xref: /linux/arch/x86/events/core.c (revision 78b7b991838a4a6baeaad934addc4db2c5917eb8)
1 /*
2  * Performance events x86 architecture code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2009 Jaswinder Singh Rajput
7  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
9  *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10  *  Copyright (C) 2009 Google, Inc., Stephane Eranian
11  *
12  *  For licencing details see kernel-base/COPYING
13  */
14 
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/export.h>
21 #include <linux/init.h>
22 #include <linux/kdebug.h>
23 #include <linux/sched/mm.h>
24 #include <linux/sched/clock.h>
25 #include <linux/uaccess.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/bitops.h>
29 #include <linux/device.h>
30 #include <linux/nospec.h>
31 #include <linux/static_call.h>
32 
33 #include <asm/apic.h>
34 #include <asm/stacktrace.h>
35 #include <asm/nmi.h>
36 #include <asm/smp.h>
37 #include <asm/alternative.h>
38 #include <asm/mmu_context.h>
39 #include <asm/tlbflush.h>
40 #include <asm/timer.h>
41 #include <asm/desc.h>
42 #include <asm/ldt.h>
43 #include <asm/unwind.h>
44 #include <asm/uprobes.h>
45 #include <asm/ibt.h>
46 
47 #include "perf_event.h"
48 
49 struct x86_pmu x86_pmu __read_mostly;
50 static struct pmu pmu;
51 
52 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
53 	.enabled = 1,
54 	.pmu = &pmu,
55 };
56 
57 DEFINE_STATIC_KEY_FALSE(rdpmc_never_available_key);
58 DEFINE_STATIC_KEY_FALSE(rdpmc_always_available_key);
59 DEFINE_STATIC_KEY_FALSE(perf_is_hybrid);
60 
61 /*
62  * This here uses DEFINE_STATIC_CALL_NULL() to get a static_call defined
63  * from just a typename, as opposed to an actual function.
64  */
65 DEFINE_STATIC_CALL_NULL(x86_pmu_handle_irq,  *x86_pmu.handle_irq);
66 DEFINE_STATIC_CALL_NULL(x86_pmu_disable_all, *x86_pmu.disable_all);
67 DEFINE_STATIC_CALL_NULL(x86_pmu_enable_all,  *x86_pmu.enable_all);
68 DEFINE_STATIC_CALL_NULL(x86_pmu_enable,	     *x86_pmu.enable);
69 DEFINE_STATIC_CALL_NULL(x86_pmu_disable,     *x86_pmu.disable);
70 
71 DEFINE_STATIC_CALL_NULL(x86_pmu_assign, *x86_pmu.assign);
72 
73 DEFINE_STATIC_CALL_NULL(x86_pmu_add,  *x86_pmu.add);
74 DEFINE_STATIC_CALL_NULL(x86_pmu_del,  *x86_pmu.del);
75 DEFINE_STATIC_CALL_NULL(x86_pmu_read, *x86_pmu.read);
76 
77 DEFINE_STATIC_CALL_NULL(x86_pmu_set_period,   *x86_pmu.set_period);
78 DEFINE_STATIC_CALL_NULL(x86_pmu_update,       *x86_pmu.update);
79 DEFINE_STATIC_CALL_NULL(x86_pmu_limit_period, *x86_pmu.limit_period);
80 
81 DEFINE_STATIC_CALL_NULL(x86_pmu_schedule_events,       *x86_pmu.schedule_events);
82 DEFINE_STATIC_CALL_NULL(x86_pmu_get_event_constraints, *x86_pmu.get_event_constraints);
83 DEFINE_STATIC_CALL_NULL(x86_pmu_put_event_constraints, *x86_pmu.put_event_constraints);
84 
85 DEFINE_STATIC_CALL_NULL(x86_pmu_start_scheduling,  *x86_pmu.start_scheduling);
86 DEFINE_STATIC_CALL_NULL(x86_pmu_commit_scheduling, *x86_pmu.commit_scheduling);
87 DEFINE_STATIC_CALL_NULL(x86_pmu_stop_scheduling,   *x86_pmu.stop_scheduling);
88 
89 DEFINE_STATIC_CALL_NULL(x86_pmu_sched_task,    *x86_pmu.sched_task);
90 DEFINE_STATIC_CALL_NULL(x86_pmu_swap_task_ctx, *x86_pmu.swap_task_ctx);
91 
92 DEFINE_STATIC_CALL_NULL(x86_pmu_drain_pebs,   *x86_pmu.drain_pebs);
93 DEFINE_STATIC_CALL_NULL(x86_pmu_pebs_aliases, *x86_pmu.pebs_aliases);
94 
95 DEFINE_STATIC_CALL_NULL(x86_pmu_filter, *x86_pmu.filter);
96 
97 /*
98  * This one is magic, it will get called even when PMU init fails (because
99  * there is no PMU), in which case it should simply return NULL.
100  */
101 DEFINE_STATIC_CALL_RET0(x86_pmu_guest_get_msrs, *x86_pmu.guest_get_msrs);
102 
103 u64 __read_mostly hw_cache_event_ids
104 				[PERF_COUNT_HW_CACHE_MAX]
105 				[PERF_COUNT_HW_CACHE_OP_MAX]
106 				[PERF_COUNT_HW_CACHE_RESULT_MAX];
107 u64 __read_mostly hw_cache_extra_regs
108 				[PERF_COUNT_HW_CACHE_MAX]
109 				[PERF_COUNT_HW_CACHE_OP_MAX]
110 				[PERF_COUNT_HW_CACHE_RESULT_MAX];
111 
112 /*
113  * Propagate event elapsed time into the generic event.
114  * Can only be executed on the CPU where the event is active.
115  * Returns the delta events processed.
116  */
117 u64 x86_perf_event_update(struct perf_event *event)
118 {
119 	struct hw_perf_event *hwc = &event->hw;
120 	int shift = 64 - x86_pmu.cntval_bits;
121 	u64 prev_raw_count, new_raw_count;
122 	u64 delta;
123 
124 	if (unlikely(!hwc->event_base))
125 		return 0;
126 
127 	/*
128 	 * Careful: an NMI might modify the previous event value.
129 	 *
130 	 * Our tactic to handle this is to first atomically read and
131 	 * exchange a new raw count - then add that new-prev delta
132 	 * count to the generic event atomically:
133 	 */
134 	prev_raw_count = local64_read(&hwc->prev_count);
135 	do {
136 		rdpmcl(hwc->event_base_rdpmc, new_raw_count);
137 	} while (!local64_try_cmpxchg(&hwc->prev_count,
138 				      &prev_raw_count, new_raw_count));
139 
140 	/*
141 	 * Now we have the new raw value and have updated the prev
142 	 * timestamp already. We can now calculate the elapsed delta
143 	 * (event-)time and add that to the generic event.
144 	 *
145 	 * Careful, not all hw sign-extends above the physical width
146 	 * of the count.
147 	 */
148 	delta = (new_raw_count << shift) - (prev_raw_count << shift);
149 	delta >>= shift;
150 
151 	local64_add(delta, &event->count);
152 	local64_sub(delta, &hwc->period_left);
153 
154 	return new_raw_count;
155 }
156 
157 /*
158  * Find and validate any extra registers to set up.
159  */
160 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
161 {
162 	struct extra_reg *extra_regs = hybrid(event->pmu, extra_regs);
163 	struct hw_perf_event_extra *reg;
164 	struct extra_reg *er;
165 
166 	reg = &event->hw.extra_reg;
167 
168 	if (!extra_regs)
169 		return 0;
170 
171 	for (er = extra_regs; er->msr; er++) {
172 		if (er->event != (config & er->config_mask))
173 			continue;
174 		if (event->attr.config1 & ~er->valid_mask)
175 			return -EINVAL;
176 		/* Check if the extra msrs can be safely accessed*/
177 		if (!er->extra_msr_access)
178 			return -ENXIO;
179 
180 		reg->idx = er->idx;
181 		reg->config = event->attr.config1;
182 		reg->reg = er->msr;
183 		break;
184 	}
185 	return 0;
186 }
187 
188 static atomic_t active_events;
189 static atomic_t pmc_refcount;
190 static DEFINE_MUTEX(pmc_reserve_mutex);
191 
192 #ifdef CONFIG_X86_LOCAL_APIC
193 
194 static inline u64 get_possible_counter_mask(void)
195 {
196 	u64 cntr_mask = x86_pmu.cntr_mask64;
197 	int i;
198 
199 	if (!is_hybrid())
200 		return cntr_mask;
201 
202 	for (i = 0; i < x86_pmu.num_hybrid_pmus; i++)
203 		cntr_mask |= x86_pmu.hybrid_pmu[i].cntr_mask64;
204 
205 	return cntr_mask;
206 }
207 
208 static bool reserve_pmc_hardware(void)
209 {
210 	u64 cntr_mask = get_possible_counter_mask();
211 	int i, end;
212 
213 	for_each_set_bit(i, (unsigned long *)&cntr_mask, X86_PMC_IDX_MAX) {
214 		if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
215 			goto perfctr_fail;
216 	}
217 
218 	for_each_set_bit(i, (unsigned long *)&cntr_mask, X86_PMC_IDX_MAX) {
219 		if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
220 			goto eventsel_fail;
221 	}
222 
223 	return true;
224 
225 eventsel_fail:
226 	end = i;
227 	for_each_set_bit(i, (unsigned long *)&cntr_mask, end)
228 		release_evntsel_nmi(x86_pmu_config_addr(i));
229 	i = X86_PMC_IDX_MAX;
230 
231 perfctr_fail:
232 	end = i;
233 	for_each_set_bit(i, (unsigned long *)&cntr_mask, end)
234 		release_perfctr_nmi(x86_pmu_event_addr(i));
235 
236 	return false;
237 }
238 
239 static void release_pmc_hardware(void)
240 {
241 	u64 cntr_mask = get_possible_counter_mask();
242 	int i;
243 
244 	for_each_set_bit(i, (unsigned long *)&cntr_mask, X86_PMC_IDX_MAX) {
245 		release_perfctr_nmi(x86_pmu_event_addr(i));
246 		release_evntsel_nmi(x86_pmu_config_addr(i));
247 	}
248 }
249 
250 #else
251 
252 static bool reserve_pmc_hardware(void) { return true; }
253 static void release_pmc_hardware(void) {}
254 
255 #endif
256 
257 bool check_hw_exists(struct pmu *pmu, unsigned long *cntr_mask,
258 		     unsigned long *fixed_cntr_mask)
259 {
260 	u64 val, val_fail = -1, val_new= ~0;
261 	int i, reg, reg_fail = -1, ret = 0;
262 	int bios_fail = 0;
263 	int reg_safe = -1;
264 
265 	/*
266 	 * Check to see if the BIOS enabled any of the counters, if so
267 	 * complain and bail.
268 	 */
269 	for_each_set_bit(i, cntr_mask, X86_PMC_IDX_MAX) {
270 		reg = x86_pmu_config_addr(i);
271 		ret = rdmsrl_safe(reg, &val);
272 		if (ret)
273 			goto msr_fail;
274 		if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
275 			bios_fail = 1;
276 			val_fail = val;
277 			reg_fail = reg;
278 		} else {
279 			reg_safe = i;
280 		}
281 	}
282 
283 	if (*(u64 *)fixed_cntr_mask) {
284 		reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
285 		ret = rdmsrl_safe(reg, &val);
286 		if (ret)
287 			goto msr_fail;
288 		for_each_set_bit(i, fixed_cntr_mask, X86_PMC_IDX_MAX) {
289 			if (fixed_counter_disabled(i, pmu))
290 				continue;
291 			if (val & (0x03ULL << i*4)) {
292 				bios_fail = 1;
293 				val_fail = val;
294 				reg_fail = reg;
295 			}
296 		}
297 	}
298 
299 	/*
300 	 * If all the counters are enabled, the below test will always
301 	 * fail.  The tools will also become useless in this scenario.
302 	 * Just fail and disable the hardware counters.
