xref: /linux/arch/x86/events/core.c (revision 76d9b92e68f2bb55890f935c5143f4fef97a935d)
1 /*
2  * Performance events x86 architecture code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2009 Jaswinder Singh Rajput
7  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
9  *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10  *  Copyright (C) 2009 Google, Inc., Stephane Eranian
11  *
12  *  For licencing details see kernel-base/COPYING
13  */
14 
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/export.h>
21 #include <linux/init.h>
22 #include <linux/kdebug.h>
23 #include <linux/sched/mm.h>
24 #include <linux/sched/clock.h>
25 #include <linux/uaccess.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/bitops.h>
29 #include <linux/device.h>
30 #include <linux/nospec.h>
31 #include <linux/static_call.h>
32 
33 #include <asm/apic.h>
34 #include <asm/stacktrace.h>
35 #include <asm/nmi.h>
36 #include <asm/smp.h>
37 #include <asm/alternative.h>
38 #include <asm/mmu_context.h>
39 #include <asm/tlbflush.h>
40 #include <asm/timer.h>
41 #include <asm/desc.h>
42 #include <asm/ldt.h>
43 #include <asm/unwind.h>
44 
45 #include "perf_event.h"
46 
47 struct x86_pmu x86_pmu __read_mostly;
48 static struct pmu pmu;
49 
50 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
51 	.enabled = 1,
52 	.pmu = &pmu,
53 };
54 
55 DEFINE_STATIC_KEY_FALSE(rdpmc_never_available_key);
56 DEFINE_STATIC_KEY_FALSE(rdpmc_always_available_key);
57 DEFINE_STATIC_KEY_FALSE(perf_is_hybrid);
58 
59 /*
60  * This here uses DEFINE_STATIC_CALL_NULL() to get a static_call defined
61  * from just a typename, as opposed to an actual function.
62  */
63 DEFINE_STATIC_CALL_NULL(x86_pmu_handle_irq,  *x86_pmu.handle_irq);
64 DEFINE_STATIC_CALL_NULL(x86_pmu_disable_all, *x86_pmu.disable_all);
65 DEFINE_STATIC_CALL_NULL(x86_pmu_enable_all,  *x86_pmu.enable_all);
66 DEFINE_STATIC_CALL_NULL(x86_pmu_enable,	     *x86_pmu.enable);
67 DEFINE_STATIC_CALL_NULL(x86_pmu_disable,     *x86_pmu.disable);
68 
69 DEFINE_STATIC_CALL_NULL(x86_pmu_assign, *x86_pmu.assign);
70 
71 DEFINE_STATIC_CALL_NULL(x86_pmu_add,  *x86_pmu.add);
72 DEFINE_STATIC_CALL_NULL(x86_pmu_del,  *x86_pmu.del);
73 DEFINE_STATIC_CALL_NULL(x86_pmu_read, *x86_pmu.read);
74 
75 DEFINE_STATIC_CALL_NULL(x86_pmu_set_period,   *x86_pmu.set_period);
76 DEFINE_STATIC_CALL_NULL(x86_pmu_update,       *x86_pmu.update);
77 DEFINE_STATIC_CALL_NULL(x86_pmu_limit_period, *x86_pmu.limit_period);
78 
79 DEFINE_STATIC_CALL_NULL(x86_pmu_schedule_events,       *x86_pmu.schedule_events);
80 DEFINE_STATIC_CALL_NULL(x86_pmu_get_event_constraints, *x86_pmu.get_event_constraints);
81 DEFINE_STATIC_CALL_NULL(x86_pmu_put_event_constraints, *x86_pmu.put_event_constraints);
82 
83 DEFINE_STATIC_CALL_NULL(x86_pmu_start_scheduling,  *x86_pmu.start_scheduling);
84 DEFINE_STATIC_CALL_NULL(x86_pmu_commit_scheduling, *x86_pmu.commit_scheduling);
85 DEFINE_STATIC_CALL_NULL(x86_pmu_stop_scheduling,   *x86_pmu.stop_scheduling);
86 
87 DEFINE_STATIC_CALL_NULL(x86_pmu_sched_task,    *x86_pmu.sched_task);
88 DEFINE_STATIC_CALL_NULL(x86_pmu_swap_task_ctx, *x86_pmu.swap_task_ctx);
89 
90 DEFINE_STATIC_CALL_NULL(x86_pmu_drain_pebs,   *x86_pmu.drain_pebs);
91 DEFINE_STATIC_CALL_NULL(x86_pmu_pebs_aliases, *x86_pmu.pebs_aliases);
92 
93 DEFINE_STATIC_CALL_NULL(x86_pmu_filter, *x86_pmu.filter);
94 
95 /*
96  * This one is magic, it will get called even when PMU init fails (because
97  * there is no PMU), in which case it should simply return NULL.
98  */
99 DEFINE_STATIC_CALL_RET0(x86_pmu_guest_get_msrs, *x86_pmu.guest_get_msrs);
100 
101 u64 __read_mostly hw_cache_event_ids
102 				[PERF_COUNT_HW_CACHE_MAX]
103 				[PERF_COUNT_HW_CACHE_OP_MAX]
104 				[PERF_COUNT_HW_CACHE_RESULT_MAX];
105 u64 __read_mostly hw_cache_extra_regs
106 				[PERF_COUNT_HW_CACHE_MAX]
107 				[PERF_COUNT_HW_CACHE_OP_MAX]
108 				[PERF_COUNT_HW_CACHE_RESULT_MAX];
109 
110 /*
111  * Propagate event elapsed time into the generic event.
112  * Can only be executed on the CPU where the event is active.
113  * Returns the delta events processed.
114  */
115 u64 x86_perf_event_update(struct perf_event *event)
116 {
117 	struct hw_perf_event *hwc = &event->hw;
118 	int shift = 64 - x86_pmu.cntval_bits;
119 	u64 prev_raw_count, new_raw_count;
120 	u64 delta;
121 
122 	if (unlikely(!hwc->event_base))
123 		return 0;
124 
125 	/*
126 	 * Careful: an NMI might modify the previous event value.
127 	 *
128 	 * Our tactic to handle this is to first atomically read and
129 	 * exchange a new raw count - then add that new-prev delta
130 	 * count to the generic event atomically:
131 	 */
132 	prev_raw_count = local64_read(&hwc->prev_count);
133 	do {
134 		rdpmcl(hwc->event_base_rdpmc, new_raw_count);
135 	} while (!local64_try_cmpxchg(&hwc->prev_count,
136 				      &prev_raw_count, new_raw_count));
137 
138 	/*
139 	 * Now we have the new raw value and have updated the prev
140 	 * timestamp already. We can now calculate the elapsed delta
141 	 * (event-)time and add that to the generic event.
142 	 *
143 	 * Careful, not all hw sign-extends above the physical width
144 	 * of the count.
145 	 */
146 	delta = (new_raw_count << shift) - (prev_raw_count << shift);
147 	delta >>= shift;
148 
149 	local64_add(delta, &event->count);
150 	local64_sub(delta, &hwc->period_left);
151 
152 	return new_raw_count;
153 }
154 
155 /*
156  * Find and validate any extra registers to set up.
157  */
158 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
159 {
160 	struct extra_reg *extra_regs = hybrid(event->pmu, extra_regs);
161 	struct hw_perf_event_extra *reg;
162 	struct extra_reg *er;
163 
164 	reg = &event->hw.extra_reg;
165 
166 	if (!extra_regs)
167 		return 0;
168 
169 	for (er = extra_regs; er->msr; er++) {
170 		if (er->event != (config & er->config_mask))
171 			continue;
172 		if (event->attr.config1 & ~er->valid_mask)
173 			return -EINVAL;
174 		/* Check if the extra msrs can be safely accessed*/
175 		if (!er->extra_msr_access)
176 			return -ENXIO;
177 
178 		reg->idx = er->idx;
179 		reg->config = event->attr.config1;
180 		reg->reg = er->msr;
181 		break;
182 	}
183 	return 0;
184 }
185 
186 static atomic_t active_events;
187 static atomic_t pmc_refcount;
188 static DEFINE_MUTEX(pmc_reserve_mutex);
189 
190 #ifdef CONFIG_X86_LOCAL_APIC
191 
192 static inline u64 get_possible_counter_mask(void)
193 {
194 	u64 cntr_mask = x86_pmu.cntr_mask64;
195 	int i;
196 
197 	if (!is_hybrid())
198 		return cntr_mask;
199 
200 	for (i = 0; i < x86_pmu.num_hybrid_pmus; i++)
201 		cntr_mask |= x86_pmu.hybrid_pmu[i].cntr_mask64;
202 
203 	return cntr_mask;
204 }
205 
206 static bool reserve_pmc_hardware(void)
207 {
208 	u64 cntr_mask = get_possible_counter_mask();
209 	int i, end;
210 
211 	for_each_set_bit(i, (unsigned long *)&cntr_mask, X86_PMC_IDX_MAX) {
212 		if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
213 			goto perfctr_fail;
214 	}
215 
216 	for_each_set_bit(i, (unsigned long *)&cntr_mask, X86_PMC_IDX_MAX) {
217 		if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
218 			goto eventsel_fail;
219 	}
220 
221 	return true;
222 
223 eventsel_fail:
224 	end = i;
225 	for_each_set_bit(i, (unsigned long *)&cntr_mask, end)
226 		release_evntsel_nmi(x86_pmu_config_addr(i));
227 	i = X86_PMC_IDX_MAX;
228 
229 perfctr_fail:
230 	end = i;
231 	for_each_set_bit(i, (unsigned long *)&cntr_mask, end)
232 		release_perfctr_nmi(x86_pmu_event_addr(i));
233 
234 	return false;
235 }
236 
237 static void release_pmc_hardware(void)
238 {
239 	u64 cntr_mask = get_possible_counter_mask();
240 	int i;
241 
242 	for_each_set_bit(i, (unsigned long *)&cntr_mask, X86_PMC_IDX_MAX) {
243 		release_perfctr_nmi(x86_pmu_event_addr(i));
244 		release_evntsel_nmi(x86_pmu_config_addr(i));
245 	}
246 }
247 
248 #else
249 
250 static bool reserve_pmc_hardware(void) { return true; }
251 static void release_pmc_hardware(void) {}
252 
253 #endif
254 
255 bool check_hw_exists(struct pmu *pmu, unsigned long *cntr_mask,
256 		     unsigned long *fixed_cntr_mask)
257 {
258 	u64 val, val_fail = -1, val_new= ~0;
259 	int i, reg, reg_fail = -1, ret = 0;
260 	int bios_fail = 0;
261 	int reg_safe = -1;
262 
263 	/*
264 	 * Check to see if the BIOS enabled any of the counters, if so
265 	 * complain and bail.
266 	 */
267 	for_each_set_bit(i, cntr_mask, X86_PMC_IDX_MAX) {
268 		reg = x86_pmu_config_addr(i);
269 		ret = rdmsrl_safe(reg, &val);
270 		if (ret)
271 			goto msr_fail;
272 		if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
273 			bios_fail = 1;
274 			val_fail = val;
275 			reg_fail = reg;
276 		} else {
277 			reg_safe = i;
278 		}
279 	}
280 
281 	if (*(u64 *)fixed_cntr_mask) {
282 		reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
283 		ret = rdmsrl_safe(reg, &val);
284 		if (ret)
285 			goto msr_fail;
286 		for_each_set_bit(i, fixed_cntr_mask, X86_PMC_IDX_MAX) {
287 			if (fixed_counter_disabled(i, pmu))
288 				continue;
289 			if (val & (0x03ULL << i*4)) {
290 				bios_fail = 1;
291 				val_fail = val;
292 				reg_fail = reg;
293 			}
294 		}
295 	}
296 
297 	/*
298 	 * If all the counters are enabled, the below test will always
299 	 * fail.  The tools will also become useless in this scenario.
300 	 * Just fail and disable the hardware counters.
