have any issues where the 1705 * unmasking occurs so it was left at the top. 1706 */ 1707 apic_write(APIC_LVTPC, APIC_DM_NMI); 1708 1709 for_each_set_bit(idx, x86_pmu.cntr_mask, X86_PMC_IDX_MAX) { 1710 if (!test_bit(idx, cpuc->active_mask)) 1711 continue; 1712 1713 event = cpuc->events[idx]; 1714 last_period = event->hw.last_period; 1715 1716 val = static_call(x86_pmu_update)(event); 1717 if (val & (1ULL << (x86_pmu.cntval_bits - 1))) 1718 continue; 1719 1720 /* 1721 * event overflow 1722 */ 1723 handled++; 1724 1725 if (!static_call(x86_pmu_set_period)(event)) 1726 continue; 1727 1728 perf_sample_data_init(&data, 0, last_period); 1729 1730 perf_sample_save_brstack(&data, event, &cpuc->lbr_stack, NULL); 1731 1732 perf_event_overflow(event, &data, regs); 1733 } 1734 1735 if (handled) 1736 inc_irq_stat(apic_perf_irqs); 1737 1738 return handled; 1739 } 1740 1741 void perf_events_lapic_init(void) 1742 { 1743 if (!x86_pmu.apic || !x86_pmu_initialized()) 1744 return; 1745 1746 /* 1747 * Always use NMI for PMU 1748 */ 1749 apic_write(APIC_LVTPC, APIC_DM_NMI); 1750 } 1751 1752 static int 1753 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs) 1754 { 1755 u64 start_clock; 1756 u64 finish_clock; 1757 int ret; 1758 1759 /* 1760 * All PMUs/events that share this PMI handler should make sure to 1761 * increment active_events for their events. 1762 */ 1763 if (!atomic_read(&active_events)) 1764 return NMI_DONE; 1765 1766 start_clock = sched_clock(); 1767 ret = static_call(x86_pmu_handle_irq)(regs); 1768 finish_clock = sched_clock(); 1769 1770 perf_sample_event_took(finish_clock - start_clock); 1771 1772 return ret; 1773 } 1774 NOKPROBE_SYMBOL(perf_event_nmi_handler); 1775 1776 struct event_constraint emptyconstraint; 1777 struct event_constraint unconstrained; 1778 1779 static int x86_pmu_prepare_cpu(unsigned int cpu) 1780 { 1781 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu); 1782 int i; 1783 1784 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) 1785 cpuc->kfree_on_online[i] = NULL; 1786 if (x86_pmu.cpu_prepare) 1787 return x86_pmu.cpu_prepare(cpu); 1788 return 0; 1789 } 1790 1791 static int x86_pmu_dead_cpu(unsigned int cpu) 1792 { 1793 if (x86_pmu.cpu_dead) 1794 x86_pmu.cpu_dead(cpu); 1795 return 0; 1796 } 1797 1798 static int x86_pmu_online_cpu(unsigned int cpu) 1799 { 1800 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu); 1801 int i; 1802 1803 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) { 1804 kfree(cpuc->kfree_on_online[i]); 1805 cpuc->kfree_on_online[i] = NULL; 1806 } 1807 return 0; 1808 } 1809 1810 static int x86_pmu_starting_cpu(unsigned int cpu) 1811 { 1812 if (x86_pmu.cpu_starting) 1813 x86_pmu.cpu_starting(cpu); 1814 return 0; 1815 } 1816 1817 static int x86_pmu_dying_cpu(unsigned int cpu) 1818 { 1819 if (x86_pmu.cpu_dying) 1820 x86_pmu.cpu_dying(cpu); 1821 return 0; 1822 } 1823 1824 static void __init pmu_check_apic(void) 1825 { 1826 if (boot_cpu_has(X86_FEATURE_APIC)) 1827 return; 1828 1829 x86_pmu.apic = 0; 1830 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n"); 1831 pr_info("no hardware sampling interrupt available.\n"); 1832 1833 /* 1834 * If we have a PMU initialized but no APIC 1835 * interrupts, we cannot sample hardware 1836 * events (user-space has to fall back and 1837 * sample via a hrtimer based software event): 1838 */ 1839 pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT; 1840 1841 } 1842 1843 static struct attribute_group x86_pmu_format_group __ro_after_init = { 1844 .name = "format", 1845 .attrs = NULL, 1846 }; 1847 1848 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page) 1849 { 1850 struct perf_pmu_events_attr *pmu_attr = 1851 container_of(attr, struct perf_pmu_events_attr, attr); 1852 u64 config = 0; 1853 1854 if (pmu_attr->id < x86_pmu.max_events) 1855 config = x86_pmu.event_map(pmu_attr->id); 1856 1857 /* string trumps id */ 1858 if (pmu_attr->event_str) 1859 return sprintf(page, "%s\n", pmu_attr->event_str); 1860 1861 return x86_pmu.events_sysfs_show(page, config); 1862 } 1863 EXPORT_SYMBOL_GPL(events_sysfs_show); 1864 1865 ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr, 1866 char *page) 1867 { 1868 struct perf_pmu_events_ht_attr *pmu_attr = 1869 container_of(attr, struct perf_pmu_events_ht_attr, attr); 1870 1871 /* 1872 * Report conditional events depending on Hyper-Threading. 1873 * 1874 * This is overly conservative as usually the HT special 1875 * handling is not needed if the other CPU thread is idle. 1876 * 1877 * Note this does not (and cannot) handle the case when thread 1878 * siblings are invisible, for example with virtualization 1879 * if they are owned by some other guest. The user tool 1880 * has to re-read when a thread sibling gets onlined later. 1881 */ 1882 return sprintf(page, "%s", 1883 topology_max_smt_threads() > 1 ? 