1 /* 2 * Performance events x86 architecture code 3 * 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2009 Jaswinder Singh Rajput 7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter 8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra 9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com> 10 * Copyright (C) 2009 Google, Inc., Stephane Eranian 11 * 12 * For licencing details see kernel-base/COPYING 13 */ 14 15 #include <linux/perf_event.h> 16 #include <linux/capability.h> 17 #include <linux/notifier.h> 18 #include <linux/hardirq.h> 19 #include <linux/kprobes.h> 20 #include <linux/export.h> 21 #include <linux/init.h> 22 #include <linux/kdebug.h> 23 #include <linux/kvm_types.h> 24 #include <linux/sched/mm.h> 25 #include <linux/sched/clock.h> 26 #include <linux/uaccess.h> 27 #include <linux/slab.h> 28 #include <linux/cpu.h> 29 #include <linux/bitops.h> 30 #include <linux/device.h> 31 #include <linux/nospec.h> 32 #include <linux/static_call.h> 33 34 #include <asm/apic.h> 35 #include <asm/stacktrace.h> 36 #include <asm/msr.h> 37 #include <asm/nmi.h> 38 #include <asm/smp.h> 39 #include <asm/alternative.h> 40 #include <asm/mmu_context.h> 41 #include <asm/tlbflush.h> 42 #include <asm/timer.h> 43 #include <asm/desc.h> 44 #include <asm/ldt.h> 45 #include <asm/unwind.h> 46 #include <asm/uprobes.h> 47 #include <asm/ibt.h> 48 49 #include "perf_event.h" 50 51 struct x86_pmu x86_pmu __read_mostly; 52 static struct pmu pmu; 53 54 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { 55 .enabled = 1, 56 .pmu = &pmu, 57 }; 58 59 DEFINE_STATIC_KEY_FALSE(rdpmc_never_available_key); 60 DEFINE_STATIC_KEY_FALSE(rdpmc_always_available_key); 61 DEFINE_STATIC_KEY_FALSE(perf_is_hybrid); 62 63 /* 64 * This here uses DEFINE_STATIC_CALL_NULL() to get a static_call defined 65 * from just a typename, as opposed to an actual function. 66 */ 67 DEFINE_STATIC_CALL_NULL(x86_pmu_handle_irq, *x86_pmu.handle_irq); 68 DEFINE_STATIC_CALL_NULL(x86_pmu_disable_all, *x86_pmu.disable_all); 69 DEFINE_STATIC_CALL_NULL(x86_pmu_enable_all, *x86_pmu.enable_all); 70 DEFINE_STATIC_CALL_NULL(x86_pmu_enable, *x86_pmu.enable); 71 DEFINE_STATIC_CALL_NULL(x86_pmu_disable, *x86_pmu.disable); 72 73 DEFINE_STATIC_CALL_NULL(x86_pmu_assign, *x86_pmu.assign); 74 75 DEFINE_STATIC_CALL_NULL(x86_pmu_add, *x86_pmu.add); 76 DEFINE_STATIC_CALL_NULL(x86_pmu_del, *x86_pmu.del); 77 DEFINE_STATIC_CALL_NULL(x86_pmu_read, *x86_pmu.read); 78 79 DEFINE_STATIC_CALL_NULL(x86_pmu_set_period, *x86_pmu.set_period); 80 DEFINE_STATIC_CALL_NULL(x86_pmu_update, *x86_pmu.update); 81 DEFINE_STATIC_CALL_NULL(x86_pmu_limit_period, *x86_pmu.limit_period); 82 83 DEFINE_STATIC_CALL_NULL(x86_pmu_schedule_events, *x86_pmu.schedule_events); 84 DEFINE_STATIC_CALL_NULL(x86_pmu_get_event_constraints, *x86_pmu.get_event_constraints); 85 DEFINE_STATIC_CALL_NULL(x86_pmu_put_event_constraints, *x86_pmu.put_event_constraints); 86 87 DEFINE_STATIC_CALL_NULL(x86_pmu_start_scheduling, *x86_pmu.start_scheduling); 88 DEFINE_STATIC_CALL_NULL(x86_pmu_commit_scheduling, *x86_pmu.commit_scheduling); 89 DEFINE_STATIC_CALL_NULL(x86_pmu_stop_scheduling, *x86_pmu.stop_scheduling); 90 91 DEFINE_STATIC_CALL_NULL(x86_pmu_sched_task, *x86_pmu.sched_task); 92 93 DEFINE_STATIC_CALL_NULL(x86_pmu_drain_pebs, *x86_pmu.drain_pebs); 94 DEFINE_STATIC_CALL_NULL(x86_pmu_pebs_aliases, *x86_pmu.pebs_aliases); 95 96 DEFINE_STATIC_CALL_NULL(x86_pmu_filter, *x86_pmu.filter); 97 98 DEFINE_STATIC_CALL_NULL(x86_pmu_late_setup, *x86_pmu.late_setup); 99 100 DEFINE_STATIC_CALL_NULL(x86_pmu_pebs_enable, *x86_pmu.pebs_enable); 101 DEFINE_STATIC_CALL_NULL(x86_pmu_pebs_disable, *x86_pmu.pebs_disable); 102 DEFINE_STATIC_CALL_NULL(x86_pmu_pebs_enable_all, *x86_pmu.pebs_enable_all); 103 DEFINE_STATIC_CALL_NULL(x86_pmu_pebs_disable_all, *x86_pmu.pebs_disable_all); 104 105 /* 106 * This one is magic, it will get called even when PMU init fails (because 107 * there is no PMU), in which case it should simply return NULL. 108 */ 109 DEFINE_STATIC_CALL_RET0(x86_pmu_guest_get_msrs, *x86_pmu.guest_get_msrs); 110 111 u64 __read_mostly hw_cache_event_ids 112 [PERF_COUNT_HW_CACHE_MAX] 113 [PERF_COUNT_HW_CACHE_OP_MAX] 114 [PERF_COUNT_HW_CACHE_RESULT_MAX]; 115 u64 __read_mostly hw_cache_extra_regs 116 [PERF_COUNT_HW_CACHE_MAX] 117 [PERF_COUNT_HW_CACHE_OP_MAX] 118 [PERF_COUNT_HW_CACHE_RESULT_MAX]; 119 120 /* 121 * Propagate event elapsed time into the generic event. 122 * Can only be executed on the CPU where the event is active. 123 * Returns the delta events processed. 124 */ 125 u64 x86_perf_event_update(struct perf_event *event) 126 { 127 struct hw_perf_event *hwc = &event->hw; 128 int shift = 64 - x86_pmu.cntval_bits; 129 u64 prev_raw_count, new_raw_count; 130 u64 delta; 131 132 if (unlikely(!hwc->event_base)) 133 return 0; 134 135 /* 136 * Careful: an NMI might modify the previous event value. 137 * 138 * Our tactic to handle this is to first atomically read and 139 * exchange a new raw count - then add that new-prev delta 140 * count to the generic event atomically: 141 */ 142 prev_raw_count = local64_read(&hwc->prev_count); 143 do { 144 new_raw_count = rdpmc(hwc->event_base_rdpmc); 145 } while (!local64_try_cmpxchg(&hwc->prev_count, 146 &prev_raw_count, new_raw_count)); 147 148 /* 149 * Now we have the new raw value and have updated the prev 150 * timestamp already. We can now calculate the elapsed delta 151 * (event-)time and add that to the generic event. 152 * 153 * Careful, not all hw sign-extends above the physical width 154 * of the count. 155 */ 156 delta = (new_raw_count << shift) - (prev_raw_count << shift); 157 delta >>= shift; 158 159 local64_add(delta, &event->count); 160 local64_sub(delta, &hwc->period_left); 161 162 return new_raw_count; 163 } 164 165 /* 166 * Find and validate any extra registers to set up. 167 */ 168 static int x86_pmu_extra_regs(u64 config, struct perf_event *event) 169 { 170 struct extra_reg *extra_regs = hybrid(event->pmu, extra_regs); 171 struct hw_perf_event_extra *reg; 172 struct extra_reg *er; 173 174 reg = &event->hw.extra_reg; 175 176 if (!extra_regs) 177 return 0; 178 179 for (er = extra_regs; er->msr; er++) { 180 if (er->event != (config & er->config_mask)) 181 continue; 182 if (event->attr.config1 & ~er->valid_mask) 183 return -EINVAL; 184 /* Check if the extra msrs can be safely accessed*/ 185 if (!er->extra_msr_access) 186 return -ENXIO; 187 188 reg->idx = er->idx; 189 reg->config = event->attr.config1; 190 reg->reg = er->msr; 191 break; 192 } 193 return 0; 194 } 195 196 static atomic_t active_events; 197 static atomic_t pmc_refcount; 198 static DEFINE_MUTEX(pmc_reserve_mutex); 199 200 #ifdef CONFIG_X86_LOCAL_APIC 201 202 static inline u64 get_possible_counter_mask(void) 203 { 204 u64 cntr_mask = x86_pmu.cntr_mask64; 205 int i; 206 207 if (!is_hybrid()) 208 return cntr_mask; 209 210 for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) 211 cntr_mask |= x86_pmu.hybrid_pmu[i].cntr_mask64; 212 213 return cntr_mask; 214 } 215 216 static bool reserve_pmc_hardware(void) 217 { 218 u64 cntr_mask = get_possible_counter_mask(); 219 int i, end; 220 221 for_each_set_bit(i, (unsigned long *)&cntr_mask, X86_PMC_IDX_MAX) { 222 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i))) 223 goto perfctr_fail; 224 } 225 226 for_each_set_bit(i, (unsigned long *)&cntr_mask, X86_PMC_IDX_MAX) { 227 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i))) 228 goto eventsel_fail; 229 } 230 231 return true; 232 233 eventsel_fail: 234 end = i; 235 for_each_set_bit(i, (unsigned long *)&cntr_mask, end) 236 release_evntsel_nmi(x86_pmu_config_addr(i)); 237 i = X86_PMC_IDX_MAX; 238 239 perfctr_fail: 240 end = i; 241 for_each_set_bit(i, (unsigned long *)&cntr_mask, end) 242 release_perfctr_nmi(x86_pmu_event_addr(i)); 243 244 return false; 245 } 246 247 static void release_pmc_hardware(void) 248 { 249 u64 cntr_mask = get_possible_counter_mask(); 250 int i; 251 252 for_each_set_bit(i, (unsigned long *)&cntr_mask, X86_PMC_IDX_MAX) { 253 release_perfctr_nmi(x86_pmu_event_addr(i)); 254 release_evntsel_nmi(x86_pmu_config_addr(i)); 255 } 256 } 257 258 #else 259 260 static bool reserve_pmc_hardware(void) { return true; } 261 static void release_pmc_hardware(void) {} 262 263 #endif 264 265 bool check_hw_exists(struct pmu *pmu, unsigned long *cntr_mask, 266 unsigned long *fixed_cntr_mask) 267 { 268 u64 val, val_fail = -1, val_new= ~0; 269 int i, reg, reg_fail = -1, ret = 0; 270 int bios_fail = 0; 271 int reg_safe = -1; 272 273 /* 274 * Check to see if the BIOS enabled any of the counters, if so 275 * complain and bail. 276 */ 277 for_each_set_bit(i, cntr_mask, X86_PMC_IDX_MAX) { 278 reg = x86_pmu_config_addr(i); 279 ret = rdmsrq_safe(reg, &val); 280 if (ret) 281 goto msr_fail; 282 if (val & ARCH_PERFMON_EVENTSEL_ENABLE) { 283 bios_fail = 1; 284 val_fail = val; 285 reg_fail = reg; 286 } else { 287 reg_safe = i; 288 } 289 } 290 291 if (*(u64 *)fixed_cntr_mask) { 292 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL; 293 ret = rdmsrq_safe(reg, &val); 294 if (ret) 295 goto msr_fail; 296 for_each_set_bit(i, fixed_cntr_mask, X86_PMC_IDX_MAX) { 297 if (fixed_counter_disabled(i, pmu)) 298 continue; 299 if (val & (0x03ULL << i*4)) { 300 bios_fail = 1; 301 val_fail = val; 302 reg_fail = reg; 303 } 304 } 305 } 306 307 /* 308 * If all the counters are enabled, the below test will always 309 * fail. The tools will also become useless in this scenario. 310 * Just fail and disable the hardware counters. 311 */ 312 313 if (reg_safe == -1) { 314 reg = reg_safe; 315 goto msr_fail; 316 } 317 318 /* 319 * Read the current value, change it and read it back to see if it 320 * matches, this is needed to detect certain hardware emulators 321 * (qemu/kvm) that don't trap on the MSR access and always return 0s. 322 */ 323 reg = x86_pmu_event_addr(reg_safe); 324 if (rdmsrq_safe(reg, &val)) 325 goto msr_fail; 326 val ^= 0xffffUL; 327 ret = wrmsrq_safe(reg, val); 328 ret |= rdmsrq_safe(reg, &val_new); 329 if (ret || val != val_new) 330 goto msr_fail; 331 332 /* 333 * We still allow the PMU driver to operate: 334 */ 335 if (bios_fail) { 336 pr_cont("Broken BIOS detected, complain to your hardware vendor.\n"); 337 pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n", 338 reg_fail, val_fail); 339 } 340 341 return true; 342 343 msr_fail: 344 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) { 345 pr_cont("PMU not available due to virtualization, using software events only.\n"); 346 } else { 347 pr_cont("Broken PMU hardware detected, using software events only.