301 	 */
302 
303 	if (reg_safe == -1) {
304 		reg = reg_safe;
305 		goto msr_fail;
306 	}
307 
308 	/*
309 	 * Read the current value, change it and read it back to see if it
310 	 * matches, this is needed to detect certain hardware emulators
311 	 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
312 	 */
313 	reg = x86_pmu_event_addr(reg_safe);
314 	if (rdmsrl_safe(reg, &val))
315 		goto msr_fail;
316 	val ^= 0xffffUL;
317 	ret = wrmsrl_safe(reg, val);
318 	ret |= rdmsrl_safe(reg, &val_new);
319 	if (ret || val != val_new)
320 		goto msr_fail;
321 
322 	/*
323 	 * We still allow the PMU driver to operate:
324 	 */
325 	if (bios_fail) {
326 		pr_cont("Broken BIOS detected, complain to your hardware vendor.\n");
327 		pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n",
328 			      reg_fail, val_fail);
329 	}
330 
331 	return true;
332 
333 msr_fail:
334 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
335 		pr_cont("PMU not available due to virtualization, using software events only.\n");
336 	} else {
337 		pr_cont("Broken PMU hardware detected, using software events only.\n");
338 		pr_err("Failed to access perfctr msr (MSR %x is %Lx)\n",
339 		       reg, val_new);
340 	}
341 
342 	return false;
343 }
344 
345 static void hw_perf_event_destroy(struct perf_event *event)
346 {
347 	x86_release_hardware();
348 	atomic_dec(&active_events);
349 }
350 
351 void hw_perf_lbr_event_destroy(struct perf_event *event)
352 {
353 	hw_perf_event_destroy(event);
354 
355 	/* undo the lbr/bts event accounting */
356 	x86_del_exclusive(x86_lbr_exclusive_lbr);
357 }
358 
359 static inline int x86_pmu_initialized(void)
360 {
361 	return x86_pmu.handle_irq != NULL;
362 }
363 
364 static inline int
365 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
366 {
367 	struct perf_event_attr *attr = &event->attr;
368 	unsigned int cache_type, cache_op, cache_result;
369 	u64 config, val;
370 
371 	config = attr->config;
372 
373 	cache_type = (config >> 0) & 0xff;
374 	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
375 		return -EINVAL;
376 	cache_type = array_index_nospec(cache_type, PERF_COUNT_HW_CACHE_MAX);
377 
378 	cache_op = (config >>  8) & 0xff;
379 	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
380 		return -EINVAL;
381 	cache_op = array_index_nospec(cache_op, PERF_COUNT_HW_CACHE_OP_MAX);
382 
383 	cache_result = (config >> 16) & 0xff;
384 	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
385 		return -EINVAL;
386 	cache_result = array_index_nospec(cache_result, PERF_COUNT_HW_CACHE_RESULT_MAX);
387 
388 	val = hybrid_var(event->pmu, hw_cache_event_ids)[cache_type][cache_op][cache_result];
389 	if (val == 0)
390 		return -ENOENT;
391 
392 	if (val == -1)
393 		return -EINVAL;
394 
395 	hwc->config |= val;
396 	attr->config1 = hybrid_var(event->pmu, hw_cache_extra_regs)[cache_type][cache_op][cache_result];
397 	return x86_pmu_extra_regs(val, event);
398 }
399 
400 int x86_reserve_hardware(void)
401 {
402 	int err = 0;
403 
404 	if (!atomic_inc_not_zero(&pmc_refcount)) {
405 		mutex_lock(&pmc_reserve_mutex);
406 		if (atomic_read(&pmc_refcount) == 0) {
407 			if (!reserve_pmc_hardware()) {
408 				err = -EBUSY;
409 			} else {
410 				reserve_ds_buffers();
411 				reserve_lbr_buffers();
412 			}
413 		}
414 		if (!err)
415 			atomic_inc(&pmc_refcount);
416 		mutex_unlock(&pmc_reserve_mutex);
417 	}
418 
419 	return err;
420 }
421 
422 void x86_release_hardware(void)
423 {
424 	if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) {
425 		release_pmc_hardware();
426 		release_ds_buffers();
427 		release_lbr_buffers();
428 		mutex_unlock(&pmc_reserve_mutex);
429 	}
430 }
431 
432 /*
433  * Check if we can create event of a certain type (that no conflicting events
434  * are present).
435  */
436 int x86_add_exclusive(unsigned int what)
437 {
438 	int i;
439 
440 	/*
441 	 * When lbr_pt_coexist we allow PT to coexist with either LBR or BTS.
442 	 * LBR and BTS are still mutually exclusive.
443 	 */
444 	if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
445 		goto out;
446 
447 	if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) {
448 		mutex_lock(&pmc_reserve_mutex);
449 		for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) {
450 			if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
451 				goto fail_unlock;
452 		}
453 		atomic_inc(&x86_pmu.lbr_exclusive[what]);
454 		mutex_unlock(&pmc_reserve_mutex);
455 	}
456 
457 out:
458 	atomic_inc(&active_events);
459 	return 0;
460 
461 fail_unlock:
462 	mutex_unlock(&pmc_reserve_mutex);
463 	return -EBUSY;
464 }
465 
466 void x86_del_exclusive(unsigned int what)
467 {
468 	atomic_dec(&active_events);
469 
470 	/*
471 	 * See the comment in x86_add_exclusive().
472 	 */
473 	if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
474 		return;
475 
476 	atomic_dec(&x86_pmu.lbr_exclusive[what]);
477 }
478 
479 int x86_setup_perfctr(struct perf_event *event)
480 {
481 	struct perf_event_attr *attr = &event->attr;
482 	struct hw_perf_event *hwc = &event->hw;
483 	u64 config;
484 
485 	if (!is_sampling_event(event)) {
486 		hwc->sample_period = x86_pmu.max_period;
487 		hwc->last_period = hwc->sample_period;
488 		local64_set(&hwc->period_left, hwc->sample_period);
489 	}
490 
491 	if (attr->type == event->pmu->type)
492 		return x86_pmu_extra_regs(event->attr.config, event);
493 
494 	if (attr->type == PERF_TYPE_HW_CACHE)
495 		return set_ext_hw_attr(hwc, event);
496 
497 	if (attr->config >= x86_pmu.max_events)
498 		return -EINVAL;
499 
500 	attr->config = array_index_nospec((unsigned long)attr->config, x86_pmu.max_events);
501 
502 	/*
503 	 * The generic map:
504 	 */
505 	config = x86_pmu.event_map(attr->config);
506 
507 	if (config == 0)
508 		return -ENOENT;
509 
510 	if (config == -1LL)
511 		return -EINVAL;
512 
513 	hwc->config |= config;
514 
515 	return 0;
516 }
517 
518 /*
519  * check that branch_sample_type is compatible with
520  * settings needed for precise_ip > 1 which implies
521  * using the LBR to capture ALL taken branches at the
522  * priv levels of the measurement
523  */
524 static inline int precise_br_compat(struct perf_event *event)
525 {
526 	u64 m = event->attr.branch_sample_type;
527 	u64 b = 0;
528 
529 	/* must capture all branches */
530 	if (!(m & PERF_SAMPLE_BRANCH_ANY))
531 		return 0;
532 
533 	m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
534 
535 	if (!event->attr.exclude_user)
536 		b |= PERF_SAMPLE_BRANCH_USER;
537 
538 	if (!event->attr.exclude_kernel)
539 		b |= PERF_SAMPLE_BRANCH_KERNEL;
540 
541 	/*
542 	 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
543 	 */
544 
545 	return m == b;
546 }
547 
548 int x86_pmu_max_precise(void)
549 {
550 	int precise = 0;
551 
552 	/* Support for constant skid */
553 	if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
554 		precise++;
555 
556 		/* Support for IP fixup */
557 		if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
558 			precise++;
559 
560 		if (x86_pmu.pebs_prec_dist)
561 			precise++;
562 	}
563 	return precise;
564 }
565 
566 int x86_pmu_hw_config(struct perf_event *event)
567 {
568 	if (event->attr.precise_ip) {
569 		int precise = x86_pmu_max_precise();
570 
571 		if (event->attr.precise_ip > precise)
572 			return -EOPNOTSUPP;
573 
574 		/* There's no sense in having PEBS for non sampling events: */
575 		if (!is_sampling_event(event))
576 			return -EINVAL;
577 	}
578 	/*
579 	 * check that PEBS LBR correction does not conflict with
580 	 * whatever the user is asking with attr->branch_sample_type
581 	 */
582 	if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
583 		u64 *br_type = &event->attr.branch_sample_type;
584 
585 		if (has_branch_stack(event)) {
586 			if (!precise_br_compat(event))
587 				return -EOPNOTSUPP;
588 
589 			/* branch_sample_type is compatible */
590 
591 		} else {
592 			/*
593 			 * user did not specify  branch_sample_type
594 			 *
595 			 * For PEBS fixups, we capture all
596 			 * the branches at the priv level of the
597 			 * event.
598 			 */
599 			*br_type = PERF_SAMPLE_BRANCH_ANY;
600 
601 			if (!event->attr.exclude_user)
602 				*br_type |= PERF_SAMPLE_BRANCH_USER;
603 
604 			if (!event->attr.exclude_kernel)
605 				*br_type |= PERF_SAMPLE_BRANCH_KERNEL;
606 		}
607 	}
608 
609 	if (branch_sample_call_stack(event))
610 		event->attach_state |= PERF_ATTACH_TASK_DATA;
611 
612 	/*
613 	 * Generate PMC IRQs:
614 	 * (keep 'enabled' bit clear for now)
615 	 */
616 	event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
617 
618 	/*
619 	 * Count user and OS events unless requested not to
620 	 */
621 	if (!event->attr.exclude_user)
622 		event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
623 	if (!event->attr.exclude_kernel)
624 		event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
625 
626 	if (event->attr.type == event->pmu->type)
627 		event->hw.config |= x86_pmu_get_event_config(event);
628 
629 	if (event->attr.sample_period && x86_pmu.limit_period) {
630 		s64 left = event->attr.sample_period;
631 		x86_pmu.limit_period(event, &left);
632 		if (left > event->attr.sample_period)
633 			return -EINVAL;
634 	}
635 
636 	/* sample_regs_user never support XMM registers */
637 	if (unlikely(event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK))
638 		return -EINVAL;
639 	/*
640 	 * Besides the general purpose registers, XMM registers may
641 	 * be collected in PEBS on some platforms, e.g. Icelake
642 	 */
643 	if (unlikely(event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK)) {
644 		if (!(event->pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS))
645 			return -EINVAL;
646 
647 		if (!event->attr.precise_ip)
648 			return -EINVAL;
649 	}
650 
651 	return x86_setup_perfctr(event);
652 }
653 
654 /*
655  * Setup the hardware configuration for a given attr_type
656  */
657 static int __x86_pmu_event_init(struct perf_event *event)
658 {
659 	int err;
660 
661 	if (!x86_pmu_initialized())
662 		return -ENODEV;
663 
664 	err = x86_reserve_hardware();
665 	if (err)
666 		return err;
667 
668 	atomic_inc(&active_events);
669 	event->destroy = hw_perf_event_destroy;
670 
671 	event->hw.idx = -1;
672 	event->hw.last_cpu = -1;
673 	event->hw.last_tag = ~0ULL;
674 
675 	/* mark unused */
676 	event->hw.extra_reg.idx = EXTRA_REG_NONE;
677 	event->hw.branch_reg.idx = EXTRA_REG_NONE;
678 
679 	return x86_pmu.hw_config(event);
680 }
681 
682 void x86_pmu_disable_all(void)
683 {
684 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
685 	int idx;
686 
687 	for_each_set_bit(idx, x86_pmu.cntr_mask, X86_PMC_IDX_MAX) {
688 		struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
689 		u64 val;
690 
691 		if (!test_bit(idx, cpuc->active_mask))
692 			continue;
693 		rdmsrl(x86_pmu_config_addr(idx), val);
694 		if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
695 			continue;
696 		val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
697 		wrmsrl(x86_pmu_config_addr(idx), val);
698 		if (is_counter_pair(hwc))
699 			wrmsrl(x86_pmu_config_addr(idx + 1), 0);
700 	}
701 }
702 
703 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr, void *data)
704 {
705 	return static_call(x86_pmu_guest_get_msrs)(nr, data);
706 }
707 EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
708 
709 /*
710  * There may be PMI landing after enabled=0. The PMI hitting could be before or
711  * after disable_all.
712  *
713  * If PMI hits before disable_all, the PMU will be disabled in the NMI handler.
714  * It will not be re-enabled in the NMI handler again, because enabled=0. After
715  * handling the NMI, disable_all will be called, which will not change the
716  * state either. If PMI hits after disable_all, the PMU is already disabled
717  * before entering NMI handler. The NMI handler will not change the state
718  * either.
719  *
720  * So either situation is harmless.
721  */
722 static void x86_pmu_disable(struct pmu *pmu)
723 {
724 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
725 
726 	if (!x86_pmu_initialized())
727 		return;
728 
729 	if (!cpuc->enabled)
730 		return;
731 
732 	cpuc->n_added = 0;
733 	cpuc->enabled = 0;
734 	barrier();
735 
736 	static_call(x86_pmu_disable_all)();
737 }
738 
739 void x86_pmu_enable_all(int added)
740 {
741 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
742 	int idx;
743 
744 	for_each_set_bit(idx, x86_pmu.cntr_mask, X86_PMC_IDX_MAX) {
745 		struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
746 
747 		if (!test_bit(idx, cpuc->active_mask))
748 			continue;
749 
750 		__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
751 	}
752 }
753 
754 static inline int is_x86_event(struct perf_event *event)
755 {
756 	int i;
757 
758 	if (!is_hybrid())
759 		return event->pmu == &pmu;
760 
761 	for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
762 		if (event->pmu == &x86_pmu.hybrid_pmu[i].pmu)
763 			return true;
764 	}
765 
766 	return false;
767 }
768 
769 struct pmu *x86_get_pmu(unsigned int cpu)
770 {
771 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
772 
773 	/*
774 	 * All CPUs of the hybrid type have been offline.
775 	 * The x86_get_pmu() should not be invoked.
776 	 */
777 	if (WARN_ON_ONCE(!cpuc->pmu))
778 		return &pmu;
779 
780 	return cpuc->pmu;
781 }
782 /*
783  * Event scheduler state:
784  *
785  * Assign events iterating over all events and counters, beginning
786  * with events with least weights first. Keep the current iterator
787  * state in struct sched_state.
