1 /* 2 * Performance events x86 architecture code 3 * 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2009 Jaswinder Singh Rajput 7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter 8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra 9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com> 10 * Copyright (C) 2009 Google, Inc., Stephane Eranian 11 * 12 * For licencing details see kernel-base/COPYING 13 */ 14 15 #include <linux/perf_event.h> 16 #include <linux/capability.h> 17 #include <linux/notifier.h> 18 #include <linux/hardirq.h> 19 #include <linux/kprobes.h> 20 #include <linux/export.h> 21 #include <linux/init.h> 22 #include <linux/kdebug.h> 23 #include <linux/sched/mm.h> 24 #include <linux/sched/clock.h> 25 #include <linux/uaccess.h> 26 #include <linux/slab.h> 27 #include <linux/cpu.h> 28 #include <linux/bitops.h> 29 #include <linux/device.h> 30 #include <linux/nospec.h> 31 #include <linux/static_call.h> 32 33 #include <asm/apic.h> 34 #include <asm/stacktrace.h> 35 #include <asm/nmi.h> 36 #include <asm/smp.h> 37 #include <asm/alternative.h> 38 #include <asm/mmu_context.h> 39 #include <asm/tlbflush.h> 40 #include <asm/timer.h> 41 #include <asm/desc.h> 42 #include <asm/ldt.h> 43 #include <asm/unwind.h> 44 45 #include "perf_event.h" 46 47 struct x86_pmu x86_pmu __read_mostly; 48 static struct pmu pmu; 49 50 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { 51 .enabled = 1, 52 .pmu = &pmu, 53 }; 54 55 DEFINE_STATIC_KEY_FALSE(rdpmc_never_available_key); 56 DEFINE_STATIC_KEY_FALSE(rdpmc_always_available_key); 57 DEFINE_STATIC_KEY_FALSE(perf_is_hybrid); 58 59 /* 60 * This here uses DEFINE_STATIC_CALL_NULL() to get a static_call defined 61 * from just a typename, as opposed to an actual function. 62 */ 63 DEFINE_STATIC_CALL_NULL(x86_pmu_handle_irq, *x86_pmu.handle_irq); 64 DEFINE_STATIC_CALL_NULL(x86_pmu_disable_all, *x86_pmu.disable_all); 65 DEFINE_STATIC_CALL_NULL(x86_pmu_enable_all, *x86_pmu.enable_all); 66 DEFINE_STATIC_CALL_NULL(x86_pmu_enable, *x86_pmu.enable); 67 DEFINE_STATIC_CALL_NULL(x86_pmu_disable, *x86_pmu.disable); 68 69 DEFINE_STATIC_CALL_NULL(x86_pmu_assign, *x86_pmu.assign); 70 71 DEFINE_STATIC_CALL_NULL(x86_pmu_add, *x86_pmu.add); 72 DEFINE_STATIC_CALL_NULL(x86_pmu_del, *x86_pmu.del); 73 DEFINE_STATIC_CALL_NULL(x86_pmu_read, *x86_pmu.read); 74 75 DEFINE_STATIC_CALL_NULL(x86_pmu_set_period, *x86_pmu.set_period); 76 DEFINE_STATIC_CALL_NULL(x86_pmu_update, *x86_pmu.update); 77 DEFINE_STATIC_CALL_NULL(x86_pmu_limit_period, *x86_pmu.limit_period); 78 79 DEFINE_STATIC_CALL_NULL(x86_pmu_schedule_events, *x86_pmu.schedule_events); 80 DEFINE_STATIC_CALL_NULL(x86_pmu_get_event_constraints, *x86_pmu.get_event_constraints); 81 DEFINE_STATIC_CALL_NULL(x86_pmu_put_event_constraints, *x86_pmu.put_event_constraints); 82 83 DEFINE_STATIC_CALL_NULL(x86_pmu_start_scheduling, *x86_pmu.start_scheduling); 84 DEFINE_STATIC_CALL_NULL(x86_pmu_commit_scheduling, *x86_pmu.commit_scheduling); 85 DEFINE_STATIC_CALL_NULL(x86_pmu_stop_scheduling, *x86_pmu.stop_scheduling); 86 87 DEFINE_STATIC_CALL_NULL(x86_pmu_sched_task, *x86_pmu.sched_task); 88 DEFINE_STATIC_CALL_NULL(x86_pmu_swap_task_ctx, *x86_pmu.swap_task_ctx); 89 90 DEFINE_STATIC_CALL_NULL(x86_pmu_drain_pebs, *x86_pmu.drain_pebs); 91 DEFINE_STATIC_CALL_NULL(x86_pmu_pebs_aliases, *x86_pmu.pebs_aliases); 92 93 DEFINE_STATIC_CALL_NULL(x86_pmu_filter, *x86_pmu.filter); 94 95 /* 96 * This one is magic, it will get called even when PMU init fails (because 97 * there is no PMU), in which case it should simply return NULL. 98 */ 99 DEFINE_STATIC_CALL_RET0(x86_pmu_guest_get_msrs, *x86_pmu.guest_get_msrs); 100 101 u64 __read_mostly hw_cache_event_ids 102 [PERF_COUNT_HW_CACHE_MAX] 103 [PERF_COUNT_HW_CACHE_OP_MAX] 104 [PERF_COUNT_HW_CACHE_RESULT_MAX]; 105 u64 __read_mostly hw_cache_extra_regs 106 [PERF_COUNT_HW_CACHE_MAX] 107 [PERF_COUNT_HW_CACHE_OP_MAX] 108 [PERF_COUNT_HW_CACHE_RESULT_MAX]; 109 110 /* 111 * Propagate event elapsed time into the generic event. 112 * Can only be executed on the CPU where the event is active. 113 * Returns the delta events processed. 114 */ 115 u64 x86_perf_event_update(struct perf_event *event) 116 { 117 struct hw_perf_event *hwc = &event->hw; 118 int shift = 64 - x86_pmu.cntval_bits; 119 u64 prev_raw_count, new_raw_count; 120 u64 delta; 121 122 if (unlikely(!hwc->event_base)) 123 return 0; 124 125 /* 126 * Careful: an NMI might modify the previous event value. 127 * 128 * Our tactic to handle this is to first atomically read and 129 * exchange a new raw count - then add that new-prev delta 130 * count to the generic event atomically: 131 */ 132 prev_raw_count = local64_read(&hwc->prev_count); 133 do { 134 rdpmcl(hwc->event_base_rdpmc, new_raw_count); 135 } while (!local64_try_cmpxchg(&hwc->prev_count, 136 &prev_raw_count, new_raw_count)); 137 138 /* 139 * Now we have the new raw value and have updated the prev 140 * timestamp already. We can now calculate the elapsed delta 141 * (event-)time and add that to the generic event. 142 * 143 * Careful, not all hw sign-extends above the physical width 144 * of the count. 145 */ 146 delta = (new_raw_count << shift) - (prev_raw_count << shift); 147 delta >>= shift; 148 149 local64_add(delta, &event->count); 150 local64_sub(delta, &hwc->period_left); 151 152 return new_raw_count; 153 } 154 155 /* 156 * Find and validate any extra registers to set up. 157 */ 158 static int x86_pmu_extra_regs(u64 config, struct perf_event *event) 159 { 160 struct extra_reg *extra_regs = hybrid(event->pmu, extra_regs); 161 struct hw_perf_event_extra *reg; 162 struct extra_reg *er; 163 164 reg = &event->hw.extra_reg; 165 166 if (!extra_regs) 167 return 0; 168 169 for (er = extra_regs; er->msr; er++) { 170 if (er->event != (config & er->config_mask)) 171 continue; 172 if (event->attr.config1 & ~er->valid_mask) 173 return -EINVAL; 174 /* Check if the extra msrs can be safely accessed*/ 175 if (!er->extra_msr_access) 176 return -ENXIO; 177 178 reg->idx = er->idx; 179 reg->config = event->attr.config1; 180 reg->reg = er->msr; 181 break; 182 } 183 return 0; 184 } 185 186 static atomic_t active_events; 187 static atomic_t pmc_refcount; 188 static DEFINE_MUTEX(pmc_reserve_mutex); 189 190 #ifdef CONFIG_X86_LOCAL_APIC 191 192 static inline u64 get_possible_counter_mask(void) 193 { 194 u64 cntr_mask = x86_pmu.cntr_mask64; 195 int i; 196 197 if (!is_hybrid()) 198 return cntr_mask; 199 200 for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) 201 cntr_mask |= x86_pmu.hybrid_pmu[i].cntr_mask64; 202 203 return cntr_mask; 204 } 205 206 static bool reserve_pmc_hardware(void) 207 { 208 u64 cntr_mask = get_possible_counter_mask(); 209 int i, end; 210 211 for_each_set_bit(i, (unsigned long *)&cntr_mask, X86_PMC_IDX_MAX) { 212 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i))) 213 goto perfctr_fail; 214 } 215 216 for_each_set_bit(i, (unsigned long *)&cntr_mask, X86_PMC_IDX_MAX) { 217 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i))) 218 goto eventsel_fail; 219 } 220 221 return true; 222 223 eventsel_fail: 224 end = i; 225 for_each_set_bit(i, (unsigned long *)&cntr_mask, end) 226 release_evntsel_nmi(x86_pmu_config_addr(i)); 227 i = X86_PMC_IDX_MAX; 228 229 perfctr_fail: 230 end = i; 231 for_each_set_bit(i, (unsigned long *)&cntr_mask, end) 232 release_perfctr_nmi(x86_pmu_event_addr(i)); 233 234 return false; 235 } 236 237 static void release_pmc_hardware(void) 238 { 239 u64 cntr_mask = get_possible_counter_mask(); 240 int i; 241 242 for_each_set_bit(i, (unsigned long *)&cntr_mask, X86_PMC_IDX_MAX) { 243 release_perfctr_nmi(x86_pmu_event_addr(i)); 244 release_evntsel_nmi(x86_pmu_config_addr(i)); 245 } 246 } 247 248 #else 249 250 static bool reserve_pmc_hardware(void) { return true; } 251 static void release_pmc_hardware(void) {} 252 253 #endif 254 255 bool check_hw_exists(struct pmu *pmu, unsigned long *cntr_mask, 256 unsigned long *fixed_cntr_mask) 257 { 258 u64 val, val_fail = -1, val_new= ~0; 259 int i, reg, reg_fail = -1, ret = 0; 260 int bios_fail = 0; 261 int reg_safe = -1; 262 263 /* 264 * Check to see if the BIOS enabled any of the counters, if so 265 * complain and bail. 266 */ 267 for_each_set_bit(i, cntr_mask, X86_PMC_IDX_MAX) { 268 reg = x86_pmu_config_addr(i); 269 ret = rdmsrl_safe(reg, &val); 270 if (ret) 271 goto msr_fail; 272 if (val & ARCH_PERFMON_EVENTSEL_ENABLE) { 273 bios_fail = 1; 274 val_fail = val; 275 reg_fail = reg; 276 } else { 277 reg_safe = i; 278 } 279 } 280 281 if (*(u64 *)fixed_cntr_mask) { 282 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL; 283 ret = rdmsrl_safe(reg, &val); 284 if (ret) 285 goto msr_fail; 286 for_each_set_bit(i, fixed_cntr_mask, X86_PMC_IDX_MAX) { 287 if (fixed_counter_disabled(i, pmu)) 288 continue; 289 if (val & (0x03ULL << i*4)) { 290 bios_fail = 1; 291 val_fail = val; 292 reg_fail = reg; 293 } 294 } 295 } 296 297 /* 298 * If all the counters are enabled, the below test will always 299 * fail. The tools will also become useless in this scenario. 300 * Just fail and disable the hardware counters. 301 */ 302 303 if (reg_safe == -1) { 304 reg = reg_safe; 305 goto msr_fail; 306 } 307 308 /* 309 * Read the current value, change it and read it back to see if it 310 * matches, this is needed to detect certain hardware emulators 311 * (qemu/kvm) that don't trap on the MSR access and always return 0s. 312 */ 313 reg = x86_pmu_event_addr(reg_safe); 314 if (rdmsrl_safe(reg, &val)) 315 goto msr_fail; 316 val ^= 0xffffUL; 317 ret = wrmsrl_safe(reg, val); 318 ret |= rdmsrl_safe(reg, &val_new); 319 if (ret || val != val_new) 320 goto msr_fail; 321 322 /* 323 * We still allow the PMU driver to operate: 324 */ 325 if (bios_fail) { 326 pr_cont("Broken BIOS detected, complain to your hardware vendor.\n"); 327 pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n", 328 reg_fail, val_fail); 329 } 330 331 return true; 332 333 msr_fail: 334 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) { 335 pr_cont("PMU not available due to virtualization, using software events only.\n"); 336 } else { 337 pr_cont("Broken PMU hardware detected, using software events only.