1 /* 2 * Performance events x86 architecture code 3 * 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2009 Jaswinder Singh Rajput 7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter 8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra 9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com> 10 * Copyright (C) 2009 Google, Inc., Stephane Eranian 11 * 12 * For licencing details see kernel-base/COPYING 13 */ 14 15 #include <linux/perf_event.h> 16 #include <linux/capability.h> 17 #include <linux/notifier.h> 18 #include <linux/hardirq.h> 19 #include <linux/kprobes.h> 20 #include <linux/export.h> 21 #include <linux/init.h> 22 #include <linux/kdebug.h> 23 #include <linux/sched/mm.h> 24 #include <linux/sched/clock.h> 25 #include <linux/uaccess.h> 26 #include <linux/slab.h> 27 #include <linux/cpu.h> 28 #include <linux/bitops.h> 29 #include <linux/device.h> 30 #include <linux/nospec.h> 31 #include <linux/static_call.h> 32 33 #include <asm/apic.h> 34 #include <asm/stacktrace.h> 35 #include <asm/msr.h> 36 #include <asm/nmi.h> 37 #include <asm/smp.h> 38 #include <asm/alternative.h> 39 #include <asm/mmu_context.h> 40 #include <asm/tlbflush.h> 41 #include <asm/timer.h> 42 #include <asm/desc.h> 43 #include <asm/ldt.h> 44 #include <asm/unwind.h> 45 #include <asm/uprobes.h> 46 #include <asm/ibt.h> 47 48 #include "perf_event.h" 49 50 struct x86_pmu x86_pmu __read_mostly; 51 static struct pmu pmu; 52 53 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { 54 .enabled = 1, 55 .pmu = &pmu, 56 }; 57 58 DEFINE_STATIC_KEY_FALSE(rdpmc_never_available_key); 59 DEFINE_STATIC_KEY_FALSE(rdpmc_always_available_key); 60 DEFINE_STATIC_KEY_FALSE(perf_is_hybrid); 61 62 /* 63 * This here uses DEFINE_STATIC_CALL_NULL() to get a static_call defined 64 * from just a typename, as opposed to an actual function. 65 */ 66 DEFINE_STATIC_CALL_NULL(x86_pmu_handle_irq, *x86_pmu.handle_irq); 67 DEFINE_STATIC_CALL_NULL(x86_pmu_disable_all, *x86_pmu.disable_all); 68 DEFINE_STATIC_CALL_NULL(x86_pmu_enable_all, *x86_pmu.enable_all); 69 DEFINE_STATIC_CALL_NULL(x86_pmu_enable, *x86_pmu.enable); 70 DEFINE_STATIC_CALL_NULL(x86_pmu_disable, *x86_pmu.disable); 71 72 DEFINE_STATIC_CALL_NULL(x86_pmu_assign, *x86_pmu.assign); 73 74 DEFINE_STATIC_CALL_NULL(x86_pmu_add, *x86_pmu.add); 75 DEFINE_STATIC_CALL_NULL(x86_pmu_del, *x86_pmu.del); 76 DEFINE_STATIC_CALL_NULL(x86_pmu_read, *x86_pmu.read); 77 78 DEFINE_STATIC_CALL_NULL(x86_pmu_set_period, *x86_pmu.set_period); 79 DEFINE_STATIC_CALL_NULL(x86_pmu_update, *x86_pmu.update); 80 DEFINE_STATIC_CALL_NULL(x86_pmu_limit_period, *x86_pmu.limit_period); 81 82 DEFINE_STATIC_CALL_NULL(x86_pmu_schedule_events, *x86_pmu.schedule_events); 83 DEFINE_STATIC_CALL_NULL(x86_pmu_get_event_constraints, *x86_pmu.get_event_constraints); 84 DEFINE_STATIC_CALL_NULL(x86_pmu_put_event_constraints, *x86_pmu.put_event_constraints); 85 86 DEFINE_STATIC_CALL_NULL(x86_pmu_start_scheduling, *x86_pmu.start_scheduling); 87 DEFINE_STATIC_CALL_NULL(x86_pmu_commit_scheduling, *x86_pmu.commit_scheduling); 88 DEFINE_STATIC_CALL_NULL(x86_pmu_stop_scheduling, *x86_pmu.stop_scheduling); 89 90 DEFINE_STATIC_CALL_NULL(x86_pmu_sched_task, *x86_pmu.sched_task); 91 92 DEFINE_STATIC_CALL_NULL(x86_pmu_drain_pebs, *x86_pmu.drain_pebs); 93 DEFINE_STATIC_CALL_NULL(x86_pmu_pebs_aliases, *x86_pmu.pebs_aliases); 94 95 DEFINE_STATIC_CALL_NULL(x86_pmu_filter, *x86_pmu.filter); 96 97 DEFINE_STATIC_CALL_NULL(x86_pmu_late_setup, *x86_pmu.late_setup); 98 99 /* 100 * This one is magic, it will get called even when PMU init fails (because 101 * there is no PMU), in which case it should simply return NULL. 102 */ 103 DEFINE_STATIC_CALL_RET0(x86_pmu_guest_get_msrs, *x86_pmu.guest_get_msrs); 104 105 u64 __read_mostly hw_cache_event_ids 106 [PERF_COUNT_HW_CACHE_MAX] 107 [PERF_COUNT_HW_CACHE_OP_MAX] 108 [PERF_COUNT_HW_CACHE_RESULT_MAX]; 109 u64 __read_mostly hw_cache_extra_regs 110 [PERF_COUNT_HW_CACHE_MAX] 111 [PERF_COUNT_HW_CACHE_OP_MAX] 112 [PERF_COUNT_HW_CACHE_RESULT_MAX]; 113 114 /* 115 * Propagate event elapsed time into the generic event. 116 * Can only be executed on the CPU where the event is active. 117 * Returns the delta events processed. 118 */ 119 u64 x86_perf_event_update(struct perf_event *event) 120 { 121 struct hw_perf_event *hwc = &event->hw; 122 int shift = 64 - x86_pmu.cntval_bits; 123 u64 prev_raw_count, new_raw_count; 124 u64 delta; 125 126 if (unlikely(!hwc->event_base)) 127 return 0; 128 129 /* 130 * Careful: an NMI might modify the previous event value. 131 * 132 * Our tactic to handle this is to first atomically read and 133 * exchange a new raw count - then add that new-prev delta 134 * count to the generic event atomically: 135 */ 136 prev_raw_count = local64_read(&hwc->prev_count); 137 do { 138 new_raw_count = rdpmc(hwc->event_base_rdpmc); 139 } while (!local64_try_cmpxchg(&hwc->prev_count, 140 &prev_raw_count, new_raw_count)); 141 142 /* 143 * Now we have the new raw value and have updated the prev 144 * timestamp already. We can now calculate the elapsed delta 145 * (event-)time and add that to the generic event. 146 * 147 * Careful, not all hw sign-extends above the physical width 148 * of the count. 149 */ 150 delta = (new_raw_count << shift) - (prev_raw_count << shift); 151 delta >>= shift; 152 153 local64_add(delta, &event->count); 154 local64_sub(delta, &hwc->period_left); 155 156 return new_raw_count; 157 } 158 159 /* 160 * Find and validate any extra registers to set up. 161 */ 162 static int x86_pmu_extra_regs(u64 config, struct perf_event *event) 163 { 164 struct extra_reg *extra_regs = hybrid(event->pmu, extra_regs); 165 struct hw_perf_event_extra *reg; 166 struct extra_reg *er; 167 168 reg = &event->hw.extra_reg; 169 170 if (!extra_regs) 171 return 0; 172 173 for (er = extra_regs; er->msr; er++) { 174 if (er->event != (config & er->config_mask)) 175 continue; 176 if (event->attr.config1 & ~er->valid_mask) 177 return -EINVAL; 178 /* Check if the extra msrs can be safely accessed*/ 179 if (!er->extra_msr_access) 180 return -ENXIO; 181 182 reg->idx = er->idx; 183 reg->config = event->attr.config1; 184 reg->reg = er->msr; 185 break; 186 } 187 return 0; 188 } 189 190 static atomic_t active_events; 191 static atomic_t pmc_refcount; 192 static DEFINE_MUTEX(pmc_reserve_mutex); 193 194 #ifdef CONFIG_X86_LOCAL_APIC 195 196 static inline u64 get_possible_counter_mask(void) 197 { 198 u64 cntr_mask = x86_pmu.cntr_mask64; 199 int i; 200 201 if (!is_hybrid()) 202 return cntr_mask; 203 204 for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) 205 cntr_mask |= x86_pmu.hybrid_pmu[i].cntr_mask64; 206 207 return cntr_mask; 208 } 209 210 static bool reserve_pmc_hardware(void) 211 { 212 u64 cntr_mask = get_possible_counter_mask(); 213 int i, end; 214 215 for_each_set_bit(i, (unsigned long *)&cntr_mask, X86_PMC_IDX_MAX) { 216 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i))) 217 goto perfctr_fail; 218 } 219 220 for_each_set_bit(i, (unsigned long *)&cntr_mask, X86_PMC_IDX_MAX) { 221 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i))) 222 goto eventsel_fail; 223 } 224 225 return true; 226 227 eventsel_fail: 228 end = i; 229 for_each_set_bit(i, (unsigned long *)&cntr_mask, end) 230 release_evntsel_nmi(x86_pmu_config_addr(i)); 231 i = X86_PMC_IDX_MAX; 232 233 perfctr_fail: 234 end = i; 235 for_each_set_bit(i, (unsigned long *)&cntr_mask, end) 236 release_perfctr_nmi(x86_pmu_event_addr(i)); 237 238 return false; 239 } 240 241 static void release_pmc_hardware(void) 242 { 243 u64 cntr_mask = get_possible_counter_mask(); 244 int i; 245 246 for_each_set_bit(i, (unsigned long *)&cntr_mask, X86_PMC_IDX_MAX) { 247 release_perfctr_nmi(x86_pmu_event_addr(i)); 248 release_evntsel_nmi(x86_pmu_config_addr(i)); 249 } 250 } 251 252 #else 253 254 static bool reserve_pmc_hardware(void) { return true; } 255 static void release_pmc_hardware(void) {} 256 257 #endif 258 259 bool check_hw_exists(struct pmu *pmu, unsigned long *cntr_mask, 260 unsigned long *fixed_cntr_mask) 261 { 262 u64 val, val_fail = -1, val_new= ~0; 263 int i, reg, reg_fail = -1, ret = 0; 264 int bios_fail = 0; 265 int reg_safe = -1; 266 267 /* 268 * Check to see if the BIOS enabled any of the counters, if so 269 * complain and bail. 270 */ 271 for_each_set_bit(i, cntr_mask, X86_PMC_IDX_MAX) { 272 reg = x86_pmu_config_addr(i); 273 ret = rdmsrq_safe(reg, &val); 274 if (ret) 275 goto msr_fail; 276 if (val & ARCH_PERFMON_EVENTSEL_ENABLE) { 277 bios_fail = 1; 278 val_fail = val; 279 reg_fail = reg; 280 } else { 281 reg_safe = i; 282 } 283 } 284 285 if (*(u64 *)fixed_cntr_mask) { 286 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL; 287 ret = rdmsrq_safe(reg, &val); 288 if (ret) 289 goto msr_fail; 290 for_each_set_bit(i, fixed_cntr_mask, X86_PMC_IDX_MAX) { 291 if (fixed_counter_disabled(i, pmu)) 292 continue; 293 if (val & (0x03ULL << i*4)) { 294 bios_fail = 1; 295 val_fail = val; 296 reg_fail = reg; 297 } 298 } 299 } 300 301 /* 302 * If all the counters are enabled, the below test will always 303 * fail. The tools will also become useless in this scenario. 304 * Just fail and disable the hardware counters. 305 */ 306 307 if (reg_safe == -1) { 308 reg = reg_safe; 309 goto msr_fail; 310 } 311 312 /* 313 * Read the current value, change it and read it back to see if it 314 * matches, this is needed to detect certain hardware emulators 315 * (qemu/kvm) that don't trap on the MSR access and always return 0s. 316 */ 317 reg = x86_pmu_event_addr(reg_safe); 318 if (rdmsrq_safe(reg, &val)) 319 goto msr_fail; 320 val ^= 0xffffUL; 321 ret = wrmsrq_safe(reg, val); 322 ret |= rdmsrq_safe(reg, &val_new); 323 if (ret || val != val_new) 324 goto msr_fail; 325 326 /* 327 * We still allow the PMU driver to operate: 328 */ 329 if (bios_fail) { 330 pr_cont("Broken BIOS detected, complain to your hardware vendor.\n"); 331 pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n", 332 reg_fail, val_fail); 333 } 334 335 return true; 336 337 msr_fail: 338 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) { 339 pr_cont("PMU not available due to virtualization, using software events only.\n"); 340 } else { 341 pr_cont("Broken PMU hardware detected, using software events only.