303 	 */
304 
305 	if (reg_safe == -1) {
306 		reg = reg_safe;
307 		goto msr_fail;
308 	}
309 
310 	/*
311 	 * Read the current value, change it and read it back to see if it
312 	 * matches, this is needed to detect certain hardware emulators
313 	 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
314 	 */
315 	reg = x86_pmu_event_addr(reg_safe);
316 	if (rdmsrl_safe(reg, &val))
317 		goto msr_fail;
318 	val ^= 0xffffUL;
319 	ret = wrmsrl_safe(reg, val);
320 	ret |= rdmsrl_safe(reg, &val_new);
321 	if (ret || val != val_new)
322 		goto msr_fail;
323 
324 	/*
325 	 * We still allow the PMU driver to operate:
326 	 */
327 	if (bios_fail) {
328 		pr_cont("Broken BIOS detected, complain to your hardware vendor.\n");
329 		pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n",
330 			      reg_fail, val_fail);
331 	}
332 
333 	return true;
334 
335 msr_fail:
336 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
337 		pr_cont("PMU not available due to virtualization, using software events only.\n");
338 	} else {
339 		pr_cont("Broken PMU hardware detected, using software events only.\n");
340 		pr_err("Failed to access perfctr msr (MSR %x is %Lx)\n",
341 		       reg, val_new);
342 	}
343 
344 	return false;
345 }
346 
347 static void hw_perf_event_destroy(struct perf_event *event)
348 {
349 	x86_release_hardware();
350 	atomic_dec(&active_events);
351 }
352 
353 void hw_perf_lbr_event_destroy(struct perf_event *event)
354 {
355 	hw_perf_event_destroy(event);
356 
357 	/* undo the lbr/bts event accounting */
358 	x86_del_exclusive(x86_lbr_exclusive_lbr);
359 }
360 
361 static inline int x86_pmu_initialized(void)
362 {
363 	return x86_pmu.handle_irq != NULL;
364 }
365 
366 static inline int
367 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
368 {
369 	struct perf_event_attr *attr = &event->attr;
370 	unsigned int cache_type, cache_op, cache_result;
371 	u64 config, val;
372 
373 	config = attr->config;
374 
375 	cache_type = (config >> 0) & 0xff;
376 	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
377 		return -EINVAL;
378 	cache_type = array_index_nospec(cache_type, PERF_COUNT_HW_CACHE_MAX);
379 
380 	cache_op = (config >>  8) & 0xff;
381 	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
382 		return -EINVAL;
383 	cache_op = array_index_nospec(cache_op, PERF_COUNT_HW_CACHE_OP_MAX);
384 
385 	cache_result = (config >> 16) & 0xff;
386 	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
387 		return -EINVAL;
388 	cache_result = array_index_nospec(cache_result, PERF_COUNT_HW_CACHE_RESULT_MAX);
389 
390 	val = hybrid_var(event->pmu, hw_cache_event_ids)[cache_type][cache_op][cache_result];
391 	if (val == 0)
392 		return -ENOENT;
393 
394 	if (val == -1)
395 		return -EINVAL;
396 
397 	hwc->config |= val;
398 	attr->config1 = hybrid_var(event->pmu, hw_cache_extra_regs)[cache_type][cache_op][cache_result];
399 	return x86_pmu_extra_regs(val, event);
400 }
401 
402 int x86_reserve_hardware(void)
403 {
404 	int err = 0;
405 
406 	if (!atomic_inc_not_zero(&pmc_refcount)) {
407 		mutex_lock(&pmc_reserve_mutex);
408 		if (atomic_read(&pmc_refcount) == 0) {
409 			if (!reserve_pmc_hardware()) {
410 				err = -EBUSY;
411 			} else {
412 				reserve_ds_buffers();
413 				reserve_lbr_buffers();
414 			}
415 		}
416 		if (!err)
417 			atomic_inc(&pmc_refcount);
418 		mutex_unlock(&pmc_reserve_mutex);
419 	}
420 
421 	return err;
422 }
423 
424 void x86_release_hardware(void)
425 {
426 	if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) {
427 		release_pmc_hardware();
428 		release_ds_buffers();
429 		release_lbr_buffers();
430 		mutex_unlock(&pmc_reserve_mutex);
431 	}
432 }
433 
434 /*
435  * Check if we can create event of a certain type (that no conflicting events
436  * are present).
437  */
438 int x86_add_exclusive(unsigned int what)
439 {
440 	int i;
441 
442 	/*
443 	 * When lbr_pt_coexist we allow PT to coexist with either LBR or BTS.
444 	 * LBR and BTS are still mutually exclusive.
445 	 */
446 	if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
447 		goto out;
448 
449 	if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) {
450 		mutex_lock(&pmc_reserve_mutex);
451 		for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) {
452 			if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
453 				goto fail_unlock;
454 		}
455 		atomic_inc(&x86_pmu.lbr_exclusive[what]);
456 		mutex_unlock(&pmc_reserve_mutex);
457 	}
458 
459 out:
460 	atomic_inc(&active_events);
461 	return 0;
462 
463 fail_unlock:
464 	mutex_unlock(&pmc_reserve_mutex);
465 	return -EBUSY;
466 }
467 
468 void x86_del_exclusive(unsigned int what)
469 {
470 	atomic_dec(&active_events);
471 
472 	/*
473 	 * See the comment in x86_add_exclusive().
474 	 */
475 	if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
476 		return;
477 
478 	atomic_dec(&x86_pmu.lbr_exclusive[what]);
479 }
480 
481 int x86_setup_perfctr(struct perf_event *event)
482 {
483 	struct perf_event_attr *attr = &event->attr;
484 	struct hw_perf_event *hwc = &event->hw;
485 	u64 config;
486 
487 	if (!is_sampling_event(event)) {
488 		hwc->sample_period = x86_pmu.max_period;
489 		hwc->last_period = hwc->sample_period;
490 		local64_set(&hwc->period_left, hwc->sample_period);
491 	}
492 
493 	if (attr->type == event->pmu->type)
494 		return x86_pmu_extra_regs(event->attr.config, event);
495 
496 	if (attr->type == PERF_TYPE_HW_CACHE)
497 		return set_ext_hw_attr(hwc, event);
498 
499 	if (attr->config >= x86_pmu.max_events)
500 		return -EINVAL;
501 
502 	attr->config = array_index_nospec((unsigned long)attr->config, x86_pmu.max_events);
503 
504 	/*
505 	 * The generic map:
506 	 */
507 	config = x86_pmu.event_map(attr->config);
508 
509 	if (config == 0)
510 		return -ENOENT;
511 
512 	if (config == -1LL)
513 		return -EINVAL;
514 
515 	hwc->config |= config;
516 
517 	return 0;
518 }
519 
520 /*
521  * check that branch_sample_type is compatible with
522  * settings needed for precise_ip > 1 which implies
523  * using the LBR to capture ALL taken branches at the
524  * priv levels of the measurement
525  */
526 static inline int precise_br_compat(struct perf_event *event)
527 {
528 	u64 m = event->attr.branch_sample_type;
529 	u64 b = 0;
530 
531 	/* must capture all branches */
532 	if (!(m & PERF_SAMPLE_BRANCH_ANY))
533 		return 0;
534 
535 	m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
536 
537 	if (!event->attr.exclude_user)
538 		b |= PERF_SAMPLE_BRANCH_USER;
539 
540 	if (!event->attr.exclude_kernel)
541 		b |= PERF_SAMPLE_BRANCH_KERNEL;
542 
543 	/*
544 	 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
545 	 */
546 
547 	return m == b;
548 }
549 
550 int x86_pmu_max_precise(void)
551 {
552 	int precise = 0;
553 
554 	/* Support for constant skid */
555 	if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
556 		precise++;
557 
558 		/* Support for IP fixup */
559 		if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
560 			precise++;
561 
562 		if (x86_pmu.pebs_prec_dist)
563 			precise++;
564 	}
565 	return precise;
566 }
567 
568 int x86_pmu_hw_config(struct perf_event *event)
569 {
570 	if (event->attr.precise_ip) {
571 		int precise = x86_pmu_max_precise();
572 
573 		if (event->attr.precise_ip > precise)
574 			return -EOPNOTSUPP;
575 
576 		/* There's no sense in having PEBS for non sampling events: */
577 		if (!is_sampling_event(event))
578 			return -EINVAL;
579 	}
580 	/*
581 	 * check that PEBS LBR correction does not conflict with
582 	 * whatever the user is asking with attr->branch_sample_type
583 	 */
584 	if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
585 		u64 *br_type = &event->attr.branch_sample_type;
586 
587 		if (has_branch_stack(event)) {
588 			if (!precise_br_compat(event))
589 				return -EOPNOTSUPP;
590 
591 			/* branch_sample_type is compatible */
592 
593 		} else {
594 			/*
595 			 * user did not specify  branch_sample_type
596 			 *
597 			 * For PEBS fixups, we capture all
598 			 * the branches at the priv level of the
599 			 * event.
600 			 */
601 			*br_type = PERF_SAMPLE_BRANCH_ANY;
602 
603 			if (!event->attr.exclude_user)
604 				*br_type |= PERF_SAMPLE_BRANCH_USER;
605 
606 			if (!event->attr.exclude_kernel)
607 				*br_type |= PERF_SAMPLE_BRANCH_KERNEL;
608 		}
609 	}
610 
611 	if (branch_sample_call_stack(event))
612 		event->attach_state |= PERF_ATTACH_TASK_DATA;
613 
614 	/*
615 	 * Generate PMC IRQs:
616 	 * (keep 'enabled' bit clear for now)
617 	 */
618 	event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
619 
620 	/*
621 	 * Count user and OS events unless requested not to
622 	 */
623 	if (!event->attr.exclude_user)
624 		event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
625 	if (!event->attr.exclude_kernel)
626 		event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
627 
628 	if (event->attr.type == event->pmu->type)
629 		event->hw.config |= x86_pmu_get_event_config(event);
630 
631 	if (event->attr.sample_period && x86_pmu.limit_period) {
632 		s64 left = event->attr.sample_period;
633 		x86_pmu.limit_period(event, &left);
634 		if (left > event->attr.sample_period)
635 			return -EINVAL;
636 	}
637 
638 	/* sample_regs_user never support XMM registers */
639 	if (unlikely(event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK))
640 		return -EINVAL;
641 	/*
642 	 * Besides the general purpose registers, XMM registers may
643 	 * be collected in PEBS on some platforms, e.g. Icelake
644 	 */
645 	if (unlikely(event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK)) {
646 		if (!(event->pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS))
647 			return -EINVAL;
648 
649 		if (!event->attr.precise_ip)
650 			return -EINVAL;
651 	}
652 
653 	return x86_setup_perfctr(event);
654 }
655 
656 /*
657  * Setup the hardware configuration for a given attr_type
658  */
659 static int __x86_pmu_event_init(struct perf_event *event)
660 {
661 	int err;
662 
663 	if (!x86_pmu_initialized())
664 		return -ENODEV;
665 
666 	err = x86_reserve_hardware();
667 	if (err)
668 		return err;
669 
670 	atomic_inc(&active_events);
671 	event->destroy = hw_perf_event_destroy;
672 
673 	event->hw.idx = -1;
674 	event->hw.last_cpu = -1;
675 	event->hw.last_tag = ~0ULL;
676 
677 	/* mark unused */
678 	event->hw.extra_reg.idx = EXTRA_REG_NONE;
679 	event->hw.branch_reg.idx = EXTRA_REG_NONE;
680 
681 	return x86_pmu.hw_config(event);
682 }
683 
684 void x86_pmu_disable_all(void)
685 {
686 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
687 	int idx;
688 
689 	for_each_set_bit(idx, x86_pmu.cntr_mask, X86_PMC_IDX_MAX) {
690 		struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
691 		u64 val;
692 
693 		if (!test_bit(idx, cpuc->active_mask))
694 			continue;
695 		rdmsrl(x86_pmu_config_addr(idx), val);
696 		if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
697 			continue;
698 		val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
699 		wrmsrl(x86_pmu_config_addr(idx), val);
700 		if (is_counter_pair(hwc))
701 			wrmsrl(x86_pmu_config_addr(idx + 1), 0);
702 	}
703 }
704 
705 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr, void *data)
706 {
707 	return static_call(x86_pmu_guest_get_msrs)(nr, data);
708 }
709 EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
710 
711 /*
712  * There may be PMI landing after enabled=0. The PMI hitting could be before or
713  * after disable_all.
714  *
715  * If PMI hits before disable_all, the PMU will be disabled in the NMI handler.
716  * It will not be re-enabled in the NMI handler again, because enabled=0. After
717  * handling the NMI, disable_all will be called, which will not change the
718  * state either. If PMI hits after disable_all, the PMU is already disabled
719  * before entering NMI handler. The NMI handler will not change the state
720  * either.
721  *
722  * So either situation is harmless.
723  */
724 static void x86_pmu_disable(struct pmu *pmu)
725 {
726 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
727 
728 	if (!x86_pmu_initialized())
729 		return;
730 
731 	if (!cpuc->enabled)
732 		return;
733 
734 	cpuc->n_added = 0;
735 	cpuc->enabled = 0;
736 	barrier();
737 
738 	static_call(x86_pmu_disable_all)();
739 }
740 
741 void x86_pmu_enable_all(int added)
742 {
743 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
744 	int idx;
745 
746 	for_each_set_bit(idx, x86_pmu.cntr_mask, X86_PMC_IDX_MAX) {
747 		struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
748 
749 		if (!test_bit(idx, cpuc->active_mask))
750 			continue;
751 
752 		__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
753 	}
754 }
755 
756 static inline int is_x86_event(struct perf_event *event)
757 {
758 	int i;
759 
760 	if (!is_hybrid())
761 		return event->pmu == &pmu;
762 
763 	for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
764 		if (event->pmu == &x86_pmu.hybrid_pmu[i].pmu)
765 			return true;
766 	}
767 
768 	return false;
769 }
770 
771 struct pmu *x86_get_pmu(unsigned int cpu)
772 {
773 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
774 
775 	/*
776 	 * All CPUs of the hybrid type have been offline.
777 	 * The x86_get_pmu() should not be invoked.
778 	 */
779 	if (WARN_ON_ONCE(!cpuc->pmu))
780 		return &pmu;
781 
782 	return cpuc->pmu;
783 }
784 /*
785  * Event scheduler state:
786  *
787  * Assign events iterating over all events and counters, beginning
788  * with events with least weights first. Keep the current iterator
789  * state in struct sched_state.
790  */
791 struct sched_state {
792 	int	weight;
793 	int	event;		/* event index */
794 	int	counter;	/* counter index */
795 	int	unassigned;	/* number of events to be assigned left */
796 	int	nr_gp;		/* number of GP counters used */
797 	u64	used;
798 };
799 
800 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
801 #define	SCHED_STATES_MAX	2
802 
803 struct perf_sched {
804 	int			max_weight;
805 	int			max_events;
806 	int			max_gp;
807 	int			saved_states;
808 	struct event_constraint	**constraints;
809 	struct sched_state	state;
810 	struct sched_state	saved[SCHED_STATES_MAX];
811 };
812 
813 /*
814  * Initialize iterator that runs through all events and counters.