\n"); 348 pr_err("Failed to access perfctr msr (MSR %x is %Lx)\n", 349 reg, val_new); 350 } 351 352 return false; 353 } 354 355 static void hw_perf_event_destroy(struct perf_event *event) 356 { 357 x86_release_hardware(); 358 atomic_dec(&active_events); 359 } 360 361 void hw_perf_lbr_event_destroy(struct perf_event *event) 362 { 363 hw_perf_event_destroy(event); 364 365 /* undo the lbr/bts event accounting */ 366 x86_del_exclusive(x86_lbr_exclusive_lbr); 367 } 368 369 static inline int x86_pmu_initialized(void) 370 { 371 return x86_pmu.handle_irq != NULL; 372 } 373 374 static inline int 375 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event) 376 { 377 struct perf_event_attr *attr = &event->attr; 378 unsigned int cache_type, cache_op, cache_result; 379 u64 config, val; 380 381 config = attr->config; 382 383 cache_type = (config >> 0) & 0xff; 384 if (cache_type >= PERF_COUNT_HW_CACHE_MAX) 385 return -EINVAL; 386 cache_type = array_index_nospec(cache_type, PERF_COUNT_HW_CACHE_MAX); 387 388 cache_op = (config >> 8) & 0xff; 389 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX) 390 return -EINVAL; 391 cache_op = array_index_nospec(cache_op, PERF_COUNT_HW_CACHE_OP_MAX); 392 393 cache_result = (config >> 16) & 0xff; 394 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX) 395 return -EINVAL; 396 cache_result = array_index_nospec(cache_result, PERF_COUNT_HW_CACHE_RESULT_MAX); 397 398 val = hybrid_var(event->pmu, hw_cache_event_ids)[cache_type][cache_op][cache_result]; 399 if (val == 0) 400 return -ENOENT; 401 402 if (val == -1) 403 return -EINVAL; 404 405 hwc->config |= val; 406 attr->config1 = hybrid_var(event->pmu, hw_cache_extra_regs)[cache_type][cache_op][cache_result]; 407 return x86_pmu_extra_regs(val, event); 408 } 409 410 int x86_reserve_hardware(void) 411 { 412 int err = 0; 413 414 if (!atomic_inc_not_zero(&pmc_refcount)) { 415 mutex_lock(&pmc_reserve_mutex); 416 if (atomic_read(&pmc_refcount) == 0) { 417 if (!reserve_pmc_hardware()) { 418 err = -EBUSY; 419 } else { 420 reserve_ds_buffers(); 421 reserve_lbr_buffers(); 422 } 423 } 424 if (!err) 425 atomic_inc(&pmc_refcount); 426 mutex_unlock(&pmc_reserve_mutex); 427 } 428 429 return err; 430 } 431 432 void x86_release_hardware(void) 433 { 434 if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) { 435 release_pmc_hardware(); 436 release_ds_buffers(); 437 release_lbr_buffers(); 438 mutex_unlock(&pmc_reserve_mutex); 439 } 440 } 441 442 /* 443 * Check if we can create event of a certain type (that no conflicting events 444 * are present). 445 */ 446 int x86_add_exclusive(unsigned int what) 447 { 448 int i; 449 450 /* 451 * When lbr_pt_coexist we allow PT to coexist with either LBR or BTS. 452 * LBR and BTS are still mutually exclusive. 453 */ 454 if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt) 455 goto out; 456 457 if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) { 458 mutex_lock(&pmc_reserve_mutex); 459 for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) { 460 if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i])) 461 goto fail_unlock; 462 } 463 atomic_inc(&x86_pmu.lbr_exclusive[what]); 464 mutex_unlock(&pmc_reserve_mutex); 465 } 466 467 out: 468 atomic_inc(&active_events); 469 return 0; 470 471 fail_unlock: 472 mutex_unlock(&pmc_reserve_mutex); 473 return -EBUSY; 474 } 475 476 void x86_del_exclusive(unsigned int what) 477 { 478 atomic_dec(&active_events); 479 480 /* 481 * See the comment in x86_add_exclusive(). 482 */ 483 if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt) 484 return; 485 486 atomic_dec(&x86_pmu.lbr_exclusive[what]); 487 } 488 489 int x86_setup_perfctr(struct perf_event *event) 490 { 491 struct perf_event_attr *attr = &event->attr; 492 struct hw_perf_event *hwc = &event->hw; 493 u64 config; 494 495 if (!is_sampling_event(event)) { 496 hwc->sample_period = x86_pmu.max_period; 497 hwc->last_period = hwc->sample_period; 498 local64_set(&hwc->period_left, hwc->sample_period); 499 } 500 501 if (attr->type == event->pmu->type) 502 return x86_pmu_extra_regs(event->attr.config, event); 503 504 if (attr->type == PERF_TYPE_HW_CACHE) 505 return set_ext_hw_attr(hwc, event); 506 507 if (attr->config >= x86_pmu.max_events) 508 return -EINVAL; 509 510 attr->config = array_index_nospec((unsigned long)attr->config, x86_pmu.max_events); 511 512 /* 513 * The generic map: 514 */ 515 config = x86_pmu.event_map(attr->config); 516 517 if (config == 0) 518 return -ENOENT; 519 520 if (config == -1LL) 521 return -EINVAL; 522 523 hwc->config |= config; 524 525 return 0; 526 } 527 528 /* 529 * check that branch_sample_type is compatible with 530 * settings needed for precise_ip > 1 which implies 531 * using the LBR to capture ALL taken branches at the 532 * priv levels of the measurement 533 */ 534 static inline int precise_br_compat(struct perf_event *event) 535 { 536 u64 m = event->attr.branch_sample_type; 537 u64 b = 0; 538 539 /* must capture all branches */ 540 if (!(m & PERF_SAMPLE_BRANCH_ANY)) 541 return 0; 542 543 m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER; 544 545 if (!event->attr.exclude_user) 546 b |= PERF_SAMPLE_BRANCH_USER; 547 548 if (!event->attr.exclude_kernel) 549 b |= PERF_SAMPLE_BRANCH_KERNEL; 550 551 /* 552 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86 553 */ 554 555 return m == b; 556 } 557 558 int x86_pmu_max_precise(struct pmu *pmu) 559 { 560 int precise = 0; 561 562 if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) { 563 /* arch PEBS */ 564 if (x86_pmu.arch_pebs) { 565 precise = 2; 566 if (hybrid(pmu, arch_pebs_cap).pdists) 567 precise++; 568 569 return precise; 570 } 571 572 /* legacy PEBS - support for constant skid */ 573 precise++; 574 /* Support for IP fixup */ 575 if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2) 576 precise++; 577 578 if (x86_pmu.pebs_prec_dist) 579 precise++; 580 } 581 582 return precise; 583 } 584 585 int x86_pmu_hw_config(struct perf_event *event) 586 { 587 if (event->attr.precise_ip) { 588 int precise = x86_pmu_max_precise(event->pmu); 589 590 if (event->attr.precise_ip > precise) 591 return -EOPNOTSUPP; 592 593 /* There's no sense in having PEBS for non sampling events: */ 594 if (!is_sampling_event(event)) 595 return -EINVAL; 596 } 597 /* 598 * check that PEBS LBR correction does not conflict with 599 * whatever the user is asking with attr->branch_sample_type 600 */ 601 if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) { 602 u64 *br_type = &event->attr.branch_sample_type; 603 604 if (has_branch_stack(event)) { 605 if (!precise_br_compat(event)) 606 return -EOPNOTSUPP; 607 608 /* branch_sample_type is compatible */ 609 610 } else { 611 /* 612 * user did not specify branch_sample_type 613 * 614 * For PEBS fixups, we capture all 615 * the branches at the priv level of the 616 * event. 617 */ 618 *br_type = PERF_SAMPLE_BRANCH_ANY; 619 620 if (!event->attr.exclude_user) 621 *br_type |= PERF_SAMPLE_BRANCH_USER; 622 623 if (!event->attr.exclude_kernel) 624 *br_type |= PERF_SAMPLE_BRANCH_KERNEL; 625 } 626 } 627 628 if (branch_sample_call_stack(event)) 629 event->attach_state |= PERF_ATTACH_TASK_DATA; 630 631 /* 632 * Generate PMC IRQs: 633 * (keep 'enabled' bit clear for now) 634 */ 635 event->hw.config = ARCH_PERFMON_EVENTSEL_INT; 636 637 /* 638 * Count user and OS events unless requested not to 639 */ 640 if (!event->attr.exclude_user) 641 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR; 642 if (!event->attr.exclude_kernel) 643 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS; 644 645 if (event->attr.type == event->pmu->type) 646 event->hw.config |= x86_pmu_get_event_config(event); 647 648 if (is_sampling_event(event) && !event->attr.freq && x86_pmu.limit_period) { 649 s64 left = event->attr.sample_period; 650 x86_pmu.limit_period(event, &left); 651 if (left > event->attr.sample_period) 652 return -EINVAL; 653 } 654 655 /* sample_regs_user never support XMM registers */ 656 if (unlikely(event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK)) 657 return -EINVAL; 658 /* 659 * Besides the general purpose registers, XMM registers may 660 * be collected in PEBS on some platforms, e.g. Icelake 661 */ 662 if (unlikely(event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK)) { 663 if (!(event->pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS)) 664 return -EINVAL; 665 666 if (!event->attr.precise_ip) 667 return -EINVAL; 668 } 669 670 return x86_setup_perfctr(event); 671 } 672 673 /* 674 * Setup the hardware configuration for a given attr_type 675 */ 676 static int __x86_pmu_event_init(struct perf_event *event) 677 { 678 int err; 679 680 if (!x86_pmu_initialized()) 681 return -ENODEV; 682 683 err = x86_reserve_hardware(); 684 if (err) 685 return err; 686 687 atomic_inc(&active_events); 688 event->destroy = hw_perf_event_destroy; 689 690 event->hw.idx = -1; 691 event->hw.last_cpu = -1; 692 event->hw.last_tag = ~0ULL; 693 event->hw.dyn_constraint = ~0ULL; 694 695 /* mark unused */ 696 event->hw.extra_reg.idx = EXTRA_REG_NONE; 697 event->hw.branch_reg.idx = EXTRA_REG_NONE; 698 699 return x86_pmu.hw_config(event); 700 } 701 702 void x86_pmu_disable_all(void) 703 { 704 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 705 int idx; 706 707 for_each_set_bit(idx, x86_pmu.cntr_mask, X86_PMC_IDX_MAX) { 708 struct hw_perf_event *hwc = &cpuc->events[idx]->hw; 709 u64 val; 710 711 if (!test_bit(idx, cpuc->active_mask)) 712 continue; 713 rdmsrq(x86_pmu_config_addr(idx), val); 714 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE)) 715 continue; 716 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE; 717 wrmsrq(x86_pmu_config_addr(idx), val); 718 if (is_counter_pair(hwc)) 719 wrmsrq(x86_pmu_config_addr(idx + 1), 0); 720 } 721 } 722 723 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr, void *data) 724 { 725 return static_call(x86_pmu_guest_get_msrs)(nr, data); 726 } 727 EXPORT_SYMBOL_FOR_KVM(perf_guest_get_msrs); 728 729 /* 730 * There may be PMI landing after enabled=0. The PMI hitting could be before or 731 * after disable_all. 732 * 733 * If PMI hits before disable_all, the PMU will be disabled in the NMI handler. 734 * It will not be re-enabled in the NMI handler again, because enabled=0. After 735 * handling the NMI, disable_all will be called, which will not change the 736 * state either. If PMI hits after disable_all, the PMU is already disabled 737 * before entering NMI handler. The NMI handler will not change the state 738 * either. 739 * 740 * So either situation is harmless. 741 */ 742 static void x86_pmu_disable(struct pmu *pmu) 743 { 744 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 745 746 if (!x86_pmu_initialized()) 747 return; 748 749 if (!cpuc->enabled) 750 return; 751 752 cpuc->n_added = 0; 753 cpuc->enabled = 0; 754 barrier(); 755 756 static_call(x86_pmu_disable_all)(); 757 } 758 759 void x86_pmu_enable_all(int added) 760 { 761 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 762 int idx; 763 764 for_each_set_bit(idx, x86_pmu.cntr_mask, X86_PMC_IDX_MAX) { 765 struct hw_perf_event *hwc = &cpuc->events[idx]->hw; 766 767 if (!test_bit(idx, cpuc->active_mask)) 768 continue; 769 770 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE); 771 } 772 } 773 774 int is_x86_event(struct perf_event *event) 775 { 776 /* 777 * For a non-hybrid platforms, the type of X86 pmu is 778 * always PERF_TYPE_RAW. 779 * For a hybrid platform, the PERF_PMU_CAP_EXTENDED_HW_TYPE 780 * is a unique capability for the X86 PMU. 781 * Use them to detect a X86 event. 