\n"); 338 pr_err("Failed to access perfctr msr (MSR %x is %Lx)\n", 339 reg, val_new); 340 } 341 342 return false; 343 } 344 345 static void hw_perf_event_destroy(struct perf_event *event) 346 { 347 x86_release_hardware(); 348 atomic_dec(&active_events); 349 } 350 351 void hw_perf_lbr_event_destroy(struct perf_event *event) 352 { 353 hw_perf_event_destroy(event); 354 355 /* undo the lbr/bts event accounting */ 356 x86_del_exclusive(x86_lbr_exclusive_lbr); 357 } 358 359 static inline int x86_pmu_initialized(void) 360 { 361 return x86_pmu.handle_irq != NULL; 362 } 363 364 static inline int 365 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event) 366 { 367 struct perf_event_attr *attr = &event->attr; 368 unsigned int cache_type, cache_op, cache_result; 369 u64 config, val; 370 371 config = attr->config; 372 373 cache_type = (config >> 0) & 0xff; 374 if (cache_type >= PERF_COUNT_HW_CACHE_MAX) 375 return -EINVAL; 376 cache_type = array_index_nospec(cache_type, PERF_COUNT_HW_CACHE_MAX); 377 378 cache_op = (config >> 8) & 0xff; 379 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX) 380 return -EINVAL; 381 cache_op = array_index_nospec(cache_op, PERF_COUNT_HW_CACHE_OP_MAX); 382 383 cache_result = (config >> 16) & 0xff; 384 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX) 385 return -EINVAL; 386 cache_result = array_index_nospec(cache_result, PERF_COUNT_HW_CACHE_RESULT_MAX); 387 388 val = hybrid_var(event->pmu, hw_cache_event_ids)[cache_type][cache_op][cache_result]; 389 if (val == 0) 390 return -ENOENT; 391 392 if (val == -1) 393 return -EINVAL; 394 395 hwc->config |= val; 396 attr->config1 = hybrid_var(event->pmu, hw_cache_extra_regs)[cache_type][cache_op][cache_result]; 397 return x86_pmu_extra_regs(val, event); 398 } 399 400 int x86_reserve_hardware(void) 401 { 402 int err = 0; 403 404 if (!atomic_inc_not_zero(&pmc_refcount)) { 405 mutex_lock(&pmc_reserve_mutex); 406 if (atomic_read(&pmc_refcount) == 0) { 407 if (!reserve_pmc_hardware()) { 408 err = -EBUSY; 409 } else { 410 reserve_ds_buffers(); 411 reserve_lbr_buffers(); 412 } 413 } 414 if (!err) 415 atomic_inc(&pmc_refcount); 416 mutex_unlock(&pmc_reserve_mutex); 417 } 418 419 return err; 420 } 421 422 void x86_release_hardware(void) 423 { 424 if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) { 425 release_pmc_hardware(); 426 release_ds_buffers(); 427 release_lbr_buffers(); 428 mutex_unlock(&pmc_reserve_mutex); 429 } 430 } 431 432 /* 433 * Check if we can create event of a certain type (that no conflicting events 434 * are present). 435 */ 436 int x86_add_exclusive(unsigned int what) 437 { 438 int i; 439 440 /* 441 * When lbr_pt_coexist we allow PT to coexist with either LBR or BTS. 442 * LBR and BTS are still mutually exclusive. 443 */ 444 if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt) 445 goto out; 446 447 if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) { 448 mutex_lock(&pmc_reserve_mutex); 449 for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) { 450 if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i])) 451 goto fail_unlock; 452 } 453 atomic_inc(&x86_pmu.lbr_exclusive[what]); 454 mutex_unlock(&pmc_reserve_mutex); 455 } 456 457 out: 458 atomic_inc(&active_events); 459 return 0; 460 461 fail_unlock: 462 mutex_unlock(&pmc_reserve_mutex); 463 return -EBUSY; 464 } 465 466 void x86_del_exclusive(unsigned int what) 467 { 468 atomic_dec(&active_events); 469 470 /* 471 * See the comment in x86_add_exclusive(). 472 */ 473 if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt) 474 return; 475 476 atomic_dec(&x86_pmu.lbr_exclusive[what]); 477 } 478 479 int x86_setup_perfctr(struct perf_event *event) 480 { 481 struct perf_event_attr *attr = &event->attr; 482 struct hw_perf_event *hwc = &event->hw; 483 u64 config; 484 485 if (!is_sampling_event(event)) { 486 hwc->sample_period = x86_pmu.max_period; 487 hwc->last_period = hwc->sample_period; 488 local64_set(&hwc->period_left, hwc->sample_period); 489 } 490 491 if (attr->type == event->pmu->type) 492 return x86_pmu_extra_regs(event->attr.config, event); 493 494 if (attr->type == PERF_TYPE_HW_CACHE) 495 return set_ext_hw_attr(hwc, event); 496 497 if (attr->config >= x86_pmu.max_events) 498 return -EINVAL; 499 500 attr->config = array_index_nospec((unsigned long)attr->config, x86_pmu.max_events); 501 502 /* 503 * The generic map: 504 */ 505 config = x86_pmu.event_map(attr->config); 506 507 if (config == 0) 508 return -ENOENT; 509 510 if (config == -1LL) 511 return -EINVAL; 512 513 hwc->config |= config; 514 515 return 0; 516 } 517 518 /* 519 * check that branch_sample_type is compatible with 520 * settings needed for precise_ip > 1 which implies 521 * using the LBR to capture ALL taken branches at the 522 * priv levels of the measurement 523 */ 524 static inline int precise_br_compat(struct perf_event *event) 525 { 526 u64 m = event->attr.branch_sample_type; 527 u64 b = 0; 528 529 /* must capture all branches */ 530 if (!(m & PERF_SAMPLE_BRANCH_ANY)) 531 return 0; 532 533 m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER; 534 535 if (!event->attr.exclude_user) 536 b |= PERF_SAMPLE_BRANCH_USER; 537 538 if (!event->attr.exclude_kernel) 539 b |= PERF_SAMPLE_BRANCH_KERNEL; 540 541 /* 542 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86 543 */ 544 545 return m == b; 546 } 547 548 int x86_pmu_max_precise(void) 549 { 550 int precise = 0; 551 552 /* Support for constant skid */ 553 if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) { 554 precise++; 555 556 /* Support for IP fixup */ 557 if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2) 558 precise++; 559 560 if (x86_pmu.pebs_prec_dist) 561 precise++; 562 } 563 return precise; 564 } 565 566 int x86_pmu_hw_config(struct perf_event *event) 567 { 568 if (event->attr.precise_ip) { 569 int precise = x86_pmu_max_precise(); 570 571 if (event->attr.precise_ip > precise) 572 return -EOPNOTSUPP; 573 574 /* There's no sense in having PEBS for non sampling events: */ 575 if (!is_sampling_event(event)) 576 return -EINVAL; 577 } 578 /* 579 * check that PEBS LBR correction does not conflict with 580 * whatever the user is asking with attr->branch_sample_type 581 */ 582 if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) { 583 u64 *br_type = &event->attr.branch_sample_type; 584 585 if (has_branch_stack(event)) { 586 if (!precise_br_compat(event)) 587 return -EOPNOTSUPP; 588 589 /* branch_sample_type is compatible */ 590 591 } else { 592 /* 593 * user did not specify branch_sample_type 594 * 595 * For PEBS fixups, we capture all 596 * the branches at the priv level of the 597 * event. 598 */ 599 *br_type = PERF_SAMPLE_BRANCH_ANY; 600 601 if (!event->attr.exclude_user) 602 *br_type |= PERF_SAMPLE_BRANCH_USER; 603 604 if (!event->attr.exclude_kernel) 605 *br_type |= PERF_SAMPLE_BRANCH_KERNEL; 606 } 607 } 608 609 if (branch_sample_call_stack(event)) 610 event->attach_state |= PERF_ATTACH_TASK_DATA; 611 612 /* 613 * Generate PMC IRQs: 614 * (keep 'enabled' bit clear for now) 615 */ 616 event->hw.config = ARCH_PERFMON_EVENTSEL_INT; 617 618 /* 619 * Count user and OS events unless requested not to 620 */ 621 if (!event->attr.exclude_user) 622 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR; 623 if (!event->attr.exclude_kernel) 624 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS; 625 626 if (event->attr.type == event->pmu->type) 627 event->hw.config |= x86_pmu_get_event_config(event); 628 629 if (event->attr.sample_period && x86_pmu.limit_period) { 630 s64 left = event->attr.sample_period; 631 x86_pmu.limit_period(event, &left); 632 if (left > event->attr.sample_period) 633 return -EINVAL; 634 } 635 636 /* sample_regs_user never support XMM registers */ 637 if (unlikely(event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK)) 638 return -EINVAL; 639 /* 640 * Besides the general purpose registers, XMM registers may 641 * be collected in PEBS on some platforms, e.g. Icelake 642 */ 643 if (unlikely(event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK)) { 644 if (!(event->pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS)) 645 return -EINVAL; 646 647 if (!event->attr.precise_ip) 648 return -EINVAL; 649 } 650 651 return x86_setup_perfctr(event); 652 } 653 654 /* 655 * Setup the hardware configuration for a given attr_type 656 */ 657 static int __x86_pmu_event_init(struct perf_event *event) 658 { 659 int err; 660 661 if (!x86_pmu_initialized()) 662 return -ENODEV; 663 664 err = x86_reserve_hardware(); 665 if (err) 666 return err; 667 668 atomic_inc(&active_events); 669 event->destroy = hw_perf_event_destroy; 670 671 event->hw.idx = -1; 672 event->hw.last_cpu = -1; 673 event->hw.last_tag = ~0ULL; 674 675 /* mark unused */ 676 event->hw.extra_reg.idx = EXTRA_REG_NONE; 677 event->hw.branch_reg.idx = EXTRA_REG_NONE; 678 679 return x86_pmu.hw_config(event); 680 } 681 682 void x86_pmu_disable_all(void) 683 { 684 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 685 int idx; 686 687 for_each_set_bit(idx, x86_pmu.cntr_mask, X86_PMC_IDX_MAX) { 688 struct hw_perf_event *hwc = &cpuc->events[idx]->hw; 689 u64 val; 690 691 if (!test_bit(idx, cpuc->active_mask)) 692 continue; 693 rdmsrl(x86_pmu_config_addr(idx), val); 694 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE)) 695 continue; 696 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE; 697 wrmsrl(x86_pmu_config_addr(idx), val); 698 if (is_counter_pair(hwc)) 699 wrmsrl(x86_pmu_config_addr(idx + 1), 0); 700 } 701 } 702 703 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr, void *data) 704 { 705 return static_call(x86_pmu_guest_get_msrs)(nr, data); 706 } 707 EXPORT_SYMBOL_GPL(perf_guest_get_msrs); 708 709 /* 710 * There may be PMI landing after enabled=0. The PMI hitting could be before or 711 * after disable_all. 712 * 713 * If PMI hits before disable_all, the PMU will be disabled in the NMI handler. 714 * It will not be re-enabled in the NMI handler again, because enabled=0. After 715 * handling the NMI, disable_all will be called, which will not change the 716 * state either. If PMI hits after disable_all, the PMU is already disabled 717 * before entering NMI handler. The NMI handler will not change the state 718 * either. 719 * 720 * So either situation is harmless. 