815  */
816 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
817 			    int num, int wmin, int wmax, int gpmax)
818 {
819 	int idx;
820 
821 	memset(sched, 0, sizeof(*sched));
822 	sched->max_events	= num;
823 	sched->max_weight	= wmax;
824 	sched->max_gp		= gpmax;
825 	sched->constraints	= constraints;
826 
827 	for (idx = 0; idx < num; idx++) {
828 		if (constraints[idx]->weight == wmin)
829 			break;
830 	}
831 
832 	sched->state.event	= idx;		/* start with min weight */
833 	sched->state.weight	= wmin;
834 	sched->state.unassigned	= num;
835 }
836 
837 static void perf_sched_save_state(struct perf_sched *sched)
838 {
839 	if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
840 		return;
841 
842 	sched->saved[sched->saved_states] = sched->state;
843 	sched->saved_states++;
844 }
845 
846 static bool perf_sched_restore_state(struct perf_sched *sched)
847 {
848 	if (!sched->saved_states)
849 		return false;
850 
851 	sched->saved_states--;
852 	sched->state = sched->saved[sched->saved_states];
853 
854 	/* this assignment didn't work out */
855 	/* XXX broken vs EVENT_PAIR */
856 	sched->state.used &= ~BIT_ULL(sched->state.counter);
857 
858 	/* try the next one */
859 	sched->state.counter++;
860 
861 	return true;
862 }
863 
864 /*
865  * Select a counter for the current event to schedule. Return true on
866  * success.
867  */
868 static bool __perf_sched_find_counter(struct perf_sched *sched)
869 {
870 	struct event_constraint *c;
871 	int idx;
872 
873 	if (!sched->state.unassigned)
874 		return false;
875 
876 	if (sched->state.event >= sched->max_events)
877 		return false;
878 
879 	c = sched->constraints[sched->state.event];
880 	/* Prefer fixed purpose counters */
881 	if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
882 		idx = INTEL_PMC_IDX_FIXED;
883 		for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
884 			u64 mask = BIT_ULL(idx);
885 
886 			if (sched->state.used & mask)
887 				continue;
888 
889 			sched->state.used |= mask;
890 			goto done;
891 		}
892 	}
893 
894 	/* Grab the first unused counter starting with idx */
895 	idx = sched->state.counter;
896 	for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
897 		u64 mask = BIT_ULL(idx);
898 
899 		if (c->flags & PERF_X86_EVENT_PAIR)
900 			mask |= mask << 1;
901 
902 		if (sched->state.used & mask)
903 			continue;
904 
905 		if (sched->state.nr_gp++ >= sched->max_gp)
906 			return false;
907 
908 		sched->state.used |= mask;
909 		goto done;
910 	}
911 
912 	return false;
913 
914 done:
915 	sched->state.counter = idx;
916 
917 	if (c->overlap)
918 		perf_sched_save_state(sched);
919 
920 	return true;
921 }
922 
923 static bool perf_sched_find_counter(struct perf_sched *sched)
924 {
925 	while (!__perf_sched_find_counter(sched)) {
926 		if (!perf_sched_restore_state(sched))
927 			return false;
928 	}
929 
930 	return true;
931 }
932 
933 /*
934  * Go through all unassigned events and find the next one to schedule.
935  * Take events with the least weight first. Return true on success.
936  */
937 static bool perf_sched_next_event(struct perf_sched *sched)
938 {
939 	struct event_constraint *c;
940 
941 	if (!sched->state.unassigned || !--sched->state.unassigned)
942 		return false;
943 
944 	do {
945 		/* next event */
946 		sched->state.event++;
947 		if (sched->state.event >= sched->max_events) {
948 			/* next weight */
949 			sched->state.event = 0;
950 			sched->state.weight++;
951 			if (sched->state.weight > sched->max_weight)
952 				return false;
953 		}
954 		c = sched->constraints[sched->state.event];
955 	} while (c->weight != sched->state.weight);
956 
957 	sched->state.counter = 0;	/* start with first counter */
958 
959 	return true;
960 }
961 
962 /*
963  * Assign a counter for each event.
964  */
965 int perf_assign_events(struct event_constraint **constraints, int n,
966 			int wmin, int wmax, int gpmax, int *assign)
967 {
968 	struct perf_sched sched;
969 
970 	perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
971 
972 	do {
973 		if (!perf_sched_find_counter(&sched))
974 			break;	/* failed */
975 		if (assign)
976 			assign[sched.state.event] = sched.state.counter;
977 	} while (perf_sched_next_event(&sched));
978 
979 	return sched.state.unassigned;
980 }
981 EXPORT_SYMBOL_GPL(perf_assign_events);
982 
983 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
984 {
985 	struct event_constraint *c;
986 	struct perf_event *e;
987 	int n0, i, wmin, wmax, unsched = 0;
988 	struct hw_perf_event *hwc;
989 	u64 used_mask = 0;
990 
991 	/*
992 	 * Compute the number of events already present; see x86_pmu_add(),
993 	 * validate_group() and x86_pmu_commit_txn(). For the former two
994 	 * cpuc->n_events hasn't been updated yet, while for the latter
995 	 * cpuc->n_txn contains the number of events added in the current
996 	 * transaction.
997 	 */
998 	n0 = cpuc->n_events;
999 	if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1000 		n0 -= cpuc->n_txn;
1001 
1002 	static_call_cond(x86_pmu_start_scheduling)(cpuc);
1003 
1004 	for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
1005 		c = cpuc->event_constraint[i];
1006 
1007 		/*
1008 		 * Previously scheduled events should have a cached constraint,
1009 		 * while new events should not have one.
1010 		 */
1011 		WARN_ON_ONCE((c && i >= n0) || (!c && i < n0));
1012 
1013 		/*
1014 		 * Request constraints for new events; or for those events that
1015 		 * have a dynamic constraint -- for those the constraint can
1016 		 * change due to external factors (sibling state, allow_tfa).
1017 		 */
1018 		if (!c || (c->flags & PERF_X86_EVENT_DYNAMIC)) {
1019 			c = static_call(x86_pmu_get_event_constraints)(cpuc, i, cpuc->event_list[i]);
1020 			cpuc->event_constraint[i] = c;
1021 		}
1022 
1023 		wmin = min(wmin, c->weight);
1024 		wmax = max(wmax, c->weight);
1025 	}
1026 
1027 	/*
1028 	 * fastpath, try to reuse previous register
1029 	 */
1030 	for (i = 0; i < n; i++) {
1031 		u64 mask;
1032 
1033 		hwc = &cpuc->event_list[i]->hw;
1034 		c = cpuc->event_constraint[i];
1035 
1036 		/* never assigned */
1037 		if (hwc->idx == -1)
1038 			break;
1039 
1040 		/* constraint still honored */
1041 		if (!test_bit(hwc->idx, c->idxmsk))
1042 			break;
1043 
1044 		mask = BIT_ULL(hwc->idx);
1045 		if (is_counter_pair(hwc))
1046 			mask |= mask << 1;
1047 
1048 		/* not already used */
1049 		if (used_mask & mask)
1050 			break;
1051 
1052 		used_mask |= mask;
1053 
1054 		if (assign)
1055 			assign[i] = hwc->idx;
1056 	}
1057 
1058 	/* slow path */
1059 	if (i != n) {
1060 		int gpmax = x86_pmu_max_num_counters(cpuc->pmu);
1061 
1062 		/*
1063 		 * Do not allow scheduling of more than half the available
1064 		 * generic counters.
1065 		 *
1066 		 * This helps avoid counter starvation of sibling thread by
1067 		 * ensuring at most half the counters cannot be in exclusive
1068 		 * mode. There is no designated counters for the limits. Any
1069 		 * N/2 counters can be used. This helps with events with
1070 		 * specific counter constraints.
1071 		 */
1072 		if (is_ht_workaround_enabled() && !cpuc->is_fake &&
1073 		    READ_ONCE(cpuc->excl_cntrs->exclusive_present))
1074 			gpmax /= 2;
1075 
1076 		/*
1077 		 * Reduce the amount of available counters to allow fitting
1078 		 * the extra Merge events needed by large increment events.
1079 		 */
1080 		if (x86_pmu.flags & PMU_FL_PAIR) {
1081 			gpmax -= cpuc->n_pair;
1082 			WARN_ON(gpmax <= 0);
1083 		}
1084 
1085 		unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
1086 					     wmax, gpmax, assign);
1087 	}
1088 
1089 	/*
1090 	 * In case of success (unsched = 0), mark events as committed,
1091 	 * so we do not put_constraint() in case new events are added
1092 	 * and fail to be scheduled
1093 	 *
1094 	 * We invoke the lower level commit callback to lock the resource
1095 	 *
1096 	 * We do not need to do all of this in case we are called to
1097 	 * validate an event group (assign == NULL)
1098 	 */
1099 	if (!unsched && assign) {
1100 		for (i = 0; i < n; i++)
1101 			static_call_cond(x86_pmu_commit_scheduling)(cpuc, i, assign[i]);
1102 	} else {
1103 		for (i = n0; i < n; i++) {
1104 			e = cpuc->event_list[i];
1105 
1106 			/*
1107 			 * release events that failed scheduling
1108 			 */
1109 			static_call_cond(x86_pmu_put_event_constraints)(cpuc, e);
1110 
1111 			cpuc->event_constraint[i] = NULL;
1112 		}
1113 	}
1114 
1115 	static_call_cond(x86_pmu_stop_scheduling)(cpuc);
1116 
1117 	return unsched ? -EINVAL : 0;
1118 }
1119 
1120 static int add_nr_metric_event(struct cpu_hw_events *cpuc,
1121 			       struct perf_event *event)
1122 {
1123 	if (is_metric_event(event)) {
1124 		if (cpuc->n_metric == INTEL_TD_METRIC_NUM)
1125 			return -EINVAL;
1126 		cpuc->n_metric++;
1127 		cpuc->n_txn_metric++;
1128 	}
1129 
1130 	return 0;
1131 }
1132 
1133 static void del_nr_metric_event(struct cpu_hw_events *cpuc,
1134 				struct perf_event *event)
1135 {
1136 	if (is_metric_event(event))
1137 		cpuc->n_metric--;
1138 }
1139 
1140 static int collect_event(struct cpu_hw_events *cpuc, struct perf_event *event,
1141 			 int max_count, int n)
1142 {
1143 	union perf_capabilities intel_cap = hybrid(cpuc->pmu, intel_cap);
1144 
1145 	if (intel_cap.perf_metrics && add_nr_metric_event(cpuc, event))
1146 		return -EINVAL;
1147 
1148 	if (n >= max_count + cpuc->n_metric)
1149 		return -EINVAL;
1150 
1151 	cpuc->event_list[n] = event;
1152 	if (is_counter_pair(&event->hw)) {
1153 		cpuc->n_pair++;
1154 		cpuc->n_txn_pair++;
1155 	}
1156 
1157 	return 0;
1158 }
1159 
1160 /*
1161  * dogrp: true if must collect siblings events (group)
1162  * returns total number of events and error code
1163  */
1164 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
1165 {
1166 	struct perf_event *event;
1167 	int n, max_count;
1168 
1169 	max_count = x86_pmu_num_counters(cpuc->pmu) + x86_pmu_num_counters_fixed(cpuc->pmu);
1170 
1171 	/* current number of events already accepted */
1172 	n = cpuc->n_events;
1173 	if (!cpuc->n_events)
1174 		cpuc->pebs_output = 0;
1175 
1176 	if (!cpuc->is_fake && leader->attr.precise_ip) {
1177 		/*
1178 		 * For PEBS->PT, if !aux_event, the group leader (PT) went
1179 		 * away, the group was broken down and this singleton event
1180 		 * can't schedule any more.
1181 		 */
1182 		if (is_pebs_pt(leader) && !leader->aux_event)
1183 			return -EINVAL;
1184 
1185 		/*
1186 		 * pebs_output: 0: no PEBS so far, 1: PT, 2: DS
1187 		 */
1188 		if (cpuc->pebs_output &&
1189 		    cpuc->pebs_output != is_pebs_pt(leader) + 1)
1190 			return -EINVAL;
1191 
1192 		cpuc->pebs_output = is_pebs_pt(leader) + 1;
1193 	}
1194 
1195 	if (is_x86_event(leader)) {
1196 		if (collect_event(cpuc, leader, max_count, n))
1197 			return -EINVAL;
1198 		n++;
1199 	}
1200 
1201 	if (!dogrp)
1202 		return n;
1203 
1204 	for_each_sibling_event(event, leader) {
1205 		if (!is_x86_event(event) || event->state <= PERF_EVENT_STATE_OFF)
1206 			continue;
1207 
1208 		if (collect_event(cpuc, event, max_count, n))
1209 			return -EINVAL;
1210 
1211 		n++;
1212 	}
1213 	return n;
1214 }
1215 
1216 static inline void x86_assign_hw_event(struct perf_event *event,
1217 				struct cpu_hw_events *cpuc, int i)
1218 {
1219 	struct hw_perf_event *hwc = &event->hw;
1220 	int idx;
1221 
1222 	idx = hwc->idx = cpuc->assign[i];
1223 	hwc->last_cpu = smp_processor_id();
1224 	hwc->last_tag = ++cpuc->tags[i];
1225 
1226 	static_call_cond(x86_pmu_assign)(event, idx);
1227 
1228 	switch (hwc->idx) {
1229 	case INTEL_PMC_IDX_FIXED_BTS:
1230 	case INTEL_PMC_IDX_FIXED_VLBR:
1231 		hwc->config_base = 0;
1232 		hwc->event_base	= 0;
1233 		break;
1234 
1235 	case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
1236 		/* All the metric events are mapped onto the fixed counter 3. */
1237 		idx = INTEL_PMC_IDX_FIXED_SLOTS;
1238 		fallthrough;
1239 	case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS-1:
1240 		hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
1241 		hwc->event_base = x86_pmu_fixed_ctr_addr(idx - INTEL_PMC_IDX_FIXED);
1242 		hwc->event_base_rdpmc = (idx - INTEL_PMC_IDX_FIXED) |
1243 					INTEL_PMC_FIXED_RDPMC_BASE;
1244 		break;
1245 
1246 	default:
1247 		hwc->config_base = x86_pmu_config_addr(hwc->idx);
1248 		hwc->event_base  = x86_pmu_event_addr(hwc->idx);
1249 		hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
1250 		break;
1251 	}
1252 }
1253 
1254 /**
1255  * x86_perf_rdpmc_index - Return PMC counter used for event
1256  * @event: the perf_event to which the PMC counter was assigned
1257  *
1258  * The counter assigned to this performance event may change if interrupts
1259  * are enabled. This counter should thus never be used while interrupts are
1260  * enabled. Before this function is used to obtain the assigned counter the
1261  * event should be checked for validity using, for example,
1262  * perf_event_read_local(), within the same interrupt disabled section in
1263  * which this counter is planned to be used.
