1 /* 2 * Performance events x86 architecture code 3 * 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2009 Jaswinder Singh Rajput 7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter 8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra 9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com> 10 * Copyright (C) 2009 Google, Inc., Stephane Eranian 11 * 12 * For licencing details see kernel-base/COPYING 13 */ 14 15 #include <linux/perf_event.h> 16 #include <linux/capability.h> 17 #include <linux/notifier.h> 18 #include <linux/hardirq.h> 19 #include <linux/kprobes.h> 20 #include <linux/export.h> 21 #include <linux/init.h> 22 #include <linux/kdebug.h> 23 #include <linux/sched/mm.h> 24 #include <linux/sched/clock.h> 25 #include <linux/uaccess.h> 26 #include <linux/slab.h> 27 #include <linux/cpu.h> 28 #include <linux/bitops.h> 29 #include <linux/device.h> 30 #include <linux/nospec.h> 31 #include <linux/static_call.h> 32 33 #include <asm/apic.h> 34 #include <asm/stacktrace.h> 35 #include <asm/nmi.h> 36 #include <asm/smp.h> 37 #include <asm/alternative.h> 38 #include <asm/mmu_context.h> 39 #include <asm/tlbflush.h> 40 #include <asm/timer.h> 41 #include <asm/desc.h> 42 #include <asm/ldt.h> 43 #include <asm/unwind.h> 44 45 #include "perf_event.h" 46 47 struct x86_pmu x86_pmu __read_mostly; 48 static struct pmu pmu; 49 50 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { 51 .enabled = 1, 52 .pmu = &pmu, 53 }; 54 55 DEFINE_STATIC_KEY_FALSE(rdpmc_never_available_key); 56 DEFINE_STATIC_KEY_FALSE(rdpmc_always_available_key); 57 DEFINE_STATIC_KEY_FALSE(perf_is_hybrid); 58 59 /* 60 * This here uses DEFINE_STATIC_CALL_NULL() to get a static_call defined 61 * from just a typename, as opposed to an actual function. 62 */ 63 DEFINE_STATIC_CALL_NULL(x86_pmu_handle_irq, *x86_pmu.handle_irq); 64 DEFINE_STATIC_CALL_NULL(x86_pmu_disable_all, *x86_pmu.disable_all); 65 DEFINE_STATIC_CALL_NULL(x86_pmu_enable_all, *x86_pmu.enable_all); 66 DEFINE_STATIC_CALL_NULL(x86_pmu_enable, *x86_pmu.enable); 67 DEFINE_STATIC_CALL_NULL(x86_pmu_disable, *x86_pmu.disable); 68 69 DEFINE_STATIC_CALL_NULL(x86_pmu_assign, *x86_pmu.assign); 70 71 DEFINE_STATIC_CALL_NULL(x86_pmu_add, *x86_pmu.add); 72 DEFINE_STATIC_CALL_NULL(x86_pmu_del, *x86_pmu.del); 73 DEFINE_STATIC_CALL_NULL(x86_pmu_read, *x86_pmu.read); 74 75 DEFINE_STATIC_CALL_NULL(x86_pmu_set_period, *x86_pmu.set_period); 76 DEFINE_STATIC_CALL_NULL(x86_pmu_update, *x86_pmu.update); 77 DEFINE_STATIC_CALL_NULL(x86_pmu_limit_period, *x86_pmu.limit_period); 78 79 DEFINE_STATIC_CALL_NULL(x86_pmu_schedule_events, *x86_pmu.schedule_events); 80 DEFINE_STATIC_CALL_NULL(x86_pmu_get_event_constraints, *x86_pmu.get_event_constraints); 81 DEFINE_STATIC_CALL_NULL(x86_pmu_put_event_constraints, *x86_pmu.put_event_constraints); 82 83 DEFINE_STATIC_CALL_NULL(x86_pmu_start_scheduling, *x86_pmu.start_scheduling); 84 DEFINE_STATIC_CALL_NULL(x86_pmu_commit_scheduling, *x86_pmu.commit_scheduling); 85 DEFINE_STATIC_CALL_NULL(x86_pmu_stop_scheduling, *x86_pmu.stop_scheduling); 86 87 DEFINE_STATIC_CALL_NULL(x86_pmu_sched_task, *x86_pmu.sched_task); 88 DEFINE_STATIC_CALL_NULL(x86_pmu_swap_task_ctx, *x86_pmu.swap_task_ctx); 89 90 DEFINE_STATIC_CALL_NULL(x86_pmu_drain_pebs, *x86_pmu.drain_pebs); 91 DEFINE_STATIC_CALL_NULL(x86_pmu_pebs_aliases, *x86_pmu.pebs_aliases); 92 93 DEFINE_STATIC_CALL_NULL(x86_pmu_filter, *x86_pmu.filter); 94 95 /* 96 * This one is magic, it will get called even when PMU init fails (because 97 * there is no PMU), in which case it should simply return NULL. 98 */ 99 DEFINE_STATIC_CALL_RET0(x86_pmu_guest_get_msrs, *x86_pmu.guest_get_msrs); 100 101 u64 __read_mostly hw_cache_event_ids 102 [PERF_COUNT_HW_CACHE_MAX] 103 [PERF_COUNT_HW_CACHE_OP_MAX] 104 [PERF_COUNT_HW_CACHE_RESULT_MAX]; 105 u64 __read_mostly hw_cache_extra_regs 106 [PERF_COUNT_HW_CACHE_MAX] 107 [PERF_COUNT_HW_CACHE_OP_MAX] 108 [PERF_COUNT_HW_CACHE_RESULT_MAX]; 109 110 /* 111 * Propagate event elapsed time into the generic event. 112 * Can only be executed on the CPU where the event is active. 113 * Returns the delta events processed. 114 */ 115 u64 x86_perf_event_update(struct perf_event *event) 116 { 117 struct hw_perf_event *hwc = &event->hw; 118 int shift = 64 - x86_pmu.cntval_bits; 119 u64 prev_raw_count, new_raw_count; 120 u64 delta; 121 122 if (unlikely(!hwc->event_base)) 123 return 0; 124 125 /* 126 * Careful: an NMI might modify the previous event value. 127 * 128 * Our tactic to handle this is to first atomically read and 129 * exchange a new raw count - then add that new-prev delta 130 * count to the generic event atomically: 131 */ 132 prev_raw_count = local64_read(&hwc->prev_count); 133 do { 134 rdpmcl(hwc->event_base_rdpmc, new_raw_count); 135 } while (!local64_try_cmpxchg(&hwc->prev_count, 136 &prev_raw_count, new_raw_count)); 137 138 /* 139 * Now we have the new raw value and have updated the prev 140 * timestamp already. We can now calculate the elapsed delta 141 * (event-)time and add that to the generic event. 142 * 143 * Careful, not all hw sign-extends above the physical width 144 * of the count. 145 */ 146 delta = (new_raw_count << shift) - (prev_raw_count << shift); 147 delta >>= shift; 148 149 local64_add(delta, &event->count); 150 local64_sub(delta, &hwc->period_left); 151 152 return new_raw_count; 153 } 154 155 /* 156 * Find and validate any extra registers to set up. 157 */ 158 static int x86_pmu_extra_regs(u64 config, struct perf_event *event) 159 { 160 struct extra_reg *extra_regs = hybrid(event->pmu, extra_regs); 161 struct hw_perf_event_extra *reg; 162 struct extra_reg *er; 163 164 reg = &event->hw.extra_reg; 165 166 if (!extra_regs) 167 return 0; 168 169 for (er = extra_regs; er->msr; er++) { 170 if (er->event != (config & er->config_mask)) 171 continue; 172 if (event->attr.config1 & ~er->valid_mask) 173 return -EINVAL; 174 /* Check if the extra msrs can be safely accessed*/ 175 if (!er->extra_msr_access) 176 return -ENXIO; 177 178 reg->idx = er->idx; 179 reg->config = event->attr.config1; 180 reg->reg = er->msr; 181 break; 182 } 183 return 0; 184 } 185 186 static atomic_t active_events; 187 static atomic_t pmc_refcount; 188 static DEFINE_MUTEX(pmc_reserve_mutex); 189 190 #ifdef CONFIG_X86_LOCAL_APIC 191 192 static inline u64 get_possible_counter_mask(void) 193 { 194 u64 cntr_mask = x86_pmu.cntr_mask64; 195 int i; 196 197 if (!is_hybrid()) 198 return cntr_mask; 199 200 for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) 201 cntr_mask |= x86_pmu.hybrid_pmu[i].cntr_mask64; 202 203 return cntr_mask; 204 } 205 206 static bool reserve_pmc_hardware(void) 207 { 208 u64 cntr_mask = get_possible_counter_mask(); 209 int i, end; 210 211 for_each_set_bit(i, (unsigned long *)&cntr_mask, X86_PMC_IDX_MAX) { 212 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i))) 213 goto perfctr_fail; 214 } 215 216 for_each_set_bit(i, (unsigned long *)&cntr_mask, X86_PMC_IDX_MAX) { 217 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i))) 218 goto eventsel_fail; 219 } 220 221 return true; 222 223 eventsel_fail: 224 end = i; 225 for_each_set_bit(i, (unsigned long *)&cntr_mask, end) 226 release_evntsel_nmi(x86_pmu_config_addr(i)); 227 i = X86_PMC_IDX_MAX; 228 229 perfctr_fail: 230 end = i; 231 for_each_set_bit(i, (unsigned long *)&cntr_mask, end) 232 release_perfctr_nmi(x86_pmu_event_addr(i)); 233 234 return false; 235 } 236 237 static void release_pmc_hardware(void) 238 { 239 u64 cntr_mask = get_possible_counter_mask(); 240 int i; 241 242 for_each_set_bit(i, (unsigned long *)&cntr_mask, X86_PMC_IDX_MAX) { 243 release_perfctr_nmi(x86_pmu_event_addr(i)); 244 release_evntsel_nmi(x86_pmu_config_addr(i)); 245 } 246 } 247 248 #else 249 250 static bool reserve_pmc_hardware(void) { return true; } 251 static void release_pmc_hardware(void) {} 252 253 #endif 254 255 bool check_hw_exists(struct pmu *pmu, unsigned long *cntr_mask, 256 unsigned long *fixed_cntr_mask) 257 { 258 u64 val, val_fail = -1, val_new= ~0; 259 int i, reg, reg_fail = -1, ret = 0; 260 int bios_fail = 0; 261 int reg_safe = -1; 262 263 /* 264 * Check to see if the BIOS enabled any of the counters, if so 265 * complain and bail. 266 */ 267 for_each_set_bit(i, cntr_mask, X86_PMC_IDX_MAX) { 268 reg = x86_pmu_config_addr(i); 269 ret = rdmsrl_safe(reg, &val); 270 if (ret) 271 goto msr_fail; 272 if (val & ARCH_PERFMON_EVENTSEL_ENABLE) { 273 bios_fail = 1; 274 val_fail = val; 275 reg_fail = reg; 276 } else { 277 reg_safe = i; 278 } 279 } 280 281 if (*(u64 *)fixed_cntr_mask) { 282 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL; 283 ret = rdmsrl_safe(reg, &val); 284 if (ret) 285 goto msr_fail; 286 for_each_set_bit(i, fixed_cntr_mask, X86_PMC_IDX_MAX) { 287 if (fixed_counter_disabled(i, pmu)) 288 continue; 289 if (val & (0x03ULL << i*4)) { 290 bios_fail = 1; 291 val_fail = val; 292 reg_fail = reg; 293 } 294 } 295 } 296 297 /* 298 * If all the counters are enabled, the below test will always 299 * fail. The tools will also become useless in this scenario. 300 * Just fail and disable the hardware counters. 301 */ 302 303 if (reg_safe == -1) { 304 reg = reg_safe; 305 goto msr_fail; 306 } 307 308 /* 309 * Read the current value, change it and read it back to see if it 310 * matches, this is needed to detect certain hardware emulators 311 * (qemu/kvm) that don't trap on the MSR access and always return 0s. 312 */ 313 reg = x86_pmu_event_addr(reg_safe); 314 if (rdmsrl_safe(reg, &val)) 315 goto msr_fail; 316 val ^= 0xffffUL; 317 ret = wrmsrl_safe(reg, val); 318 ret |= rdmsrl_safe(reg, &val_new); 319 if (ret || val != val_new) 320 goto msr_fail; 321 322 /* 323 * We still allow the PMU driver to operate: 324 */ 325 if (bios_fail) { 326 pr_cont("Broken BIOS detected, complain to your hardware vendor.\n"); 327 pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n", 328 reg_fail, val_fail); 329 } 330 331 return true; 332 333 msr_fail: 334 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) { 335 pr_cont("PMU not available due to virtualization, using software events only.\n"); 336 } else { 337 pr_cont("Broken PMU hardware detected, using software events only.