xref: /linux/arch/x86/events/core.c (revision 52ffe0ff02fc053a025c381d5808e9ecd3206dfe)
1 /*
2  * Performance events x86 architecture code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2009 Jaswinder Singh Rajput
7  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
9  *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10  *  Copyright (C) 2009 Google, Inc., Stephane Eranian
11  *
12  *  For licencing details see kernel-base/COPYING
13  */
14 
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/module.h>
21 #include <linux/kdebug.h>
22 #include <linux/sched.h>
23 #include <linux/uaccess.h>
24 #include <linux/slab.h>
25 #include <linux/cpu.h>
26 #include <linux/bitops.h>
27 #include <linux/device.h>
28 
29 #include <asm/apic.h>
30 #include <asm/stacktrace.h>
31 #include <asm/nmi.h>
32 #include <asm/smp.h>
33 #include <asm/alternative.h>
34 #include <asm/mmu_context.h>
35 #include <asm/tlbflush.h>
36 #include <asm/timer.h>
37 #include <asm/desc.h>
38 #include <asm/ldt.h>
39 
40 #include "perf_event.h"
41 
42 struct x86_pmu x86_pmu __read_mostly;
43 
44 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
45 	.enabled = 1,
46 };
47 
48 struct static_key rdpmc_always_available = STATIC_KEY_INIT_FALSE;
49 
50 u64 __read_mostly hw_cache_event_ids
51 				[PERF_COUNT_HW_CACHE_MAX]
52 				[PERF_COUNT_HW_CACHE_OP_MAX]
53 				[PERF_COUNT_HW_CACHE_RESULT_MAX];
54 u64 __read_mostly hw_cache_extra_regs
55 				[PERF_COUNT_HW_CACHE_MAX]
56 				[PERF_COUNT_HW_CACHE_OP_MAX]
57 				[PERF_COUNT_HW_CACHE_RESULT_MAX];
58 
59 /*
60  * Propagate event elapsed time into the generic event.
61  * Can only be executed on the CPU where the event is active.
62  * Returns the delta events processed.
63  */
64 u64 x86_perf_event_update(struct perf_event *event)
65 {
66 	struct hw_perf_event *hwc = &event->hw;
67 	int shift = 64 - x86_pmu.cntval_bits;
68 	u64 prev_raw_count, new_raw_count;
69 	int idx = hwc->idx;
70 	s64 delta;
71 
72 	if (idx == INTEL_PMC_IDX_FIXED_BTS)
73 		return 0;
74 
75 	/*
76 	 * Careful: an NMI might modify the previous event value.
77 	 *
78 	 * Our tactic to handle this is to first atomically read and
79 	 * exchange a new raw count - then add that new-prev delta
80 	 * count to the generic event atomically:
81 	 */
82 again:
83 	prev_raw_count = local64_read(&hwc->prev_count);
84 	rdpmcl(hwc->event_base_rdpmc, new_raw_count);
85 
86 	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
87 					new_raw_count) != prev_raw_count)
88 		goto again;
89 
90 	/*
91 	 * Now we have the new raw value and have updated the prev
92 	 * timestamp already. We can now calculate the elapsed delta
93 	 * (event-)time and add that to the generic event.
94 	 *
95 	 * Careful, not all hw sign-extends above the physical width
96 	 * of the count.
97 	 */
98 	delta = (new_raw_count << shift) - (prev_raw_count << shift);
99 	delta >>= shift;
100 
101 	local64_add(delta, &event->count);
102 	local64_sub(delta, &hwc->period_left);
103 
104 	return new_raw_count;
105 }
106 
107 /*
108  * Find and validate any extra registers to set up.
109  */
110 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
111 {
112 	struct hw_perf_event_extra *reg;
113 	struct extra_reg *er;
114 
115 	reg = &event->hw.extra_reg;
116 
117 	if (!x86_pmu.extra_regs)
118 		return 0;
119 
120 	for (er = x86_pmu.extra_regs; er->msr; er++) {
121 		if (er->event != (config & er->config_mask))
122 			continue;
123 		if (event->attr.config1 & ~er->valid_mask)
124 			return -EINVAL;
125 		/* Check if the extra msrs can be safely accessed*/
126 		if (!er->extra_msr_access)
127 			return -ENXIO;
128 
129 		reg->idx = er->idx;
130 		reg->config = event->attr.config1;
131 		reg->reg = er->msr;
132 		break;
133 	}
134 	return 0;
135 }
136 
137 static atomic_t active_events;
138 static atomic_t pmc_refcount;
139 static DEFINE_MUTEX(pmc_reserve_mutex);
140 
141 #ifdef CONFIG_X86_LOCAL_APIC
142 
143 static bool reserve_pmc_hardware(void)
144 {
145 	int i;
146 
147 	for (i = 0; i < x86_pmu.num_counters; i++) {
148 		if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
149 			goto perfctr_fail;
150 	}
151 
152 	for (i = 0; i < x86_pmu.num_counters; i++) {
153 		if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
154 			goto eventsel_fail;
155 	}
156 
157 	return true;
158 
159 eventsel_fail:
160 	for (i--; i >= 0; i--)
161 		release_evntsel_nmi(x86_pmu_config_addr(i));
162 
163 	i = x86_pmu.num_counters;
164 
165 perfctr_fail:
166 	for (i--; i >= 0; i--)
167 		release_perfctr_nmi(x86_pmu_event_addr(i));
168 
169 	return false;
170 }
171 
172 static void release_pmc_hardware(void)
173 {
174 	int i;
175 
176 	for (i = 0; i < x86_pmu.num_counters; i++) {
177 		release_perfctr_nmi(x86_pmu_event_addr(i));
178 		release_evntsel_nmi(x86_pmu_config_addr(i));
179 	}
180 }
181 
182 #else
183 
184 static bool reserve_pmc_hardware(void) { return true; }
185 static void release_pmc_hardware(void) {}
186 
187 #endif
188 
189 static bool check_hw_exists(void)
190 {
191 	u64 val, val_fail, val_new= ~0;
192 	int i, reg, reg_fail, ret = 0;
193 	int bios_fail = 0;
194 	int reg_safe = -1;
195 
196 	/*
197 	 * Check to see if the BIOS enabled any of the counters, if so
198 	 * complain and bail.
199 	 */
200 	for (i = 0; i < x86_pmu.num_counters; i++) {
201 		reg = x86_pmu_config_addr(i);
202 		ret = rdmsrl_safe(reg, &val);
203 		if (ret)
204 			goto msr_fail;
205 		if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
206 			bios_fail = 1;
207 			val_fail = val;
208 			reg_fail = reg;
209 		} else {
210 			reg_safe = i;
211 		}
212 	}
213 
214 	if (x86_pmu.num_counters_fixed) {
215 		reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
216 		ret = rdmsrl_safe(reg, &val);
217 		if (ret)
218 			goto msr_fail;
219 		for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
220 			if (val & (0x03 << i*4)) {
221 				bios_fail = 1;
222 				val_fail = val;
223 				reg_fail = reg;
224 			}
225 		}
226 	}
227 
228 	/*
229 	 * If all the counters are enabled, the below test will always
230 	 * fail.  The tools will also become useless in this scenario.
231 	 * Just fail and disable the hardware counters.
232 	 */
233 
234 	if (reg_safe == -1) {
235 		reg = reg_safe;
236 		goto msr_fail;
237 	}
238 
239 	/*
240 	 * Read the current value, change it and read it back to see if it
241 	 * matches, this is needed to detect certain hardware emulators
242 	 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
243 	 */
244 	reg = x86_pmu_event_addr(reg_safe);
245 	if (rdmsrl_safe(reg, &val))
246 		goto msr_fail;
247 	val ^= 0xffffUL;
248 	ret = wrmsrl_safe(reg, val);
249 	ret |= rdmsrl_safe(reg, &val_new);
250 	if (ret || val != val_new)
251 		goto msr_fail;
252 
253 	/*
254 	 * We still allow the PMU driver to operate:
255 	 */
256 	if (bios_fail) {
257 		pr_cont("Broken BIOS detected, complain to your hardware vendor.\n");
258 		pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n",
259 			      reg_fail, val_fail);
260 	}
261 
262 	return true;
263 
264 msr_fail:
265 	pr_cont("Broken PMU hardware detected, using software events only.\n");
266 	pr_info("%sFailed to access perfctr msr (MSR %x is %Lx)\n",
267 		boot_cpu_has(X86_FEATURE_HYPERVISOR) ? KERN_INFO : KERN_ERR,
268 		reg, val_new);
269 
270 	return false;
271 }
272 
273 static void hw_perf_event_destroy(struct perf_event *event)
274 {
275 	x86_release_hardware();
276 	atomic_dec(&active_events);
277 }
278 
279 void hw_perf_lbr_event_destroy(struct perf_event *event)
280 {
281 	hw_perf_event_destroy(event);
282 
283 	/* undo the lbr/bts event accounting */
284 	x86_del_exclusive(x86_lbr_exclusive_lbr);
285 }
286 
287 static inline int x86_pmu_initialized(void)
288 {
289 	return x86_pmu.handle_irq != NULL;
290 }
291 
292 static inline int
293 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
294 {
295 	struct perf_event_attr *attr = &event->attr;
296 	unsigned int cache_type, cache_op, cache_result;
297 	u64 config, val;
298 
299 	config = attr->config;
300 
301 	cache_type = (config >>  0) & 0xff;
302 	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
303 		return -EINVAL;
304 
305 	cache_op = (config >>  8) & 0xff;
306 	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
307 		return -EINVAL;
308 
309 	cache_result = (config >> 16) & 0xff;
310 	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
311 		return -EINVAL;
312 
313 	val = hw_cache_event_ids[cache_type][cache_op][cache_result];
314 
315 	if (val == 0)
316 		return -ENOENT;
317 
318 	if (val == -1)
319 		return -EINVAL;
320 
321 	hwc->config |= val;
322 	attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
323 	return x86_pmu_extra_regs(val, event);
324 }
325 
326 int x86_reserve_hardware(void)
327 {
328 	int err = 0;
329 
330 	if (!atomic_inc_not_zero(&pmc_refcount)) {
331 		mutex_lock(&pmc_reserve_mutex);
332 		if (atomic_read(&pmc_refcount) == 0) {
333 			if (!reserve_pmc_hardware())
334 				err = -EBUSY;
335 			else
336 				reserve_ds_buffers();
337 		}
338 		if (!err)
339 			atomic_inc(&pmc_refcount);
340 		mutex_unlock(&pmc_reserve_mutex);
341 	}
342 
343 	return err;
344 }
345 
346 void x86_release_hardware(void)
347 {
348 	if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) {
349 		release_pmc_hardware();
350 		release_ds_buffers();
351 		mutex_unlock(&pmc_reserve_mutex);
352 	}
353 }
354 
355 /*
356  * Check if we can create event of a certain type (that no conflicting events
357  * are present).