1884 pmu_attr->event_str_ht : 1885 pmu_attr->event_str_noht); 1886 } 1887 1888 ssize_t events_hybrid_sysfs_show(struct device *dev, 1889 struct device_attribute *attr, 1890 char *page) 1891 { 1892 struct perf_pmu_events_hybrid_attr *pmu_attr = 1893 container_of(attr, struct perf_pmu_events_hybrid_attr, attr); 1894 struct x86_hybrid_pmu *pmu; 1895 const char *str, *next_str; 1896 int i; 1897 1898 if (hweight64(pmu_attr->pmu_type) == 1) 1899 return sprintf(page, "%s", pmu_attr->event_str); 1900 1901 /* 1902 * Hybrid PMUs may support the same event name, but with different 1903 * event encoding, e.g., the mem-loads event on an Atom PMU has 1904 * different event encoding from a Core PMU. 1905 * 1906 * The event_str includes all event encodings. Each event encoding 1907 * is divided by ";". The order of the event encodings must follow 1908 * the order of the hybrid PMU index. 1909 */ 1910 pmu = container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu); 1911 1912 str = pmu_attr->event_str; 1913 for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) { 1914 if (!(x86_pmu.hybrid_pmu[i].pmu_type & pmu_attr->pmu_type)) 1915 continue; 1916 if (x86_pmu.hybrid_pmu[i].pmu_type & pmu->pmu_type) { 1917 next_str = strchr(str, ';'); 1918 if (next_str) 1919 return snprintf(page, next_str - str + 1, "%s", str); 1920 else 1921 return sprintf(page, "%s", str); 1922 } 1923 str = strchr(str, ';'); 1924 str++; 1925 } 1926 1927 return 0; 1928 } 1929 EXPORT_SYMBOL_GPL(events_hybrid_sysfs_show); 1930 1931 EVENT_ATTR(cpu-cycles, CPU_CYCLES ); 1932 EVENT_ATTR(instructions, INSTRUCTIONS ); 1933 EVENT_ATTR(cache-references, CACHE_REFERENCES ); 1934 EVENT_ATTR(cache-misses, CACHE_MISSES ); 1935 EVENT_ATTR(branch-instructions, BRANCH_INSTRUCTIONS ); 1936 EVENT_ATTR(branch-misses, BRANCH_MISSES ); 1937 EVENT_ATTR(bus-cycles, BUS_CYCLES ); 1938 EVENT_ATTR(stalled-cycles-frontend, STALLED_CYCLES_FRONTEND ); 1939 EVENT_ATTR(stalled-cycles-backend, STALLED_CYCLES_BACKEND ); 1940 EVENT_ATTR(ref-cycles, REF_CPU_CYCLES ); 1941 1942 static struct attribute *empty_attrs; 1943 1944 static struct attribute *events_attr[] = { 1945 EVENT_PTR(CPU_CYCLES), 1946 EVENT_PTR(INSTRUCTIONS), 1947 EVENT_PTR(CACHE_REFERENCES), 1948 EVENT_PTR(CACHE_MISSES), 1949 EVENT_PTR(BRANCH_INSTRUCTIONS), 1950 EVENT_PTR(BRANCH_MISSES), 1951 EVENT_PTR(BUS_CYCLES), 1952 EVENT_PTR(STALLED_CYCLES_FRONTEND), 1953 EVENT_PTR(STALLED_CYCLES_BACKEND), 1954 EVENT_PTR(REF_CPU_CYCLES), 1955 NULL, 1956 }; 1957 1958 /* 1959 * Remove all undefined events (x86_pmu.event_map(id) == 0) 1960 * out of events_attr attributes. 1961 */ 1962 static umode_t 1963 is_visible(struct kobject *kobj, struct attribute *attr, int idx) 1964 { 1965 struct perf_pmu_events_attr *pmu_attr; 1966 1967 if (idx >= x86_pmu.max_events) 1968 return 0; 1969 1970 pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr.attr); 1971 /* str trumps id */ 1972 return pmu_attr->event_str || x86_pmu.event_map(idx) ? attr->mode : 0; 1973 } 1974 1975 static struct attribute_group x86_pmu_events_group __ro_after_init = { 1976 .name = "events", 1977 .attrs = events_attr, 1978 .is_visible = is_visible, 1979 }; 1980 1981 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event) 1982 { 1983 u64 umask = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8; 1984 u64 cmask = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24; 1985 bool edge = (config & ARCH_PERFMON_EVENTSEL_EDGE); 1986 bool pc = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL); 1987 bool any = (config & ARCH_PERFMON_EVENTSEL_ANY); 1988 bool inv = (config & ARCH_PERFMON_EVENTSEL_INV); 1989 ssize_t ret; 1990 1991 /* 1992 * We have whole page size to spend and just little data 1993 * to write, so we can safely use sprintf. 1994 */ 1995 ret = sprintf(page, "event=0x%02llx", event); 1996 1997 if (umask) 1998 ret += sprintf(page + ret, ",umask=0x%02llx", umask); 1999 2000 if (edge) 2001 ret += sprintf(page + ret, ",edge"); 2002 2003 if (pc) 2004 ret += sprintf(page + ret, ",pc"); 2005 2006 if (any) 2007 ret += sprintf(page + ret, ",any"); 2008 2009 if (inv) 2010 ret += sprintf(page + ret, ",inv"); 2011 2012 if (cmask) 2013 ret += sprintf(page + ret, ",cmask=0x%02llx", cmask); 2014 2015 ret += sprintf(page + ret, "\n"); 2016 2017 return ret; 2018 } 2019 2020 static struct attribute_group x86_pmu_attr_group; 2021 static struct attribute_group x86_pmu_caps_group; 2022 2023 static void x86_pmu_static_call_update(void) 2024 { 2025 static_call_update(x86_pmu_handle_irq, x86_pmu.handle_irq); 2026 static_call_update(x86_pmu_disable_all, x86_pmu.disable_all); 2027 static_call_update(x86_pmu_enable_all, x86_pmu.enable_all); 2028 static_call_update(x86_pmu_enable, x86_pmu.enable); 2029 static_call_update(x86_pmu_disable, x86_pmu.disable); 2030 2031 static_call_update(x86_pmu_assign, x86_pmu.assign); 2032 2033 static_call_update(x86_pmu_add, x86_pmu.add); 2034 static_call_update(x86_pmu_del, x86_pmu.del); 2035 static_call_update(x86_pmu_read, x86_pmu.read); 2036 2037 static_call_update(x86_pmu_set_period, x86_pmu.set_period); 2038 static_call_update(x86_pmu_update, x86_pmu.update); 2039 static_call_update(x86_pmu_limit_period, x86_pmu.limit_period); 2040 2041 static_call_update(x86_pmu_schedule_events, x86_pmu.schedule_events); 2042 static_call_update(x86_pmu_get_event_constraints, x86_pmu.get_event_constraints); 2043 