721 */ 722 static void x86_pmu_disable(struct pmu *pmu) 723 { 724 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 725 726 if (!x86_pmu_initialized()) 727 return; 728 729 if (!cpuc->enabled) 730 return; 731 732 cpuc->n_added = 0; 733 cpuc->enabled = 0; 734 barrier(); 735 736 static_call(x86_pmu_disable_all)(); 737 } 738 739 void x86_pmu_enable_all(int added) 740 { 741 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 742 int idx; 743 744 for_each_set_bit(idx, x86_pmu.cntr_mask, X86_PMC_IDX_MAX) { 745 struct hw_perf_event *hwc = &cpuc->events[idx]->hw; 746 747 if (!test_bit(idx, cpuc->active_mask)) 748 continue; 749 750 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE); 751 } 752 } 753 754 static inline int is_x86_event(struct perf_event *event) 755 { 756 int i; 757 758 if (!is_hybrid()) 759 return event->pmu == &pmu; 760 761 for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) { 762 if (event->pmu == &x86_pmu.hybrid_pmu[i].pmu) 763 return true; 764 } 765 766 return false; 767 } 768 769 struct pmu *x86_get_pmu(unsigned int cpu) 770 { 771 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu); 772 773 /* 774 * All CPUs of the hybrid type have been offline. 775 * The x86_get_pmu() should not be invoked. 776 */ 777 if (WARN_ON_ONCE(!cpuc->pmu)) 778 return &pmu; 779 780 return cpuc->pmu; 781 } 782 /* 783 * Event scheduler state: 784 * 785 * Assign events iterating over all events and counters, beginning 786 * with events with least weights first. Keep the current iterator 787 * state in struct sched_state. 788 */ 789 struct sched_state { 790 int weight; 791 int event; /* event index */ 792 int counter; /* counter index */ 793 int unassigned; /* number of events to be assigned left */ 794 int nr_gp; /* number of GP counters used */ 795 u64 used; 796 }; 797 798 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */ 799 #define SCHED_STATES_MAX 2 800 801 struct perf_sched { 802 int max_weight; 803 int max_events; 804 int max_gp; 805 int saved_states; 806 struct event_constraint **constraints; 807 struct sched_state state; 808 struct sched_state saved[SCHED_STATES_MAX]; 809 }; 810 811 /* 812 * Initialize iterator that runs through all events and counters. 813 */ 814 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints, 815 int num, int wmin, int wmax, int gpmax) 816 { 817 int idx; 818 819 memset(sched, 0, sizeof(*sched)); 820 sched->max_events = num; 821 sched->max_weight = wmax; 822 sched->max_gp = gpmax; 823 sched->constraints = constraints; 824 825 for (idx = 0; idx < num; idx++) { 826 if (constraints[idx]->weight == wmin) 827 break; 828 } 829 830 sched->state.event = idx; /* start with min weight */ 831 sched->state.weight = wmin; 832 sched->state.unassigned = num; 833 } 834 835 static void perf_sched_save_state(struct perf_sched *sched) 836 { 837 if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX)) 838 return; 839 840 sched->saved[sched->saved_states] = sched->state; 841 sched->saved_states++; 842 } 843 844 static bool perf_sched_restore_state(struct perf_sched *sched) 845 { 846 if (!sched->saved_states) 847 return false; 848 849 sched->saved_states--; 850 sched->state = sched->saved[sched->saved_states]; 851 852 /* this assignment didn't work out */ 853 /* XXX broken vs EVENT_PAIR */ 854 sched->state.used &= ~BIT_ULL(sched->state.counter); 855 856 /* try the next one */ 857 sched->state.counter++; 858 859 return true; 860 } 861 862 /* 863 * Select a counter for the current event to schedule. Return true on 864 * success. 865 */ 866 static bool __perf_sched_find_counter(struct perf_sched *sched) 867 { 868 struct event_constraint *c; 869 int idx; 870 871 if (!sched->state.unassigned) 872 return false; 873 874 if (sched->state.event >= sched->max_events) 875 return false; 876 877 c = sched->constraints[sched->state.event]; 878 /* Prefer fixed purpose counters */ 879 if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) { 880 idx = INTEL_PMC_IDX_FIXED; 881 for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) { 882 u64 mask = BIT_ULL(idx); 883 884 if (sched->state.used & mask) 885 continue; 886 887 sched->state.used |= mask; 888 goto done; 889 } 890 } 891 892 /* Grab the first unused counter starting with idx */ 893 idx = sched->state.counter; 894 for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) { 895 u64 mask = BIT_ULL(idx); 896 897 if (c->flags & PERF_X86_EVENT_PAIR) 898 mask |= mask << 1; 899 900 if (sched->state.used & mask) 901 continue; 902 903 if (sched->state.nr_gp++ >= sched->max_gp) 904 return false; 905 906 sched->state.used |= mask; 907 goto done; 908 } 909 910 return false; 911 912 done: 913 sched->state.counter = idx; 914 915 if (c->overlap) 916 perf_sched_save_state(sched); 917 918 return true; 919 } 920 921 static bool perf_sched_find_counter(struct perf_sched *sched) 922 { 923 while (!__perf_sched_find_counter(sched)) { 924 if (!perf_sched_restore_state(sched)) 925 return false; 926 } 927 928 return true; 929 } 930 931 /* 932 * Go through all unassigned events and find the next one to schedule. 933 * Take events with the least weight first. Return true on success. 934 */ 935 static bool perf_sched_next_event(struct perf_sched *sched) 936 { 937 struct event_constraint *c; 938 939 if (!sched->state.unassigned || !--sched->state.unassigned) 940 return false; 941 942 do { 943 /* next event */ 944 sched->state.event++; 945 if (sched->state.event >= sched->max_events) { 946 /* next weight */ 947 sched->state.event = 0; 948 sched->state.weight++; 949 if (sched->state.weight > sched->max_weight) 950 return false; 951 } 952 c = sched->constraints[sched->state.event]; 953 } while (c->weight != sched->state.weight); 954 955 sched->state.counter = 0; /* start with first counter */ 956 957 return true; 958 } 959 960 /* 961 * Assign a counter for each event. 962 */ 963 int perf_assign_events(struct event_constraint **constraints, int n, 964 int wmin, int wmax, int gpmax, int *assign) 965 { 966 struct perf_sched sched; 967 968 perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax); 969 970 do { 971 if (!perf_sched_find_counter(&sched)) 972 break; /* failed */ 973 if (assign) 974 assign[sched.state.event] = sched.state.counter; 975 } while (perf_sched_next_event(&sched)); 976 977 return sched.state.unassigned; 978 } 979 EXPORT_SYMBOL_GPL(perf_assign_events); 980 981 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign) 982 { 983 struct event_constraint *c; 984 struct perf_event *e; 985 int n0, i, wmin, wmax, unsched = 0; 986 struct hw_perf_event *hwc; 987 u64 used_mask = 0; 988 989 /* 990 * Compute the number of events already present; see x86_pmu_add(), 991 * validate_group() and x86_pmu_commit_txn(). For the former two 992 * cpuc->n_events hasn't been updated yet, while for the latter 993 * cpuc->n_txn contains the number of events added in the current 994 * transaction. 995 */ 996 n0 = cpuc->n_events; 997 if (cpuc->txn_flags & PERF_PMU_TXN_ADD) 998 n0 -= cpuc->n_txn; 999 1000 static_call_cond(x86_pmu_start_scheduling)(cpuc); 1001 1002 for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) { 1003 c = cpuc->event_constraint[i]; 1004 1005 /* 1006 * Previously scheduled events should have a cached constraint, 1007 * while new events should not have one. 1008 */ 1009 WARN_ON_ONCE((c && i >= n0) || (!c && i < n0)); 1010 1011 /* 1012 * Request constraints for new events; or for those events that 1013 * have a dynamic constraint -- for those the constraint can 1014 * change due to external factors (sibling state, allow_tfa). 1015 */ 1016 if (!c || (c->flags & PERF_X86_EVENT_DYNAMIC)) { 1017 c = static_call(x86_pmu_get_event_constraints)(cpuc, i, cpuc->event_list[i]); 1018 cpuc->event_constraint[i] = c; 1019 } 1020 1021 wmin = min(wmin, c->weight); 1022 wmax = max(wmax, c->weight); 1023 } 1024 1025 /* 1026 * fastpath, try to reuse previous register 1027 */ 1028 for (i = 0; i < n; i++) { 1029 u64 mask; 1030 1031 hwc = &cpuc->event_list[i]->hw; 1032 c = cpuc->event_constraint[i]; 1033 1034 /* never assigned */ 1035 if (hwc->idx == -1) 1036 break; 1037 1038 /* constraint still honored */ 1039 if (!test_bit(hwc->idx, c->idxmsk)) 1040 break; 1041 1042 mask = BIT_ULL(hwc->idx); 1043 if (is_counter_pair(hwc)) 1044 mask |= mask << 1; 1045 1046 /* not already used */ 1047 if (used_mask & mask) 1048 break; 1049 1050 used_mask |= mask; 1051 1052 if (assign) 1053 assign[i] = hwc->idx; 1054 } 1055 1056 /* slow path */ 1057 if (i != n) { 1058 int gpmax = x86_pmu_max_num_counters(cpuc->pmu); 1059 1060 /* 1061 * Do not allow scheduling of more than half the available 1062 * generic counters. 1063 * 1064 * This helps avoid counter starvation of sibling thread by 1065 * ensuring at most half the counters cannot be in exclusive 1066 * mode. There is no designated counters for the limits. Any 1067 * N/2 counters can be used. This helps with events with 1068 * specific counter constraints. 1069 */ 1070 if (is_ht_workaround_enabled() && !cpuc->is_fake && 1071 READ_ONCE(cpuc->excl_cntrs->exclusive_present)) 1072 gpmax /= 2; 1073 1074 /* 1075 * Reduce the amount of available counters to allow fitting 1076 * the extra Merge events needed by large increment events. 