\n"); 338 pr_err("Failed to access perfctr msr (MSR %x is %Lx)\n", 339 reg, val_new); 340 } 341 342 return false; 343 } 344 345 static void hw_perf_event_destroy(struct perf_event *event) 346 { 347 x86_release_hardware(); 348 atomic_dec(&active_events); 349 } 350 351 void hw_perf_lbr_event_destroy(struct perf_event *event) 352 { 353 hw_perf_event_destroy(event); 354 355 /* undo the lbr/bts event accounting */ 356 x86_del_exclusive(x86_lbr_exclusive_lbr); 357 } 358 359 static inline int x86_pmu_initialized(void) 360 { 361 return x86_pmu.handle_irq != NULL; 362 } 363 364 static inline int 365 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event) 366 { 367 struct perf_event_attr *attr = &event->attr; 368 unsigned int cache_type, cache_op, cache_result; 369 u64 config, val; 370 371 config = attr->config; 372 373 cache_type = (config >> 0) & 0xff; 374 if (cache_type >= PERF_COUNT_HW_CACHE_MAX) 375 return -EINVAL; 376 cache_type = array_index_nospec(cache_type, PERF_COUNT_HW_CACHE_MAX); 377 378 cache_op = (config >> 8) & 0xff; 379 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX) 380 return -EINVAL; 381 cache_op = array_index_nospec(cache_op, PERF_COUNT_HW_CACHE_OP_MAX); 382 383 cache_result = (config >> 16) & 0xff; 384 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX) 385 return -EINVAL; 386 cache_result = array_index_nospec(cache_result, PERF_COUNT_HW_CACHE_RESULT_MAX); 387 388 val = hybrid_var(event->pmu, hw_cache_event_ids)[cache_type][cache_op][cache_result]; 389 if (val == 0) 390 return -ENOENT; 391 392 if (val == -1) 393 return -EINVAL; 394 395 hwc->config |= val; 396 attr->config1 = hybrid_var(event->pmu, hw_cache_extra_regs)[cache_type][cache_op][cache_result]; 397 return x86_pmu_extra_regs(val, event); 398 } 399 400 int x86_reserve_hardware(void) 401 { 402 int err = 0; 403 404 if (!atomic_inc_not_zero(&pmc_refcount)) { 405 mutex_lock(&pmc_reserve_mutex); 406 if (atomic_read(&pmc_refcount) == 0) { 407 if (!reserve_pmc_hardware()) { 408 err = -EBUSY; 409 } else { 410 reserve_ds_buffers(); 411 reserve_lbr_buffers(); 412 } 413 } 414 if (!err) 415 atomic_inc(&pmc_refcount); 416 mutex_unlock(&pmc_reserve_mutex); 417 } 418 419 return err; 420 } 421 422 void x86_release_hardware(void) 423 { 424 if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) { 425 release_pmc_hardware(); 426 release_ds_buffers(); 427 release_lbr_buffers(); 428 mutex_unlock(&pmc_reserve_mutex); 429 } 430 } 431 432 /* 433 * Check if we can create event of a certain type (that no conflicting events 434 * are present). 435 */ 436 int x86_add_exclusive(unsigned int what) 437 { 438 int i; 439 440 /* 441 * When lbr_pt_coexist we allow PT to coexist with either LBR or BTS. 442 * LBR and BTS are still mutually exclusive. 443 */ 444 if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt) 445 goto out; 446 447 if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) { 448 mutex_lock(&pmc_reserve_mutex); 449 for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) { 450 if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i])) 451 goto fail_unlock; 452 } 453 atomic_inc(&x86_pmu.lbr_exclusive[what]); 454 mutex_unlock(&pmc_reserve_mutex); 455 } 456 457 out: 458 atomic_inc(&active_events); 459 return 0; 460 461 fail_unlock: 462 mutex_unlock(&pmc_reserve_mutex); 463 return -EBUSY; 464 } 465 466 void x86_del_exclusive(unsigned int what) 467 { 468 atomic_dec(&active_events); 469 470 /* 471 * See the comment in x86_add_exclusive(). 472 */ 473 if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt) 474 return; 475 476 atomic_dec(&x86_pmu.lbr_exclusive[what]); 477 } 478 479 int x86_setup_perfctr(struct perf_event *event) 480 { 481 struct perf_event_attr *attr = &event->attr; 482 struct hw_perf_event *hwc = &event->hw; 483 u64 config; 484 485 if (!is_sampling_event(event)) { 486 hwc->sample_period = x86_pmu.max_period; 487 hwc->last_period = hwc->sample_period; 488 local64_set(&hwc->period_left, hwc->sample_period); 489 } 490 491 if (attr->type == event->pmu->type) 492 return x86_pmu_extra_regs(event->attr.config, event); 493 494 if (attr->type == PERF_TYPE_HW_CACHE) 495 return set_ext_hw_attr(hwc, event); 496 497 if (attr->config >= x86_pmu.max_events) 498 return -EINVAL; 499 500 attr->config = array_index_nospec((unsigned long)attr->config, x86_pmu.max_events); 501 502 /* 503 * The generic map: 504 */ 505 config = x86_pmu.event_map(attr->config); 506 507 if (config == 0) 508 return -ENOENT; 509 510 if (config == -1LL) 511 return -EINVAL; 512 513 hwc->config |= config; 514 515 return 0; 516 } 517 518 /* 519 * check that branch_sample_type is compatible with 520 * settings needed for precise_ip > 1 which implies 521 * using the LBR to capture ALL taken branches at the 522 * priv levels of the measurement 523 */ 524 static inline int precise_br_compat(struct perf_event *event) 525 { 526 u64 m = event->attr.branch_sample_type; 527 u64 b = 0; 528 529 /* must capture all branches */ 530 if (!(m & PERF_SAMPLE_BRANCH_ANY)) 531 return 0; 532 533 m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER; 534 535 if (!event->attr.exclude_user) 536 b |= PERF_SAMPLE_BRANCH_USER; 537 538 if (!event->attr.exclude_kernel) 539 b |= PERF_SAMPLE_BRANCH_KERNEL; 540 541 /* 542 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86 543 */ 544 545 return m == b; 546 } 547 548 int x86_pmu_max_precise(void) 549 { 550 int precise = 0; 551 552 /* Support for constant skid */ 553 if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) { 554 precise++; 555 556 /* Support for IP fixup */ 557 if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2) 558 precise++; 559 560 if (x86_pmu.pebs_prec_dist) 561 precise++; 562 } 563 return precise; 564 } 565 566 int x86_pmu_hw_config(struct perf_event *event) 567 { 568 if (event->attr.precise_ip) { 569 int precise = x86_pmu_max_precise(); 570 571 if (event->attr.precise_ip > precise) 572 return -EOPNOTSUPP; 573 574 /* There's no sense in having PEBS for non sampling events: */ 575 if (!is_sampling_event(event)) 576 return -EINVAL; 577 } 578 /* 579 * check that PEBS LBR correction does not conflict with 580 * whatever the user is asking with attr->branch_sample_type 581 */ 582 if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) { 583 u64 *br_type = &event->attr.branch_sample_type; 584 585 if (has_branch_stack(event)) { 586 if (!precise_br_compat(event)) 587 return -EOPNOTSUPP; 588 589 /* branch_sample_type is compatible */ 590 591 } else { 592 /* 593 * user did not specify branch_sample_type 594 * 595 * For PEBS fixups, we capture all 596 * the branches at the priv level of the 597 * event. 598 */ 599 *br_type = PERF_SAMPLE_BRANCH_ANY; 600 601 if (!event->attr.exclude_user) 602 *br_type |= PERF_SAMPLE_BRANCH_USER; 603 604 if (!event->attr.exclude_kernel) 605 *br_type |= PERF_SAMPLE_BRANCH_KERNEL; 606 } 607 } 608 609 if (branch_sample_call_stack(event)) 610 event->attach_state |= PERF_ATTACH_TASK_DATA; 611 612 /* 613 * Generate PMC IRQs: 614 * (keep 'enabled' bit clear for now) 615 */ 616 event->hw.config = ARCH_PERFMON_EVENTSEL_INT; 617 618 /* 619 * Count user and OS events unless requested not to 620 */ 621 if (!event->attr.exclude_user) 622 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR; 623 if (!event->attr.exclude_kernel) 624 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS; 625 626 if (event->attr.type == event->pmu->type) 627 event->hw.config |= x86_pmu_get_event_config(event); 628 629 if (event->attr.sample_period && x86_pmu.limit_period) { 630 s64 left = event->attr.sample_period; 631 x86_pmu.limit_period(event, &left); 632 if (left > event->attr.sample_period) 633 return -EINVAL; 634 } 635 636 /* sample_regs_user never support XMM registers */ 637 if (unlikely(event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK)) 638 return -EINVAL; 639 /* 640 * Besides the general purpose registers, XMM registers may 641 * be collected in PEBS on some platforms, e.g. Icelake 642 */ 643 if (unlikely(event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK)) { 644 if (!(event->pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS)) 645 return -EINVAL; 646 647 if (!event->attr.precise_ip) 648 return -EINVAL; 649 } 650 651 return x86_setup_perfctr(event); 652 } 653 654 /* 655 * Setup the hardware configuration for a given attr_type 656 */ 657 static int __x86_pmu_event_init(struct perf_event *event) 658 { 659 int err; 660 661 if (!x86_pmu_initialized()) 662 return -ENODEV; 663 664 err = x86_reserve_hardware(); 665 if (err) 666 return err; 667 668 atomic_inc(&active_events); 669 event->destroy = hw_perf_event_destroy; 670 671 event->hw.idx = -1; 672 event->hw.last_cpu = -1; 673 event->hw.last_tag = ~0ULL; 674 675 /* mark unused */ 676 event->hw.extra_reg.idx = EXTRA_REG_NONE; 677 event->hw.branch_reg.idx = EXTRA_REG_NONE; 678 679 return x86_pmu.hw_config(event); 680 } 681 682 void x86_pmu_disable_all(void) 683 { 684 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 685 int idx; 686 687 for_each_set_bit(idx, x86_pmu.cntr_mask, X86_PMC_IDX_MAX) { 688 struct hw_perf_event *hwc = &cpuc->events[idx]->hw; 689 u64 val; 690 691 if (!test_bit(idx, cpuc->active_mask)) 692 continue; 693 rdmsrl(x86_pmu_config_addr(idx), val); 694 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE)) 695 continue; 696 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE; 697 wrmsrl(x86_pmu_config_addr(idx), val); 698 if (is_counter_pair(hwc)) 699 wrmsrl(x86_pmu_config_addr(idx + 1), 0); 700 } 701 } 702 703 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr, void *data) 704 { 705 return static_call(x86_pmu_guest_get_msrs)(nr, data); 706 } 707 EXPORT_SYMBOL_GPL(perf_guest_get_msrs); 708 709 /* 710 * There may be PMI landing after enabled=0. The PMI hitting could be before or 711 * after disable_all. 712 * 713 * If PMI hits before disable_all, the PMU will be disabled in the NMI handler. 714 * It will not be re-enabled in the NMI handler again, because enabled=0. After 715 * handling the NMI, disable_all will be called, which will not change the 716 * state either. If PMI hits after disable_all, the PMU is already disabled 717 * before entering NMI handler. The NMI handler will not change the state 718 * either. 719 * 720 * So either situation is harmless. 721 */ 722 static void x86_pmu_disable(struct pmu *pmu) 723 { 724 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 725 726 if (!x86_pmu_initialized()) 727 return; 728 729 if (!cpuc->enabled) 730 return; 731 732 cpuc->n_added = 0; 733 cpuc->enabled = 0; 734 barrier(); 735 736 static_call(x86_pmu_disable_all)(); 737 } 738 739 void x86_pmu_enable_all(int added) 740 { 741 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 742 int idx; 743 744 for_each_set_bit(idx, x86_pmu.cntr_mask, X86_PMC_IDX_MAX) { 745 struct hw_perf_event *hwc = &cpuc->events[idx]->hw; 746 747 if (!test_bit(idx, cpuc->active_mask)) 748 continue; 749 750 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE); 751 } 752 } 753 754 static inline int is_x86_event(struct perf_event *event) 755 { 756 int i; 757 758 if (!is_hybrid()) 759 return event->pmu == &pmu; 760 761 for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) { 762 if (event->pmu == &x86_pmu.hybrid_pmu[i].pmu) 763 return true; 764 } 765 766 return false; 767 } 768 769 struct pmu *x86_get_pmu(unsigned int cpu) 770 { 771 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu); 772 773 /* 774 * All CPUs of the hybrid type have been offline. 