static_call_update(x86_pmu_put_event_constraints, x86_pmu.put_event_constraints); 2044 2045 static_call_update(x86_pmu_start_scheduling, x86_pmu.start_scheduling); 2046 static_call_update(x86_pmu_commit_scheduling, x86_pmu.commit_scheduling); 2047 static_call_update(x86_pmu_stop_scheduling, x86_pmu.stop_scheduling); 2048 2049 static_call_update(x86_pmu_sched_task, x86_pmu.sched_task); 2050 2051 static_call_update(x86_pmu_drain_pebs, x86_pmu.drain_pebs); 2052 static_call_update(x86_pmu_pebs_aliases, x86_pmu.pebs_aliases); 2053 2054 static_call_update(x86_pmu_guest_get_msrs, x86_pmu.guest_get_msrs); 2055 static_call_update(x86_pmu_filter, x86_pmu.filter); 2056 2057 static_call_update(x86_pmu_late_setup, x86_pmu.late_setup); 2058 2059 static_call_update(x86_pmu_pebs_enable, x86_pmu.pebs_enable); 2060 static_call_update(x86_pmu_pebs_disable, x86_pmu.pebs_disable); 2061 static_call_update(x86_pmu_pebs_enable_all, x86_pmu.pebs_enable_all); 2062 static_call_update(x86_pmu_pebs_disable_all, x86_pmu.pebs_disable_all); 2063 } 2064 2065 static void _x86_pmu_read(struct perf_event *event) 2066 { 2067 static_call(x86_pmu_update)(event); 2068 } 2069 2070 void x86_pmu_show_pmu_cap(struct pmu *pmu) 2071 { 2072 pr_info("... version: %d\n", x86_pmu.version); 2073 pr_info("... bit width: %d\n", x86_pmu.cntval_bits); 2074 pr_info("... generic counters: %d\n", x86_pmu_num_counters(pmu)); 2075 pr_info("... generic bitmap: %016llx\n", hybrid(pmu, cntr_mask64)); 2076 pr_info("... fixed-purpose counters: %d\n", x86_pmu_num_counters_fixed(pmu)); 2077 pr_info("... fixed-purpose bitmap: %016llx\n", hybrid(pmu, fixed_cntr_mask64)); 2078 pr_info("... value mask: %016llx\n", x86_pmu.cntval_mask); 2079 pr_info("... max period: %016llx\n", x86_pmu.max_period); 2080 pr_info("... global_ctrl mask: %016llx\n", hybrid(pmu, intel_ctrl)); 2081 } 2082 2083 static int __init init_hw_perf_events(void) 2084 { 2085 struct x86_pmu_quirk *quirk; 2086 int err; 2087 2088 pr_info("Performance Events: "); 2089 2090 switch (boot_cpu_data.x86_vendor) { 2091 case X86_VENDOR_INTEL: 2092 err = intel_pmu_init(); 2093 break; 2094 case X86_VENDOR_AMD: 2095 err = amd_pmu_init(); 2096 break; 2097 case X86_VENDOR_HYGON: 2098 err = amd_pmu_init(); 2099 x86_pmu.name = "HYGON"; 2100 break; 2101 case X86_VENDOR_ZHAOXIN: 2102 case X86_VENDOR_CENTAUR: 2103 err = zhaoxin_pmu_init(); 2104 break; 2105 default: 2106 err = -ENOTSUPP; 2107 } 2108 if (err != 0) { 2109 pr_cont("no PMU driver, software events only.\n"); 2110 err = 0; 2111 goto out_bad_pmu; 2112 } 2113 2114 pmu_check_apic(); 2115 2116 /* sanity check that the hardware exists or is emulated */ 2117 if (!check_hw_exists(&pmu, x86_pmu.cntr_mask, x86_pmu.fixed_cntr_mask)) 2118 goto out_bad_pmu; 2119 2120 pr_cont("%s PMU driver.\n", x86_pmu.name); 2121 2122 x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */ 2123 2124 for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next) 2125 quirk->func(); 2126 2127 if (!x86_pmu.intel_ctrl) 2128 x86_pmu.intel_ctrl = x86_pmu.cntr_mask64; 2129 2130 if (!x86_pmu.config_mask) 2131 x86_pmu.config_mask = X86_RAW_EVENT_MASK; 2132 2133 perf_events_lapic_init(); 2134 register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI"); 2135 2136 unconstrained = (struct event_constraint) 2137 __EVENT_CONSTRAINT(0, x86_pmu.cntr_mask64, 2138 0, x86_pmu_num_counters(NULL), 0, 0); 2139 2140 x86_pmu_format_group.attrs = x86_pmu.format_attrs; 2141 2142 if (!x86_pmu.events_sysfs_show) 2143 x86_pmu_events_group.attrs = &empty_attrs; 2144 2145 pmu.attr_update = x86_pmu.attr_update; 2146 2147 if (!is_hybrid()) 2148 x86_pmu_show_pmu_cap(NULL); 2149 2150 if (!x86_pmu.read) 2151 x86_pmu.read = _x86_pmu_read; 2152 2153 if (!x86_pmu.guest_get_msrs) 2154 x86_pmu.guest_get_msrs = (void *)&__static_call_return0; 2155 2156 if (!x86_pmu.set_period) 2157 x86_pmu.set_period = x86_perf_event_set_period; 2158 2159 if (!x86_pmu.update) 2160 x86_pmu.update = x86_perf_event_update; 2161 2162 x86_pmu_static_call_update(); 2163 2164 /* 2165 * Install callbacks. Core will call them for each online 2166 * cpu. 2167 */ 2168 err = cpuhp_setup_state(CPUHP_PERF_X86_PREPARE, "perf/x86:prepare", 2169 x86_pmu_prepare_cpu, x86_pmu_dead_cpu); 2170 if (err) 2171 return err; 2172 2173 err = cpuhp_setup_state(CPUHP_AP_PERF_X86_STARTING, 2174 "perf/x86:starting", x86_pmu_starting_cpu, 2175 x86_pmu_dying_cpu); 2176 if (err) 2177 goto out; 2178 2179 err = cpuhp_setup_state(CPUHP_AP_PERF_X86_ONLINE, "perf/x86:online", 2180 x86_pmu_online_cpu, NULL); 2181 if (err) 2182 goto out1; 2183 2184 if (!is_hybrid()) { 2185 err = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW); 2186 if (err) 2187 goto out2; 2188 } else { 2189 struct x86_hybrid_pmu *hybrid_pmu; 2190 int i, j; 2191 2192 for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) { 2193 hybrid_pmu = &x86_pmu.hybrid_pmu[i]; 2194 2195 hybrid_pmu->pmu = pmu; 2196 hybrid_pmu->pmu.type = -1; 2197 hybrid_pmu->pmu.attr_update = x86_pmu.attr_update; 2198 hybrid_pmu->pmu.capabilities |= PERF_PMU_CAP_EXTENDED_HW_TYPE; 2199 2200 err = perf_pmu_register(&hybrid_pmu->pmu, hybrid_pmu->name, 2201 (hybrid_pmu->pmu_type == hybrid_big) ? PERF_TYPE_RAW : -1); 2202 if (err) 2203 break; 2204 } 2205 2206 if (i < x86_pmu.num_hybrid_pmus) { 2207 for (j = 0; j < i; j++) 2208 perf_pmu_unregister(&x86_pmu.hybrid_pmu[j].pmu); 2209 pr_warn("Failed to register hybrid PMUs\n"); 2210 kfree(x86_pmu.hybrid_pmu); 2211 x86_pmu.hybrid_pmu = NULL; 2212 x86_pmu.num_hybrid_pmus = 0; 2213 goto out2; 2214 } 2215 } 2216 2217 return 0; 2218 2219 out2: 2220 cpuhp_remove_state(CPUHP_AP_PERF_X86_ONLINE); 2221 out1: 2222 cpuhp_remove_state(CPUHP_AP_PERF_X86_STARTING); 2223 out: 2224 cpuhp_remove_state(CPUHP_PERF_X86_PREPARE); 2225 out_bad_pmu: 2226 memset(&x86_pmu, 0, sizeof(x86_pmu)); 2227 return err; 2228 } 2229 early_initcall(init_hw_perf_events); 2230 2231 static void x86_pmu_read(struct perf_event *event) 2232 { 2233 static_call(x86_pmu_read)(event); 2234 } 2235 2236 /* 2237 * Start group events scheduling transaction 2238 * Set the flag to make pmu::enable() not perform the 2239 * schedulability test, it will be performed at commit time 2240 * 2241 * We only support PERF_PMU_TXN_ADD transactions. Save the 2242 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD 2243 * transactions. 2244 */ 2245 static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags) 2246 { 2247 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2248 2249 WARN_ON_ONCE(cpuc->txn_flags); /* txn already in flight */ 2250 2251 cpuc->txn_flags = txn_flags; 2252 if (txn_flags & ~PERF_PMU_TXN_ADD) 2253 return; 2254 2255 perf_pmu_disable(pmu); 2256 __this_cpu_write(cpu_hw_events.n_txn, 0); 2257 __this_cpu_write(cpu_hw_events.n_txn_pair, 0); 2258 __this_cpu_write(cpu_hw_events.n_txn_metric, 0); 2259 } 2260 2261 /* 2262 * Stop group events scheduling transaction 2263 * Clear the flag and pmu::enable() will perform the 2264 * schedulability test. 2265 */ 2266 static void x86_pmu_cancel_txn(struct pmu *pmu) 2267 { 2268 unsigned int txn_flags; 2269 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2270 2271 WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */ 2272 2273 txn_flags = cpuc->txn_flags; 2274 cpuc->txn_flags = 0; 2275 if (txn_flags & ~PERF_PMU_TXN_ADD) 2276 return; 2277 2278 /* 2279 * Truncate collected array by the number of events added in this 2280 * transaction. See x86_pmu_add() and x86_pmu_*_txn(). 2281 */ 2282 __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn)); 2283 __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn)); 2284 __this_cpu_sub(cpu_hw_events.n_pair, __this_cpu_read(cpu_hw_events.n_txn_pair)); 2285 __this_cpu_sub(cpu_hw_events.n_metric, __this_cpu_read(cpu_hw_events.n_txn_metric)); 2286 perf_pmu_enable(pmu); 2287 } 2288 2289 /* 2290 * Commit group events scheduling transaction 2291 * Perform the group schedulability test as a whole 2292 * Return 0 if success 2293 * 2294 * Does not cancel the transaction on failure; expects the caller to do this. 2295 */ 2296 static int x86_pmu_commit_txn(struct pmu *pmu) 2297 { 2298 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2299 int assign[X86_PMC_IDX_MAX]; 2300 int n, ret; 2301 2302 WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */ 2303 2304 if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) { 2305 cpuc->txn_flags = 0; 2306 return 0; 2307 } 2308 2309 n = cpuc->n_events; 2310 2311 if (!x86_pmu_initialized()) 2312 return -EAGAIN; 2313 2314 ret = static_call(x86_pmu_schedule_events)(cpuc, n, assign); 2315 if (ret) 2316 return ret; 2317 2318 /* 2319 * copy new assignment, now we know it is possible 2320 * will be used by hw_perf_enable() 2321 */ 2322 memcpy(cpuc->assign, assign, n*sizeof(int)); 2323 2324 cpuc->txn_flags = 0; 2325 perf_pmu_enable(pmu); 2326 return 0; 2327 } 2328 /* 2329 * a fake_cpuc is used to validate event groups. Due to 2330 * the extra reg logic, we need to also allocate a fake 2331 * per_core and per_cpu structure. Otherwise, group events 2332 * using extra reg may conflict without the kernel being 2333 * able to catch this when the last event gets added to 2334 * the group. 2335 */ 2336 static void free_fake_cpuc(struct cpu_hw_events *cpuc) 2337 { 2338 intel_cpuc_finish(cpuc); 2339 kfree(cpuc); 2340 } 2341 2342 static struct cpu_hw_events *allocate_fake_cpuc(struct pmu *event_pmu) 2343 { 2344 struct cpu_hw_events *cpuc; 2345 int cpu; 2346 2347 cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL); 2348 if (!cpuc) 2349 return ERR_PTR(-ENOMEM); 2350 cpuc->is_fake = 1; 2351 2352 if (is_hybrid()) { 2353 struct x86_hybrid_pmu *h_pmu; 2354 2355 h_pmu = hybrid_pmu(event_pmu); 2356 if (cpumask_empty(&h_pmu->supported_cpus)) 2357 goto error; 2358 cpu = cpumask_first(&h_pmu->supported_cpus); 2359 } else 2360 cpu = raw_smp_processor_id(); 2361 cpuc->pmu = event_pmu; 2362 2363 if (intel_cpuc_prepare(cpuc, cpu)) 2364 goto error; 2365 2366 return cpuc; 2367 error: 2368 free_fake_cpuc(cpuc); 2369 return ERR_PTR(-ENOMEM); 2370 } 2371 2372 /* 2373 * validate that we can schedule this event 2374 */ 2375 static int validate_event(struct perf_event *event) 2376 { 2377 struct cpu_hw_events *fake_cpuc; 2378 struct event_constraint *c; 2379 int ret = 0; 2380 2381 fake_cpuc = allocate_fake_cpuc(event->pmu); 2382 if (IS_ERR(fake_cpuc)) 2383 return PTR_ERR(fake_cpuc); 2384 2385 c = x86_pmu.get_event_constraints(fake_cpuc, 0, event); 2386 2387 if (!c || !c->weight) 2388 ret = -EINVAL; 2389 2390 if (x86_pmu.put_event_constraints) 2391 x86_pmu.put_event_constraints(fake_cpuc, event); 2392 2393 free_fake_cpuc(fake_cpuc); 2394 2395 return ret; 2396 } 2397 2398 /* 2399 * validate a single event group 2400 * 2401 * validation include: 2402 * - check events are compatible which each other 2403 * - events do not compete for the same counter 2404 * - number of events <= number of counters 2405 * 2406 * validation ensures the group can be loaded onto the 2407 * PMU if it was the only group available. 