1264  *
1265  * Return: The index of the performance monitoring counter assigned to
1266  * @perf_event.
1267  */
1268 int x86_perf_rdpmc_index(struct perf_event *event)
1269 {
1270 	lockdep_assert_irqs_disabled();
1271 
1272 	return event->hw.event_base_rdpmc;
1273 }
1274 
1275 static inline int match_prev_assignment(struct hw_perf_event *hwc,
1276 					struct cpu_hw_events *cpuc,
1277 					int i)
1278 {
1279 	return hwc->idx == cpuc->assign[i] &&
1280 		hwc->last_cpu == smp_processor_id() &&
1281 		hwc->last_tag == cpuc->tags[i];
1282 }
1283 
1284 static void x86_pmu_start(struct perf_event *event, int flags);
1285 
1286 static void x86_pmu_enable(struct pmu *pmu)
1287 {
1288 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1289 	struct perf_event *event;
1290 	struct hw_perf_event *hwc;
1291 	int i, added = cpuc->n_added;
1292 
1293 	if (!x86_pmu_initialized())
1294 		return;
1295 
1296 	if (cpuc->enabled)
1297 		return;
1298 
1299 	if (cpuc->n_added) {
1300 		int n_running = cpuc->n_events - cpuc->n_added;
1301 		/*
1302 		 * apply assignment obtained either from
1303 		 * hw_perf_group_sched_in() or x86_pmu_enable()
1304 		 *
1305 		 * step1: save events moving to new counters
1306 		 */
1307 		for (i = 0; i < n_running; i++) {
1308 			event = cpuc->event_list[i];
1309 			hwc = &event->hw;
1310 
1311 			/*
1312 			 * we can avoid reprogramming counter if:
1313 			 * - assigned same counter as last time
1314 			 * - running on same CPU as last time
1315 			 * - no other event has used the counter since
1316 			 */
1317 			if (hwc->idx == -1 ||
1318 			    match_prev_assignment(hwc, cpuc, i))
1319 				continue;
1320 
1321 			/*
1322 			 * Ensure we don't accidentally enable a stopped
1323 			 * counter simply because we rescheduled.
1324 			 */
1325 			if (hwc->state & PERF_HES_STOPPED)
1326 				hwc->state |= PERF_HES_ARCH;
1327 
1328 			x86_pmu_stop(event, PERF_EF_UPDATE);
1329 		}
1330 
1331 		/*
1332 		 * step2: reprogram moved events into new counters
1333 		 */
1334 		for (i = 0; i < cpuc->n_events; i++) {
1335 			event = cpuc->event_list[i];
1336 			hwc = &event->hw;
1337 
1338 			if (!match_prev_assignment(hwc, cpuc, i))
1339 				x86_assign_hw_event(event, cpuc, i);
1340 			else if (i < n_running)
1341 				continue;
1342 
1343 			if (hwc->state & PERF_HES_ARCH)
1344 				continue;
1345 
1346 			/*
1347 			 * if cpuc->enabled = 0, then no wrmsr as
1348 			 * per x86_pmu_enable_event()
1349 			 */
1350 			x86_pmu_start(event, PERF_EF_RELOAD);
1351 		}
1352 		cpuc->n_added = 0;
1353 		perf_events_lapic_init();
1354 	}
1355 
1356 	cpuc->enabled = 1;
1357 	barrier();
1358 
1359 	static_call(x86_pmu_enable_all)(added);
1360 }
1361 
1362 DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1363 
1364 /*
1365  * Set the next IRQ period, based on the hwc->period_left value.
1366  * To be called with the event disabled in hw:
1367  */
1368 int x86_perf_event_set_period(struct perf_event *event)
1369 {
1370 	struct hw_perf_event *hwc = &event->hw;
1371 	s64 left = local64_read(&hwc->period_left);
1372 	s64 period = hwc->sample_period;
1373 	int ret = 0, idx = hwc->idx;
1374 
1375 	if (unlikely(!hwc->event_base))
1376 		return 0;
1377 
1378 	/*
1379 	 * If we are way outside a reasonable range then just skip forward:
1380 	 */
1381 	if (unlikely(left <= -period)) {
1382 		left = period;
1383 		local64_set(&hwc->period_left, left);
1384 		hwc->last_period = period;
1385 		ret = 1;
1386 	}
1387 
1388 	if (unlikely(left <= 0)) {
1389 		left += period;
1390 		local64_set(&hwc->period_left, left);
1391 		hwc->last_period = period;
1392 		ret = 1;
1393 	}
1394 	/*
1395 	 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1396 	 */
1397 	if (unlikely(left < 2))
1398 		left = 2;
1399 
1400 	if (left > x86_pmu.max_period)
1401 		left = x86_pmu.max_period;
1402 
1403 	static_call_cond(x86_pmu_limit_period)(event, &left);
1404 
1405 	this_cpu_write(pmc_prev_left[idx], left);
1406 
1407 	/*
1408 	 * The hw event starts counting from this event offset,
1409 	 * mark it to be able to extra future deltas:
1410 	 */
1411 	local64_set(&hwc->prev_count, (u64)-left);
1412 
1413 	wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1414 
1415 	/*
1416 	 * Sign extend the Merge event counter's upper 16 bits since
1417 	 * we currently declare a 48-bit counter width
1418 	 */
1419 	if (is_counter_pair(hwc))
1420 		wrmsrl(x86_pmu_event_addr(idx + 1), 0xffff);
1421 
1422 	perf_event_update_userpage(event);
1423 
1424 	return ret;
1425 }
1426 
1427 void x86_pmu_enable_event(struct perf_event *event)
1428 {
1429 	if (__this_cpu_read(cpu_hw_events.enabled))
1430 		__x86_pmu_enable_event(&event->hw,
1431 				       ARCH_PERFMON_EVENTSEL_ENABLE);
1432 }
1433 
1434 /*
1435  * Add a single event to the PMU.
1436  *
1437  * The event is added to the group of enabled events
1438  * but only if it can be scheduled with existing events.
1439  */
1440 static int x86_pmu_add(struct perf_event *event, int flags)
1441 {
1442 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1443 	struct hw_perf_event *hwc;
1444 	int assign[X86_PMC_IDX_MAX];
1445 	int n, n0, ret;
1446 
1447 	hwc = &event->hw;
1448 
1449 	n0 = cpuc->n_events;
1450 	ret = n = collect_events(cpuc, event, false);
1451 	if (ret < 0)
1452 		goto out;
1453 
1454 	hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1455 	if (!(flags & PERF_EF_START))
1456 		hwc->state |= PERF_HES_ARCH;
1457 
1458 	/*
1459 	 * If group events scheduling transaction was started,
1460 	 * skip the schedulability test here, it will be performed
1461 	 * at commit time (->commit_txn) as a whole.
1462 	 *
1463 	 * If commit fails, we'll call ->del() on all events
1464 	 * for which ->add() was called.
1465 	 */
1466 	if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1467 		goto done_collect;
1468 
1469 	ret = static_call(x86_pmu_schedule_events)(cpuc, n, assign);
1470 	if (ret)
1471 		goto out;
1472 	/*
1473 	 * copy new assignment, now we know it is possible
1474 	 * will be used by hw_perf_enable()
1475 	 */
1476 	memcpy(cpuc->assign, assign, n*sizeof(int));
1477 
1478 done_collect:
1479 	/*
1480 	 * Commit the collect_events() state. See x86_pmu_del() and
1481 	 * x86_pmu_*_txn().
1482 	 */
1483 	cpuc->n_events = n;
1484 	cpuc->n_added += n - n0;
1485 	cpuc->n_txn += n - n0;
1486 
1487 	/*
1488 	 * This is before x86_pmu_enable() will call x86_pmu_start(),
1489 	 * so we enable LBRs before an event needs them etc..
1490 	 */
1491 	static_call_cond(x86_pmu_add)(event);
1492 
1493 	ret = 0;
1494 out:
1495 	return ret;
1496 }
1497 
1498 static void x86_pmu_start(struct perf_event *event, int flags)
1499 {
1500 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1501 	int idx = event->hw.idx;
1502 
1503 	if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1504 		return;
1505 
1506 	if (WARN_ON_ONCE(idx == -1))
1507 		return;
1508 
1509 	if (flags & PERF_EF_RELOAD) {
1510 		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1511 		static_call(x86_pmu_set_period)(event);
1512 	}
1513 
1514 	event->hw.state = 0;
1515 
1516 	cpuc->events[idx] = event;
1517 	__set_bit(idx, cpuc->active_mask);
1518 	static_call(x86_pmu_enable)(event);
1519 	perf_event_update_userpage(event);
1520 }
1521 
1522 void perf_event_print_debug(void)
1523 {
1524 	u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1525 	unsigned long *cntr_mask, *fixed_cntr_mask;
1526 	struct event_constraint *pebs_constraints;
1527 	struct cpu_hw_events *cpuc;
1528 	u64 pebs, debugctl;
1529 	int cpu, idx;
1530 
1531 	guard(irqsave)();
1532 
1533 	cpu = smp_processor_id();
1534 	cpuc = &per_cpu(cpu_hw_events, cpu);
1535 	cntr_mask = hybrid(cpuc->pmu, cntr_mask);
1536 	fixed_cntr_mask = hybrid(cpuc->pmu, fixed_cntr_mask);
1537 	pebs_constraints = hybrid(cpuc->pmu, pebs_constraints);
1538 
1539 	if (!*(u64 *)cntr_mask)
1540 		return;
1541 
1542 	if (x86_pmu.version >= 2) {
1543 		rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1544 		rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1545 		rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1546 		rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1547 
1548 		pr_info("\n");
1549 		pr_info("CPU#%d: ctrl:       %016llx\n", cpu, ctrl);
1550 		pr_info("CPU#%d: status:     %016llx\n", cpu, status);
1551 		pr_info("CPU#%d: overflow:   %016llx\n", cpu, overflow);
1552 		pr_info("CPU#%d: fixed:      %016llx\n", cpu, fixed);
1553 		if (pebs_constraints) {
1554 			rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1555 			pr_info("CPU#%d: pebs:       %016llx\n", cpu, pebs);
1556 		}
1557 		if (x86_pmu.lbr_nr) {
1558 			rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1559 			pr_info("CPU#%d: debugctl:   %016llx\n", cpu, debugctl);
1560 		}
1561 	}
1562 	pr_info("CPU#%d: active:     %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1563 
1564 	for_each_set_bit(idx, cntr_mask, X86_PMC_IDX_MAX) {
1565 		rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1566 		rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1567 
1568 		prev_left = per_cpu(pmc_prev_left[idx], cpu);
1569 
1570 		pr_info("CPU#%d:   gen-PMC%d ctrl:  %016llx\n",
1571 			cpu, idx, pmc_ctrl);
1572 		pr_info("CPU#%d:   gen-PMC%d count: %016llx\n",
1573 			cpu, idx, pmc_count);
1574 		pr_info("CPU#%d:   gen-PMC%d left:  %016llx\n",
1575 			cpu, idx, prev_left);
1576 	}
1577 	for_each_set_bit(idx, fixed_cntr_mask, X86_PMC_IDX_MAX) {
1578 		if (fixed_counter_disabled(idx, cpuc->pmu))
1579 			continue;
1580 		rdmsrl(x86_pmu_fixed_ctr_addr(idx), pmc_count);
1581 
1582 		pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1583 			cpu, idx, pmc_count);
1584 	}
1585 }
1586 
1587 void x86_pmu_stop(struct perf_event *event, int flags)
1588 {
1589 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1590 	struct hw_perf_event *hwc = &event->hw;
1591 
1592 	if (test_bit(hwc->idx, cpuc->active_mask)) {
1593 		static_call(x86_pmu_disable)(event);
1594 		__clear_bit(hwc->idx, cpuc->active_mask);
1595 		cpuc->events[hwc->idx] = NULL;
1596 		WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1597 		hwc->state |= PERF_HES_STOPPED;
1598 	}
1599 
1600 	if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1601 		/*
1602 		 * Drain the remaining delta count out of a event
1603 		 * that we are disabling:
1604 		 */
1605 		static_call(x86_pmu_update)(event);
1606 		hwc->state |= PERF_HES_UPTODATE;
1607 	}
1608 }
1609 
1610 static void x86_pmu_del(struct perf_event *event, int flags)
1611 {
1612 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1613 	union perf_capabilities intel_cap = hybrid(cpuc->pmu, intel_cap);
1614 	int i;
1615 
1616 	/*
1617 	 * If we're called during a txn, we only need to undo x86_pmu.add.