775 * The x86_get_pmu() should not be invoked. 776 */ 777 if (WARN_ON_ONCE(!cpuc->pmu)) 778 return &pmu; 779 780 return cpuc->pmu; 781 } 782 /* 783 * Event scheduler state: 784 * 785 * Assign events iterating over all events and counters, beginning 786 * with events with least weights first. Keep the current iterator 787 * state in struct sched_state. 788 */ 789 struct sched_state { 790 int weight; 791 int event; /* event index */ 792 int counter; /* counter index */ 793 int unassigned; /* number of events to be assigned left */ 794 int nr_gp; /* number of GP counters used */ 795 u64 used; 796 }; 797 798 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */ 799 #define SCHED_STATES_MAX 2 800 801 struct perf_sched { 802 int max_weight; 803 int max_events; 804 int max_gp; 805 int saved_states; 806 struct event_constraint **constraints; 807 struct sched_state state; 808 struct sched_state saved[SCHED_STATES_MAX]; 809 }; 810 811 /* 812 * Initialize iterator that runs through all events and counters. 813 */ 814 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints, 815 int num, int wmin, int wmax, int gpmax) 816 { 817 int idx; 818 819 memset(sched, 0, sizeof(*sched)); 820 sched->max_events = num; 821 sched->max_weight = wmax; 822 sched->max_gp = gpmax; 823 sched->constraints = constraints; 824 825 for (idx = 0; idx < num; idx++) { 826 if (constraints[idx]->weight == wmin) 827 break; 828 } 829 830 sched->state.event = idx; /* start with min weight */ 831 sched->state.weight = wmin; 832 sched->state.unassigned = num; 833 } 834 835 static void perf_sched_save_state(struct perf_sched *sched) 836 { 837 if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX)) 838 return; 839 840 sched->saved[sched->saved_states] = sched->state; 841 sched->saved_states++; 842 } 843 844 static bool perf_sched_restore_state(struct perf_sched *sched) 845 { 846 if (!sched->saved_states) 847 return false; 848 849 sched->saved_states--; 850 sched->state = sched->saved[sched->saved_states]; 851 852 /* this assignment didn't work out */ 853 /* XXX broken vs EVENT_PAIR */ 854 sched->state.used &= ~BIT_ULL(sched->state.counter); 855 856 /* try the next one */ 857 sched->state.counter++; 858 859 return true; 860 } 861 862 /* 863 * Select a counter for the current event to schedule. Return true on 864 * success. 865 */ 866 static bool __perf_sched_find_counter(struct perf_sched *sched) 867 { 868 struct event_constraint *c; 869 int idx; 870 871 if (!sched->state.unassigned) 872 return false; 873 874 if (sched->state.event >= sched->max_events) 875 return false; 876 877 c = sched->constraints[sched->state.event]; 878 /* Prefer fixed purpose counters */ 879 if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) { 880 idx = INTEL_PMC_IDX_FIXED; 881 for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) { 882 u64 mask = BIT_ULL(idx); 883 884 if (sched->state.used & mask) 885 continue; 886 887 sched->state.used |= mask; 888 goto done; 889 } 890 } 891 892 /* Grab the first unused counter starting with idx */ 893 idx = sched->state.counter; 894 for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) { 895 u64 mask = BIT_ULL(idx); 896 897 if (c->flags & PERF_X86_EVENT_PAIR) 898 mask |= mask << 1; 899 900 if (sched->state.used & mask) 901 continue; 902 903 if (sched->state.nr_gp++ >= sched->max_gp) 904 return false; 905 906 sched->state.used |= mask; 907 goto done; 908 } 909 910 return false; 911 912 done: 913 sched->state.counter = idx; 914 915 if (c->overlap) 916 perf_sched_save_state(sched); 917 918 return true; 919 } 920 921 static bool perf_sched_find_counter(struct perf_sched *sched) 922 { 923 while (!__perf_sched_find_counter(sched)) { 924 if (!perf_sched_restore_state(sched)) 925 return false; 926 } 927 928 return true; 929 } 930 931 /* 932 * Go through all unassigned events and find the next one to schedule. 933 * Take events with the least weight first. Return true on success. 934 */ 935 static bool perf_sched_next_event(struct perf_sched *sched) 936 { 937 struct event_constraint *c; 938 939 if (!sched->state.unassigned || !--sched->state.unassigned) 940 return false; 941 942 do { 943 /* next event */ 944 sched->state.event++; 945 if (sched->state.event >= sched->max_events) { 946 /* next weight */ 947 sched->state.event = 0; 948 sched->state.weight++; 949 if (sched->state.weight > sched->max_weight) 950 return false; 951 } 952 c = sched->constraints[sched->state.event]; 953 } while (c->weight != sched->state.weight); 954 955 sched->state.counter = 0; /* start with first counter */ 956 957 return true; 958 } 959 960 /* 961 * Assign a counter for each event. 962 */ 963 int perf_assign_events(struct event_constraint **constraints, int n, 964 int wmin, int wmax, int gpmax, int *assign) 965 { 966 struct perf_sched sched; 967 968 perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax); 969 970 do { 971 if (!perf_sched_find_counter(&sched)) 972 break; /* failed */ 973 if (assign) 974 assign[sched.state.event] = sched.state.counter; 975 } while (perf_sched_next_event(&sched)); 976 977 return sched.state.unassigned; 978 } 979 EXPORT_SYMBOL_GPL(perf_assign_events); 980 981 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign) 982 { 983 struct event_constraint *c; 984 struct perf_event *e; 985 int n0, i, wmin, wmax, unsched = 0; 986 struct hw_perf_event *hwc; 987 u64 used_mask = 0; 988 989 /* 990 * Compute the number of events already present; see x86_pmu_add(), 991 * validate_group() and x86_pmu_commit_txn(). For the former two 992 * cpuc->n_events hasn't been updated yet, while for the latter 993 * cpuc->n_txn contains the number of events added in the current 994 * transaction. 995 */ 996 n0 = cpuc->n_events; 997 if (cpuc->txn_flags & PERF_PMU_TXN_ADD) 998 n0 -= cpuc->n_txn; 999 1000 static_call_cond(x86_pmu_start_scheduling)(cpuc); 1001 1002 for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) { 1003 c = cpuc->event_constraint[i]; 1004 1005 /* 1006 * Previously scheduled events should have a cached constraint, 1007 * while new events should not have one. 1008 */ 1009 WARN_ON_ONCE((c && i >= n0) || (!c && i < n0)); 1010 1011 /* 1012 * Request constraints for new events; or for those events that 1013 * have a dynamic constraint -- for those the constraint can 1014 * change due to external factors (sibling state, allow_tfa). 1015 */ 1016 if (!c || (c->flags & PERF_X86_EVENT_DYNAMIC)) { 1017 c = static_call(x86_pmu_get_event_constraints)(cpuc, i, cpuc->event_list[i]); 1018 cpuc->event_constraint[i] = c; 1019 } 1020 1021 wmin = min(wmin, c->weight); 1022 wmax = max(wmax, c->weight); 1023 } 1024 1025 /* 1026 * fastpath, try to reuse previous register 1027 */ 1028 for (i = 0; i < n; i++) { 1029 u64 mask; 1030 1031 hwc = &cpuc->event_list[i]->hw; 1032 c = cpuc->event_constraint[i]; 1033 1034 /* never assigned */ 1035 if (hwc->idx == -1) 1036 break; 1037 1038 /* constraint still honored */ 1039 if (!test_bit(hwc->idx, c->idxmsk)) 1040 break; 1041 1042 mask = BIT_ULL(hwc->idx); 1043 if (is_counter_pair(hwc)) 1044 mask |= mask << 1; 1045 1046 /* not already used */ 1047 if (used_mask & mask) 1048 break; 1049 1050 used_mask |= mask; 1051 1052 if (assign) 1053 assign[i] = hwc->idx; 1054 } 1055 1056 /* slow path */ 1057 if (i != n) { 1058 int gpmax = x86_pmu_max_num_counters(cpuc->pmu); 1059 1060 /* 1061 * Do not allow scheduling of more than half the available 1062 * generic counters. 1063 * 1064 * This helps avoid counter starvation of sibling thread by 1065 * ensuring at most half the counters cannot be in exclusive 1066 * mode. There is no designated counters for the limits. Any 1067 * N/2 counters can be used. This helps with events with 1068 * specific counter constraints. 1069 */ 1070 if (is_ht_workaround_enabled() && !cpuc->is_fake && 1071 READ_ONCE(cpuc->excl_cntrs->exclusive_present)) 1072 gpmax /= 2; 1073 1074 /* 1075 * Reduce the amount of available counters to allow fitting 1076 * the extra Merge events needed by large increment events. 1077 */ 1078 if (x86_pmu.flags & PMU_FL_PAIR) { 1079 gpmax -= cpuc->n_pair; 1080 WARN_ON(gpmax <= 0); 1081 } 1082 1083 unsched = perf_assign_events(cpuc->event_constraint, n, wmin, 1084 wmax, gpmax, assign); 1085 } 1086 1087 /* 1088 * In case of success (unsched = 0), mark events as committed, 1089 * so we do not put_constraint() in case new events are added 1090 * and fail to be scheduled 1091 * 1092 * We invoke the lower level commit callback to lock the resource 1093 * 1094 * We do not need to do all of this in case we are called to 1095 * validate an event group (assign == NULL) 1096 */ 1097 if (!unsched && assign) { 1098 for (i = 0; i < n; i++) 1099 static_call_cond(x86_pmu_commit_scheduling)(cpuc, i, assign[i]); 1100 } else { 1101 for (i = n0; i < n; i++) { 1102 e = cpuc->event_list[i]; 1103 1104 /* 1105 * release events that failed scheduling 1106 */ 1107 static_call_cond(x86_pmu_put_event_constraints)(cpuc, e); 1108 1109 cpuc->event_constraint[i] = NULL; 1110 } 1111 } 1112 1113 static_call_cond(x86_pmu_stop_scheduling)(cpuc); 1114 1115 return unsched ? -EINVAL : 0; 1116 } 1117 1118 static int add_nr_metric_event(struct cpu_hw_events *cpuc, 1119 struct perf_event *event) 1120 { 1121 if (is_metric_event(event)) { 1122 if (cpuc->n_metric == INTEL_TD_METRIC_NUM) 1123 return -EINVAL; 1124 cpuc->n_metric++; 1125 cpuc->n_txn_metric++; 1126 } 1127 1128 return 0; 1129 } 1130 1131 static void del_nr_metric_event(struct cpu_hw_events *cpuc, 1132 struct perf_event *event) 1133 { 1134 if (is_metric_event(event)) 1135 cpuc->n_metric--; 1136 } 1137 1138 static int collect_event(struct cpu_hw_events *cpuc, struct perf_event *event, 1139 int max_count, int n) 1140 { 1141 union perf_capabilities intel_cap = hybrid(cpuc->pmu, intel_cap); 1142 1143 if (intel_cap.perf_metrics && add_nr_metric_event(cpuc, event)) 1144 return -EINVAL; 1145 1146 if (n >= max_count + cpuc->n_metric) 1147 return -EINVAL; 1148 1149 cpuc->event_list[n] = event; 1150 if (is_counter_pair(&event->hw)) { 1151 cpuc->n_pair++; 1152 cpuc->n_txn_pair++; 1153 } 1154 1155 return 0; 1156 } 1157 1158 /* 1159 * dogrp: true if must collect siblings events (group) 1160 * returns total number of events and error code 1161 */ 1162 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp) 1163 { 1164 struct perf_event *event; 1165 int n, max_count; 1166 1167 max_count = x86_pmu_num_counters(cpuc->pmu) + x86_pmu_num_counters_fixed(cpuc->pmu); 1168 1169 /* current number of events already accepted */ 1170 n = cpuc->n_events; 1171 if (!cpuc->n_events) 1172 cpuc->pebs_output = 0; 1173 1174 if (!cpuc->is_fake && leader->attr.precise_ip) { 1175 /* 1176 * For PEBS->PT, if !aux_event, the group leader (PT) went 1177 * away, the group was broken down and this singleton event 1178 * can't schedule any more. 1179 */ 1180 if (is_pebs_pt(leader) && !leader->aux_event) 1181 return -EINVAL; 1182 1183 /* 1184 * pebs_output: 0: no PEBS so far, 1: PT, 2: DS 1185 */ 1186 if (cpuc->pebs_output && 1187 cpuc->pebs_output != is_pebs_pt(leader) + 1) 1188 return -EINVAL; 1189 1190 cpuc->pebs_output = is_pebs_pt(leader) + 1; 1191 } 1192 1193 if (is_x86_event(leader)) { 1194 if (collect_event(cpuc, leader, max_count, n)) 1195 return -EINVAL; 1196 n++; 1197 } 1198 1199 if (!dogrp) 1200 return n; 1201 1202 for_each_sibling_event(event, leader) { 1203 if (!is_x86_event(event) || event->state <= PERF_EVENT_STATE_OFF) 1204 continue; 1205 1206 if (collect_event(cpuc, event, max_count, n)) 1207 return -EINVAL; 1208 1209 n++; 1210 } 1211 return n; 1212 } 1213 1214 static inline void x86_assign_hw_event(struct perf_event *event, 1215 struct cpu_hw_events *cpuc, int i) 1216 { 1217 struct hw_perf_event *hwc = &event->hw; 1218 int idx; 1219 1220 idx = hwc->idx = cpuc->assign[i]; 1221 hwc->last_cpu = smp_processor_id(); 1222 hwc->last_tag = ++cpuc->tags[i]; 1223 1224 static_call_cond(x86_pmu_assign)(event, idx); 1225 1226 switch (hwc->idx) { 1227 case INTEL_PMC_IDX_FIXED_BTS: 1228 case INTEL_PMC_IDX_FIXED_VLBR: 1229 hwc->config_base = 0; 1230 hwc->event_base = 0; 1231 break; 1232 1233 case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END: 1234 /* All the metric events are mapped onto the fixed counter 3. */ 1235 idx = INTEL_PMC_IDX_FIXED_SLOTS; 1236 fallthrough; 1237 case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS-1: 1238 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL; 1239 hwc->event_base = x86_pmu_fixed_ctr_addr(idx - INTEL_PMC_IDX_FIXED); 1240 hwc->event_base_rdpmc = (idx - INTEL_PMC_IDX_FIXED) | 1241 INTEL_PMC_FIXED_RDPMC_BASE; 1242 break; 1243 1244 default: 1245 hwc->config_base = x86_pmu_config_addr(hwc->idx); 1246 hwc->event_base = x86_pmu_event_addr(hwc->idx); 1247 hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx); 1248 break; 1249 } 1250 } 1251 1252 /** 1253 * x86_perf_rdpmc_index - Return PMC counter used for event 1254 * @event: the perf_event to which the PMC counter was assigned 1255 * 1256 * The counter assigned to this performance event may change if interrupts 1257 * are enabled. This counter should thus never be used while interrupts are 1258 * enabled. Before this function is used to obtain the assigned counter the 1259 * event should be checked for validity using, for example, 1260 * perf_event_read_local(), within the same interrupt disabled section in 1261 * which this counter is planned to be used. 1262 * 1263 * Return: The index of the performance monitoring counter assigned to 1264 * @perf_event. 1265 */ 1266 int x86_perf_rdpmc_index(struct perf_event *event) 1267 { 1268 lockdep_assert_irqs_disabled(); 1269 1270 return event->hw.event_base_rdpmc; 1271 } 1272 1273 static inline int match_prev_assignment(struct hw_perf_event *hwc, 1274 struct cpu_hw_events *cpuc, 1275 int i) 1276 { 1277 return hwc->idx == cpuc->assign[i] && 1278 hwc->last_cpu == smp_processor_id() && 1279 hwc->last_tag == cpuc->tags[i]; 1280 } 1281 1282 static void x86_pmu_start(struct perf_event *event, int flags); 1283 1284 static void x86_pmu_enable(struct pmu *pmu) 1285 { 1286 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1287 struct perf_event *event; 1288 struct hw_perf_event *hwc; 1289 int i, added = cpuc->n_added; 1290 1291 if (!x86_pmu_initialized()) 1292 return; 1293 1294 if (cpuc->enabled) 1295 return; 1296 1297 if (cpuc->n_added) { 1298 int n_running = cpuc->n_events - cpuc->n_added; 1299 /* 1300 * apply assignment obtained either from 1301 * hw_perf_group_sched_in() or x86_pmu_enable() 1302 * 1303 * step1: save events moving to new counters 1304 */ 1305 for (i = 0; i < n_running; i++) { 1306 event = cpuc->event_list[i]; 1307 hwc = &event->hw; 1308 1309 /* 1310 * we can avoid reprogramming counter if: 1311 * - assigned same counter as last time 1312 * - running on same CPU as last time 1313 * - no other event has used the counter since 1314 */ 1315 if (hwc->idx == -1 || 1316 match_prev_assignment(hwc, cpuc, i)) 1317 continue; 1318 1319 /* 1320 * Ensure we don't accidentally enable a stopped 1321 * counter simply because we rescheduled. 1322 */ 1323 if (hwc->state & PERF_HES_STOPPED) 1324 hwc->state |= PERF_HES_ARCH; 1325 1326 x86_pmu_stop(event, PERF_EF_UPDATE); 1327 } 1328 1329 /* 1330 * step2: reprogram moved events into new counters 1331 */ 1332 for (i = 0; i < cpuc->n_events; i++) { 1333 event = cpuc->event_list[i]; 1334 hwc = &event->hw; 1335 1336 if (!match_prev_assignment(hwc, cpuc, i)) 1337 x86_assign_hw_event(event, cpuc, i); 1338 else if (i < n_running) 1339 continue; 1340 1341 if (hwc->state & PERF_HES_ARCH) 1342 continue; 1343 1344 /* 1345 * if cpuc->enabled = 0, then no wrmsr as 1346 * per x86_pmu_enable_event() 1347 */ 1348 x86_pmu_start(event, PERF_EF_RELOAD); 1349 } 1350 cpuc->n_added = 0; 1351 perf_events_lapic_init(); 1352 } 1353 1354 cpuc->enabled = 1; 1355 barrier(); 1356 1357 static_call(x86_pmu_enable_all)(added); 1358 } 1359 1360 DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left); 1361 1362 /* 1363 * Set the next IRQ period, based on the hwc->period_left value. 1364 * To be called with the event disabled in hw: 1365 */ 1366 int x86_perf_event_set_period(struct perf_event *event) 1367 { 1368 struct hw_perf_event *hwc = &event->hw; 1369 s64 left = local64_read(&hwc->period_left); 1370 s64 period = hwc->sample_period; 1371 int ret = 0, idx = hwc->idx; 1372 1373 if (unlikely(!hwc->event_base)) 1374 return 0; 1375 1376 /* 1377 * If we are way outside a reasonable range then just skip forward: 1378 */ 1379 if (unlikely(left <= -period)) { 1380 left = period; 1381 local64_set(&hwc->period_left, left); 1382 hwc->last_period = period; 1383 ret = 1; 1384 } 1385 1386 if (unlikely(left <= 0)) { 1387 left += period; 1388 local64_set(&hwc->period_left, left); 1389 hwc->last_period = period; 1390 ret = 1; 1391 } 1392 /* 1393 * Quirk: certain CPUs dont like it if just 1 hw_event is left: 1394 */ 1395 if (unlikely(left < 2)) 1396 left = 2; 1397 1398 if (left > x86_pmu.max_period) 1399 left = x86_pmu.max_period; 1400 1401 static_call_cond(x86_pmu_limit_period)(event, &left); 1402 1403 this_cpu_write(pmc_prev_left[idx], left); 1404 1405 /* 1406 * The hw event starts counting from this event offset, 1407 * mark it to be able to extra future deltas: 1408 */ 1409 local64_set(&hwc->prev_count, (u64)-left); 1410 1411 wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask); 1412 1413 /* 1414 * Sign extend the Merge event counter's upper 16 bits since 1415 * we currently declare a 48-bit counter width 1416 */ 1417 if (is_counter_pair(hwc)) 1418 wrmsrl(x86_pmu_event_addr(idx + 1), 0xffff); 1419 1420 perf_event_update_userpage(event); 1421 1422 return ret; 1423 } 1424 1425 void x86_pmu_enable_event(struct perf_event *event) 1426 { 1427 if (__this_cpu_read(cpu_hw_events.enabled)) 1428 __x86_pmu_enable_event(&event->hw, 1429 ARCH_PERFMON_EVENTSEL_ENABLE); 1430 } 1431 1432 /* 1433 * Add a single event to the PMU. 1434 * 1435 * The event is added to the group of enabled events 1436 * but only if it can be scheduled with existing events. 1437 */ 1438 static int x86_pmu_add(struct perf_event *event, int flags) 1439 { 1440 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1441 struct hw_perf_event *hwc; 1442 int assign[X86_PMC_IDX_MAX]; 1443 int n, n0, ret; 1444 1445 hwc = &event->hw; 1446 1447 n0 = cpuc->n_events; 1448 ret = n = collect_events(cpuc, event, false); 1449 if (ret < 0) 1450 goto out; 1451 1452 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED; 1453 if (!(flags & PERF_EF_START)) 1454 hwc->state |= PERF_HES_ARCH; 1455 1456 /* 1457 * If group events scheduling transaction was started, 1458 * skip the schedulability test here, it will be performed 1459 * at commit time (->commit_txn) as a whole. 1460 * 1461 * If commit fails, we'll call ->del() on all events 1462 * for which ->add() was called. 1463 */ 1464 if (cpuc->txn_flags & PERF_PMU_TXN_ADD) 1465 goto done_collect; 1466 1467 ret = static_call(x86_pmu_schedule_events)(cpuc, n, assign); 1468 if (ret) 1469 goto out; 1470 /* 1471 * copy new assignment, now we know it is possible 1472 * will be used by hw_perf_enable() 1473 */ 1474 memcpy(cpuc->assign, assign, n*sizeof(int)); 1475 1476 done_collect: 1477 /* 1478 * Commit the collect_events() state. See x86_pmu_del() and 1479 * x86_pmu_*_txn(). 1480 */ 1481 cpuc->n_events = n; 1482 cpuc->n_added += n - n0; 1483 cpuc->n_txn += n - n0; 1484 1485 /* 1486 * This is before x86_pmu_enable() will call x86_pmu_start(), 1487 * so we enable LBRs before an event needs them etc.. 1488 */ 1489 static_call_cond(x86_pmu_add)(event); 1490 1491 ret = 0; 1492 out: 1493 return ret; 1494 } 1495 1496 static void x86_pmu_start(struct perf_event *event, int flags) 1497 { 1498 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1499 int idx = event->hw.idx; 1500 1501 if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED))) 1502 return; 1503 1504 if (WARN_ON_ONCE(idx == -1)) 1505 return; 1506 1507 if (flags & PERF_EF_RELOAD) { 1508 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE)); 1509 static_call(x86_pmu_set_period)(event); 1510 } 1511 1512 event->hw.state = 0; 1513 1514 cpuc->events[idx] = event; 1515 __set_bit(idx, cpuc->active_mask); 1516 static_call(x86_pmu_enable)(event); 1517 perf_event_update_userpage(event); 1518 } 1519 1520 void perf_event_print_debug(void) 1521 { 1522 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed; 1523 u64 pebs, debugctl; 1524 int cpu = smp_processor_id(); 1525 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu); 1526 unsigned long *cntr_mask = hybrid(cpuc->pmu, cntr_mask); 1527 unsigned long *fixed_cntr_mask = hybrid(cpuc->pmu, fixed_cntr_mask); 1528 struct event_constraint *pebs_constraints = hybrid(cpuc->pmu, pebs_constraints); 1529 unsigned long flags; 1530 int idx; 1531 1532 if (!