2408 */ 2409 static int validate_group(struct perf_event *event) 2410 { 2411 struct perf_event *leader = event->group_leader; 2412 struct cpu_hw_events *fake_cpuc; 2413 int ret = -EINVAL, n; 2414 2415 /* 2416 * Reject events from different hybrid PMUs. 2417 */ 2418 if (is_hybrid()) { 2419 struct perf_event *sibling; 2420 struct pmu *pmu = NULL; 2421 2422 if (is_x86_event(leader)) 2423 pmu = leader->pmu; 2424 2425 for_each_sibling_event(sibling, leader) { 2426 if (!is_x86_event(sibling)) 2427 continue; 2428 if (!pmu) 2429 pmu = sibling->pmu; 2430 else if (pmu != sibling->pmu) 2431 return ret; 2432 } 2433 } 2434 2435 fake_cpuc = allocate_fake_cpuc(event->pmu); 2436 if (IS_ERR(fake_cpuc)) 2437 return PTR_ERR(fake_cpuc); 2438 /* 2439 * the event is not yet connected with its 2440 * siblings therefore we must first collect 2441 * existing siblings, then add the new event 2442 * before we can simulate the scheduling 2443 */ 2444 n = collect_events(fake_cpuc, leader, true); 2445 if (n < 0) 2446 goto out; 2447 2448 fake_cpuc->n_events = n; 2449 n = collect_events(fake_cpuc, event, false); 2450 if (n < 0) 2451 goto out; 2452 2453 fake_cpuc->n_events = 0; 2454 ret = x86_pmu.schedule_events(fake_cpuc, n, NULL); 2455 2456 out: 2457 free_fake_cpuc(fake_cpuc); 2458 return ret; 2459 } 2460 2461 static int x86_pmu_event_init(struct perf_event *event) 2462 { 2463 struct x86_hybrid_pmu *pmu = NULL; 2464 int err; 2465 2466 if ((event->attr.type != event->pmu->type) && 2467 (event->attr.type != PERF_TYPE_HARDWARE) && 2468 (event->attr.type != PERF_TYPE_HW_CACHE)) 2469 return -ENOENT; 2470 2471 if (is_hybrid() && (event->cpu != -1)) { 2472 pmu = hybrid_pmu(event->pmu); 2473 if (!cpumask_test_cpu(event->cpu, &pmu->supported_cpus)) 2474 return -ENOENT; 2475 } 2476 2477 err = __x86_pmu_event_init(event); 2478 if (!err) { 2479 if (event->group_leader != event) 2480 err = validate_group(event); 2481 else 2482 err = validate_event(event); 2483 } 2484 if (err) { 2485 if (event->destroy) 2486 event->destroy(event); 2487 event->destroy = NULL; 2488 } 2489 2490 if (READ_ONCE(x86_pmu.attr_rdpmc) && 2491 !(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS)) 2492 event->hw.flags |= PERF_EVENT_FLAG_USER_READ_CNT; 2493 2494 return err; 2495 } 2496 2497 void perf_clear_dirty_counters(void) 2498 { 2499 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2500 int i; 2501 2502 /* Don't need to clear the assigned counter. */ 2503 for (i = 0; i < cpuc->n_events; i++) 2504 __clear_bit(cpuc->assign[i], cpuc->dirty); 2505 2506 if (bitmap_empty(cpuc->dirty, X86_PMC_IDX_MAX)) 2507 return; 2508 2509 for_each_set_bit(i, cpuc->dirty, X86_PMC_IDX_MAX) { 2510 if (i >= INTEL_PMC_IDX_FIXED) { 2511 /* Metrics and fake events don't have corresponding HW counters. */ 2512 if (!test_bit(i - INTEL_PMC_IDX_FIXED, hybrid(cpuc->pmu, fixed_cntr_mask))) 2513 continue; 2514 2515 wrmsrq(x86_pmu_fixed_ctr_addr(i - INTEL_PMC_IDX_FIXED), 0); 2516 } else { 2517 wrmsrq(x86_pmu_event_addr(i), 0); 2518 } 2519 } 2520 2521 bitmap_zero(cpuc->dirty, X86_PMC_IDX_MAX); 2522 } 2523 2524 static void x86_pmu_event_mapped(struct perf_event *event, struct mm_struct *mm) 2525 { 2526 if (!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)) 2527 return; 2528 2529 /* 2530 * This function relies on not being called concurrently in two 2531 * tasks in the same mm. Otherwise one task could observe 2532 * perf_rdpmc_allowed > 1 and return all the way back to 2533 * userspace with CR4.PCE clear while another task is still 2534 * doing on_each_cpu_mask() to propagate CR4.PCE. 2535 * 2536 * For now, this can't happen because all callers hold mmap_lock 2537 * for write. If this changes, we'll need a different solution. 2538 */ 2539 mmap_assert_write_locked(mm); 2540 2541 if (atomic_inc_return(&mm->context.perf_rdpmc_allowed) == 1) 2542 on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1); 2543 } 2544 2545 static void x86_pmu_event_unmapped(struct perf_event *event, struct mm_struct *mm) 2546 { 2547 if (!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)) 2548 return; 2549 2550 if (atomic_dec_and_test(&mm->context.perf_rdpmc_allowed)) 2551 on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1); 2552 } 2553 2554 static int x86_pmu_event_idx(struct perf_event *event) 2555 { 2556 struct hw_perf_event *hwc = &event->hw; 2557 2558 if (!