358  */
359 int x86_add_exclusive(unsigned int what)
360 {
361 	int i;
362 
363 	if (x86_pmu.lbr_pt_coexist)
364 		return 0;
365 
366 	if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) {
367 		mutex_lock(&pmc_reserve_mutex);
368 		for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) {
369 			if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
370 				goto fail_unlock;
371 		}
372 		atomic_inc(&x86_pmu.lbr_exclusive[what]);
373 		mutex_unlock(&pmc_reserve_mutex);
374 	}
375 
376 	atomic_inc(&active_events);
377 	return 0;
378 
379 fail_unlock:
380 	mutex_unlock(&pmc_reserve_mutex);
381 	return -EBUSY;
382 }
383 
384 void x86_del_exclusive(unsigned int what)
385 {
386 	if (x86_pmu.lbr_pt_coexist)
387 		return;
388 
389 	atomic_dec(&x86_pmu.lbr_exclusive[what]);
390 	atomic_dec(&active_events);
391 }
392 
393 int x86_setup_perfctr(struct perf_event *event)
394 {
395 	struct perf_event_attr *attr = &event->attr;
396 	struct hw_perf_event *hwc = &event->hw;
397 	u64 config;
398 
399 	if (!is_sampling_event(event)) {
400 		hwc->sample_period = x86_pmu.max_period;
401 		hwc->last_period = hwc->sample_period;
402 		local64_set(&hwc->period_left, hwc->sample_period);
403 	}
404 
405 	if (attr->type == PERF_TYPE_RAW)
406 		return x86_pmu_extra_regs(event->attr.config, event);
407 
408 	if (attr->type == PERF_TYPE_HW_CACHE)
409 		return set_ext_hw_attr(hwc, event);
410 
411 	if (attr->config >= x86_pmu.max_events)
412 		return -EINVAL;
413 
414 	/*
415 	 * The generic map:
416 	 */
417 	config = x86_pmu.event_map(attr->config);
418 
419 	if (config == 0)
420 		return -ENOENT;
421 
422 	if (config == -1LL)
423 		return -EINVAL;
424 
425 	/*
426 	 * Branch tracing:
427 	 */
428 	if (attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS &&
429 	    !attr->freq && hwc->sample_period == 1) {
430 		/* BTS is not supported by this architecture. */
431 		if (!x86_pmu.bts_active)
432 			return -EOPNOTSUPP;
433 
434 		/* BTS is currently only allowed for user-mode. */
435 		if (!attr->exclude_kernel)
436 			return -EOPNOTSUPP;
437 
438 		/* disallow bts if conflicting events are present */
439 		if (x86_add_exclusive(x86_lbr_exclusive_lbr))
440 			return -EBUSY;
441 
442 		event->destroy = hw_perf_lbr_event_destroy;
443 	}
444 
445 	hwc->config |= config;
446 
447 	return 0;
448 }
449 
450 /*
451  * check that branch_sample_type is compatible with
452  * settings needed for precise_ip > 1 which implies
453  * using the LBR to capture ALL taken branches at the
454  * priv levels of the measurement
455  */
456 static inline int precise_br_compat(struct perf_event *event)
457 {
458 	u64 m = event->attr.branch_sample_type;
459 	u64 b = 0;
460 
461 	/* must capture all branches */
462 	if (!(m & PERF_SAMPLE_BRANCH_ANY))
463 		return 0;
464 
465 	m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
466 
467 	if (!event->attr.exclude_user)
468 		b |= PERF_SAMPLE_BRANCH_USER;
469 
470 	if (!event->attr.exclude_kernel)
471 		b |= PERF_SAMPLE_BRANCH_KERNEL;
472 
473 	/*
474 	 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
475 	 */
476 
477 	return m == b;
478 }
479 
480 int x86_pmu_hw_config(struct perf_event *event)
481 {
482 	if (event->attr.precise_ip) {
483 		int precise = 0;
484 
485 		/* Support for constant skid */
486 		if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
487 			precise++;
488 
489 			/* Support for IP fixup */
490 			if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
491 				precise++;
492 
493 			if (x86_pmu.pebs_prec_dist)
494 				precise++;
495 		}
496 
497 		if (event->attr.precise_ip > precise)
498 			return -EOPNOTSUPP;
499 	}
500 	/*
501 	 * check that PEBS LBR correction does not conflict with
502 	 * whatever the user is asking with attr->branch_sample_type
503 	 */
504 	if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
505 		u64 *br_type = &event->attr.branch_sample_type;
506 
507 		if (has_branch_stack(event)) {
508 			if (!precise_br_compat(event))
509 				return -EOPNOTSUPP;
510 
511 			/* branch_sample_type is compatible */
512 
513 		} else {
514 			/*
515 			 * user did not specify  branch_sample_type
516 			 *
517 			 * For PEBS fixups, we capture all
518 			 * the branches at the priv level of the
519 			 * event.
520 			 */
521 			*br_type = PERF_SAMPLE_BRANCH_ANY;
522 
523 			if (!event->attr.exclude_user)
524 				*br_type |= PERF_SAMPLE_BRANCH_USER;
525 
526 			if (!event->attr.exclude_kernel)
527 				*br_type |= PERF_SAMPLE_BRANCH_KERNEL;
528 		}
529 	}
530 
531 	if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK)
532 		event->attach_state |= PERF_ATTACH_TASK_DATA;
533 
534 	/*
535 	 * Generate PMC IRQs:
536 	 * (keep 'enabled' bit clear for now)
537 	 */
538 	event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
539 
540 	/*
541 	 * Count user and OS events unless requested not to
542 	 */
543 	if (!event->attr.exclude_user)
544 		event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
545 	if (!event->attr.exclude_kernel)
546 		event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
547 
548 	if (event->attr.type == PERF_TYPE_RAW)
549 		event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
550 
551 	if (event->attr.sample_period && x86_pmu.limit_period) {
552 		if (x86_pmu.limit_period(event, event->attr.sample_period) >
553 				event->attr.sample_period)
554 			return -EINVAL;
555 	}
556 
557 	return x86_setup_perfctr(event);
558 }
559 
560 /*
561  * Setup the hardware configuration for a given attr_type
562  */
563 static int __x86_pmu_event_init(struct perf_event *event)
564 {
565 	int err;
566 
567 	if (!x86_pmu_initialized())
568 		return -ENODEV;
569 
570 	err = x86_reserve_hardware();
571 	if (err)
572 		return err;
573 
574 	atomic_inc(&active_events);
575 	event->destroy = hw_perf_event_destroy;
576 
577 	event->hw.idx = -1;
578 	event->hw.last_cpu = -1;
579 	event->hw.last_tag = ~0ULL;
580 
581 	/* mark unused */
582 	event->hw.extra_reg.idx = EXTRA_REG_NONE;
583 	event->hw.branch_reg.idx = EXTRA_REG_NONE;
584 
585 	return x86_pmu.hw_config(event);
586 }
587 
588 void x86_pmu_disable_all(void)
589 {
590 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
591 	int idx;
592 
593 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
594 		u64 val;
595 
596 		if (!test_bit(idx, cpuc->active_mask))
597 			continue;
598 		rdmsrl(x86_pmu_config_addr(idx), val);
599 		if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
600 			continue;
601 		val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
602 		wrmsrl(x86_pmu_config_addr(idx), val);
603 	}
604 }
605 
606 /*
607  * There may be PMI landing after enabled=0. The PMI hitting could be before or
608  * after disable_all.
609  *
610  * If PMI hits before disable_all, the PMU will be disabled in the NMI handler.
611  * It will not be re-enabled in the NMI handler again, because enabled=0. After
612  * handling the NMI, disable_all will be called, which will not change the
613  * state either. If PMI hits after disable_all, the PMU is already disabled
614  * before entering NMI handler. The NMI handler will not change the state
615  * either.
616  *
617  * So either situation is harmless.
618  */
619 static void x86_pmu_disable(struct pmu *pmu)
620 {
621 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
622 
623 	if (!x86_pmu_initialized())
624 		return;
625 
626 	if (!cpuc->enabled)
627 		return;
628 
629 	cpuc->n_added = 0;
630 	cpuc->enabled = 0;
631 	barrier();
632 
633 	x86_pmu.disable_all();
634 }
635 
636 void x86_pmu_enable_all(int added)
637 {
638 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
639 	int idx;
640 
641 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
642 		struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
643 
644 		if (!test_bit(idx, cpuc->active_mask))
645 			continue;
646 
647 		__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
648 	}
649 }
650 
651 static struct pmu pmu;
652 
653 static inline int is_x86_event(struct perf_event *event)
654 {
655 	return event->pmu == &pmu;
656 }
657 
658 /*
659  * Event scheduler state:
660  *
661  * Assign events iterating over all events and counters, beginning
662  * with events with least weights first. Keep the current iterator
663  * state in struct sched_state.