\n"); 342 pr_err("Failed to access perfctr msr (MSR %x is %Lx)\n", 343 reg, val_new); 344 } 345 346 return false; 347 } 348 349 static void hw_perf_event_destroy(struct perf_event *event) 350 { 351 x86_release_hardware(); 352 atomic_dec(&active_events); 353 } 354 355 void hw_perf_lbr_event_destroy(struct perf_event *event) 356 { 357 hw_perf_event_destroy(event); 358 359 /* undo the lbr/bts event accounting */ 360 x86_del_exclusive(x86_lbr_exclusive_lbr); 361 } 362 363 static inline int x86_pmu_initialized(void) 364 { 365 return x86_pmu.handle_irq != NULL; 366 } 367 368 static inline int 369 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event) 370 { 371 struct perf_event_attr *attr = &event->attr; 372 unsigned int cache_type, cache_op, cache_result; 373 u64 config, val; 374 375 config = attr->config; 376 377 cache_type = (config >> 0) & 0xff; 378 if (cache_type >= PERF_COUNT_HW_CACHE_MAX) 379 return -EINVAL; 380 cache_type = array_index_nospec(cache_type, PERF_COUNT_HW_CACHE_MAX); 381 382 cache_op = (config >> 8) & 0xff; 383 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX) 384 return -EINVAL; 385 cache_op = array_index_nospec(cache_op, PERF_COUNT_HW_CACHE_OP_MAX); 386 387 cache_result = (config >> 16) & 0xff; 388 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX) 389 return -EINVAL; 390 cache_result = array_index_nospec(cache_result, PERF_COUNT_HW_CACHE_RESULT_MAX); 391 392 val = hybrid_var(event->pmu, hw_cache_event_ids)[cache_type][cache_op][cache_result]; 393 if (val == 0) 394 return -ENOENT; 395 396 if (val == -1) 397 return -EINVAL; 398 399 hwc->config |= val; 400 attr->config1 = hybrid_var(event->pmu, hw_cache_extra_regs)[cache_type][cache_op][cache_result]; 401 return x86_pmu_extra_regs(val, event); 402 } 403 404 int x86_reserve_hardware(void) 405 { 406 int err = 0; 407 408 if (!atomic_inc_not_zero(&pmc_refcount)) { 409 mutex_lock(&pmc_reserve_mutex); 410 if (atomic_read(&pmc_refcount) == 0) { 411 if (!reserve_pmc_hardware()) { 412 err = -EBUSY; 413 } else { 414 reserve_ds_buffers(); 415 reserve_lbr_buffers(); 416 } 417 } 418 if (!err) 419 atomic_inc(&pmc_refcount); 420 mutex_unlock(&pmc_reserve_mutex); 421 } 422 423 return err; 424 } 425 426 void x86_release_hardware(void) 427 { 428 if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) { 429 release_pmc_hardware(); 430 release_ds_buffers(); 431 release_lbr_buffers(); 432 mutex_unlock(&pmc_reserve_mutex); 433 } 434 } 435 436 /* 437 * Check if we can create event of a certain type (that no conflicting events 438 * are present). 439 */ 440 int x86_add_exclusive(unsigned int what) 441 { 442 int i; 443 444 /* 445 * When lbr_pt_coexist we allow PT to coexist with either LBR or BTS. 446 * LBR and BTS are still mutually exclusive. 447 */ 448 if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt) 449 goto out; 450 451 if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) { 452 mutex_lock(&pmc_reserve_mutex); 453 for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) { 454 if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i])) 455 goto fail_unlock; 456 } 457 atomic_inc(&x86_pmu.lbr_exclusive[what]); 458 mutex_unlock(&pmc_reserve_mutex); 459 } 460 461 out: 462 atomic_inc(&active_events); 463 return 0; 464 465 fail_unlock: 466 mutex_unlock(&pmc_reserve_mutex); 467 return -EBUSY; 468 } 469 470 void x86_del_exclusive(unsigned int what) 471 { 472 atomic_dec(&active_events); 473 474 /* 475 * See the comment in x86_add_exclusive(). 476 */ 477 if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt) 478 return; 479 480 atomic_dec(&x86_pmu.lbr_exclusive[what]); 481 } 482 483 int x86_setup_perfctr(struct perf_event *event) 484 { 485 struct perf_event_attr *attr = &event->attr; 486 struct hw_perf_event *hwc = &event->hw; 487 u64 config; 488 489 if (!is_sampling_event(event)) { 490 hwc->sample_period = x86_pmu.max_period; 491 hwc->last_period = hwc->sample_period; 492 local64_set(&hwc->period_left, hwc->sample_period); 493 } 494 495 if (attr->type == event->pmu->type) 496 return x86_pmu_extra_regs(event->attr.config, event); 497 498 if (attr->type == PERF_TYPE_HW_CACHE) 499 return set_ext_hw_attr(hwc, event); 500 501 if (attr->config >= x86_pmu.max_events) 502 return -EINVAL; 503 504 attr->config = array_index_nospec((unsigned long)attr->config, x86_pmu.max_events); 505 506 /* 507 * The generic map: 508 */ 509 config = x86_pmu.event_map(attr->config); 510 511 if (config == 0) 512 return -ENOENT; 513 514 if (config == -1LL) 515 return -EINVAL; 516 517 hwc->config |= config; 518 519 return 0; 520 } 521 522 /* 523 * check that branch_sample_type is compatible with 524 * settings needed for precise_ip > 1 which implies 525 * using the LBR to capture ALL taken branches at the 526 * priv levels of the measurement 527 */ 528 static inline int precise_br_compat(struct perf_event *event) 529 { 530 u64 m = event->attr.branch_sample_type; 531 u64 b = 0; 532 533 /* must capture all branches */ 534 if (!(m & PERF_SAMPLE_BRANCH_ANY)) 535 return 0; 536 537 m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER; 538 539 if (!event->attr.exclude_user) 540 b |= PERF_SAMPLE_BRANCH_USER; 541 542 if (!event->attr.exclude_kernel) 543 b |= PERF_SAMPLE_BRANCH_KERNEL; 544 545 /* 546 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86 547 */ 548 549 return m == b; 550 } 551 552 int x86_pmu_max_precise(void) 553 { 554 int precise = 0; 555 556 /* Support for constant skid */ 557 if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) { 558 precise++; 559 560 /* Support for IP fixup */ 561 if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2) 562 precise++; 563 564 if (x86_pmu.pebs_prec_dist) 565 precise++; 566 } 567 return precise; 568 } 569 570 int x86_pmu_hw_config(struct perf_event *event) 571 { 572 if (event->attr.precise_ip) { 573 int precise = x86_pmu_max_precise(); 574 575 if (event->attr.precise_ip > precise) 576 return -EOPNOTSUPP; 577 578 /* There's no sense in having PEBS for non sampling events: */ 579 if (!is_sampling_event(event)) 580 return -EINVAL; 581 } 582 /* 583 * check that PEBS LBR correction does not conflict with 584 * whatever the user is asking with attr->branch_sample_type 585 */ 586 if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) { 587 u64 *br_type = &event->attr.branch_sample_type; 588 589 if (has_branch_stack(event)) { 590 if (!precise_br_compat(event)) 591 return -EOPNOTSUPP; 592 593 /* branch_sample_type is compatible */ 594 595 } else { 596 /* 597 * user did not specify branch_sample_type 598 * 599 * For PEBS fixups, we capture all 600 * the branches at the priv level of the 601 * event. 602 */ 603 *br_type = PERF_SAMPLE_BRANCH_ANY; 604 605 if (!event->attr.exclude_user) 606 *br_type |= PERF_SAMPLE_BRANCH_USER; 607 608 if (!event->attr.exclude_kernel) 609 *br_type |= PERF_SAMPLE_BRANCH_KERNEL; 610 } 611 } 612 613 if (branch_sample_call_stack(event)) 614 event->attach_state |= PERF_ATTACH_TASK_DATA; 615 616 /* 617 * Generate PMC IRQs: 618 * (keep 'enabled' bit clear for now) 619 */ 620 event->hw.config = ARCH_PERFMON_EVENTSEL_INT; 621 622 /* 623 * Count user and OS events unless requested not to 624 */ 625 if (!event->attr.exclude_user) 626 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR; 627 if (!event->attr.exclude_kernel) 628 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS; 629 630 if (event->attr.type == event->pmu->type) 631 event->hw.config |= x86_pmu_get_event_config(event); 632 633 if (is_sampling_event(event) && !event->attr.freq && x86_pmu.limit_period) { 634 s64 left = event->attr.sample_period; 635 x86_pmu.limit_period(event, &left); 636 if (left > event->attr.sample_period) 637 return -EINVAL; 638 } 639 640 /* sample_regs_user never support XMM registers */ 641 if (unlikely(event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK)) 642 return -EINVAL; 643 /* 644 * Besides the general purpose registers, XMM registers may 645 * be collected in PEBS on some platforms, e.g. Icelake 646 */ 647 if (unlikely(event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK)) { 648 if (!(event->pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS)) 649 return -EINVAL; 650 651 if (!event->attr.precise_ip) 652 return -EINVAL; 653 } 654 655 return x86_setup_perfctr(event); 656 } 657 658 /* 659 * Setup the hardware configuration for a given attr_type 660 */ 661 static int __x86_pmu_event_init(struct perf_event *event) 662 { 663 int err; 664 665 if (!x86_pmu_initialized()) 666 return -ENODEV; 667 668 err = x86_reserve_hardware(); 669 if (err) 670 return err; 671 672 atomic_inc(&active_events); 673 event->destroy = hw_perf_event_destroy; 674 675 event->hw.idx = -1; 676 event->hw.last_cpu = -1; 677 event->hw.last_tag = ~0ULL; 678 679 /* mark unused */ 680 event->hw.extra_reg.idx = EXTRA_REG_NONE; 681 event->hw.branch_reg.idx = EXTRA_REG_NONE; 682 683 return x86_pmu.hw_config(event); 684 } 685 686 void x86_pmu_disable_all(void) 687 { 688 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 689 int idx; 690 691 for_each_set_bit(idx, x86_pmu.cntr_mask, X86_PMC_IDX_MAX) { 692 struct hw_perf_event *hwc = &cpuc->events[idx]->hw; 693 u64 val; 694 695 if (!test_bit(idx, cpuc->active_mask)) 696 continue; 697 rdmsrq(x86_pmu_config_addr(idx), val); 698 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE)) 699 continue; 700 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE; 701 wrmsrq(x86_pmu_config_addr(idx), val); 702 if (is_counter_pair(hwc)) 703 wrmsrq(x86_pmu_config_addr(idx + 1), 0); 704 } 705 } 706 707 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr, void *data) 708 { 709 return static_call(x86_pmu_guest_get_msrs)(nr, data); 710 } 711 EXPORT_SYMBOL_GPL(perf_guest_get_msrs); 712 713 /* 714 * There may be PMI landing after enabled=0. The PMI hitting could be before or 715 * after disable_all. 716 * 717 * If PMI hits before disable_all, the PMU will be disabled in the NMI handler. 718 * It will not be re-enabled in the NMI handler again, because enabled=0. After 719 * handling the NMI, disable_all will be called, which will not change the 720 * state either. If PMI hits after disable_all, the PMU is already disabled 721 * before entering NMI handler. The NMI handler will not change the state 722 * either. 723 * 724 * So either situation is harmless. 725 */ 726 static void x86_pmu_disable(struct pmu *pmu) 727 { 728 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 729 730 if (!x86_pmu_initialized()) 731 return; 732 733 if (!cpuc->enabled) 734 return; 735 736 cpuc->n_added = 0; 737 cpuc->enabled = 0; 738 barrier(); 739 740 static_call(x86_pmu_disable_all)(); 741 } 742 743 void x86_pmu_enable_all(int added) 744 { 745 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 746 int idx; 747 748 for_each_set_bit(idx, x86_pmu.cntr_mask, X86_PMC_IDX_MAX) { 749 struct hw_perf_event *hwc = &cpuc->events[idx]->hw; 750 751 if (!test_bit(idx, cpuc->active_mask)) 752 continue; 753 754 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE); 755 } 756 } 757 758 int is_x86_event(struct perf_event *event) 759 { 760 int i; 761 762 if (!is_hybrid()) 763 return event->pmu == &pmu; 764 765 for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) { 766 if (event->pmu == &x86_pmu.hybrid_pmu[i].pmu) 767 return true; 768 } 769 770 return false; 771 } 772 773 struct pmu *x86_get_pmu(unsigned int cpu) 774 { 775 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu); 776 777 /* 778 * All CPUs of the hybrid type have been offline. 779 * The x86_get_pmu() should not be invoked. 780 */ 781 if (WARN_ON_ONCE(!cpuc->pmu)) 782 return &pmu; 783 784 return cpuc->pmu; 785 } 786 /* 787 * Event scheduler state: 788 * 789 * Assign events iterating over all events and counters, beginning 790 * with events with least weights first. Keep the current iterator 791 * state in struct sched_state. 