(hwc->flags & PERF_EVENT_FLAG_USER_READ_CNT)) 2559 return 0; 2560 2561 if (is_metric_idx(hwc->idx)) 2562 return INTEL_PMC_FIXED_RDPMC_METRICS + 1; 2563 else 2564 return hwc->event_base_rdpmc + 1; 2565 } 2566 2567 static ssize_t get_attr_rdpmc(struct device *cdev, 2568 struct device_attribute *attr, 2569 char *buf) 2570 { 2571 return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc); 2572 } 2573 2574 static ssize_t set_attr_rdpmc(struct device *cdev, 2575 struct device_attribute *attr, 2576 const char *buf, size_t count) 2577 { 2578 static DEFINE_MUTEX(rdpmc_mutex); 2579 unsigned long val; 2580 ssize_t ret; 2581 2582 ret = kstrtoul(buf, 0, &val); 2583 if (ret) 2584 return ret; 2585 2586 if (val > 2) 2587 return -EINVAL; 2588 2589 if (x86_pmu.attr_rdpmc_broken) 2590 return -ENOTSUPP; 2591 2592 guard(mutex)(&rdpmc_mutex); 2593 2594 if (val != x86_pmu.attr_rdpmc) { 2595 /* 2596 * Changing into or out of never available or always available, 2597 * aka perf-event-bypassing mode. This path is extremely slow, 2598 * but only root can trigger it, so it's okay. 2599 */ 2600 if (val == 0) 2601 static_branch_inc(&rdpmc_never_available_key); 2602 else if (x86_pmu.attr_rdpmc == 0) 2603 static_branch_dec(&rdpmc_never_available_key); 2604 2605 if (val == 2) 2606 static_branch_inc(&rdpmc_always_available_key); 2607 else if (x86_pmu.attr_rdpmc == 2) 2608 static_branch_dec(&rdpmc_always_available_key); 2609 2610 on_each_cpu(cr4_update_pce, NULL, 1); 2611 x86_pmu.attr_rdpmc = val; 2612 } 2613 2614 return count; 2615 } 2616 2617 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc); 2618 2619 static struct attribute *x86_pmu_attrs[] = { 2620 &dev_attr_rdpmc.attr, 2621 NULL, 2622 }; 2623 2624 static struct attribute_group x86_pmu_attr_group __ro_after_init = { 2625 .attrs = x86_pmu_attrs, 2626 }; 2627 2628 static ssize_t max_precise_show(struct device *cdev, 2629 struct device_attribute *attr, 2630 char *buf) 2631 { 2632 return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu_max_precise()); 2633 } 2634 2635 static DEVICE_ATTR_RO(max_precise); 2636 2637 static struct attribute *x86_pmu_caps_attrs[] = { 2638 &dev_attr_max_precise.attr, 2639 NULL 2640 }; 2641 2642 static struct attribute_group x86_pmu_caps_group __ro_after_init = { 2643 .name = "caps", 2644 .attrs = x86_pmu_caps_attrs, 2645 }; 2646 2647 static const struct attribute_group *x86_pmu_attr_groups[] = { 2648 &x86_pmu_attr_group, 2649 &x86_pmu_format_group, 2650 &x86_pmu_events_group, 2651 &x86_pmu_caps_group, 2652 NULL, 2653 }; 2654 2655 static void x86_pmu_sched_task(struct perf_event_pmu_context *pmu_ctx, 2656 struct task_struct *task, bool sched_in) 2657 { 2658 static_call_cond(x86_pmu_sched_task)(pmu_ctx, task, sched_in); 2659 } 2660 2661 void perf_check_microcode(void) 2662 { 2663 if (x86_pmu.check_microcode) 2664 x86_pmu.check_microcode(); 2665 } 2666 2667 static int x86_pmu_check_period(struct perf_event *event, u64 value) 2668 { 2669 if (x86_pmu.check_period && x86_pmu.check_period(event, value)) 2670 return -EINVAL; 2671 2672 if (value && x86_pmu.limit_period) { 2673 s64 left = value; 2674 x86_pmu.limit_period(event, &left); 2675 if (left > value) 2676 return -EINVAL; 2677 } 2678 2679 return 0; 2680 } 2681 2682 static int x86_pmu_aux_output_match(struct perf_event *event) 2683 { 2684 if (!(pmu.capabilities & PERF_PMU_CAP_AUX_OUTPUT)) 2685 return 0; 2686 2687 if (x86_pmu.aux_output_match) 2688 return x86_pmu.aux_output_match(event); 2689 2690 return 0; 2691 } 2692 2693 static bool x86_pmu_filter(struct pmu *pmu, int cpu) 2694 { 2695 bool ret = false; 2696 2697 static_call_cond(x86_pmu_filter)(pmu, cpu, &ret); 2698 2699 return ret; 2700 } 2701 2702 static struct pmu pmu = { 2703 .pmu_enable = x86_pmu_enable, 2704 .pmu_disable = x86_pmu_disable, 2705 2706 .attr_groups = x86_pmu_attr_groups, 2707 2708 .event_init = x86_pmu_event_init, 2709 2710 .event_mapped = x86_pmu_event_mapped, 2711 .event_unmapped = x86_pmu_event_unmapped, 2712 2713 .add = x86_pmu_add, 2714 .del = x86_pmu_del, 2715 .start = x86_pmu_start, 2716 .stop = x86_pmu_stop, 2717 .read = x86_pmu_read, 2718 2719 .start_txn = x86_pmu_start_txn, 2720 .cancel_txn = x86_pmu_cancel_txn, 2721 .commit_txn = x86_pmu_commit_txn, 2722 2723 .event_idx = x86_pmu_event_idx, 2724 .sched_task = x86_pmu_sched_task, 2725 .check_period = x86_pmu_check_period, 2726 2727 .aux_output_match = x86_pmu_aux_output_match, 2728 2729 .filter = x86_pmu_filter, 2730 }; 2731 2732 void arch_perf_update_userpage(struct perf_event *event, 2733 struct perf_event_mmap_page *userpg, u64 now) 2734 { 2735 struct cyc2ns_data data; 2736 u64 offset; 2737 2738 userpg->cap_user_time = 0; 2739 userpg->cap_user_time_zero = 0; 2740 userpg->cap_user_rdpmc = 2741 !!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT); 2742 userpg->pmc_width = x86_pmu.cntval_bits; 2743 2744 if (!using_native_sched_clock() || !sched_clock_stable()) 2745 return; 2746 2747 cyc2ns_read_begin(&data); 2748 2749 offset = data.cyc2ns_offset + __sched_clock_offset; 2750 2751 /* 2752 * Internal timekeeping for enabled/running/stopped times 2753 * is always in the local_clock domain. 