1618 	 * The events never got scheduled and ->cancel_txn will truncate
1619 	 * the event_list.
1620 	 *
1621 	 * XXX assumes any ->del() called during a TXN will only be on
1622 	 * an event added during that same TXN.
1623 	 */
1624 	if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1625 		goto do_del;
1626 
1627 	__set_bit(event->hw.idx, cpuc->dirty);
1628 
1629 	/*
1630 	 * Not a TXN, therefore cleanup properly.
1631 	 */
1632 	x86_pmu_stop(event, PERF_EF_UPDATE);
1633 
1634 	for (i = 0; i < cpuc->n_events; i++) {
1635 		if (event == cpuc->event_list[i])
1636 			break;
1637 	}
1638 
1639 	if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1640 		return;
1641 
1642 	/* If we have a newly added event; make sure to decrease n_added. */
1643 	if (i >= cpuc->n_events - cpuc->n_added)
1644 		--cpuc->n_added;
1645 
1646 	static_call_cond(x86_pmu_put_event_constraints)(cpuc, event);
1647 
1648 	/* Delete the array entry. */
1649 	while (++i < cpuc->n_events) {
1650 		cpuc->event_list[i-1] = cpuc->event_list[i];
1651 		cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
1652 		cpuc->assign[i-1] = cpuc->assign[i];
1653 	}
1654 	cpuc->event_constraint[i-1] = NULL;
1655 	--cpuc->n_events;
1656 	if (intel_cap.perf_metrics)
1657 		del_nr_metric_event(cpuc, event);
1658 
1659 	perf_event_update_userpage(event);
1660 
1661 do_del:
1662 
1663 	/*
1664 	 * This is after x86_pmu_stop(); so we disable LBRs after any
1665 	 * event can need them etc..
1666 	 */
1667 	static_call_cond(x86_pmu_del)(event);
1668 }
1669 
1670 int x86_pmu_handle_irq(struct pt_regs *regs)
1671 {
1672 	struct perf_sample_data data;
1673 	struct cpu_hw_events *cpuc;
1674 	struct perf_event *event;
1675 	int idx, handled = 0;
1676 	u64 val;
1677 
1678 	cpuc = this_cpu_ptr(&cpu_hw_events);
1679 
1680 	/*
1681 	 * Some chipsets need to unmask the LVTPC in a particular spot
1682 	 * inside the nmi handler.  As a result, the unmasking was pushed
1683 	 * into all the nmi handlers.
1684 	 *
1685 	 * This generic handler doesn't seem to have any issues where the
1686 	 * unmasking occurs so it was left at the top.
1687 	 */
1688 	apic_write(APIC_LVTPC, APIC_DM_NMI);
1689 
1690 	for_each_set_bit(idx, x86_pmu.cntr_mask, X86_PMC_IDX_MAX) {
1691 		if (!test_bit(idx, cpuc->active_mask))
1692 			continue;
1693 
1694 		event = cpuc->events[idx];
1695 
1696 		val = static_call(x86_pmu_update)(event);
1697 		if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1698 			continue;
1699 
1700 		/*
1701 		 * event overflow
1702 		 */
1703 		handled++;
1704 
1705 		if (!static_call(x86_pmu_set_period)(event))
1706 			continue;
1707 
1708 		perf_sample_data_init(&data, 0, event->hw.last_period);
1709 
1710 		if (has_branch_stack(event))
1711 			perf_sample_save_brstack(&data, event, &cpuc->lbr_stack, NULL);
1712 
1713 		if (perf_event_overflow(event, &data, regs))
1714 			x86_pmu_stop(event, 0);
1715 	}
1716 
1717 	if (handled)
1718 		inc_irq_stat(apic_perf_irqs);
1719 
1720 	return handled;
1721 }
1722 
1723 void perf_events_lapic_init(void)
1724 {
1725 	if (!x86_pmu.apic || !x86_pmu_initialized())
1726 		return;
1727 
1728 	/*
1729 	 * Always use NMI for PMU
1730 	 */
1731 	apic_write(APIC_LVTPC, APIC_DM_NMI);
1732 }
1733 
1734 static int
1735 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1736 {
1737 	u64 start_clock;
1738 	u64 finish_clock;
1739 	int ret;
1740 
1741 	/*
1742 	 * All PMUs/events that share this PMI handler should make sure to
1743 	 * increment active_events for their events.
1744 	 */
1745 	if (!atomic_read(&active_events))
1746 		return NMI_DONE;
1747 
1748 	start_clock = sched_clock();
1749 	ret = static_call(x86_pmu_handle_irq)(regs);
1750 	finish_clock = sched_clock();
1751 
1752 	perf_sample_event_took(finish_clock - start_clock);
1753 
1754 	return ret;
1755 }
1756 NOKPROBE_SYMBOL(perf_event_nmi_handler);
1757 
1758 struct event_constraint emptyconstraint;
1759 struct event_constraint unconstrained;
1760 
1761 static int x86_pmu_prepare_cpu(unsigned int cpu)
1762 {
1763 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1764 	int i;
1765 
1766 	for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1767 		cpuc->kfree_on_online[i] = NULL;
1768 	if (x86_pmu.cpu_prepare)
1769 		return x86_pmu.cpu_prepare(cpu);
1770 	return 0;
1771 }
1772 
1773 static int x86_pmu_dead_cpu(unsigned int cpu)
1774 {
1775 	if (x86_pmu.cpu_dead)
1776 		x86_pmu.cpu_dead(cpu);
1777 	return 0;
1778 }
1779 
1780 static int x86_pmu_online_cpu(unsigned int cpu)
1781 {
1782 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1783 	int i;
1784 
1785 	for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1786 		kfree(cpuc->kfree_on_online[i]);
1787 		cpuc->kfree_on_online[i] = NULL;
1788 	}
1789 	return 0;
1790 }
1791 
1792 static int x86_pmu_starting_cpu(unsigned int cpu)
1793 {
1794 	if (x86_pmu.cpu_starting)
1795 		x86_pmu.cpu_starting(cpu);
1796 	return 0;
1797 }
1798 
1799 static int x86_pmu_dying_cpu(unsigned int cpu)
1800 {
1801 	if (x86_pmu.cpu_dying)
1802 		x86_pmu.cpu_dying(cpu);
1803 	return 0;
1804 }
1805 
1806 static void __init pmu_check_apic(void)
1807 {
1808 	if (boot_cpu_has(X86_FEATURE_APIC))
1809 		return;
1810 
1811 	x86_pmu.apic = 0;
1812 	pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1813 	pr_info("no hardware sampling interrupt available.\n");
1814 
1815 	/*
1816 	 * If we have a PMU initialized but no APIC
1817 	 * interrupts, we cannot sample hardware
1818 	 * events (user-space has to fall back and
1819 	 * sample via a hrtimer based software event):
1820 	 */
1821 	pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1822 
1823 }
1824 
1825 static struct attribute_group x86_pmu_format_group __ro_after_init = {
1826 	.name = "format",
1827 	.attrs = NULL,
1828 };
1829 
1830 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page)
1831 {
1832 	struct perf_pmu_events_attr *pmu_attr =
1833 		container_of(attr, struct perf_pmu_events_attr, attr);
1834 	u64 config = 0;
1835 
1836 	if (pmu_attr->id < x86_pmu.max_events)
1837 		config = x86_pmu.event_map(pmu_attr->id);
1838 
1839 	/* string trumps id */
1840 	if (pmu_attr->event_str)
1841 		return sprintf(page, "%s\n", pmu_attr->event_str);
1842 
1843 	return x86_pmu.events_sysfs_show(page, config);
1844 }
1845 EXPORT_SYMBOL_GPL(events_sysfs_show);
1846 
1847 ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr,
1848 			  char *page)
1849 {
1850 	struct perf_pmu_events_ht_attr *pmu_attr =
1851 		container_of(attr, struct perf_pmu_events_ht_attr, attr);
1852 
1853 	/*
1854 	 * Report conditional events depending on Hyper-Threading.
1855 	 *
1856 	 * This is overly conservative as usually the HT special
1857 	 * handling is not needed if the other CPU thread is idle.
1858 	 *
1859 	 * Note this does not (and cannot) handle the case when thread
1860 	 * siblings are invisible, for example with virtualization
1861 	 * if they are owned by some other guest.  The user tool
1862 	 * has to re-read when a thread sibling gets onlined later.
1863 	 */
1864 	return sprintf(page, "%s",
1865 			topology_max_smt_threads() > 1 ?
1866 			pmu_attr->event_str_ht :
1867 			pmu_attr->event_str_noht);
1868 }
1869 
1870 ssize_t events_hybrid_sysfs_show(struct device *dev,
1871 				 struct device_attribute *attr,
1872 				 char *page)
1873 {
1874 	struct perf_pmu_events_hybrid_attr *pmu_attr =
1875 		container_of(attr, struct perf_pmu_events_hybrid_attr, attr);
1876 	struct x86_hybrid_pmu *pmu;
1877 	const char *str, *next_str;
1878 	int i;
1879 
1880 	if (hweight64(pmu_attr->pmu_type) == 1)
1881 		return sprintf(page, "%s", pmu_attr->event_str);
1882 
1883 	/*
1884 	 * Hybrid PMUs may support the same event name, but with different
1885 	 * event encoding, e.g., the mem-loads event on an Atom PMU has
1886 	 * different event encoding from a Core PMU.
1887 	 *
1888 	 * The event_str includes all event encodings. Each event encoding
1889 	 * is divided by ";". The order of the event encodings must follow
1890 	 * the order of the hybrid PMU index.
1891 	 */
1892 	pmu = container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
1893 
1894 	str = pmu_attr->event_str;
1895 	for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
1896 		if (!(x86_pmu.hybrid_pmu[i].pmu_type & pmu_attr->pmu_type))
1897 			continue;
1898 		if (x86_pmu.hybrid_pmu[i].pmu_type & pmu->pmu_type) {
1899 			next_str = strchr(str, ';');
1900 			if (next_str)
1901 				return snprintf(page, next_str - str + 1, "%s", str);
1902 			else
1903 				return sprintf(page, "%s", str);
1904 		}
1905 		str = strchr(str, ';');
1906 		str++;
1907 	}
1908 
1909 	return 0;
1910 }
1911 EXPORT_SYMBOL_GPL(events_hybrid_sysfs_show);
1912 
1913 EVENT_ATTR(cpu-cycles,			CPU_CYCLES		);
1914 EVENT_ATTR(instructions,		INSTRUCTIONS		);
1915 EVENT_ATTR(cache-references,		CACHE_REFERENCES	);
1916 EVENT_ATTR(cache-misses, 		CACHE_MISSES		);
1917 EVENT_ATTR(branch-instructions,		BRANCH_INSTRUCTIONS	);
1918 EVENT_ATTR(branch-misses,		BRANCH_MISSES		);
1919 EVENT_ATTR(bus-cycles,			BUS_CYCLES		);
1920 EVENT_ATTR(stalled-cycles-frontend,	STALLED_CYCLES_FRONTEND	);
1921 EVENT_ATTR(stalled-cycles-backend,	STALLED_CYCLES_BACKEND	);
1922 EVENT_ATTR(ref-cycles,			REF_CPU_CYCLES		);
1923 
1924 static struct attribute *empty_attrs;
1925 
1926 static struct attribute *events_attr[] = {
1927 	EVENT_PTR(CPU_CYCLES),
1928 	EVENT_PTR(INSTRUCTIONS),
1929 	EVENT_PTR(CACHE_REFERENCES),
1930 	EVENT_PTR(CACHE_MISSES),
1931 	EVENT_PTR(BRANCH_INSTRUCTIONS),
1932 	EVENT_PTR(BRANCH_MISSES),
1933 	EVENT_PTR(BUS_CYCLES),
1934 	EVENT_PTR(STALLED_CYCLES_FRONTEND),
1935 	EVENT_PTR(STALLED_CYCLES_BACKEND),
1936 	EVENT_PTR(REF_CPU_CYCLES),
1937 	NULL,
1938 };
1939 
1940 /*
1941  * Remove all undefined events (x86_pmu.event_map(id) == 0)
1942  * out of events_attr attributes.
1943  */
1944 static umode_t
1945 is_visible(struct kobject *kobj, struct attribute *attr, int idx)
1946 {
1947 	struct perf_pmu_events_attr *pmu_attr;
1948 
1949 	if (idx >= x86_pmu.max_events)
1950 		return 0;
1951 
1952 	pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr.attr);
1953 	/* str trumps id */
1954 	return pmu_attr->event_str || x86_pmu.event_map(idx) ? attr->mode : 0;
1955 }
1956 
1957 static struct attribute_group x86_pmu_events_group __ro_after_init = {
1958 	.name = "events",
1959 	.attrs = events_attr,
1960 	.is_visible = is_visible,
1961 };
1962 
1963 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1964 {
1965 	u64 umask  = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1966 	u64 cmask  = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1967 	bool edge  = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1968 	bool pc    = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1969 	bool any   = (config & ARCH_PERFMON_EVENTSEL_ANY);
1970 	bool inv   = (config & ARCH_PERFMON_EVENTSEL_INV);
1971 	ssize_t ret;
1972 
1973 	/*
1974 	* We have whole page size to spend and just little data
1975 	* to write, so we can safely use sprintf.