664  */
665 struct sched_state {
666 	int	weight;
667 	int	event;		/* event index */
668 	int	counter;	/* counter index */
669 	int	unassigned;	/* number of events to be assigned left */
670 	int	nr_gp;		/* number of GP counters used */
671 	unsigned long used[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
672 };
673 
674 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
675 #define	SCHED_STATES_MAX	2
676 
677 struct perf_sched {
678 	int			max_weight;
679 	int			max_events;
680 	int			max_gp;
681 	int			saved_states;
682 	struct event_constraint	**constraints;
683 	struct sched_state	state;
684 	struct sched_state	saved[SCHED_STATES_MAX];
685 };
686 
687 /*
688  * Initialize interator that runs through all events and counters.
689  */
690 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
691 			    int num, int wmin, int wmax, int gpmax)
692 {
693 	int idx;
694 
695 	memset(sched, 0, sizeof(*sched));
696 	sched->max_events	= num;
697 	sched->max_weight	= wmax;
698 	sched->max_gp		= gpmax;
699 	sched->constraints	= constraints;
700 
701 	for (idx = 0; idx < num; idx++) {
702 		if (constraints[idx]->weight == wmin)
703 			break;
704 	}
705 
706 	sched->state.event	= idx;		/* start with min weight */
707 	sched->state.weight	= wmin;
708 	sched->state.unassigned	= num;
709 }
710 
711 static void perf_sched_save_state(struct perf_sched *sched)
712 {
713 	if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
714 		return;
715 
716 	sched->saved[sched->saved_states] = sched->state;
717 	sched->saved_states++;
718 }
719 
720 static bool perf_sched_restore_state(struct perf_sched *sched)
721 {
722 	if (!sched->saved_states)
723 		return false;
724 
725 	sched->saved_states--;
726 	sched->state = sched->saved[sched->saved_states];
727 
728 	/* continue with next counter: */
729 	clear_bit(sched->state.counter++, sched->state.used);
730 
731 	return true;
732 }
733 
734 /*
735  * Select a counter for the current event to schedule. Return true on
736  * success.
737  */
738 static bool __perf_sched_find_counter(struct perf_sched *sched)
739 {
740 	struct event_constraint *c;
741 	int idx;
742 
743 	if (!sched->state.unassigned)
744 		return false;
745 
746 	if (sched->state.event >= sched->max_events)
747 		return false;
748 
749 	c = sched->constraints[sched->state.event];
750 	/* Prefer fixed purpose counters */
751 	if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
752 		idx = INTEL_PMC_IDX_FIXED;
753 		for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
754 			if (!__test_and_set_bit(idx, sched->state.used))
755 				goto done;
756 		}
757 	}
758 
759 	/* Grab the first unused counter starting with idx */
760 	idx = sched->state.counter;
761 	for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
762 		if (!__test_and_set_bit(idx, sched->state.used)) {
763 			if (sched->state.nr_gp++ >= sched->max_gp)
764 				return false;
765 
766 			goto done;
767 		}
768 	}
769 
770 	return false;
771 
772 done:
773 	sched->state.counter = idx;
774 
775 	if (c->overlap)
776 		perf_sched_save_state(sched);
777 
778 	return true;
779 }
780 
781 static bool perf_sched_find_counter(struct perf_sched *sched)
782 {
783 	while (!__perf_sched_find_counter(sched)) {
784 		if (!perf_sched_restore_state(sched))
785 			return false;
786 	}
787 
788 	return true;
789 }
790 
791 /*
792  * Go through all unassigned events and find the next one to schedule.
793  * Take events with the least weight first. Return true on success.
794  */
795 static bool perf_sched_next_event(struct perf_sched *sched)
796 {
797 	struct event_constraint *c;
798 
799 	if (!sched->state.unassigned || !--sched->state.unassigned)
800 		return false;
801 
802 	do {
803 		/* next event */
804 		sched->state.event++;
805 		if (sched->state.event >= sched->max_events) {
806 			/* next weight */
807 			sched->state.event = 0;
808 			sched->state.weight++;
809 			if (sched->state.weight > sched->max_weight)
810 				return false;
811 		}
812 		c = sched->constraints[sched->state.event];
813 	} while (c->weight != sched->state.weight);
814 
815 	sched->state.counter = 0;	/* start with first counter */
816 
817 	return true;
818 }
819 
820 /*
821  * Assign a counter for each event.
822  */
823 int perf_assign_events(struct event_constraint **constraints, int n,
824 			int wmin, int wmax, int gpmax, int *assign)
825 {
826 	struct perf_sched sched;
827 
828 	perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
829 
830 	do {
831 		if (!perf_sched_find_counter(&sched))
832 			break;	/* failed */
833 		if (assign)
834 			assign[sched.state.event] = sched.state.counter;
835 	} while (perf_sched_next_event(&sched));
836 
837 	return sched.state.unassigned;
838 }
839 EXPORT_SYMBOL_GPL(perf_assign_events);
840 
841 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
842 {
843 	struct event_constraint *c;
844 	unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
845 	struct perf_event *e;
846 	int i, wmin, wmax, unsched = 0;
847 	struct hw_perf_event *hwc;
848 
849 	bitmap_zero(used_mask, X86_PMC_IDX_MAX);
850 
851 	if (x86_pmu.start_scheduling)
852 		x86_pmu.start_scheduling(cpuc);
853 
854 	for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
855 		cpuc->event_constraint[i] = NULL;
856 		c = x86_pmu.get_event_constraints(cpuc, i, cpuc->event_list[i]);
857 		cpuc->event_constraint[i] = c;
858 
859 		wmin = min(wmin, c->weight);
860 		wmax = max(wmax, c->weight);
861 	}
862 
863 	/*
864 	 * fastpath, try to reuse previous register
865 	 */
866 	for (i = 0; i < n; i++) {
867 		hwc = &cpuc->event_list[i]->hw;
868 		c = cpuc->event_constraint[i];
869 
870 		/* never assigned */
871 		if (hwc->idx == -1)
872 			break;
873 
874 		/* constraint still honored */
875 		if (!test_bit(hwc->idx, c->idxmsk))
876 			break;
877 
878 		/* not already used */
879 		if (test_bit(hwc->idx, used_mask))
880 			break;
881 
882 		__set_bit(hwc->idx, used_mask);
883 		if (assign)
884 			assign[i] = hwc->idx;
885 	}
886 
887 	/* slow path */
888 	if (i != n) {
889 		int gpmax = x86_pmu.num_counters;
890 
891 		/*
892 		 * Do not allow scheduling of more than half the available
893 		 * generic counters.
894 		 *
895 		 * This helps avoid counter starvation of sibling thread by
896 		 * ensuring at most half the counters cannot be in exclusive
897 		 * mode. There is no designated counters for the limits. Any
898 		 * N/2 counters can be used. This helps with events with
899 		 * specific counter constraints.
900 		 */
901 		if (is_ht_workaround_enabled() && !cpuc->is_fake &&
902 		    READ_ONCE(cpuc->excl_cntrs->exclusive_present))
903 			gpmax /= 2;
904 
905 		unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
906 					     wmax, gpmax, assign);
907 	}
908 
909 	/*
910 	 * In case of success (unsched = 0), mark events as committed,
911 	 * so we do not put_constraint() in case new events are added
912 	 * and fail to be scheduled
913 	 *
914 	 * We invoke the lower level commit callback to lock the resource
915 	 *
916 	 * We do not need to do all of this in case we are called to
917 	 * validate an event group (assign == NULL)
918 	 */
919 	if (!unsched && assign) {
920 		for (i = 0; i < n; i++) {
921 			e = cpuc->event_list[i];
922 			e->hw.flags |= PERF_X86_EVENT_COMMITTED;
923 			if (x86_pmu.commit_scheduling)
924 				x86_pmu.commit_scheduling(cpuc, i, assign[i]);
925 		}
926 	} else {
927 		for (i = 0; i < n; i++) {
928 			e = cpuc->event_list[i];
929 			/*
930 			 * do not put_constraint() on comitted events,
931 			 * because they are good to go
932 			 */
933 			if ((e->hw.flags & PERF_X86_EVENT_COMMITTED))
934 				continue;
935 
936 			/*
937 			 * release events that failed scheduling
938 			 */
939 			if (x86_pmu.put_event_constraints)
940 				x86_pmu.put_event_constraints(cpuc, e);
941 		}
942 	}
943 
944 	if (x86_pmu.stop_scheduling)
945 		x86_pmu.stop_scheduling(cpuc);
946 
947 	return unsched ? -EINVAL : 0;
948 }
949 
950 /*
951  * dogrp: true if must collect siblings events (group)
952  * returns total number of events and error code
953  */
954 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
955 {
956 	struct perf_event *event;
957 	int n, max_count;
958 
959 	max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
960 
961 	/* current number of events already accepted */
962 	n = cpuc->n_events;
963 
964 	if (is_x86_event(leader)) {
965 		if (n >= max_count)
966 			return -EINVAL;
967 		cpuc->event_list[n] = leader;
968 		n++;
969 	}
970 	if (!dogrp)
971 		return n;
972 
973 	list_for_each_entry(event, &leader->sibling_list, group_entry) {
974 		if (!is_x86_event(event) ||
975 		    event->state <= PERF_EVENT_STATE_OFF)
976 			continue;
977 
978 		if (n >= max_count)
979 			return -EINVAL;
980 
981 		cpuc->event_list[n] = event;
982 		n++;
983 	}
984 	return n;
985 }
986 
987 static inline void x86_assign_hw_event(struct perf_event *event,
988 				struct cpu_hw_events *cpuc, int i)
989 {
990 	struct hw_perf_event *hwc = &event->hw;
991 
992 	hwc->idx = cpuc->assign[i];
993 	hwc->last_cpu = smp_processor_id();
994 	hwc->last_tag = ++cpuc->tags[i];
995 
996 	if (hwc->idx == INTEL_PMC_IDX_FIXED_BTS) {
997 		hwc->config_base = 0;
998 		hwc->event_base	= 0;
999 	} else if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
1000 		hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
1001 		hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - INTEL_PMC_IDX_FIXED);
1002 		hwc->event_base_rdpmc = (hwc->idx - INTEL_PMC_IDX_FIXED) | 1<<30;
1003 	} else {
1004 		hwc->config_base = x86_pmu_config_addr(hwc->idx);
1005 		hwc->event_base  = x86_pmu_event_addr(hwc->idx);
1006 		hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
1007 	}
1008 }
1009 
1010 static inline int match_prev_assignment(struct hw_perf_event *hwc,
1011 					struct cpu_hw_events *cpuc,
1012 					int i)
1013 {
1014 	return hwc->idx == cpuc->assign[i] &&
1015 		hwc->last_cpu == smp_processor_id() &&
1016 		hwc->last_tag == cpuc->tags[i];
1017 }
1018 
1019 static void x86_pmu_start(struct perf_event *event, int flags);
1020 
1021 static void x86_pmu_enable(struct pmu *pmu)
1022 {
1023 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1024 	struct perf_event *event;
1025 	struct hw_perf_event *hwc;
1026 	int i, added = cpuc->n_added;
1027 
1028 	if (!x86_pmu_initialized())
1029 		return;
1030 
1031 	if (cpuc->enabled)
1032 		return;
1033 
1034 	if (cpuc->n_added) {
1035 		int n_running = cpuc->n_events - cpuc->n_added;
1036 		/*
1037 		 * apply assignment obtained either from
1038 		 * hw_perf_group_sched_in() or x86_pmu_enable()
1039 		 *
1040 		 * step1: save events moving to new counters
1041 		 */
1042 		for (i = 0; i < n_running; i++) {
1043 			event = cpuc->event_list[i];
1044 			hwc = &event->hw;
1045 
1046 			/*
1047 			 * we can avoid reprogramming counter if:
1048 			 * - assigned same counter as last time
1049 			 * - running on same CPU as last time
1050 			 * - no other event has used the counter since
1051 			 */
1052 			if (hwc->idx == -1 ||
1053 			    match_prev_assignment(hwc, cpuc, i))
1054 				continue;
1055 
1056 			/*
1057 			 * Ensure we don't accidentally enable a stopped
1058 			 * counter simply because we rescheduled.