788  */
789 struct sched_state {
790 	int	weight;
791 	int	event;		/* event index */
792 	int	counter;	/* counter index */
793 	int	unassigned;	/* number of events to be assigned left */
794 	int	nr_gp;		/* number of GP counters used */
795 	u64	used;
796 };
797 
798 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
799 #define	SCHED_STATES_MAX	2
800 
801 struct perf_sched {
802 	int			max_weight;
803 	int			max_events;
804 	int			max_gp;
805 	int			saved_states;
806 	struct event_constraint	**constraints;
807 	struct sched_state	state;
808 	struct sched_state	saved[SCHED_STATES_MAX];
809 };
810 
811 /*
812  * Initialize iterator that runs through all events and counters.
813  */
814 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
815 			    int num, int wmin, int wmax, int gpmax)
816 {
817 	int idx;
818 
819 	memset(sched, 0, sizeof(*sched));
820 	sched->max_events	= num;
821 	sched->max_weight	= wmax;
822 	sched->max_gp		= gpmax;
823 	sched->constraints	= constraints;
824 
825 	for (idx = 0; idx < num; idx++) {
826 		if (constraints[idx]->weight == wmin)
827 			break;
828 	}
829 
830 	sched->state.event	= idx;		/* start with min weight */
831 	sched->state.weight	= wmin;
832 	sched->state.unassigned	= num;
833 }
834 
835 static void perf_sched_save_state(struct perf_sched *sched)
836 {
837 	if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
838 		return;
839 
840 	sched->saved[sched->saved_states] = sched->state;
841 	sched->saved_states++;
842 }
843 
844 static bool perf_sched_restore_state(struct perf_sched *sched)
845 {
846 	if (!sched->saved_states)
847 		return false;
848 
849 	sched->saved_states--;
850 	sched->state = sched->saved[sched->saved_states];
851 
852 	/* this assignment didn't work out */
853 	/* XXX broken vs EVENT_PAIR */
854 	sched->state.used &= ~BIT_ULL(sched->state.counter);
855 
856 	/* try the next one */
857 	sched->state.counter++;
858 
859 	return true;
860 }
861 
862 /*
863  * Select a counter for the current event to schedule. Return true on
864  * success.
865  */
866 static bool __perf_sched_find_counter(struct perf_sched *sched)
867 {
868 	struct event_constraint *c;
869 	int idx;
870 
871 	if (!sched->state.unassigned)
872 		return false;
873 
874 	if (sched->state.event >= sched->max_events)
875 		return false;
876 
877 	c = sched->constraints[sched->state.event];
878 	/* Prefer fixed purpose counters */
879 	if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
880 		idx = INTEL_PMC_IDX_FIXED;
881 		for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
882 			u64 mask = BIT_ULL(idx);
883 
884 			if (sched->state.used & mask)
885 				continue;
886 
887 			sched->state.used |= mask;
888 			goto done;
889 		}
890 	}
891 
892 	/* Grab the first unused counter starting with idx */
893 	idx = sched->state.counter;
894 	for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
895 		u64 mask = BIT_ULL(idx);
896 
897 		if (c->flags & PERF_X86_EVENT_PAIR)
898 			mask |= mask << 1;
899 
900 		if (sched->state.used & mask)
901 			continue;
902 
903 		if (sched->state.nr_gp++ >= sched->max_gp)
904 			return false;
905 
906 		sched->state.used |= mask;
907 		goto done;
908 	}
909 
910 	return false;
911 
912 done:
913 	sched->state.counter = idx;
914 
915 	if (c->overlap)
916 		perf_sched_save_state(sched);
917 
918 	return true;
919 }
920 
921 static bool perf_sched_find_counter(struct perf_sched *sched)
922 {
923 	while (!__perf_sched_find_counter(sched)) {
924 		if (!perf_sched_restore_state(sched))
925 			return false;
926 	}
927 
928 	return true;
929 }
930 
931 /*
932  * Go through all unassigned events and find the next one to schedule.
933  * Take events with the least weight first. Return true on success.
934  */
935 static bool perf_sched_next_event(struct perf_sched *sched)
936 {
937 	struct event_constraint *c;
938 
939 	if (!sched->state.unassigned || !--sched->state.unassigned)
940 		return false;
941 
942 	do {
943 		/* next event */
944 		sched->state.event++;
945 		if (sched->state.event >= sched->max_events) {
946 			/* next weight */
947 			sched->state.event = 0;
948 			sched->state.weight++;
949 			if (sched->state.weight > sched->max_weight)
950 				return false;
951 		}
952 		c = sched->constraints[sched->state.event];
953 	} while (c->weight != sched->state.weight);
954 
955 	sched->state.counter = 0;	/* start with first counter */
956 
957 	return true;
958 }
959 
960 /*
961  * Assign a counter for each event.
962  */
963 int perf_assign_events(struct event_constraint **constraints, int n,
964 			int wmin, int wmax, int gpmax, int *assign)
965 {
966 	struct perf_sched sched;
967 
968 	perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
969 
970 	do {
971 		if (!perf_sched_find_counter(&sched))
972 			break;	/* failed */
973 		if (assign)
974 			assign[sched.state.event] = sched.state.counter;
975 	} while (perf_sched_next_event(&sched));
976 
977 	return sched.state.unassigned;
978 }
979 EXPORT_SYMBOL_GPL(perf_assign_events);
980 
981 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
982 {
983 	struct event_constraint *c;
984 	struct perf_event *e;
985 	int n0, i, wmin, wmax, unsched = 0;
986 	struct hw_perf_event *hwc;
987 	u64 used_mask = 0;
988 
989 	/*
990 	 * Compute the number of events already present; see x86_pmu_add(),
991 	 * validate_group() and x86_pmu_commit_txn(). For the former two
992 	 * cpuc->n_events hasn't been updated yet, while for the latter
993 	 * cpuc->n_txn contains the number of events added in the current
994 	 * transaction.
995 	 */
996 	n0 = cpuc->n_events;
997 	if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
998 		n0 -= cpuc->n_txn;
999 
1000 	static_call_cond(x86_pmu_start_scheduling)(cpuc);
1001 
1002 	for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
1003 		c = cpuc->event_constraint[i];
1004 
1005 		/*
1006 		 * Previously scheduled events should have a cached constraint,
1007 		 * while new events should not have one.
1008 		 */
1009 		WARN_ON_ONCE((c && i >= n0) || (!c && i < n0));
1010 
1011 		/*
1012 		 * Request constraints for new events; or for those events that
1013 		 * have a dynamic constraint -- for those the constraint can
1014 		 * change due to external factors (sibling state, allow_tfa).
1015 		 */
1016 		if (!c || (c->flags & PERF_X86_EVENT_DYNAMIC)) {
1017 			c = static_call(x86_pmu_get_event_constraints)(cpuc, i, cpuc->event_list[i]);
1018 			cpuc->event_constraint[i] = c;
1019 		}
1020 
1021 		wmin = min(wmin, c->weight);
1022 		wmax = max(wmax, c->weight);
1023 	}
1024 
1025 	/*
1026 	 * fastpath, try to reuse previous register
1027 	 */
1028 	for (i = 0; i < n; i++) {
1029 		u64 mask;
1030 
1031 		hwc = &cpuc->event_list[i]->hw;
1032 		c = cpuc->event_constraint[i];
1033 
1034 		/* never assigned */
1035 		if (hwc->idx == -1)
1036 			break;
1037 
1038 		/* constraint still honored */
1039 		if (!test_bit(hwc->idx, c->idxmsk))
1040 			break;
1041 
1042 		mask = BIT_ULL(hwc->idx);
1043 		if (is_counter_pair(hwc))
1044 			mask |= mask << 1;
1045 
1046 		/* not already used */
1047 		if (used_mask & mask)
1048 			break;
1049 
1050 		used_mask |= mask;
1051 
1052 		if (assign)
1053 			assign[i] = hwc->idx;
1054 	}
1055 
1056 	/* slow path */
1057 	if (i != n) {
1058 		int gpmax = x86_pmu_max_num_counters(cpuc->pmu);
1059 
1060 		/*
1061 		 * Do not allow scheduling of more than half the available
1062 		 * generic counters.
1063 		 *
1064 		 * This helps avoid counter starvation of sibling thread by
1065 		 * ensuring at most half the counters cannot be in exclusive
1066 		 * mode. There is no designated counters for the limits. Any
1067 		 * N/2 counters can be used. This helps with events with
1068 		 * specific counter constraints.
1069 		 */
1070 		if (is_ht_workaround_enabled() && !cpuc->is_fake &&
1071 		    READ_ONCE(cpuc->excl_cntrs->exclusive_present))
1072 			gpmax /= 2;
1073 
1074 		/*
1075 		 * Reduce the amount of available counters to allow fitting
1076 		 * the extra Merge events needed by large increment events.
1077 		 */
1078 		if (x86_pmu.flags & PMU_FL_PAIR) {
1079 			gpmax -= cpuc->n_pair;
1080 			WARN_ON(gpmax <= 0);
1081 		}
1082 
1083 		unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
1084 					     wmax, gpmax, assign);
1085 	}
1086 
1087 	/*
1088 	 * In case of success (unsched = 0), mark events as committed,
1089 	 * so we do not put_constraint() in case new events are added
1090 	 * and fail to be scheduled
1091 	 *
1092 	 * We invoke the lower level commit callback to lock the resource
1093 	 *
1094 	 * We do not need to do all of this in case we are called to
1095 	 * validate an event group (assign == NULL)
1096 	 */
1097 	if (!unsched && assign) {
1098 		for (i = 0; i < n; i++)
1099 			static_call_cond(x86_pmu_commit_scheduling)(cpuc, i, assign[i]);
1100 	} else {
1101 		for (i = n0; i < n; i++) {
1102 			e = cpuc->event_list[i];
1103 
1104 			/*
1105 			 * release events that failed scheduling
1106 			 */
1107 			static_call_cond(x86_pmu_put_event_constraints)(cpuc, e);
1108 
1109 			cpuc->event_constraint[i] = NULL;
1110 		}
1111 	}
1112 
1113 	static_call_cond(x86_pmu_stop_scheduling)(cpuc);
1114 
1115 	return unsched ? -EINVAL : 0;
1116 }
1117 
1118 static int add_nr_metric_event(struct cpu_hw_events *cpuc,
1119 			       struct perf_event *event)
1120 {
1121 	if (is_metric_event(event)) {
1122 		if (cpuc->n_metric == INTEL_TD_METRIC_NUM)
1123 			return -EINVAL;
1124 		cpuc->n_metric++;
1125 		cpuc->n_txn_metric++;
1126 	}
1127 
1128 	return 0;
1129 }
1130 
1131 static void del_nr_metric_event(struct cpu_hw_events *cpuc,
1132 				struct perf_event *event)
1133 {
1134 	if (is_metric_event(event))
1135 		cpuc->n_metric--;
1136 }
1137 
1138 static int collect_event(struct cpu_hw_events *cpuc, struct perf_event *event,
1139 			 int max_count, int n)
1140 {
1141 	union perf_capabilities intel_cap = hybrid(cpuc->pmu, intel_cap);
1142 
1143 	if (intel_cap.perf_metrics && add_nr_metric_event(cpuc, event))
1144 		return -EINVAL;
1145 
1146 	if (n >= max_count + cpuc->n_metric)
1147 		return -EINVAL;
1148 
1149 	cpuc->event_list[n] = event;
1150 	if (is_counter_pair(&event->hw)) {
1151 		cpuc->n_pair++;
1152 		cpuc->n_txn_pair++;
1153 	}
1154 
1155 	return 0;
1156 }
1157 
1158 /*
1159  * dogrp: true if must collect siblings events (group)
1160  * returns total number of events and error code
1161  */
1162 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
1163 {
1164 	struct perf_event *event;
1165 	int n, max_count;
1166 
1167 	max_count = x86_pmu_num_counters(cpuc->pmu) + x86_pmu_num_counters_fixed(cpuc->pmu);
1168 
1169 	/* current number of events already accepted */
1170 	n = cpuc->n_events;
1171 	if (!cpuc->n_events)
1172 		cpuc->pebs_output = 0;
1173 
1174 	if (!cpuc->is_fake && leader->attr.precise_ip) {
1175 		/*
1176 		 * For PEBS->PT, if !aux_event, the group leader (PT) went
1177 		 * away, the group was broken down and this singleton event
1178 		 * can't schedule any more.