1976 	*/
1977 	ret = sprintf(page, "event=0x%02llx", event);
1978 
1979 	if (umask)
1980 		ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1981 
1982 	if (edge)
1983 		ret += sprintf(page + ret, ",edge");
1984 
1985 	if (pc)
1986 		ret += sprintf(page + ret, ",pc");
1987 
1988 	if (any)
1989 		ret += sprintf(page + ret, ",any");
1990 
1991 	if (inv)
1992 		ret += sprintf(page + ret, ",inv");
1993 
1994 	if (cmask)
1995 		ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1996 
1997 	ret += sprintf(page + ret, "\n");
1998 
1999 	return ret;
2000 }
2001 
2002 static struct attribute_group x86_pmu_attr_group;
2003 static struct attribute_group x86_pmu_caps_group;
2004 
2005 static void x86_pmu_static_call_update(void)
2006 {
2007 	static_call_update(x86_pmu_handle_irq, x86_pmu.handle_irq);
2008 	static_call_update(x86_pmu_disable_all, x86_pmu.disable_all);
2009 	static_call_update(x86_pmu_enable_all, x86_pmu.enable_all);
2010 	static_call_update(x86_pmu_enable, x86_pmu.enable);
2011 	static_call_update(x86_pmu_disable, x86_pmu.disable);
2012 
2013 	static_call_update(x86_pmu_assign, x86_pmu.assign);
2014 
2015 	static_call_update(x86_pmu_add, x86_pmu.add);
2016 	static_call_update(x86_pmu_del, x86_pmu.del);
2017 	static_call_update(x86_pmu_read, x86_pmu.read);
2018 
2019 	static_call_update(x86_pmu_set_period, x86_pmu.set_period);
2020 	static_call_update(x86_pmu_update, x86_pmu.update);
2021 	static_call_update(x86_pmu_limit_period, x86_pmu.limit_period);
2022 
2023 	static_call_update(x86_pmu_schedule_events, x86_pmu.schedule_events);
2024 	static_call_update(x86_pmu_get_event_constraints, x86_pmu.get_event_constraints);
2025 	static_call_update(x86_pmu_put_event_constraints, x86_pmu.put_event_constraints);
2026 
2027 	static_call_update(x86_pmu_start_scheduling, x86_pmu.start_scheduling);
2028 	static_call_update(x86_pmu_commit_scheduling, x86_pmu.commit_scheduling);
2029 	static_call_update(x86_pmu_stop_scheduling, x86_pmu.stop_scheduling);
2030 
2031 	static_call_update(x86_pmu_sched_task, x86_pmu.sched_task);
2032 	static_call_update(x86_pmu_swap_task_ctx, x86_pmu.swap_task_ctx);
2033 
2034 	static_call_update(x86_pmu_drain_pebs, x86_pmu.drain_pebs);
2035 	static_call_update(x86_pmu_pebs_aliases, x86_pmu.pebs_aliases);
2036 
2037 	static_call_update(x86_pmu_guest_get_msrs, x86_pmu.guest_get_msrs);
2038 	static_call_update(x86_pmu_filter, x86_pmu.filter);
2039 }
2040 
2041 static void _x86_pmu_read(struct perf_event *event)
2042 {
2043 	static_call(x86_pmu_update)(event);
2044 }
2045 
2046 void x86_pmu_show_pmu_cap(struct pmu *pmu)
2047 {
2048 	pr_info("... version:                %d\n",     x86_pmu.version);
2049 	pr_info("... bit width:              %d\n",     x86_pmu.cntval_bits);
2050 	pr_info("... generic registers:      %d\n",     x86_pmu_num_counters(pmu));
2051 	pr_info("... value mask:             %016Lx\n", x86_pmu.cntval_mask);
2052 	pr_info("... max period:             %016Lx\n", x86_pmu.max_period);
2053 	pr_info("... fixed-purpose events:   %d\n",     x86_pmu_num_counters_fixed(pmu));
2054 	pr_info("... event mask:             %016Lx\n", hybrid(pmu, intel_ctrl));
2055 }
2056 
2057 static int __init init_hw_perf_events(void)
2058 {
2059 	struct x86_pmu_quirk *quirk;
2060 	int err;
2061 
2062 	pr_info("Performance Events: ");
2063 
2064 	switch (boot_cpu_data.x86_vendor) {
2065 	case X86_VENDOR_INTEL:
2066 		err = intel_pmu_init();
2067 		break;
2068 	case X86_VENDOR_AMD:
2069 		err = amd_pmu_init();
2070 		break;
2071 	case X86_VENDOR_HYGON:
2072 		err = amd_pmu_init();
2073 		x86_pmu.name = "HYGON";
2074 		break;
2075 	case X86_VENDOR_ZHAOXIN:
2076 	case X86_VENDOR_CENTAUR:
2077 		err = zhaoxin_pmu_init();
2078 		break;
2079 	default:
2080 		err = -ENOTSUPP;
2081 	}
2082 	if (err != 0) {
2083 		pr_cont("no PMU driver, software events only.\n");
2084 		err = 0;
2085 		goto out_bad_pmu;
2086 	}
2087 
2088 	pmu_check_apic();
2089 
2090 	/* sanity check that the hardware exists or is emulated */
2091 	if (!check_hw_exists(&pmu, x86_pmu.cntr_mask, x86_pmu.fixed_cntr_mask))
2092 		goto out_bad_pmu;
2093 
2094 	pr_cont("%s PMU driver.\n", x86_pmu.name);
2095 
2096 	x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
2097 
2098 	for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
2099 		quirk->func();
2100 
2101 	if (!x86_pmu.intel_ctrl)
2102 		x86_pmu.intel_ctrl = x86_pmu.cntr_mask64;
2103 
2104 	if (!x86_pmu.config_mask)
2105 		x86_pmu.config_mask = X86_RAW_EVENT_MASK;
2106 
2107 	perf_events_lapic_init();
2108 	register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
2109 
2110 	unconstrained = (struct event_constraint)
2111 		__EVENT_CONSTRAINT(0, x86_pmu.cntr_mask64,
2112 				   0, x86_pmu_num_counters(NULL), 0, 0);
2113 
2114 	x86_pmu_format_group.attrs = x86_pmu.format_attrs;
2115 
2116 	if (!x86_pmu.events_sysfs_show)
2117 		x86_pmu_events_group.attrs = &empty_attrs;
2118 
2119 	pmu.attr_update = x86_pmu.attr_update;
2120 
2121 	if (!is_hybrid())
2122 		x86_pmu_show_pmu_cap(NULL);
2123 
2124 	if (!x86_pmu.read)
2125 		x86_pmu.read = _x86_pmu_read;
2126 
2127 	if (!x86_pmu.guest_get_msrs)
2128 		x86_pmu.guest_get_msrs = (void *)&__static_call_return0;
2129 
2130 	if (!x86_pmu.set_period)
2131 		x86_pmu.set_period = x86_perf_event_set_period;
2132 
2133 	if (!x86_pmu.update)
2134 		x86_pmu.update = x86_perf_event_update;
2135 
2136 	x86_pmu_static_call_update();
2137 
2138 	/*
2139 	 * Install callbacks. Core will call them for each online
2140 	 * cpu.
2141 	 */
2142 	err = cpuhp_setup_state(CPUHP_PERF_X86_PREPARE, "perf/x86:prepare",
2143 				x86_pmu_prepare_cpu, x86_pmu_dead_cpu);
2144 	if (err)
2145 		return err;
2146 
2147 	err = cpuhp_setup_state(CPUHP_AP_PERF_X86_STARTING,
2148 				"perf/x86:starting", x86_pmu_starting_cpu,
2149 				x86_pmu_dying_cpu);
2150 	if (err)
2151 		goto out;
2152 
2153 	err = cpuhp_setup_state(CPUHP_AP_PERF_X86_ONLINE, "perf/x86:online",
2154 				x86_pmu_online_cpu, NULL);
2155 	if (err)
2156 		goto out1;
2157 
2158 	if (!is_hybrid()) {
2159 		err = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
2160 		if (err)
2161 			goto out2;
2162 	} else {
2163 		struct x86_hybrid_pmu *hybrid_pmu;
2164 		int i, j;
2165 
2166 		for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
2167 			hybrid_pmu = &x86_pmu.hybrid_pmu[i];
2168 
2169 			hybrid_pmu->pmu = pmu;
2170 			hybrid_pmu->pmu.type = -1;
2171 			hybrid_pmu->pmu.attr_update = x86_pmu.attr_update;
2172 			hybrid_pmu->pmu.capabilities |= PERF_PMU_CAP_EXTENDED_HW_TYPE;
2173 
2174 			err = perf_pmu_register(&hybrid_pmu->pmu, hybrid_pmu->name,
2175 						(hybrid_pmu->pmu_type == hybrid_big) ? PERF_TYPE_RAW : -1);
2176 			if (err)
2177 				break;
2178 		}
2179 
2180 		if (i < x86_pmu.num_hybrid_pmus) {
2181 			for (j = 0; j < i; j++)
2182 				perf_pmu_unregister(&x86_pmu.hybrid_pmu[j].pmu);
2183 			pr_warn("Failed to register hybrid PMUs\n");
2184 			kfree(x86_pmu.hybrid_pmu);
2185 			x86_pmu.hybrid_pmu = NULL;
2186 			x86_pmu.num_hybrid_pmus = 0;
2187 			goto out2;
2188 		}
2189 	}
2190 
2191 	return 0;
2192 
2193 out2:
2194 	cpuhp_remove_state(CPUHP_AP_PERF_X86_ONLINE);
2195 out1:
2196 	cpuhp_remove_state(CPUHP_AP_PERF_X86_STARTING);
2197 out:
2198 	cpuhp_remove_state(CPUHP_PERF_X86_PREPARE);
2199 out_bad_pmu:
2200 	memset(&x86_pmu, 0, sizeof(x86_pmu));
2201 	return err;
2202 }
2203 early_initcall(init_hw_perf_events);
2204 
2205 static void x86_pmu_read(struct perf_event *event)
2206 {
2207 	static_call(x86_pmu_read)(event);
2208 }
2209 
2210 /*
2211  * Start group events scheduling transaction
2212  * Set the flag to make pmu::enable() not perform the
2213  * schedulability test, it will be performed at commit time
2214  *
2215  * We only support PERF_PMU_TXN_ADD transactions. Save the
2216  * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
2217  * transactions.
2218  */
2219 static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
2220 {
2221 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2222 
2223 	WARN_ON_ONCE(cpuc->txn_flags);		/* txn already in flight */
2224 
2225 	cpuc->txn_flags = txn_flags;
2226 	if (txn_flags & ~PERF_PMU_TXN_ADD)
2227 		return;
2228 
2229 	perf_pmu_disable(pmu);
2230 	__this_cpu_write(cpu_hw_events.n_txn, 0);
2231 	__this_cpu_write(cpu_hw_events.n_txn_pair, 0);
2232 	__this_cpu_write(cpu_hw_events.n_txn_metric, 0);
2233 }
2234 
2235 /*
2236  * Stop group events scheduling transaction
2237  * Clear the flag and pmu::enable() will perform the
2238  * schedulability test.
2239  */
2240 static void x86_pmu_cancel_txn(struct pmu *pmu)
2241 {
2242 	unsigned int txn_flags;
2243 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2244 
2245 	WARN_ON_ONCE(!cpuc->txn_flags);	/* no txn in flight */
2246 
2247 	txn_flags = cpuc->txn_flags;
2248 	cpuc->txn_flags = 0;
2249 	if (txn_flags & ~PERF_PMU_TXN_ADD)
2250 		return;
2251 
2252 	/*
2253 	 * Truncate collected array by the number of events added in this
2254 	 * transaction. See x86_pmu_add() and x86_pmu_*_txn().
2255 	 */
2256 	__this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
2257 	__this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
2258 	__this_cpu_sub(cpu_hw_events.n_pair, __this_cpu_read(cpu_hw_events.n_txn_pair));
2259 	__this_cpu_sub(cpu_hw_events.n_metric, __this_cpu_read(cpu_hw_events.n_txn_metric));
2260 	perf_pmu_enable(pmu);
2261 }
2262 
2263 /*
2264  * Commit group events scheduling transaction
2265  * Perform the group schedulability test as a whole
2266  * Return 0 if success
2267  *
2268  * Does not cancel the transaction on failure; expects the caller to do this.
2269  */
2270 static int x86_pmu_commit_txn(struct pmu *pmu)
2271 {
2272 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2273 	int assign[X86_PMC_IDX_MAX];
2274 	int n, ret;
2275 
2276 	WARN_ON_ONCE(!cpuc->txn_flags);	/* no txn in flight */
2277 
2278 	if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
2279 		cpuc->txn_flags = 0;
2280 		return 0;
2281 	}
2282 
2283 	n = cpuc->n_events;
2284 
2285 	if (!x86_pmu_initialized())
2286 		return -EAGAIN;
2287 
2288 	ret = static_call(x86_pmu_schedule_events)(cpuc, n, assign);
2289 	if (ret)
2290 		return ret;
2291 
2292 	/*
2293 	 * copy new assignment, now we know it is possible
2294 	 * will be used by hw_perf_enable()
2295 	 */
2296 	memcpy(cpuc->assign, assign, n*sizeof(int));
2297 
2298 	cpuc->txn_flags = 0;
2299 	perf_pmu_enable(pmu);
2300 	return 0;
2301 }
2302 /*
2303  * a fake_cpuc is used to validate event groups. Due to
2304  * the extra reg logic, we need to also allocate a fake
2305  * per_core and per_cpu structure. Otherwise, group events
2306  * using extra reg may conflict without the kernel being
2307  * able to catch this when the last event gets added to
2308  * the group.