792 */ 793 struct sched_state { 794 int weight; 795 int event; /* event index */ 796 int counter; /* counter index */ 797 int unassigned; /* number of events to be assigned left */ 798 int nr_gp; /* number of GP counters used */ 799 u64 used; 800 }; 801 802 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */ 803 #define SCHED_STATES_MAX 2 804 805 struct perf_sched { 806 int max_weight; 807 int max_events; 808 int max_gp; 809 int saved_states; 810 struct event_constraint **constraints; 811 struct sched_state state; 812 struct sched_state saved[SCHED_STATES_MAX]; 813 }; 814 815 /* 816 * Initialize iterator that runs through all events and counters. 817 */ 818 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints, 819 int num, int wmin, int wmax, int gpmax) 820 { 821 int idx; 822 823 memset(sched, 0, sizeof(*sched)); 824 sched->max_events = num; 825 sched->max_weight = wmax; 826 sched->max_gp = gpmax; 827 sched->constraints = constraints; 828 829 for (idx = 0; idx < num; idx++) { 830 if (constraints[idx]->weight == wmin) 831 break; 832 } 833 834 sched->state.event = idx; /* start with min weight */ 835 sched->state.weight = wmin; 836 sched->state.unassigned = num; 837 } 838 839 static void perf_sched_save_state(struct perf_sched *sched) 840 { 841 if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX)) 842 return; 843 844 sched->saved[sched->saved_states] = sched->state; 845 sched->saved_states++; 846 } 847 848 static bool perf_sched_restore_state(struct perf_sched *sched) 849 { 850 if (!sched->saved_states) 851 return false; 852 853 sched->saved_states--; 854 sched->state = sched->saved[sched->saved_states]; 855 856 /* this assignment didn't work out */ 857 /* XXX broken vs EVENT_PAIR */ 858 sched->state.used &= ~BIT_ULL(sched->state.counter); 859 860 /* try the next one */ 861 sched->state.counter++; 862 863 return true; 864 } 865 866 /* 867 * Select a counter for the current event to schedule. Return true on 868 * success. 869 */ 870 static bool __perf_sched_find_counter(struct perf_sched *sched) 871 { 872 struct event_constraint *c; 873 int idx; 874 875 if (!sched->state.unassigned) 876 return false; 877 878 if (sched->state.event >= sched->max_events) 879 return false; 880 881 c = sched->constraints[sched->state.event]; 882 /* Prefer fixed purpose counters */ 883 if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) { 884 idx = INTEL_PMC_IDX_FIXED; 885 for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) { 886 u64 mask = BIT_ULL(idx); 887 888 if (sched->state.used & mask) 889 continue; 890 891 sched->state.used |= mask; 892 goto done; 893 } 894 } 895 896 /* Grab the first unused counter starting with idx */ 897 idx = sched->state.counter; 898 for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) { 899 u64 mask = BIT_ULL(idx); 900 901 if (c->flags & PERF_X86_EVENT_PAIR) 902 mask |= mask << 1; 903 904 if (sched->state.used & mask) 905 continue; 906 907 if (sched->state.nr_gp++ >= sched->max_gp) 908 return false; 909 910 sched->state.used |= mask; 911 goto done; 912 } 913 914 return false; 915 916 done: 917 sched->state.counter = idx; 918 919 if (c->overlap) 920 perf_sched_save_state(sched); 921 922 return true; 923 } 924 925 static bool perf_sched_find_counter(struct perf_sched *sched) 926 { 927 while (!__perf_sched_find_counter(sched)) { 928 if (!perf_sched_restore_state(sched)) 929 return false; 930 } 931 932 return true; 933 } 934 935 /* 936 * Go through all unassigned events and find the next one to schedule. 937 * Take events with the least weight first. Return true on success. 938 */ 939 static bool perf_sched_next_event(struct perf_sched *sched) 940 { 941 struct event_constraint *c; 942 943 if (!sched->state.unassigned || !--sched->state.unassigned) 944 return false; 945 946 do { 947 /* next event */ 948 sched->state.event++; 949 if (sched->state.event >= sched->max_events) { 950 /* next weight */ 951 sched->state.event = 0; 952 sched->state.weight++; 953 if (sched->state.weight > sched->max_weight) 954 return false; 955 } 956 c = sched->constraints[sched->state.event]; 957 } while (c->weight != sched->state.weight); 958 959 sched->state.counter = 0; /* start with first counter */ 960 961 return true; 962 } 963 964 /* 965 * Assign a counter for each event. 966 */ 967 int perf_assign_events(struct event_constraint **constraints, int n, 968 int wmin, int wmax, int gpmax, int *assign) 969 { 970 struct perf_sched sched; 971 972 perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax); 973 974 do { 975 if (!perf_sched_find_counter(&sched)) 976 break; /* failed */ 977 if (assign) 978 assign[sched.state.event] = sched.state.counter; 979 } while (perf_sched_next_event(&sched)); 980 981 return sched.state.unassigned; 982 } 983 EXPORT_SYMBOL_GPL(perf_assign_events); 984 985 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign) 986 { 987 struct event_constraint *c; 988 struct perf_event *e; 989 int n0, i, wmin, wmax, unsched = 0; 990 struct hw_perf_event *hwc; 991 u64 used_mask = 0; 992 993 /* 994 * Compute the number of events already present; see x86_pmu_add(), 995 * validate_group() and x86_pmu_commit_txn(). For the former two 996 * cpuc->n_events hasn't been updated yet, while for the latter 997 * cpuc->n_txn contains the number of events added in the current 998 * transaction. 999 */ 1000 n0 = cpuc->n_events; 1001 if (cpuc->txn_flags & PERF_PMU_TXN_ADD) 1002 n0 -= cpuc->n_txn; 1003 1004 static_call_cond(x86_pmu_start_scheduling)(cpuc); 1005 1006 for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) { 1007 c = cpuc->event_constraint[i]; 1008 1009 /* 1010 * Previously scheduled events should have a cached constraint, 1011 * while new events should not have one. 1012 */ 1013 WARN_ON_ONCE((c && i >= n0) || (!c && i < n0)); 1014 1015 /* 1016 * Request constraints for new events; or for those events that 1017 * have a dynamic constraint -- for those the constraint can 1018 * change due to external factors (sibling state, allow_tfa). 1019 */ 1020 if (!c || (c->flags & PERF_X86_EVENT_DYNAMIC)) { 1021 c = static_call(x86_pmu_get_event_constraints)(cpuc, i, cpuc->event_list[i]); 1022 cpuc->event_constraint[i] = c; 1023 } 1024 1025 wmin = min(wmin, c->weight); 1026 wmax = max(wmax, c->weight); 1027 } 1028 1029 /* 1030 * fastpath, try to reuse previous register 1031 */ 1032 for (i = 0; i < n; i++) { 1033 u64 mask; 1034 1035 hwc = &cpuc->event_list[i]->hw; 1036 c = cpuc->event_constraint[i]; 1037 1038 /* never assigned */ 1039 if (hwc->idx == -1) 1040 break; 1041 1042 /* constraint still honored */ 1043 if (!test_bit(hwc->idx, c->idxmsk)) 1044 break; 1045 1046 mask = BIT_ULL(hwc->idx); 1047 if (is_counter_pair(hwc)) 1048 mask |= mask << 1; 1049 1050 /* not already used */ 1051 if (used_mask & mask) 1052 break; 1053 1054 used_mask |= mask; 1055 1056 if (assign) 1057 assign[i] = hwc->idx; 1058 } 1059 1060 /* slow path */ 1061 if (i != n) { 1062 int gpmax = x86_pmu_max_num_counters(cpuc->pmu); 1063 1064 /* 1065 * Do not allow scheduling of more than half the available 1066 * generic counters. 1067 * 1068 * This helps avoid counter starvation of sibling thread by 1069 * ensuring at most half the counters cannot be in exclusive 1070 * mode. There is no designated counters for the limits. Any 1071 * N/2 counters can be used. This helps with events with 1072 * specific counter constraints. 1073 */ 1074 if (is_ht_workaround_enabled() && !cpuc->is_fake && 1075 READ_ONCE(cpuc->excl_cntrs->exclusive_present)) 1076 gpmax /= 2; 1077 1078 /* 1079 * Reduce the amount of available counters to allow fitting 1080 * the extra Merge events needed by large increment events. 1081 */ 1082 if (x86_pmu.flags & PMU_FL_PAIR) { 1083 gpmax -= cpuc->n_pair; 1084 WARN_ON(gpmax <= 0); 1085 } 1086 1087 unsched = perf_assign_events(cpuc->event_constraint, n, wmin, 1088 wmax, gpmax, assign); 1089 } 1090 1091 /* 1092 * In case of success (unsched = 0), mark events as committed, 1093 * so we do not put_constraint() in case new events are added 1094 * and fail to be scheduled 1095 * 1096 * We invoke the lower level commit callback to lock the resource 1097 * 1098 * We do not need to do all of this in case we are called to 1099 * validate an event group (assign == NULL) 1100 */ 1101 if (!unsched && assign) { 1102 for (i = 0; i < n; i++) 1103 static_call_cond(x86_pmu_commit_scheduling)(cpuc, i, assign[i]); 1104 } else { 1105 for (i = n0; i < n; i++) { 1106 e = cpuc->event_list[i]; 1107 1108 /* 1109 * release events that failed scheduling 1110 */ 1111 static_call_cond(x86_pmu_put_event_constraints)(cpuc, e); 1112 1113 cpuc->event_constraint[i] = NULL; 1114 } 1115 } 1116 1117 static_call_cond(x86_pmu_stop_scheduling)(cpuc); 1118 1119 return unsched ? -EINVAL : 0; 1120 } 1121 1122 static int add_nr_metric_event(struct cpu_hw_events *cpuc, 1123 struct perf_event *event) 1124 { 1125 if (is_metric_event(event)) { 1126 if (cpuc->n_metric == INTEL_TD_METRIC_NUM) 1127 return -EINVAL; 1128 cpuc->n_metric++; 1129 cpuc->n_txn_metric++; 1130 } 1131 1132 return 0; 1133 } 1134 1135 static void del_nr_metric_event(struct cpu_hw_events *cpuc, 1136 struct perf_event *event) 1137 { 1138 if (is_metric_event(event)) 1139 cpuc->n_metric--; 1140 } 1141 1142 static int collect_event(struct cpu_hw_events *cpuc, struct perf_event *event, 1143 int max_count, int n) 1144 { 1145 union perf_capabilities intel_cap = hybrid(cpuc->pmu, intel_cap); 1146 1147 if (intel_cap.perf_metrics && add_nr_metric_event(cpuc, event)) 1148 return -EINVAL; 1149 1150 if (n >= max_count + cpuc->n_metric) 1151 return -EINVAL; 1152 1153 cpuc->event_list[n] = event; 1154 if (is_counter_pair(&event->hw)) { 1155 cpuc->n_pair++; 1156 cpuc->n_txn_pair++; 1157 } 1158 1159 return 0; 1160 } 1161 1162 /* 1163 * dogrp: true if must collect siblings events (group) 1164 * returns total number of events and error code 1165 */ 1166 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp) 1167 { 1168 struct perf_event *event; 1169 int n, max_count; 1170 1171 max_count = x86_pmu_num_counters(cpuc->pmu) + x86_pmu_num_counters_fixed(cpuc->pmu); 1172 1173 /* current number of events already accepted */ 1174 n = cpuc->n_events; 1175 if (!cpuc->n_events) 1176 cpuc->pebs_output = 0; 1177 1178 if (!cpuc->is_fake && leader->attr.precise_ip) { 1179 /* 1180 * For PEBS->PT, if !aux_event, the group leader (PT) went 1181 * away, the group was broken down and this singleton event 1182 * can't schedule any more. 1183 */ 1184 if (is_pebs_pt(leader) && !leader->aux_event) 1185 return -EINVAL; 1186 1187 /* 1188 * pebs_output: 0: no PEBS so far, 1: PT, 2: DS 1189 */ 1190 if (cpuc->pebs_output && 1191 cpuc->pebs_output != is_pebs_pt(leader) + 1) 1192 return -EINVAL; 1193 1194 cpuc->pebs_output = is_pebs_pt(leader) + 1; 1195 } 1196 1197 if (is_x86_event(leader)) { 1198 if (collect_event(cpuc, leader, max_count, n)) 1199 return -EINVAL; 1200 n++; 1201 } 1202 1203 if (!dogrp) 1204 return n; 1205 1206 for_each_sibling_event(event, leader) { 1207 if (!is_x86_event(event) || event->state <= PERF_EVENT_STATE_OFF) 1208 continue; 1209 1210 if (collect_event(cpuc, event, max_count, n)) 1211 return -EINVAL; 1212 1213 n++; 1214 } 1215 return n; 1216 } 1217 1218 static inline void x86_assign_hw_event(struct perf_event *event, 1219 struct cpu_hw_events *cpuc, int i) 1220 { 1221 struct hw_perf_event *hwc = &event->hw; 1222 int idx; 1223 1224 idx = hwc->idx = cpuc->assign[i]; 1225 hwc->last_cpu = smp_processor_id(); 1226 hwc->last_tag = ++cpuc->tags[i]; 1227 1228 static_call_cond(x86_pmu_assign)(event, idx); 1229 1230 switch (hwc->idx) { 1231 case INTEL_PMC_IDX_FIXED_BTS: 1232 case INTEL_PMC_IDX_FIXED_VLBR: 1233 hwc->config_base = 0; 1234 hwc->event_base = 0; 1235 break; 1236 1237 case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END: 1238 /* All the metric events are mapped onto the fixed counter 3. */ 1239 idx = INTEL_PMC_IDX_FIXED_SLOTS; 1240 fallthrough; 1241 case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS-1: 1242 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL; 1243 hwc->event_base = x86_pmu_fixed_ctr_addr(idx - INTEL_PMC_IDX_FIXED); 1244 hwc->event_base_rdpmc = (idx - INTEL_PMC_IDX_FIXED) | 1245 INTEL_PMC_FIXED_RDPMC_BASE; 1246 break; 1247 1248 default: 1249 hwc->config_base = x86_pmu_config_addr(hwc->idx); 1250 hwc->event_base = x86_pmu_event_addr(hwc->idx); 1251 hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx); 1252 break; 1253 } 1254 } 1255 1256 /** 1257 * x86_perf_rdpmc_index - Return PMC counter used for event 1258 * @event: the perf_event to which the PMC counter was assigned 1259 * 1260 * The counter assigned to this performance event may change if interrupts 1261 * are enabled. This counter should thus never be used while interrupts are 1262 * enabled. Before this function is used to obtain the assigned counter the 1263 * event should be checked for validity using, for example, 1264 * perf_event_read_local(), within the same interrupt disabled section in 1265 * which this counter is planned to be used. 1266 * 1267 * Return: The index of the performance monitoring counter assigned to 1268 * @perf_event. 1269 */ 1270 int x86_perf_rdpmc_index(struct perf_event *event) 1271 { 1272 lockdep_assert_irqs_disabled(); 1273 1274 return event->hw.event_base_rdpmc; 1275 } 1276 1277 static inline int match_prev_assignment(struct hw_perf_event *hwc, 1278 struct cpu_hw_events *cpuc, 1279 int i) 1280 { 1281 return hwc->idx == cpuc->assign[i] && 1282 hwc->last_cpu == smp_processor_id() && 1283 hwc->last_tag == cpuc->tags[i]; 1284 } 1285 1286 static void x86_pmu_start(struct perf_event *event, int flags); 1287 1288 static void x86_pmu_enable(struct pmu *pmu) 1289 { 1290 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1291 struct perf_event *event; 1292 struct hw_perf_event *hwc; 1293 int i, added = cpuc->n_added; 1294 1295 if (!x86_pmu_initialized()) 1296 return; 1297 1298 if (cpuc->enabled) 1299 return; 1300 1301 if (cpuc->n_added) { 1302 int n_running = cpuc->n_events - cpuc->n_added; 1303 1304 /* 1305 * The late setup (after counters are scheduled) 1306 * is required for some cases, e.g., PEBS counters 1307 * snapshotting. Because an accurate counter index 1308 * is needed. 1309 */ 1310 static_call_cond(x86_pmu_late_setup)(); 1311 1312 /* 1313 * apply assignment obtained either from 1314 * hw_perf_group_sched_in() or x86_pmu_enable() 1315 * 1316 * step1: save events moving to new counters 1317 */ 1318 for (i = 0; i < n_running; i++) { 1319 event = cpuc->event_list[i]; 1320 hwc = &event->hw; 1321 1322 /* 1323 * we can avoid reprogramming counter if: 1324 * - assigned same counter as last time 1325 * - running on same CPU as last time 1326 * - no other event has used the counter since 1327 */ 1328 if (hwc->idx == -1 || 1329 match_prev_assignment(hwc, cpuc, i)) 1330 continue; 1331 1332 /* 1333 * Ensure we don't accidentally enable a stopped 1334 * counter simply because we rescheduled. 1335 */ 1336 if (hwc->state & PERF_HES_STOPPED) 1337 hwc->state |= PERF_HES_ARCH; 1338 1339 x86_pmu_stop(event, PERF_EF_UPDATE); 1340 } 1341 1342 /* 1343 * step2: reprogram moved events into new counters 1344 */ 1345 for (i = 0; i < cpuc->n_events; i++) { 1346 event = cpuc->event_list[i]; 1347 hwc = &event->hw; 1348 1349 if (!match_prev_assignment(hwc, cpuc, i)) 1350 x86_assign_hw_event(event, cpuc, i); 1351 else if (i < n_running) 1352 continue; 1353 1354 if (hwc->state & PERF_HES_ARCH) 1355 continue; 1356 1357 /* 1358 * if cpuc->enabled = 0, then no wrmsr as 1359 * per x86_pmu_enable_event() 1360 */ 1361 x86_pmu_start(event, PERF_EF_RELOAD); 1362 } 1363 cpuc->n_added = 0; 1364 perf_events_lapic_init(); 1365 } 1366 1367 cpuc->enabled = 1; 1368 barrier(); 1369 1370 static_call(x86_pmu_enable_all)(added); 1371 } 1372 1373 DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left); 1374 1375 /* 1376 * Set the next IRQ period, based on the hwc->period_left value. 1377 * To be called with the event disabled in hw: 1378 */ 1379 int x86_perf_event_set_period(struct perf_event *event) 1380 { 1381 struct hw_perf_event *hwc = &event->hw; 1382 s64 left = local64_read(&hwc->period_left); 1383 s64 period = hwc->sample_period; 1384 int ret = 0, idx = hwc->idx; 1385 1386 if (unlikely(!hwc->event_base)) 1387 return 0; 1388 1389 /* 1390 * If we are way outside a reasonable range then just skip forward: 1391 */ 1392 if (unlikely(left <= -period)) { 1393 left = period; 1394 local64_set(&hwc->period_left, left); 1395 hwc->last_period = period; 1396 ret = 1; 1397 } 1398 1399 if (unlikely(left <= 0)) { 1400 left += period; 1401 local64_set(&hwc->period_left, left); 1402 hwc->last_period = period; 1403 ret = 1; 1404 } 1405 /* 1406 * Quirk: certain CPUs dont like it if just 1 hw_event is left: 1407 */ 1408 if (unlikely(left < 2)) 1409 left = 2; 1410 1411 if (left > x86_pmu.max_period) 1412 left = x86_pmu.max_period; 1413 1414 static_call_cond(x86_pmu_limit_period)(event, &left); 1415 1416 this_cpu_write(pmc_prev_left[idx], left); 1417 1418 /* 1419 * The hw event starts counting from this event offset, 1420 * mark it to be able to extra future deltas: 1421 */ 1422 local64_set(&hwc->prev_count, (u64)-left); 1423 1424 wrmsrq(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask); 1425 1426 /* 1427 * Sign extend the Merge event counter's upper 16 bits since 1428 * we currently declare a 48-bit counter width 1429 */ 1430 if (is_counter_pair(hwc)) 1431 wrmsrq(x86_pmu_event_addr(idx + 1), 0xffff); 1432 1433 perf_event_update_userpage(event); 1434 1435 return ret; 1436 } 1437 1438 void x86_pmu_enable_event(struct perf_event *event) 1439 { 1440 if (__this_cpu_read(cpu_hw_events.enabled)) 1441 __x86_pmu_enable_event(&event->hw, 1442 ARCH_PERFMON_EVENTSEL_ENABLE); 1443 } 1444 1445 /* 1446 * Add a single event to the PMU. 1447 * 1448 * The event is added to the group of enabled events 1449 * but only if it can be scheduled with existing events. 1450 */ 1451 static int x86_pmu_add(struct perf_event *event, int flags) 1452 { 1453 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1454 struct hw_perf_event *hwc; 1455 int assign[X86_PMC_IDX_MAX]; 1456 int n, n0, ret; 1457 1458 hwc = &event->hw; 1459 1460 n0 = cpuc->n_events; 1461 ret = n = collect_events(cpuc, event, false); 1462 if (ret < 0) 1463 goto out; 1464 1465 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED; 1466 if (!(flags & PERF_EF_START)) 1467 hwc->state |= PERF_HES_ARCH; 1468 1469 /* 1470 * If group events scheduling transaction was started, 1471 * skip the schedulability test here, it will be performed 1472 * at commit time (->commit_txn) as a whole. 1473 * 1474 * If commit fails, we'll call ->del() on all events 1475 * for which ->add() was called. 1476 */ 1477 if (cpuc->txn_flags & PERF_PMU_TXN_ADD) 1478 goto done_collect; 1479 1480 ret = static_call(x86_pmu_schedule_events)(cpuc, n, assign); 1481 if (ret) 1482 goto out; 1483 /* 1484 * copy new assignment, now we know it is possible 1485 * will be used by hw_perf_enable() 1486 */ 1487 memcpy(cpuc->assign, assign, n*sizeof(int)); 1488 1489 done_collect: 1490 /* 1491 * Commit the collect_events() state. See x86_pmu_del() and 1492 * x86_pmu_*_txn(). 1493 */ 1494 cpuc->n_events = n; 1495 cpuc->n_added += n - n0; 1496 cpuc->n_txn += n - n0; 1497 1498 /* 1499 * This is before x86_pmu_enable() will call x86_pmu_start(), 1500 * so we enable LBRs before an event needs them etc.. 1501 */ 1502 static_call_cond(x86_pmu_add)(event); 1503 1504 ret = 0; 1505 out: 1506 return ret; 1507 } 1508 1509 static void x86_pmu_start(struct perf_event *event, int flags) 1510 { 1511 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1512 int idx = event->hw.idx; 1513 1514 if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED))) 1515 return; 1516 1517 if (WARN_ON_ONCE(idx == -1)) 1518 return; 1519 1520 if (flags & PERF_EF_RELOAD) { 1521 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE)); 1522 static_call(x86_pmu_set_period)(event); 1523 } 1524 1525 event->hw.state = 0; 1526 1527 cpuc->events[idx] = event; 1528 __set_bit(idx, cpuc->active_mask); 1529 static_call(x86_pmu_enable)(event); 1530 perf_event_update_userpage(event); 1531 } 1532 1533 void perf_event_print_debug(void) 1534 { 1535 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed; 1536 unsigned long *cntr_mask, *fixed_cntr_mask; 1537 struct event_constraint *pebs_constraints; 1538 struct cpu_hw_events *cpuc; 1539 u64 pebs, debugctl; 1540 int cpu, idx; 1541 1542 guard(irqsave)(); 1543 1544 cpu = smp_processor_id(); 1545 cpuc = &per_cpu(cpu_hw_events, cpu); 1546 cntr_mask = hybrid(cpuc->pmu, cntr_mask); 1547 fixed_cntr_mask = hybrid(cpuc->pmu, fixed_cntr_mask); 1548 pebs_constraints = hybrid(cpuc->pmu, pebs_constraints); 1549 1550 if (!