782 */ 783 if (event->pmu->type == PERF_TYPE_RAW || 784 event->pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE) 785 return true; 786 787 return false; 788 } 789 790 struct pmu *x86_get_pmu(unsigned int cpu) 791 { 792 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu); 793 794 /* 795 * All CPUs of the hybrid type have been offline. 796 * The x86_get_pmu() should not be invoked. 797 */ 798 if (WARN_ON_ONCE(!cpuc->pmu)) 799 return &pmu; 800 801 return cpuc->pmu; 802 } 803 /* 804 * Event scheduler state: 805 * 806 * Assign events iterating over all events and counters, beginning 807 * with events with least weights first. Keep the current iterator 808 * state in struct sched_state. 809 */ 810 struct sched_state { 811 int weight; 812 int event; /* event index */ 813 int counter; /* counter index */ 814 int unassigned; /* number of events to be assigned left */ 815 int nr_gp; /* number of GP counters used */ 816 u64 used; 817 }; 818 819 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */ 820 #define SCHED_STATES_MAX 2 821 822 struct perf_sched { 823 int max_weight; 824 int max_events; 825 int max_gp; 826 int saved_states; 827 struct event_constraint **constraints; 828 struct sched_state state; 829 struct sched_state saved[SCHED_STATES_MAX]; 830 }; 831 832 /* 833 * Initialize iterator that runs through all events and counters. 834 */ 835 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints, 836 int num, int wmin, int wmax, int gpmax) 837 { 838 int idx; 839 840 memset(sched, 0, sizeof(*sched)); 841 sched->max_events = num; 842 sched->max_weight = wmax; 843 sched->max_gp = gpmax; 844 sched->constraints = constraints; 845 846 for (idx = 0; idx < num; idx++) { 847 if (constraints[idx]->weight == wmin) 848 break; 849 } 850 851 sched->state.event = idx; /* start with min weight */ 852 sched->state.weight = wmin; 853 sched->state.unassigned = num; 854 } 855 856 static void perf_sched_save_state(struct perf_sched *sched) 857 { 858 if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX)) 859 return; 860 861 sched->saved[sched->saved_states] = sched->state; 862 sched->saved_states++; 863 } 864 865 static bool perf_sched_restore_state(struct perf_sched *sched) 866 { 867 if (!sched->saved_states) 868 return false; 869 870 sched->saved_states--; 871 sched->state = sched->saved[sched->saved_states]; 872 873 /* this assignment didn't work out */ 874 /* XXX broken vs EVENT_PAIR */ 875 sched->state.used &= ~BIT_ULL(sched->state.counter); 876 877 /* try the next one */ 878 sched->state.counter++; 879 880 return true; 881 } 882 883 /* 884 * Select a counter for the current event to schedule. Return true on 885 * success. 886 */ 887 static bool __perf_sched_find_counter(struct perf_sched *sched) 888 { 889 struct event_constraint *c; 890 int idx; 891 892 if (!sched->state.unassigned) 893 return false; 894 895 if (sched->state.event >= sched->max_events) 896 return false; 897 898 c = sched->constraints[sched->state.event]; 899 /* Prefer fixed purpose counters */ 900 if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) { 901 idx = INTEL_PMC_IDX_FIXED; 902 for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) { 903 u64 mask = BIT_ULL(idx); 904 905 if (sched->state.used & mask) 906 continue; 907 908 sched->state.used |= mask; 909 goto done; 910 } 911 } 912 913 /* Grab the first unused counter starting with idx */ 914 idx = sched->state.counter; 915 for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) { 916 u64 mask = BIT_ULL(idx); 917 918 if (c->flags & PERF_X86_EVENT_PAIR) 919 mask |= mask << 1; 920 921 if (sched->state.used & mask) 922 continue; 923 924 if (sched->state.nr_gp++ >= sched->max_gp) 925 return false; 926 927 sched->state.used |= mask; 928 goto done; 929 } 930 931 return false; 932 933 done: 934 sched->state.counter = idx; 935 936 if (c->overlap) 937 perf_sched_save_state(sched); 938 939 return true; 940 } 941 942 static bool perf_sched_find_counter(struct perf_sched *sched) 943 { 944 while (!__perf_sched_find_counter(sched)) { 945 if (!perf_sched_restore_state(sched)) 946 return false; 947 } 948 949 return true; 950 } 951 952 /* 953 * Go through all unassigned events and find the next one to schedule. 954 * Take events with the least weight first. Return true on success. 955 */ 956 static bool perf_sched_next_event(struct perf_sched *sched) 957 { 958 struct event_constraint *c; 959 960 if (!sched->state.unassigned || !--sched->state.unassigned) 961 return false; 962 963 do { 964 /* next event */ 965 sched->state.event++; 966 if (sched->state.event >= sched->max_events) { 967 /* next weight */ 968 sched->state.event = 0; 969 sched->state.weight++; 970 if (sched->state.weight > sched->max_weight) 971 return false; 972 } 973 c = sched->constraints[sched->state.event]; 974 } while (c->weight != sched->state.weight); 975 976 sched->state.counter = 0; /* start with first counter */ 977 978 return true; 979 } 980 981 /* 982 * Assign a counter for each event. 983 */ 984 int perf_assign_events(struct event_constraint **constraints, int n, 985 int wmin, int wmax, int gpmax, int *assign) 986 { 987 struct perf_sched sched; 988 989 perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax); 990 991 do { 992 if (!perf_sched_find_counter(&sched)) 993 break; /* failed */ 994 if (assign) 995 assign[sched.state.event] = sched.state.counter; 996 } while (perf_sched_next_event(&sched)); 997 998 return sched.state.unassigned; 999 } 1000 EXPORT_SYMBOL_GPL(perf_assign_events); 1001 1002 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign) 1003 { 1004 struct event_constraint *c; 1005 struct perf_event *e; 1006 int n0, i, wmin, wmax, unsched = 0; 1007 struct hw_perf_event *hwc; 1008 u64 used_mask = 0; 1009 1010 /* 1011 * Compute the number of events already present; see x86_pmu_add(), 1012 * validate_group() and x86_pmu_commit_txn(). For the former two 1013 * cpuc->n_events hasn't been updated yet, while for the latter 1014 * cpuc->n_txn contains the number of events added in the current 1015 * transaction. 1016 */ 1017 n0 = cpuc->n_events; 1018 if (cpuc->txn_flags & PERF_PMU_TXN_ADD) 1019 n0 -= cpuc->n_txn; 1020 1021 static_call_cond(x86_pmu_start_scheduling)(cpuc); 1022 1023 for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) { 1024 c = cpuc->event_constraint[i]; 1025 1026 /* 1027 * Previously scheduled events should have a cached constraint, 1028 * while new events should not have one. 1029 */ 1030 WARN_ON_ONCE((c && i >= n0) || (!c && i < n0)); 1031 1032 /* 1033 * Request constraints for new events; or for those events that 1034 * have a dynamic constraint -- for those the constraint can 1035 * change due to external factors (sibling state, allow_tfa). 1036 */ 1037 if (!c || (c->flags & PERF_X86_EVENT_DYNAMIC)) { 1038 c = static_call(x86_pmu_get_event_constraints)(cpuc, i, cpuc->event_list[i]); 1039 cpuc->event_constraint[i] = c; 1040 } 1041 1042 wmin = min(wmin, c->weight); 1043 wmax = max(wmax, c->weight); 1044 } 1045 1046 /* 1047 * fastpath, try to reuse previous register 1048 */ 1049 for (i = 0; i < n; i++) { 1050 u64 mask; 1051 1052 hwc = &cpuc->event_list[i]->hw; 1053 c = cpuc->event_constraint[i]; 1054 1055 /* never assigned */ 1056 if (hwc->idx == -1) 1057 break; 1058 1059 /* constraint still honored */ 1060 if (!test_bit(hwc->idx, c->idxmsk)) 1061 break; 1062 1063 mask = BIT_ULL(hwc->idx); 1064 if (is_counter_pair(hwc)) 1065 mask |= mask << 1; 1066 1067 /* not already used */ 1068 if (used_mask & mask) 1069 break; 1070 1071 used_mask |= mask; 1072 1073 if (assign) 1074 assign[i] = hwc->idx; 1075 } 1076 1077 /* slow path */ 1078 if (i != n) { 1079 int gpmax = x86_pmu_max_num_counters(cpuc->pmu); 1080 1081 /* 1082 * Do not allow scheduling of more than half the available 1083 * generic counters. 1084 * 1085 * This helps avoid counter starvation of sibling thread by 1086 * ensuring at most half the counters cannot be in exclusive 1087 * mode. There is no designated counters for the limits. Any 1088 * N/2 counters can be used. This helps with events with 1089 * specific counter constraints. 1090 */ 1091 if (is_ht_workaround_enabled() && !cpuc->is_fake && 1092 READ_ONCE(cpuc->excl_cntrs->exclusive_present)) 1093 gpmax /= 2; 1094 1095 /* 1096 * Reduce the amount of available counters to allow fitting 1097 * the extra Merge events needed by large increment events. 1098 */ 1099 if (x86_pmu.flags & PMU_FL_PAIR) { 1100 gpmax -= cpuc->n_pair; 1101 WARN_ON(gpmax <= 0); 1102 } 1103 1104 unsched = perf_assign_events(cpuc->event_constraint, n, wmin, 1105 wmax, gpmax, assign); 1106 } 1107 1108 /* 1109 * In case of success (unsched = 0), mark events as committed, 1110 * so we do not put_constraint() in case new events are added 1111 * and fail to be scheduled 1112 * 1113 * We invoke the lower level commit callback to lock the resource 1114 * 1115 * We do not need to do all of this in case we are called to 1116 * validate an event group (assign == NULL) 1117 */ 1118 if (!unsched && assign) { 1119 for (i = 0; i < n; i++) 1120 static_call_cond(x86_pmu_commit_scheduling)(cpuc, i, assign[i]); 1121 } else { 1122 for (i = n0; i < n; i++) { 1123 e = cpuc->event_list[i]; 1124 1125 /* 1126 * release events that failed scheduling 1127 */ 1128 static_call_cond(x86_pmu_put_event_constraints)(cpuc, e); 1129 1130 cpuc->event_constraint[i] = NULL; 1131 } 1132 } 1133 1134 static_call_cond(x86_pmu_stop_scheduling)(cpuc); 1135 1136 return unsched ? -EINVAL : 0; 1137 } 1138 1139 static int add_nr_metric_event(struct cpu_hw_events *cpuc, 1140 struct perf_event *event) 1141 { 1142 if (is_metric_event(event)) { 1143 if (cpuc->n_metric == INTEL_TD_METRIC_NUM) 1144 return -EINVAL; 1145 cpuc->n_metric++; 1146 cpuc->n_txn_metric++; 1147 } 1148 1149 return 0; 1150 } 1151 1152 static void del_nr_metric_event(struct cpu_hw_events *cpuc, 1153 struct perf_event *event) 1154 { 1155 if (is_metric_event(event)) 1156 cpuc->n_metric--; 1157 } 1158 1159 static int collect_event(struct cpu_hw_events *cpuc, struct perf_event *event, 1160 int max_count, int n) 1161 { 1162 union perf_capabilities intel_cap = hybrid(cpuc->pmu, intel_cap); 1163 1164 if (intel_cap.perf_metrics && add_nr_metric_event(cpuc, event)) 1165 return -EINVAL; 1166 1167 if (n >= max_count + cpuc->n_metric) 1168 return -EINVAL; 1169 1170 cpuc->event_list[n] = event; 1171 if (is_counter_pair(&event->hw)) { 1172 cpuc->n_pair++; 1173 cpuc->n_txn_pair++; 1174 } 1175 1176 return 0; 1177 } 1178 1179 /* 1180 * dogrp: true if must collect siblings events (group) 1181 * returns total number of events and error code 1182 */ 1183 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp) 1184 { 1185 struct perf_event *event; 1186 int n, max_count; 1187 1188 max_count = x86_pmu_num_counters(cpuc->pmu) + x86_pmu_num_counters_fixed(cpuc->pmu); 1189 1190 /* current number of events already accepted */ 1191 n = cpuc->n_events; 1192 if (!cpuc->n_events) 1193 cpuc->pebs_output = 0; 1194 1195 if (!cpuc->is_fake && leader->attr.precise_ip) { 1196 /* 1197 * For PEBS->PT, if !aux_event, the group leader (PT) went 1198 * away, the group was broken down and this singleton event 1199 * can't schedule any more. 1200 */ 1201 if (is_pebs_pt(leader) && !leader->aux_event) 1202 return -EINVAL; 1203 1204 /* 1205 * pebs_output: 0: no PEBS so far, 1: PT, 2: DS 1206 */ 1207 if (cpuc->pebs_output && 1208 cpuc->pebs_output != is_pebs_pt(leader) + 1) 1209 return -EINVAL; 1210 1211 cpuc->pebs_output = is_pebs_pt(leader) + 1; 1212 } 1213 1214 if (is_x86_event(leader)) { 1215 if (collect_event(cpuc, leader, max_count, n)) 1216 return -EINVAL; 1217 n++; 1218 } 1219 1220 if (!dogrp) 1221 return n; 1222 1223 for_each_sibling_event(event, leader) { 1224 if (!is_x86_event(event) || event->state <= PERF_EVENT_STATE_OFF) 1225 continue; 1226 1227 if (collect_event(cpuc, event, max_count, n)) 1228 return -EINVAL; 1229 1230 n++; 1231 } 1232 return n; 1233 } 1234 1235 static inline void x86_assign_hw_event(struct perf_event *event, 1236 struct cpu_hw_events *cpuc, int i) 1237 { 1238 struct hw_perf_event *hwc = &event->hw; 1239 int idx; 1240 1241 idx = hwc->idx = cpuc->assign[i]; 1242 hwc->last_cpu = smp_processor_id(); 1243 hwc->last_tag = ++cpuc->tags[i]; 1244 1245 static_call_cond(x86_pmu_assign)(event, idx); 1246 1247 switch (hwc->idx) { 1248 case INTEL_PMC_IDX_FIXED_BTS: 1249 case INTEL_PMC_IDX_FIXED_VLBR: 1250 hwc->config_base = 0; 1251 hwc->event_base = 0; 1252 break; 1253 1254 case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END: 1255 /* All the metric events are mapped onto the fixed counter 3. */ 1256 idx = INTEL_PMC_IDX_FIXED_SLOTS; 1257 fallthrough; 1258 case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS-1: 1259 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL; 1260 hwc->event_base = x86_pmu_fixed_ctr_addr(idx - INTEL_PMC_IDX_FIXED); 1261 hwc->event_base_rdpmc = (idx - INTEL_PMC_IDX_FIXED) | 1262 INTEL_PMC_FIXED_RDPMC_BASE; 1263 break; 1264 1265 default: 1266 hwc->config_base = x86_pmu_config_addr(hwc->idx); 1267 hwc->event_base = x86_pmu_event_addr(hwc->idx); 1268 hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx); 1269 break; 1270 } 1271 } 1272 1273 /** 1274 * x86_perf_rdpmc_index - Return PMC counter used for event 1275 * @event: the perf_event to which the PMC counter was assigned 1276 * 1277 * The counter assigned to this performance event may change if interrupts 1278 * are enabled. This counter should thus never be used while interrupts are 1279 * enabled. Before this function is used to obtain the assigned counter the 1280 * event should be checked for validity using, for example, 1281 * perf_event_read_local(), within the same interrupt disabled section in 1282 * which this counter is planned to be used. 1283 * 1284 * Return: The index of the performance monitoring counter assigned to 1285 * @perf_event. 1286 */ 1287 int x86_perf_rdpmc_index(struct perf_event *event) 1288 { 1289 lockdep_assert_irqs_disabled(); 1290 1291 return event->hw.event_base_rdpmc; 1292 } 1293 1294 static inline int match_prev_assignment(struct hw_perf_event *hwc, 1295 struct cpu_hw_events *cpuc, 1296 int i) 1297 { 1298 return hwc->idx == cpuc->assign[i] && 1299 hwc->last_cpu == smp_processor_id() && 1300 hwc->last_tag == cpuc->tags[i]; 1301 } 1302 1303 static void x86_pmu_start(struct perf_event *event, int flags); 1304 1305 static void x86_pmu_enable(struct pmu *pmu) 1306 { 1307 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1308 struct perf_event *event; 1309 struct hw_perf_event *hwc; 1310 int i, added = cpuc->n_added; 1311 1312 if (!x86_pmu_initialized()) 1313 return; 1314 1315 if (cpuc->enabled) 1316 return; 1317 1318 if (cpuc->n_added) { 1319 int n_running = cpuc->n_events - cpuc->n_added; 1320 1321 /* 1322 * The late setup (after counters are scheduled) 1323 * is required for some cases, e.g., PEBS counters 1324 * snapshotting. Because an accurate counter index 1325 * is needed. 1326 */ 1327 static_call_cond(x86_pmu_late_setup)(); 1328 1329 /* 1330 * apply assignment obtained either from 1331 * hw_perf_group_sched_in() or x86_pmu_enable() 1332 * 1333 * step1: save events moving to new counters 1334 */ 1335 for (i = 0; i < n_running; i++) { 1336 event = cpuc->event_list[i]; 1337 hwc = &event->hw; 1338 1339 /* 1340 * we can avoid reprogramming counter if: 1341 * - assigned same counter as last time 1342 * - running on same CPU as last time 1343 * - no other event has used the counter since 1344 */ 1345 if (hwc->idx == -1 || 1346 match_prev_assignment(hwc, cpuc, i)) 1347 continue; 1348 1349 /* 1350 * Ensure we don't accidentally enable a stopped 1351 * counter simply because we rescheduled. 1352 */ 1353 if (hwc->state & PERF_HES_STOPPED) 1354 hwc->state |= PERF_HES_ARCH; 1355 1356 x86_pmu_stop(event, PERF_EF_UPDATE); 1357 cpuc->events[hwc->idx] = NULL; 1358 } 1359 1360 /* 1361 * step2: reprogram moved events into new counters 1362 */ 1363 for (i = 0; i < cpuc->n_events; i++) { 1364 event = cpuc->event_list[i]; 1365 hwc = &event->hw; 1366 1367 if (!match_prev_assignment(hwc, cpuc, i)) 1368 x86_assign_hw_event(event, cpuc, i); 1369 else if (i < n_running) 1370 continue; 1371 1372 if (hwc->state & PERF_HES_ARCH) 1373 continue; 1374 1375 /* 1376 * if cpuc->enabled = 0, then no wrmsr as 1377 * per x86_pmu_enable_event() 1378 */ 1379 cpuc->events[hwc->idx] = event; 1380 x86_pmu_start(event, PERF_EF_RELOAD); 1381 } 1382 cpuc->n_added = 0; 1383 perf_events_lapic_init(); 1384 } 1385 1386 cpuc->enabled = 1; 1387 barrier(); 1388 1389 static_call(x86_pmu_enable_all)(added); 1390 } 1391 1392 DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left); 1393 1394 /* 1395 * Set the next IRQ period, based on the hwc->period_left value. 1396 * To be called with the event disabled in hw: 1397 */ 1398 int x86_perf_event_set_period(struct perf_event *event) 1399 { 1400 struct hw_perf_event *hwc = &event->hw; 1401 s64 left = local64_read(&hwc->period_left); 1402 s64 period = hwc->sample_period; 1403 int ret = 0, idx = hwc->idx; 1404 1405 if (unlikely(!hwc->event_base)) 1406 return 0; 1407 1408 /* 1409 * If we are way outside a reasonable range then just skip forward: 1410 */ 1411 if (unlikely(left <= -period)) { 1412 left = period; 1413 local64_set(&hwc->period_left, left); 1414 hwc->last_period = period; 1415 ret = 1; 1416 } 1417 1418 if (unlikely(left <= 0)) { 1419 left += period; 1420 local64_set(&hwc->period_left, left); 1421 hwc->last_period = period; 1422 ret = 1; 1423 } 1424 /* 1425 * Quirk: certain CPUs dont like it if just 1 hw_event is left: 1426 */ 1427 if (unlikely(left < 2)) 1428 left = 2; 1429 1430 if (left > x86_pmu.max_period) 1431 left = x86_pmu.max_period; 1432 1433 static_call_cond(x86_pmu_limit_period)(event, &left); 1434 1435 this_cpu_write(pmc_prev_left[idx], left); 1436 1437 /* 1438 * The hw event starts counting from this event offset, 1439 * mark it to be able to extra future deltas: 1440 */ 1441 local64_set(&hwc->prev_count, (u64)-left); 1442 1443 wrmsrq(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask); 1444 1445 /* 1446 * Sign extend the Merge event counter's upper 16 bits since 1447 * we currently declare a 48-bit counter width 1448 */ 1449 if (is_counter_pair(hwc)) 1450 wrmsrq(x86_pmu_event_addr(idx + 1), 0xffff); 1451 1452 perf_event_update_userpage(event); 1453 1454 return ret; 1455 } 1456 1457 void x86_pmu_enable_event(struct perf_event *event) 1458 { 1459 if (__this_cpu_read(cpu_hw_events.enabled)) 1460 __x86_pmu_enable_event(&event->hw, 1461 ARCH_PERFMON_EVENTSEL_ENABLE); 1462 } 1463 1464 /* 1465 * Add a single event to the PMU. 1466 * 1467 * The event is added to the group of enabled events 1468 * but only if it can be scheduled with existing events. 1469 */ 1470 static int x86_pmu_add(struct perf_event *event, int flags) 1471 { 1472 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1473 struct hw_perf_event *hwc; 1474 int assign[X86_PMC_IDX_MAX]; 1475 int n, n0, ret; 1476 1477 hwc = &event->hw; 1478 1479 n0 = cpuc->n_events; 1480 ret = n = collect_events(cpuc, event, false); 1481 if (ret < 0) 1482 goto out; 1483 1484 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED; 1485 if (!(flags & PERF_EF_START)) 1486 hwc->state |= PERF_HES_ARCH; 1487 1488 /* 1489 * If group events scheduling transaction was started, 1490 * skip the schedulability test here, it will be performed 1491 * at commit time (->commit_txn) as a whole. 1492 * 1493 * If commit fails, we'll call ->del() on all events 1494 * for which ->add() was called. 1495 */ 1496 if (cpuc->txn_flags & PERF_PMU_TXN_ADD) 1497 goto done_collect; 1498 1499 ret = static_call(x86_pmu_schedule_events)(cpuc, n, assign); 1500 if (ret) 1501 goto out; 1502 /* 1503 * copy new assignment, now we know it is possible 1504 * will be used by hw_perf_enable() 1505 */ 1506 memcpy(cpuc->assign, assign, n*sizeof(int)); 1507 1508 done_collect: 1509 /* 1510 * Commit the collect_events() state. See x86_pmu_del() and 1511 * x86_pmu_*_txn(). 1512 */ 1513 cpuc->n_events = n; 1514 cpuc->n_added += n - n0; 1515 cpuc->n_txn += n - n0; 1516 1517 /* 1518 * This is before x86_pmu_enable() will call x86_pmu_start(), 1519 * so we enable LBRs before an event needs them etc.. 1520 */ 1521 static_call_cond(x86_pmu_add)(event); 1522 1523 ret = 0; 1524 out: 1525 return ret; 1526 } 1527 1528 static void x86_pmu_start(struct perf_event *event, int flags) 1529 { 1530 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1531 int idx = event->hw.idx; 1532 1533 if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED))) 1534 return; 1535 1536 if (WARN_ON_ONCE(idx == -1)) 1537 return; 1538 1539 if (flags & PERF_EF_RELOAD) { 1540 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE)); 1541 static_call(x86_pmu_set_period)(event); 1542 } 1543 1544 event->hw.state = 0; 1545 1546 __set_bit(idx, cpuc->active_mask); 1547 static_call(x86_pmu_enable)(event); 1548 perf_event_update_userpage(event); 1549 } 1550 1551 void perf_event_print_debug(void) 1552 { 1553 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed; 1554 unsigned long *cntr_mask, *fixed_cntr_mask; 1555 struct event_constraint *pebs_constraints; 1556 struct cpu_hw_events *cpuc; 1557 u64 pebs, debugctl; 1558 int cpu, idx; 1559 1560 guard(irqsave)(); 1561 1562 cpu = smp_processor_id(); 1563 cpuc = &per_cpu(cpu_hw_events, cpu); 1564 cntr_mask = hybrid(cpuc->pmu, cntr_mask); 1565 fixed_cntr_mask = hybrid(cpuc->pmu, fixed_cntr_mask); 1566 pebs_constraints = hybrid(cpuc->pmu, pebs_constraints); 1567 1568 if (!