2754 */ 2755 userpg->cap_user_time = 1; 2756 userpg->time_mult = data.cyc2ns_mul; 2757 userpg->time_shift = data.cyc2ns_shift; 2758 userpg->time_offset = offset - now; 2759 2760 /* 2761 * cap_user_time_zero doesn't make sense when we're using a different 2762 * time base for the records. 2763 */ 2764 if (!event->attr.use_clockid) { 2765 userpg->cap_user_time_zero = 1; 2766 userpg->time_zero = offset; 2767 } 2768 2769 cyc2ns_read_end(); 2770 } 2771 2772 /* 2773 * Determine whether the regs were taken from an irq/exception handler rather 2774 * than from perf_arch_fetch_caller_regs(). 2775 */ 2776 static bool perf_hw_regs(struct pt_regs *regs) 2777 { 2778 return regs->flags & X86_EFLAGS_FIXED; 2779 } 2780 2781 void 2782 perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs) 2783 { 2784 struct unwind_state state; 2785 unsigned long addr; 2786 2787 if (perf_guest_state()) { 2788 /* TODO: We don't support guest os callchain now */ 2789 return; 2790 } 2791 2792 if (perf_callchain_store(entry, regs->ip)) 2793 return; 2794 2795 if (perf_hw_regs(regs)) 2796 unwind_start(&state, current, regs, NULL); 2797 else 2798 unwind_start(&state, current, NULL, (void *)regs->sp); 2799 2800 for (; !unwind_done(&state); unwind_next_frame(&state)) { 2801 addr = unwind_get_return_address(&state); 2802 if (!addr || perf_callchain_store(entry, addr)) 2803 return; 2804 } 2805 } 2806 2807 static inline int 2808 valid_user_frame(const void __user *fp, unsigned long size) 2809 { 2810 return __access_ok(fp, size); 2811 } 2812 2813 static unsigned long get_segment_base(unsigned int segment) 2814 { 2815 struct desc_struct *desc; 2816 unsigned int idx = segment >> 3; 2817 2818 if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) { 2819 #ifdef CONFIG_MODIFY_LDT_SYSCALL 2820 struct ldt_struct *ldt; 2821 2822 /* 2823 * If we're not in a valid context with a real (not just lazy) 2824 * user mm, then don't even try. 2825 */ 2826 if (!nmi_uaccess_okay()) 2827 return 0; 2828 2829 /* IRQs are off, so this synchronizes with smp_store_release */ 2830 ldt = smp_load_acquire(¤t->mm->context.ldt); 2831 if (!ldt || idx >= ldt->nr_entries) 2832 return 0; 2833 2834 desc = &ldt->entries[idx]; 2835 #else 2836 return 0; 2837 #endif 2838 } else { 2839 if (idx >= GDT_ENTRIES) 2840 return 0; 2841 2842 desc = raw_cpu_ptr(gdt_page.gdt) + idx; 2843 } 2844 2845 return get_desc_base(desc); 2846 } 2847 2848 #ifdef CONFIG_UPROBES 2849 /* 2850 * Heuristic-based check if uprobe is installed at the function entry. 2851 * 2852 * Under assumption of user code being compiled with frame pointers, 2853 * `push %rbp/%ebp` is a good indicator that we indeed are. 2854 * 2855 * Similarly, `endbr64` (assuming 64-bit mode) is also a common pattern. 2856 * If we get this wrong, captured stack trace might have one extra bogus 2857 * entry, but the rest of stack trace will still be meaningful. 2858 */ 2859 static bool is_uprobe_at_func_entry(struct pt_regs *regs) 2860 { 2861 struct arch_uprobe *auprobe; 2862 2863 if (!current->utask) 2864 return false; 2865 2866 auprobe = current->utask->auprobe; 2867 if (!auprobe) 2868 return false; 2869 2870 /* push %rbp/%ebp */ 2871 if (auprobe->insn[0] == 0x55) 2872 return true; 2873 2874 /* endbr64 (64-bit only) */ 2875 if (user_64bit_mode(regs) && is_endbr((u32 *)auprobe->insn)) 2876 return true; 2877 2878 return false; 2879 } 2880 2881 #else 2882 static bool is_uprobe_at_func_entry(struct pt_regs *regs) 2883 { 2884 return false; 2885 } 2886 #endif /* CONFIG_UPROBES */ 2887 2888 #ifdef CONFIG_IA32_EMULATION 2889 2890 #include <linux/compat.h> 2891 2892 static inline int 2893 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry) 2894 { 2895 /* 32-bit process in 64-bit kernel. */ 2896 unsigned long ss_base, cs_base; 2897 struct stack_frame_ia32 frame; 2898 const struct stack_frame_ia32 __user *fp; 2899 u32 ret_addr; 2900 2901 if (user_64bit_mode(regs)) 2902 return 0; 2903 2904 cs_base = get_segment_base(regs->cs); 2905 ss_base = get_segment_base(regs->ss); 2906 2907 fp = compat_ptr(ss_base + regs->bp); 2908 pagefault_disable(); 2909 2910 /* see perf_callchain_user() below for why we do this */ 2911 if (is_uprobe_at_func_entry(regs) && 2912 !get_user(ret_addr, (const u32 __user *)regs->sp)) 2913 perf_callchain_store(entry, ret_addr); 2914 2915 while (entry->nr < entry->max_stack) { 2916 if (!valid_user_frame(fp, sizeof(frame))) 2917 break; 2918 2919 if (__get_user(frame.next_frame, &fp->next_frame)) 2920 break; 2921 if (__get_user(frame.return_address, &fp->return_address)) 2922 break; 2923 2924 perf_callchain_store(entry, cs_base + frame.return_address); 2925 fp = compat_ptr(ss_base + frame.next_frame); 2926 } 2927 pagefault_enable(); 2928 return 1; 2929 } 2930 #else 2931 static inline int 2932 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry) 2933 { 2934 return 0; 2935 } 2936 #endif 2937 2938 void 2939 perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs) 2940 { 2941 struct stack_frame frame; 2942 const struct stack_frame __user *fp; 2943 unsigned long ret_addr; 2944 2945 if (perf_guest_state()) { 2946 /* TODO: We don't support guest os