*(u64 *)cntr_mask) 1551 return; 1552 1553 if (x86_pmu.version >= 2) { 1554 rdmsrq(MSR_CORE_PERF_GLOBAL_CTRL, ctrl); 1555 rdmsrq(MSR_CORE_PERF_GLOBAL_STATUS, status); 1556 rdmsrq(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow); 1557 rdmsrq(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed); 1558 1559 pr_info("\n"); 1560 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl); 1561 pr_info("CPU#%d: status: %016llx\n", cpu, status); 1562 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow); 1563 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed); 1564 if (pebs_constraints) { 1565 rdmsrq(MSR_IA32_PEBS_ENABLE, pebs); 1566 pr_info("CPU#%d: pebs: %016llx\n", cpu, pebs); 1567 } 1568 if (x86_pmu.lbr_nr) { 1569 rdmsrq(MSR_IA32_DEBUGCTLMSR, debugctl); 1570 pr_info("CPU#%d: debugctl: %016llx\n", cpu, debugctl); 1571 } 1572 } 1573 pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask); 1574 1575 for_each_set_bit(idx, cntr_mask, X86_PMC_IDX_MAX) { 1576 rdmsrq(x86_pmu_config_addr(idx), pmc_ctrl); 1577 rdmsrq(x86_pmu_event_addr(idx), pmc_count); 1578 1579 prev_left = per_cpu(pmc_prev_left[idx], cpu); 1580 1581 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n", 1582 cpu, idx, pmc_ctrl); 1583 pr_info("CPU#%d: gen-PMC%d count: %016llx\n", 1584 cpu, idx, pmc_count); 1585 pr_info("CPU#%d: gen-PMC%d left: %016llx\n", 1586 cpu, idx, prev_left); 1587 } 1588 for_each_set_bit(idx, fixed_cntr_mask, X86_PMC_IDX_MAX) { 1589 if (fixed_counter_disabled(idx, cpuc->pmu)) 1590 continue; 1591 rdmsrq(x86_pmu_fixed_ctr_addr(idx), pmc_count); 1592 1593 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n", 1594 cpu, idx, pmc_count); 1595 } 1596 } 1597 1598 void x86_pmu_stop(struct perf_event *event, int flags) 1599 { 1600 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1601 struct hw_perf_event *hwc = &event->hw; 1602 1603 if (test_bit(hwc->idx, cpuc->active_mask)) { 1604 static_call(x86_pmu_disable)(event); 1605 __clear_bit(hwc->idx, cpuc->active_mask); 1606 cpuc->events[hwc->idx] = NULL; 1607 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED); 1608 hwc->state |= PERF_HES_STOPPED; 1609 } 1610 1611 if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) { 1612 /* 1613 * Drain the remaining delta count out of a event 1614 * that we are disabling: 1615 */ 1616 static_call(x86_pmu_update)(event); 1617 hwc->state |= PERF_HES_UPTODATE; 1618 } 1619 } 1620 1621 static void x86_pmu_del(struct perf_event *event, int flags) 1622 { 1623 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1624 union perf_capabilities intel_cap = hybrid(cpuc->pmu, intel_cap); 1625 int i; 1626 1627 /* 1628 * If we're called during a txn, we only need to undo x86_pmu.add. 1629 * The events never got scheduled and ->cancel_txn will truncate 1630 * the event_list. 1631 * 1632 * XXX assumes any ->del() called during a TXN will only be on 1633 * an event added during that same TXN. 1634 */ 1635 if (cpuc->txn_flags & PERF_PMU_TXN_ADD) 1636 goto do_del; 1637 1638 __set_bit(event->hw.idx, cpuc->dirty); 1639 1640 /* 1641 * Not a TXN, therefore cleanup properly. 1642 */ 1643 x86_pmu_stop(event, PERF_EF_UPDATE); 1644 1645 for (i = 0; i < cpuc->n_events; i++) { 1646 if (event == cpuc->event_list[i]) 1647 break; 1648 } 1649 1650 if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */ 1651 return; 1652 1653 /* If we have a newly added event; make sure to decrease n_added. */ 1654 if (i >= cpuc->n_events - cpuc->n_added) 1655 --cpuc->n_added; 1656 1657 static_call_cond(x86_pmu_put_event_constraints)(cpuc, event); 1658 1659 /* Delete the array entry. */ 1660 while (++i < cpuc->n_events) { 1661 cpuc->event_list[i-1] = cpuc->event_list[i]; 1662 cpuc->event_constraint[i-1] = cpuc->event_constraint[i]; 1663 cpuc->assign[i-1] = cpuc->assign[i]; 1664 } 1665 cpuc->event_constraint[i-1] = NULL; 1666 --cpuc->n_events; 1667 if (intel_cap.perf_metrics) 1668 del_nr_metric_event(cpuc, event); 1669 1670 perf_event_update_userpage(event); 1671 1672 do_del: 1673 1674 /* 1675 * This is after x86_pmu_stop(); so we disable LBRs after any 1676 * event can need them etc.. 1677 */ 1678 static_call_cond(x86_pmu_del)(event); 1679 } 1680 1681 int x86_pmu_handle_irq(struct pt_regs *regs) 1682 { 1683 struct perf_sample_data data; 1684 struct cpu_hw_events *cpuc; 1685 struct perf_event *event; 1686 int idx, handled = 0; 1687 u64 val; 1688 1689 cpuc = this_cpu_ptr(&cpu_hw_events); 1690 1691 /* 1692 * Some chipsets need to unmask the LVTPC in a particular spot 1693 * inside the nmi handler. As a result, the unmasking was pushed 1694 * into all the nmi handlers. 1695 * 1696 * This generic handler doesn't seem to have any issues where the 1697 * unmasking occurs so it was left at the top. 1698 */ 1699 apic_write(APIC_LVTPC, APIC_DM_NMI); 1700 1701 for_each_set_bit(idx, x86_pmu.cntr_mask, X86_PMC_IDX_MAX) { 1702 if (!test_bit(idx, cpuc->active_mask)) 1703 continue; 1704 1705 event = cpuc->events[idx]; 1706 1707 val = static_call(x86_pmu_update)(event); 1708 if (val & (1ULL << (x86_pmu.cntval_bits - 1))) 1709 continue; 1710 1711 /* 1712 * event overflow 1713 */ 1714 handled++; 1715 1716 if (!static_call(x86_pmu_set_period)(event)) 1717 continue; 1718 1719 perf_sample_data_init(&data, 0, event->hw.last_period); 1720 1721 perf_sample_save_brstack(&data, event, &cpuc->lbr_stack, NULL); 1722 1723 if (perf_event_overflow(event, &data, regs)) 1724 x86_pmu_stop(event, 0); 1725 } 1726 1727 if (handled) 1728 inc_irq_stat(apic_perf_irqs); 1729 1730 return handled; 1731 } 1732 1733 void perf_events_lapic_init(void) 1734 { 1735 if (!x86_pmu.apic || !x86_pmu_initialized()) 1736 return; 1737 1738 /* 1739 * Always use NMI for PMU 1740 */ 1741 apic_write(APIC_LVTPC, APIC_DM_NMI); 1742 } 1743 1744 static int 1745 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs) 1746 { 1747 u64 start_clock; 1748 u64 finish_clock; 1749 int ret; 1750 1751 /* 1752 * All PMUs/events that share this PMI handler should make sure to 1753 * increment active_events for their events. 1754 */ 1755 if (!atomic_read(&active_events)) 1756 return NMI_DONE; 1757 1758 start_clock = sched_clock(); 1759 ret = static_call(x86_pmu_handle_irq)(regs); 1760 finish_clock = sched_clock(); 1761 1762 perf_sample_event_took(finish_clock - start_clock); 1763 1764 return ret; 1765 } 1766 NOKPROBE_SYMBOL(perf_event_nmi_handler); 1767 1768 struct event_constraint emptyconstraint; 1769 struct event_constraint unconstrained; 1770 1771 static int x86_pmu_prepare_cpu(unsigned int cpu) 1772 { 1773 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu); 1774 int i; 1775 1776 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) 1777 cpuc->kfree_on_online[i] = NULL; 1778 if (x86_pmu.cpu_prepare) 1779 return x86_pmu.cpu_prepare(cpu); 1780 return 0; 1781 } 1782 1783 static int x86_pmu_dead_cpu(unsigned int cpu) 1784 { 1785 if (x86_pmu.cpu_dead) 1786 x86_pmu.cpu_dead(cpu); 1787 return 0; 1788 } 1789 1790 static int x86_pmu_online_cpu(unsigned int cpu) 1791 { 1792 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu); 1793 int i; 1794 1795 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) { 1796 kfree(cpuc->kfree_on_online[i]); 1797 cpuc->kfree_on_online[i] = NULL; 1798 } 1799 return 0; 1800 } 1801 1802 static int x86_pmu_starting_cpu(unsigned int cpu) 1803 { 1804 if (x86_pmu.cpu_starting) 1805 x86_pmu.cpu_starting(cpu); 1806 return 0; 1807 } 1808 1809 static int x86_pmu_dying_cpu(unsigned int cpu) 1810 { 1811 if (x86_pmu.cpu_dying) 1812 x86_pmu.cpu_dying(cpu); 1813 return 0; 1814 } 1815 1816 static void __init pmu_check_apic(void) 1817 { 1818 if (boot_cpu_has(X86_FEATURE_APIC)) 1819 return; 1820 1821 x86_pmu.apic = 0; 1822 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n"); 1823 pr_info("no hardware sampling interrupt available.\n"); 1824 1825 /* 1826 * If we have a PMU initialized but no APIC 1827 * interrupts, we cannot sample hardware 1828 * events (user-space has to fall back and 1829 * sample via a hrtimer based software event): 1830 */ 1831 pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT; 1832 1833 } 1834 1835 static struct attribute_group x86_pmu_format_group __ro_after_init = { 1836 .name = "format", 1837 .attrs = NULL, 1838 }; 1839 1840 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page) 1841 { 1842 struct perf_pmu_events_attr *pmu_attr = 1843 container_of(attr, struct perf_pmu_events_attr, attr); 1844 u64 config = 0; 1845 1846 if (pmu_attr->id < x86_pmu.max_events) 1847 config = x86_pmu.event_map(pmu_attr->id); 1848 1849 /* string trumps id */ 1850 if (pmu_attr->event_str) 1851 return sprintf(page, "%s\n", pmu_attr->event_str); 1852 1853 return x86_pmu.events_sysfs_show(page, config); 1854 } 1855 EXPORT_SYMBOL_GPL(events_sysfs_show); 1856 1857 ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr, 1858 char *page) 1859 { 1860 struct perf_pmu_events_ht_attr *pmu_attr = 1861 container_of(attr, struct perf_pmu_events_ht_attr, attr); 1862 1863 /* 1864 * Report conditional events depending on Hyper-Threading. 1865 * 1866 * This is overly conservative as usually the HT special 1867 * handling is not needed if the other CPU thread is idle. 1868 * 1869 * Note this does not (and cannot) handle the case when thread 1870 * siblings are invisible, for example with virtualization 1871 * if they are owned by some other guest. The user tool 1872 * has to re-read when a thread sibling gets onlined later. 1873 */ 1874 return sprintf(page, "%s", 1875 topology_max_smt_threads() > 1 ? 1876 pmu_attr->event_str_ht : 1877 pmu_attr->event_str_noht); 1878 } 1879 1880 ssize_t events_hybrid_sysfs_show(struct device *dev, 1881 struct device_attribute *attr, 1882 char *page) 1883 { 1884 struct perf_pmu_events_hybrid_attr *pmu_attr = 1885 container_of(attr, struct perf_pmu_events_hybrid_attr, attr); 1886 struct x86_hybrid_pmu *pmu; 1887 const char *str, *next_str; 1888 int i; 1889 1890 if (hweight64(pmu_attr->pmu_type) == 1) 1891 return sprintf(page, "%s", pmu_attr->event_str); 1892 1893 /* 1894 * Hybrid PMUs may support the same event name, but with different 1895 * event encoding, e.g., the mem-loads event on an Atom PMU has 1896 * different event encoding from a Core PMU. 1897 * 1898 * The event_str includes all event encodings. Each event encoding 1899 * is divided by ";". The order of the event encodings must follow 1900 * the order of the hybrid PMU index. 1901 */ 1902 pmu = container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu); 1903 1904 str = pmu_attr->event_str; 1905 for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) { 1906 if (!(x86_pmu.hybrid_pmu[i].pmu_type & pmu_attr->pmu_type)) 1907 continue; 1908 if (x86_pmu.hybrid_pmu[i].pmu_type & pmu->pmu_type) { 1909 next_str = strchr(str, ';'); 1910 if (next_str) 1911 return snprintf(page, next_str - str + 1, "%s", str); 1912 else 1913 return sprintf(page, "%s", str); 1914 } 1915 str = strchr(str, ';'); 1916 str++; 1917 } 1918 1919 return 0; 1920 } 1921 EXPORT_SYMBOL_GPL(events_hybrid_sysfs_show); 1922 1923 EVENT_ATTR(cpu-cycles, CPU_CYCLES ); 1924 EVENT_ATTR(instructions, INSTRUCTIONS ); 1925 EVENT_ATTR(cache-references, CACHE_REFERENCES ); 1926 EVENT_ATTR(cache-misses, CACHE_MISSES ); 1927 EVENT_ATTR(branch-instructions, BRANCH_INSTRUCTIONS ); 1928 EVENT_ATTR(branch-misses, BRANCH_MISSES ); 1929 EVENT_ATTR(bus-cycles, BUS_CYCLES ); 1930 EVENT_ATTR(stalled-cycles-frontend, STALLED_CYCLES_FRONTEND ); 1931 EVENT_ATTR(stalled-cycles-backend, STALLED_CYCLES_BACKEND ); 1932 EVENT_ATTR(ref-cycles, REF_CPU_CYCLES ); 1933 1934 static struct attribute *empty_attrs; 1935 1936 static struct attribute *events_attr[] = { 1937 EVENT_PTR(CPU_CYCLES), 1938 EVENT_PTR(INSTRUCTIONS), 1939 EVENT_PTR(CACHE_REFERENCES), 1940 EVENT_PTR(CACHE_MISSES), 1941 EVENT_PTR(BRANCH_INSTRUCTIONS), 1942 EVENT_PTR(BRANCH_MISSES), 1943 EVENT_PTR(BUS_CYCLES), 1944 EVENT_PTR(STALLED_CYCLES_FRONTEND), 1945 EVENT_PTR(STALLED_CYCLES_BACKEND), 1946 EVENT_PTR(REF_CPU_CYCLES), 1947 NULL, 1948 }; 1949 1950 /* 1951 * Remove all undefined events (x86_pmu.event_map(id) == 0) 1952 * out of events_attr attributes. 