1179 		 */
1180 		if (is_pebs_pt(leader) && !leader->aux_event)
1181 			return -EINVAL;
1182 
1183 		/*
1184 		 * pebs_output: 0: no PEBS so far, 1: PT, 2: DS
1185 		 */
1186 		if (cpuc->pebs_output &&
1187 		    cpuc->pebs_output != is_pebs_pt(leader) + 1)
1188 			return -EINVAL;
1189 
1190 		cpuc->pebs_output = is_pebs_pt(leader) + 1;
1191 	}
1192 
1193 	if (is_x86_event(leader)) {
1194 		if (collect_event(cpuc, leader, max_count, n))
1195 			return -EINVAL;
1196 		n++;
1197 	}
1198 
1199 	if (!dogrp)
1200 		return n;
1201 
1202 	for_each_sibling_event(event, leader) {
1203 		if (!is_x86_event(event) || event->state <= PERF_EVENT_STATE_OFF)
1204 			continue;
1205 
1206 		if (collect_event(cpuc, event, max_count, n))
1207 			return -EINVAL;
1208 
1209 		n++;
1210 	}
1211 	return n;
1212 }
1213 
1214 static inline void x86_assign_hw_event(struct perf_event *event,
1215 				struct cpu_hw_events *cpuc, int i)
1216 {
1217 	struct hw_perf_event *hwc = &event->hw;
1218 	int idx;
1219 
1220 	idx = hwc->idx = cpuc->assign[i];
1221 	hwc->last_cpu = smp_processor_id();
1222 	hwc->last_tag = ++cpuc->tags[i];
1223 
1224 	static_call_cond(x86_pmu_assign)(event, idx);
1225 
1226 	switch (hwc->idx) {
1227 	case INTEL_PMC_IDX_FIXED_BTS:
1228 	case INTEL_PMC_IDX_FIXED_VLBR:
1229 		hwc->config_base = 0;
1230 		hwc->event_base	= 0;
1231 		break;
1232 
1233 	case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
1234 		/* All the metric events are mapped onto the fixed counter 3. */
1235 		idx = INTEL_PMC_IDX_FIXED_SLOTS;
1236 		fallthrough;
1237 	case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS-1:
1238 		hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
1239 		hwc->event_base = x86_pmu_fixed_ctr_addr(idx - INTEL_PMC_IDX_FIXED);
1240 		hwc->event_base_rdpmc = (idx - INTEL_PMC_IDX_FIXED) |
1241 					INTEL_PMC_FIXED_RDPMC_BASE;
1242 		break;
1243 
1244 	default:
1245 		hwc->config_base = x86_pmu_config_addr(hwc->idx);
1246 		hwc->event_base  = x86_pmu_event_addr(hwc->idx);
1247 		hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
1248 		break;
1249 	}
1250 }
1251 
1252 /**
1253  * x86_perf_rdpmc_index - Return PMC counter used for event
1254  * @event: the perf_event to which the PMC counter was assigned
1255  *
1256  * The counter assigned to this performance event may change if interrupts
1257  * are enabled. This counter should thus never be used while interrupts are
1258  * enabled. Before this function is used to obtain the assigned counter the
1259  * event should be checked for validity using, for example,
1260  * perf_event_read_local(), within the same interrupt disabled section in
1261  * which this counter is planned to be used.
1262  *
1263  * Return: The index of the performance monitoring counter assigned to
1264  * @perf_event.
1265  */
1266 int x86_perf_rdpmc_index(struct perf_event *event)
1267 {
1268 	lockdep_assert_irqs_disabled();
1269 
1270 	return event->hw.event_base_rdpmc;
1271 }
1272 
1273 static inline int match_prev_assignment(struct hw_perf_event *hwc,
1274 					struct cpu_hw_events *cpuc,
1275 					int i)
1276 {
1277 	return hwc->idx == cpuc->assign[i] &&
1278 		hwc->last_cpu == smp_processor_id() &&
1279 		hwc->last_tag == cpuc->tags[i];
1280 }
1281 
1282 static void x86_pmu_start(struct perf_event *event, int flags);
1283 
1284 static void x86_pmu_enable(struct pmu *pmu)
1285 {
1286 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1287 	struct perf_event *event;
1288 	struct hw_perf_event *hwc;
1289 	int i, added = cpuc->n_added;
1290 
1291 	if (!x86_pmu_initialized())
1292 		return;
1293 
1294 	if (cpuc->enabled)
1295 		return;
1296 
1297 	if (cpuc->n_added) {
1298 		int n_running = cpuc->n_events - cpuc->n_added;
1299 		/*
1300 		 * apply assignment obtained either from
1301 		 * hw_perf_group_sched_in() or x86_pmu_enable()
1302 		 *
1303 		 * step1: save events moving to new counters
1304 		 */
1305 		for (i = 0; i < n_running; i++) {
1306 			event = cpuc->event_list[i];
1307 			hwc = &event->hw;
1308 
1309 			/*
1310 			 * we can avoid reprogramming counter if:
1311 			 * - assigned same counter as last time
1312 			 * - running on same CPU as last time
1313 			 * - no other event has used the counter since
1314 			 */
1315 			if (hwc->idx == -1 ||
1316 			    match_prev_assignment(hwc, cpuc, i))
1317 				continue;
1318 
1319 			/*
1320 			 * Ensure we don't accidentally enable a stopped
1321 			 * counter simply because we rescheduled.
1322 			 */
1323 			if (hwc->state & PERF_HES_STOPPED)
1324 				hwc->state |= PERF_HES_ARCH;
1325 
1326 			x86_pmu_stop(event, PERF_EF_UPDATE);
1327 		}
1328 
1329 		/*
1330 		 * step2: reprogram moved events into new counters
1331 		 */
1332 		for (i = 0; i < cpuc->n_events; i++) {
1333 			event = cpuc->event_list[i];
1334 			hwc = &event->hw;
1335 
1336 			if (!match_prev_assignment(hwc, cpuc, i))
1337 				x86_assign_hw_event(event, cpuc, i);
1338 			else if (i < n_running)
1339 				continue;
1340 
1341 			if (hwc->state & PERF_HES_ARCH)
1342 				continue;
1343 
1344 			/*
1345 			 * if cpuc->enabled = 0, then no wrmsr as
1346 			 * per x86_pmu_enable_event()
1347 			 */
1348 			x86_pmu_start(event, PERF_EF_RELOAD);
1349 		}
1350 		cpuc->n_added = 0;
1351 		perf_events_lapic_init();
1352 	}
1353 
1354 	cpuc->enabled = 1;
1355 	barrier();
1356 
1357 	static_call(x86_pmu_enable_all)(added);
1358 }
1359 
1360 DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1361 
1362 /*
1363  * Set the next IRQ period, based on the hwc->period_left value.
1364  * To be called with the event disabled in hw:
1365  */
1366 int x86_perf_event_set_period(struct perf_event *event)
1367 {
1368 	struct hw_perf_event *hwc = &event->hw;
1369 	s64 left = local64_read(&hwc->period_left);
1370 	s64 period = hwc->sample_period;
1371 	int ret = 0, idx = hwc->idx;
1372 
1373 	if (unlikely(!hwc->event_base))
1374 		return 0;
1375 
1376 	/*
1377 	 * If we are way outside a reasonable range then just skip forward:
1378 	 */
1379 	if (unlikely(left <= -period)) {
1380 		left = period;
1381 		local64_set(&hwc->period_left, left);
1382 		hwc->last_period = period;
1383 		ret = 1;
1384 	}
1385 
1386 	if (unlikely(left <= 0)) {
1387 		left += period;
1388 		local64_set(&hwc->period_left, left);
1389 		hwc->last_period = period;
1390 		ret = 1;
1391 	}
1392 	/*
1393 	 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1394 	 */
1395 	if (unlikely(left < 2))
1396 		left = 2;
1397 
1398 	if (left > x86_pmu.max_period)
1399 		left = x86_pmu.max_period;
1400 
1401 	static_call_cond(x86_pmu_limit_period)(event, &left);
1402 
1403 	this_cpu_write(pmc_prev_left[idx], left);
1404 
1405 	/*
1406 	 * The hw event starts counting from this event offset,
1407 	 * mark it to be able to extra future deltas:
1408 	 */
1409 	local64_set(&hwc->prev_count, (u64)-left);
1410 
1411 	wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1412 
1413 	/*
1414 	 * Sign extend the Merge event counter's upper 16 bits since
1415 	 * we currently declare a 48-bit counter width
1416 	 */
1417 	if (is_counter_pair(hwc))
1418 		wrmsrl(x86_pmu_event_addr(idx + 1), 0xffff);
1419 
1420 	perf_event_update_userpage(event);
1421 
1422 	return ret;
1423 }
1424 
1425 void x86_pmu_enable_event(struct perf_event *event)
1426 {
1427 	if (__this_cpu_read(cpu_hw_events.enabled))
1428 		__x86_pmu_enable_event(&event->hw,
1429 				       ARCH_PERFMON_EVENTSEL_ENABLE);
1430 }
1431 
1432 /*
1433  * Add a single event to the PMU.
1434  *
1435  * The event is added to the group of enabled events
1436  * but only if it can be scheduled with existing events.
1437  */
1438 static int x86_pmu_add(struct perf_event *event, int flags)
1439 {
1440 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1441 	struct hw_perf_event *hwc;
1442 	int assign[X86_PMC_IDX_MAX];
1443 	int n, n0, ret;
1444 
1445 	hwc = &event->hw;
1446 
1447 	n0 = cpuc->n_events;
1448 	ret = n = collect_events(cpuc, event, false);
1449 	if (ret < 0)
1450 		goto out;
1451 
1452 	hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1453 	if (!(flags & PERF_EF_START))
1454 		hwc->state |= PERF_HES_ARCH;
1455 
1456 	/*
1457 	 * If group events scheduling transaction was started,
1458 	 * skip the schedulability test here, it will be performed
1459 	 * at commit time (->commit_txn) as a whole.
1460 	 *
1461 	 * If commit fails, we'll call ->del() on all events
1462 	 * for which ->add() was called.
1463 	 */
1464 	if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1465 		goto done_collect;
1466 
1467 	ret = static_call(x86_pmu_schedule_events)(cpuc, n, assign);
1468 	if (ret)
1469 		goto out;
1470 	/*
1471 	 * copy new assignment, now we know it is possible
1472 	 * will be used by hw_perf_enable()
1473 	 */
1474 	memcpy(cpuc->assign, assign, n*sizeof(int));
1475 
1476 done_collect:
1477 	/*
1478 	 * Commit the collect_events() state. See x86_pmu_del() and
1479 	 * x86_pmu_*_txn().
1480 	 */
1481 	cpuc->n_events = n;
1482 	cpuc->n_added += n - n0;
1483 	cpuc->n_txn += n - n0;
1484 
1485 	/*
1486 	 * This is before x86_pmu_enable() will call x86_pmu_start(),
1487 	 * so we enable LBRs before an event needs them etc..
1488 	 */
1489 	static_call_cond(x86_pmu_add)(event);
1490 
1491 	ret = 0;
1492 out:
1493 	return ret;
1494 }
1495 
1496 static void x86_pmu_start(struct perf_event *event, int flags)
1497 {
1498 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1499 	int idx = event->hw.idx;
1500 
1501 	if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1502 		return;
1503 
1504 	if (WARN_ON_ONCE(idx == -1))
1505 		return;
1506 
1507 	if (flags & PERF_EF_RELOAD) {
1508 		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1509 		static_call(x86_pmu_set_period)(event);
1510 	}
1511 
1512 	event->hw.state = 0;
1513 
1514 	cpuc->events[idx] = event;
1515 	__set_bit(idx, cpuc->active_mask);
1516 	static_call(x86_pmu_enable)(event);
1517 	perf_event_update_userpage(event);
1518 }
1519 
1520 void perf_event_print_debug(void)
1521 {
1522 	u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1523 	u64 pebs, debugctl;
1524 	int cpu = smp_processor_id();
1525 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1526 	unsigned long *cntr_mask = hybrid(cpuc->pmu, cntr_mask);
1527 	unsigned long *fixed_cntr_mask = hybrid(cpuc->pmu, fixed_cntr_mask);
1528 	struct event_constraint *pebs_constraints = hybrid(cpuc->pmu, pebs_constraints);
1529 	unsigned long flags;
1530 	int idx;
1531 
1532 	if (!*(u64 *)cntr_mask)
1533 		return;
1534 
1535 	local_irq_save(flags);
1536 
1537 	if (x86_pmu.version >= 2) {
1538 		rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1539 		rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1540 		rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1541 		rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1542 
1543 		pr_info("\n");
1544 		pr_info("CPU#%d: ctrl:       %016llx\n", cpu, ctrl);
1545 		pr_info("CPU#%d: status:     %016llx\n", cpu, status);
1546 		pr_info("CPU#%d: overflow:   %016llx\n", cpu, overflow);
1547 		pr_info("CPU#%d: fixed:      %016llx\n", cpu, fixed);
1548 		if (pebs_constraints) {
1549 			rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1550 			pr_info("CPU#%d: pebs:       %016llx\n", cpu, pebs);
1551 		}
1552 		if (x86_pmu.lbr_nr) {
1553 			rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1554 			pr_info("CPU#%d: debugctl:   %016llx\n", cpu, debugctl);
1555 		}
1556 	}
1557 	pr_info("CPU#%d: active:     %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1558 
1559 	for_each_set_bit(idx, cntr_mask, X86_PMC_IDX_MAX) {
1560 		rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1561 		rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1562 
1563 		prev_left = per_cpu(pmc_prev_left[idx], cpu);
1564 
1565 		pr_info("CPU#%d:   gen-PMC%d ctrl:  %016llx\n",
1566 			cpu, idx, pmc_ctrl);
1567 		pr_info("CPU#%d:   gen-PMC%d count: %016llx\n",
1568 			cpu, idx, pmc_count);
1569 		pr_info("CPU#%d:   gen-PMC%d left:  %016llx\n",
1570 			cpu, idx, prev_left);
1571 	}
1572 	for_each_set_bit(idx, fixed_cntr_mask, X86_PMC_IDX_MAX) {
1573 		if (fixed_counter_disabled(idx, cpuc->pmu))
1574 			continue;
1575 		rdmsrl(x86_pmu_fixed_ctr_addr(idx), pmc_count);
1576 
1577 		pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1578 			cpu, idx, pmc_count);
1579 	}
1580 	local_irq_restore(flags);
1581 }
1582 
1583 void x86_pmu_stop(struct perf_event *event, int flags)
1584 {
1585 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1586 	struct hw_perf_event *hwc = &event->hw;
1587 
1588 	if (test_bit(hwc->idx, cpuc->active_mask)) {
1589 		static_call(x86_pmu_disable)(event);
1590 		__clear_bit(hwc->idx, cpuc->active_mask);
1591 		cpuc->events[hwc->idx] = NULL;
1592 		WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1593 		hwc->state |= PERF_HES_STOPPED;
1594 	}
1595 
1596 	if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1597 		/*
1598 		 * Drain the remaining delta count out of a event
1599 		 * that we are disabling:
1600 		 */
1601 		static_call(x86_pmu_update)(event);
1602 		hwc->state |= PERF_HES_UPTODATE;
1603 	}
1604 }
1605 
1606 static void x86_pmu_del(struct perf_event *event, int flags)
1607 {
1608 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1609 	union perf_capabilities intel_cap = hybrid(cpuc->pmu, intel_cap);
1610 	int i;
1611 
1612 	/*
1613 	 * If we're called during a txn, we only need to undo x86_pmu.add.