*(u64 *)cntr_mask) 1533 return; 1534 1535 local_irq_save(flags); 1536 1537 if (x86_pmu.version >= 2) { 1538 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl); 1539 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status); 1540 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow); 1541 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed); 1542 1543 pr_info("\n"); 1544 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl); 1545 pr_info("CPU#%d: status: %016llx\n", cpu, status); 1546 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow); 1547 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed); 1548 if (pebs_constraints) { 1549 rdmsrl(MSR_IA32_PEBS_ENABLE, pebs); 1550 pr_info("CPU#%d: pebs: %016llx\n", cpu, pebs); 1551 } 1552 if (x86_pmu.lbr_nr) { 1553 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); 1554 pr_info("CPU#%d: debugctl: %016llx\n", cpu, debugctl); 1555 } 1556 } 1557 pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask); 1558 1559 for_each_set_bit(idx, cntr_mask, X86_PMC_IDX_MAX) { 1560 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl); 1561 rdmsrl(x86_pmu_event_addr(idx), pmc_count); 1562 1563 prev_left = per_cpu(pmc_prev_left[idx], cpu); 1564 1565 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n", 1566 cpu, idx, pmc_ctrl); 1567 pr_info("CPU#%d: gen-PMC%d count: %016llx\n", 1568 cpu, idx, pmc_count); 1569 pr_info("CPU#%d: gen-PMC%d left: %016llx\n", 1570 cpu, idx, prev_left); 1571 } 1572 for_each_set_bit(idx, fixed_cntr_mask, X86_PMC_IDX_MAX) { 1573 if (fixed_counter_disabled(idx, cpuc->pmu)) 1574 continue; 1575 rdmsrl(x86_pmu_fixed_ctr_addr(idx), pmc_count); 1576 1577 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n", 1578 cpu, idx, pmc_count); 1579 } 1580 local_irq_restore(flags); 1581 } 1582 1583 void x86_pmu_stop(struct perf_event *event, int flags) 1584 { 1585 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1586 struct hw_perf_event *hwc = &event->hw; 1587 1588 if (test_bit(hwc->idx, cpuc->active_mask)) { 1589 static_call(x86_pmu_disable)(event); 1590 __clear_bit(hwc->idx, cpuc->active_mask); 1591 cpuc->events[hwc->idx] = NULL; 1592 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED); 1593 hwc->state |= PERF_HES_STOPPED; 1594 } 1595 1596 if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) { 1597 /* 1598 * Drain the remaining delta count out of a event 1599 * that we are disabling: 1600 */ 1601 static_call(x86_pmu_update)(event); 1602 hwc->state |= PERF_HES_UPTODATE; 1603 } 1604 } 1605 1606 static void x86_pmu_del(struct perf_event *event, int flags) 1607 { 1608 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1609 union perf_capabilities intel_cap = hybrid(cpuc->pmu, intel_cap); 1610 int i; 1611 1612 /* 1613 * If we're called during a txn, we only need to undo x86_pmu.add. 1614 * The events never got scheduled and ->cancel_txn will truncate 1615 * the event_list. 1616 * 1617 * XXX assumes any ->del() called during a TXN will only be on 1618 * an event added during that same TXN. 1619 */ 1620 if (cpuc->txn_flags & PERF_PMU_TXN_ADD) 1621 goto do_del; 1622 1623 __set_bit(event->hw.idx, cpuc->dirty); 1624 1625 /* 1626 * Not a TXN, therefore cleanup properly. 1627 */ 1628 x86_pmu_stop(event, PERF_EF_UPDATE); 1629 1630 for (i = 0; i < cpuc->n_events; i++) { 1631 if (event == cpuc->event_list[i]) 1632 break; 1633 } 1634 1635 if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */ 1636 return; 1637 1638 /* If we have a newly added event; make sure to decrease n_added. */ 1639 if (i >= cpuc->n_events - cpuc->n_added) 1640 --cpuc->n_added; 1641 1642 static_call_cond(x86_pmu_put_event_constraints)(cpuc, event); 1643 1644 /* Delete the array entry. */ 1645 while (++i < cpuc->n_events) { 1646 cpuc->event_list[i-1] = cpuc->event_list[i]; 1647 cpuc->event_constraint[i-1] = cpuc->event_constraint[i]; 1648 cpuc->assign[i-1] = cpuc->assign[i]; 1649 } 1650 cpuc->event_constraint[i-1] = NULL; 1651 --cpuc->n_events; 1652 if (intel_cap.perf_metrics) 1653 del_nr_metric_event(cpuc, event); 1654 1655 perf_event_update_userpage(event); 1656 1657 do_del: 1658 1659 /* 1660 * This is after x86_pmu_stop(); so we disable LBRs after any 1661 * event can need them etc.. 1662 */ 1663 static_call_cond(x86_pmu_del)(event); 1664 } 1665 1666 int x86_pmu_handle_irq(struct pt_regs *regs) 1667 { 1668 struct perf_sample_data data; 1669 struct cpu_hw_events *cpuc; 1670 struct perf_event *event; 1671 int idx, handled = 0; 1672 u64 val; 1673 1674 cpuc = this_cpu_ptr(&cpu_hw_events); 1675 1676 /* 1677 * Some chipsets need to unmask the LVTPC in a particular spot 1678 * inside the nmi handler. As a result, the unmasking was pushed 1679 * into all the nmi handlers. 1680 * 1681 * This generic handler doesn't seem to have any issues where the 1682 * unmasking occurs so it was left at the top. 1683 */ 1684 apic_write(APIC_LVTPC, APIC_DM_NMI); 1685 1686 for_each_set_bit(idx, x86_pmu.cntr_mask, X86_PMC_IDX_MAX) { 1687 if (!test_bit(idx, cpuc->active_mask)) 1688 continue; 1689 1690 event = cpuc->events[idx]; 1691 1692 val = static_call(x86_pmu_update)(event); 1693 if (val & (1ULL << (x86_pmu.cntval_bits - 1))) 1694 continue; 1695 1696 /* 1697 * event overflow 1698 */ 1699 handled++; 1700 1701 if (!static_call(x86_pmu_set_period)(event)) 1702 continue; 1703 1704 perf_sample_data_init(&data, 0, event->hw.last_period); 1705 1706 if (has_branch_stack(event)) 1707 perf_sample_save_brstack(&data, event, &cpuc->lbr_stack, NULL); 1708 1709 if (perf_event_overflow(event, &data, regs)) 1710 x86_pmu_stop(event, 0); 1711 } 1712 1713 if (handled) 1714 inc_irq_stat(apic_perf_irqs); 1715 1716 return handled; 1717 } 1718 1719 void perf_events_lapic_init(void) 1720 { 1721 if (!x86_pmu.apic || !x86_pmu_initialized()) 1722 return; 1723 1724 /* 1725 * Always use NMI for PMU 1726 */ 1727 apic_write(APIC_LVTPC, APIC_DM_NMI); 1728 } 1729 1730 static int 1731 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs) 1732 { 1733 u64 start_clock; 1734 u64 finish_clock; 1735 int ret; 1736 1737 /* 1738 * All PMUs/events that share this PMI handler should make sure to 1739 * increment active_events for their events. 1740 */ 1741 if (!atomic_read(&active_events)) 1742 return NMI_DONE; 1743 1744 start_clock = sched_clock(); 1745 ret = static_call(x86_pmu_handle_irq)(regs); 1746 finish_clock = sched_clock(); 1747 1748 perf_sample_event_took(finish_clock - start_clock); 1749 1750 return ret; 1751 } 1752 NOKPROBE_SYMBOL(perf_event_nmi_handler); 1753 1754 struct event_constraint emptyconstraint; 1755 struct event_constraint unconstrained; 1756 1757 static int x86_pmu_prepare_cpu(unsigned int cpu) 1758 { 1759 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu); 1760 int i; 1761 1762 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) 1763 cpuc->kfree_on_online[i] = NULL; 1764 if (x86_pmu.cpu_prepare) 1765 return x86_pmu.cpu_prepare(cpu); 1766 return 0; 1767 } 1768 1769 static int x86_pmu_dead_cpu(unsigned int cpu) 1770 { 1771 if (x86_pmu.cpu_dead) 1772 x86_pmu.cpu_dead(cpu); 1773 return 0; 1774 } 1775 1776 static int x86_pmu_online_cpu(unsigned int cpu) 1777 { 1778 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu); 1779 int i; 1780 1781 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) { 1782 kfree(cpuc->kfree_on_online[i]); 1783 cpuc->kfree_on_online[i] = NULL; 1784 } 1785 return 0; 1786 } 1787 1788 static int x86_pmu_starting_cpu(unsigned int cpu) 1789 { 1790 if (x86_pmu.cpu_starting) 1791 x86_pmu.cpu_starting(cpu); 1792 return 0; 1793 } 1794 1795 static int x86_pmu_dying_cpu(unsigned int cpu) 1796 { 1797 if (x86_pmu.cpu_dying) 1798 x86_pmu.cpu_dying(cpu); 1799 return 0; 1800 } 1801 1802 static void __init pmu_check_apic(void) 1803 { 1804 if (boot_cpu_has(X86_FEATURE_APIC)) 1805 return; 1806 1807 x86_pmu.apic = 0; 1808 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n"); 1809 pr_info("no hardware sampling interrupt available.\n"); 1810 1811 /* 1812 * If we have a PMU initialized but no APIC 1813 * interrupts, we cannot sample hardware 1814 * events (user-space has to fall back and 1815 * sample via a hrtimer based software event): 1816 */ 1817 pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT; 1818 1819 } 1820 1821 static struct attribute_group x86_pmu_format_group __ro_after_init = { 1822 .name = "format", 1823 .attrs = NULL, 1824 }; 1825 1826 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page) 1827 { 1828 struct perf_pmu_events_attr *pmu_attr = 1829 container_of(attr, struct perf_pmu_events_attr, attr); 1830 u64 config = 0; 1831 1832 if (pmu_attr->id < x86_pmu.max_events) 1833 config = x86_pmu.event_map(pmu_attr->id); 1834 1835 /* string trumps id */ 1836 if (pmu_attr->event_str) 1837 return sprintf(page, "%s\n", pmu_attr->event_str); 1838 1839 return x86_pmu.events_sysfs_show(page, config); 1840 } 1841 EXPORT_SYMBOL_GPL(events_sysfs_show); 1842 1843 ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr, 1844 char *page) 1845 { 1846 struct perf_pmu_events_ht_attr *pmu_attr = 1847 container_of(attr, struct perf_pmu_events_ht_attr, attr); 1848 1849 /* 1850 * Report conditional events depending on Hyper-Threading. 1851 * 1852 * This is overly conservative as usually the HT special 1853 * handling is not needed if the other CPU thread is idle. 1854 * 1855 * Note this does not (and cannot) handle the case when thread 1856 * siblings are invisible, for example with virtualization 1857 * if they are owned by some other guest. The user tool 1858 * has to re-read when a thread sibling gets onlined later. 1859 */ 1860 return sprintf(page, "%s", 1861 topology_max_smt_threads() > 1 ? 1862 pmu_attr->event_str_ht : 1863 pmu_attr->event_str_noht); 1864 } 1865 1866 ssize_t events_hybrid_sysfs_show(struct device *dev, 1867 struct device_attribute *attr, 1868 char *page) 1869 { 1870 struct perf_pmu_events_hybrid_attr *pmu_attr = 1871 container_of(attr, struct perf_pmu_events_hybrid_attr, attr); 1872 struct x86_hybrid_pmu *pmu; 1873 const char *str, *next_str; 1874 int i; 1875 1876 if (hweight64(pmu_attr->pmu_type) == 1) 1877 return sprintf(page, "%s", pmu_attr->event_str); 1878 1879 /* 1880 * Hybrid PMUs may support the same event name, but with different 1881 * event encoding, e.g., the mem-loads event on an Atom PMU has 1882 * different event encoding from a Core PMU. 1883 * 1884 * The event_str includes all event encodings. Each event encoding 1885 * is divided by ";". The order of the event encodings must follow 1886 * the order of the hybrid PMU index. 1887 */ 1888 pmu = container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu); 1889 1890 str = pmu_attr->event_str; 1891 for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) { 1892 if (!