1953 */ 1954 static umode_t 1955 is_visible(struct kobject *kobj, struct attribute *attr, int idx) 1956 { 1957 struct perf_pmu_events_attr *pmu_attr; 1958 1959 if (idx >= x86_pmu.max_events) 1960 return 0; 1961 1962 pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr.attr); 1963 /* str trumps id */ 1964 return pmu_attr->event_str || x86_pmu.event_map(idx) ? attr->mode : 0; 1965 } 1966 1967 static struct attribute_group x86_pmu_events_group __ro_after_init = { 1968 .name = "events", 1969 .attrs = events_attr, 1970 .is_visible = is_visible, 1971 }; 1972 1973 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event) 1974 { 1975 u64 umask = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8; 1976 u64 cmask = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24; 1977 bool edge = (config & ARCH_PERFMON_EVENTSEL_EDGE); 1978 bool pc = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL); 1979 bool any = (config & ARCH_PERFMON_EVENTSEL_ANY); 1980 bool inv = (config & ARCH_PERFMON_EVENTSEL_INV); 1981 ssize_t ret; 1982 1983 /* 1984 * We have whole page size to spend and just little data 1985 * to write, so we can safely use sprintf. 1986 */ 1987 ret = sprintf(page, "event=0x%02llx", event); 1988 1989 if (umask) 1990 ret += sprintf(page + ret, ",umask=0x%02llx", umask); 1991 1992 if (edge) 1993 ret += sprintf(page + ret, ",edge"); 1994 1995 if (pc) 1996 ret += sprintf(page + ret, ",pc"); 1997 1998 if (any) 1999 ret += sprintf(page + ret, ",any"); 2000 2001 if (inv) 2002 ret += sprintf(page + ret, ",inv"); 2003 2004 if (cmask) 2005 ret += sprintf(page + ret, ",cmask=0x%02llx", cmask); 2006 2007 ret += sprintf(page + ret, "\n"); 2008 2009 return ret; 2010 } 2011 2012 static struct attribute_group x86_pmu_attr_group; 2013 static struct attribute_group x86_pmu_caps_group; 2014 2015 static void x86_pmu_static_call_update(void) 2016 { 2017 static_call_update(x86_pmu_handle_irq, x86_pmu.handle_irq); 2018 static_call_update(x86_pmu_disable_all, x86_pmu.disable_all); 2019 static_call_update(x86_pmu_enable_all, x86_pmu.enable_all); 2020 static_call_update(x86_pmu_enable, x86_pmu.enable); 2021 static_call_update(x86_pmu_disable, x86_pmu.disable); 2022 2023 static_call_update(x86_pmu_assign, x86_pmu.assign); 2024 2025 static_call_update(x86_pmu_add, x86_pmu.add); 2026 static_call_update(x86_pmu_del, x86_pmu.del); 2027 static_call_update(x86_pmu_read, x86_pmu.read); 2028 2029 static_call_update(x86_pmu_set_period, x86_pmu.set_period); 2030 static_call_update(x86_pmu_update, x86_pmu.update); 2031 static_call_update(x86_pmu_limit_period, x86_pmu.limit_period); 2032 2033 static_call_update(x86_pmu_schedule_events, x86_pmu.schedule_events); 2034 static_call_update(x86_pmu_get_event_constraints, x86_pmu.get_event_constraints); 2035 static_call_update(x86_pmu_put_event_constraints, x86_pmu.put_event_constraints); 2036 2037 static_call_update(x86_pmu_start_scheduling, x86_pmu.start_scheduling); 2038 static_call_update(x86_pmu_commit_scheduling, x86_pmu.commit_scheduling); 2039 static_call_update(x86_pmu_stop_scheduling, x86_pmu.stop_scheduling); 2040 2041 static_call_update(x86_pmu_sched_task, x86_pmu.sched_task); 2042 2043 static_call_update(x86_pmu_drain_pebs, x86_pmu.drain_pebs); 2044 static_call_update(x86_pmu_pebs_aliases, x86_pmu.pebs_aliases); 2045 2046 static_call_update(x86_pmu_guest_get_msrs, x86_pmu.guest_get_msrs); 2047 static_call_update(x86_pmu_filter, x86_pmu.filter); 2048 2049 static_call_update(x86_pmu_late_setup, x86_pmu.late_setup); 2050 } 2051 2052 static void _x86_pmu_read(struct perf_event *event) 2053 { 2054 static_call(x86_pmu_update)(event); 2055 } 2056 2057 void x86_pmu_show_pmu_cap(struct pmu *pmu) 2058 { 2059 pr_info("... version: %d\n", x86_pmu.version); 2060 pr_info("... bit width: %d\n", x86_pmu.cntval_bits); 2061 pr_info("... generic registers: %d\n", x86_pmu_num_counters(pmu)); 2062 pr_info("... value mask: %016Lx\n", x86_pmu.cntval_mask); 2063 pr_info("... max period: %016Lx\n", x86_pmu.max_period); 2064 pr_info("... fixed-purpose events: %d\n", x86_pmu_num_counters_fixed(pmu)); 2065 pr_info("... event mask: %016Lx\n", hybrid(pmu, intel_ctrl)); 2066 } 2067 2068 static int __init init_hw_perf_events(void) 2069 { 2070 struct x86_pmu_quirk *quirk; 2071 int err; 2072 2073 pr_info("Performance Events: "); 2074 2075 switch (boot_cpu_data.x86_vendor) { 2076 case X86_VENDOR_INTEL: 2077 err = intel_pmu_init(); 2078 break; 2079 case X86_VENDOR_AMD: 2080 err = amd_pmu_init(); 2081 break; 2082 case X86_VENDOR_HYGON: 2083 err = amd_pmu_init(); 2084 x86_pmu.name = "HYGON"; 2085 break; 2086 case X86_VENDOR_ZHAOXIN: 2087 case X86_VENDOR_CENTAUR: 2088 err = zhaoxin_pmu_init(); 2089 break; 2090 default: 2091 err = -ENOTSUPP; 2092 } 2093 if (err != 0) { 2094 pr_cont("no PMU driver, software events only.\n"); 2095 err = 0; 2096 goto out_bad_pmu; 2097 } 2098 2099 pmu_check_apic(); 2100 2101 /* sanity check that the hardware exists or is emulated */ 2102 if (!check_hw_exists(&pmu, x86_pmu.cntr_mask, x86_pmu.fixed_cntr_mask)) 2103 goto out_bad_pmu; 2104 2105 pr_cont("%s PMU driver.\n", x86_pmu.name); 2106 2107 x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */ 2108 2109 for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next) 2110 quirk->func(); 2111 2112 if (!x86_pmu.intel_ctrl) 2113 x86_pmu.intel_ctrl = x86_pmu.cntr_mask64; 2114 2115 if (!x86_pmu.config_mask) 2116 x86_pmu.config_mask = X86_RAW_EVENT_MASK; 2117 2118 perf_events_lapic_init(); 2119 register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI"); 2120 2121 unconstrained = (struct event_constraint) 2122 __EVENT_CONSTRAINT(0, x86_pmu.cntr_mask64, 2123 0, x86_pmu_num_counters(NULL), 0, 0); 2124 2125 x86_pmu_format_group.attrs = x86_pmu.format_attrs; 2126 2127 if (!x86_pmu.events_sysfs_show) 2128 x86_pmu_events_group.attrs = &empty_attrs; 2129 2130 pmu.attr_update = x86_pmu.attr_update; 2131 2132 if (!is_hybrid()) 2133 x86_pmu_show_pmu_cap(NULL); 2134 2135 if (!x86_pmu.read) 2136 x86_pmu.read = _x86_pmu_read; 2137 2138 if (!x86_pmu.guest_get_msrs) 2139 x86_pmu.guest_get_msrs = (void *)&__static_call_return0; 2140 2141 if (!x86_pmu.set_period) 2142 x86_pmu.set_period = x86_perf_event_set_period; 2143 2144 if (!x86_pmu.update) 2145 x86_pmu.update = x86_perf_event_update; 2146 2147 x86_pmu_static_call_update(); 2148 2149 /* 2150 * Install callbacks. Core will call them for each online 2151 * cpu. 2152 */ 2153 err = cpuhp_setup_state(CPUHP_PERF_X86_PREPARE, "perf/x86:prepare", 2154 x86_pmu_prepare_cpu, x86_pmu_dead_cpu); 2155 if (err) 2156 return err; 2157 2158 err = cpuhp_setup_state(CPUHP_AP_PERF_X86_STARTING, 2159 "perf/x86:starting", x86_pmu_starting_cpu, 2160 x86_pmu_dying_cpu); 2161 if (err) 2162 goto out; 2163 2164 err = cpuhp_setup_state(CPUHP_AP_PERF_X86_ONLINE, "perf/x86:online", 2165 x86_pmu_online_cpu, NULL); 2166 if (err) 2167 goto out1; 2168 2169 if (!is_hybrid()) { 2170 err = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW); 2171 if (err) 2172 goto out2; 2173 } else { 2174 struct x86_hybrid_pmu *hybrid_pmu; 2175 int i, j; 2176 2177 for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) { 2178 hybrid_pmu = &x86_pmu.hybrid_pmu[i]; 2179 2180 hybrid_pmu->pmu = pmu; 2181 hybrid_pmu->pmu.type = -1; 2182 hybrid_pmu->pmu.attr_update = x86_pmu.attr_update; 2183 hybrid_pmu->pmu.capabilities |= PERF_PMU_CAP_EXTENDED_HW_TYPE; 2184 2185 err = perf_pmu_register(&hybrid_pmu->pmu, hybrid_pmu->name, 2186 (hybrid_pmu->pmu_type == hybrid_big) ? PERF_TYPE_RAW : -1); 2187 if (err) 2188 break; 2189 } 2190 2191 if (i < x86_pmu.num_hybrid_pmus) { 2192 for (j = 0; j < i; j++) 2193 perf_pmu_unregister(&x86_pmu.hybrid_pmu[j].pmu); 2194 pr_warn("Failed to register hybrid PMUs\n"); 2195 kfree(x86_pmu.hybrid_pmu); 2196 x86_pmu.hybrid_pmu = NULL; 2197 x86_pmu.num_hybrid_pmus = 0; 2198 goto out2; 2199 } 2200 } 2201 2202 return 0; 2203 2204 out2: 2205 cpuhp_remove_state(CPUHP_AP_PERF_X86_ONLINE); 2206 out1: 2207 cpuhp_remove_state(CPUHP_AP_PERF_X86_STARTING); 2208 out: 2209 cpuhp_remove_state(CPUHP_PERF_X86_PREPARE); 2210 out_bad_pmu: 2211 memset(&x86_pmu, 0, sizeof(x86_pmu)); 2212 return err; 2213 } 2214 early_initcall(init_hw_perf_events); 2215 2216 static void x86_pmu_read(struct perf_event *event) 2217 { 2218 static_call(x86_pmu_read)(event); 2219 } 2220 2221 /* 2222 * Start group events scheduling transaction 2223 * Set the flag to make pmu::enable() not perform the 2224 * schedulability test, it will be performed at commit time 2225 * 2226 * We only support PERF_PMU_TXN_ADD transactions. Save the 2227 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD 2228 * transactions. 2229 */ 2230 static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags) 2231 { 2232 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2233 2234 WARN_ON_ONCE(cpuc->txn_flags); /* txn already in flight */ 2235 2236 cpuc->txn_flags = txn_flags; 2237 if (txn_flags & ~PERF_PMU_TXN_ADD) 2238 return; 2239 2240 perf_pmu_disable(pmu); 2241 __this_cpu_write(cpu_hw_events.n_txn, 0); 2242 __this_cpu_write(cpu_hw_events.n_txn_pair, 0); 2243 __this_cpu_write(cpu_hw_events.n_txn_metric, 0); 2244 } 2245 2246 /* 2247 * Stop group events scheduling transaction 2248 * Clear the flag and pmu::enable() will perform the 2249 * schedulability test. 2250 */ 2251 static void x86_pmu_cancel_txn(struct pmu *pmu) 2252 { 2253 unsigned int txn_flags; 2254 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2255 2256 WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */ 2257 2258 txn_flags = cpuc->txn_flags; 2259 cpuc->txn_flags = 0; 2260 if (txn_flags & ~PERF_PMU_TXN_ADD) 2261 return; 2262 2263 /* 2264 * Truncate collected array by the number of events added in this 2265 * transaction. See x86_pmu_add() and x86_pmu_*_txn(). 2266 */ 2267 __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn)); 2268 __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn)); 2269 __this_cpu_sub(cpu_hw_events.n_pair, __this_cpu_read(cpu_hw_events.n_txn_pair)); 2270 __this_cpu_sub(cpu_hw_events.n_metric, __this_cpu_read(cpu_hw_events.n_txn_metric)); 2271 perf_pmu_enable(pmu); 2272 } 2273 2274 /* 2275 * Commit group events scheduling transaction 2276 * Perform the group schedulability test as a whole 2277 * Return 0 if success 2278 * 2279 * Does not cancel the transaction on failure; expects the caller to do this. 2280 */ 2281 static int x86_pmu_commit_txn(struct pmu *pmu) 2282 { 2283 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2284 int assign[X86_PMC_IDX_MAX]; 2285 int n, ret; 2286 2287 WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */ 2288 2289 if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) { 2290 cpuc->txn_flags = 0; 2291 return 0; 2292 } 2293 2294 n = cpuc->n_events; 2295 2296 if (!x86_pmu_initialized()) 2297 return -EAGAIN; 2298 2299 ret = static_call(x86_pmu_schedule_events)(cpuc, n, assign); 2300 if (ret) 2301 return ret; 2302 2303 /* 2304 * copy new assignment, now we know it is possible 2305 * will be used by hw_perf_enable() 2306 */ 2307 memcpy(cpuc->assign, assign, n*sizeof(int)); 2308 2309 cpuc->txn_flags = 0; 2310 perf_pmu_enable(pmu); 2311 return 0; 2312 } 2313 /* 2314 * a fake_cpuc is used to validate event groups. Due to 2315 * the extra reg logic, we need to also allocate a fake 2316 * per_core and per_cpu structure. Otherwise, group events 2317 * using extra reg may conflict without the kernel being 2318 * able to catch this when the last event gets added to 2319 * the group. 