1059 			 */
1060 			if (hwc->state & PERF_HES_STOPPED)
1061 				hwc->state |= PERF_HES_ARCH;
1062 
1063 			x86_pmu_stop(event, PERF_EF_UPDATE);
1064 		}
1065 
1066 		/*
1067 		 * step2: reprogram moved events into new counters
1068 		 */
1069 		for (i = 0; i < cpuc->n_events; i++) {
1070 			event = cpuc->event_list[i];
1071 			hwc = &event->hw;
1072 
1073 			if (!match_prev_assignment(hwc, cpuc, i))
1074 				x86_assign_hw_event(event, cpuc, i);
1075 			else if (i < n_running)
1076 				continue;
1077 
1078 			if (hwc->state & PERF_HES_ARCH)
1079 				continue;
1080 
1081 			x86_pmu_start(event, PERF_EF_RELOAD);
1082 		}
1083 		cpuc->n_added = 0;
1084 		perf_events_lapic_init();
1085 	}
1086 
1087 	cpuc->enabled = 1;
1088 	barrier();
1089 
1090 	x86_pmu.enable_all(added);
1091 }
1092 
1093 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1094 
1095 /*
1096  * Set the next IRQ period, based on the hwc->period_left value.
1097  * To be called with the event disabled in hw:
1098  */
1099 int x86_perf_event_set_period(struct perf_event *event)
1100 {
1101 	struct hw_perf_event *hwc = &event->hw;
1102 	s64 left = local64_read(&hwc->period_left);
1103 	s64 period = hwc->sample_period;
1104 	int ret = 0, idx = hwc->idx;
1105 
1106 	if (idx == INTEL_PMC_IDX_FIXED_BTS)
1107 		return 0;
1108 
1109 	/*
1110 	 * If we are way outside a reasonable range then just skip forward:
1111 	 */
1112 	if (unlikely(left <= -period)) {
1113 		left = period;
1114 		local64_set(&hwc->period_left, left);
1115 		hwc->last_period = period;
1116 		ret = 1;
1117 	}
1118 
1119 	if (unlikely(left <= 0)) {
1120 		left += period;
1121 		local64_set(&hwc->period_left, left);
1122 		hwc->last_period = period;
1123 		ret = 1;
1124 	}
1125 	/*
1126 	 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1127 	 */
1128 	if (unlikely(left < 2))
1129 		left = 2;
1130 
1131 	if (left > x86_pmu.max_period)
1132 		left = x86_pmu.max_period;
1133 
1134 	if (x86_pmu.limit_period)
1135 		left = x86_pmu.limit_period(event, left);
1136 
1137 	per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
1138 
1139 	if (!(hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) ||
1140 	    local64_read(&hwc->prev_count) != (u64)-left) {
1141 		/*
1142 		 * The hw event starts counting from this event offset,
1143 		 * mark it to be able to extra future deltas:
1144 		 */
1145 		local64_set(&hwc->prev_count, (u64)-left);
1146 
1147 		wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1148 	}
1149 
1150 	/*
1151 	 * Due to erratum on certan cpu we need
1152 	 * a second write to be sure the register
1153 	 * is updated properly
1154 	 */
1155 	if (x86_pmu.perfctr_second_write) {
1156 		wrmsrl(hwc->event_base,
1157 			(u64)(-left) & x86_pmu.cntval_mask);
1158 	}
1159 
1160 	perf_event_update_userpage(event);
1161 
1162 	return ret;
1163 }
1164 
1165 void x86_pmu_enable_event(struct perf_event *event)
1166 {
1167 	if (__this_cpu_read(cpu_hw_events.enabled))
1168 		__x86_pmu_enable_event(&event->hw,
1169 				       ARCH_PERFMON_EVENTSEL_ENABLE);
1170 }
1171 
1172 /*
1173  * Add a single event to the PMU.
1174  *
1175  * The event is added to the group of enabled events
1176  * but only if it can be scehduled with existing events.
1177  */
1178 static int x86_pmu_add(struct perf_event *event, int flags)
1179 {
1180 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1181 	struct hw_perf_event *hwc;
1182 	int assign[X86_PMC_IDX_MAX];
1183 	int n, n0, ret;
1184 
1185 	hwc = &event->hw;
1186 
1187 	n0 = cpuc->n_events;
1188 	ret = n = collect_events(cpuc, event, false);
1189 	if (ret < 0)
1190 		goto out;
1191 
1192 	hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1193 	if (!(flags & PERF_EF_START))
1194 		hwc->state |= PERF_HES_ARCH;
1195 
1196 	/*
1197 	 * If group events scheduling transaction was started,
1198 	 * skip the schedulability test here, it will be performed
1199 	 * at commit time (->commit_txn) as a whole.
1200 	 */
1201 	if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1202 		goto done_collect;
1203 
1204 	ret = x86_pmu.schedule_events(cpuc, n, assign);
1205 	if (ret)
1206 		goto out;
1207 	/*
1208 	 * copy new assignment, now we know it is possible
1209 	 * will be used by hw_perf_enable()
1210 	 */
1211 	memcpy(cpuc->assign, assign, n*sizeof(int));
1212 
1213 done_collect:
1214 	/*
1215 	 * Commit the collect_events() state. See x86_pmu_del() and
1216 	 * x86_pmu_*_txn().
1217 	 */
1218 	cpuc->n_events = n;
1219 	cpuc->n_added += n - n0;
1220 	cpuc->n_txn += n - n0;
1221 
1222 	ret = 0;
1223 out:
1224 	return ret;
1225 }
1226 
1227 static void x86_pmu_start(struct perf_event *event, int flags)
1228 {
1229 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1230 	int idx = event->hw.idx;
1231 
1232 	if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1233 		return;
1234 
1235 	if (WARN_ON_ONCE(idx == -1))
1236 		return;
1237 
1238 	if (flags & PERF_EF_RELOAD) {
1239 		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1240 		x86_perf_event_set_period(event);
1241 	}
1242 
1243 	event->hw.state = 0;
1244 
1245 	cpuc->events[idx] = event;
1246 	__set_bit(idx, cpuc->active_mask);
1247 	__set_bit(idx, cpuc->running);
1248 	x86_pmu.enable(event);
1249 	perf_event_update_userpage(event);
1250 }
1251 
1252 void perf_event_print_debug(void)
1253 {
1254 	u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1255 	u64 pebs, debugctl;
1256 	struct cpu_hw_events *cpuc;
1257 	unsigned long flags;
1258 	int cpu, idx;
1259 
1260 	if (!x86_pmu.num_counters)
1261 		return;
1262 
1263 	local_irq_save(flags);
1264 
1265 	cpu = smp_processor_id();
1266 	cpuc = &per_cpu(cpu_hw_events, cpu);
1267 
1268 	if (x86_pmu.version >= 2) {
1269 		rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1270 		rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1271 		rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1272 		rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1273 
1274 		pr_info("\n");
1275 		pr_info("CPU#%d: ctrl:       %016llx\n", cpu, ctrl);
1276 		pr_info("CPU#%d: status:     %016llx\n", cpu, status);
1277 		pr_info("CPU#%d: overflow:   %016llx\n", cpu, overflow);
1278 		pr_info("CPU#%d: fixed:      %016llx\n", cpu, fixed);
1279 		if (x86_pmu.pebs_constraints) {
1280 			rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1281 			pr_info("CPU#%d: pebs:       %016llx\n", cpu, pebs);
1282 		}
1283 		if (x86_pmu.lbr_nr) {
1284 			rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1285 			pr_info("CPU#%d: debugctl:   %016llx\n", cpu, debugctl);
1286 		}
1287 	}
1288 	pr_info("CPU#%d: active:     %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1289 
1290 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1291 		rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1292 		rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1293 
1294 		prev_left = per_cpu(pmc_prev_left[idx], cpu);
1295 
1296 		pr_info("CPU#%d:   gen-PMC%d ctrl:  %016llx\n",
1297 			cpu, idx, pmc_ctrl);
1298 		pr_info("CPU#%d:   gen-PMC%d count: %016llx\n",
1299 			cpu, idx, pmc_count);
1300 		pr_info("CPU#%d:   gen-PMC%d left:  %016llx\n",
1301 			cpu, idx, prev_left);
1302 	}
1303 	for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1304 		rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1305 
1306 		pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1307 			cpu, idx, pmc_count);
1308 	}
1309 	local_irq_restore(flags);
1310 }
1311 
1312 void x86_pmu_stop(struct perf_event *event, int flags)
1313 {
1314 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1315 	struct hw_perf_event *hwc = &event->hw;
1316 
1317 	if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) {
1318 		x86_pmu.disable(event);
1319 		cpuc->events[hwc->idx] = NULL;
1320 		WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1321 		hwc->state |= PERF_HES_STOPPED;
1322 	}
1323 
1324 	if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1325 		/*
1326 		 * Drain the remaining delta count out of a event
1327 		 * that we are disabling:
1328 		 */
1329 		x86_perf_event_update(event);
1330 		hwc->state |= PERF_HES_UPTODATE;
1331 	}
1332 }
1333 
1334 static void x86_pmu_del(struct perf_event *event, int flags)
1335 {
1336 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1337 	int i;
1338 
1339 	/*
1340 	 * event is descheduled
1341 	 */
1342 	event->hw.flags &= ~PERF_X86_EVENT_COMMITTED;
1343 
1344 	/*
1345 	 * If we're called during a txn, we don't need to do anything.