*(u64 *)cntr_mask) 1569 return; 1570 1571 if (x86_pmu.version >= 2) { 1572 rdmsrq(MSR_CORE_PERF_GLOBAL_CTRL, ctrl); 1573 rdmsrq(MSR_CORE_PERF_GLOBAL_STATUS, status); 1574 rdmsrq(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow); 1575 rdmsrq(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed); 1576 1577 pr_info("\n"); 1578 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl); 1579 pr_info("CPU#%d: status: %016llx\n", cpu, status); 1580 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow); 1581 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed); 1582 if (pebs_constraints) { 1583 rdmsrq(MSR_IA32_PEBS_ENABLE, pebs); 1584 pr_info("CPU#%d: pebs: %016llx\n", cpu, pebs); 1585 } 1586 if (x86_pmu.lbr_nr) { 1587 rdmsrq(MSR_IA32_DEBUGCTLMSR, debugctl); 1588 pr_info("CPU#%d: debugctl: %016llx\n", cpu, debugctl); 1589 } 1590 } 1591 pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask); 1592 1593 for_each_set_bit(idx, cntr_mask, X86_PMC_IDX_MAX) { 1594 rdmsrq(x86_pmu_config_addr(idx), pmc_ctrl); 1595 rdmsrq(x86_pmu_event_addr(idx), pmc_count); 1596 1597 prev_left = per_cpu(pmc_prev_left[idx], cpu); 1598 1599 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n", 1600 cpu, idx, pmc_ctrl); 1601 pr_info("CPU#%d: gen-PMC%d count: %016llx\n", 1602 cpu, idx, pmc_count); 1603 pr_info("CPU#%d: gen-PMC%d left: %016llx\n", 1604 cpu, idx, prev_left); 1605 } 1606 for_each_set_bit(idx, fixed_cntr_mask, X86_PMC_IDX_MAX) { 1607 if (fixed_counter_disabled(idx, cpuc->pmu)) 1608 continue; 1609 rdmsrq(x86_pmu_fixed_ctr_addr(idx), pmc_count); 1610 1611 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n", 1612 cpu, idx, pmc_count); 1613 } 1614 } 1615 1616 void x86_pmu_stop(struct perf_event *event, int flags) 1617 { 1618 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1619 struct hw_perf_event *hwc = &event->hw; 1620 1621 if (test_bit(hwc->idx, cpuc->active_mask)) { 1622 static_call(x86_pmu_disable)(event); 1623 __clear_bit(hwc->idx, cpuc->active_mask); 1624 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED); 1625 hwc->state |= PERF_HES_STOPPED; 1626 } 1627 1628 if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) { 1629 /* 1630 * Drain the remaining delta count out of a event 1631 * that we are disabling: 1632 */ 1633 static_call(x86_pmu_update)(event); 1634 hwc->state |= PERF_HES_UPTODATE; 1635 } 1636 } 1637 1638 static void x86_pmu_del(struct perf_event *event, int flags) 1639 { 1640 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1641 union perf_capabilities intel_cap = hybrid(cpuc->pmu, intel_cap); 1642 int i; 1643 1644 /* 1645 * If we're called during a txn, we only need to undo x86_pmu.add. 1646 * The events never got scheduled and ->cancel_txn will truncate 1647 * the event_list. 1648 * 1649 * XXX assumes any ->del() called during a TXN will only be on 1650 * an event added during that same TXN. 1651 */ 1652 if (cpuc->txn_flags & PERF_PMU_TXN_ADD) 1653 goto do_del; 1654 1655 __set_bit(event->hw.idx, cpuc->dirty); 1656 1657 /* 1658 * Not a TXN, therefore cleanup properly. 1659 */ 1660 x86_pmu_stop(event, PERF_EF_UPDATE); 1661 cpuc->events[event->hw.idx] = NULL; 1662 1663 for (i = 0; i < cpuc->n_events; i++) { 1664 if (event == cpuc->event_list[i]) 1665 break; 1666 } 1667 1668 if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */ 1669 return; 1670 1671 /* If we have a newly added event; make sure to decrease n_added. */ 1672 if (i >= cpuc->n_events - cpuc->n_added) 1673 --cpuc->n_added; 1674 1675 static_call_cond(x86_pmu_put_event_constraints)(cpuc, event); 1676 1677 /* Delete the array entry. */ 1678 while (++i < cpuc->n_events) { 1679 cpuc->event_list[i-1] = cpuc->event_list[i]; 1680 cpuc->event_constraint[i-1] = cpuc->event_constraint[i]; 1681 cpuc->assign[i-1] = cpuc->assign[i]; 1682 } 1683 cpuc->event_constraint[i-1] = NULL; 1684 --cpuc->n_events; 1685 if (intel_cap.perf_metrics) 1686 del_nr_metric_event(cpuc, event); 1687 1688 perf_event_update_userpage(event); 1689 1690 do_del: 1691 1692 /* 1693 * This is after x86_pmu_stop(); so we disable LBRs after any 1694 * event can need them etc.. 1695 */ 1696 static_call_cond(x86_pmu_del)(event); 1697 } 1698 1699 int x86_pmu_handle_irq(struct pt_regs *regs) 1700 { 1701 struct perf_sample_data data; 1702 struct cpu_hw_events *cpuc; 1703 struct perf_event *event; 1704 int idx, handled = 0; 1705 u64 last_period; 1706 u64 val; 1707 1708 cpuc = this_cpu_ptr(&cpu_hw_events); 1709 1710 /* 1711 * Some chipsets need to unmask the LVTPC in a particular spot 1712 * inside the nmi handler. As a result, the unmasking was pushed 1713 * into all the nmi handlers. 1714 * 1715 * This generic handler doesn't seem to have any issues where the 1716 * unmasking occurs so it was left at the top. 1717 */ 1718 apic_write(APIC_LVTPC, APIC_DM_NMI); 1719 1720 for_each_set_bit(idx, x86_pmu.cntr_mask, X86_PMC_IDX_MAX) { 1721 if (!test_bit(idx, cpuc->active_mask)) 1722 continue; 1723 1724 event = cpuc->events[idx]; 1725 last_period = event->hw.last_period; 1726 1727 val = static_call(x86_pmu_update)(event); 1728 if (val & (1ULL << (x86_pmu.cntval_bits - 1))) 1729 continue; 1730 1731 /* 1732 * event overflow 1733 */ 1734 handled++; 1735 1736 if (!static_call(x86_pmu_set_period)(event)) 1737 continue; 1738 1739 perf_sample_data_init(&data, 0, last_period); 1740 1741 perf_sample_save_brstack(&data, event, &cpuc->lbr_stack, NULL); 1742 1743 perf_event_overflow(event, &data, regs); 1744 } 1745 1746 if (handled) 1747 inc_irq_stat(apic_perf_irqs); 1748 1749 return handled; 1750 } 1751 1752 void perf_events_lapic_init(void) 1753 { 1754 if (!x86_pmu.apic || !x86_pmu_initialized()) 1755 return; 1756 1757 /* 1758 * Always use NMI for PMU 1759 */ 1760 apic_write(APIC_LVTPC, APIC_DM_NMI); 1761 } 1762 1763 static int 1764 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs) 1765 { 1766 u64 start_clock; 1767 u64 finish_clock; 1768 int ret; 1769 1770 /* 1771 * All PMUs/events that share this PMI handler should make sure to 1772 * increment active_events for their events. 1773 */ 1774 if (!atomic_read(&active_events)) 1775 return NMI_DONE; 1776 1777 start_clock = sched_clock(); 1778 ret = static_call(x86_pmu_handle_irq)(regs); 1779 finish_clock = sched_clock(); 1780 1781 perf_sample_event_took(finish_clock - start_clock); 1782 1783 return ret; 1784 } 1785 NOKPROBE_SYMBOL(perf_event_nmi_handler); 1786 1787 struct event_constraint emptyconstraint; 1788 struct event_constraint unconstrained; 1789 1790 static int x86_pmu_prepare_cpu(unsigned int cpu) 1791 { 1792 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu); 1793 int i; 1794 1795 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) 1796 cpuc->kfree_on_online[i] = NULL; 1797 if (x86_pmu.cpu_prepare) 1798 return x86_pmu.cpu_prepare(cpu); 1799 return 0; 1800 } 1801 1802 static int x86_pmu_dead_cpu(unsigned int cpu) 1803 { 1804 if (x86_pmu.cpu_dead) 1805 x86_pmu.cpu_dead(cpu); 1806 return 0; 1807 } 1808 1809 static int x86_pmu_online_cpu(unsigned int cpu) 1810 { 1811 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu); 1812 int i; 1813 1814 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) { 1815 kfree(cpuc->kfree_on_online[i]); 1816 cpuc->kfree_on_online[i] = NULL; 1817 } 1818 return 0; 1819 } 1820 1821 static int x86_pmu_starting_cpu(unsigned int cpu) 1822 { 1823 if (x86_pmu.cpu_starting) 1824 x86_pmu.cpu_starting(cpu); 1825 return 0; 1826 } 1827 1828 static int x86_pmu_dying_cpu(unsigned int cpu) 1829 { 1830 if (x86_pmu.cpu_dying) 1831 x86_pmu.cpu_dying(cpu); 1832 return 0; 1833 } 1834 1835 static void __init pmu_check_apic(void) 1836 { 1837 if (boot_cpu_has(X86_FEATURE_APIC)) 1838 return; 1839 1840 x86_pmu.apic = 0; 1841 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n"); 1842 pr_info("no hardware sampling interrupt available.\n"); 1843 1844 /* 1845 * If we have a PMU initialized but no APIC 1846 * interrupts, we cannot sample hardware 1847 * events (user-space has to fall back and 1848 * sample via a hrtimer based software event): 1849 */ 1850 pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT; 1851 1852 } 1853 1854 static struct attribute_group x86_pmu_format_group __ro_after_init = { 1855 .name = "format", 1856 .attrs = NULL, 1857 }; 1858 1859 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page) 1860 { 1861 struct perf_pmu_events_attr *pmu_attr = 1862 container_of(attr, struct perf_pmu_events_attr, attr); 1863 u64 config = 0; 1864 1865 if (pmu_attr->id < x86_pmu.max_events) 1866 config = x86_pmu.event_map(pmu_attr->id); 1867 1868 /* string trumps id */ 1869 if (pmu_attr->event_str) 1870 return sprintf(page, "%s\n", pmu_attr->event_str); 1871 1872 return x86_pmu.events_sysfs_show(page, config); 1873 } 1874 EXPORT_SYMBOL_GPL(events_sysfs_show); 1875 1876 ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr, 1877 char *page) 1878 { 1879 struct perf_pmu_events_ht_attr *pmu_attr = 1880 container_of(attr, struct perf_pmu_events_ht_attr, attr); 1881 1882 /* 1883 * Report conditional events depending on Hyper-Threading. 1884 * 1885 * This is overly conservative as usually the HT special 1886 * handling is not needed if the other CPU thread is idle. 1887 * 1888 * Note this does not (and cannot) handle the case when thread 1889 * siblings are invisible, for example with virtualization 1890 * if they are owned by some other guest. The user tool 1891 * has to re-read when a thread sibling gets onlined later. 1892 */ 1893 return sprintf(page, "%s", 1894 topology_max_smt_threads() > 1 ? 1895 pmu_attr->event_str_ht : 1896 pmu_attr->event_str_noht); 1897 } 1898 1899 ssize_t events_hybrid_sysfs_show(struct device *dev, 1900 struct device_attribute *attr, 1901 char *page) 1902 { 1903 struct perf_pmu_events_hybrid_attr *pmu_attr = 1904 container_of(attr, struct perf_pmu_events_hybrid_attr, attr); 1905 struct x86_hybrid_pmu *pmu; 1906 const char *str, *next_str; 1907 int i; 1908 1909 if (hweight64(pmu_attr->pmu_type) == 1) 1910 return sprintf(page, "%s", pmu_attr->event_str); 1911 1912 /* 1913 * Hybrid PMUs may support the same event name, but with different 1914 * event encoding, e.g., the mem-loads event on an Atom PMU has 1915 * different event encoding from a Core PMU. 1916 * 1917 * The event_str includes all event encodings. Each event encoding 1918 * is divided by ";". The order of the event encodings must follow 1919 * the order of the hybrid PMU index. 1920 */ 1921 pmu = container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu); 1922 1923 str = pmu_attr->event_str; 1924 for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) { 1925 if (!(x86_pmu.hybrid_pmu[i].pmu_type & pmu_attr->pmu_type)) 1926 continue; 1927 if (x86_pmu.hybrid_pmu[i].pmu_type & pmu->pmu_type) { 1928 next_str = strchr(str, ';'); 1929 if (next_str) 1930 return snprintf(page, next_str - str + 1, "%s", str); 1931 else 1932 return sprintf(page, "%s", str); 1933 } 1934 str = strchr(str, ';'); 1935 str++; 1936 } 1937 1938 return 0; 1939 } 1940 EXPORT_SYMBOL_GPL(events_hybrid_sysfs_show); 1941 1942 EVENT_ATTR(cpu-cycles, CPU_CYCLES ); 1943 EVENT_ATTR(instructions, INSTRUCTIONS ); 1944 EVENT_ATTR(cache-references, CACHE_REFERENCES ); 1945 EVENT_ATTR(cache-misses, CACHE_MISSES ); 1946 EVENT_ATTR(branch-instructions, BRANCH_INSTRUCTIONS ); 1947 EVENT_ATTR(branch-misses, BRANCH_MISSES ); 1948 EVENT_ATTR(bus-cycles, BUS_CYCLES ); 1949 EVENT_ATTR(stalled-cycles-frontend, STALLED_CYCLES_FRONTEND ); 1950 EVENT_ATTR(stalled-cycles-backend, STALLED_CYCLES_BACKEND ); 1951 EVENT_ATTR(ref-cycles, REF_CPU_CYCLES ); 1952 1953 static struct attribute *empty_attrs; 1954 1955 static struct attribute *events_attr[] = { 1956 EVENT_PTR(CPU_CYCLES), 1957 EVENT_PTR(INSTRUCTIONS), 1958 EVENT_PTR(CACHE_REFERENCES), 1959 EVENT_PTR(CACHE_MISSES), 1960 EVENT_PTR(BRANCH_INSTRUCTIONS), 1961 EVENT_PTR(BRANCH_MISSES), 1962 EVENT_PTR(BUS_CYCLES), 1963 EVENT_PTR(STALLED_CYCLES_FRONTEND), 1964 EVENT_PTR(STALLED_CYCLES_BACKEND), 1965 EVENT_PTR(REF_CPU_CYCLES), 1966 NULL, 1967 }; 1968 1969 /* 1970 * Remove all undefined events (x86_pmu.event_map(id) == 0) 1971 * out of events_attr attributes. 