2320 */ 2321 static void free_fake_cpuc(struct cpu_hw_events *cpuc) 2322 { 2323 intel_cpuc_finish(cpuc); 2324 kfree(cpuc); 2325 } 2326 2327 static struct cpu_hw_events *allocate_fake_cpuc(struct pmu *event_pmu) 2328 { 2329 struct cpu_hw_events *cpuc; 2330 int cpu; 2331 2332 cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL); 2333 if (!cpuc) 2334 return ERR_PTR(-ENOMEM); 2335 cpuc->is_fake = 1; 2336 2337 if (is_hybrid()) { 2338 struct x86_hybrid_pmu *h_pmu; 2339 2340 h_pmu = hybrid_pmu(event_pmu); 2341 if (cpumask_empty(&h_pmu->supported_cpus)) 2342 goto error; 2343 cpu = cpumask_first(&h_pmu->supported_cpus); 2344 } else 2345 cpu = raw_smp_processor_id(); 2346 cpuc->pmu = event_pmu; 2347 2348 if (intel_cpuc_prepare(cpuc, cpu)) 2349 goto error; 2350 2351 return cpuc; 2352 error: 2353 free_fake_cpuc(cpuc); 2354 return ERR_PTR(-ENOMEM); 2355 } 2356 2357 /* 2358 * validate that we can schedule this event 2359 */ 2360 static int validate_event(struct perf_event *event) 2361 { 2362 struct cpu_hw_events *fake_cpuc; 2363 struct event_constraint *c; 2364 int ret = 0; 2365 2366 fake_cpuc = allocate_fake_cpuc(event->pmu); 2367 if (IS_ERR(fake_cpuc)) 2368 return PTR_ERR(fake_cpuc); 2369 2370 c = x86_pmu.get_event_constraints(fake_cpuc, 0, event); 2371 2372 if (!c || !c->weight) 2373 ret = -EINVAL; 2374 2375 if (x86_pmu.put_event_constraints) 2376 x86_pmu.put_event_constraints(fake_cpuc, event); 2377 2378 free_fake_cpuc(fake_cpuc); 2379 2380 return ret; 2381 } 2382 2383 /* 2384 * validate a single event group 2385 * 2386 * validation include: 2387 * - check events are compatible which each other 2388 * - events do not compete for the same counter 2389 * - number of events <= number of counters 2390 * 2391 * validation ensures the group can be loaded onto the 2392 * PMU if it was the only group available. 2393 */ 2394 static int validate_group(struct perf_event *event) 2395 { 2396 struct perf_event *leader = event->group_leader; 2397 struct cpu_hw_events *fake_cpuc; 2398 int ret = -EINVAL, n; 2399 2400 /* 2401 * Reject events from different hybrid PMUs. 2402 */ 2403 if (is_hybrid()) { 2404 struct perf_event *sibling; 2405 struct pmu *pmu = NULL; 2406 2407 if (is_x86_event(leader)) 2408 pmu = leader->pmu; 2409 2410 for_each_sibling_event(sibling, leader) { 2411 if (!is_x86_event(sibling)) 2412 continue; 2413 if (!pmu) 2414 pmu = sibling->pmu; 2415 else if (pmu != sibling->pmu) 2416 return ret; 2417 } 2418 } 2419 2420 fake_cpuc = allocate_fake_cpuc(event->pmu); 2421 if (IS_ERR(fake_cpuc)) 2422 return PTR_ERR(fake_cpuc); 2423 /* 2424 * the event is not yet connected with its 2425 * siblings therefore we must first collect 2426 * existing siblings, then add the new event 2427 * before we can simulate the scheduling 2428 */ 2429 n = collect_events(fake_cpuc, leader, true); 2430 if (n < 0) 2431 goto out; 2432 2433 fake_cpuc->n_events = n; 2434 n = collect_events(fake_cpuc, event, false); 2435 if (n < 0) 2436 goto out; 2437 2438 fake_cpuc->n_events = 0; 2439 ret = x86_pmu.schedule_events(fake_cpuc, n, NULL); 2440 2441 out: 2442 free_fake_cpuc(fake_cpuc); 2443 return ret; 2444 } 2445 2446 static int x86_pmu_event_init(struct perf_event *event) 2447 { 2448 struct x86_hybrid_pmu *pmu = NULL; 2449 int err; 2450 2451 if ((event->attr.type != event->pmu->type) && 2452 (event->attr.type != PERF_TYPE_HARDWARE) && 2453 (event->attr.type != PERF_TYPE_HW_CACHE)) 2454 return -ENOENT; 2455 2456 if (is_hybrid() && (event->cpu != -1)) { 2457 pmu = hybrid_pmu(event->pmu); 2458 if (!cpumask_test_cpu(event->cpu, &pmu->supported_cpus)) 2459 return -ENOENT; 2460 } 2461 2462 err = __x86_pmu_event_init(event); 2463 if (!err) { 2464 if (event->group_leader != event) 2465 err = validate_group(event); 2466 else 2467 err = validate_event(event); 2468 } 2469 if (err) { 2470 if (event->destroy) 2471 event->destroy(event); 2472 event->destroy = NULL; 2473 } 2474 2475 if (READ_ONCE(x86_pmu.attr_rdpmc) && 2476 !(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS)) 2477 event->hw.flags |= PERF_EVENT_FLAG_USER_READ_CNT; 2478 2479 return err; 2480 } 2481 2482 void perf_clear_dirty_counters(void) 2483 { 2484 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2485 int i; 2486 2487 /* Don't need to clear the assigned counter. */ 2488 for (i = 0; i < cpuc->n_events; i++) 2489 __clear_bit(cpuc->assign[i], cpuc->dirty); 2490 2491 if (bitmap_empty(cpuc->dirty, X86_PMC_IDX_MAX)) 2492 return; 2493 2494 for_each_set_bit(i, cpuc->dirty, X86_PMC_IDX_MAX) { 2495 if (i >= INTEL_PMC_IDX_FIXED) { 2496 /* Metrics and fake events don't have corresponding HW counters. */ 2497 if (!test_bit(i - INTEL_PMC_IDX_FIXED, hybrid(cpuc->pmu, fixed_cntr_mask))) 2498 continue; 2499 2500 wrmsrq(x86_pmu_fixed_ctr_addr(i - INTEL_PMC_IDX_FIXED), 0); 2501 } else { 2502 wrmsrq(x86_pmu_event_addr(i), 0); 2503 } 2504 } 2505 2506 bitmap_zero(cpuc->dirty, X86_PMC_IDX_MAX); 2507 } 2508 2509 static void x86_pmu_event_mapped(struct perf_event *event, struct mm_struct *mm) 2510 { 2511 if (!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)) 2512 return; 2513 2514 /* 2515 * This function relies on not being called concurrently in two 2516 * tasks in the same mm. Otherwise one task could observe 2517 * perf_rdpmc_allowed > 1 and return all the way back to 2518 * userspace with CR4.PCE clear while another task is still 2519 * doing on_each_cpu_mask() to propagate CR4.PCE. 2520 * 2521 * For now, this can't happen because all callers hold mmap_lock 2522 * for write. If this changes, we'll need a different solution. 2523 */ 2524 mmap_assert_write_locked(mm); 2525 2526 if (atomic_inc_return(&mm->context.perf_rdpmc_allowed) == 1) 2527 on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1); 2528 } 2529 2530 static void x86_pmu_event_unmapped(struct perf_event *event, struct mm_struct *mm) 2531 { 2532 if (!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)) 2533 return; 2534 2535 if (atomic_dec_and_test(&mm->context.perf_rdpmc_allowed)) 2536 on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1); 2537 } 2538 2539 static int x86_pmu_event_idx(struct perf_event *event) 2540 { 2541 struct hw_perf_event *hwc = &event->hw; 2542 2543 if (!(hwc->flags & PERF_EVENT_FLAG_USER_READ_CNT)) 2544 return 0; 2545 2546 if (is_metric_idx(hwc->idx)) 2547 return INTEL_PMC_FIXED_RDPMC_METRICS + 1; 2548 else 2549 return hwc->event_base_rdpmc + 1; 2550 } 2551 2552 static ssize_t get_attr_rdpmc(struct device *cdev, 2553 struct device_attribute *attr, 2554 char *buf) 2555 { 2556 return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc); 2557 } 2558 2559 static ssize_t set_attr_rdpmc(struct device *cdev, 2560 struct device_attribute *attr, 2561 const char *buf, size_t count) 2562 { 2563 static DEFINE_MUTEX(rdpmc_mutex); 2564 unsigned long val; 2565 ssize_t ret; 2566 2567 ret = kstrtoul(buf, 0, &val); 2568 if (ret) 2569 return ret; 2570 2571 if (val > 2) 2572 return -EINVAL; 2573 2574 if (x86_pmu.attr_rdpmc_broken) 2575 return -ENOTSUPP; 2576 2577 guard(mutex)(&rdpmc_mutex); 2578 2579 if (val != x86_pmu.attr_rdpmc) { 2580 /* 2581 * Changing into or out of never available or always available, 2582 * aka perf-event-bypassing mode. This path is extremely slow, 2583 * but only root can trigger it, so it's okay. 2584 */ 2585 if (val == 0) 2586 static_branch_inc(&rdpmc_never_available_key); 2587 else if (x86_pmu.attr_rdpmc == 0) 2588 static_branch_dec(&rdpmc_never_available_key); 2589 2590 if (val == 2) 2591 static_branch_inc(&rdpmc_always_available_key); 2592 else if (x86_pmu.attr_rdpmc == 2) 2593 static_branch_dec(&rdpmc_always_available_key); 2594 2595 on_each_cpu(cr4_update_pce, NULL, 1); 2596 x86_pmu.attr_rdpmc = val; 2597 } 2598 2599 return count; 2600 } 2601 2602 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc); 2603 2604 static struct attribute *x86_pmu_attrs[] = { 2605 &dev_attr_rdpmc.attr, 2606 NULL, 2607 }; 2608 2609 static struct attribute_group x86_pmu_attr_group __ro_after_init = { 2610 .attrs = x86_pmu_attrs, 2611 }; 2612 2613 static ssize_t max_precise_show(struct device *cdev, 2614 struct device_attribute *attr, 2615 char *buf) 2616 { 2617 return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu_max_precise()); 2618 } 2619 2620 static DEVICE_ATTR_RO(max_precise); 2621 2622 static struct attribute *x86_pmu_caps_attrs[] = { 2623 &dev_attr_max_precise.attr, 2624 NULL 2625 }; 2626 2627 static struct attribute_group x86_pmu_caps_group __ro_after_init = { 2628 .name = "caps", 2629 .attrs = x86_pmu_caps_attrs, 2630 }; 2631 2632 static const struct attribute_group *x86_pmu_attr_groups[] = { 2633 &x86_pmu_attr_group, 2634 &x86_pmu_format_group, 2635 &x86_pmu_events_group, 2636 &x86_pmu_caps_group, 2637 NULL, 2638 }; 2639 2640 static void x86_pmu_sched_task(struct perf_event_pmu_context *pmu_ctx, 2641 struct task_struct *task, bool sched_in) 2642 { 2643 static_call_cond(x86_pmu_sched_task)(pmu_ctx, task, sched_in); 2644 } 2645 2646 void perf_check_microcode(void) 2647 { 2648 if (x86_pmu.check_microcode) 2649 x86_pmu.check_microcode(); 2650 } 2651 2652 static int x86_pmu_check_period(struct perf_event *event, u64 value) 2653 { 2654 if (x86_pmu.check_period && x86_pmu.check_period(event, value)) 2655 return -EINVAL; 2656 2657 if (value && x86_pmu.limit_period) { 2658 s64 left = value; 2659 x86_pmu.limit_period(event, &left); 2660 if (left > value) 2661 return -EINVAL; 2662 } 2663 2664 return 0; 2665 } 2666 2667 static int x86_pmu_aux_output_match(struct perf_event *event) 2668 { 2669 if (!(pmu.capabilities & PERF_PMU_CAP_AUX_OUTPUT)) 2670 return 0; 2671 2672 if (x86_pmu.aux_output_match) 2673 return x86_pmu.aux_output_match(event); 2674 2675 return 0; 2676 } 2677 2678 static bool x86_pmu_filter(struct pmu *pmu, int cpu) 2679 { 2680 bool ret = false; 2681 2682 static_call_cond(x86_pmu_filter)(pmu, cpu, &ret); 2683 2684 return ret; 2685 } 2686 2687 static struct pmu pmu = { 2688 .pmu_enable = x86_pmu_enable, 2689 .pmu_disable = x86_pmu_disable, 2690 2691 .attr_groups = x86_pmu_attr_groups, 2692 2693 .event_init = x86_pmu_event_init, 2694 2695 .event_mapped = x86_pmu_event_mapped, 2696 .event_unmapped = x86_pmu_event_unmapped, 2697 2698 .add = x86_pmu_add, 2699 .del = x86_pmu_del, 2700 .start = x86_pmu_start, 2701 .stop = x86_pmu_stop, 2702 .read = x86_pmu_read, 2703 2704 .start_txn = x86_pmu_start_txn, 2705 .cancel_txn = x86_pmu_cancel_txn, 2706 .commit_txn = x86_pmu_commit_txn, 2707 2708 .event_idx = x86_pmu_event_idx, 2709 .sched_task = x86_pmu_sched_task, 2710 .check_period = x86_pmu_check_period, 2711 2712 .aux_output_match = x86_pmu_aux_output_match, 2713 2714 .filter = x86_pmu_filter, 2715 }; 2716 2717 void arch_perf_update_userpage(struct perf_event *event, 2718 struct perf_event_mmap_page *userpg, u64 now) 2719 { 2720 struct cyc2ns_data data; 2721 u64 offset; 2722 2723 userpg->cap_user_time = 0; 2724 userpg->cap_user_time_zero = 0; 2725 userpg->cap_user_rdpmc = 2726 !!