1614 	 * The events never got scheduled and ->cancel_txn will truncate
1615 	 * the event_list.
1616 	 *
1617 	 * XXX assumes any ->del() called during a TXN will only be on
1618 	 * an event added during that same TXN.
1619 	 */
1620 	if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1621 		goto do_del;
1622 
1623 	__set_bit(event->hw.idx, cpuc->dirty);
1624 
1625 	/*
1626 	 * Not a TXN, therefore cleanup properly.
1627 	 */
1628 	x86_pmu_stop(event, PERF_EF_UPDATE);
1629 
1630 	for (i = 0; i < cpuc->n_events; i++) {
1631 		if (event == cpuc->event_list[i])
1632 			break;
1633 	}
1634 
1635 	if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1636 		return;
1637 
1638 	/* If we have a newly added event; make sure to decrease n_added. */
1639 	if (i >= cpuc->n_events - cpuc->n_added)
1640 		--cpuc->n_added;
1641 
1642 	static_call_cond(x86_pmu_put_event_constraints)(cpuc, event);
1643 
1644 	/* Delete the array entry. */
1645 	while (++i < cpuc->n_events) {
1646 		cpuc->event_list[i-1] = cpuc->event_list[i];
1647 		cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
1648 		cpuc->assign[i-1] = cpuc->assign[i];
1649 	}
1650 	cpuc->event_constraint[i-1] = NULL;
1651 	--cpuc->n_events;
1652 	if (intel_cap.perf_metrics)
1653 		del_nr_metric_event(cpuc, event);
1654 
1655 	perf_event_update_userpage(event);
1656 
1657 do_del:
1658 
1659 	/*
1660 	 * This is after x86_pmu_stop(); so we disable LBRs after any
1661 	 * event can need them etc..
1662 	 */
1663 	static_call_cond(x86_pmu_del)(event);
1664 }
1665 
1666 int x86_pmu_handle_irq(struct pt_regs *regs)
1667 {
1668 	struct perf_sample_data data;
1669 	struct cpu_hw_events *cpuc;
1670 	struct perf_event *event;
1671 	int idx, handled = 0;
1672 	u64 val;
1673 
1674 	cpuc = this_cpu_ptr(&cpu_hw_events);
1675 
1676 	/*
1677 	 * Some chipsets need to unmask the LVTPC in a particular spot
1678 	 * inside the nmi handler.  As a result, the unmasking was pushed
1679 	 * into all the nmi handlers.
1680 	 *
1681 	 * This generic handler doesn't seem to have any issues where the
1682 	 * unmasking occurs so it was left at the top.
1683 	 */
1684 	apic_write(APIC_LVTPC, APIC_DM_NMI);
1685 
1686 	for_each_set_bit(idx, x86_pmu.cntr_mask, X86_PMC_IDX_MAX) {
1687 		if (!test_bit(idx, cpuc->active_mask))
1688 			continue;
1689 
1690 		event = cpuc->events[idx];
1691 
1692 		val = static_call(x86_pmu_update)(event);
1693 		if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1694 			continue;
1695 
1696 		/*
1697 		 * event overflow
1698 		 */
1699 		handled++;
1700 
1701 		if (!static_call(x86_pmu_set_period)(event))
1702 			continue;
1703 
1704 		perf_sample_data_init(&data, 0, event->hw.last_period);
1705 
1706 		if (has_branch_stack(event))
1707 			perf_sample_save_brstack(&data, event, &cpuc->lbr_stack, NULL);
1708 
1709 		if (perf_event_overflow(event, &data, regs))
1710 			x86_pmu_stop(event, 0);
1711 	}
1712 
1713 	if (handled)
1714 		inc_irq_stat(apic_perf_irqs);
1715 
1716 	return handled;
1717 }
1718 
1719 void perf_events_lapic_init(void)
1720 {
1721 	if (!x86_pmu.apic || !x86_pmu_initialized())
1722 		return;
1723 
1724 	/*
1725 	 * Always use NMI for PMU
1726 	 */
1727 	apic_write(APIC_LVTPC, APIC_DM_NMI);
1728 }
1729 
1730 static int
1731 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1732 {
1733 	u64 start_clock;
1734 	u64 finish_clock;
1735 	int ret;
1736 
1737 	/*
1738 	 * All PMUs/events that share this PMI handler should make sure to
1739 	 * increment active_events for their events.
1740 	 */
1741 	if (!atomic_read(&active_events))
1742 		return NMI_DONE;
1743 
1744 	start_clock = sched_clock();
1745 	ret = static_call(x86_pmu_handle_irq)(regs);
1746 	finish_clock = sched_clock();
1747 
1748 	perf_sample_event_took(finish_clock - start_clock);
1749 
1750 	return ret;
1751 }
1752 NOKPROBE_SYMBOL(perf_event_nmi_handler);
1753 
1754 struct event_constraint emptyconstraint;
1755 struct event_constraint unconstrained;
1756 
1757 static int x86_pmu_prepare_cpu(unsigned int cpu)
1758 {
1759 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1760 	int i;
1761 
1762 	for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1763 		cpuc->kfree_on_online[i] = NULL;
1764 	if (x86_pmu.cpu_prepare)
1765 		return x86_pmu.cpu_prepare(cpu);
1766 	return 0;
1767 }
1768 
1769 static int x86_pmu_dead_cpu(unsigned int cpu)
1770 {
1771 	if (x86_pmu.cpu_dead)
1772 		x86_pmu.cpu_dead(cpu);
1773 	return 0;
1774 }
1775 
1776 static int x86_pmu_online_cpu(unsigned int cpu)
1777 {
1778 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1779 	int i;
1780 
1781 	for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1782 		kfree(cpuc->kfree_on_online[i]);
1783 		cpuc->kfree_on_online[i] = NULL;
1784 	}
1785 	return 0;
1786 }
1787 
1788 static int x86_pmu_starting_cpu(unsigned int cpu)
1789 {
1790 	if (x86_pmu.cpu_starting)
1791 		x86_pmu.cpu_starting(cpu);
1792 	return 0;
1793 }
1794 
1795 static int x86_pmu_dying_cpu(unsigned int cpu)
1796 {
1797 	if (x86_pmu.cpu_dying)
1798 		x86_pmu.cpu_dying(cpu);
1799 	return 0;
1800 }
1801 
1802 static void __init pmu_check_apic(void)
1803 {
1804 	if (boot_cpu_has(X86_FEATURE_APIC))
1805 		return;
1806 
1807 	x86_pmu.apic = 0;
1808 	pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1809 	pr_info("no hardware sampling interrupt available.\n");
1810 
1811 	/*
1812 	 * If we have a PMU initialized but no APIC
1813 	 * interrupts, we cannot sample hardware
1814 	 * events (user-space has to fall back and
1815 	 * sample via a hrtimer based software event):
1816 	 */
1817 	pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1818 
1819 }
1820 
1821 static struct attribute_group x86_pmu_format_group __ro_after_init = {
1822 	.name = "format",
1823 	.attrs = NULL,
1824 };
1825 
1826 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page)
1827 {
1828 	struct perf_pmu_events_attr *pmu_attr =
1829 		container_of(attr, struct perf_pmu_events_attr, attr);
1830 	u64 config = 0;
1831 
1832 	if (pmu_attr->id < x86_pmu.max_events)
1833 		config = x86_pmu.event_map(pmu_attr->id);
1834 
1835 	/* string trumps id */
1836 	if (pmu_attr->event_str)
1837 		return sprintf(page, "%s\n", pmu_attr->event_str);
1838 
1839 	return x86_pmu.events_sysfs_show(page, config);
1840 }
1841 EXPORT_SYMBOL_GPL(events_sysfs_show);
1842 
1843 ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr,
1844 			  char *page)
1845 {
1846 	struct perf_pmu_events_ht_attr *pmu_attr =
1847 		container_of(attr, struct perf_pmu_events_ht_attr, attr);
1848 
1849 	/*
1850 	 * Report conditional events depending on Hyper-Threading.
1851 	 *
1852 	 * This is overly conservative as usually the HT special
1853 	 * handling is not needed if the other CPU thread is idle.
1854 	 *
1855 	 * Note this does not (and cannot) handle the case when thread
1856 	 * siblings are invisible, for example with virtualization
1857 	 * if they are owned by some other guest.  The user tool
1858 	 * has to re-read when a thread sibling gets onlined later.
1859 	 */
1860 	return sprintf(page, "%s",
1861 			topology_max_smt_threads() > 1 ?
1862 			pmu_attr->event_str_ht :
1863 			pmu_attr->event_str_noht);
1864 }
1865 
1866 ssize_t events_hybrid_sysfs_show(struct device *dev,
1867 				 struct device_attribute *attr,
1868 				 char *page)
1869 {
1870 	struct perf_pmu_events_hybrid_attr *pmu_attr =
1871 		container_of(attr, struct perf_pmu_events_hybrid_attr, attr);
1872 	struct x86_hybrid_pmu *pmu;
1873 	const char *str, *next_str;
1874 	int i;
1875 
1876 	if (hweight64(pmu_attr->pmu_type) == 1)
1877 		return sprintf(page, "%s", pmu_attr->event_str);
1878 
1879 	/*
1880 	 * Hybrid PMUs may support the same event name, but with different
1881 	 * event encoding, e.g., the mem-loads event on an Atom PMU has
1882 	 * different event encoding from a Core PMU.
1883 	 *
1884 	 * The event_str includes all event encodings. Each event encoding
1885 	 * is divided by ";". The order of the event encodings must follow
1886 	 * the order of the hybrid PMU index.
1887 	 */
1888 	pmu = container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
1889 
1890 	str = pmu_attr->event_str;
1891 	for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
1892 		if (!(x86_pmu.hybrid_pmu[i].pmu_type & pmu_attr->pmu_type))
1893 			continue;
1894 		if (x86_pmu.hybrid_pmu[i].pmu_type & pmu->pmu_type) {
1895 			next_str = strchr(str, ';');
1896 			if (next_str)
1897 				return snprintf(page, next_str - str + 1, "%s", str);
1898 			else
1899 				return sprintf(page, "%s", str);
1900 		}
1901 		str = strchr(str, ';');
1902 		str++;
1903 	}
1904 
1905 	return 0;
1906 }
1907 EXPORT_SYMBOL_GPL(events_hybrid_sysfs_show);
1908 
1909 EVENT_ATTR(cpu-cycles,			CPU_CYCLES		);
1910 EVENT_ATTR(instructions,		INSTRUCTIONS		);
1911 EVENT_ATTR(cache-references,		CACHE_REFERENCES	);
1912 EVENT_ATTR(cache-misses, 		CACHE_MISSES		);
1913 EVENT_ATTR(branch-instructions,		BRANCH_INSTRUCTIONS	);
1914 EVENT_ATTR(branch-misses,		BRANCH_MISSES		);
1915 EVENT_ATTR(bus-cycles,			BUS_CYCLES		);
1916 EVENT_ATTR(stalled-cycles-frontend,	STALLED_CYCLES_FRONTEND	);
1917 EVENT_ATTR(stalled-cycles-backend,	STALLED_CYCLES_BACKEND	);
1918 EVENT_ATTR(ref-cycles,			REF_CPU_CYCLES		);
1919 
1920 static struct attribute *empty_attrs;
1921 
1922 static struct attribute *events_attr[] = {
1923 	EVENT_PTR(CPU_CYCLES),
1924 	EVENT_PTR(INSTRUCTIONS),
1925 	EVENT_PTR(CACHE_REFERENCES),
1926 	EVENT_PTR(CACHE_MISSES),
1927 	EVENT_PTR(BRANCH_INSTRUCTIONS),
1928 	EVENT_PTR(BRANCH_MISSES),
1929 	EVENT_PTR(BUS_CYCLES),
1930 	EVENT_PTR(STALLED_CYCLES_FRONTEND),
1931 	EVENT_PTR(STALLED_CYCLES_BACKEND),
1932 	EVENT_PTR(REF_CPU_CYCLES),
1933 	NULL,
1934 };
1935 
1936 /*
1937  * Remove all undefined events (x86_pmu.event_map(id) == 0)
1938  * out of events_attr attributes.