1077 */ 1078 if (x86_pmu.flags & PMU_FL_PAIR) { 1079 gpmax -= cpuc->n_pair; 1080 WARN_ON(gpmax <= 0); 1081 } 1082 1083 unsched = perf_assign_events(cpuc->event_constraint, n, wmin, 1084 wmax, gpmax, assign); 1085 } 1086 1087 /* 1088 * In case of success (unsched = 0), mark events as committed, 1089 * so we do not put_constraint() in case new events are added 1090 * and fail to be scheduled 1091 * 1092 * We invoke the lower level commit callback to lock the resource 1093 * 1094 * We do not need to do all of this in case we are called to 1095 * validate an event group (assign == NULL) 1096 */ 1097 if (!unsched && assign) { 1098 for (i = 0; i < n; i++) 1099 static_call_cond(x86_pmu_commit_scheduling)(cpuc, i, assign[i]); 1100 } else { 1101 for (i = n0; i < n; i++) { 1102 e = cpuc->event_list[i]; 1103 1104 /* 1105 * release events that failed scheduling 1106 */ 1107 static_call_cond(x86_pmu_put_event_constraints)(cpuc, e); 1108 1109 cpuc->event_constraint[i] = NULL; 1110 } 1111 } 1112 1113 static_call_cond(x86_pmu_stop_scheduling)(cpuc); 1114 1115 return unsched ? -EINVAL : 0; 1116 } 1117 1118 static int add_nr_metric_event(struct cpu_hw_events *cpuc, 1119 struct perf_event *event) 1120 { 1121 if (is_metric_event(event)) { 1122 if (cpuc->n_metric == INTEL_TD_METRIC_NUM) 1123 return -EINVAL; 1124 cpuc->n_metric++; 1125 cpuc->n_txn_metric++; 1126 } 1127 1128 return 0; 1129 } 1130 1131 static void del_nr_metric_event(struct cpu_hw_events *cpuc, 1132 struct perf_event *event) 1133 { 1134 if (is_metric_event(event)) 1135 cpuc->n_metric--; 1136 } 1137 1138 static int collect_event(struct cpu_hw_events *cpuc, struct perf_event *event, 1139 int max_count, int n) 1140 { 1141 union perf_capabilities intel_cap = hybrid(cpuc->pmu, intel_cap); 1142 1143 if (intel_cap.perf_metrics && add_nr_metric_event(cpuc, event)) 1144 return -EINVAL; 1145 1146 if (n >= max_count + cpuc->n_metric) 1147 return -EINVAL; 1148 1149 cpuc->event_list[n] = event; 1150 if (is_counter_pair(&event->hw)) { 1151 cpuc->n_pair++; 1152 cpuc->n_txn_pair++; 1153 } 1154 1155 return 0; 1156 } 1157 1158 /* 1159 * dogrp: true if must collect siblings events (group) 1160 * returns total number of events and error code 1161 */ 1162 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp) 1163 { 1164 struct perf_event *event; 1165 int n, max_count; 1166 1167 max_count = x86_pmu_num_counters(cpuc->pmu) + x86_pmu_num_counters_fixed(cpuc->pmu); 1168 1169 /* current number of events already accepted */ 1170 n = cpuc->n_events; 1171 if (!cpuc->n_events) 1172 cpuc->pebs_output = 0; 1173 1174 if (!cpuc->is_fake && leader->attr.precise_ip) { 1175 /* 1176 * For PEBS->PT, if !aux_event, the group leader (PT) went 1177 * away, the group was broken down and this singleton event 1178 * can't schedule any more. 1179 */ 1180 if (is_pebs_pt(leader) && !leader->aux_event) 1181 return -EINVAL; 1182 1183 /* 1184 * pebs_output: 0: no PEBS so far, 1: PT, 2: DS 1185 */ 1186 if (cpuc->pebs_output && 1187 cpuc->pebs_output != is_pebs_pt(leader) + 1) 1188 return -EINVAL; 1189 1190 cpuc->pebs_output = is_pebs_pt(leader) + 1; 1191 } 1192 1193 if (is_x86_event(leader)) { 1194 if (collect_event(cpuc, leader, max_count, n)) 1195 return -EINVAL; 1196 n++; 1197 } 1198 1199 if (!dogrp) 1200 return n; 1201 1202 for_each_sibling_event(event, leader) { 1203 if (!is_x86_event(event) || event->state <= PERF_EVENT_STATE_OFF) 1204 continue; 1205 1206 if (collect_event(cpuc, event, max_count, n)) 1207 return -EINVAL; 1208 1209 n++; 1210 } 1211 return n; 1212 } 1213 1214 static inline void x86_assign_hw_event(struct perf_event *event, 1215 struct cpu_hw_events *cpuc, int i) 1216 { 1217 struct hw_perf_event *hwc = &event->hw; 1218 int idx; 1219 1220 idx = hwc->idx = cpuc->assign[i]; 1221 hwc->last_cpu = smp_processor_id(); 1222 hwc->last_tag = ++cpuc->tags[i]; 1223 1224 static_call_cond(x86_pmu_assign)(event, idx); 1225 1226 switch (hwc->idx) { 1227 case INTEL_PMC_IDX_FIXED_BTS: 1228 case INTEL_PMC_IDX_FIXED_VLBR: 1229 hwc->config_base = 0; 1230 hwc->event_base = 0; 1231 break; 1232 1233 case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END: 1234 /* All the metric events are mapped onto the fixed counter 3. */ 1235 idx = INTEL_PMC_IDX_FIXED_SLOTS; 1236 fallthrough; 1237 case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS-1: 1238 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL; 1239 hwc->event_base = x86_pmu_fixed_ctr_addr(idx - INTEL_PMC_IDX_FIXED); 1240 hwc->event_base_rdpmc = (idx - INTEL_PMC_IDX_FIXED) | 1241 INTEL_PMC_FIXED_RDPMC_BASE; 1242 break; 1243 1244 default: 1245 hwc->config_base = x86_pmu_config_addr(hwc->idx); 1246 hwc->event_base = x86_pmu_event_addr(hwc->idx); 1247 hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx); 1248 break; 1249 } 1250 } 1251 1252 /** 1253 * x86_perf_rdpmc_index - Return PMC counter used for event 1254 * @event: the perf_event to which the PMC counter was assigned 1255 * 1256 * The counter assigned to this performance event may change if interrupts 1257 * are enabled. This counter should thus never be used while interrupts are 1258 * enabled. Before this function is used to obtain the assigned counter the 1259 * event should be checked for validity using, for example, 1260 * perf_event_read_local(), within the same interrupt disabled section in 1261 * which this counter is planned to be used. 1262 * 1263 * Return: The index of the performance monitoring counter assigned to 1264 * @perf_event. 1265 */ 1266 int x86_perf_rdpmc_index(struct perf_event *event) 1267 { 1268 lockdep_assert_irqs_disabled(); 1269 1270 return event->hw.event_base_rdpmc; 1271 } 1272 1273 static inline int match_prev_assignment(struct hw_perf_event *hwc, 1274 struct cpu_hw_events *cpuc, 1275 int i) 1276 { 1277 return hwc->idx == cpuc->assign[i] && 1278 hwc->last_cpu == smp_processor_id() && 1279 hwc->last_tag == cpuc->tags[i]; 1280 } 1281 1282 static void x86_pmu_start(struct perf_event *event, int flags); 1283 1284 static void x86_pmu_enable(struct pmu *pmu) 1285 { 1286 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1287 struct perf_event *event; 1288 struct hw_perf_event *hwc; 1289 int i, added = cpuc->n_added; 1290 1291 if (!x86_pmu_initialized()) 1292 return; 1293 1294 if (cpuc->enabled) 1295 return; 1296 1297 if (cpuc->n_added) { 1298 int n_running = cpuc->n_events - cpuc->n_added; 1299 /* 1300 * apply assignment obtained either from 1301 * hw_perf_group_sched_in() or x86_pmu_enable() 1302 * 1303 * step1: save events moving to new counters 1304 */ 1305 for (i = 0; i < n_running; i++) { 1306 event = cpuc->event_list[i]; 1307 hwc = &event->hw; 1308 1309 /* 1310 * we can avoid reprogramming counter if: 1311 * - assigned same counter as last time 1312 * - running on same CPU as last time 1313 * - no other event has used the counter since 1314 */ 1315 if (hwc->idx == -1 || 1316 match_prev_assignment(hwc, cpuc, i)) 1317 continue; 1318 1319 /* 1320 * Ensure we don't accidentally enable a stopped 1321 * counter simply because we rescheduled. 1322 */ 1323 if (hwc->state & PERF_HES_STOPPED) 1324 hwc->state |= PERF_HES_ARCH; 1325 1326 x86_pmu_stop(event, PERF_EF_UPDATE); 1327 } 1328 1329 /* 1330 * step2: reprogram moved events into new counters 1331 */ 1332 for (i = 0; i < cpuc->n_events; i++) { 1333 event = cpuc->event_list[i]; 1334 hwc = &event->hw; 1335 1336 if (!match_prev_assignment(hwc, cpuc, i)) 1337 x86_assign_hw_event(event, cpuc, i); 1338 else if (i < n_running) 1339 continue; 1340 1341 if (hwc->state & PERF_HES_ARCH) 1342 continue; 1343 1344 /* 1345 * if cpuc->enabled = 0, then no wrmsr as 1346 * per x86_pmu_enable_event() 1347 */ 1348 x86_pmu_start(event, PERF_EF_RELOAD); 1349 } 1350 cpuc->n_added = 0; 1351 perf_events_lapic_init(); 1352 } 1353 1354 cpuc->enabled = 1; 1355 barrier(); 1356 1357 static_call(x86_pmu_enable_all)(added); 1358 } 1359 1360 DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left); 1361 1362 /* 1363 * Set the next IRQ period, based on the hwc->period_left value. 1364 * To be called with the event disabled in hw: 1365 */ 1366 int x86_perf_event_set_period(struct perf_event *event) 1367 { 1368 struct hw_perf_event *hwc = &event->hw; 1369 s64 left = local64_read(&hwc->period_left); 1370 s64 period = hwc->sample_period; 1371 int ret = 0, idx = hwc->idx; 1372 1373 if (unlikely(!hwc->event_base)) 1374 return 0; 1375 1376 /* 1377 * If we are way outside a reasonable range then just skip forward: 1378 */ 1379 if (unlikely(left <= -period)) { 1380 left = period; 1381 local64_set(&hwc->period_left, left); 1382 hwc->last_period = period; 1383 ret = 1; 1384 } 1385 1386 if (unlikely(left <= 0)) { 1387 left += period; 1388 local64_set(&hwc->period_left, left); 1389 hwc->last_period = period; 1390 ret = 1; 1391 } 1392 /* 1393 * Quirk: certain CPUs dont like it if just 1 hw_event is left: 1394 */ 1395 if (unlikely(left < 2)) 1396 left = 2; 1397 1398 if (left > x86_pmu.max_period) 1399 left = x86_pmu.max_period; 1400 1401 static_call_cond(x86_pmu_limit_period)(event, &left); 1402 1403 this_cpu_write(pmc_prev_left[idx], left); 1404 1405 /* 1406 * The hw event starts counting from this event offset, 1407 * mark it to be able to extra future deltas: 1408 */ 1409 local64_set(&hwc->prev_count, (u64)-left); 1410 1411 wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask); 1412 1413 /* 1414 * Sign extend the Merge event counter's upper 16 bits since 1415 * we currently declare a 48-bit counter width 1416 */ 1417 if (is_counter_pair(hwc)) 1418 wrmsrl(x86_pmu_event_addr(idx + 1), 0xffff); 1419 1420 perf_event_update_userpage(event); 1421 1422 return ret; 1423 } 1424 1425 void x86_pmu_enable_event(struct perf_event *event) 1426 { 1427 if (__this_cpu_read(cpu_hw_events.enabled)) 1428 __x86_pmu_enable_event(&event->hw, 1429 ARCH_PERFMON_EVENTSEL_ENABLE); 1430 } 1431 1432 /* 1433 * Add a single event to the PMU. 1434 * 1435 * The event is added to the group of enabled events 1436 * but only if it can be scheduled with existing events. 1437 */ 1438 static int x86_pmu_add(struct perf_event *event, int flags) 1439 { 1440 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1441 struct hw_perf_event *hwc; 1442 int assign[X86_PMC_IDX_MAX]; 1443 int n, n0, ret; 1444 1445 hwc = &event->hw; 1446 1447 n0 = cpuc->n_events; 1448 ret = n = collect_events(cpuc, event, false); 1449 if (ret < 0) 1450 goto out; 1451 1452 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED; 1453 if (!(flags & PERF_EF_START)) 1454 hwc->state |= PERF_HES_ARCH; 1455 1456 /* 1457 * If group events scheduling transaction was started, 1458 * skip the schedulability test here, it will be performed 1459 * at commit time (->commit_txn) as a whole. 1460 * 1461 * If commit fails, we'll call ->del() on all events 1462 * for which ->add() was called. 1463 */ 1464 if (cpuc->txn_flags & PERF_PMU_TXN_ADD) 1465 goto done_collect; 1466 1467 ret = static_call(x86_pmu_schedule_events)(cpuc, n, assign); 1468 if (ret) 1469 goto out; 1470 /* 1471 * copy new assignment, now we know it is possible 1472 * will be used by hw_perf_enable() 1473 */ 1474 memcpy(cpuc->assign, assign, n*sizeof(int)); 1475 1476 done_collect: 1477 /* 1478 * Commit the collect_events() state. See x86_pmu_del() and 1479 * x86_pmu_*_txn(). 