(x86_pmu.hybrid_pmu[i].pmu_type & pmu_attr->pmu_type)) 1893 continue; 1894 if (x86_pmu.hybrid_pmu[i].pmu_type & pmu->pmu_type) { 1895 next_str = strchr(str, ';'); 1896 if (next_str) 1897 return snprintf(page, next_str - str + 1, "%s", str); 1898 else 1899 return sprintf(page, "%s", str); 1900 } 1901 str = strchr(str, ';'); 1902 str++; 1903 } 1904 1905 return 0; 1906 } 1907 EXPORT_SYMBOL_GPL(events_hybrid_sysfs_show); 1908 1909 EVENT_ATTR(cpu-cycles, CPU_CYCLES ); 1910 EVENT_ATTR(instructions, INSTRUCTIONS ); 1911 EVENT_ATTR(cache-references, CACHE_REFERENCES ); 1912 EVENT_ATTR(cache-misses, CACHE_MISSES ); 1913 EVENT_ATTR(branch-instructions, BRANCH_INSTRUCTIONS ); 1914 EVENT_ATTR(branch-misses, BRANCH_MISSES ); 1915 EVENT_ATTR(bus-cycles, BUS_CYCLES ); 1916 EVENT_ATTR(stalled-cycles-frontend, STALLED_CYCLES_FRONTEND ); 1917 EVENT_ATTR(stalled-cycles-backend, STALLED_CYCLES_BACKEND ); 1918 EVENT_ATTR(ref-cycles, REF_CPU_CYCLES ); 1919 1920 static struct attribute *empty_attrs; 1921 1922 static struct attribute *events_attr[] = { 1923 EVENT_PTR(CPU_CYCLES), 1924 EVENT_PTR(INSTRUCTIONS), 1925 EVENT_PTR(CACHE_REFERENCES), 1926 EVENT_PTR(CACHE_MISSES), 1927 EVENT_PTR(BRANCH_INSTRUCTIONS), 1928 EVENT_PTR(BRANCH_MISSES), 1929 EVENT_PTR(BUS_CYCLES), 1930 EVENT_PTR(STALLED_CYCLES_FRONTEND), 1931 EVENT_PTR(STALLED_CYCLES_BACKEND), 1932 EVENT_PTR(REF_CPU_CYCLES), 1933 NULL, 1934 }; 1935 1936 /* 1937 * Remove all undefined events (x86_pmu.event_map(id) == 0) 1938 * out of events_attr attributes. 1939 */ 1940 static umode_t 1941 is_visible(struct kobject *kobj, struct attribute *attr, int idx) 1942 { 1943 struct perf_pmu_events_attr *pmu_attr; 1944 1945 if (idx >= x86_pmu.max_events) 1946 return 0; 1947 1948 pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr.attr); 1949 /* str trumps id */ 1950 return pmu_attr->event_str || x86_pmu.event_map(idx) ? attr->mode : 0; 1951 } 1952 1953 static struct attribute_group x86_pmu_events_group __ro_after_init = { 1954 .name = "events", 1955 .attrs = events_attr, 1956 .is_visible = is_visible, 1957 }; 1958 1959 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event) 1960 { 1961 u64 umask = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8; 1962 u64 cmask = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24; 1963 bool edge = (config & ARCH_PERFMON_EVENTSEL_EDGE); 1964 bool pc = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL); 1965 bool any = (config & ARCH_PERFMON_EVENTSEL_ANY); 1966 bool inv = (config & ARCH_PERFMON_EVENTSEL_INV); 1967 ssize_t ret; 1968 1969 /* 1970 * We have whole page size to spend and just little data 1971 * to write, so we can safely use sprintf. 1972 */ 1973 ret = sprintf(page, "event=0x%02llx", event); 1974 1975 if (umask) 1976 ret += sprintf(page + ret, ",umask=0x%02llx", umask); 1977 1978 if (edge) 1979 ret += sprintf(page + ret, ",edge"); 1980 1981 if (pc) 1982 ret += sprintf(page + ret, ",pc"); 1983 1984 if (any) 1985 ret += sprintf(page + ret, ",any"); 1986 1987 if (inv) 1988 ret += sprintf(page + ret, ",inv"); 1989 1990 if (cmask) 1991 ret += sprintf(page + ret, ",cmask=0x%02llx", cmask); 1992 1993 ret += sprintf(page + ret, "\n"); 1994 1995 return ret; 1996 } 1997 1998 static struct attribute_group x86_pmu_attr_group; 1999 static struct attribute_group x86_pmu_caps_group; 2000 2001 static void x86_pmu_static_call_update(void) 2002 { 2003 static_call_update(x86_pmu_handle_irq, x86_pmu.handle_irq); 2004 static_call_update(x86_pmu_disable_all, x86_pmu.disable_all); 2005 static_call_update(x86_pmu_enable_all, x86_pmu.enable_all); 2006 static_call_update(x86_pmu_enable, x86_pmu.enable); 2007 static_call_update(x86_pmu_disable, x86_pmu.disable); 2008 2009 static_call_update(x86_pmu_assign, x86_pmu.assign); 2010 2011 static_call_update(x86_pmu_add, x86_pmu.add); 2012 static_call_update(x86_pmu_del, x86_pmu.del); 2013 static_call_update(x86_pmu_read, x86_pmu.read); 2014 2015 static_call_update(x86_pmu_set_period, x86_pmu.set_period); 2016 static_call_update(x86_pmu_update, x86_pmu.update); 2017 static_call_update(x86_pmu_limit_period, x86_pmu.limit_period); 2018 2019 static_call_update(x86_pmu_schedule_events, x86_pmu.schedule_events); 2020 static_call_update(x86_pmu_get_event_constraints, x86_pmu.get_event_constraints); 2021 static_call_update(x86_pmu_put_event_constraints, x86_pmu.put_event_constraints); 2022 2023 static_call_update(x86_pmu_start_scheduling, x86_pmu.start_scheduling); 2024 static_call_update(x86_pmu_commit_scheduling, x86_pmu.commit_scheduling); 2025 static_call_update(x86_pmu_stop_scheduling, x86_pmu.stop_scheduling); 2026 2027 static_call_update(x86_pmu_sched_task, x86_pmu.sched_task); 2028 static_call_update(x86_pmu_swap_task_ctx, x86_pmu.swap_task_ctx); 2029 2030 static_call_update(x86_pmu_drain_pebs, x86_pmu.drain_pebs); 2031 static_call_update(x86_pmu_pebs_aliases, x86_pmu.pebs_aliases); 2032 2033 static_call_update(x86_pmu_guest_get_msrs, x86_pmu.guest_get_msrs); 2034 static_call_update(x86_pmu_filter, x86_pmu.filter); 2035 } 2036 2037 static void _x86_pmu_read(struct perf_event *event) 2038 { 2039 static_call(x86_pmu_update)(event); 2040 } 2041 2042 void x86_pmu_show_pmu_cap(struct pmu *pmu) 2043 { 2044 pr_info("... version: %d\n", x86_pmu.version); 2045 pr_info("... bit width: %d\n", x86_pmu.cntval_bits); 2046 pr_info("... generic registers: %d\n", x86_pmu_num_counters(pmu)); 2047 pr_info("... value mask: %016Lx\n", x86_pmu.cntval_mask); 2048 pr_info("... max period: %016Lx\n", x86_pmu.max_period); 2049 pr_info("... fixed-purpose events: %d\n", x86_pmu_num_counters_fixed(pmu)); 2050 pr_info("... event mask: %016Lx\n", hybrid(pmu, intel_ctrl)); 2051 } 2052 2053 static int __init init_hw_perf_events(void) 2054 { 2055 struct x86_pmu_quirk *quirk; 2056 int err; 2057 2058 pr_info("Performance Events: "); 2059 2060 switch (boot_cpu_data.x86_vendor) { 2061 case X86_VENDOR_INTEL: 2062 err = intel_pmu_init(); 2063 break; 2064 case X86_VENDOR_AMD: 2065 err = amd_pmu_init(); 2066 break; 2067 case X86_VENDOR_HYGON: 2068 err = amd_pmu_init(); 2069 x86_pmu.name = "HYGON"; 2070 break; 2071 case X86_VENDOR_ZHAOXIN: 2072 case X86_VENDOR_CENTAUR: 2073 err = zhaoxin_pmu_init(); 2074 break; 2075 default: 2076 err = -ENOTSUPP; 2077 } 2078 if (err != 0) { 2079 pr_cont("no PMU driver, software events only.\n"); 2080 err = 0; 2081 goto out_bad_pmu; 2082 } 2083 2084 pmu_check_apic(); 2085 2086 /* sanity check that the hardware exists or is emulated */ 2087 if (!check_hw_exists(&pmu, x86_pmu.cntr_mask, x86_pmu.fixed_cntr_mask)) 2088 goto out_bad_pmu; 2089 2090 pr_cont("%s PMU driver.\n", x86_pmu.name); 2091 2092 x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */ 2093 2094 for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next) 2095 quirk->func(); 2096 2097 if (!x86_pmu.intel_ctrl) 2098 x86_pmu.intel_ctrl = x86_pmu.cntr_mask64; 2099 2100 if (!x86_pmu.config_mask) 2101 x86_pmu.config_mask = X86_RAW_EVENT_MASK; 2102 2103 perf_events_lapic_init(); 2104 register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI"); 2105 2106 unconstrained = (struct event_constraint) 2107 __EVENT_CONSTRAINT(0, x86_pmu.cntr_mask64, 2108 0, x86_pmu_num_counters(NULL), 0, 0); 2109 2110 x86_pmu_format_group.attrs = x86_pmu.format_attrs; 2111 2112 if (!x86_pmu.events_sysfs_show) 2113 x86_pmu_events_group.attrs = &empty_attrs; 2114 2115 pmu.attr_update = x86_pmu.attr_update; 2116 2117 if (!is_hybrid()) 2118 x86_pmu_show_pmu_cap(NULL); 2119 2120 if (!x86_pmu.read) 2121 x86_pmu.read = _x86_pmu_read; 2122 2123 if (!x86_pmu.guest_get_msrs) 2124 x86_pmu.guest_get_msrs = (void *)&__static_call_return0; 2125 2126 if (!x86_pmu.set_period) 2127 x86_pmu.set_period = x86_perf_event_set_period; 2128 2129 if (!x86_pmu.update) 2130 x86_pmu.update = x86_perf_event_update; 2131 2132 x86_pmu_static_call_update(); 2133 2134 /* 2135 * Install callbacks. Core will call them for each online 2136 * cpu. 2137 */ 2138 err = cpuhp_setup_state(CPUHP_PERF_X86_PREPARE, "perf/x86:prepare", 2139 x86_pmu_prepare_cpu, x86_pmu_dead_cpu); 2140 if (err) 2141 return err; 2142 2143 err = cpuhp_setup_state(CPUHP_AP_PERF_X86_STARTING, 2144 "perf/x86:starting", x86_pmu_starting_cpu, 2145 x86_pmu_dying_cpu); 2146 if (err) 2147 goto out; 2148 2149 err = cpuhp_setup_state(CPUHP_AP_PERF_X86_ONLINE, "perf/x86:online", 2150 x86_pmu_online_cpu, NULL); 2151 if (err) 2152 goto out1; 2153 2154 if (!is_hybrid()) { 2155 err = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW); 2156 if (err) 2157 goto out2; 2158 } else { 2159 struct x86_hybrid_pmu *hybrid_pmu; 2160 int i, j; 2161 2162 for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) { 2163 hybrid_pmu = &x86_pmu.hybrid_pmu[i]; 2164 2165 hybrid_pmu->pmu = pmu; 2166 hybrid_pmu->pmu.type = -1; 2167 hybrid_pmu->pmu.attr_update = x86_pmu.attr_update; 2168 hybrid_pmu->pmu.capabilities |= PERF_PMU_CAP_EXTENDED_HW_TYPE; 2169 2170 err = perf_pmu_register(&hybrid_pmu->pmu, hybrid_pmu->name, 2171 (hybrid_pmu->pmu_type == hybrid_big) ? PERF_TYPE_RAW : -1); 2172 if (err) 2173 break; 2174 } 2175 2176 if (i < x86_pmu.num_hybrid_pmus) { 2177 for (j = 0; j < i; j++) 2178 perf_pmu_unregister(&x86_pmu.hybrid_pmu[j].pmu); 2179 pr_warn("Failed to register hybrid PMUs\n"); 2180 kfree(x86_pmu.hybrid_pmu); 2181 x86_pmu.hybrid_pmu = NULL; 2182 x86_pmu.num_hybrid_pmus = 0; 2183 goto out2; 2184 } 2185 } 2186 2187 return 0; 2188 2189 out2: 2190 cpuhp_remove_state(CPUHP_AP_PERF_X86_ONLINE); 2191 out1: 2192 cpuhp_remove_state(CPUHP_AP_PERF_X86_STARTING); 2193 out: 2194 cpuhp_remove_state(CPUHP_PERF_X86_PREPARE); 2195 out_bad_pmu: 2196 memset(&x86_pmu, 0, sizeof(x86_pmu)); 2197 return err; 2198 } 2199 early_initcall(init_hw_perf_events); 2200 2201 static void x86_pmu_read(struct perf_event *event) 2202 { 2203 static_call(x86_pmu_read)(event); 2204 } 2205 2206 /* 2207 * Start group events scheduling transaction 2208 * Set the flag to make pmu::enable() not perform the 2209 * schedulability test, it will be performed at commit time 2210 * 2211 * We only support PERF_PMU_TXN_ADD transactions. Save the 2212 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD 2213 * transactions. 2214 */ 2215 static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags) 2216 { 2217 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2218 2219 WARN_ON_ONCE(cpuc->txn_flags); /* txn already in flight */ 2220 2221 cpuc->txn_flags = txn_flags; 2222 if (txn_flags & ~PERF_PMU_TXN_ADD) 2223 return; 2224 2225 perf_pmu_disable(pmu); 2226 __this_cpu_write(cpu_hw_events.n_txn, 0); 2227 __this_cpu_write(cpu_hw_events.n_txn_pair, 0); 2228 __this_cpu_write(cpu_hw_events.n_txn_metric, 0); 2229 } 2230 2231 /* 2232 * Stop group events scheduling transaction 2233 * Clear the flag and pmu::enable() will perform the 2234 * schedulability test. 2235 */ 2236 static void x86_pmu_cancel_txn(struct pmu *pmu) 2237 { 2238 unsigned int txn_flags; 2239 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2240 2241 WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */ 2242 2243 txn_flags = cpuc->txn_flags; 2244 cpuc->txn_flags = 0; 2245 if (txn_flags & ~PERF_PMU_TXN_ADD) 2246 return; 2247 2248 /* 2249 * Truncate collected array by the number of events added in this 2250 * transaction. See x86_pmu_add() and x86_pmu_*_txn(). 