callchain now */ 2947 return; 2948 } 2949 2950 /* 2951 * We don't know what to do with VM86 stacks.. ignore them for now. 2952 */ 2953 if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM)) 2954 return; 2955 2956 fp = (void __user *)regs->bp; 2957 2958 perf_callchain_store(entry, regs->ip); 2959 2960 if (!nmi_uaccess_okay()) 2961 return; 2962 2963 if (perf_callchain_user32(regs, entry)) 2964 return; 2965 2966 pagefault_disable(); 2967 2968 /* 2969 * If we are called from uprobe handler, and we are indeed at the very 2970 * entry to user function (which is normally a `push %rbp` instruction, 2971 * under assumption of application being compiled with frame pointers), 2972 * we should read return address from *regs->sp before proceeding 2973 * to follow frame pointers, otherwise we'll skip immediate caller 2974 * as %rbp is not yet setup. 2975 */ 2976 if (is_uprobe_at_func_entry(regs) && 2977 !get_user(ret_addr, (const unsigned long __user *)regs->sp)) 2978 perf_callchain_store(entry, ret_addr); 2979 2980 while (entry->nr < entry->max_stack) { 2981 if (!valid_user_frame(fp, sizeof(frame))) 2982 break; 2983 2984 if (__get_user(frame.next_frame, &fp->next_frame)) 2985 break; 2986 if (__get_user(frame.return_address, &fp->return_address)) 2987 break; 2988 2989 perf_callchain_store(entry, frame.return_address); 2990 fp = (void __user *)frame.next_frame; 2991 } 2992 pagefault_enable(); 2993 } 2994 2995 /* 2996 * Deal with code segment offsets for the various execution modes: 2997 * 2998 * VM86 - the good olde 16 bit days, where the linear address is 2999 * 20 bits and we use regs->ip + 0x10 * regs->cs. 3000 * 3001 * IA32 - Where we need to look at GDT/LDT segment descriptor tables 3002 * to figure out what the 32bit base address is. 3003 * 3004 * X32 - has TIF_X32 set, but is running in x86_64 3005 * 3006 * X86_64 - CS,DS,SS,ES are all zero based. 3007 */ 3008 static unsigned long code_segment_base(struct pt_regs *regs) 3009 { 3010 /* 3011 * For IA32 we look at the GDT/LDT segment base to convert the 3012 * effective IP to a linear address. 3013 */ 3014 3015 #ifdef CONFIG_X86_32 3016 /* 3017 * If we are in VM86 mode, add the segment offset to convert to a 3018 * linear address. 3019 */ 3020 if (regs->flags & X86_VM_MASK) 3021 return 0x10 * regs->cs; 3022 3023 if (user_mode(regs) && regs->cs != __USER_CS) 3024 return get_segment_base(regs->cs); 3025 #else 3026 if (user_mode(regs) && !user_64bit_mode(regs) && 3027 regs->cs != __USER32_CS) 3028 return get_segment_base(regs->cs); 3029 #endif 3030 return 0; 3031 } 3032 3033 unsigned long perf_arch_instruction_pointer(struct pt_regs *regs) 3034 { 3035 return regs->ip + code_segment_base(regs); 3036 } 3037 3038 static unsigned long common_misc_flags(struct pt_regs *regs) 3039 { 3040 if (regs->flags & PERF_EFLAGS_EXACT) 3041 return PERF_RECORD_MISC_EXACT_IP; 3042 3043 return 0; 3044 } 3045 3046 static unsigned long guest_misc_flags(struct pt_regs *regs) 3047 { 3048 unsigned long guest_state = perf_guest_state(); 3049 3050 if (!(guest_state & PERF_GUEST_ACTIVE)) 3051 return 0; 3052 3053 if (guest_state & PERF_GUEST_USER) 3054 return PERF_RECORD_MISC_GUEST_USER; 3055 else 3056 return PERF_RECORD_MISC_GUEST_KERNEL; 3057 3058 } 3059 3060 static unsigned long host_misc_flags(struct pt_regs *regs) 3061 { 3062 if (user_mode(regs)) 3063 return PERF_RECORD_MISC_USER; 3064 else 3065 return PERF_RECORD_MISC_KERNEL; 3066 } 3067 3068 unsigned long perf_arch_guest_misc_flags(struct pt_regs *regs) 3069 { 3070 unsigned long flags = common_misc_flags(regs); 3071 3072 flags |= guest_misc_flags(regs); 3073 3074 return flags; 3075 } 3076 3077 unsigned long perf_arch_misc_flags(struct pt_regs *regs) 3078 { 3079 unsigned long flags = common_misc_flags(regs); 3080 3081 flags |= host_misc_flags(regs); 3082 3083 return flags; 3084 } 3085 3086 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap) 3087 { 3088 /* This API doesn't currently support enumerating hybrid PMUs. */ 3089 if (WARN_ON_ONCE(cpu_feature_enabled(X86_FEATURE_HYBRID_CPU)) || 3090 !x86_pmu_initialized()) { 3091 memset(cap, 0, sizeof(*cap)); 3092 return; 3093 } 3094 3095 /* 3096 * Note, hybrid CPU models get tracked as having hybrid PMUs even when 3097 * all E-cores are disabled via BIOS. When E-cores are disabled, the 3098 * base PMU holds the correct number of counters for P-cores. 3099 */ 3100 cap->version = x86_pmu.version; 3101 cap->num_counters_gp = x86_pmu_num_counters(NULL); 3102 cap->num_counters_fixed = x86_pmu_num_counters_fixed(NULL); 3103 cap->bit_width_gp = x86_pmu.cntval_bits; 3104 cap->bit_width_fixed = x86_pmu.cntval_bits; 3105 cap->events_mask = (unsigned int)x86_pmu.events_maskl; 3106 cap->events_mask_len = x86_pmu.events_mask_len; 3107 cap->pebs_ept = x86_pmu.pebs_ept; 3108 } 3109 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability); 3110 3111 u64 perf_get_hw_event_config(int hw_event) 3112 { 3113 int max = x86_pmu.max_events; 3114 3115 if (hw_event < max) 3116 return x86_pmu.event_map(array_index_nospec(hw_event, max)); 3117 3118 return 0; 3119 } 3120 EXPORT_SYMBOL_GPL(perf_get_hw_event_config); 3121