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT); 2727 userpg->pmc_width = x86_pmu.cntval_bits; 2728 2729 if (!using_native_sched_clock() || !sched_clock_stable()) 2730 return; 2731 2732 cyc2ns_read_begin(&data); 2733 2734 offset = data.cyc2ns_offset + __sched_clock_offset; 2735 2736 /* 2737 * Internal timekeeping for enabled/running/stopped times 2738 * is always in the local_clock domain. 2739 */ 2740 userpg->cap_user_time = 1; 2741 userpg->time_mult = data.cyc2ns_mul; 2742 userpg->time_shift = data.cyc2ns_shift; 2743 userpg->time_offset = offset - now; 2744 2745 /* 2746 * cap_user_time_zero doesn't make sense when we're using a different 2747 * time base for the records. 2748 */ 2749 if (!event->attr.use_clockid) { 2750 userpg->cap_user_time_zero = 1; 2751 userpg->time_zero = offset; 2752 } 2753 2754 cyc2ns_read_end(); 2755 } 2756 2757 /* 2758 * Determine whether the regs were taken from an irq/exception handler rather 2759 * than from perf_arch_fetch_caller_regs(). 2760 */ 2761 static bool perf_hw_regs(struct pt_regs *regs) 2762 { 2763 return regs->flags & X86_EFLAGS_FIXED; 2764 } 2765 2766 void 2767 perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs) 2768 { 2769 struct unwind_state state; 2770 unsigned long addr; 2771 2772 if (perf_guest_state()) { 2773 /* TODO: We don't support guest os callchain now */ 2774 return; 2775 } 2776 2777 if (perf_callchain_store(entry, regs->ip)) 2778 return; 2779 2780 if (perf_hw_regs(regs)) 2781 unwind_start(&state, current, regs, NULL); 2782 else 2783 unwind_start(&state, current, NULL, (void *)regs->sp); 2784 2785 for (; !unwind_done(&state); unwind_next_frame(&state)) { 2786 addr = unwind_get_return_address(&state); 2787 if (!addr || perf_callchain_store(entry, addr)) 2788 return; 2789 } 2790 } 2791 2792 static inline int 2793 valid_user_frame(const void __user *fp, unsigned long size) 2794 { 2795 return __access_ok(fp, size); 2796 } 2797 2798 static unsigned long get_segment_base(unsigned int segment) 2799 { 2800 struct desc_struct *desc; 2801 unsigned int idx = segment >> 3; 2802 2803 if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) { 2804 #ifdef CONFIG_MODIFY_LDT_SYSCALL 2805 struct ldt_struct *ldt; 2806 2807 /* IRQs are off, so this synchronizes with smp_store_release */ 2808 ldt = READ_ONCE(current->active_mm->context.ldt); 2809 if (!ldt || idx >= ldt->nr_entries) 2810 return 0; 2811 2812 desc = &ldt->entries[idx]; 2813 #else 2814 return 0; 2815 #endif 2816 } else { 2817 if (idx >= GDT_ENTRIES) 2818 return 0; 2819 2820 desc = raw_cpu_ptr(gdt_page.gdt) + idx; 2821 } 2822 2823 return get_desc_base(desc); 2824 } 2825 2826 #ifdef CONFIG_UPROBES 2827 /* 2828 * Heuristic-based check if uprobe is installed at the function entry. 2829 * 2830 * Under assumption of user code being compiled with frame pointers, 2831 * `push %rbp/%ebp` is a good indicator that we indeed are. 2832 * 2833 * Similarly, `endbr64` (assuming 64-bit mode) is also a common pattern. 2834 * If we get this wrong, captured stack trace might have one extra bogus 2835 * entry, but the rest of stack trace will still be meaningful. 2836 */ 2837 static bool is_uprobe_at_func_entry(struct pt_regs *regs) 2838 { 2839 struct arch_uprobe *auprobe; 2840 2841 if (!current->utask) 2842 return false; 2843 2844 auprobe = current->utask->auprobe; 2845 if (!auprobe) 2846 return false; 2847 2848 /* push %rbp/%ebp */ 2849 if (auprobe->insn[0] == 0x55) 2850 return true; 2851 2852 /* endbr64 (64-bit only) */ 2853 if (user_64bit_mode(regs) && is_endbr((u32 *)auprobe->insn)) 2854 return true; 2855 2856 return false; 2857 } 2858 2859 #else 2860 static bool is_uprobe_at_func_entry(struct pt_regs *regs) 2861 { 2862 return false; 2863 } 2864 #endif /* CONFIG_UPROBES */ 2865 2866 #ifdef CONFIG_IA32_EMULATION 2867 2868 #include <linux/compat.h> 2869 2870 static inline int 2871 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry) 2872 { 2873 /* 32-bit process in 64-bit kernel. */ 2874 unsigned long ss_base, cs_base; 2875 struct stack_frame_ia32 frame; 2876 const struct stack_frame_ia32 __user *fp; 2877 u32 ret_addr; 2878 2879 if (user_64bit_mode(regs)) 2880 return 0; 2881 2882 cs_base = get_segment_base(regs->cs); 2883 ss_base = get_segment_base(regs->ss); 2884 2885 fp = compat_ptr(ss_base + regs->bp); 2886 pagefault_disable(); 2887 2888 /* see perf_callchain_user() below for why we do this */ 2889 if (is_uprobe_at_func_entry(regs) && 2890 !get_user(ret_addr, (const u32 __user *)regs->sp)) 2891 perf_callchain_store(entry, ret_addr); 2892 2893 while (entry->nr < entry->max_stack) { 2894 if (!valid_user_frame(fp, sizeof(frame))) 2895 break; 2896 2897 if (__get_user(frame.next_frame, &fp->next_frame)) 2898 break; 2899 if (__get_user(frame.return_address, &fp->return_address)) 2900 break; 2901 2902 perf_callchain_store(entry, cs_base + frame.return_address); 2903 fp = compat_ptr(ss_base + frame.next_frame); 2904 } 2905 pagefault_enable(); 2906 return 1; 2907 } 2908 #else 2909 static inline int 2910 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry) 2911 { 2912 return 0; 2913 } 2914 #endif 2915 2916 void 2917 perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs) 2918 { 2919 struct stack_frame frame; 2920 const struct stack_frame __user *fp; 2921 unsigned long ret_addr; 2922 2923 if (perf_guest_state()) { 2924 /* TODO: We don't support guest os callchain now */ 2925 return; 2926 } 2927 2928 /* 2929 * We don't know what to do with VM86 stacks.. ignore them for now. 2930 */ 2931 if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM)) 2932 return; 2933 2934 fp = (void __user *)regs->bp; 2935 2936 perf_callchain_store(entry, regs->ip); 2937 2938 if (!nmi_uaccess_okay()) 2939 return; 2940 2941 if (perf_callchain_user32(regs, entry)) 2942 return; 2943 2944 pagefault_disable(); 2945 2946 /* 2947 * If we are called from uprobe handler, and we are indeed at the very 2948 * entry to user function (which is normally a `push %rbp` instruction, 2949 * under assumption of application being compiled with frame pointers), 2950 * we should read return address from *regs->sp before proceeding 2951 * to follow frame pointers, otherwise we'll skip immediate caller 2952 * as %rbp is not yet setup. 2953 */ 2954 if (is_uprobe_at_func_entry(regs) && 2955 !get_user(ret_addr, (const unsigned long __user *)regs->sp)) 2956 perf_callchain_store(entry, ret_addr); 2957 2958 while (entry->nr < entry->max_stack) { 2959 if (!valid_user_frame(fp, sizeof(frame))) 2960 break; 2961 2962 if (__get_user(frame.next_frame, &fp->next_frame)) 2963 break; 2964 if (__get_user(frame.return_address, &fp->return_address)) 2965 break; 2966 2967 perf_callchain_store(entry, frame.return_address); 2968 fp = (void __user *)frame.next_frame; 2969 } 2970 pagefault_enable(); 2971 } 2972 2973 /* 2974 * Deal with code segment offsets for the various execution modes: 2975 * 2976 * VM86 - the good olde 16 bit days, where the linear address is 2977 * 20 bits and we use regs->ip + 0x10 * regs->cs. 2978 * 2979 * IA32 - Where we need to look at GDT/LDT segment descriptor tables 2980 * to figure out what the 32bit base address is. 2981 * 2982 * X32 - has TIF_X32 set, but is running in x86_64 2983 * 2984 * X86_64 - CS,DS,SS,ES are all zero based. 2985 */ 2986 static unsigned long code_segment_base(struct pt_regs *regs) 2987 { 2988 /* 2989 * For IA32 we look at the GDT/LDT segment base to convert the 2990 * effective IP to a linear address. 2991 */ 2992 2993 #ifdef CONFIG_X86_32 2994 /* 2995 * If we are in VM86 mode, add the segment offset to convert to a 2996 * linear address. 2997 */ 2998 if (regs->flags & X86_VM_MASK) 2999 return 0x10 * regs->cs; 3000 3001 if (user_mode(regs) && regs->cs != __USER_CS) 3002 return get_segment_base(regs->cs); 3003 #else 3004 if (user_mode(regs) && !user_64bit_mode(regs) && 3005 regs->cs != __USER32_CS) 3006 return get_segment_base(regs->cs); 3007 #endif 3008 return 0; 3009 } 3010 3011 unsigned long perf_arch_instruction_pointer(struct pt_regs *regs) 3012 { 3013 return regs->ip + code_segment_base(regs); 3014 } 3015 3016 static unsigned long common_misc_flags(struct pt_regs *regs) 3017 { 3018 if (regs->flags & PERF_EFLAGS_EXACT) 3019 return PERF_RECORD_MISC_EXACT_IP; 3020 3021 return 0; 3022 } 3023 3024 static unsigned long guest_misc_flags(struct pt_regs *regs) 3025 { 3026 unsigned long guest_state = perf_guest_state(); 3027 3028 if (!(guest_state & PERF_GUEST_ACTIVE)) 3029 return 0; 3030 3031 if (guest_state & PERF_GUEST_USER) 3032 return PERF_RECORD_MISC_GUEST_USER; 3033 else 3034 return PERF_RECORD_MISC_GUEST_KERNEL; 3035 3036 } 3037 3038 static unsigned long host_misc_flags(struct pt_regs *regs) 3039 { 3040 if (user_mode(regs)) 3041 return PERF_RECORD_MISC_USER; 3042 else 3043 return PERF_RECORD_MISC_KERNEL; 3044 } 3045 3046 unsigned long perf_arch_guest_misc_flags(struct pt_regs *regs) 3047 { 3048 unsigned long flags = common_misc_flags(regs); 3049 3050 flags |= guest_misc_flags(regs); 3051 3052 return flags; 3053 } 3054 3055 unsigned long perf_arch_misc_flags(struct pt_regs *regs) 3056 { 3057 unsigned long flags = common_misc_flags(regs); 3058 3059 flags |= host_misc_flags(regs); 3060 3061 return flags; 3062 } 3063 3064 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap) 3065 { 3066 /* This API doesn't currently support enumerating hybrid PMUs. */ 3067 if (WARN_ON_ONCE(cpu_feature_enabled(X86_FEATURE_HYBRID_CPU)) || 3068 !x86_pmu_initialized()) { 3069 memset(cap, 0, sizeof(*cap)); 3070 return; 3071 } 3072 3073 /* 3074 * Note, hybrid CPU models get tracked as having hybrid PMUs even when 3075 * all E-cores are disabled via BIOS. When E-cores are disabled, the 3076 * base PMU holds the correct number of counters for P-cores. 3077 */ 3078 cap->version = x86_pmu.version; 3079 cap->num_counters_gp = x86_pmu_num_counters(NULL); 3080 cap->num_counters_fixed = x86_pmu_num_counters_fixed(NULL); 3081 cap->bit_width_gp = x86_pmu.cntval_bits; 3082 cap->bit_width_fixed = x86_pmu.cntval_bits; 3083 cap->events_mask = (unsigned int)x86_pmu.events_maskl; 3084 cap->events_mask_len = x86_pmu.events_mask_len; 3085 cap->pebs_ept = x86_pmu.pebs_ept; 3086 } 3087 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability); 3088 3089 u64 perf_get_hw_event_config(int hw_event) 3090 { 3091 int max = x86_pmu.max_events; 3092 3093 if (hw_event < max) 3094 return x86_pmu.event_map(array_index_nospec(hw_event, max)); 3095 3096 return 0; 3097 } 3098 EXPORT_SYMBOL_GPL(perf_get_hw_event_config); 3099