1972 */ 1973 static umode_t 1974 is_visible(struct kobject *kobj, struct attribute *attr, int idx) 1975 { 1976 struct perf_pmu_events_attr *pmu_attr; 1977 1978 if (idx >= x86_pmu.max_events) 1979 return 0; 1980 1981 pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr.attr); 1982 /* str trumps id */ 1983 return pmu_attr->event_str || x86_pmu.event_map(idx) ? attr->mode : 0; 1984 } 1985 1986 static struct attribute_group x86_pmu_events_group __ro_after_init = { 1987 .name = "events", 1988 .attrs = events_attr, 1989 .is_visible = is_visible, 1990 }; 1991 1992 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event) 1993 { 1994 u64 umask = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8; 1995 u64 cmask = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24; 1996 bool edge = (config & ARCH_PERFMON_EVENTSEL_EDGE); 1997 bool pc = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL); 1998 bool any = (config & ARCH_PERFMON_EVENTSEL_ANY); 1999 bool inv = (config & ARCH_PERFMON_EVENTSEL_INV); 2000 ssize_t ret; 2001 2002 /* 2003 * We have whole page size to spend and just little data 2004 * to write, so we can safely use sprintf. 2005 */ 2006 ret = sprintf(page, "event=0x%02llx", event); 2007 2008 if (umask) 2009 ret += sprintf(page + ret, ",umask=0x%02llx", umask); 2010 2011 if (edge) 2012 ret += sprintf(page + ret, ",edge"); 2013 2014 if (pc) 2015 ret += sprintf(page + ret, ",pc"); 2016 2017 if (any) 2018 ret += sprintf(page + ret, ",any"); 2019 2020 if (inv) 2021 ret += sprintf(page + ret, ",inv"); 2022 2023 if (cmask) 2024 ret += sprintf(page + ret, ",cmask=0x%02llx", cmask); 2025 2026 ret += sprintf(page + ret, "\n"); 2027 2028 return ret; 2029 } 2030 2031 static struct attribute_group x86_pmu_attr_group; 2032 static struct attribute_group x86_pmu_caps_group; 2033 2034 static void x86_pmu_static_call_update(void) 2035 { 2036 static_call_update(x86_pmu_handle_irq, x86_pmu.handle_irq); 2037 static_call_update(x86_pmu_disable_all, x86_pmu.disable_all); 2038 static_call_update(x86_pmu_enable_all, x86_pmu.enable_all); 2039 static_call_update(x86_pmu_enable, x86_pmu.enable); 2040 static_call_update(x86_pmu_disable, x86_pmu.disable); 2041 2042 static_call_update(x86_pmu_assign, x86_pmu.assign); 2043 2044 static_call_update(x86_pmu_add, x86_pmu.add); 2045 static_call_update(x86_pmu_del, x86_pmu.del); 2046 static_call_update(x86_pmu_read, x86_pmu.read); 2047 2048 static_call_update(x86_pmu_set_period, x86_pmu.set_period); 2049 static_call_update(x86_pmu_update, x86_pmu.update); 2050 static_call_update(x86_pmu_limit_period, x86_pmu.limit_period); 2051 2052 static_call_update(x86_pmu_schedule_events, x86_pmu.schedule_events); 2053 static_call_update(x86_pmu_get_event_constraints, x86_pmu.get_event_constraints); 2054 static_call_update(x86_pmu_put_event_constraints, x86_pmu.put_event_constraints); 2055 2056 static_call_update(x86_pmu_start_scheduling, x86_pmu.start_scheduling); 2057 static_call_update(x86_pmu_commit_scheduling, x86_pmu.commit_scheduling); 2058 static_call_update(x86_pmu_stop_scheduling, x86_pmu.stop_scheduling); 2059 2060 static_call_update(x86_pmu_sched_task, x86_pmu.sched_task); 2061 2062 static_call_update(x86_pmu_drain_pebs, x86_pmu.drain_pebs); 2063 static_call_update(x86_pmu_pebs_aliases, x86_pmu.pebs_aliases); 2064 2065 static_call_update(x86_pmu_guest_get_msrs, x86_pmu.guest_get_msrs); 2066 static_call_update(x86_pmu_filter, x86_pmu.filter); 2067 2068 static_call_update(x86_pmu_late_setup, x86_pmu.late_setup); 2069 2070 static_call_update(x86_pmu_pebs_enable, x86_pmu.pebs_enable); 2071 static_call_update(x86_pmu_pebs_disable, x86_pmu.pebs_disable); 2072 static_call_update(x86_pmu_pebs_enable_all, x86_pmu.pebs_enable_all); 2073 static_call_update(x86_pmu_pebs_disable_all, x86_pmu.pebs_disable_all); 2074 } 2075 2076 static void _x86_pmu_read(struct perf_event *event) 2077 { 2078 static_call(x86_pmu_update)(event); 2079 } 2080 2081 void x86_pmu_show_pmu_cap(struct pmu *pmu) 2082 { 2083 pr_info("... version: %d\n", x86_pmu.version); 2084 pr_info("... bit width: %d\n", x86_pmu.cntval_bits); 2085 pr_info("... generic counters: %d\n", x86_pmu_num_counters(pmu)); 2086 pr_info("... generic bitmap: %016llx\n", hybrid(pmu, cntr_mask64)); 2087 pr_info("... fixed-purpose counters: %d\n", x86_pmu_num_counters_fixed(pmu)); 2088 pr_info("... fixed-purpose bitmap: %016llx\n", hybrid(pmu, fixed_cntr_mask64)); 2089 pr_info("... value mask: %016llx\n", x86_pmu.cntval_mask); 2090 pr_info("... max period: %016llx\n", x86_pmu.max_period); 2091 pr_info("... global_ctrl mask: %016llx\n", hybrid(pmu, intel_ctrl)); 2092 } 2093 2094 static int __init init_hw_perf_events(void) 2095 { 2096 struct x86_pmu_quirk *quirk; 2097 int err; 2098 2099 pr_info("Performance Events: "); 2100 2101 switch (boot_cpu_data.x86_vendor) { 2102 case X86_VENDOR_INTEL: 2103 err = intel_pmu_init(); 2104 break; 2105 case X86_VENDOR_AMD: 2106 err = amd_pmu_init(); 2107 break; 2108 case X86_VENDOR_HYGON: 2109 err = amd_pmu_init(); 2110 x86_pmu.name = "HYGON"; 2111 break; 2112 case X86_VENDOR_ZHAOXIN: 2113 case X86_VENDOR_CENTAUR: 2114 err = zhaoxin_pmu_init(); 2115 break; 2116 default: 2117 err = -ENOTSUPP; 2118 } 2119 if (err != 0) { 2120 pr_cont("no PMU driver, software events only.\n"); 2121 err = 0; 2122 goto out_bad_pmu; 2123 } 2124 2125 pmu_check_apic(); 2126 2127 /* sanity check that the hardware exists or is emulated */ 2128 if (!check_hw_exists(&pmu, x86_pmu.cntr_mask, x86_pmu.fixed_cntr_mask)) 2129 goto out_bad_pmu; 2130 2131 pr_cont("%s PMU driver.\n", x86_pmu.name); 2132 2133 x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */ 2134 2135 for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next) 2136 quirk->func(); 2137 2138 if (!x86_pmu.intel_ctrl) 2139 x86_pmu.intel_ctrl = x86_pmu.cntr_mask64; 2140 2141 if (!x86_pmu.config_mask) 2142 x86_pmu.config_mask = X86_RAW_EVENT_MASK; 2143 2144 perf_events_lapic_init(); 2145 register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI"); 2146 2147 unconstrained = (struct event_constraint) 2148 __EVENT_CONSTRAINT(0, x86_pmu.cntr_mask64, 2149 0, x86_pmu_num_counters(NULL), 0, 0); 2150 2151 x86_pmu_format_group.attrs = x86_pmu.format_attrs; 2152 2153 if (!x86_pmu.events_sysfs_show) 2154 x86_pmu_events_group.attrs = &empty_attrs; 2155 2156 pmu.attr_update = x86_pmu.attr_update; 2157 2158 if (!is_hybrid()) 2159 x86_pmu_show_pmu_cap(NULL); 2160 2161 if (!x86_pmu.read) 2162 x86_pmu.read = _x86_pmu_read; 2163 2164 if (!x86_pmu.guest_get_msrs) 2165 x86_pmu.guest_get_msrs = (void *)&__static_call_return0; 2166 2167 if (!x86_pmu.set_period) 2168 x86_pmu.set_period = x86_perf_event_set_period; 2169 2170 if (!x86_pmu.update) 2171 x86_pmu.update = x86_perf_event_update; 2172 2173 x86_pmu_static_call_update(); 2174 2175 /* 2176 * Install callbacks. Core will call them for each online 2177 * cpu. 2178 */ 2179 err = cpuhp_setup_state(CPUHP_PERF_X86_PREPARE, "perf/x86:prepare", 2180 x86_pmu_prepare_cpu, x86_pmu_dead_cpu); 2181 if (err) 2182 return err; 2183 2184 err = cpuhp_setup_state(CPUHP_AP_PERF_X86_STARTING, 2185 "perf/x86:starting", x86_pmu_starting_cpu, 2186 x86_pmu_dying_cpu); 2187 if (err) 2188 goto out; 2189 2190 err = cpuhp_setup_state(CPUHP_AP_PERF_X86_ONLINE, "perf/x86:online", 2191 x86_pmu_online_cpu, NULL); 2192 if (err) 2193 goto out1; 2194 2195 if (!is_hybrid()) { 2196 err = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW); 2197 if (err) 2198 goto out2; 2199 } else { 2200 struct x86_hybrid_pmu *hybrid_pmu; 2201 int i, j; 2202 2203 for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) { 2204 hybrid_pmu = &x86_pmu.hybrid_pmu[i]; 2205 2206 hybrid_pmu->pmu = pmu; 2207 hybrid_pmu->pmu.type = -1; 2208 hybrid_pmu->pmu.attr_update = x86_pmu.attr_update; 2209 hybrid_pmu->pmu.capabilities |= PERF_PMU_CAP_EXTENDED_HW_TYPE; 2210 2211 err = perf_pmu_register(&hybrid_pmu->pmu, hybrid_pmu->name, 2212 (hybrid_pmu->pmu_type == hybrid_big) ? PERF_TYPE_RAW : -1); 2213 if (err) 2214 break; 2215 } 2216 2217 if (i < x86_pmu.num_hybrid_pmus) { 2218 for (j = 0; j < i; j++) 2219 perf_pmu_unregister(&x86_pmu.hybrid_pmu[j].pmu); 2220 pr_warn("Failed to register hybrid PMUs\n"); 2221 kfree(x86_pmu.hybrid_pmu); 2222 x86_pmu.hybrid_pmu = NULL; 2223 x86_pmu.num_hybrid_pmus = 0; 2224 goto out2; 2225 } 2226 } 2227 2228 return 0; 2229 2230 out2: 2231 cpuhp_remove_state(CPUHP_AP_PERF_X86_ONLINE); 2232 out1: 2233 cpuhp_remove_state(CPUHP_AP_PERF_X86_STARTING); 2234 out: 2235 cpuhp_remove_state(CPUHP_PERF_X86_PREPARE); 2236 out_bad_pmu: 2237 memset(&x86_pmu, 0, sizeof(x86_pmu)); 2238 return err; 2239 } 2240 early_initcall(init_hw_perf_events); 2241 2242 static void x86_pmu_read(struct perf_event *event) 2243 { 2244 static_call(x86_pmu_read)(event); 2245 } 2246 2247 /* 2248 * Start group events scheduling transaction 2249 * Set the flag to make pmu::enable() not perform the 2250 * schedulability test, it will be performed at commit time 2251 * 2252 * We only support PERF_PMU_TXN_ADD transactions. Save the 2253 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD 2254 * transactions. 2255 */ 2256 static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags) 2257 { 2258 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2259 2260 WARN_ON_ONCE(cpuc->txn_flags); /* txn already in flight */ 2261 2262 cpuc->txn_flags = txn_flags; 2263 if (txn_flags & ~PERF_PMU_TXN_ADD) 2264 return; 2265 2266 perf_pmu_disable(pmu); 2267 __this_cpu_write(cpu_hw_events.n_txn, 0); 2268 __this_cpu_write(cpu_hw_events.n_txn_pair, 0); 2269 __this_cpu_write(cpu_hw_events.n_txn_metric, 0); 2270 } 2271 2272 /* 2273 * Stop group events scheduling transaction 2274 * Clear the flag and pmu::enable() will perform the 2275 * schedulability test. 2276 */ 2277 static void x86_pmu_cancel_txn(struct pmu *pmu) 2278 { 2279 unsigned int txn_flags; 2280 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2281 2282 WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */ 2283 2284 txn_flags = cpuc->txn_flags; 2285 cpuc->txn_flags = 0; 2286 if (txn_flags & ~PERF_PMU_TXN_ADD) 2287 return; 2288 2289 /* 2290 * Truncate collected array by the number of events added in this 2291 * transaction. See x86_pmu_add() and x86_pmu_*_txn(). 