1346 	 * The events never got scheduled and ->cancel_txn will truncate
1347 	 * the event_list.
1348 	 *
1349 	 * XXX assumes any ->del() called during a TXN will only be on
1350 	 * an event added during that same TXN.
1351 	 */
1352 	if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1353 		return;
1354 
1355 	/*
1356 	 * Not a TXN, therefore cleanup properly.
1357 	 */
1358 	x86_pmu_stop(event, PERF_EF_UPDATE);
1359 
1360 	for (i = 0; i < cpuc->n_events; i++) {
1361 		if (event == cpuc->event_list[i])
1362 			break;
1363 	}
1364 
1365 	if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1366 		return;
1367 
1368 	/* If we have a newly added event; make sure to decrease n_added. */
1369 	if (i >= cpuc->n_events - cpuc->n_added)
1370 		--cpuc->n_added;
1371 
1372 	if (x86_pmu.put_event_constraints)
1373 		x86_pmu.put_event_constraints(cpuc, event);
1374 
1375 	/* Delete the array entry. */
1376 	while (++i < cpuc->n_events) {
1377 		cpuc->event_list[i-1] = cpuc->event_list[i];
1378 		cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
1379 	}
1380 	--cpuc->n_events;
1381 
1382 	perf_event_update_userpage(event);
1383 }
1384 
1385 int x86_pmu_handle_irq(struct pt_regs *regs)
1386 {
1387 	struct perf_sample_data data;
1388 	struct cpu_hw_events *cpuc;
1389 	struct perf_event *event;
1390 	int idx, handled = 0;
1391 	u64 val;
1392 
1393 	cpuc = this_cpu_ptr(&cpu_hw_events);
1394 
1395 	/*
1396 	 * Some chipsets need to unmask the LVTPC in a particular spot
1397 	 * inside the nmi handler.  As a result, the unmasking was pushed
1398 	 * into all the nmi handlers.
1399 	 *
1400 	 * This generic handler doesn't seem to have any issues where the
1401 	 * unmasking occurs so it was left at the top.
1402 	 */
1403 	apic_write(APIC_LVTPC, APIC_DM_NMI);
1404 
1405 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1406 		if (!test_bit(idx, cpuc->active_mask)) {
1407 			/*
1408 			 * Though we deactivated the counter some cpus
1409 			 * might still deliver spurious interrupts still
1410 			 * in flight. Catch them:
1411 			 */
1412 			if (__test_and_clear_bit(idx, cpuc->running))
1413 				handled++;
1414 			continue;
1415 		}
1416 
1417 		event = cpuc->events[idx];
1418 
1419 		val = x86_perf_event_update(event);
1420 		if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1421 			continue;
1422 
1423 		/*
1424 		 * event overflow
1425 		 */
1426 		handled++;
1427 		perf_sample_data_init(&data, 0, event->hw.last_period);
1428 
1429 		if (!x86_perf_event_set_period(event))
1430 			continue;
1431 
1432 		if (perf_event_overflow(event, &data, regs))
1433 			x86_pmu_stop(event, 0);
1434 	}
1435 
1436 	if (handled)
1437 		inc_irq_stat(apic_perf_irqs);
1438 
1439 	return handled;
1440 }
1441 
1442 void perf_events_lapic_init(void)
1443 {
1444 	if (!x86_pmu.apic || !x86_pmu_initialized())
1445 		return;
1446 
1447 	/*
1448 	 * Always use NMI for PMU
1449 	 */
1450 	apic_write(APIC_LVTPC, APIC_DM_NMI);
1451 }
1452 
1453 static int
1454 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1455 {
1456 	u64 start_clock;
1457 	u64 finish_clock;
1458 	int ret;
1459 
1460 	/*
1461 	 * All PMUs/events that share this PMI handler should make sure to
1462 	 * increment active_events for their events.
1463 	 */
1464 	if (!atomic_read(&active_events))
1465 		return NMI_DONE;
1466 
1467 	start_clock = sched_clock();
1468 	ret = x86_pmu.handle_irq(regs);
1469 	finish_clock = sched_clock();
1470 
1471 	perf_sample_event_took(finish_clock - start_clock);
1472 
1473 	return ret;
1474 }
1475 NOKPROBE_SYMBOL(perf_event_nmi_handler);
1476 
1477 struct event_constraint emptyconstraint;
1478 struct event_constraint unconstrained;
1479 
1480 static int
1481 x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1482 {
1483 	unsigned int cpu = (long)hcpu;
1484 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1485 	int i, ret = NOTIFY_OK;
1486 
1487 	switch (action & ~CPU_TASKS_FROZEN) {
1488 	case CPU_UP_PREPARE:
1489 		for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1490 			cpuc->kfree_on_online[i] = NULL;
1491 		if (x86_pmu.cpu_prepare)
1492 			ret = x86_pmu.cpu_prepare(cpu);
1493 		break;
1494 
1495 	case CPU_STARTING:
1496 		if (x86_pmu.cpu_starting)
1497 			x86_pmu.cpu_starting(cpu);
1498 		break;
1499 
1500 	case CPU_ONLINE:
1501 		for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1502 			kfree(cpuc->kfree_on_online[i]);
1503 			cpuc->kfree_on_online[i] = NULL;
1504 		}
1505 		break;
1506 
1507 	case CPU_DYING:
1508 		if (x86_pmu.cpu_dying)
1509 			x86_pmu.cpu_dying(cpu);
1510 		break;
1511 
1512 	case CPU_UP_CANCELED:
1513 	case CPU_DEAD:
1514 		if (x86_pmu.cpu_dead)
1515 			x86_pmu.cpu_dead(cpu);
1516 		break;
1517 
1518 	default:
1519 		break;
1520 	}
1521 
1522 	return ret;
1523 }
1524 
1525 static void __init pmu_check_apic(void)
1526 {
1527 	if (boot_cpu_has(X86_FEATURE_APIC))
1528 		return;
1529 
1530 	x86_pmu.apic = 0;
1531 	pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1532 	pr_info("no hardware sampling interrupt available.\n");
1533 
1534 	/*
1535 	 * If we have a PMU initialized but no APIC
1536 	 * interrupts, we cannot sample hardware
1537 	 * events (user-space has to fall back and
1538 	 * sample via a hrtimer based software event):
1539 	 */
1540 	pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1541 
1542 }
1543 
1544 static struct attribute_group x86_pmu_format_group = {
1545 	.name = "format",
1546 	.attrs = NULL,
1547 };
1548 
1549 /*
1550  * Remove all undefined events (x86_pmu.event_map(id) == 0)
1551  * out of events_attr attributes.
1552  */
1553 static void __init filter_events(struct attribute **attrs)
1554 {
1555 	struct device_attribute *d;
1556 	struct perf_pmu_events_attr *pmu_attr;
1557 	int offset = 0;
1558 	int i, j;
1559 
1560 	for (i = 0; attrs[i]; i++) {
1561 		d = (struct device_attribute *)attrs[i];
1562 		pmu_attr = container_of(d, struct perf_pmu_events_attr, attr);
1563 		/* str trumps id */
1564 		if (pmu_attr->event_str)
1565 			continue;
1566 		if (x86_pmu.event_map(i + offset))
1567 			continue;
1568 
1569 		for (j = i; attrs[j]; j++)
1570 			attrs[j] = attrs[j + 1];
1571 
1572 		/* Check the shifted attr. */
1573 		i--;
1574 
1575 		/*
1576 		 * event_map() is index based, the attrs array is organized
1577 		 * by increasing event index. If we shift the events, then
1578 		 * we need to compensate for the event_map(), otherwise
1579 		 * we are looking up the wrong event in the map
1580 		 */
1581 		offset++;
1582 	}
1583 }
1584 
1585 /* Merge two pointer arrays */
1586 __init struct attribute **merge_attr(struct attribute **a, struct attribute **b)
1587 {
1588 	struct attribute **new;
1589 	int j, i;
1590 
1591 	for (j = 0; a[j]; j++)
1592 		;
1593 	for (i = 0; b[i]; i++)
1594 		j++;
1595 	j++;
1596 
1597 	new = kmalloc(sizeof(struct attribute *) * j, GFP_KERNEL);
1598 	if (!new)
1599 		return NULL;
1600 
1601 	j = 0;
1602 	for (i = 0; a[i]; i++)
1603 		new[j++] = a[i];
1604 	for (i = 0; b[i]; i++)
1605 		new[j++] = b[i];
1606 	new[j] = NULL;
1607 
1608 	return new;
1609 }
1610 
1611 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page)
1612 {
1613 	struct perf_pmu_events_attr *pmu_attr = \
1614 		container_of(attr, struct perf_pmu_events_attr, attr);
1615 	u64 config = x86_pmu.event_map(pmu_attr->id);
1616 
1617 	/* string trumps id */
1618 	if (pmu_attr->event_str)
1619 		return sprintf(page, "%s", pmu_attr->event_str);
1620 
1621 	return x86_pmu.events_sysfs_show(page, config);
1622 }
1623 EXPORT_SYMBOL_GPL(events_sysfs_show);
1624 
1625 ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr,
1626 			  char *page)
1627 {
1628 	struct perf_pmu_events_ht_attr *pmu_attr =
1629 		container_of(attr, struct perf_pmu_events_ht_attr, attr);
1630 
1631 	/*
1632 	 * Report conditional events depending on Hyper-Threading.