2251 */ 2252 __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn)); 2253 __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn)); 2254 __this_cpu_sub(cpu_hw_events.n_pair, __this_cpu_read(cpu_hw_events.n_txn_pair)); 2255 __this_cpu_sub(cpu_hw_events.n_metric, __this_cpu_read(cpu_hw_events.n_txn_metric)); 2256 perf_pmu_enable(pmu); 2257 } 2258 2259 /* 2260 * Commit group events scheduling transaction 2261 * Perform the group schedulability test as a whole 2262 * Return 0 if success 2263 * 2264 * Does not cancel the transaction on failure; expects the caller to do this. 2265 */ 2266 static int x86_pmu_commit_txn(struct pmu *pmu) 2267 { 2268 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2269 int assign[X86_PMC_IDX_MAX]; 2270 int n, ret; 2271 2272 WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */ 2273 2274 if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) { 2275 cpuc->txn_flags = 0; 2276 return 0; 2277 } 2278 2279 n = cpuc->n_events; 2280 2281 if (!x86_pmu_initialized()) 2282 return -EAGAIN; 2283 2284 ret = static_call(x86_pmu_schedule_events)(cpuc, n, assign); 2285 if (ret) 2286 return ret; 2287 2288 /* 2289 * copy new assignment, now we know it is possible 2290 * will be used by hw_perf_enable() 2291 */ 2292 memcpy(cpuc->assign, assign, n*sizeof(int)); 2293 2294 cpuc->txn_flags = 0; 2295 perf_pmu_enable(pmu); 2296 return 0; 2297 } 2298 /* 2299 * a fake_cpuc is used to validate event groups. Due to 2300 * the extra reg logic, we need to also allocate a fake 2301 * per_core and per_cpu structure. Otherwise, group events 2302 * using extra reg may conflict without the kernel being 2303 * able to catch this when the last event gets added to 2304 * the group. 2305 */ 2306 static void free_fake_cpuc(struct cpu_hw_events *cpuc) 2307 { 2308 intel_cpuc_finish(cpuc); 2309 kfree(cpuc); 2310 } 2311 2312 static struct cpu_hw_events *allocate_fake_cpuc(struct pmu *event_pmu) 2313 { 2314 struct cpu_hw_events *cpuc; 2315 int cpu; 2316 2317 cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL); 2318 if (!cpuc) 2319 return ERR_PTR(-ENOMEM); 2320 cpuc->is_fake = 1; 2321 2322 if (is_hybrid()) { 2323 struct x86_hybrid_pmu *h_pmu; 2324 2325 h_pmu = hybrid_pmu(event_pmu); 2326 if (cpumask_empty(&h_pmu->supported_cpus)) 2327 goto error; 2328 cpu = cpumask_first(&h_pmu->supported_cpus); 2329 } else 2330 cpu = raw_smp_processor_id(); 2331 cpuc->pmu = event_pmu; 2332 2333 if (intel_cpuc_prepare(cpuc, cpu)) 2334 goto error; 2335 2336 return cpuc; 2337 error: 2338 free_fake_cpuc(cpuc); 2339 return ERR_PTR(-ENOMEM); 2340 } 2341 2342 /* 2343 * validate that we can schedule this event 2344 */ 2345 static int validate_event(struct perf_event *event) 2346 { 2347 struct cpu_hw_events *fake_cpuc; 2348 struct event_constraint *c; 2349 int ret = 0; 2350 2351 fake_cpuc = allocate_fake_cpuc(event->pmu); 2352 if (IS_ERR(fake_cpuc)) 2353 return PTR_ERR(fake_cpuc); 2354 2355 c = x86_pmu.get_event_constraints(fake_cpuc, 0, event); 2356 2357 if (!c || !c->weight) 2358 ret = -EINVAL; 2359 2360 if (x86_pmu.put_event_constraints) 2361 x86_pmu.put_event_constraints(fake_cpuc, event); 2362 2363 free_fake_cpuc(fake_cpuc); 2364 2365 return ret; 2366 } 2367 2368 /* 2369 * validate a single event group 2370 * 2371 * validation include: 2372 * - check events are compatible which each other 2373 * - events do not compete for the same counter 2374 * - number of events <= number of counters 2375 * 2376 * validation ensures the group can be loaded onto the 2377 * PMU if it was the only group available. 2378 */ 2379 static int validate_group(struct perf_event *event) 2380 { 2381 struct perf_event *leader = event->group_leader; 2382 struct cpu_hw_events *fake_cpuc; 2383 int ret = -EINVAL, n; 2384 2385 /* 2386 * Reject events from different hybrid PMUs. 2387 */ 2388 if (is_hybrid()) { 2389 struct perf_event *sibling; 2390 struct pmu *pmu = NULL; 2391 2392 if (is_x86_event(leader)) 2393 pmu = leader->pmu; 2394 2395 for_each_sibling_event(sibling, leader) { 2396 if (!is_x86_event(sibling)) 2397 continue; 2398 if (!pmu) 2399 pmu = sibling->pmu; 2400 else if (pmu != sibling->pmu) 2401 return ret; 2402 } 2403 } 2404 2405 fake_cpuc = allocate_fake_cpuc(event->pmu); 2406 if (IS_ERR(fake_cpuc)) 2407 return PTR_ERR(fake_cpuc); 2408 /* 2409 * the event is not yet connected with its 2410 * siblings therefore we must first collect 2411 * existing siblings, then add the new event 2412 * before we can simulate the scheduling 2413 */ 2414 n = collect_events(fake_cpuc, leader, true); 2415 if (n < 0) 2416 goto out; 2417 2418 fake_cpuc->n_events = n; 2419 n = collect_events(fake_cpuc, event, false); 2420 if (n < 0) 2421 goto out; 2422 2423 fake_cpuc->n_events = 0; 2424 ret = x86_pmu.schedule_events(fake_cpuc, n, NULL); 2425 2426 out: 2427 free_fake_cpuc(fake_cpuc); 2428 return ret; 2429 } 2430 2431 static int x86_pmu_event_init(struct perf_event *event) 2432 { 2433 struct x86_hybrid_pmu *pmu = NULL; 2434 int err; 2435 2436 if ((event->attr.type != event->pmu->type) && 2437 (event->attr.type != PERF_TYPE_HARDWARE) && 2438 (event->attr.type != PERF_TYPE_HW_CACHE)) 2439 return -ENOENT; 2440 2441 if (is_hybrid() && (event->cpu != -1)) { 2442 pmu = hybrid_pmu(event->pmu); 2443 if (!cpumask_test_cpu(event->cpu, &pmu->supported_cpus)) 2444 return -ENOENT; 2445 } 2446 2447 err = __x86_pmu_event_init(event); 2448 if (!err) { 2449 if (event->group_leader != event) 2450 err = validate_group(event); 2451 else 2452 err = validate_event(event); 2453 } 2454 if (err) { 2455 if (event->destroy) 2456 event->destroy(event); 2457 event->destroy = NULL; 2458 } 2459 2460 if (READ_ONCE(x86_pmu.attr_rdpmc) && 2461 !(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS)) 2462 event->hw.flags |= PERF_EVENT_FLAG_USER_READ_CNT; 2463 2464 return err; 2465 } 2466 2467 void perf_clear_dirty_counters(void) 2468 { 2469 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2470 int i; 2471 2472 /* Don't need to clear the assigned counter. */ 2473 for (i = 0; i < cpuc->n_events; i++) 2474 __clear_bit(cpuc->assign[i], cpuc->dirty); 2475 2476 if (bitmap_empty(cpuc->dirty, X86_PMC_IDX_MAX)) 2477 return; 2478 2479 for_each_set_bit(i, cpuc->dirty, X86_PMC_IDX_MAX) { 2480 if (i >= INTEL_PMC_IDX_FIXED) { 2481 /* Metrics and fake events don't have corresponding HW counters. */ 2482 if (!test_bit(i - INTEL_PMC_IDX_FIXED, hybrid(cpuc->pmu, fixed_cntr_mask))) 2483 continue; 2484 2485 wrmsrl(x86_pmu_fixed_ctr_addr(i - INTEL_PMC_IDX_FIXED), 0); 2486 } else { 2487 wrmsrl(x86_pmu_event_addr(i), 0); 2488 } 2489 } 2490 2491 bitmap_zero(cpuc->dirty, X86_PMC_IDX_MAX); 2492 } 2493 2494 static void x86_pmu_event_mapped(struct perf_event *event, struct mm_struct *mm) 2495 { 2496 if (!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)) 2497 return; 2498 2499 /* 2500 * This function relies on not being called concurrently in two 2501 * tasks in the same mm. Otherwise one task could observe 2502 * perf_rdpmc_allowed > 1 and return all the way back to 2503 * userspace with CR4.PCE clear while another task is still 2504 * doing on_each_cpu_mask() to propagate CR4.PCE. 2505 * 2506 * For now, this can't happen because all callers hold mmap_lock 2507 * for write. If this changes, we'll need a different solution. 2508 */ 2509 mmap_assert_write_locked(mm); 2510 2511 if (atomic_inc_return(&mm->context.perf_rdpmc_allowed) == 1) 2512 on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1); 2513 } 2514 2515 static void x86_pmu_event_unmapped(struct perf_event *event, struct mm_struct *mm) 2516 { 2517 if (!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)) 2518 return; 2519 2520 if (atomic_dec_and_test(&mm->context.perf_rdpmc_allowed)) 2521 on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1); 2522 } 2523 2524 static int x86_pmu_event_idx(struct perf_event *event) 2525 { 2526 struct hw_perf_event *hwc = &event->hw; 2527 2528 if (!(hwc->flags & PERF_EVENT_FLAG_USER_READ_CNT)) 2529 return 0; 2530 2531 if (is_metric_idx(hwc->idx)) 2532 return INTEL_PMC_FIXED_RDPMC_METRICS + 1; 2533 else 2534 return hwc->event_base_rdpmc + 1; 2535 } 2536 2537 static ssize_t get_attr_rdpmc(struct device *cdev, 2538 struct device_attribute *attr, 2539 char *buf) 2540 { 2541 return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc); 2542 } 2543 2544 static ssize_t set_attr_rdpmc(struct device *cdev, 2545 struct device_attribute *attr, 2546 const char *buf, size_t count) 2547 { 2548 static DEFINE_MUTEX(rdpmc_mutex); 2549 unsigned long val; 2550 ssize_t ret; 2551 2552 ret = kstrtoul(buf, 0, &val); 2553 if (ret) 2554 return ret; 2555 2556 if (val > 2) 2557 return -EINVAL; 2558 2559 if (x86_pmu.attr_rdpmc_broken) 2560 return -ENOTSUPP; 2561 2562 guard(mutex)(&rdpmc_mutex); 2563 2564 if (val != x86_pmu.attr_rdpmc) { 2565 /* 2566 * Changing into or out of never available or always available, 2567 * aka perf-event-bypassing mode. This path is extremely slow, 2568 * but only root can trigger it, so it's okay. 2569 */ 2570 if (val == 0) 2571 static_branch_inc(&rdpmc_never_available_key); 2572 else if (x86_pmu.attr_rdpmc == 0) 2573 static_branch_dec(&rdpmc_never_available_key); 2574 2575 if (val == 2) 2576 static_branch_inc(&rdpmc_always_available_key); 2577 else if (x86_pmu.attr_rdpmc == 2) 2578 static_branch_dec(&rdpmc_always_available_key); 2579 2580 on_each_cpu(cr4_update_pce, NULL, 1); 2581 x86_pmu.attr_rdpmc = val; 2582 } 2583 2584 return count; 2585 } 2586 2587 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc); 2588 2589 static struct attribute *x86_pmu_attrs[] = { 2590 &dev_attr_rdpmc.attr, 2591 NULL, 2592 }; 2593 2594 static struct attribute_group x86_pmu_attr_group __ro_after_init = { 2595 .attrs = x86_pmu_attrs, 2596 }; 2597 2598 static ssize_t max_precise_show(struct device *cdev, 2599 struct device_attribute *attr, 2600 char *buf) 2601 { 2602 return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu_max_precise()); 2603 } 2604 2605 static DEVICE_ATTR_RO(max_precise); 2606 2607 static struct attribute *x86_pmu_caps_attrs[] = { 2608 &dev_attr_max_precise.attr, 2609 NULL 2610 }; 2611 2612 static struct attribute_group x86_pmu_caps_group __ro_after_init = { 2613 .name = "caps", 2614 .attrs = x86_pmu_caps_attrs, 2615 }; 2616 2617 static const struct attribute_group *x86_pmu_attr_groups[] = { 2618 &x86_pmu_attr_group, 2619 &x86_pmu_format_group, 2620 &x86_pmu_events_group, 2621 &x86_pmu_caps_group, 2622 NULL, 2623 }; 2624 2625 static void x86_pmu_sched_task(struct perf_event_pmu_context *pmu_ctx, bool sched_in) 2626 { 2627 static_call_cond(x86_pmu_sched_task)(pmu_ctx, sched_in); 2628 } 2629 2630 static void x86_pmu_swap_task_ctx(struct perf_event_pmu_context *prev_epc, 2631 struct perf_event_pmu_context *next_epc) 2632 { 2633 static_call_cond(x86_pmu_swap_task_ctx)(prev_epc, next_epc); 2634 } 2635 2636 void perf_check_microcode(void) 2637 { 2638 if (x86_pmu.check_microcode) 2639 x86_pmu.check_microcode(); 2640 } 2641 2642 static int x86_pmu_check_period(struct perf_event *event, u64 value) 2643 { 2644 if (x86_pmu.check_period && x86_pmu.check_period(event, value)) 2645 return -EINVAL; 2646 2647 if (value && x86_pmu.limit_period) { 2648 s64 left = value; 2649 x86_pmu.limit_period(event, &left); 2650 if (left > value) 2651 return -EINVAL; 2652 } 2653 2654 return 0; 2655 } 2656 2657 static int x86_pmu_aux_output_match(struct perf_event *event) 2658 { 2659 if (!