2292 */ 2293 __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn)); 2294 __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn)); 2295 __this_cpu_sub(cpu_hw_events.n_pair, __this_cpu_read(cpu_hw_events.n_txn_pair)); 2296 __this_cpu_sub(cpu_hw_events.n_metric, __this_cpu_read(cpu_hw_events.n_txn_metric)); 2297 perf_pmu_enable(pmu); 2298 } 2299 2300 /* 2301 * Commit group events scheduling transaction 2302 * Perform the group schedulability test as a whole 2303 * Return 0 if success 2304 * 2305 * Does not cancel the transaction on failure; expects the caller to do this. 2306 */ 2307 static int x86_pmu_commit_txn(struct pmu *pmu) 2308 { 2309 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2310 int assign[X86_PMC_IDX_MAX]; 2311 int n, ret; 2312 2313 WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */ 2314 2315 if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) { 2316 cpuc->txn_flags = 0; 2317 return 0; 2318 } 2319 2320 n = cpuc->n_events; 2321 2322 if (!x86_pmu_initialized()) 2323 return -EAGAIN; 2324 2325 ret = static_call(x86_pmu_schedule_events)(cpuc, n, assign); 2326 if (ret) 2327 return ret; 2328 2329 /* 2330 * copy new assignment, now we know it is possible 2331 * will be used by hw_perf_enable() 2332 */ 2333 memcpy(cpuc->assign, assign, n*sizeof(int)); 2334 2335 cpuc->txn_flags = 0; 2336 perf_pmu_enable(pmu); 2337 return 0; 2338 } 2339 /* 2340 * a fake_cpuc is used to validate event groups. Due to 2341 * the extra reg logic, we need to also allocate a fake 2342 * per_core and per_cpu structure. Otherwise, group events 2343 * using extra reg may conflict without the kernel being 2344 * able to catch this when the last event gets added to 2345 * the group. 2346 */ 2347 static void free_fake_cpuc(struct cpu_hw_events *cpuc) 2348 { 2349 intel_cpuc_finish(cpuc); 2350 kfree(cpuc); 2351 } 2352 2353 static struct cpu_hw_events *allocate_fake_cpuc(struct pmu *event_pmu) 2354 { 2355 struct cpu_hw_events *cpuc; 2356 int cpu; 2357 2358 cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL); 2359 if (!cpuc) 2360 return ERR_PTR(-ENOMEM); 2361 cpuc->is_fake = 1; 2362 2363 if (is_hybrid()) { 2364 struct x86_hybrid_pmu *h_pmu; 2365 2366 h_pmu = hybrid_pmu(event_pmu); 2367 if (cpumask_empty(&h_pmu->supported_cpus)) 2368 goto error; 2369 cpu = cpumask_first(&h_pmu->supported_cpus); 2370 } else 2371 cpu = raw_smp_processor_id(); 2372 cpuc->pmu = event_pmu; 2373 2374 if (intel_cpuc_prepare(cpuc, cpu)) 2375 goto error; 2376 2377 return cpuc; 2378 error: 2379 free_fake_cpuc(cpuc); 2380 return ERR_PTR(-ENOMEM); 2381 } 2382 2383 /* 2384 * validate that we can schedule this event 2385 */ 2386 static int validate_event(struct perf_event *event) 2387 { 2388 struct cpu_hw_events *fake_cpuc; 2389 struct event_constraint *c; 2390 int ret = 0; 2391 2392 fake_cpuc = allocate_fake_cpuc(event->pmu); 2393 if (IS_ERR(fake_cpuc)) 2394 return PTR_ERR(fake_cpuc); 2395 2396 c = x86_pmu.get_event_constraints(fake_cpuc, 0, event); 2397 2398 if (!c || !c->weight) 2399 ret = -EINVAL; 2400 2401 if (x86_pmu.put_event_constraints) 2402 x86_pmu.put_event_constraints(fake_cpuc, event); 2403 2404 free_fake_cpuc(fake_cpuc); 2405 2406 return ret; 2407 } 2408 2409 /* 2410 * validate a single event group 2411 * 2412 * validation include: 2413 * - check events are compatible which each other 2414 * - events do not compete for the same counter 2415 * - number of events <= number of counters 2416 * 2417 * validation ensures the group can be loaded onto the 2418 * PMU if it was the only group available. 2419 */ 2420 static int validate_group(struct perf_event *event) 2421 { 2422 struct perf_event *leader = event->group_leader; 2423 struct cpu_hw_events *fake_cpuc; 2424 int ret = -EINVAL, n; 2425 2426 /* 2427 * Reject events from different hybrid PMUs. 2428 */ 2429 if (is_hybrid()) { 2430 struct perf_event *sibling; 2431 struct pmu *pmu = NULL; 2432 2433 if (is_x86_event(leader)) 2434 pmu = leader->pmu; 2435 2436 for_each_sibling_event(sibling, leader) { 2437 if (!is_x86_event(sibling)) 2438 continue; 2439 if (!pmu) 2440 pmu = sibling->pmu; 2441 else if (pmu != sibling->pmu) 2442 return ret; 2443 } 2444 } 2445 2446 fake_cpuc = allocate_fake_cpuc(event->pmu); 2447 if (IS_ERR(fake_cpuc)) 2448 return PTR_ERR(fake_cpuc); 2449 /* 2450 * the event is not yet connected with its 2451 * siblings therefore we must first collect 2452 * existing siblings, then add the new event 2453 * before we can simulate the scheduling 2454 */ 2455 n = collect_events(fake_cpuc, leader, true); 2456 if (n < 0) 2457 goto out; 2458 2459 fake_cpuc->n_events = n; 2460 n = collect_events(fake_cpuc, event, false); 2461 if (n < 0) 2462 goto out; 2463 2464 fake_cpuc->n_events = 0; 2465 ret = x86_pmu.schedule_events(fake_cpuc, n, NULL); 2466 2467 out: 2468 free_fake_cpuc(fake_cpuc); 2469 return ret; 2470 } 2471 2472 static int x86_pmu_event_init(struct perf_event *event) 2473 { 2474 struct x86_hybrid_pmu *pmu = NULL; 2475 int err; 2476 2477 if ((event->attr.type != event->pmu->type) && 2478 (event->attr.type != PERF_TYPE_HARDWARE) && 2479 (event->attr.type != PERF_TYPE_HW_CACHE)) 2480 return -ENOENT; 2481 2482 if (is_hybrid() && (event->cpu != -1)) { 2483 pmu = hybrid_pmu(event->pmu); 2484 if (!cpumask_test_cpu(event->cpu, &pmu->supported_cpus)) 2485 return -ENOENT; 2486 } 2487 2488 err = __x86_pmu_event_init(event); 2489 if (!err) { 2490 if (event->group_leader != event) 2491 err = validate_group(event); 2492 else 2493 err = validate_event(event); 2494 } 2495 if (err) { 2496 if (event->destroy) 2497 event->destroy(event); 2498 event->destroy = NULL; 2499 } 2500 2501 if (READ_ONCE(x86_pmu.attr_rdpmc) && 2502 !(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS)) 2503 event->hw.flags |= PERF_EVENT_FLAG_USER_READ_CNT; 2504 2505 return err; 2506 } 2507 2508 void perf_clear_dirty_counters(void) 2509 { 2510 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2511 int i; 2512 2513 /* Don't need to clear the assigned counter. */ 2514 for (i = 0; i < cpuc->n_events; i++) 2515 __clear_bit(cpuc->assign[i], cpuc->dirty); 2516 2517 if (bitmap_empty(cpuc->dirty, X86_PMC_IDX_MAX)) 2518 return; 2519 2520 for_each_set_bit(i, cpuc->dirty, X86_PMC_IDX_MAX) { 2521 if (i >= INTEL_PMC_IDX_FIXED) { 2522 /* Metrics and fake events don't have corresponding HW counters. */ 2523 if (!test_bit(i - INTEL_PMC_IDX_FIXED, hybrid(cpuc->pmu, fixed_cntr_mask))) 2524 continue; 2525 2526 wrmsrq(x86_pmu_fixed_ctr_addr(i - INTEL_PMC_IDX_FIXED), 0); 2527 } else { 2528 wrmsrq(x86_pmu_event_addr(i), 0); 2529 } 2530 } 2531 2532 bitmap_zero(cpuc->dirty, X86_PMC_IDX_MAX); 2533 } 2534 2535 static void x86_pmu_event_mapped(struct perf_event *event, struct mm_struct *mm) 2536 { 2537 if (!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)) 2538 return; 2539 2540 /* 2541 * This function relies on not being called concurrently in two 2542 * tasks in the same mm. Otherwise one task could observe 2543 * perf_rdpmc_allowed > 1 and return all the way back to 2544 * userspace with CR4.PCE clear while another task is still 2545 * doing on_each_cpu_mask() to propagate CR4.PCE. 2546 * 2547 * For now, this can't happen because all callers hold mmap_lock 2548 * for write. If this changes, we'll need a different solution. 2549 */ 2550 mmap_assert_write_locked(mm); 2551 2552 if (atomic_inc_return(&mm->context.perf_rdpmc_allowed) == 1) 2553 on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1); 2554 } 2555 2556 static void x86_pmu_event_unmapped(struct perf_event *event, struct mm_struct *mm) 2557 { 2558 if (!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)) 2559 return; 2560 2561 if (atomic_dec_and_test(&mm->context.perf_rdpmc_allowed)) 2562 on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1); 2563 } 2564 2565 static int x86_pmu_event_idx(struct perf_event *event) 2566 { 2567 struct hw_perf_event *hwc = &event->hw; 2568 2569 if (!(hwc->flags & PERF_EVENT_FLAG_USER_READ_CNT)) 2570 return 0; 2571 2572 if (is_metric_idx(hwc->idx)) 2573 return INTEL_PMC_FIXED_RDPMC_METRICS + 1; 2574 else 2575 return hwc->event_base_rdpmc + 1; 2576 } 2577 2578 static ssize_t get_attr_rdpmc(struct device *cdev, 2579 struct device_attribute *attr, 2580 char *buf) 2581 { 2582 return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc); 2583 } 2584 2585 static ssize_t set_attr_rdpmc(struct device *cdev, 2586 struct device_attribute *attr, 2587 const char *buf, size_t count) 2588 { 2589 static DEFINE_MUTEX(rdpmc_mutex); 2590 unsigned long val; 2591 ssize_t ret; 2592 2593 ret = kstrtoul(buf, 0, &val); 2594 if (ret) 2595 return ret; 2596 2597 if (val > 2) 2598 return -EINVAL; 2599 2600 if (x86_pmu.attr_rdpmc_broken) 2601 return -ENOTSUPP; 2602 2603 guard(mutex)(&rdpmc_mutex); 2604 2605 if (val != x86_pmu.attr_rdpmc) { 2606 /* 2607 * Changing into or out of never available or always available, 2608 * aka perf-event-bypassing mode. This path is extremely slow, 2609 * but only root can trigger it, so it's okay. 2610 */ 2611 if (val == 0) 2612 static_branch_inc(&rdpmc_never_available_key); 2613 else if (x86_pmu.attr_rdpmc == 0) 2614 static_branch_dec(&rdpmc_never_available_key); 2615 2616 if (val == 2) 2617 static_branch_inc(&rdpmc_always_available_key); 2618 else if (x86_pmu.attr_rdpmc == 2) 2619 static_branch_dec(&rdpmc_always_available_key); 2620 2621 on_each_cpu(cr4_update_pce, NULL, 1); 2622 x86_pmu.attr_rdpmc = val; 2623 } 2624 2625 return count; 2626 } 2627 2628 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc); 2629 2630 static struct attribute *x86_pmu_attrs[] = { 2631 &dev_attr_rdpmc.attr, 2632 NULL, 2633 }; 2634 2635 static struct attribute_group x86_pmu_attr_group __ro_after_init = { 2636 .attrs = x86_pmu_attrs, 2637 }; 2638 2639 static ssize_t max_precise_show(struct device *cdev, 2640 struct device_attribute *attr, 2641 char *buf) 2642 { 2643 struct pmu *pmu = dev_get_drvdata(cdev); 2644 2645 return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu_max_precise(pmu)); 2646 } 2647 2648 static DEVICE_ATTR_RO(max_precise); 2649 2650 static struct attribute *x86_pmu_caps_attrs[] = { 2651 &dev_attr_max_precise.attr, 2652 NULL 2653 }; 2654 2655 static struct attribute_group x86_pmu_caps_group __ro_after_init = { 2656 .name = "caps", 2657 .attrs = x86_pmu_caps_attrs, 2658 }; 2659 2660 static const struct attribute_group *x86_pmu_attr_groups[] = { 2661 &x86_pmu_attr_group, 2662 &x86_pmu_format_group, 2663 &x86_pmu_events_group, 2664 &x86_pmu_caps_group, 2665 NULL, 2666 }; 2667 2668 static void x86_pmu_sched_task(struct perf_event_pmu_context *pmu_ctx, 2669 struct task_struct *task, bool sched_in) 2670 { 2671 static_call_cond(x86_pmu_sched_task)(pmu_ctx, task, sched_in); 2672 } 2673 2674 void perf_check_microcode(void) 2675 { 2676 if (x86_pmu.check_microcode) 2677 x86_pmu.check_microcode(); 2678 } 2679 2680 static int x86_pmu_check_period(struct perf_event *event, u64 value) 2681 { 2682 if (x86_pmu.check_period && x86_pmu.check_period(event, value)) 2683 return -EINVAL; 2684 2685 if (value && x86_pmu.limit_period) { 2686 s64 left = value; 2687 x86_pmu.limit_period(event, &left); 2688 if (left > value) 2689 return -EINVAL; 2690 } 2691 2692 return 0; 2693 } 2694 2695 static int x86_pmu_aux_output_match(struct perf_event *event) 2696 { 2697 if (!