1633 	 *
1634 	 * This is overly conservative as usually the HT special
1635 	 * handling is not needed if the other CPU thread is idle.
1636 	 *
1637 	 * Note this does not (and cannot) handle the case when thread
1638 	 * siblings are invisible, for example with virtualization
1639 	 * if they are owned by some other guest.  The user tool
1640 	 * has to re-read when a thread sibling gets onlined later.
1641 	 */
1642 	return sprintf(page, "%s",
1643 			topology_max_smt_threads() > 1 ?
1644 			pmu_attr->event_str_ht :
1645 			pmu_attr->event_str_noht);
1646 }
1647 
1648 EVENT_ATTR(cpu-cycles,			CPU_CYCLES		);
1649 EVENT_ATTR(instructions,		INSTRUCTIONS		);
1650 EVENT_ATTR(cache-references,		CACHE_REFERENCES	);
1651 EVENT_ATTR(cache-misses, 		CACHE_MISSES		);
1652 EVENT_ATTR(branch-instructions,		BRANCH_INSTRUCTIONS	);
1653 EVENT_ATTR(branch-misses,		BRANCH_MISSES		);
1654 EVENT_ATTR(bus-cycles,			BUS_CYCLES		);
1655 EVENT_ATTR(stalled-cycles-frontend,	STALLED_CYCLES_FRONTEND	);
1656 EVENT_ATTR(stalled-cycles-backend,	STALLED_CYCLES_BACKEND	);
1657 EVENT_ATTR(ref-cycles,			REF_CPU_CYCLES		);
1658 
1659 static struct attribute *empty_attrs;
1660 
1661 static struct attribute *events_attr[] = {
1662 	EVENT_PTR(CPU_CYCLES),
1663 	EVENT_PTR(INSTRUCTIONS),
1664 	EVENT_PTR(CACHE_REFERENCES),
1665 	EVENT_PTR(CACHE_MISSES),
1666 	EVENT_PTR(BRANCH_INSTRUCTIONS),
1667 	EVENT_PTR(BRANCH_MISSES),
1668 	EVENT_PTR(BUS_CYCLES),
1669 	EVENT_PTR(STALLED_CYCLES_FRONTEND),
1670 	EVENT_PTR(STALLED_CYCLES_BACKEND),
1671 	EVENT_PTR(REF_CPU_CYCLES),
1672 	NULL,
1673 };
1674 
1675 static struct attribute_group x86_pmu_events_group = {
1676 	.name = "events",
1677 	.attrs = events_attr,
1678 };
1679 
1680 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1681 {
1682 	u64 umask  = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1683 	u64 cmask  = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1684 	bool edge  = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1685 	bool pc    = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1686 	bool any   = (config & ARCH_PERFMON_EVENTSEL_ANY);
1687 	bool inv   = (config & ARCH_PERFMON_EVENTSEL_INV);
1688 	ssize_t ret;
1689 
1690 	/*
1691 	* We have whole page size to spend and just little data
1692 	* to write, so we can safely use sprintf.
1693 	*/
1694 	ret = sprintf(page, "event=0x%02llx", event);
1695 
1696 	if (umask)
1697 		ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1698 
1699 	if (edge)
1700 		ret += sprintf(page + ret, ",edge");
1701 
1702 	if (pc)
1703 		ret += sprintf(page + ret, ",pc");
1704 
1705 	if (any)
1706 		ret += sprintf(page + ret, ",any");
1707 
1708 	if (inv)
1709 		ret += sprintf(page + ret, ",inv");
1710 
1711 	if (cmask)
1712 		ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1713 
1714 	ret += sprintf(page + ret, "\n");
1715 
1716 	return ret;
1717 }
1718 
1719 static int __init init_hw_perf_events(void)
1720 {
1721 	struct x86_pmu_quirk *quirk;
1722 	int err;
1723 
1724 	pr_info("Performance Events: ");
1725 
1726 	switch (boot_cpu_data.x86_vendor) {
1727 	case X86_VENDOR_INTEL:
1728 		err = intel_pmu_init();
1729 		break;
1730 	case X86_VENDOR_AMD:
1731 		err = amd_pmu_init();
1732 		break;
1733 	default:
1734 		err = -ENOTSUPP;
1735 	}
1736 	if (err != 0) {
1737 		pr_cont("no PMU driver, software events only.\n");
1738 		return 0;
1739 	}
1740 
1741 	pmu_check_apic();
1742 
1743 	/* sanity check that the hardware exists or is emulated */
1744 	if (!check_hw_exists())
1745 		return 0;
1746 
1747 	pr_cont("%s PMU driver.\n", x86_pmu.name);
1748 
1749 	x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
1750 
1751 	for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
1752 		quirk->func();
1753 
1754 	if (!x86_pmu.intel_ctrl)
1755 		x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1756 
1757 	perf_events_lapic_init();
1758 	register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1759 
1760 	unconstrained = (struct event_constraint)
1761 		__EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1762 				   0, x86_pmu.num_counters, 0, 0);
1763 
1764 	x86_pmu_format_group.attrs = x86_pmu.format_attrs;
1765 
1766 	if (x86_pmu.event_attrs)
1767 		x86_pmu_events_group.attrs = x86_pmu.event_attrs;
1768 
1769 	if (!x86_pmu.events_sysfs_show)
1770 		x86_pmu_events_group.attrs = &empty_attrs;
1771 	else
1772 		filter_events(x86_pmu_events_group.attrs);
1773 
1774 	if (x86_pmu.cpu_events) {
1775 		struct attribute **tmp;
1776 
1777 		tmp = merge_attr(x86_pmu_events_group.attrs, x86_pmu.cpu_events);
1778 		if (!WARN_ON(!tmp))
1779 			x86_pmu_events_group.attrs = tmp;
1780 	}
1781 
1782 	pr_info("... version:                %d\n",     x86_pmu.version);
1783 	pr_info("... bit width:              %d\n",     x86_pmu.cntval_bits);
1784 	pr_info("... generic registers:      %d\n",     x86_pmu.num_counters);
1785 	pr_info("... value mask:             %016Lx\n", x86_pmu.cntval_mask);
1786 	pr_info("... max period:             %016Lx\n", x86_pmu.max_period);
1787 	pr_info("... fixed-purpose events:   %d\n",     x86_pmu.num_counters_fixed);
1788 	pr_info("... event mask:             %016Lx\n", x86_pmu.intel_ctrl);
1789 
1790 	perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1791 	perf_cpu_notifier(x86_pmu_notifier);
1792 
1793 	return 0;
1794 }
1795 early_initcall(init_hw_perf_events);
1796 
1797 static inline void x86_pmu_read(struct perf_event *event)
1798 {
1799 	x86_perf_event_update(event);
1800 }
1801 
1802 /*
1803  * Start group events scheduling transaction
1804  * Set the flag to make pmu::enable() not perform the
1805  * schedulability test, it will be performed at commit time
1806  *
1807  * We only support PERF_PMU_TXN_ADD transactions. Save the
1808  * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1809  * transactions.
1810  */
1811 static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1812 {
1813 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1814 
1815 	WARN_ON_ONCE(cpuc->txn_flags);		/* txn already in flight */
1816 
1817 	cpuc->txn_flags = txn_flags;
1818 	if (txn_flags & ~PERF_PMU_TXN_ADD)
1819 		return;
1820 
1821 	perf_pmu_disable(pmu);
1822 	__this_cpu_write(cpu_hw_events.n_txn, 0);
1823 }
1824 
1825 /*
1826  * Stop group events scheduling transaction
1827  * Clear the flag and pmu::enable() will perform the
1828  * schedulability test.
1829  */
1830 static void x86_pmu_cancel_txn(struct pmu *pmu)
1831 {
1832 	unsigned int txn_flags;
1833 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1834 
1835 	WARN_ON_ONCE(!cpuc->txn_flags);	/* no txn in flight */
1836 
1837 	txn_flags = cpuc->txn_flags;
1838 	cpuc->txn_flags = 0;
1839 	if (txn_flags & ~PERF_PMU_TXN_ADD)
1840 		return;
1841 
1842 	/*
1843 	 * Truncate collected array by the number of events added in this
1844 	 * transaction. See x86_pmu_add() and x86_pmu_*_txn().
1845 	 */
1846 	__this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1847 	__this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
1848 	perf_pmu_enable(pmu);
1849 }
1850 
1851 /*
1852  * Commit group events scheduling transaction
1853  * Perform the group schedulability test as a whole
1854  * Return 0 if success
1855  *
1856  * Does not cancel the transaction on failure; expects the caller to do this.