1480 */ 1481 cpuc->n_events = n; 1482 cpuc->n_added += n - n0; 1483 cpuc->n_txn += n - n0; 1484 1485 /* 1486 * This is before x86_pmu_enable() will call x86_pmu_start(), 1487 * so we enable LBRs before an event needs them etc.. 1488 */ 1489 static_call_cond(x86_pmu_add)(event); 1490 1491 ret = 0; 1492 out: 1493 return ret; 1494 } 1495 1496 static void x86_pmu_start(struct perf_event *event, int flags) 1497 { 1498 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1499 int idx = event->hw.idx; 1500 1501 if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED))) 1502 return; 1503 1504 if (WARN_ON_ONCE(idx == -1)) 1505 return; 1506 1507 if (flags & PERF_EF_RELOAD) { 1508 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE)); 1509 static_call(x86_pmu_set_period)(event); 1510 } 1511 1512 event->hw.state = 0; 1513 1514 cpuc->events[idx] = event; 1515 __set_bit(idx, cpuc->active_mask); 1516 static_call(x86_pmu_enable)(event); 1517 perf_event_update_userpage(event); 1518 } 1519 1520 void perf_event_print_debug(void) 1521 { 1522 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed; 1523 unsigned long *cntr_mask, *fixed_cntr_mask; 1524 struct event_constraint *pebs_constraints; 1525 struct cpu_hw_events *cpuc; 1526 u64 pebs, debugctl; 1527 int cpu, idx; 1528 1529 guard(irqsave)(); 1530 1531 cpu = smp_processor_id(); 1532 cpuc = &per_cpu(cpu_hw_events, cpu); 1533 cntr_mask = hybrid(cpuc->pmu, cntr_mask); 1534 fixed_cntr_mask = hybrid(cpuc->pmu, fixed_cntr_mask); 1535 pebs_constraints = hybrid(cpuc->pmu, pebs_constraints); 1536 1537 if (!*(u64 *)cntr_mask) 1538 return; 1539 1540 if (x86_pmu.version >= 2) { 1541 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl); 1542 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status); 1543 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow); 1544 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed); 1545 1546 pr_info("\n"); 1547 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl); 1548 pr_info("CPU#%d: status: %016llx\n", cpu, status); 1549 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow); 1550 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed); 1551 if (pebs_constraints) { 1552 rdmsrl(MSR_IA32_PEBS_ENABLE, pebs); 1553 pr_info("CPU#%d: pebs: %016llx\n", cpu, pebs); 1554 } 1555 if (x86_pmu.lbr_nr) { 1556 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); 1557 pr_info("CPU#%d: debugctl: %016llx\n", cpu, debugctl); 1558 } 1559 } 1560 pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask); 1561 1562 for_each_set_bit(idx, cntr_mask, X86_PMC_IDX_MAX) { 1563 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl); 1564 rdmsrl(x86_pmu_event_addr(idx), pmc_count); 1565 1566 prev_left = per_cpu(pmc_prev_left[idx], cpu); 1567 1568 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n", 1569 cpu, idx, pmc_ctrl); 1570 pr_info("CPU#%d: gen-PMC%d count: %016llx\n", 1571 cpu, idx, pmc_count); 1572 pr_info("CPU#%d: gen-PMC%d left: %016llx\n", 1573 cpu, idx, prev_left); 1574 } 1575 for_each_set_bit(idx, fixed_cntr_mask, X86_PMC_IDX_MAX) { 1576 if (fixed_counter_disabled(idx, cpuc->pmu)) 1577 continue; 1578 rdmsrl(x86_pmu_fixed_ctr_addr(idx), pmc_count); 1579 1580 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n", 1581 cpu, idx, pmc_count); 1582 } 1583 } 1584 1585 void x86_pmu_stop(struct perf_event *event, int flags) 1586 { 1587 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1588 struct hw_perf_event *hwc = &event->hw; 1589 1590 if (test_bit(hwc->idx, cpuc->active_mask)) { 1591 static_call(x86_pmu_disable)(event); 1592 __clear_bit(hwc->idx, cpuc->active_mask); 1593 cpuc->events[hwc->idx] = NULL; 1594 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED); 1595 hwc->state |= PERF_HES_STOPPED; 1596 } 1597 1598 if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) { 1599 /* 1600 * Drain the remaining delta count out of a event 1601 * that we are disabling: 1602 */ 1603 static_call(x86_pmu_update)(event); 1604 hwc->state |= PERF_HES_UPTODATE; 1605 } 1606 } 1607 1608 static void x86_pmu_del(struct perf_event *event, int flags) 1609 { 1610 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1611 union perf_capabilities intel_cap = hybrid(cpuc->pmu, intel_cap); 1612 int i; 1613 1614 /* 1615 * If we're called during a txn, we only need to undo x86_pmu.add. 1616 * The events never got scheduled and ->cancel_txn will truncate 1617 * the event_list. 1618 * 1619 * XXX assumes any ->del() called during a TXN will only be on 1620 * an event added during that same TXN. 1621 */ 1622 if (cpuc->txn_flags & PERF_PMU_TXN_ADD) 1623 goto do_del; 1624 1625 __set_bit(event->hw.idx, cpuc->dirty); 1626 1627 /* 1628 * Not a TXN, therefore cleanup properly. 1629 */ 1630 x86_pmu_stop(event, PERF_EF_UPDATE); 1631 1632 for (i = 0; i < cpuc->n_events; i++) { 1633 if (event == cpuc->event_list[i]) 1634 break; 1635 } 1636 1637 if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */ 1638 return; 1639 1640 /* If we have a newly added event; make sure to decrease n_added. */ 1641 if (i >= cpuc->n_events - cpuc->n_added) 1642 --cpuc->n_added; 1643 1644 static_call_cond(x86_pmu_put_event_constraints)(cpuc, event); 1645 1646 /* Delete the array entry. */ 1647 while (++i < cpuc->n_events) { 1648 cpuc->event_list[i-1] = cpuc->event_list[i]; 1649 cpuc->event_constraint[i-1] = cpuc->event_constraint[i]; 1650 cpuc->assign[i-1] = cpuc->assign[i]; 1651 } 1652 cpuc->event_constraint[i-1] = NULL; 1653 --cpuc->n_events; 1654 if (intel_cap.perf_metrics) 1655 del_nr_metric_event(cpuc, event); 1656 1657 perf_event_update_userpage(event); 1658 1659 do_del: 1660 1661 /* 1662 * This is after x86_pmu_stop(); so we disable LBRs after any 1663 * event can need them etc.. 1664 */ 1665 static_call_cond(x86_pmu_del)(event); 1666 } 1667 1668 int x86_pmu_handle_irq(struct pt_regs *regs) 1669 { 1670 struct perf_sample_data data; 1671 struct cpu_hw_events *cpuc; 1672 struct perf_event *event; 1673 int idx, handled = 0; 1674 u64 val; 1675 1676 cpuc = this_cpu_ptr(&cpu_hw_events); 1677 1678 /* 1679 * Some chipsets need to unmask the LVTPC in a particular spot 1680 * inside the nmi handler. As a result, the unmasking was pushed 1681 * into all the nmi handlers. 1682 * 1683 * This generic handler doesn't seem to have any issues where the 1684 * unmasking occurs so it was left at the top. 1685 */ 1686 apic_write(APIC_LVTPC, APIC_DM_NMI); 1687 1688 for_each_set_bit(idx, x86_pmu.cntr_mask, X86_PMC_IDX_MAX) { 1689 if (!test_bit(idx, cpuc->active_mask)) 1690 continue; 1691 1692 event = cpuc->events[idx]; 1693 1694 val = static_call(x86_pmu_update)(event); 1695 if (val & (1ULL << (x86_pmu.cntval_bits - 1))) 1696 continue; 1697 1698 /* 1699 * event overflow 1700 */ 1701 handled++; 1702 1703 if (!static_call(x86_pmu_set_period)(event)) 1704 continue; 1705 1706 perf_sample_data_init(&data, 0, event->hw.last_period); 1707 1708 if (has_branch_stack(event)) 1709 perf_sample_save_brstack(&data, event, &cpuc->lbr_stack, NULL); 1710 1711 if (perf_event_overflow(event, &data, regs)) 1712 x86_pmu_stop(event, 0); 1713 } 1714 1715 if (handled) 1716 inc_irq_stat(apic_perf_irqs); 1717 1718 return handled; 1719 } 1720 1721 void perf_events_lapic_init(void) 1722 { 1723 if (!x86_pmu.apic || !x86_pmu_initialized()) 1724 return; 1725 1726 /* 1727 * Always use NMI for PMU 1728 */ 1729 apic_write(APIC_LVTPC, APIC_DM_NMI); 1730 } 1731 1732 static int 1733 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs) 1734 { 1735 u64 start_clock; 1736 u64 finish_clock; 1737 int ret; 1738 1739 /* 1740 * All PMUs/events that share this PMI handler should make sure to 1741 * increment active_events for their events. 1742 */ 1743 if (!atomic_read(&active_events)) 1744 return NMI_DONE; 1745 1746 start_clock = sched_clock(); 1747 ret = static_call(x86_pmu_handle_irq)(regs); 1748 finish_clock = sched_clock(); 1749 1750 perf_sample_event_took(finish_clock - start_clock); 1751 1752 return ret; 1753 } 1754 NOKPROBE_SYMBOL(perf_event_nmi_handler); 1755 1756 struct event_constraint emptyconstraint; 1757 struct event_constraint unconstrained; 1758 1759 static int x86_pmu_prepare_cpu(unsigned int cpu) 1760 { 1761 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu); 1762 int i; 1763 1764 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) 1765 cpuc->kfree_on_online[i] = NULL; 1766 if (x86_pmu.cpu_prepare) 1767 return x86_pmu.cpu_prepare(cpu); 1768 return 0; 1769 } 1770 1771 static int x86_pmu_dead_cpu(unsigned int cpu) 1772 { 1773 if (x86_pmu.cpu_dead) 1774 x86_pmu.cpu_dead(cpu); 1775 return 0; 1776 } 1777 1778 static int x86_pmu_online_cpu(unsigned int cpu) 1779 { 1780 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu); 1781 int i; 1782 1783 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) { 1784 kfree(cpuc->kfree_on_online[i]); 1785 cpuc->kfree_on_online[i] = NULL; 1786 } 1787 return 0; 1788 } 1789 1790 static int x86_pmu_starting_cpu(unsigned int cpu) 1791 { 1792 if (x86_pmu.cpu_starting) 1793 x86_pmu.cpu_starting(cpu); 1794 return 0; 1795 } 1796 1797 static int x86_pmu_dying_cpu(unsigned int cpu) 1798 { 1799 if (x86_pmu.cpu_dying) 1800 x86_pmu.cpu_dying(cpu); 1801 return 0; 1802 } 1803 1804 static void __init pmu_check_apic(void) 1805 { 1806 if (boot_cpu_has(X86_FEATURE_APIC)) 1807 return; 1808 1809 x86_pmu.apic = 0; 1810 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n"); 1811 pr_info("no hardware sampling interrupt available.\n"); 1812 1813 /* 1814 * If we have a PMU initialized but no APIC 1815 * interrupts, we cannot sample hardware 1816 * events (user-space has to fall back and 1817 * sample via a hrtimer based software event): 1818 */ 1819 pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT; 1820 1821 } 1822 1823 static struct attribute_group x86_pmu_format_group __ro_after_init = { 1824 .name = "format", 1825 .attrs = NULL, 1826 }; 1827 1828 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page) 1829 { 1830 struct perf_pmu_events_attr *pmu_attr = 1831 container_of(attr, struct perf_pmu_events_attr, attr); 1832 u64 config = 0; 1833 1834 if (pmu_attr->id < x86_pmu.max_events) 1835 config = x86_pmu.event_map(pmu_attr->id); 1836 1837 /* string trumps id */ 1838 if (pmu_attr->event_str) 1839 return sprintf(page, "%s\n", pmu_attr->event_str); 1840 1841 return x86_pmu.events_sysfs_show(page, config); 1842 } 1843 EXPORT_SYMBOL_GPL(events_sysfs_show); 1844 1845 ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr, 1846 char *page) 1847 { 1848 struct perf_pmu_events_ht_attr *pmu_attr = 1849 container_of(attr, struct perf_pmu_events_ht_attr, attr); 1850 1851 /* 1852 * Report conditional events depending on Hyper-Threading. 