1939  */
1940 static umode_t
1941 is_visible(struct kobject *kobj, struct attribute *attr, int idx)
1942 {
1943 	struct perf_pmu_events_attr *pmu_attr;
1944 
1945 	if (idx >= x86_pmu.max_events)
1946 		return 0;
1947 
1948 	pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr.attr);
1949 	/* str trumps id */
1950 	return pmu_attr->event_str || x86_pmu.event_map(idx) ? attr->mode : 0;
1951 }
1952 
1953 static struct attribute_group x86_pmu_events_group __ro_after_init = {
1954 	.name = "events",
1955 	.attrs = events_attr,
1956 	.is_visible = is_visible,
1957 };
1958 
1959 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1960 {
1961 	u64 umask  = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1962 	u64 cmask  = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1963 	bool edge  = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1964 	bool pc    = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1965 	bool any   = (config & ARCH_PERFMON_EVENTSEL_ANY);
1966 	bool inv   = (config & ARCH_PERFMON_EVENTSEL_INV);
1967 	ssize_t ret;
1968 
1969 	/*
1970 	* We have whole page size to spend and just little data
1971 	* to write, so we can safely use sprintf.
1972 	*/
1973 	ret = sprintf(page, "event=0x%02llx", event);
1974 
1975 	if (umask)
1976 		ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1977 
1978 	if (edge)
1979 		ret += sprintf(page + ret, ",edge");
1980 
1981 	if (pc)
1982 		ret += sprintf(page + ret, ",pc");
1983 
1984 	if (any)
1985 		ret += sprintf(page + ret, ",any");
1986 
1987 	if (inv)
1988 		ret += sprintf(page + ret, ",inv");
1989 
1990 	if (cmask)
1991 		ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1992 
1993 	ret += sprintf(page + ret, "\n");
1994 
1995 	return ret;
1996 }
1997 
1998 static struct attribute_group x86_pmu_attr_group;
1999 static struct attribute_group x86_pmu_caps_group;
2000 
2001 static void x86_pmu_static_call_update(void)
2002 {
2003 	static_call_update(x86_pmu_handle_irq, x86_pmu.handle_irq);
2004 	static_call_update(x86_pmu_disable_all, x86_pmu.disable_all);
2005 	static_call_update(x86_pmu_enable_all, x86_pmu.enable_all);
2006 	static_call_update(x86_pmu_enable, x86_pmu.enable);
2007 	static_call_update(x86_pmu_disable, x86_pmu.disable);
2008 
2009 	static_call_update(x86_pmu_assign, x86_pmu.assign);
2010 
2011 	static_call_update(x86_pmu_add, x86_pmu.add);
2012 	static_call_update(x86_pmu_del, x86_pmu.del);
2013 	static_call_update(x86_pmu_read, x86_pmu.read);
2014 
2015 	static_call_update(x86_pmu_set_period, x86_pmu.set_period);
2016 	static_call_update(x86_pmu_update, x86_pmu.update);
2017 	static_call_update(x86_pmu_limit_period, x86_pmu.limit_period);
2018 
2019 	static_call_update(x86_pmu_schedule_events, x86_pmu.schedule_events);
2020 	static_call_update(x86_pmu_get_event_constraints, x86_pmu.get_event_constraints);
2021 	static_call_update(x86_pmu_put_event_constraints, x86_pmu.put_event_constraints);
2022 
2023 	static_call_update(x86_pmu_start_scheduling, x86_pmu.start_scheduling);
2024 	static_call_update(x86_pmu_commit_scheduling, x86_pmu.commit_scheduling);
2025 	static_call_update(x86_pmu_stop_scheduling, x86_pmu.stop_scheduling);
2026 
2027 	static_call_update(x86_pmu_sched_task, x86_pmu.sched_task);
2028 	static_call_update(x86_pmu_swap_task_ctx, x86_pmu.swap_task_ctx);
2029 
2030 	static_call_update(x86_pmu_drain_pebs, x86_pmu.drain_pebs);
2031 	static_call_update(x86_pmu_pebs_aliases, x86_pmu.pebs_aliases);
2032 
2033 	static_call_update(x86_pmu_guest_get_msrs, x86_pmu.guest_get_msrs);
2034 	static_call_update(x86_pmu_filter, x86_pmu.filter);
2035 }
2036 
2037 static void _x86_pmu_read(struct perf_event *event)
2038 {
2039 	static_call(x86_pmu_update)(event);
2040 }
2041 
2042 void x86_pmu_show_pmu_cap(struct pmu *pmu)
2043 {
2044 	pr_info("... version:                %d\n",     x86_pmu.version);
2045 	pr_info("... bit width:              %d\n",     x86_pmu.cntval_bits);
2046 	pr_info("... generic registers:      %d\n",     x86_pmu_num_counters(pmu));
2047 	pr_info("... value mask:             %016Lx\n", x86_pmu.cntval_mask);
2048 	pr_info("... max period:             %016Lx\n", x86_pmu.max_period);
2049 	pr_info("... fixed-purpose events:   %d\n",     x86_pmu_num_counters_fixed(pmu));
2050 	pr_info("... event mask:             %016Lx\n", hybrid(pmu, intel_ctrl));
2051 }
2052 
2053 static int __init init_hw_perf_events(void)
2054 {
2055 	struct x86_pmu_quirk *quirk;
2056 	int err;
2057 
2058 	pr_info("Performance Events: ");
2059 
2060 	switch (boot_cpu_data.x86_vendor) {
2061 	case X86_VENDOR_INTEL:
2062 		err = intel_pmu_init();
2063 		break;
2064 	case X86_VENDOR_AMD:
2065 		err = amd_pmu_init();
2066 		break;
2067 	case X86_VENDOR_HYGON:
2068 		err = amd_pmu_init();
2069 		x86_pmu.name = "HYGON";
2070 		break;
2071 	case X86_VENDOR_ZHAOXIN:
2072 	case X86_VENDOR_CENTAUR:
2073 		err = zhaoxin_pmu_init();
2074 		break;
2075 	default:
2076 		err = -ENOTSUPP;
2077 	}
2078 	if (err != 0) {
2079 		pr_cont("no PMU driver, software events only.\n");
2080 		err = 0;
2081 		goto out_bad_pmu;
2082 	}
2083 
2084 	pmu_check_apic();
2085 
2086 	/* sanity check that the hardware exists or is emulated */
2087 	if (!check_hw_exists(&pmu, x86_pmu.cntr_mask, x86_pmu.fixed_cntr_mask))
2088 		goto out_bad_pmu;
2089 
2090 	pr_cont("%s PMU driver.\n", x86_pmu.name);
2091 
2092 	x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
2093 
2094 	for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
2095 		quirk->func();
2096 
2097 	if (!x86_pmu.intel_ctrl)
2098 		x86_pmu.intel_ctrl = x86_pmu.cntr_mask64;
2099 
2100 	if (!x86_pmu.config_mask)
2101 		x86_pmu.config_mask = X86_RAW_EVENT_MASK;
2102 
2103 	perf_events_lapic_init();
2104 	register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
2105 
2106 	unconstrained = (struct event_constraint)
2107 		__EVENT_CONSTRAINT(0, x86_pmu.cntr_mask64,
2108 				   0, x86_pmu_num_counters(NULL), 0, 0);
2109 
2110 	x86_pmu_format_group.attrs = x86_pmu.format_attrs;
2111 
2112 	if (!x86_pmu.events_sysfs_show)
2113 		x86_pmu_events_group.attrs = &empty_attrs;
2114 
2115 	pmu.attr_update = x86_pmu.attr_update;
2116 
2117 	if (!is_hybrid())
2118 		x86_pmu_show_pmu_cap(NULL);
2119 
2120 	if (!x86_pmu.read)
2121 		x86_pmu.read = _x86_pmu_read;
2122 
2123 	if (!x86_pmu.guest_get_msrs)
2124 		x86_pmu.guest_get_msrs = (void *)&__static_call_return0;
2125 
2126 	if (!x86_pmu.set_period)
2127 		x86_pmu.set_period = x86_perf_event_set_period;
2128 
2129 	if (!x86_pmu.update)
2130 		x86_pmu.update = x86_perf_event_update;
2131 
2132 	x86_pmu_static_call_update();
2133 
2134 	/*
2135 	 * Install callbacks. Core will call them for each online
2136 	 * cpu.
2137 	 */
2138 	err = cpuhp_setup_state(CPUHP_PERF_X86_PREPARE, "perf/x86:prepare",
2139 				x86_pmu_prepare_cpu, x86_pmu_dead_cpu);
2140 	if (err)
2141 		return err;
2142 
2143 	err = cpuhp_setup_state(CPUHP_AP_PERF_X86_STARTING,
2144 				"perf/x86:starting", x86_pmu_starting_cpu,
2145 				x86_pmu_dying_cpu);
2146 	if (err)
2147 		goto out;
2148 
2149 	err = cpuhp_setup_state(CPUHP_AP_PERF_X86_ONLINE, "perf/x86:online",
2150 				x86_pmu_online_cpu, NULL);
2151 	if (err)
2152 		goto out1;
2153 
2154 	if (!is_hybrid()) {
2155 		err = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
2156 		if (err)
2157 			goto out2;
2158 	} else {
2159 		struct x86_hybrid_pmu *hybrid_pmu;
2160 		int i, j;
2161 
2162 		for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
2163 			hybrid_pmu = &x86_pmu.hybrid_pmu[i];
2164 
2165 			hybrid_pmu->pmu = pmu;
2166 			hybrid_pmu->pmu.type = -1;
2167 			hybrid_pmu->pmu.attr_update = x86_pmu.attr_update;
2168 			hybrid_pmu->pmu.capabilities |= PERF_PMU_CAP_EXTENDED_HW_TYPE;
2169 
2170 			err = perf_pmu_register(&hybrid_pmu->pmu, hybrid_pmu->name,
2171 						(hybrid_pmu->pmu_type == hybrid_big) ? PERF_TYPE_RAW : -1);
2172 			if (err)
2173 				break;
2174 		}
2175 
2176 		if (i < x86_pmu.num_hybrid_pmus) {
2177 			for (j = 0; j < i; j++)
2178 				perf_pmu_unregister(&x86_pmu.hybrid_pmu[j].pmu);
2179 			pr_warn("Failed to register hybrid PMUs\n");
2180 			kfree(x86_pmu.hybrid_pmu);
2181 			x86_pmu.hybrid_pmu = NULL;
2182 			x86_pmu.num_hybrid_pmus = 0;
2183 			goto out2;
2184 		}
2185 	}
2186 
2187 	return 0;
2188 
2189 out2:
2190 	cpuhp_remove_state(CPUHP_AP_PERF_X86_ONLINE);
2191 out1:
2192 	cpuhp_remove_state(CPUHP_AP_PERF_X86_STARTING);
2193 out:
2194 	cpuhp_remove_state(CPUHP_PERF_X86_PREPARE);
2195 out_bad_pmu:
2196 	memset(&x86_pmu, 0, sizeof(x86_pmu));
2197 	return err;
2198 }
2199 early_initcall(init_hw_perf_events);
2200 
2201 static void x86_pmu_read(struct perf_event *event)
2202 {
2203 	static_call(x86_pmu_read)(event);
2204 }
2205 
2206 /*
2207  * Start group events scheduling transaction
2208  * Set the flag to make pmu::enable() not perform the
2209  * schedulability test, it will be performed at commit time
2210  *
2211  * We only support PERF_PMU_TXN_ADD transactions. Save the
2212  * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
2213  * transactions.
2214  */
2215 static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
2216 {
2217 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2218 
2219 	WARN_ON_ONCE(cpuc->txn_flags);		/* txn already in flight */
2220 
2221 	cpuc->txn_flags = txn_flags;
2222 	if (txn_flags & ~PERF_PMU_TXN_ADD)
2223 		return;
2224 
2225 	perf_pmu_disable(pmu);
2226 	__this_cpu_write(cpu_hw_events.n_txn, 0);
2227 	__this_cpu_write(cpu_hw_events.n_txn_pair, 0);
2228 	__this_cpu_write(cpu_hw_events.n_txn_metric, 0);
2229 }
2230 
2231 /*
2232  * Stop group events scheduling transaction
2233  * Clear the flag and pmu::enable() will perform the
2234  * schedulability test.
2235  */
2236 static void x86_pmu_cancel_txn(struct pmu *pmu)
2237 {
2238 	unsigned int txn_flags;
2239 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2240 
2241 	WARN_ON_ONCE(!cpuc->txn_flags);	/* no txn in flight */
2242 
2243 	txn_flags = cpuc->txn_flags;
2244 	cpuc->txn_flags = 0;
2245 	if (txn_flags & ~PERF_PMU_TXN_ADD)
2246 		return;
2247 
2248 	/*
2249 	 * Truncate collected array by the number of events added in this
2250 	 * transaction. See x86_pmu_add() and x86_pmu_*_txn().