2309  */
2310 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
2311 {
2312 	intel_cpuc_finish(cpuc);
2313 	kfree(cpuc);
2314 }
2315 
2316 static struct cpu_hw_events *allocate_fake_cpuc(struct pmu *event_pmu)
2317 {
2318 	struct cpu_hw_events *cpuc;
2319 	int cpu;
2320 
2321 	cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
2322 	if (!cpuc)
2323 		return ERR_PTR(-ENOMEM);
2324 	cpuc->is_fake = 1;
2325 
2326 	if (is_hybrid()) {
2327 		struct x86_hybrid_pmu *h_pmu;
2328 
2329 		h_pmu = hybrid_pmu(event_pmu);
2330 		if (cpumask_empty(&h_pmu->supported_cpus))
2331 			goto error;
2332 		cpu = cpumask_first(&h_pmu->supported_cpus);
2333 	} else
2334 		cpu = raw_smp_processor_id();
2335 	cpuc->pmu = event_pmu;
2336 
2337 	if (intel_cpuc_prepare(cpuc, cpu))
2338 		goto error;
2339 
2340 	return cpuc;
2341 error:
2342 	free_fake_cpuc(cpuc);
2343 	return ERR_PTR(-ENOMEM);
2344 }
2345 
2346 /*
2347  * validate that we can schedule this event
2348  */
2349 static int validate_event(struct perf_event *event)
2350 {
2351 	struct cpu_hw_events *fake_cpuc;
2352 	struct event_constraint *c;
2353 	int ret = 0;
2354 
2355 	fake_cpuc = allocate_fake_cpuc(event->pmu);
2356 	if (IS_ERR(fake_cpuc))
2357 		return PTR_ERR(fake_cpuc);
2358 
2359 	c = x86_pmu.get_event_constraints(fake_cpuc, 0, event);
2360 
2361 	if (!c || !c->weight)
2362 		ret = -EINVAL;
2363 
2364 	if (x86_pmu.put_event_constraints)
2365 		x86_pmu.put_event_constraints(fake_cpuc, event);
2366 
2367 	free_fake_cpuc(fake_cpuc);
2368 
2369 	return ret;
2370 }
2371 
2372 /*
2373  * validate a single event group
2374  *
2375  * validation include:
2376  *	- check events are compatible which each other
2377  *	- events do not compete for the same counter
2378  *	- number of events <= number of counters
2379  *
2380  * validation ensures the group can be loaded onto the
2381  * PMU if it was the only group available.
2382  */
2383 static int validate_group(struct perf_event *event)
2384 {
2385 	struct perf_event *leader = event->group_leader;
2386 	struct cpu_hw_events *fake_cpuc;
2387 	int ret = -EINVAL, n;
2388 
2389 	/*
2390 	 * Reject events from different hybrid PMUs.
2391 	 */
2392 	if (is_hybrid()) {
2393 		struct perf_event *sibling;
2394 		struct pmu *pmu = NULL;
2395 
2396 		if (is_x86_event(leader))
2397 			pmu = leader->pmu;
2398 
2399 		for_each_sibling_event(sibling, leader) {
2400 			if (!is_x86_event(sibling))
2401 				continue;
2402 			if (!pmu)
2403 				pmu = sibling->pmu;
2404 			else if (pmu != sibling->pmu)
2405 				return ret;
2406 		}
2407 	}
2408 
2409 	fake_cpuc = allocate_fake_cpuc(event->pmu);
2410 	if (IS_ERR(fake_cpuc))
2411 		return PTR_ERR(fake_cpuc);
2412 	/*
2413 	 * the event is not yet connected with its
2414 	 * siblings therefore we must first collect
2415 	 * existing siblings, then add the new event
2416 	 * before we can simulate the scheduling
2417 	 */
2418 	n = collect_events(fake_cpuc, leader, true);
2419 	if (n < 0)
2420 		goto out;
2421 
2422 	fake_cpuc->n_events = n;
2423 	n = collect_events(fake_cpuc, event, false);
2424 	if (n < 0)
2425 		goto out;
2426 
2427 	fake_cpuc->n_events = 0;
2428 	ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
2429 
2430 out:
2431 	free_fake_cpuc(fake_cpuc);
2432 	return ret;
2433 }
2434 
2435 static int x86_pmu_event_init(struct perf_event *event)
2436 {
2437 	struct x86_hybrid_pmu *pmu = NULL;
2438 	int err;
2439 
2440 	if ((event->attr.type != event->pmu->type) &&
2441 	    (event->attr.type != PERF_TYPE_HARDWARE) &&
2442 	    (event->attr.type != PERF_TYPE_HW_CACHE))
2443 		return -ENOENT;
2444 
2445 	if (is_hybrid() && (event->cpu != -1)) {
2446 		pmu = hybrid_pmu(event->pmu);
2447 		if (!cpumask_test_cpu(event->cpu, &pmu->supported_cpus))
2448 			return -ENOENT;
2449 	}
2450 
2451 	err = __x86_pmu_event_init(event);
2452 	if (!err) {
2453 		if (event->group_leader != event)
2454 			err = validate_group(event);
2455 		else
2456 			err = validate_event(event);
2457 	}
2458 	if (err) {
2459 		if (event->destroy)
2460 			event->destroy(event);
2461 		event->destroy = NULL;
2462 	}
2463 
2464 	if (READ_ONCE(x86_pmu.attr_rdpmc) &&
2465 	    !(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS))
2466 		event->hw.flags |= PERF_EVENT_FLAG_USER_READ_CNT;
2467 
2468 	return err;
2469 }
2470 
2471 void perf_clear_dirty_counters(void)
2472 {
2473 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2474 	int i;
2475 
2476 	 /* Don't need to clear the assigned counter. */
2477 	for (i = 0; i < cpuc->n_events; i++)
2478 		__clear_bit(cpuc->assign[i], cpuc->dirty);
2479 
2480 	if (bitmap_empty(cpuc->dirty, X86_PMC_IDX_MAX))
2481 		return;
2482 
2483 	for_each_set_bit(i, cpuc->dirty, X86_PMC_IDX_MAX) {
2484 		if (i >= INTEL_PMC_IDX_FIXED) {
2485 			/* Metrics and fake events don't have corresponding HW counters. */
2486 			if (!test_bit(i - INTEL_PMC_IDX_FIXED, hybrid(cpuc->pmu, fixed_cntr_mask)))
2487 				continue;
2488 
2489 			wrmsrl(x86_pmu_fixed_ctr_addr(i - INTEL_PMC_IDX_FIXED), 0);
2490 		} else {
2491 			wrmsrl(x86_pmu_event_addr(i), 0);
2492 		}
2493 	}
2494 
2495 	bitmap_zero(cpuc->dirty, X86_PMC_IDX_MAX);
2496 }
2497 
2498 static void x86_pmu_event_mapped(struct perf_event *event, struct mm_struct *mm)
2499 {
2500 	if (!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT))
2501 		return;
2502 
2503 	/*
2504 	 * This function relies on not being called concurrently in two
2505 	 * tasks in the same mm.  Otherwise one task could observe
2506 	 * perf_rdpmc_allowed > 1 and return all the way back to
2507 	 * userspace with CR4.PCE clear while another task is still
2508 	 * doing on_each_cpu_mask() to propagate CR4.PCE.
2509 	 *
2510 	 * For now, this can't happen because all callers hold mmap_lock
2511 	 * for write.  If this changes, we'll need a different solution.
2512 	 */
2513 	mmap_assert_write_locked(mm);
2514 
2515 	if (atomic_inc_return(&mm->context.perf_rdpmc_allowed) == 1)
2516 		on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1);
2517 }
2518 
2519 static void x86_pmu_event_unmapped(struct perf_event *event, struct mm_struct *mm)
2520 {
2521 	if (!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT))
2522 		return;
2523 
2524 	if (atomic_dec_and_test(&mm->context.perf_rdpmc_allowed))
2525 		on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1);
2526 }
2527 
2528 static int x86_pmu_event_idx(struct perf_event *event)
2529 {
2530 	struct hw_perf_event *hwc = &event->hw;
2531 
2532 	if (!(hwc->flags & PERF_EVENT_FLAG_USER_READ_CNT))
2533 		return 0;
2534 
2535 	if (is_metric_idx(hwc->idx))
2536 		return INTEL_PMC_FIXED_RDPMC_METRICS + 1;
2537 	else
2538 		return hwc->event_base_rdpmc + 1;
2539 }
2540 
2541 static ssize_t get_attr_rdpmc(struct device *cdev,
2542 			      struct device_attribute *attr,
2543 			      char *buf)
2544 {
2545 	return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
2546 }
2547 
2548 static ssize_t set_attr_rdpmc(struct device *cdev,
2549 			      struct device_attribute *attr,
2550 			      const char *buf, size_t count)
2551 {
2552 	static DEFINE_MUTEX(rdpmc_mutex);
2553 	unsigned long val;
2554 	ssize_t ret;
2555 
2556 	ret = kstrtoul(buf, 0, &val);
2557 	if (ret)
2558 		return ret;
2559 
2560 	if (val > 2)
2561 		return -EINVAL;
2562 
2563 	if (x86_pmu.attr_rdpmc_broken)
2564 		return -ENOTSUPP;
2565 
2566 	guard(mutex)(&rdpmc_mutex);
2567 
2568 	if (val != x86_pmu.attr_rdpmc) {
2569 		/*
2570 		 * Changing into or out of never available or always available,
2571 		 * aka perf-event-bypassing mode. This path is extremely slow,
2572 		 * but only root can trigger it, so it's okay.
2573 		 */
2574 		if (val == 0)
2575 			static_branch_inc(&rdpmc_never_available_key);
2576 		else if (x86_pmu.attr_rdpmc == 0)
2577 			static_branch_dec(&rdpmc_never_available_key);
2578 
2579 		if (val == 2)
2580 			static_branch_inc(&rdpmc_always_available_key);
2581 		else if (x86_pmu.attr_rdpmc == 2)
2582 			static_branch_dec(&rdpmc_always_available_key);
2583 
2584 		on_each_cpu(cr4_update_pce, NULL, 1);
2585 		x86_pmu.attr_rdpmc = val;
2586 	}
2587 
2588 	return count;
2589 }
2590 
2591 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
2592 
2593 static struct attribute *x86_pmu_attrs[] = {
2594 	&dev_attr_rdpmc.attr,
2595 	NULL,
2596 };
2597 
2598 static struct attribute_group x86_pmu_attr_group __ro_after_init = {
2599 	.attrs = x86_pmu_attrs,
2600 };
2601 
2602 static ssize_t max_precise_show(struct device *cdev,
2603 				  struct device_attribute *attr,
2604 				  char *buf)
2605 {
2606 	return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu_max_precise());
2607 }
2608 
2609 static DEVICE_ATTR_RO(max_precise);
2610 
2611 static struct attribute *x86_pmu_caps_attrs[] = {
2612 	&dev_attr_max_precise.attr,
2613 	NULL
2614 };
2615 
2616 static struct attribute_group x86_pmu_caps_group __ro_after_init = {
2617 	.name = "caps",
2618 	.attrs = x86_pmu_caps_attrs,
2619 };
2620 
2621 static const struct attribute_group *x86_pmu_attr_groups[] = {
2622 	&x86_pmu_attr_group,
2623 	&x86_pmu_format_group,
2624 	&x86_pmu_events_group,
2625 	&x86_pmu_caps_group,
2626 	NULL,
2627 };
2628 
2629 static void x86_pmu_sched_task(struct perf_event_pmu_context *pmu_ctx, bool sched_in)
2630 {
2631 	static_call_cond(x86_pmu_sched_task)(pmu_ctx, sched_in);
2632 }
2633 
2634 static void x86_pmu_swap_task_ctx(struct perf_event_pmu_context *prev_epc,
2635 				  struct perf_event_pmu_context *next_epc)
2636 {
2637 	static_call_cond(x86_pmu_swap_task_ctx)(prev_epc, next_epc);
2638 }
2639 
2640 void perf_check_microcode(void)
2641 {
2642 	if (x86_pmu.check_microcode)
2643 		x86_pmu.check_microcode();
2644 }
2645 
2646 static int x86_pmu_check_period(struct perf_event *event, u64 value)
2647 {
2648 	if (x86_pmu.check_period && x86_pmu.check_period(event, value))
2649 		return -EINVAL;
2650 
2651 	if (value && x86_pmu.limit_period) {
2652 		s64 left = value;
2653 		x86_pmu.limit_period(event, &left);
2654 		if (left > value)
2655 			return -EINVAL;
2656 	}
2657 
2658 	return 0;
2659 }
2660 
2661 static int x86_pmu_aux_output_match(struct perf_event *event)
2662 {
2663 	if (!(pmu.capabilities & PERF_PMU_CAP_AUX_OUTPUT))
2664 		return 0;
2665 
2666 	if (x86_pmu.aux_output_match)
2667 		return x86_pmu.aux_output_match(event);
2668 
2669 	return 0;
2670 }
2671 
2672 static bool x86_pmu_filter(struct pmu *pmu, int cpu)
2673 {
2674 	bool ret = false;
2675 
2676 	static_call_cond(x86_pmu_filter)(pmu, cpu, &ret);
2677 
2678 	return ret;
2679 }
2680 
2681 static struct pmu pmu = {
2682 	.pmu_enable		= x86_pmu_enable,
2683 	.pmu_disable		= x86_pmu_disable,
2684 
2685 	.attr_groups		= x86_pmu_attr_groups,
2686 
2687 	.event_init		= x86_pmu_event_init,
2688 
2689 	.event_mapped		= x86_pmu_event_mapped,
2690 	.event_unmapped		= x86_pmu_event_unmapped,
2691 
2692 	.add			= x86_pmu_add,
2693 	.del			= x86_pmu_del,
2694 	.start			= x86_pmu_start,
2695 	.stop			= x86_pmu_stop,
2696 	.read			= x86_pmu_read,
2697 
2698 	.start_txn		= x86_pmu_start_txn,
2699 	.cancel_txn		= x86_pmu_cancel_txn,
2700 	.commit_txn		= x86_pmu_commit_txn,
2701 
2702 	.event_idx		= x86_pmu_event_idx,
2703 	.sched_task		= x86_pmu_sched_task,
2704 	.swap_task_ctx		= x86_pmu_swap_task_ctx,
2705 	.check_period		= x86_pmu_check_period,
2706 
2707 	.aux_output_match	= x86_pmu_aux_output_match,
2708 
2709 	.filter			= x86_pmu_filter,
2710 };
2711 
2712 void arch_perf_update_userpage(struct perf_event *event,
2713 			       struct perf_event_mmap_page *userpg, u64 now)
2714 {
2715 	struct cyc2ns_data data;
2716 	u64 offset;
2717 
2718 	userpg->cap_user_time = 0;
2719 	userpg->cap_user_time_zero = 0;
2720 	userpg->cap_user_rdpmc =
2721 		!!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT);
2722 	userpg->pmc_width = x86_pmu.cntval_bits;
2723 
2724 	if (!using_native_sched_clock() || !sched_clock_stable())
2725 		return;
2726 
2727 	cyc2ns_read_begin(&data);
2728 
2729 	offset = data.cyc2ns_offset + __sched_clock_offset;
2730 
2731 	/*
2732 	 * Internal timekeeping for enabled/running/stopped times
2733 	 * is always in the local_clock domain.