(pmu.capabilities & PERF_PMU_CAP_AUX_OUTPUT)) 2698 return 0; 2699 2700 if (x86_pmu.aux_output_match) 2701 return x86_pmu.aux_output_match(event); 2702 2703 return 0; 2704 } 2705 2706 static bool x86_pmu_filter(struct pmu *pmu, int cpu) 2707 { 2708 bool ret = false; 2709 2710 static_call_cond(x86_pmu_filter)(pmu, cpu, &ret); 2711 2712 return ret; 2713 } 2714 2715 static struct pmu pmu = { 2716 .pmu_enable = x86_pmu_enable, 2717 .pmu_disable = x86_pmu_disable, 2718 2719 .attr_groups = x86_pmu_attr_groups, 2720 2721 .event_init = x86_pmu_event_init, 2722 2723 .event_mapped = x86_pmu_event_mapped, 2724 .event_unmapped = x86_pmu_event_unmapped, 2725 2726 .add = x86_pmu_add, 2727 .del = x86_pmu_del, 2728 .start = x86_pmu_start, 2729 .stop = x86_pmu_stop, 2730 .read = x86_pmu_read, 2731 2732 .start_txn = x86_pmu_start_txn, 2733 .cancel_txn = x86_pmu_cancel_txn, 2734 .commit_txn = x86_pmu_commit_txn, 2735 2736 .event_idx = x86_pmu_event_idx, 2737 .sched_task = x86_pmu_sched_task, 2738 .check_period = x86_pmu_check_period, 2739 2740 .aux_output_match = x86_pmu_aux_output_match, 2741 2742 .filter = x86_pmu_filter, 2743 }; 2744 2745 void arch_perf_update_userpage(struct perf_event *event, 2746 struct perf_event_mmap_page *userpg, u64 now) 2747 { 2748 struct cyc2ns_data data; 2749 u64 offset; 2750 2751 userpg->cap_user_time = 0; 2752 userpg->cap_user_time_zero = 0; 2753 userpg->cap_user_rdpmc = 2754 !!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT); 2755 userpg->pmc_width = x86_pmu.cntval_bits; 2756 2757 if (!using_native_sched_clock() || !sched_clock_stable()) 2758 return; 2759 2760 cyc2ns_read_begin(&data); 2761 2762 offset = data.cyc2ns_offset + __sched_clock_offset; 2763 2764 /* 2765 * Internal timekeeping for enabled/running/stopped times 2766 * is always in the local_clock domain. 2767 */ 2768 userpg->cap_user_time = 1; 2769 userpg->time_mult = data.cyc2ns_mul; 2770 userpg->time_shift = data.cyc2ns_shift; 2771 userpg->time_offset = offset - now; 2772 2773 /* 2774 * cap_user_time_zero doesn't make sense when we're using a different 2775 * time base for the records. 2776 */ 2777 if (!event->attr.use_clockid) { 2778 userpg->cap_user_time_zero = 1; 2779 userpg->time_zero = offset; 2780 } 2781 2782 cyc2ns_read_end(); 2783 } 2784 2785 /* 2786 * Determine whether the regs were taken from an irq/exception handler rather 2787 * than from perf_arch_fetch_caller_regs(). 2788 */ 2789 static bool perf_hw_regs(struct pt_regs *regs) 2790 { 2791 return regs->flags & X86_EFLAGS_FIXED; 2792 } 2793 2794 void 2795 perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs) 2796 { 2797 struct unwind_state state; 2798 unsigned long addr; 2799 2800 if (perf_guest_state()) { 2801 /* TODO: We don't support guest os callchain now */ 2802 return; 2803 } 2804 2805 if (perf_hw_regs(regs)) { 2806 if (perf_callchain_store(entry, regs->ip)) 2807 return; 2808 unwind_start(&state, current, regs, NULL); 2809 } else { 2810 unwind_start(&state, current, NULL, (void *)regs->sp); 2811 } 2812 2813 for (; !unwind_done(&state); unwind_next_frame(&state)) { 2814 addr = unwind_get_return_address(&state); 2815 if (!addr || perf_callchain_store(entry, addr)) 2816 return; 2817 } 2818 } 2819 2820 static inline int 2821 valid_user_frame(const void __user *fp, unsigned long size) 2822 { 2823 return __access_ok(fp, size); 2824 } 2825 2826 static unsigned long get_segment_base(unsigned int segment) 2827 { 2828 struct desc_struct *desc; 2829 unsigned int idx = segment >> 3; 2830 2831 if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) { 2832 #ifdef CONFIG_MODIFY_LDT_SYSCALL 2833 struct ldt_struct *ldt; 2834 2835 /* 2836 * If we're not in a valid context with a real (not just lazy) 2837 * user mm, then don't even try. 2838 */ 2839 if (!nmi_uaccess_okay()) 2840 return 0; 2841 2842 /* IRQs are off, so this synchronizes with smp_store_release */ 2843 ldt = smp_load_acquire(¤t->mm->context.ldt); 2844 if (!ldt || idx >= ldt->nr_entries) 2845 return 0; 2846 2847 desc = &ldt->entries[idx]; 2848 #else 2849 return 0; 2850 #endif 2851 } else { 2852 if (idx >= GDT_ENTRIES) 2853 return 0; 2854 2855 desc = raw_cpu_ptr(gdt_page.gdt) + idx; 2856 } 2857 2858 return get_desc_base(desc); 2859 } 2860 2861 #ifdef CONFIG_IA32_EMULATION 2862 2863 #include <linux/compat.h> 2864 2865 static inline int 2866 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry) 2867 { 2868 /* 32-bit process in 64-bit kernel. */ 2869 unsigned long ss_base, cs_base; 2870 struct stack_frame_ia32 frame; 2871 const struct stack_frame_ia32 __user *fp; 2872 u32 ret_addr; 2873 2874 if (user_64bit_mode(regs)) 2875 return 0; 2876 2877 cs_base = get_segment_base(regs->cs); 2878 ss_base = get_segment_base(regs->ss); 2879 2880 fp = compat_ptr(ss_base + regs->bp); 2881 pagefault_disable(); 2882 2883 /* see perf_callchain_user() below for why we do this */ 2884 if (is_uprobe_at_func_entry(regs) && 2885 !get_user(ret_addr, (const u32 __user *)regs->sp)) 2886 perf_callchain_store(entry, ret_addr); 2887 2888 while (entry->nr < entry->max_stack) { 2889 if (!valid_user_frame(fp, sizeof(frame))) 2890 break; 2891 2892 if (__get_user(frame.next_frame, &fp->next_frame)) 2893 break; 2894 if (__get_user(frame.return_address, &fp->return_address)) 2895 break; 2896 2897 perf_callchain_store(entry, cs_base + frame.return_address); 2898 fp = compat_ptr(ss_base + frame.next_frame); 2899 } 2900 pagefault_enable(); 2901 return 1; 2902 } 2903 #else 2904 static inline int 2905 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry) 2906 { 2907 return 0; 2908 } 2909 #endif 2910 2911 void 2912 perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs) 2913 { 2914 struct stack_frame frame; 2915 const struct stack_frame __user *fp; 2916 unsigned long ret_addr; 2917 2918 if (perf_guest_state()) { 2919 /* TODO: We don't support guest os callchain now */ 2920 return; 2921 } 2922 2923 /* 2924 * We don't know what to do with VM86 stacks.. ignore them for now. 2925 */ 2926 if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM)) 2927 return; 2928 2929 fp = (void __user *)regs->bp; 2930 2931 perf_callchain_store(entry, regs->ip); 2932 2933 if (!nmi_uaccess_okay()) 2934 return; 2935 2936 if (perf_callchain_user32(regs, entry)) 2937 return; 2938 2939 pagefault_disable(); 2940 2941 /* 2942 * If we are called from uprobe handler, and we are indeed at the very 2943 * entry to user function (which is normally a `push %rbp` instruction, 2944 * under assumption of application being compiled with frame pointers), 2945 * we should read return address from *regs->sp before proceeding 2946 * to follow frame pointers, otherwise we'll skip immediate caller 2947 * as %rbp is not yet setup. 2948 */ 2949 if (is_uprobe_at_func_entry(regs) && 2950 !get_user(ret_addr, (const unsigned long __user *)regs->sp)) 2951 perf_callchain_store(entry, ret_addr); 2952 2953 while (entry->nr < entry->max_stack) { 2954 if (!valid_user_frame(fp, sizeof(frame))) 2955 break; 2956 2957 if (__get_user(frame.next_frame, &fp->next_frame)) 2958 break; 2959 if (__get_user(frame.return_address, &fp->return_address)) 2960 break; 2961 2962 perf_callchain_store(entry, frame.return_address); 2963 fp = (void __user *)frame.next_frame; 2964 } 2965 pagefault_enable(); 2966 } 2967 2968 /* 2969 * Deal with code segment offsets for the various execution modes: 2970 * 2971 * VM86 - the good olde 16 bit days, where the linear address is 2972 * 20 bits and we use regs->ip + 0x10 * regs->cs. 2973 * 2974 * IA32 - Where we need to look at GDT/LDT segment descriptor tables 2975 * to figure out what the 32bit base address is. 2976 * 2977 * X32 - has TIF_X32 set, but is running in x86_64 2978 * 2979 * X86_64 - CS,DS,SS,ES are all zero based. 2980 */ 2981 static unsigned long code_segment_base(struct pt_regs *regs) 2982 { 2983 /* 2984 * For IA32 we look at the GDT/LDT segment base to convert the 2985 * effective IP to a linear address. 2986 */ 2987 2988 #ifdef CONFIG_X86_32 2989 /* 2990 * If we are in VM86 mode, add the segment offset to convert to a 2991 * linear address. 2992 */ 2993 if (regs->flags & X86_VM_MASK) 2994 return 0x10 * regs->cs; 2995 2996 if (user_mode(regs) && regs->cs != __USER_CS) 2997 return get_segment_base(regs->cs); 2998 #else 2999 if (user_mode(regs) && !user_64bit_mode(regs) && 3000 regs->cs != __USER32_CS) 3001 return get_segment_base(regs->cs); 3002 #endif 3003 return 0; 3004 } 3005 3006 unsigned long perf_arch_instruction_pointer(struct pt_regs *regs) 3007 { 3008 return regs->ip + code_segment_base(regs); 3009 } 3010 3011 static unsigned long common_misc_flags(struct pt_regs *regs) 3012 { 3013 if (regs->flags & PERF_EFLAGS_EXACT) 3014 return PERF_RECORD_MISC_EXACT_IP; 3015 3016 return 0; 3017 } 3018 3019 static unsigned long guest_misc_flags(struct pt_regs *regs) 3020 { 3021 unsigned long guest_state = perf_guest_state(); 3022 3023 if (!(guest_state & PERF_GUEST_ACTIVE)) 3024 return 0; 3025 3026 if (guest_state & PERF_GUEST_USER) 3027 return PERF_RECORD_MISC_GUEST_USER; 3028 else 3029 return PERF_RECORD_MISC_GUEST_KERNEL; 3030 3031 } 3032 3033 static unsigned long host_misc_flags(struct pt_regs *regs) 3034 { 3035 if (user_mode(regs)) 3036 return PERF_RECORD_MISC_USER; 3037 else 3038 return PERF_RECORD_MISC_KERNEL; 3039 } 3040 3041 unsigned long perf_arch_guest_misc_flags(struct pt_regs *regs) 3042 { 3043 unsigned long flags = common_misc_flags(regs); 3044 3045 flags |= guest_misc_flags(regs); 3046 3047 return flags; 3048 } 3049 3050 unsigned long perf_arch_misc_flags(struct pt_regs *regs) 3051 { 3052 unsigned long flags = common_misc_flags(regs); 3053 3054 flags |= host_misc_flags(regs); 3055 3056 return flags; 3057 } 3058 3059 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap) 3060 { 3061 /* This API doesn't currently support enumerating hybrid PMUs. */ 3062 if (WARN_ON_ONCE(cpu_feature_enabled(X86_FEATURE_HYBRID_CPU)) || 3063 !x86_pmu_initialized()) { 3064 memset(cap, 0, sizeof(*cap)); 3065 return; 3066 } 3067 3068 /* 3069 * Note, hybrid CPU models get tracked as having hybrid PMUs even when 3070 * all E-cores are disabled via BIOS. When E-cores are disabled, the 3071 * base PMU holds the correct number of counters for P-cores. 3072 */ 3073 cap->version = x86_pmu.version; 3074 cap->num_counters_gp = x86_pmu_num_counters(NULL); 3075 cap->num_counters_fixed = x86_pmu_num_counters_fixed(NULL); 3076 cap->bit_width_gp = x86_pmu.cntval_bits; 3077 cap->bit_width_fixed = x86_pmu.cntval_bits; 3078 cap->events_mask = (unsigned int)x86_pmu.events_maskl; 3079 cap->events_mask_len = x86_pmu.events_mask_len; 3080 cap->pebs_ept = x86_pmu.pebs_ept; 3081 } 3082 EXPORT_SYMBOL_FOR_KVM(perf_get_x86_pmu_capability); 3083 3084 u64 perf_get_hw_event_config(int hw_event) 3085 { 3086 int max = x86_pmu.max_events; 3087 3088 if (hw_event < max) 3089 return x86_pmu.event_map(array_index_nospec(hw_event, max)); 3090 3091 return 0; 3092 } 3093 EXPORT_SYMBOL_FOR_KVM(perf_get_hw_event_config); 3094