(pmu.capabilities & PERF_PMU_CAP_AUX_OUTPUT)) 2660 return 0; 2661 2662 if (x86_pmu.aux_output_match) 2663 return x86_pmu.aux_output_match(event); 2664 2665 return 0; 2666 } 2667 2668 static bool x86_pmu_filter(struct pmu *pmu, int cpu) 2669 { 2670 bool ret = false; 2671 2672 static_call_cond(x86_pmu_filter)(pmu, cpu, &ret); 2673 2674 return ret; 2675 } 2676 2677 static struct pmu pmu = { 2678 .pmu_enable = x86_pmu_enable, 2679 .pmu_disable = x86_pmu_disable, 2680 2681 .attr_groups = x86_pmu_attr_groups, 2682 2683 .event_init = x86_pmu_event_init, 2684 2685 .event_mapped = x86_pmu_event_mapped, 2686 .event_unmapped = x86_pmu_event_unmapped, 2687 2688 .add = x86_pmu_add, 2689 .del = x86_pmu_del, 2690 .start = x86_pmu_start, 2691 .stop = x86_pmu_stop, 2692 .read = x86_pmu_read, 2693 2694 .start_txn = x86_pmu_start_txn, 2695 .cancel_txn = x86_pmu_cancel_txn, 2696 .commit_txn = x86_pmu_commit_txn, 2697 2698 .event_idx = x86_pmu_event_idx, 2699 .sched_task = x86_pmu_sched_task, 2700 .swap_task_ctx = x86_pmu_swap_task_ctx, 2701 .check_period = x86_pmu_check_period, 2702 2703 .aux_output_match = x86_pmu_aux_output_match, 2704 2705 .filter = x86_pmu_filter, 2706 }; 2707 2708 void arch_perf_update_userpage(struct perf_event *event, 2709 struct perf_event_mmap_page *userpg, u64 now) 2710 { 2711 struct cyc2ns_data data; 2712 u64 offset; 2713 2714 userpg->cap_user_time = 0; 2715 userpg->cap_user_time_zero = 0; 2716 userpg->cap_user_rdpmc = 2717 !!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT); 2718 userpg->pmc_width = x86_pmu.cntval_bits; 2719 2720 if (!using_native_sched_clock() || !sched_clock_stable()) 2721 return; 2722 2723 cyc2ns_read_begin(&data); 2724 2725 offset = data.cyc2ns_offset + __sched_clock_offset; 2726 2727 /* 2728 * Internal timekeeping for enabled/running/stopped times 2729 * is always in the local_clock domain. 2730 */ 2731 userpg->cap_user_time = 1; 2732 userpg->time_mult = data.cyc2ns_mul; 2733 userpg->time_shift = data.cyc2ns_shift; 2734 userpg->time_offset = offset - now; 2735 2736 /* 2737 * cap_user_time_zero doesn't make sense when we're using a different 2738 * time base for the records. 2739 */ 2740 if (!event->attr.use_clockid) { 2741 userpg->cap_user_time_zero = 1; 2742 userpg->time_zero = offset; 2743 } 2744 2745 cyc2ns_read_end(); 2746 } 2747 2748 /* 2749 * Determine whether the regs were taken from an irq/exception handler rather 2750 * than from perf_arch_fetch_caller_regs(). 2751 */ 2752 static bool perf_hw_regs(struct pt_regs *regs) 2753 { 2754 return regs->flags & X86_EFLAGS_FIXED; 2755 } 2756 2757 void 2758 perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs) 2759 { 2760 struct unwind_state state; 2761 unsigned long addr; 2762 2763 if (perf_guest_state()) { 2764 /* TODO: We don't support guest os callchain now */ 2765 return; 2766 } 2767 2768 if (perf_callchain_store(entry, regs->ip)) 2769 return; 2770 2771 if (perf_hw_regs(regs)) 2772 unwind_start(&state, current, regs, NULL); 2773 else 2774 unwind_start(&state, current, NULL, (void *)regs->sp); 2775 2776 for (; !unwind_done(&state); unwind_next_frame(&state)) { 2777 addr = unwind_get_return_address(&state); 2778 if (!addr || perf_callchain_store(entry, addr)) 2779 return; 2780 } 2781 } 2782 2783 static inline int 2784 valid_user_frame(const void __user *fp, unsigned long size) 2785 { 2786 return __access_ok(fp, size); 2787 } 2788 2789 static unsigned long get_segment_base(unsigned int segment) 2790 { 2791 struct desc_struct *desc; 2792 unsigned int idx = segment >> 3; 2793 2794 if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) { 2795 #ifdef CONFIG_MODIFY_LDT_SYSCALL 2796 struct ldt_struct *ldt; 2797 2798 /* IRQs are off, so this synchronizes with smp_store_release */ 2799 ldt = READ_ONCE(current->active_mm->context.ldt); 2800 if (!ldt || idx >= ldt->nr_entries) 2801 return 0; 2802 2803 desc = &ldt->entries[idx]; 2804 #else 2805 return 0; 2806 #endif 2807 } else { 2808 if (idx >= GDT_ENTRIES) 2809 return 0; 2810 2811 desc = raw_cpu_ptr(gdt_page.gdt) + idx; 2812 } 2813 2814 return get_desc_base(desc); 2815 } 2816 2817 #ifdef CONFIG_IA32_EMULATION 2818 2819 #include <linux/compat.h> 2820 2821 static inline int 2822 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry) 2823 { 2824 /* 32-bit process in 64-bit kernel. */ 2825 unsigned long ss_base, cs_base; 2826 struct stack_frame_ia32 frame; 2827 const struct stack_frame_ia32 __user *fp; 2828 2829 if (user_64bit_mode(regs)) 2830 return 0; 2831 2832 cs_base = get_segment_base(regs->cs); 2833 ss_base = get_segment_base(regs->ss); 2834 2835 fp = compat_ptr(ss_base + regs->bp); 2836 pagefault_disable(); 2837 while (entry->nr < entry->max_stack) { 2838 if (!valid_user_frame(fp, sizeof(frame))) 2839 break; 2840 2841 if (__get_user(frame.next_frame, &fp->next_frame)) 2842 break; 2843 if (__get_user(frame.return_address, &fp->return_address)) 2844 break; 2845 2846 perf_callchain_store(entry, cs_base + frame.return_address); 2847 fp = compat_ptr(ss_base + frame.next_frame); 2848 } 2849 pagefault_enable(); 2850 return 1; 2851 } 2852 #else 2853 static inline int 2854 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry) 2855 { 2856 return 0; 2857 } 2858 #endif 2859 2860 void 2861 perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs) 2862 { 2863 struct stack_frame frame; 2864 const struct stack_frame __user *fp; 2865 2866 if (perf_guest_state()) { 2867 /* TODO: We don't support guest os callchain now */ 2868 return; 2869 } 2870 2871 /* 2872 * We don't know what to do with VM86 stacks.. ignore them for now. 2873 */ 2874 if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM)) 2875 return; 2876 2877 fp = (void __user *)regs->bp; 2878 2879 perf_callchain_store(entry, regs->ip); 2880 2881 if (!nmi_uaccess_okay()) 2882 return; 2883 2884 if (perf_callchain_user32(regs, entry)) 2885 return; 2886 2887 pagefault_disable(); 2888 while (entry->nr < entry->max_stack) { 2889 if (!valid_user_frame(fp, sizeof(frame))) 2890 break; 2891 2892 if (__get_user(frame.next_frame, &fp->next_frame)) 2893 break; 2894 if (__get_user(frame.return_address, &fp->return_address)) 2895 break; 2896 2897 perf_callchain_store(entry, frame.return_address); 2898 fp = (void __user *)frame.next_frame; 2899 } 2900 pagefault_enable(); 2901 } 2902 2903 /* 2904 * Deal with code segment offsets for the various execution modes: 2905 * 2906 * VM86 - the good olde 16 bit days, where the linear address is 2907 * 20 bits and we use regs->ip + 0x10 * regs->cs. 2908 * 2909 * IA32 - Where we need to look at GDT/LDT segment descriptor tables 2910 * to figure out what the 32bit base address is. 2911 * 2912 * X32 - has TIF_X32 set, but is running in x86_64 2913 * 2914 * X86_64 - CS,DS,SS,ES are all zero based. 2915 */ 2916 static unsigned long code_segment_base(struct pt_regs *regs) 2917 { 2918 /* 2919 * For IA32 we look at the GDT/LDT segment base to convert the 2920 * effective IP to a linear address. 2921 */ 2922 2923 #ifdef CONFIG_X86_32 2924 /* 2925 * If we are in VM86 mode, add the segment offset to convert to a 2926 * linear address. 2927 */ 2928 if (regs->flags & X86_VM_MASK) 2929 return 0x10 * regs->cs; 2930 2931 if (user_mode(regs) && regs->cs != __USER_CS) 2932 return get_segment_base(regs->cs); 2933 #else 2934 if (user_mode(regs) && !user_64bit_mode(regs) && 2935 regs->cs != __USER32_CS) 2936 return get_segment_base(regs->cs); 2937 #endif 2938 return 0; 2939 } 2940 2941 unsigned long perf_instruction_pointer(struct pt_regs *regs) 2942 { 2943 if (perf_guest_state()) 2944 return perf_guest_get_ip(); 2945 2946 return regs->ip + code_segment_base(regs); 2947 } 2948 2949 unsigned long perf_misc_flags(struct pt_regs *regs) 2950 { 2951 unsigned int guest_state = perf_guest_state(); 2952 int misc = 0; 2953 2954 if (guest_state) { 2955 if (guest_state & PERF_GUEST_USER) 2956 misc |= PERF_RECORD_MISC_GUEST_USER; 2957 else 2958 misc |= PERF_RECORD_MISC_GUEST_KERNEL; 2959 } else { 2960 if (user_mode(regs)) 2961 misc |= PERF_RECORD_MISC_USER; 2962 else 2963 misc |= PERF_RECORD_MISC_KERNEL; 2964 } 2965 2966 if (regs->flags & PERF_EFLAGS_EXACT) 2967 misc |= PERF_RECORD_MISC_EXACT_IP; 2968 2969 return misc; 2970 } 2971 2972 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap) 2973 { 2974 /* This API doesn't currently support enumerating hybrid PMUs. */ 2975 if (WARN_ON_ONCE(cpu_feature_enabled(X86_FEATURE_HYBRID_CPU)) || 2976 !x86_pmu_initialized()) { 2977 memset(cap, 0, sizeof(*cap)); 2978 return; 2979 } 2980 2981 /* 2982 * Note, hybrid CPU models get tracked as having hybrid PMUs even when 2983 * all E-cores are disabled via BIOS. When E-cores are disabled, the 2984 * base PMU holds the correct number of counters for P-cores. 2985 */ 2986 cap->version = x86_pmu.version; 2987 cap->num_counters_gp = x86_pmu_num_counters(NULL); 2988 cap->num_counters_fixed = x86_pmu_num_counters_fixed(NULL); 2989 cap->bit_width_gp = x86_pmu.cntval_bits; 2990 cap->bit_width_fixed = x86_pmu.cntval_bits; 2991 cap->events_mask = (unsigned int)x86_pmu.events_maskl; 2992 cap->events_mask_len = x86_pmu.events_mask_len; 2993 cap->pebs_ept = x86_pmu.pebs_ept; 2994 } 2995 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability); 2996 2997 u64 perf_get_hw_event_config(int hw_event) 2998 { 2999 int max = x86_pmu.max_events; 3000 3001 if (hw_event < max) 3002 return x86_pmu.event_map(array_index_nospec(hw_event, max)); 3003 3004 return 0; 3005 } 3006 EXPORT_SYMBOL_GPL(perf_get_hw_event_config); 3007