1857  */
1858 static int x86_pmu_commit_txn(struct pmu *pmu)
1859 {
1860 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1861 	int assign[X86_PMC_IDX_MAX];
1862 	int n, ret;
1863 
1864 	WARN_ON_ONCE(!cpuc->txn_flags);	/* no txn in flight */
1865 
1866 	if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
1867 		cpuc->txn_flags = 0;
1868 		return 0;
1869 	}
1870 
1871 	n = cpuc->n_events;
1872 
1873 	if (!x86_pmu_initialized())
1874 		return -EAGAIN;
1875 
1876 	ret = x86_pmu.schedule_events(cpuc, n, assign);
1877 	if (ret)
1878 		return ret;
1879 
1880 	/*
1881 	 * copy new assignment, now we know it is possible
1882 	 * will be used by hw_perf_enable()
1883 	 */
1884 	memcpy(cpuc->assign, assign, n*sizeof(int));
1885 
1886 	cpuc->txn_flags = 0;
1887 	perf_pmu_enable(pmu);
1888 	return 0;
1889 }
1890 /*
1891  * a fake_cpuc is used to validate event groups. Due to
1892  * the extra reg logic, we need to also allocate a fake
1893  * per_core and per_cpu structure. Otherwise, group events
1894  * using extra reg may conflict without the kernel being
1895  * able to catch this when the last event gets added to
1896  * the group.
1897  */
1898 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
1899 {
1900 	kfree(cpuc->shared_regs);
1901 	kfree(cpuc);
1902 }
1903 
1904 static struct cpu_hw_events *allocate_fake_cpuc(void)
1905 {
1906 	struct cpu_hw_events *cpuc;
1907 	int cpu = raw_smp_processor_id();
1908 
1909 	cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
1910 	if (!cpuc)
1911 		return ERR_PTR(-ENOMEM);
1912 
1913 	/* only needed, if we have extra_regs */
1914 	if (x86_pmu.extra_regs) {
1915 		cpuc->shared_regs = allocate_shared_regs(cpu);
1916 		if (!cpuc->shared_regs)
1917 			goto error;
1918 	}
1919 	cpuc->is_fake = 1;
1920 	return cpuc;
1921 error:
1922 	free_fake_cpuc(cpuc);
1923 	return ERR_PTR(-ENOMEM);
1924 }
1925 
1926 /*
1927  * validate that we can schedule this event
1928  */
1929 static int validate_event(struct perf_event *event)
1930 {
1931 	struct cpu_hw_events *fake_cpuc;
1932 	struct event_constraint *c;
1933 	int ret = 0;
1934 
1935 	fake_cpuc = allocate_fake_cpuc();
1936 	if (IS_ERR(fake_cpuc))
1937 		return PTR_ERR(fake_cpuc);
1938 
1939 	c = x86_pmu.get_event_constraints(fake_cpuc, -1, event);
1940 
1941 	if (!c || !c->weight)
1942 		ret = -EINVAL;
1943 
1944 	if (x86_pmu.put_event_constraints)
1945 		x86_pmu.put_event_constraints(fake_cpuc, event);
1946 
1947 	free_fake_cpuc(fake_cpuc);
1948 
1949 	return ret;
1950 }
1951 
1952 /*
1953  * validate a single event group
1954  *
1955  * validation include:
1956  *	- check events are compatible which each other
1957  *	- events do not compete for the same counter
1958  *	- number of events <= number of counters
1959  *
1960  * validation ensures the group can be loaded onto the
1961  * PMU if it was the only group available.
1962  */
1963 static int validate_group(struct perf_event *event)
1964 {
1965 	struct perf_event *leader = event->group_leader;
1966 	struct cpu_hw_events *fake_cpuc;
1967 	int ret = -EINVAL, n;
1968 
1969 	fake_cpuc = allocate_fake_cpuc();
1970 	if (IS_ERR(fake_cpuc))
1971 		return PTR_ERR(fake_cpuc);
1972 	/*
1973 	 * the event is not yet connected with its
1974 	 * siblings therefore we must first collect
1975 	 * existing siblings, then add the new event
1976 	 * before we can simulate the scheduling
1977 	 */
1978 	n = collect_events(fake_cpuc, leader, true);
1979 	if (n < 0)
1980 		goto out;
1981 
1982 	fake_cpuc->n_events = n;
1983 	n = collect_events(fake_cpuc, event, false);
1984 	if (n < 0)
1985 		goto out;
1986 
1987 	fake_cpuc->n_events = n;
1988 
1989 	ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
1990 
1991 out:
1992 	free_fake_cpuc(fake_cpuc);
1993 	return ret;
1994 }
1995 
1996 static int x86_pmu_event_init(struct perf_event *event)
1997 {
1998 	struct pmu *tmp;
1999 	int err;
2000 
2001 	switch (event->attr.type) {
2002 	case PERF_TYPE_RAW:
2003 	case PERF_TYPE_HARDWARE:
2004 	case PERF_TYPE_HW_CACHE:
2005 		break;
2006 
2007 	default:
2008 		return -ENOENT;
2009 	}
2010 
2011 	err = __x86_pmu_event_init(event);
2012 	if (!err) {
2013 		/*
2014 		 * we temporarily connect event to its pmu
2015 		 * such that validate_group() can classify
2016 		 * it as an x86 event using is_x86_event()
2017 		 */
2018 		tmp = event->pmu;
2019 		event->pmu = &pmu;
2020 
2021 		if (event->group_leader != event)
2022 			err = validate_group(event);
2023 		else
2024 			err = validate_event(event);
2025 
2026 		event->pmu = tmp;
2027 	}
2028 	if (err) {
2029 		if (event->destroy)
2030 			event->destroy(event);
2031 	}
2032 
2033 	if (ACCESS_ONCE(x86_pmu.attr_rdpmc))
2034 		event->hw.flags |= PERF_X86_EVENT_RDPMC_ALLOWED;
2035 
2036 	return err;
2037 }
2038 
2039 static void refresh_pce(void *ignored)
2040 {
2041 	if (current->mm)
2042 		load_mm_cr4(current->mm);
2043 }
2044 
2045 static void x86_pmu_event_mapped(struct perf_event *event)
2046 {
2047 	if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2048 		return;
2049 
2050 	if (atomic_inc_return(&current->mm->context.perf_rdpmc_allowed) == 1)
2051 		on_each_cpu_mask(mm_cpumask(current->mm), refresh_pce, NULL, 1);
2052 }
2053 
2054 static void x86_pmu_event_unmapped(struct perf_event *event)
2055 {
2056 	if (!current->mm)
2057 		return;
2058 
2059 	if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2060 		return;
2061 
2062 	if (atomic_dec_and_test(&current->mm->context.perf_rdpmc_allowed))
2063 		on_each_cpu_mask(mm_cpumask(current->mm), refresh_pce, NULL, 1);
2064 }
2065 
2066 static int x86_pmu_event_idx(struct perf_event *event)
2067 {
2068 	int idx = event->hw.idx;
2069 
2070 	if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2071 		return 0;
2072 
2073 	if (x86_pmu.num_counters_fixed && idx >= INTEL_PMC_IDX_FIXED) {
2074 		idx -= INTEL_PMC_IDX_FIXED;
2075 		idx |= 1 << 30;
2076 	}
2077 
2078 	return idx + 1;
2079 }
2080 
2081 static ssize_t get_attr_rdpmc(struct device *cdev,
2082 			      struct device_attribute *attr,
2083 			      char *buf)
2084 {
2085 	return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
2086 }
2087 
2088 static ssize_t set_attr_rdpmc(struct device *cdev,
2089 			      struct device_attribute *attr,
2090 			      const char *buf, size_t count)
2091 {
2092 	unsigned long val;
2093 	ssize_t ret;
2094 
2095 	ret = kstrtoul(buf, 0, &val);
2096 	if (ret)
2097 		return ret;
2098 
2099 	if (val > 2)
2100 		return -EINVAL;
2101 
2102 	if (x86_pmu.attr_rdpmc_broken)
2103 		return -ENOTSUPP;
2104 
2105 	if ((val == 2) != (x86_pmu.attr_rdpmc == 2)) {
2106 		/*
2107 		 * Changing into or out of always available, aka
2108 		 * perf-event-bypassing mode.  This path is extremely slow,
2109 		 * but only root can trigger it, so it's okay.
2110 		 */
2111 		if (val == 2)
2112 			static_key_slow_inc(&rdpmc_always_available);
2113 		else
2114 			static_key_slow_dec(&rdpmc_always_available);
2115 		on_each_cpu(refresh_pce, NULL, 1);
2116 	}
2117 
2118 	x86_pmu.attr_rdpmc = val;
2119 
2120 	return count;
2121 }
2122 
2123 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
2124 
2125 static struct attribute *x86_pmu_attrs[] = {
2126 	&dev_attr_rdpmc.attr,
2127 	NULL,
2128 };
2129 
2130 static struct attribute_group x86_pmu_attr_group = {
2131 	.attrs = x86_pmu_attrs,
2132 };
2133 
2134 static const struct attribute_group *x86_pmu_attr_groups[] = {
2135 	&x86_pmu_attr_group,
2136 	&x86_pmu_format_group,
2137 	&x86_pmu_events_group,
2138 	NULL,
2139 };
2140 
2141 static void x86_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
2142 {
2143 	if (x86_pmu.sched_task)
2144 		x86_pmu.sched_task(ctx, sched_in);
2145 }
2146 
2147 void perf_check_microcode(void)
2148 {
2149 	if (x86_pmu.check_microcode)
2150 		x86_pmu.check_microcode();
2151 }
2152 EXPORT_SYMBOL_GPL(perf_check_microcode);
2153 
2154 static struct pmu pmu = {
2155 	.pmu_enable		= x86_pmu_enable,
2156 	.pmu_disable		= x86_pmu_disable,
2157 
2158 	.attr_groups		= x86_pmu_attr_groups,
2159 
2160 	.event_init		= x86_pmu_event_init,
2161 
2162 	.event_mapped		= x86_pmu_event_mapped,
2163 	.event_unmapped		= x86_pmu_event_unmapped,
2164 
2165 	.add			= x86_pmu_add,
2166 	.del			= x86_pmu_del,
2167 	.start			= x86_pmu_start,
2168 	.stop			= x86_pmu_stop,
2169 	.read			= x86_pmu_read,
2170 
2171 	.start_txn		= x86_pmu_start_txn,
2172 	.cancel_txn		= x86_pmu_cancel_txn,
2173 	.commit_txn		= x86_pmu_commit_txn,
2174 
2175 	.event_idx		= x86_pmu_event_idx,
2176 	.sched_task		= x86_pmu_sched_task,
2177 	.task_ctx_size          = sizeof(struct x86_perf_task_context),
2178 };
2179 
2180 void arch_perf_update_userpage(struct perf_event *event,
2181 			       struct perf_event_mmap_page *userpg, u64 now)
2182 {
2183 	struct cyc2ns_data *data;
2184 
2185 	userpg->cap_user_time = 0;
2186 	userpg->cap_user_time_zero = 0;
2187 	userpg->cap_user_rdpmc =
2188 		!!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED);
2189 	userpg->pmc_width = x86_pmu.cntval_bits;
2190 
2191 	if (!sched_clock_stable())
2192 		return;
2193 
2194 	data = cyc2ns_read_begin();
2195 
2196 	/*
2197 	 * Internal timekeeping for enabled/running/stopped times
2198 	 * is always in the local_clock domain.