2251 	 */
2252 	__this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
2253 	__this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
2254 	__this_cpu_sub(cpu_hw_events.n_pair, __this_cpu_read(cpu_hw_events.n_txn_pair));
2255 	__this_cpu_sub(cpu_hw_events.n_metric, __this_cpu_read(cpu_hw_events.n_txn_metric));
2256 	perf_pmu_enable(pmu);
2257 }
2258 
2259 /*
2260  * Commit group events scheduling transaction
2261  * Perform the group schedulability test as a whole
2262  * Return 0 if success
2263  *
2264  * Does not cancel the transaction on failure; expects the caller to do this.
2265  */
2266 static int x86_pmu_commit_txn(struct pmu *pmu)
2267 {
2268 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2269 	int assign[X86_PMC_IDX_MAX];
2270 	int n, ret;
2271 
2272 	WARN_ON_ONCE(!cpuc->txn_flags);	/* no txn in flight */
2273 
2274 	if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
2275 		cpuc->txn_flags = 0;
2276 		return 0;
2277 	}
2278 
2279 	n = cpuc->n_events;
2280 
2281 	if (!x86_pmu_initialized())
2282 		return -EAGAIN;
2283 
2284 	ret = static_call(x86_pmu_schedule_events)(cpuc, n, assign);
2285 	if (ret)
2286 		return ret;
2287 
2288 	/*
2289 	 * copy new assignment, now we know it is possible
2290 	 * will be used by hw_perf_enable()
2291 	 */
2292 	memcpy(cpuc->assign, assign, n*sizeof(int));
2293 
2294 	cpuc->txn_flags = 0;
2295 	perf_pmu_enable(pmu);
2296 	return 0;
2297 }
2298 /*
2299  * a fake_cpuc is used to validate event groups. Due to
2300  * the extra reg logic, we need to also allocate a fake
2301  * per_core and per_cpu structure. Otherwise, group events
2302  * using extra reg may conflict without the kernel being
2303  * able to catch this when the last event gets added to
2304  * the group.
2305  */
2306 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
2307 {
2308 	intel_cpuc_finish(cpuc);
2309 	kfree(cpuc);
2310 }
2311 
2312 static struct cpu_hw_events *allocate_fake_cpuc(struct pmu *event_pmu)
2313 {
2314 	struct cpu_hw_events *cpuc;
2315 	int cpu;
2316 
2317 	cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
2318 	if (!cpuc)
2319 		return ERR_PTR(-ENOMEM);
2320 	cpuc->is_fake = 1;
2321 
2322 	if (is_hybrid()) {
2323 		struct x86_hybrid_pmu *h_pmu;
2324 
2325 		h_pmu = hybrid_pmu(event_pmu);
2326 		if (cpumask_empty(&h_pmu->supported_cpus))
2327 			goto error;
2328 		cpu = cpumask_first(&h_pmu->supported_cpus);
2329 	} else
2330 		cpu = raw_smp_processor_id();
2331 	cpuc->pmu = event_pmu;
2332 
2333 	if (intel_cpuc_prepare(cpuc, cpu))
2334 		goto error;
2335 
2336 	return cpuc;
2337 error:
2338 	free_fake_cpuc(cpuc);
2339 	return ERR_PTR(-ENOMEM);
2340 }
2341 
2342 /*
2343  * validate that we can schedule this event
2344  */
2345 static int validate_event(struct perf_event *event)
2346 {
2347 	struct cpu_hw_events *fake_cpuc;
2348 	struct event_constraint *c;
2349 	int ret = 0;
2350 
2351 	fake_cpuc = allocate_fake_cpuc(event->pmu);
2352 	if (IS_ERR(fake_cpuc))
2353 		return PTR_ERR(fake_cpuc);
2354 
2355 	c = x86_pmu.get_event_constraints(fake_cpuc, 0, event);
2356 
2357 	if (!c || !c->weight)
2358 		ret = -EINVAL;
2359 
2360 	if (x86_pmu.put_event_constraints)
2361 		x86_pmu.put_event_constraints(fake_cpuc, event);
2362 
2363 	free_fake_cpuc(fake_cpuc);
2364 
2365 	return ret;
2366 }
2367 
2368 /*
2369  * validate a single event group
2370  *
2371  * validation include:
2372  *	- check events are compatible which each other
2373  *	- events do not compete for the same counter
2374  *	- number of events <= number of counters
2375  *
2376  * validation ensures the group can be loaded onto the
2377  * PMU if it was the only group available.
2378  */
2379 static int validate_group(struct perf_event *event)
2380 {
2381 	struct perf_event *leader = event->group_leader;
2382 	struct cpu_hw_events *fake_cpuc;
2383 	int ret = -EINVAL, n;
2384 
2385 	/*
2386 	 * Reject events from different hybrid PMUs.
2387 	 */
2388 	if (is_hybrid()) {
2389 		struct perf_event *sibling;
2390 		struct pmu *pmu = NULL;
2391 
2392 		if (is_x86_event(leader))
2393 			pmu = leader->pmu;
2394 
2395 		for_each_sibling_event(sibling, leader) {
2396 			if (!is_x86_event(sibling))
2397 				continue;
2398 			if (!pmu)
2399 				pmu = sibling->pmu;
2400 			else if (pmu != sibling->pmu)
2401 				return ret;
2402 		}
2403 	}
2404 
2405 	fake_cpuc = allocate_fake_cpuc(event->pmu);
2406 	if (IS_ERR(fake_cpuc))
2407 		return PTR_ERR(fake_cpuc);
2408 	/*
2409 	 * the event is not yet connected with its
2410 	 * siblings therefore we must first collect
2411 	 * existing siblings, then add the new event
2412 	 * before we can simulate the scheduling
2413 	 */
2414 	n = collect_events(fake_cpuc, leader, true);
2415 	if (n < 0)
2416 		goto out;
2417 
2418 	fake_cpuc->n_events = n;
2419 	n = collect_events(fake_cpuc, event, false);
2420 	if (n < 0)
2421 		goto out;
2422 
2423 	fake_cpuc->n_events = 0;
2424 	ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
2425 
2426 out:
2427 	free_fake_cpuc(fake_cpuc);
2428 	return ret;
2429 }
2430 
2431 static int x86_pmu_event_init(struct perf_event *event)
2432 {
2433 	struct x86_hybrid_pmu *pmu = NULL;
2434 	int err;
2435 
2436 	if ((event->attr.type != event->pmu->type) &&
2437 	    (event->attr.type != PERF_TYPE_HARDWARE) &&
2438 	    (event->attr.type != PERF_TYPE_HW_CACHE))
2439 		return -ENOENT;
2440 
2441 	if (is_hybrid() && (event->cpu != -1)) {
2442 		pmu = hybrid_pmu(event->pmu);
2443 		if (!cpumask_test_cpu(event->cpu, &pmu->supported_cpus))
2444 			return -ENOENT;
2445 	}
2446 
2447 	err = __x86_pmu_event_init(event);
2448 	if (!err) {
2449 		if (event->group_leader != event)
2450 			err = validate_group(event);
2451 		else
2452 			err = validate_event(event);
2453 	}
2454 	if (err) {
2455 		if (event->destroy)
2456 			event->destroy(event);
2457 		event->destroy = NULL;
2458 	}
2459 
2460 	if (READ_ONCE(x86_pmu.attr_rdpmc) &&
2461 	    !(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS))
2462 		event->hw.flags |= PERF_EVENT_FLAG_USER_READ_CNT;
2463 
2464 	return err;
2465 }
2466 
2467 void perf_clear_dirty_counters(void)
2468 {
2469 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2470 	int i;
2471 
2472 	 /* Don't need to clear the assigned counter. */
2473 	for (i = 0; i < cpuc->n_events; i++)
2474 		__clear_bit(cpuc->assign[i], cpuc->dirty);
2475 
2476 	if (bitmap_empty(cpuc->dirty, X86_PMC_IDX_MAX))
2477 		return;
2478 
2479 	for_each_set_bit(i, cpuc->dirty, X86_PMC_IDX_MAX) {
2480 		if (i >= INTEL_PMC_IDX_FIXED) {
2481 			/* Metrics and fake events don't have corresponding HW counters. */
2482 			if (!test_bit(i - INTEL_PMC_IDX_FIXED, hybrid(cpuc->pmu, fixed_cntr_mask)))
2483 				continue;
2484 
2485 			wrmsrl(x86_pmu_fixed_ctr_addr(i - INTEL_PMC_IDX_FIXED), 0);
2486 		} else {
2487 			wrmsrl(x86_pmu_event_addr(i), 0);
2488 		}
2489 	}
2490 
2491 	bitmap_zero(cpuc->dirty, X86_PMC_IDX_MAX);
2492 }
2493 
2494 static void x86_pmu_event_mapped(struct perf_event *event, struct mm_struct *mm)
2495 {
2496 	if (!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT))
2497 		return;
2498 
2499 	/*
2500 	 * This function relies on not being called concurrently in two
2501 	 * tasks in the same mm.  Otherwise one task could observe
2502 	 * perf_rdpmc_allowed > 1 and return all the way back to
2503 	 * userspace with CR4.PCE clear while another task is still
2504 	 * doing on_each_cpu_mask() to propagate CR4.PCE.
2505 	 *
2506 	 * For now, this can't happen because all callers hold mmap_lock
2507 	 * for write.  If this changes, we'll need a different solution.
2508 	 */
2509 	mmap_assert_write_locked(mm);
2510 
2511 	if (atomic_inc_return(&mm->context.perf_rdpmc_allowed) == 1)
2512 		on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1);
2513 }
2514 
2515 static void x86_pmu_event_unmapped(struct perf_event *event, struct mm_struct *mm)
2516 {
2517 	if (!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT))
2518 		return;
2519 
2520 	if (atomic_dec_and_test(&mm->context.perf_rdpmc_allowed))
2521 		on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1);
2522 }
2523 
2524 static int x86_pmu_event_idx(struct perf_event *event)
2525 {
2526 	struct hw_perf_event *hwc = &event->hw;
2527 
2528 	if (!(hwc->flags & PERF_EVENT_FLAG_USER_READ_CNT))
2529 		return 0;
2530 
2531 	if (is_metric_idx(hwc->idx))
2532 		return INTEL_PMC_FIXED_RDPMC_METRICS + 1;
2533 	else
2534 		return hwc->event_base_rdpmc + 1;
2535 }
2536 
2537 static ssize_t get_attr_rdpmc(struct device *cdev,
2538 			      struct device_attribute *attr,
2539 			      char *buf)
2540 {
2541 	return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
2542 }
2543 
2544 static ssize_t set_attr_rdpmc(struct device *cdev,
2545 			      struct device_attribute *attr,
2546 			      const char *buf, size_t count)
2547 {
2548 	static DEFINE_MUTEX(rdpmc_mutex);
2549 	unsigned long val;
2550 	ssize_t ret;
2551 
2552 	ret = kstrtoul(buf, 0, &val);
2553 	if (ret)
2554 		return ret;
2555 
2556 	if (val > 2)
2557 		return -EINVAL;
2558 
2559 	if (x86_pmu.attr_rdpmc_broken)
2560 		return -ENOTSUPP;
2561 
2562 	guard(mutex)(&rdpmc_mutex);
2563 
2564 	if (val != x86_pmu.attr_rdpmc) {
2565 		/*
2566 		 * Changing into or out of never available or always available,
2567 		 * aka perf-event-bypassing mode. This path is extremely slow,
2568 		 * but only root can trigger it, so it's okay.