2734 	 */
2735 	userpg->cap_user_time = 1;
2736 	userpg->time_mult = data.cyc2ns_mul;
2737 	userpg->time_shift = data.cyc2ns_shift;
2738 	userpg->time_offset = offset - now;
2739 
2740 	/*
2741 	 * cap_user_time_zero doesn't make sense when we're using a different
2742 	 * time base for the records.
2743 	 */
2744 	if (!event->attr.use_clockid) {
2745 		userpg->cap_user_time_zero = 1;
2746 		userpg->time_zero = offset;
2747 	}
2748 
2749 	cyc2ns_read_end();
2750 }
2751 
2752 /*
2753  * Determine whether the regs were taken from an irq/exception handler rather
2754  * than from perf_arch_fetch_caller_regs().
2755  */
2756 static bool perf_hw_regs(struct pt_regs *regs)
2757 {
2758 	return regs->flags & X86_EFLAGS_FIXED;
2759 }
2760 
2761 void
2762 perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2763 {
2764 	struct unwind_state state;
2765 	unsigned long addr;
2766 
2767 	if (perf_guest_state()) {
2768 		/* TODO: We don't support guest os callchain now */
2769 		return;
2770 	}
2771 
2772 	if (perf_callchain_store(entry, regs->ip))
2773 		return;
2774 
2775 	if (perf_hw_regs(regs))
2776 		unwind_start(&state, current, regs, NULL);
2777 	else
2778 		unwind_start(&state, current, NULL, (void *)regs->sp);
2779 
2780 	for (; !unwind_done(&state); unwind_next_frame(&state)) {
2781 		addr = unwind_get_return_address(&state);
2782 		if (!addr || perf_callchain_store(entry, addr))
2783 			return;
2784 	}
2785 }
2786 
2787 static inline int
2788 valid_user_frame(const void __user *fp, unsigned long size)
2789 {
2790 	return __access_ok(fp, size);
2791 }
2792 
2793 static unsigned long get_segment_base(unsigned int segment)
2794 {
2795 	struct desc_struct *desc;
2796 	unsigned int idx = segment >> 3;
2797 
2798 	if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2799 #ifdef CONFIG_MODIFY_LDT_SYSCALL
2800 		struct ldt_struct *ldt;
2801 
2802 		/* IRQs are off, so this synchronizes with smp_store_release */
2803 		ldt = READ_ONCE(current->active_mm->context.ldt);
2804 		if (!ldt || idx >= ldt->nr_entries)
2805 			return 0;
2806 
2807 		desc = &ldt->entries[idx];
2808 #else
2809 		return 0;
2810 #endif
2811 	} else {
2812 		if (idx >= GDT_ENTRIES)
2813 			return 0;
2814 
2815 		desc = raw_cpu_ptr(gdt_page.gdt) + idx;
2816 	}
2817 
2818 	return get_desc_base(desc);
2819 }
2820 
2821 #ifdef CONFIG_UPROBES
2822 /*
2823  * Heuristic-based check if uprobe is installed at the function entry.
2824  *
2825  * Under assumption of user code being compiled with frame pointers,
2826  * `push %rbp/%ebp` is a good indicator that we indeed are.
2827  *
2828  * Similarly, `endbr64` (assuming 64-bit mode) is also a common pattern.
2829  * If we get this wrong, captured stack trace might have one extra bogus
2830  * entry, but the rest of stack trace will still be meaningful.
2831  */
2832 static bool is_uprobe_at_func_entry(struct pt_regs *regs)
2833 {
2834 	struct arch_uprobe *auprobe;
2835 
2836 	if (!current->utask)
2837 		return false;
2838 
2839 	auprobe = current->utask->auprobe;
2840 	if (!auprobe)
2841 		return false;
2842 
2843 	/* push %rbp/%ebp */
2844 	if (auprobe->insn[0] == 0x55)
2845 		return true;
2846 
2847 	/* endbr64 (64-bit only) */
2848 	if (user_64bit_mode(regs) && is_endbr(*(u32 *)auprobe->insn))
2849 		return true;
2850 
2851 	return false;
2852 }
2853 
2854 #else
2855 static bool is_uprobe_at_func_entry(struct pt_regs *regs)
2856 {
2857 	return false;
2858 }
2859 #endif /* CONFIG_UPROBES */
2860 
2861 #ifdef CONFIG_IA32_EMULATION
2862 
2863 #include <linux/compat.h>
2864 
2865 static inline int
2866 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2867 {
2868 	/* 32-bit process in 64-bit kernel. */
2869 	unsigned long ss_base, cs_base;
2870 	struct stack_frame_ia32 frame;
2871 	const struct stack_frame_ia32 __user *fp;
2872 	u32 ret_addr;
2873 
2874 	if (user_64bit_mode(regs))
2875 		return 0;
2876 
2877 	cs_base = get_segment_base(regs->cs);
2878 	ss_base = get_segment_base(regs->ss);
2879 
2880 	fp = compat_ptr(ss_base + regs->bp);
2881 	pagefault_disable();
2882 
2883 	/* see perf_callchain_user() below for why we do this */
2884 	if (is_uprobe_at_func_entry(regs) &&
2885 	    !get_user(ret_addr, (const u32 __user *)regs->sp))
2886 		perf_callchain_store(entry, ret_addr);
2887 
2888 	while (entry->nr < entry->max_stack) {
2889 		if (!valid_user_frame(fp, sizeof(frame)))
2890 			break;
2891 
2892 		if (__get_user(frame.next_frame, &fp->next_frame))
2893 			break;
2894 		if (__get_user(frame.return_address, &fp->return_address))
2895 			break;
2896 
2897 		perf_callchain_store(entry, cs_base + frame.return_address);
2898 		fp = compat_ptr(ss_base + frame.next_frame);
2899 	}
2900 	pagefault_enable();
2901 	return 1;
2902 }
2903 #else
2904 static inline int
2905 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2906 {
2907     return 0;
2908 }
2909 #endif
2910 
2911 void
2912 perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2913 {
2914 	struct stack_frame frame;
2915 	const struct stack_frame __user *fp;
2916 	unsigned long ret_addr;
2917 
2918 	if (perf_guest_state()) {
2919 		/* TODO: We don't support guest os callchain now */
2920 		return;
2921 	}
2922 
2923 	/*
2924 	 * We don't know what to do with VM86 stacks.. ignore them for now.
2925 	 */
2926 	if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2927 		return;
2928 
2929 	fp = (void __user *)regs->bp;
2930 
2931 	perf_callchain_store(entry, regs->ip);
2932 
2933 	if (!nmi_uaccess_okay())
2934 		return;
2935 
2936 	if (perf_callchain_user32(regs, entry))
2937 		return;
2938 
2939 	pagefault_disable();
2940 
2941 	/*
2942 	 * If we are called from uprobe handler, and we are indeed at the very
2943 	 * entry to user function (which is normally a `push %rbp` instruction,
2944 	 * under assumption of application being compiled with frame pointers),
2945 	 * we should read return address from *regs->sp before proceeding
2946 	 * to follow frame pointers, otherwise we'll skip immediate caller
2947 	 * as %rbp is not yet setup.
2948 	 */
2949 	if (is_uprobe_at_func_entry(regs) &&
2950 	    !get_user(ret_addr, (const unsigned long __user *)regs->sp))
2951 		perf_callchain_store(entry, ret_addr);
2952 
2953 	while (entry->nr < entry->max_stack) {
2954 		if (!valid_user_frame(fp, sizeof(frame)))
2955 			break;
2956 
2957 		if (__get_user(frame.next_frame, &fp->next_frame))
2958 			break;
2959 		if (__get_user(frame.return_address, &fp->return_address))
2960 			break;
2961 
2962 		perf_callchain_store(entry, frame.return_address);
2963 		fp = (void __user *)frame.next_frame;
2964 	}
2965 	pagefault_enable();
2966 }
2967 
2968 /*
2969  * Deal with code segment offsets for the various execution modes:
2970  *
2971  *   VM86 - the good olde 16 bit days, where the linear address is
2972  *          20 bits and we use regs->ip + 0x10 * regs->cs.
2973  *
2974  *   IA32 - Where we need to look at GDT/LDT segment descriptor tables
2975  *          to figure out what the 32bit base address is.
2976  *
2977  *    X32 - has TIF_X32 set, but is running in x86_64
2978  *
2979  * X86_64 - CS,DS,SS,ES are all zero based.
2980  */
2981 static unsigned long code_segment_base(struct pt_regs *regs)
2982 {
2983 	/*
2984 	 * For IA32 we look at the GDT/LDT segment base to convert the
2985 	 * effective IP to a linear address.
2986 	 */
2987 
2988 #ifdef CONFIG_X86_32
2989 	/*
2990 	 * If we are in VM86 mode, add the segment offset to convert to a
2991 	 * linear address.
2992 	 */
2993 	if (regs->flags & X86_VM_MASK)
2994 		return 0x10 * regs->cs;
2995 
2996 	if (user_mode(regs) && regs->cs != __USER_CS)
2997 		return get_segment_base(regs->cs);
2998 #else
2999 	if (user_mode(regs) && !user_64bit_mode(regs) &&
3000 	    regs->cs != __USER32_CS)
3001 		return get_segment_base(regs->cs);
3002 #endif
3003 	return 0;
3004 }
3005 
3006 unsigned long perf_instruction_pointer(struct pt_regs *regs)
3007 {
3008 	if (perf_guest_state())
3009 		return perf_guest_get_ip();
3010 
3011 	return regs->ip + code_segment_base(regs);
3012 }
3013 
3014 unsigned long perf_misc_flags(struct pt_regs *regs)
3015 {
3016 	unsigned int guest_state = perf_guest_state();
3017 	int misc = 0;
3018 
3019 	if (guest_state) {
3020 		if (guest_state & PERF_GUEST_USER)
3021 			misc |= PERF_RECORD_MISC_GUEST_USER;
3022 		else
3023 			misc |= PERF_RECORD_MISC_GUEST_KERNEL;
3024 	} else {
3025 		if (user_mode(regs))
3026 			misc |= PERF_RECORD_MISC_USER;
3027 		else
3028 			misc |= PERF_RECORD_MISC_KERNEL;
3029 	}
3030 
3031 	if (regs->flags & PERF_EFLAGS_EXACT)
3032 		misc |= PERF_RECORD_MISC_EXACT_IP;
3033 
3034 	return misc;
3035 }
3036 
3037 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
3038 {
3039 	/* This API doesn't currently support enumerating hybrid PMUs. */
3040 	if (WARN_ON_ONCE(cpu_feature_enabled(X86_FEATURE_HYBRID_CPU)) ||
3041 	    !x86_pmu_initialized()) {
3042 		memset(cap, 0, sizeof(*cap));
3043 		return;
3044 	}
3045 
3046 	/*
3047 	 * Note, hybrid CPU models get tracked as having hybrid PMUs even when
3048 	 * all E-cores are disabled via BIOS.  When E-cores are disabled, the
3049 	 * base PMU holds the correct number of counters for P-cores.
3050 	 */
3051 	cap->version		= x86_pmu.version;
3052 	cap->num_counters_gp	= x86_pmu_num_counters(NULL);
3053 	cap->num_counters_fixed	= x86_pmu_num_counters_fixed(NULL);
3054 	cap->bit_width_gp	= x86_pmu.cntval_bits;
3055 	cap->bit_width_fixed	= x86_pmu.cntval_bits;
3056 	cap->events_mask	= (unsigned int)x86_pmu.events_maskl;
3057 	cap->events_mask_len	= x86_pmu.events_mask_len;
3058 	cap->pebs_ept		= x86_pmu.pebs_ept;
3059 }
3060 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);
3061 
3062 u64 perf_get_hw_event_config(int hw_event)
3063 {
3064 	int max = x86_pmu.max_events;
3065 
3066 	if (hw_event < max)
3067 		return x86_pmu.event_map(array_index_nospec(hw_event, max));
3068 
3069 	return 0;
3070 }
3071 EXPORT_SYMBOL_GPL(perf_get_hw_event_config);
3072