2199 	 */
2200 	userpg->cap_user_time = 1;
2201 	userpg->time_mult = data->cyc2ns_mul;
2202 	userpg->time_shift = data->cyc2ns_shift;
2203 	userpg->time_offset = data->cyc2ns_offset - now;
2204 
2205 	/*
2206 	 * cap_user_time_zero doesn't make sense when we're using a different
2207 	 * time base for the records.
2208 	 */
2209 	if (!event->attr.use_clockid) {
2210 		userpg->cap_user_time_zero = 1;
2211 		userpg->time_zero = data->cyc2ns_offset;
2212 	}
2213 
2214 	cyc2ns_read_end(data);
2215 }
2216 
2217 /*
2218  * callchain support
2219  */
2220 
2221 static int backtrace_stack(void *data, char *name)
2222 {
2223 	return 0;
2224 }
2225 
2226 static int backtrace_address(void *data, unsigned long addr, int reliable)
2227 {
2228 	struct perf_callchain_entry_ctx *entry = data;
2229 
2230 	return perf_callchain_store(entry, addr);
2231 }
2232 
2233 static const struct stacktrace_ops backtrace_ops = {
2234 	.stack			= backtrace_stack,
2235 	.address		= backtrace_address,
2236 	.walk_stack		= print_context_stack_bp,
2237 };
2238 
2239 void
2240 perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2241 {
2242 	if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2243 		/* TODO: We don't support guest os callchain now */
2244 		return;
2245 	}
2246 
2247 	perf_callchain_store(entry, regs->ip);
2248 
2249 	dump_trace(NULL, regs, NULL, 0, &backtrace_ops, entry);
2250 }
2251 
2252 static inline int
2253 valid_user_frame(const void __user *fp, unsigned long size)
2254 {
2255 	return (__range_not_ok(fp, size, TASK_SIZE) == 0);
2256 }
2257 
2258 static unsigned long get_segment_base(unsigned int segment)
2259 {
2260 	struct desc_struct *desc;
2261 	int idx = segment >> 3;
2262 
2263 	if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2264 #ifdef CONFIG_MODIFY_LDT_SYSCALL
2265 		struct ldt_struct *ldt;
2266 
2267 		if (idx > LDT_ENTRIES)
2268 			return 0;
2269 
2270 		/* IRQs are off, so this synchronizes with smp_store_release */
2271 		ldt = lockless_dereference(current->active_mm->context.ldt);
2272 		if (!ldt || idx > ldt->size)
2273 			return 0;
2274 
2275 		desc = &ldt->entries[idx];
2276 #else
2277 		return 0;
2278 #endif
2279 	} else {
2280 		if (idx > GDT_ENTRIES)
2281 			return 0;
2282 
2283 		desc = raw_cpu_ptr(gdt_page.gdt) + idx;
2284 	}
2285 
2286 	return get_desc_base(desc);
2287 }
2288 
2289 #ifdef CONFIG_IA32_EMULATION
2290 
2291 #include <asm/compat.h>
2292 
2293 static inline int
2294 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2295 {
2296 	/* 32-bit process in 64-bit kernel. */
2297 	unsigned long ss_base, cs_base;
2298 	struct stack_frame_ia32 frame;
2299 	const void __user *fp;
2300 
2301 	if (!test_thread_flag(TIF_IA32))
2302 		return 0;
2303 
2304 	cs_base = get_segment_base(regs->cs);
2305 	ss_base = get_segment_base(regs->ss);
2306 
2307 	fp = compat_ptr(ss_base + regs->bp);
2308 	pagefault_disable();
2309 	while (entry->nr < entry->max_stack) {
2310 		unsigned long bytes;
2311 		frame.next_frame     = 0;
2312 		frame.return_address = 0;
2313 
2314 		if (!access_ok(VERIFY_READ, fp, 8))
2315 			break;
2316 
2317 		bytes = __copy_from_user_nmi(&frame.next_frame, fp, 4);
2318 		if (bytes != 0)
2319 			break;
2320 		bytes = __copy_from_user_nmi(&frame.return_address, fp+4, 4);
2321 		if (bytes != 0)
2322 			break;
2323 
2324 		if (!valid_user_frame(fp, sizeof(frame)))
2325 			break;
2326 
2327 		perf_callchain_store(entry, cs_base + frame.return_address);
2328 		fp = compat_ptr(ss_base + frame.next_frame);
2329 	}
2330 	pagefault_enable();
2331 	return 1;
2332 }
2333 #else
2334 static inline int
2335 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2336 {
2337     return 0;
2338 }
2339 #endif
2340 
2341 void
2342 perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2343 {
2344 	struct stack_frame frame;
2345 	const void __user *fp;
2346 
2347 	if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2348 		/* TODO: We don't support guest os callchain now */
2349 		return;
2350 	}
2351 
2352 	/*
2353 	 * We don't know what to do with VM86 stacks.. ignore them for now.
2354 	 */
2355 	if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2356 		return;
2357 
2358 	fp = (void __user *)regs->bp;
2359 
2360 	perf_callchain_store(entry, regs->ip);
2361 
2362 	if (!current->mm)
2363 		return;
2364 
2365 	if (perf_callchain_user32(regs, entry))
2366 		return;
2367 
2368 	pagefault_disable();
2369 	while (entry->nr < entry->max_stack) {
2370 		unsigned long bytes;
2371 		frame.next_frame	     = NULL;
2372 		frame.return_address = 0;
2373 
2374 		if (!access_ok(VERIFY_READ, fp, 16))
2375 			break;
2376 
2377 		bytes = __copy_from_user_nmi(&frame.next_frame, fp, 8);
2378 		if (bytes != 0)
2379 			break;
2380 		bytes = __copy_from_user_nmi(&frame.return_address, fp+8, 8);
2381 		if (bytes != 0)
2382 			break;
2383 
2384 		if (!valid_user_frame(fp, sizeof(frame)))
2385 			break;
2386 
2387 		perf_callchain_store(entry, frame.return_address);
2388 		fp = (void __user *)frame.next_frame;
2389 	}
2390 	pagefault_enable();
2391 }
2392 
2393 /*
2394  * Deal with code segment offsets for the various execution modes:
2395  *
2396  *   VM86 - the good olde 16 bit days, where the linear address is
2397  *          20 bits and we use regs->ip + 0x10 * regs->cs.
2398  *
2399  *   IA32 - Where we need to look at GDT/LDT segment descriptor tables
2400  *          to figure out what the 32bit base address is.
2401  *
2402  *    X32 - has TIF_X32 set, but is running in x86_64
2403  *
2404  * X86_64 - CS,DS,SS,ES are all zero based.
2405  */
2406 static unsigned long code_segment_base(struct pt_regs *regs)
2407 {
2408 	/*
2409 	 * For IA32 we look at the GDT/LDT segment base to convert the
2410 	 * effective IP to a linear address.
2411 	 */
2412 
2413 #ifdef CONFIG_X86_32
2414 	/*
2415 	 * If we are in VM86 mode, add the segment offset to convert to a
2416 	 * linear address.
2417 	 */
2418 	if (regs->flags & X86_VM_MASK)
2419 		return 0x10 * regs->cs;
2420 
2421 	if (user_mode(regs) && regs->cs != __USER_CS)
2422 		return get_segment_base(regs->cs);
2423 #else
2424 	if (user_mode(regs) && !user_64bit_mode(regs) &&
2425 	    regs->cs != __USER32_CS)
2426 		return get_segment_base(regs->cs);
2427 #endif
2428 	return 0;
2429 }
2430 
2431 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2432 {
2433 	if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
2434 		return perf_guest_cbs->get_guest_ip();
2435 
2436 	return regs->ip + code_segment_base(regs);
2437 }
2438 
2439 unsigned long perf_misc_flags(struct pt_regs *regs)
2440 {
2441 	int misc = 0;
2442 
2443 	if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2444 		if (perf_guest_cbs->is_user_mode())
2445 			misc |= PERF_RECORD_MISC_GUEST_USER;
2446 		else
2447 			misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2448 	} else {
2449 		if (user_mode(regs))
2450 			misc |= PERF_RECORD_MISC_USER;
2451 		else
2452 			misc |= PERF_RECORD_MISC_KERNEL;
2453 	}
2454 
2455 	if (regs->flags & PERF_EFLAGS_EXACT)
2456 		misc |= PERF_RECORD_MISC_EXACT_IP;
2457 
2458 	return misc;
2459 }
2460 
2461 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2462 {
2463 	cap->version		= x86_pmu.version;
2464 	cap->num_counters_gp	= x86_pmu.num_counters;
2465 	cap->num_counters_fixed	= x86_pmu.num_counters_fixed;
2466 	cap->bit_width_gp	= x86_pmu.cntval_bits;
2467 	cap->bit_width_fixed	= x86_pmu.cntval_bits;
2468 	cap->events_mask	= (unsigned int)x86_pmu.events_maskl;
2469 	cap->events_mask_len	= x86_pmu.events_mask_len;
2470 }
2471 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);
2472