1853 * 1854 * This is overly conservative as usually the HT special 1855 * handling is not needed if the other CPU thread is idle. 1856 * 1857 * Note this does not (and cannot) handle the case when thread 1858 * siblings are invisible, for example with virtualization 1859 * if they are owned by some other guest. The user tool 1860 * has to re-read when a thread sibling gets onlined later. 1861 */ 1862 return sprintf(page, "%s", 1863 topology_max_smt_threads() > 1 ? 1864 pmu_attr->event_str_ht : 1865 pmu_attr->event_str_noht); 1866 } 1867 1868 ssize_t events_hybrid_sysfs_show(struct device *dev, 1869 struct device_attribute *attr, 1870 char *page) 1871 { 1872 struct perf_pmu_events_hybrid_attr *pmu_attr = 1873 container_of(attr, struct perf_pmu_events_hybrid_attr, attr); 1874 struct x86_hybrid_pmu *pmu; 1875 const char *str, *next_str; 1876 int i; 1877 1878 if (hweight64(pmu_attr->pmu_type) == 1) 1879 return sprintf(page, "%s", pmu_attr->event_str); 1880 1881 /* 1882 * Hybrid PMUs may support the same event name, but with different 1883 * event encoding, e.g., the mem-loads event on an Atom PMU has 1884 * different event encoding from a Core PMU. 1885 * 1886 * The event_str includes all event encodings. Each event encoding 1887 * is divided by ";". The order of the event encodings must follow 1888 * the order of the hybrid PMU index. 1889 */ 1890 pmu = container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu); 1891 1892 str = pmu_attr->event_str; 1893 for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) { 1894 if (!(x86_pmu.hybrid_pmu[i].pmu_type & pmu_attr->pmu_type)) 1895 continue; 1896 if (x86_pmu.hybrid_pmu[i].pmu_type & pmu->pmu_type) { 1897 next_str = strchr(str, ';'); 1898 if (next_str) 1899 return snprintf(page, next_str - str + 1, "%s", str); 1900 else 1901 return sprintf(page, "%s", str); 1902 } 1903 str = strchr(str, ';'); 1904 str++; 1905 } 1906 1907 return 0; 1908 } 1909 EXPORT_SYMBOL_GPL(events_hybrid_sysfs_show); 1910 1911 EVENT_ATTR(cpu-cycles, CPU_CYCLES ); 1912 EVENT_ATTR(instructions, INSTRUCTIONS ); 1913 EVENT_ATTR(cache-references, CACHE_REFERENCES ); 1914 EVENT_ATTR(cache-misses, CACHE_MISSES ); 1915 EVENT_ATTR(branch-instructions, BRANCH_INSTRUCTIONS ); 1916 EVENT_ATTR(branch-misses, BRANCH_MISSES ); 1917 EVENT_ATTR(bus-cycles, BUS_CYCLES ); 1918 EVENT_ATTR(stalled-cycles-frontend, STALLED_CYCLES_FRONTEND ); 1919 EVENT_ATTR(stalled-cycles-backend, STALLED_CYCLES_BACKEND ); 1920 EVENT_ATTR(ref-cycles, REF_CPU_CYCLES ); 1921 1922 static struct attribute *empty_attrs; 1923 1924 static struct attribute *events_attr[] = { 1925 EVENT_PTR(CPU_CYCLES), 1926 EVENT_PTR(INSTRUCTIONS), 1927 EVENT_PTR(CACHE_REFERENCES), 1928 EVENT_PTR(CACHE_MISSES), 1929 EVENT_PTR(BRANCH_INSTRUCTIONS), 1930 EVENT_PTR(BRANCH_MISSES), 1931 EVENT_PTR(BUS_CYCLES), 1932 EVENT_PTR(STALLED_CYCLES_FRONTEND), 1933 EVENT_PTR(STALLED_CYCLES_BACKEND), 1934 EVENT_PTR(REF_CPU_CYCLES), 1935 NULL, 1936 }; 1937 1938 /* 1939 * Remove all undefined events (x86_pmu.event_map(id) == 0) 1940 * out of events_attr attributes. 1941 */ 1942 static umode_t 1943 is_visible(struct kobject *kobj, struct attribute *attr, int idx) 1944 { 1945 struct perf_pmu_events_attr *pmu_attr; 1946 1947 if (idx >= x86_pmu.max_events) 1948 return 0; 1949 1950 pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr.attr); 1951 /* str trumps id */ 1952 return pmu_attr->event_str || x86_pmu.event_map(idx) ? attr->mode : 0; 1953 } 1954 1955 static struct attribute_group x86_pmu_events_group __ro_after_init = { 1956 .name = "events", 1957 .attrs = events_attr, 1958 .is_visible = is_visible, 1959 }; 1960 1961 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event) 1962 { 1963 u64 umask = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8; 1964 u64 cmask = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24; 1965 bool edge = (config & ARCH_PERFMON_EVENTSEL_EDGE); 1966 bool pc = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL); 1967 bool any = (config & ARCH_PERFMON_EVENTSEL_ANY); 1968 bool inv = (config & ARCH_PERFMON_EVENTSEL_INV); 1969 ssize_t ret; 1970 1971 /* 1972 * We have whole page size to spend and just little data 1973 * to write, so we can safely use sprintf. 1974 */ 1975 ret = sprintf(page, "event=0x%02llx", event); 1976 1977 if (umask) 1978 ret += sprintf(page + ret, ",umask=0x%02llx", umask); 1979 1980 if (edge) 1981 ret += sprintf(page + ret, ",edge"); 1982 1983 if (pc) 1984 ret += sprintf(page + ret, ",pc"); 1985 1986 if (any) 1987 ret += sprintf(page + ret, ",any"); 1988 1989 if (inv) 1990 ret += sprintf(page + ret, ",inv"); 1991 1992 if (cmask) 1993 ret += sprintf(page + ret, ",cmask=0x%02llx", cmask); 1994 1995 ret += sprintf(page + ret, "\n"); 1996 1997 return ret; 1998 } 1999 2000 static struct attribute_group x86_pmu_attr_group; 2001 static struct attribute_group x86_pmu_caps_group; 2002 2003 static void x86_pmu_static_call_update(void) 2004 { 2005 static_call_update(x86_pmu_handle_irq, x86_pmu.handle_irq); 2006 static_call_update(x86_pmu_disable_all, x86_pmu.disable_all); 2007 static_call_update(x86_pmu_enable_all, x86_pmu.enable_all); 2008 static_call_update(x86_pmu_enable, x86_pmu.enable); 2009 static_call_update(x86_pmu_disable, x86_pmu.disable); 2010 2011 static_call_update(x86_pmu_assign, x86_pmu.assign); 2012 2013 static_call_update(x86_pmu_add, x86_pmu.add); 2014 static_call_update(x86_pmu_del, x86_pmu.del); 2015 static_call_update(x86_pmu_read, x86_pmu.read); 2016 2017 static_call_update(x86_pmu_set_period, x86_pmu.set_period); 2018 static_call_update(x86_pmu_update, x86_pmu.update); 2019 static_call_update(x86_pmu_limit_period, x86_pmu.limit_period); 2020 2021 static_call_update(x86_pmu_schedule_events, x86_pmu.schedule_events); 2022 static_call_update(x86_pmu_get_event_constraints, x86_pmu.get_event_constraints); 2023 static_call_update(x86_pmu_put_event_constraints, x86_pmu.put_event_constraints); 2024 2025 static_call_update(x86_pmu_start_scheduling, x86_pmu.start_scheduling); 2026 static_call_update(x86_pmu_commit_scheduling, x86_pmu.commit_scheduling); 2027 static_call_update(x86_pmu_stop_scheduling, x86_pmu.stop_scheduling); 2028 2029 static_call_update(x86_pmu_sched_task, x86_pmu.sched_task); 2030 static_call_update(x86_pmu_swap_task_ctx, x86_pmu.swap_task_ctx); 2031 2032 static_call_update(x86_pmu_drain_pebs, x86_pmu.drain_pebs); 2033 static_call_update(x86_pmu_pebs_aliases, x86_pmu.pebs_aliases); 2034 2035 static_call_update(x86_pmu_guest_get_msrs, x86_pmu.guest_get_msrs); 2036 static_call_update(x86_pmu_filter, x86_pmu.filter); 2037 } 2038 2039 static void _x86_pmu_read(struct perf_event *event) 2040 { 2041 static_call(x86_pmu_update)(event); 2042 } 2043 2044 void x86_pmu_show_pmu_cap(struct pmu *pmu) 2045 { 2046 pr_info("... version: %d\n", x86_pmu.version); 2047 pr_info("... bit width: %d\n", x86_pmu.cntval_bits); 2048 pr_info("... generic registers: %d\n", x86_pmu_num_counters(pmu)); 2049 pr_info("... value mask: %016Lx\n", x86_pmu.cntval_mask); 2050 pr_info("... max period: %016Lx\n", x86_pmu.max_period); 2051 pr_info("... fixed-purpose events: %d\n", x86_pmu_num_counters_fixed(pmu)); 2052 pr_info("... event mask: %016Lx\n", hybrid(pmu, intel_ctrl)); 2053 } 2054 2055 static int __init init_hw_perf_events(void) 2056 { 2057 struct x86_pmu_quirk *quirk; 2058 int err; 2059 2060 pr_info("Performance Events: "); 2061 2062 switch (boot_cpu_data.x86_vendor) { 2063 case X86_VENDOR_INTEL: 2064 err = intel_pmu_init(); 2065 break; 2066 case X86_VENDOR_AMD: 2067 err = amd_pmu_init(); 2068 break; 2069 case X86_VENDOR_HYGON: 2070 err = amd_pmu_init(); 2071 x86_pmu.name = "HYGON"; 2072 break; 2073 case X86_VENDOR_ZHAOXIN: 2074 case X86_VENDOR_CENTAUR: 2075 err = zhaoxin_pmu_init(); 2076 break; 2077 default: 2078 err = -ENOTSUPP; 2079 } 2080 if (err != 0) { 2081 pr_cont("no PMU driver, software events only.\n"); 2082 err = 0; 2083 goto out_bad_pmu; 2084 } 2085 2086 pmu_check_apic(); 2087 2088 /* sanity check that the hardware exists or is emulated */ 2089 if (!check_hw_exists(&pmu, x86_pmu.cntr_mask, x86_pmu.fixed_cntr_mask)) 2090 goto out_bad_pmu; 2091 2092 pr_cont("%s PMU driver.\n", x86_pmu.name); 2093 2094 x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */ 2095 2096 for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next) 2097 quirk->func(); 2098 2099 if (!x86_pmu.intel_ctrl) 2100 x86_pmu.intel_ctrl = x86_pmu.cntr_mask64; 2101 2102 if (!x86_pmu.config_mask) 2103 x86_pmu.config_mask = X86_RAW_EVENT_MASK; 2104 2105 perf_events_lapic_init(); 2106 register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI"); 2107 2108 unconstrained = (struct event_constraint) 2109 __EVENT_CONSTRAINT(0, x86_pmu.cntr_mask64, 2110 0, x86_pmu_num_counters(NULL), 0, 0); 2111 2112 x86_pmu_format_group.attrs = x86_pmu.format_attrs; 2113 2114 if (!x86_pmu.events_sysfs_show) 2115 x86_pmu_events_group.attrs = &empty_attrs; 2116 2117 pmu.attr_update = x86_pmu.attr_update; 2118 2119 if (!is_hybrid()) 2120 x86_pmu_show_pmu_cap(NULL); 2121 2122 if (!x86_pmu.read) 2123 x86_pmu.read = _x86_pmu_read; 2124 2125 if (!x86_pmu.guest_get_msrs) 2126 x86_pmu.guest_get_msrs = (void *)&__static_call_return0; 2127 2128 if (!x86_pmu.set_period) 2129 x86_pmu.set_period = x86_perf_event_set_period; 2130 2131 if (!x86_pmu.update) 2132 x86_pmu.update = x86_perf_event_update; 2133 2134 x86_pmu_static_call_update(); 2135 2136 /* 2137 * Install callbacks. Core will call them for each online 2138 * cpu. 2139 */ 2140 err = cpuhp_setup_state(CPUHP_PERF_X86_PREPARE, "perf/x86:prepare", 2141 x86_pmu_prepare_cpu, x86_pmu_dead_cpu); 2142 if (err) 2143 return err; 2144 2145 err = cpuhp_setup_state(CPUHP_AP_PERF_X86_STARTING, 2146 "perf/x86:starting", x86_pmu_starting_cpu, 2147 x86_pmu_dying_cpu); 2148 if (err) 2149 goto out; 2150 2151 