2569 		 */
2570 		if (val == 0)
2571 			static_branch_inc(&rdpmc_never_available_key);
2572 		else if (x86_pmu.attr_rdpmc == 0)
2573 			static_branch_dec(&rdpmc_never_available_key);
2574 
2575 		if (val == 2)
2576 			static_branch_inc(&rdpmc_always_available_key);
2577 		else if (x86_pmu.attr_rdpmc == 2)
2578 			static_branch_dec(&rdpmc_always_available_key);
2579 
2580 		on_each_cpu(cr4_update_pce, NULL, 1);
2581 		x86_pmu.attr_rdpmc = val;
2582 	}
2583 
2584 	return count;
2585 }
2586 
2587 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
2588 
2589 static struct attribute *x86_pmu_attrs[] = {
2590 	&dev_attr_rdpmc.attr,
2591 	NULL,
2592 };
2593 
2594 static struct attribute_group x86_pmu_attr_group __ro_after_init = {
2595 	.attrs = x86_pmu_attrs,
2596 };
2597 
2598 static ssize_t max_precise_show(struct device *cdev,
2599 				  struct device_attribute *attr,
2600 				  char *buf)
2601 {
2602 	return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu_max_precise());
2603 }
2604 
2605 static DEVICE_ATTR_RO(max_precise);
2606 
2607 static struct attribute *x86_pmu_caps_attrs[] = {
2608 	&dev_attr_max_precise.attr,
2609 	NULL
2610 };
2611 
2612 static struct attribute_group x86_pmu_caps_group __ro_after_init = {
2613 	.name = "caps",
2614 	.attrs = x86_pmu_caps_attrs,
2615 };
2616 
2617 static const struct attribute_group *x86_pmu_attr_groups[] = {
2618 	&x86_pmu_attr_group,
2619 	&x86_pmu_format_group,
2620 	&x86_pmu_events_group,
2621 	&x86_pmu_caps_group,
2622 	NULL,
2623 };
2624 
2625 static void x86_pmu_sched_task(struct perf_event_pmu_context *pmu_ctx, bool sched_in)
2626 {
2627 	static_call_cond(x86_pmu_sched_task)(pmu_ctx, sched_in);
2628 }
2629 
2630 static void x86_pmu_swap_task_ctx(struct perf_event_pmu_context *prev_epc,
2631 				  struct perf_event_pmu_context *next_epc)
2632 {
2633 	static_call_cond(x86_pmu_swap_task_ctx)(prev_epc, next_epc);
2634 }
2635 
2636 void perf_check_microcode(void)
2637 {
2638 	if (x86_pmu.check_microcode)
2639 		x86_pmu.check_microcode();
2640 }
2641 
2642 static int x86_pmu_check_period(struct perf_event *event, u64 value)
2643 {
2644 	if (x86_pmu.check_period && x86_pmu.check_period(event, value))
2645 		return -EINVAL;
2646 
2647 	if (value && x86_pmu.limit_period) {
2648 		s64 left = value;
2649 		x86_pmu.limit_period(event, &left);
2650 		if (left > value)
2651 			return -EINVAL;
2652 	}
2653 
2654 	return 0;
2655 }
2656 
2657 static int x86_pmu_aux_output_match(struct perf_event *event)
2658 {
2659 	if (!(pmu.capabilities & PERF_PMU_CAP_AUX_OUTPUT))
2660 		return 0;
2661 
2662 	if (x86_pmu.aux_output_match)
2663 		return x86_pmu.aux_output_match(event);
2664 
2665 	return 0;
2666 }
2667 
2668 static bool x86_pmu_filter(struct pmu *pmu, int cpu)
2669 {
2670 	bool ret = false;
2671 
2672 	static_call_cond(x86_pmu_filter)(pmu, cpu, &ret);
2673 
2674 	return ret;
2675 }
2676 
2677 static struct pmu pmu = {
2678 	.pmu_enable		= x86_pmu_enable,
2679 	.pmu_disable		= x86_pmu_disable,
2680 
2681 	.attr_groups		= x86_pmu_attr_groups,
2682 
2683 	.event_init		= x86_pmu_event_init,
2684 
2685 	.event_mapped		= x86_pmu_event_mapped,
2686 	.event_unmapped		= x86_pmu_event_unmapped,
2687 
2688 	.add			= x86_pmu_add,
2689 	.del			= x86_pmu_del,
2690 	.start			= x86_pmu_start,
2691 	.stop			= x86_pmu_stop,
2692 	.read			= x86_pmu_read,
2693 
2694 	.start_txn		= x86_pmu_start_txn,
2695 	.cancel_txn		= x86_pmu_cancel_txn,
2696 	.commit_txn		= x86_pmu_commit_txn,
2697 
2698 	.event_idx		= x86_pmu_event_idx,
2699 	.sched_task		= x86_pmu_sched_task,
2700 	.swap_task_ctx		= x86_pmu_swap_task_ctx,
2701 	.check_period		= x86_pmu_check_period,
2702 
2703 	.aux_output_match	= x86_pmu_aux_output_match,
2704 
2705 	.filter			= x86_pmu_filter,
2706 };
2707 
2708 void arch_perf_update_userpage(struct perf_event *event,
2709 			       struct perf_event_mmap_page *userpg, u64 now)
2710 {
2711 	struct cyc2ns_data data;
2712 	u64 offset;
2713 
2714 	userpg->cap_user_time = 0;
2715 	userpg->cap_user_time_zero = 0;
2716 	userpg->cap_user_rdpmc =
2717 		!!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT);
2718 	userpg->pmc_width = x86_pmu.cntval_bits;
2719 
2720 	if (!using_native_sched_clock() || !sched_clock_stable())
2721 		return;
2722 
2723 	cyc2ns_read_begin(&data);
2724 
2725 	offset = data.cyc2ns_offset + __sched_clock_offset;
2726 
2727 	/*
2728 	 * Internal timekeeping for enabled/running/stopped times
2729 	 * is always in the local_clock domain.
2730 	 */
2731 	userpg->cap_user_time = 1;
2732 	userpg->time_mult = data.cyc2ns_mul;
2733 	userpg->time_shift = data.cyc2ns_shift;
2734 	userpg->time_offset = offset - now;
2735 
2736 	/*
2737 	 * cap_user_time_zero doesn't make sense when we're using a different
2738 	 * time base for the records.
2739 	 */
2740 	if (!event->attr.use_clockid) {
2741 		userpg->cap_user_time_zero = 1;
2742 		userpg->time_zero = offset;
2743 	}
2744 
2745 	cyc2ns_read_end();
2746 }
2747 
2748 /*
2749  * Determine whether the regs were taken from an irq/exception handler rather
2750  * than from perf_arch_fetch_caller_regs().
2751  */
2752 static bool perf_hw_regs(struct pt_regs *regs)
2753 {
2754 	return regs->flags & X86_EFLAGS_FIXED;
2755 }
2756 
2757 void
2758 perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2759 {
2760 	struct unwind_state state;
2761 	unsigned long addr;
2762 
2763 	if (perf_guest_state()) {
2764 		/* TODO: We don't support guest os callchain now */
2765 		return;
2766 	}
2767 
2768 	if (perf_callchain_store(entry, regs->ip))
2769 		return;
2770 
2771 	if (perf_hw_regs(regs))
2772 		unwind_start(&state, current, regs, NULL);
2773 	else
2774 		unwind_start(&state, current, NULL, (void *)regs->sp);
2775 
2776 	for (; !unwind_done(&state); unwind_next_frame(&state)) {
2777 		addr = unwind_get_return_address(&state);
2778 		if (!addr || perf_callchain_store(entry, addr))
2779 			return;
2780 	}
2781 }
2782 
2783 static inline int
2784 valid_user_frame(const void __user *fp, unsigned long size)
2785 {
2786 	return __access_ok(fp, size);
2787 }
2788 
2789 static unsigned long get_segment_base(unsigned int segment)
2790 {
2791 	struct desc_struct *desc;
2792 	unsigned int idx = segment >> 3;
2793 
2794 	if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2795 #ifdef CONFIG_MODIFY_LDT_SYSCALL
2796 		struct ldt_struct *ldt;
2797 
2798 		/* IRQs are off, so this synchronizes with smp_store_release */
2799 		ldt = READ_ONCE(current->active_mm->context.ldt);
2800 		if (!ldt || idx >= ldt->nr_entries)
2801 			return 0;
2802 
2803 		desc = &ldt->entries[idx];
2804 #else
2805 		return 0;
2806 #endif
2807 	} else {
2808 		if (idx >= GDT_ENTRIES)
2809 			return 0;
2810 
2811 		desc = raw_cpu_ptr(gdt_page.gdt) + idx;
2812 	}
2813 
2814 	return get_desc_base(desc);
2815 }
2816 
2817 #ifdef CONFIG_IA32_EMULATION
2818 
2819 #include <linux/compat.h>
2820 
2821 static inline int
2822 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2823 {
2824 	/* 32-bit process in 64-bit kernel. */
2825 	unsigned long ss_base, cs_base;
2826 	struct stack_frame_ia32 frame;
2827 	const struct stack_frame_ia32 __user *fp;
2828 
2829 	if (user_64bit_mode(regs))
2830 		return 0;
2831 
2832 	cs_base = get_segment_base(regs->cs);
2833 	ss_base = get_segment_base(regs->ss);
2834 
2835 	fp = compat_ptr(ss_base + regs->bp);
2836 	pagefault_disable();
2837 	while (entry->nr < entry->max_stack) {
2838 		if (!valid_user_frame(fp, sizeof(frame)))
2839 			break;
2840 
2841 		if (__get_user(frame.next_frame, &fp->next_frame))
2842 			break;
2843 		if (__get_user(frame.return_address, &fp->return_address))
2844 			break;
2845 
2846 		perf_callchain_store(entry, cs_base + frame.return_address);
2847 		fp = compat_ptr(ss_base + frame.next_frame);
2848 	}
2849 	pagefault_enable();
2850 	return 1;
2851 }
2852 #else
2853 static inline int
2854 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2855 {
2856     return 0;
2857 }
2858 #endif
2859 
2860 void
2861 perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2862 {
2863 	struct stack_frame frame;
2864 	const struct stack_frame __user *fp;
2865 
2866 	if (perf_guest_state()) {
2867 		/* TODO: We don't support guest os callchain now */
2868 		return;
2869 	}
2870 
2871 	/*
2872 	 * We don't know what to do with VM86 stacks.. ignore them for now.
2873 	 */
2874 	if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2875 		return;
2876 
2877 	fp = (void __user *)regs->bp;
2878 
2879 	perf_callchain_store(entry, regs->ip);
2880 
2881 	if (!nmi_uaccess_okay())
2882 		return;
2883 
2884 	if (perf_callchain_user32(regs, entry))
2885 		return;
2886 
2887 	pagefault_disable();
2888 	while (entry->nr < entry->max_stack) {
2889 		if (!valid_user_frame(fp, sizeof(frame)))
2890 			break;
2891 
2892 		if (__get_user(frame.next_frame, &fp->next_frame))
2893 			break;
2894 		if (__get_user(frame.return_address, &fp->return_address))
2895 			break;
2896 
2897 		perf_callchain_store(entry, frame.return_address);
2898 		fp = (void __user *)frame.next_frame;
2899 	}
2900 	pagefault_enable();
2901 }
2902 
2903 /*
2904  * Deal with code segment offsets for the various execution modes:
2905  *
2906  *   VM86 - the good olde 16 bit days, where the linear address is
2907  *          20 bits and we use regs->ip + 0x10 * regs->cs.
2908  *
2909  *   IA32 - Where we need to look at GDT/LDT segment descriptor tables
2910  *          to figure out what the 32bit base address is.
2911  *
2912  *    X32 - has TIF_X32 set, but is running in x86_64
2913  *
2914  * X86_64 - CS,DS,SS,ES are all zero based.
2915  */
2916 static unsigned long code_segment_base(struct pt_regs *regs)
2917 {
2918 	/*
2919 	 * For IA32 we look at the GDT/LDT segment base to convert the
2920 	 * effective IP to a linear address.
2921 	 */
2922 
2923 #ifdef CONFIG_X86_32
2924 	/*
2925 	 * If we are in VM86 mode, add the segment offset to convert to a
2926 	 * linear address.
2927 	 */
2928 	if (regs->flags & X86_VM_MASK)
2929 		return 0x10 * regs->cs;
2930 
2931 	if (user_mode(regs) && regs->cs != __USER_CS)
2932 		return get_segment_base(regs->cs);
2933 #else
2934 	if (user_mode(regs) && !user_64bit_mode(regs) &&
2935 	    regs->cs != __USER32_CS)
2936 		return get_segment_base(regs->cs);
2937 #endif
2938 	return 0;
2939 }
2940 
2941 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2942 {
2943 	if (perf_guest_state())
2944 		return perf_guest_get_ip();
2945 
2946 	return regs->ip + code_segment_base(regs);
2947 }
2948 
2949 unsigned long perf_misc_flags(struct pt_regs *regs)
2950 {
2951 	unsigned int guest_state = perf_guest_state();
2952 	int misc = 0;
2953 
2954 	if (guest_state) {
2955 		if (guest_state & PERF_GUEST_USER)
2956 			misc |= PERF_RECORD_MISC_GUEST_USER;
2957 		else
2958 			misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2959 	} else {
2960 		if (user_mode(regs))
2961 			misc |= PERF_RECORD_MISC_USER;
2962 		else
2963 			misc |= PERF_RECORD_MISC_KERNEL;
2964 	}
2965 
2966 	if (regs->flags & PERF_EFLAGS_EXACT)
2967 		misc |= PERF_RECORD_MISC_EXACT_IP;
2968 
2969 	return misc;
2970 }
2971 
2972 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2973 {
2974 	/* This API doesn't currently support enumerating hybrid PMUs. */
2975 	if (WARN_ON_ONCE(cpu_feature_enabled(X86_FEATURE_HYBRID_CPU)) ||
2976 	    !x86_pmu_initialized()) {
2977 		memset(cap, 0, sizeof(*cap));
2978 		return;
2979 	}
2980 
2981 	/*
2982 	 * Note, hybrid CPU models get tracked as having hybrid PMUs even when
2983 	 * all E-cores are disabled via BIOS.  When E-cores are disabled, the
2984 	 * base PMU holds the correct number of counters for P-cores.
2985 	 */
2986 	cap->version		= x86_pmu.version;
2987 	cap->num_counters_gp	= x86_pmu_num_counters(NULL);
2988 	cap->num_counters_fixed	= x86_pmu_num_counters_fixed(NULL);
2989 	cap->bit_width_gp	= x86_pmu.cntval_bits;
2990 	cap->bit_width_fixed	= x86_pmu.cntval_bits;
2991 	cap->events_mask	= (unsigned int)x86_pmu.events_maskl;
2992 	cap->events_mask_len	= x86_pmu.events_mask_len;
2993 	cap->pebs_ept		= x86_pmu.pebs_ept;
2994 }
2995 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);
2996 
2997 u64 perf_get_hw_event_config(int hw_event)
2998 {
2999 	int max = x86_pmu.max_events;
3000 
3001 	if (hw_event < max)
3002 		return x86_pmu.event_map(array_index_nospec(hw_event, max));
3003 
3004 	return 0;
3005 }
3006 EXPORT_SYMBOL_GPL(perf_get_hw_event_config);
3007