err = cpuhp_setup_state(CPUHP_AP_PERF_X86_ONLINE, "perf/x86:online", 2152 x86_pmu_online_cpu, NULL); 2153 if (err) 2154 goto out1; 2155 2156 if (!is_hybrid()) { 2157 err = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW); 2158 if (err) 2159 goto out2; 2160 } else { 2161 struct x86_hybrid_pmu *hybrid_pmu; 2162 int i, j; 2163 2164 for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) { 2165 hybrid_pmu = &x86_pmu.hybrid_pmu[i]; 2166 2167 hybrid_pmu->pmu = pmu; 2168 hybrid_pmu->pmu.type = -1; 2169 hybrid_pmu->pmu.attr_update = x86_pmu.attr_update; 2170 hybrid_pmu->pmu.capabilities |= PERF_PMU_CAP_EXTENDED_HW_TYPE; 2171 2172 err = perf_pmu_register(&hybrid_pmu->pmu, hybrid_pmu->name, 2173 (hybrid_pmu->pmu_type == hybrid_big) ? PERF_TYPE_RAW : -1); 2174 if (err) 2175 break; 2176 } 2177 2178 if (i < x86_pmu.num_hybrid_pmus) { 2179 for (j = 0; j < i; j++) 2180 perf_pmu_unregister(&x86_pmu.hybrid_pmu[j].pmu); 2181 pr_warn("Failed to register hybrid PMUs\n"); 2182 kfree(x86_pmu.hybrid_pmu); 2183 x86_pmu.hybrid_pmu = NULL; 2184 x86_pmu.num_hybrid_pmus = 0; 2185 goto out2; 2186 } 2187 } 2188 2189 return 0; 2190 2191 out2: 2192 cpuhp_remove_state(CPUHP_AP_PERF_X86_ONLINE); 2193 out1: 2194 cpuhp_remove_state(CPUHP_AP_PERF_X86_STARTING); 2195 out: 2196 cpuhp_remove_state(CPUHP_PERF_X86_PREPARE); 2197 out_bad_pmu: 2198 memset(&x86_pmu, 0, sizeof(x86_pmu)); 2199 return err; 2200 } 2201 early_initcall(init_hw_perf_events); 2202 2203 static void x86_pmu_read(struct perf_event *event) 2204 { 2205 static_call(x86_pmu_read)(event); 2206 } 2207 2208 /* 2209 * Start group events scheduling transaction 2210 * Set the flag to make pmu::enable() not perform the 2211 * schedulability test, it will be performed at commit time 2212 * 2213 * We only support PERF_PMU_TXN_ADD transactions. Save the 2214 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD 2215 * transactions. 2216 */ 2217 static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags) 2218 { 2219 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2220 2221 WARN_ON_ONCE(cpuc->txn_flags); /* txn already in flight */ 2222 2223 cpuc->txn_flags = txn_flags; 2224 if (txn_flags & ~PERF_PMU_TXN_ADD) 2225 return; 2226 2227 perf_pmu_disable(pmu); 2228 __this_cpu_write(cpu_hw_events.n_txn, 0); 2229 __this_cpu_write(cpu_hw_events.n_txn_pair, 0); 2230 __this_cpu_write(cpu_hw_events.n_txn_metric, 0); 2231 } 2232 2233 /* 2234 * Stop group events scheduling transaction 2235 * Clear the flag and pmu::enable() will perform the 2236 * schedulability test. 2237 */ 2238 static void x86_pmu_cancel_txn(struct pmu *pmu) 2239 { 2240 unsigned int txn_flags; 2241 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2242 2243 WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */ 2244 2245 txn_flags = cpuc->txn_flags; 2246 cpuc->txn_flags = 0; 2247 if (txn_flags & ~PERF_PMU_TXN_ADD) 2248 return; 2249 2250 /* 2251 * Truncate collected array by the number of events added in this 2252 * transaction. See x86_pmu_add() and x86_pmu_*_txn(). 2253 */ 2254 __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn)); 2255 __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn)); 2256 __this_cpu_sub(cpu_hw_events.n_pair, __this_cpu_read(cpu_hw_events.n_txn_pair)); 2257 __this_cpu_sub(cpu_hw_events.n_metric, __this_cpu_read(cpu_hw_events.n_txn_metric)); 2258 perf_pmu_enable(pmu); 2259 } 2260 2261 /* 2262 * Commit group events scheduling transaction 2263 * Perform the group schedulability test as a whole 2264 * Return 0 if success 2265 * 2266 * Does not cancel the transaction on failure; expects the caller to do this. 2267 */ 2268 static int x86_pmu_commit_txn(struct pmu *pmu) 2269 { 2270 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2271 int assign[X86_PMC_IDX_MAX]; 2272 int n, ret; 2273 2274 WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */ 2275 2276 if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) { 2277 cpuc->txn_flags = 0; 2278 return 0; 2279 } 2280 2281 n = cpuc->n_events; 2282 2283 if (!x86_pmu_initialized()) 2284 return -EAGAIN; 2285 2286 ret = static_call(x86_pmu_schedule_events)(cpuc, n, assign); 2287 if (ret) 2288 return ret; 2289 2290 /* 2291 * copy new assignment, now we know it is possible 2292 * will be used by hw_perf_enable() 2293 */ 2294 memcpy(cpuc->assign, assign, n*sizeof(int)); 2295 2296 cpuc->txn_flags = 0; 2297 perf_pmu_enable(pmu); 2298 return 0; 2299 } 2300 /* 2301 * a fake_cpuc is used to validate event groups. Due to 2302 * the extra reg logic, we need to also allocate a fake 2303 * per_core and per_cpu structure. Otherwise, group events 2304 * using extra reg may conflict without the kernel being 2305 * able to catch this when the last event gets added to 2306 * the group. 2307 */ 2308 static void free_fake_cpuc(struct cpu_hw_events *cpuc) 2309 { 2310 intel_cpuc_finish(cpuc); 2311 kfree(cpuc); 2312 } 2313 2314 static struct cpu_hw_events *allocate_fake_cpuc(struct pmu *event_pmu) 2315 { 2316 struct cpu_hw_events *cpuc; 2317 int cpu; 2318 2319 cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL); 2320 if (!cpuc) 2321 return ERR_PTR(-ENOMEM); 2322 cpuc->is_fake = 1; 2323 2324 if (is_hybrid()) { 2325 struct x86_hybrid_pmu *h_pmu; 2326 2327 h_pmu = hybrid_pmu(event_pmu); 2328 if (cpumask_empty(&h_pmu->supported_cpus)) 2329 goto error; 2330 cpu = cpumask_first(&h_pmu->supported_cpus); 2331 } else 2332 cpu = raw_smp_processor_id(); 2333 cpuc->pmu = event_pmu; 2334 2335 if (intel_cpuc_prepare(cpuc, cpu)) 2336 goto error; 2337 2338 return cpuc; 2339 error: 2340 free_fake_cpuc(cpuc); 2341 return ERR_PTR(-ENOMEM); 2342 } 2343 2344 /* 2345 * validate that we can schedule this event 2346 */ 2347 static int validate_event(struct perf_event *event) 2348 { 2349 struct cpu_hw_events *fake_cpuc; 2350 struct event_constraint *c; 2351 int ret = 0; 2352 2353 fake_cpuc = allocate_fake_cpuc(event->pmu); 2354 if (IS_ERR(fake_cpuc)) 2355 return PTR_ERR(fake_cpuc); 2356 2357 c = x86_pmu.get_event_constraints(fake_cpuc, 0, event); 2358 2359 if (!c || !c->weight) 2360 ret = -EINVAL; 2361 2362 if (x86_pmu.put_event_constraints) 2363 x86_pmu.put_event_constraints(fake_cpuc, event); 2364 2365 free_fake_cpuc(fake_cpuc); 2366 2367 return ret; 2368 } 2369 2370 /* 2371 * validate a single event group 2372 * 2373 * validation include: 2374 * - check events are compatible which each other 2375 * - events do not compete for the same counter 2376 * - number of events <= number of counters 2377 * 2378 * validation ensures the group can be loaded onto the 2379 * PMU if it was the only group available. 2380 */ 2381 static int validate_group(struct perf_event *event) 2382 { 2383 struct perf_event *leader = event->group_leader; 2384 struct cpu_hw_events *fake_cpuc; 2385 int ret = -EINVAL, n; 2386 2387 /* 2388 * Reject events from different hybrid PMUs. 2389 */ 2390 if (is_hybrid()) { 2391 struct perf_event *sibling; 2392 struct pmu *pmu = NULL; 2393 2394 if (is_x86_event(leader)) 2395 pmu = leader->pmu; 2396 2397 for_each_sibling_event(sibling, leader) { 2398 if (!is_x86_event(sibling)) 2399 continue; 2400 if (!pmu) 2401 pmu = sibling->pmu; 2402 else if (pmu != sibling->pmu) 2403 return ret; 2404 } 2405 } 2406 2407 fake_cpuc = allocate_fake_cpuc(event->pmu); 2408 if (IS_ERR(fake_cpuc)) 2409 return PTR_ERR(fake_cpuc); 2410 /* 2411 * the event is not yet connected with its 2412 * siblings therefore we must first collect 2413 * existing siblings, then add the new event 2414 * before we can simulate the scheduling 2415 */ 2416 n = collect_events(fake_cpuc, leader, true); 2417 if (n < 0) 2418 goto out; 2419 2420 fake_cpuc->n_events = n; 2421 n = collect_events(fake_cpuc, event, false); 2422 if (n < 0) 2423 goto out; 2424 2425 fake_cpuc->n_events = 0; 2426 ret = x86_pmu.schedule_events(fake_cpuc, n, NULL); 2427 2428 out: 2429 free_fake_cpuc(fake_cpuc); 2430 return ret; 2431 } 2432 2433 static int x86_pmu_event_init(struct perf_event *event) 2434 { 2435 struct x86_hybrid_pmu *pmu = NULL; 2436 int err; 2437 2438 if ((event->attr.type != event->pmu->type) && 2439 (event->attr.type != PERF_TYPE_HARDWARE) && 2440 (event->attr.type != PERF_TYPE_HW_CACHE)) 2441 return -ENOENT; 2442 2443 if (is_hybrid() && (event->cpu != -1)) { 2444 pmu = hybrid_pmu(event->pmu); 2445 if (!cpumask_test_cpu(event->cpu, &pmu->supported_cpus)) 2446 return -ENOENT; 2447 } 2448 2449 err = __x86_pmu_event_init(event); 2450 if (!err) { 2451 if (event->group_leader != event) 2452 err = validate_group(event); 2453 else 2454 err = validate_event(event); 2455 } 2456 if (err) { 2457 if (event->destroy) 2458 event->destroy(event); 2459 event->destroy = NULL; 2460 } 2461 2462 if (READ_ONCE(x86_pmu.attr_rdpmc) && 2463 !(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS)) 2464 event->hw.flags |= PERF_EVENT_FLAG_USER_READ_CNT; 2465 2466 return err; 2467 } 2468 2469 void perf_clear_dirty_counters(void) 2470 { 2471 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2472 int i; 2473 2474 /* Don't need to clear the assigned counter. */ 2475 for (i = 0; i < cpuc->n_events; i++) 2476 __clear_bit(cpuc->assign[i], cpuc->dirty); 2477 2478 if (bitmap_empty(cpuc->dirty, X86_PMC_IDX_MAX)) 2479 return; 2480 2481 for_each_set_bit(i, cpuc->dirty, X86_PMC_IDX_MAX) { 2482 if (i >= INTEL_PMC_IDX_FIXED) { 2483 /* Metrics and fake events don't have corresponding HW counters. */ 2484 if (!test_bit(i - INTEL_PMC_IDX_FIXED, hybrid(cpuc->pmu, fixed_cntr_mask))) 2485 continue; 2486 2487 wrmsrl(x86_pmu_fixed_ctr_addr(i - INTEL_PMC_IDX_FIXED), 0); 2488 } else { 2489 wrmsrl(x86_pmu_event_addr(i), 0); 2490 } 2491 } 2492 2493 bitmap_zero(cpuc->dirty, X86_PMC_IDX_MAX); 2494 } 2495 2496 static void x86_pmu_event_mapped(struct perf_event *event, struct mm_struct *mm) 2497 { 2498 if (!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)) 2499 return; 2500 2501 /* 2502 * This function relies on not being called concurrently in two 2503 * tasks in the same mm. Otherwise one task could observe 2504 * perf_rdpmc_allowed > 1 and return all the way back to 2505 * userspace with CR4.PCE clear while another task is still 2506 * doing on_each_cpu_mask() to propagate CR4.PCE. 2507 * 2508 * For now, this can't happen because all callers hold mmap_lock 2509 * for write. If this changes, we'll need a different solution. 2510 */ 2511 mmap_assert_write_locked(mm); 2512 2513 if (atomic_inc_return(&mm->context.perf_rdpmc_allowed) == 1) 2514 on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1); 2515 } 2516 2517 static void x86_pmu_event_unmapped(struct perf_event *event, struct mm_struct *mm) 2518 { 2519 if (!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)) 2520 return; 2521 2522 if (atomic_dec_and_test(&mm->context.perf_rdpmc_allowed)) 2523 on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1); 2524 } 2525 2526 static int x86_pmu_event_idx(struct perf_event *event) 2527 { 2528 struct hw_perf_event *hwc = &event->hw; 2529 2530 if (!(hwc->flags & PERF_EVENT_FLAG_USER_READ_CNT)) 2531 return 0; 2532 2533 if (is_metric_idx(hwc->idx)) 2534 return INTEL_PMC_FIXED_RDPMC_METRICS + 1; 2535 else 2536 return hwc->event_base_rdpmc + 1; 2537 } 2538 2539 static ssize_t get_attr_rdpmc(struct device *cdev, 2540 struct device_attribute *attr, 2541 char *buf) 2542 { 2543 return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc); 2544 } 2545 2546 static ssize_t set_attr_rdpmc(struct device *cdev, 2547 struct device_attribute *attr, 2548 const char *buf, size_t count) 2549 { 2550 static DEFINE_MUTEX(rdpmc_mutex); 2551 unsigned long val; 2552 ssize_t ret; 2553 2554 ret = kstrtoul(buf, 0, &val); 2555 if (ret) 2556 return ret; 2557 2558 if (val > 2) 2559 return -EINVAL; 2560 2561 if (x86_pmu.attr_rdpmc_broken) 2562 return -ENOTSUPP; 2563 2564 guard(mutex)(&rdpmc_mutex); 2565 2566 if (val != x86_pmu.attr_rdpmc) { 2567 /* 2568 * Changing into or out of never available or always available, 2569 * aka perf-event-bypassing mode. This path is extremely slow, 2570 * but only root can trigger it, so it's okay. 2571 */ 2572 if (val == 0) 2573 static_branch_inc(&rdpmc_never_available_key); 2574 else if (x86_pmu.attr_rdpmc == 0) 2575 static_branch_dec(&rdpmc_never_available_key); 2576 2577 if (val == 2) 2578 static_branch_inc(&rdpmc_always_available_key); 2579 else if (x86_pmu.attr_rdpmc == 2) 2580 static_branch_dec(&rdpmc_always_available_key); 2581 2582 on_each_cpu(cr4_update_pce, NULL, 1); 2583 x86_pmu.attr_rdpmc = val; 2584 } 2585 2586 return count; 2587 } 2588 2589 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc); 2590 2591 static struct attribute *x86_pmu_attrs[] = { 2592 &dev_attr_rdpmc.attr, 2593 NULL, 2594 }; 2595 2596 static struct attribute_group x86_pmu_attr_group __ro_after_init = { 2597 .attrs = x86_pmu_attrs, 2598 }; 2599 2600 static ssize_t max_precise_show(struct device *cdev, 2601 struct device_attribute *attr, 2602 char *buf) 2603 { 2604 return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu_max_precise()); 2605 } 2606 2607 static DEVICE_ATTR_RO(max_precise); 2608 2609 static struct attribute *x86_pmu_caps_attrs[] = { 2610 &dev_attr_max_precise.attr, 2611 NULL 2612 }; 2613 2614 static struct attribute_group x86_pmu_caps_group __ro_after_init = { 2615 .name = "caps", 2616 .attrs = x86_pmu_caps_attrs, 2617 }; 2618 2619 static const struct attribute_group *x86_pmu_attr_groups[] = { 2620 &x86_pmu_attr_group, 2621 &x86_pmu_format_group, 2622 &x86_pmu_events_group, 2623 &x86_pmu_caps_group, 2624 NULL, 2625 }; 2626 2627 static void x86_pmu_sched_task(struct perf_event_pmu_context *pmu_ctx, bool sched_in) 2628 { 2629 static_call_cond(x86_pmu_sched_task)(pmu_ctx, sched_in); 2630 } 2631 2632 static void x86_pmu_swap_task_ctx(struct perf_event_pmu_context *prev_epc, 2633 struct perf_event_pmu_context *next_epc) 2634 { 2635 static_call_cond(x86_pmu_swap_task_ctx)(prev_epc, next_epc); 2636 } 2637 2638 void perf_check_microcode(void) 2639 { 2640 if (x86_pmu.check_microcode) 2641 x86_pmu.check_microcode(); 2642 } 2643 2644 static int x86_pmu_check_period(struct perf_event *event, u64 value) 2645 { 2646 if (x86_pmu.check_period && x86_pmu.check_period(event, value)) 2647 return -EINVAL; 2648 2649 if (value && x86_pmu.limit_period) { 2650 s64 left = value; 2651 x86_pmu.limit_period(event, &left); 2652 if (left > value) 2653 return -EINVAL; 2654 } 2655 2656 return 0; 2657 } 2658 2659 static int x86_pmu_aux_output_match(struct perf_event *event) 2660 { 2661 if (!(pmu.capabilities & PERF_PMU_CAP_AUX_OUTPUT)) 2662 return 0; 2663 2664 if (x86_pmu.aux_output_match) 2665 return x86_pmu.aux_output_match(event); 2666 2667 return 0; 2668 } 2669 2670 static bool x86_pmu_filter(struct pmu *pmu, int cpu) 2671 { 2672 bool ret = false; 2673 2674 static_call_cond(x86_pmu_filter)(pmu, cpu, &ret); 2675 2676 return ret; 2677 } 2678 2679 static struct pmu pmu = { 2680 .pmu_enable = x86_pmu_enable, 2681 .pmu_disable = x86_pmu_disable, 2682 2683 .attr_groups = x86_pmu_attr_groups, 2684 2685 .event_init = x86_pmu_event_init, 2686 2687 .event_mapped = x86_pmu_event_mapped, 2688 .event_unmapped = x86_pmu_event_unmapped, 2689 2690 .add = x86_pmu_add, 2691 .del = x86_pmu_del, 2692 .start = x86_pmu_start, 2693 .stop = x86_pmu_stop, 2694 .read = x86_pmu_read, 2695 2696 .start_txn = x86_pmu_start_txn, 2697 .cancel_txn = x86_pmu_cancel_txn, 2698 .commit_txn = x86_pmu_commit_txn, 2699 2700 .event_idx = x86_pmu_event_idx, 2701 .sched_task = x86_pmu_sched_task, 2702 .swap_task_ctx = x86_pmu_swap_task_ctx, 2703 .check_period = x86_pmu_check_period, 2704 2705 .aux_output_match = x86_pmu_aux_output_match, 2706 2707 .filter = x86_pmu_filter, 2708 }; 2709 2710 void arch_perf_update_userpage(struct perf_event *event, 2711 struct perf_event_mmap_page *userpg, u64 now) 2712 { 2713 struct cyc2ns_data data; 2714 u64 offset; 2715 2716 userpg->cap_user_time = 0; 2717 userpg->cap_user_time_zero = 0; 2718 userpg->cap_user_rdpmc = 2719 !!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT); 2720 userpg->pmc_width = x86_pmu.cntval_bits; 2721 2722 if (!using_native_sched_clock() || !sched_clock_stable()) 2723 return; 2724 2725 cyc2ns_read_begin(&data); 2726 2727 offset = data.cyc2ns_offset + __sched_clock_offset; 2728 2729 /* 2730 * Internal timekeeping for enabled/running/stopped times 2731 * is always in the local_clock domain. 2732 */ 2733 userpg->cap_user_time = 1; 2734 userpg->time_mult = data.cyc2ns_mul; 2735 userpg->time_shift = data.cyc2ns_shift; 2736 userpg->time_offset = offset - now; 2737 2738 /* 2739 * cap_user_time_zero doesn't make sense when we're using a different 2740 * time base for the records. 2741 */ 2742 if (!event->attr.use_clockid) { 2743 userpg->cap_user_time_zero = 1; 2744 userpg->time_zero = offset; 2745 } 2746 2747 cyc2ns_read_end(); 2748 } 2749 2750 /* 2751 * Determine whether the regs were taken from an irq/exception handler rather 2752 * than from perf_arch_fetch_caller_regs(). 2753 */ 2754 static bool perf_hw_regs(struct pt_regs *regs) 2755 { 2756 return regs->flags & X86_EFLAGS_FIXED; 2757 } 2758 2759 void 2760 perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs) 2761 { 2762 struct unwind_state state; 2763 unsigned long addr; 2764 2765 if (perf_guest_state()) { 2766 /* TODO: We don't support guest os callchain now */ 2767 return; 2768 } 2769 2770 if (perf_callchain_store(entry, regs->ip)) 2771 return; 2772 2773 if (perf_hw_regs(regs)) 2774 unwind_start(&state, current, regs, NULL); 2775 else 2776 unwind_start(&state, current, NULL, (void *)regs->sp); 2777 2778 for (; !unwind_done(&state); unwind_next_frame(&state)) { 2779 addr = unwind_get_return_address(&state); 2780 if (!addr || perf_callchain_store(entry, addr)) 2781 return; 2782 } 2783 } 2784 2785 static inline int 2786 valid_user_frame(const void __user *fp, unsigned long size) 2787 { 2788 return __access_ok(fp, size); 2789 } 2790 2791 static unsigned long get_segment_base(unsigned int segment) 2792 { 2793 struct desc_struct *desc; 2794 unsigned int idx = segment >> 3; 2795 2796 if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) { 2797 #ifdef CONFIG_MODIFY_LDT_SYSCALL 2798 struct ldt_struct *ldt; 2799 2800 /* IRQs are off, so this synchronizes with smp_store_release */ 2801 ldt = READ_ONCE(current->active_mm->context.ldt); 2802 if (!ldt || idx >= ldt->nr_entries) 2803 return 0; 2804 2805 desc = &ldt->entries[idx]; 2806 #else 2807 return 0; 2808 #endif 2809 } else { 2810 if (idx >= GDT_ENTRIES) 2811 return 0; 2812 2813 desc = raw_cpu_ptr(gdt_page.gdt) + idx; 2814 } 2815 2816 return get_desc_base(desc); 2817 } 2818 2819 #ifdef CONFIG_IA32_EMULATION 2820 2821 #include <linux/compat.h> 2822 2823 static inline int 2824 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry) 2825 { 2826 /* 32-bit process in 64-bit kernel. */ 2827 unsigned long ss_base, cs_base; 2828 struct stack_frame_ia32 frame; 2829 const struct stack_frame_ia32 __user *fp; 2830 2831 if (user_64bit_mode(regs)) 2832 return 0; 2833 2834 cs_base = get_segment_base(regs->cs); 2835 ss_base = get_segment_base(regs->ss); 2836 2837 fp = compat_ptr(ss_base + regs->bp); 2838 pagefault_disable(); 2839 while (entry->nr < entry->max_stack) { 2840 if (!valid_user_frame(fp, sizeof(frame))) 2841 break; 2842 2843 if (__get_user(frame.next_frame, &fp->next_frame)) 2844 break; 2845 if (__get_user(frame.return_address, &fp->return_address)) 2846 break; 2847 2848 perf_callchain_store(entry, cs_base + frame.return_address); 2849 fp = compat_ptr(ss_base + frame.next_frame); 2850 } 2851 pagefault_enable(); 2852 return 1; 2853 } 2854 #else 2855 static inline int 2856 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry) 2857 { 2858 return 0; 2859 } 2860 #endif 2861 2862 void 2863 perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs) 2864 { 2865 struct stack_frame frame; 2866 const struct stack_frame __user *fp; 2867 2868 if (perf_guest_state()) { 2869 /* TODO: We don't support guest os callchain now */ 2870 return; 2871 } 2872 2873 /* 2874 * We don't know what to do with VM86 stacks.. ignore them for now. 2875 */ 2876 if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM)) 2877 return; 2878 2879 fp = (void __user *)regs->bp; 2880 2881 perf_callchain_store(entry, regs->ip); 2882 2883 if (!nmi_uaccess_okay()) 2884 return; 2885 2886 if (perf_callchain_user32(regs, entry)) 2887 return; 2888 2889 pagefault_disable(); 2890 while (entry->nr < entry->max_stack) { 2891 if (!valid_user_frame(fp, sizeof(frame))) 2892 break; 2893 2894 if (__get_user(frame.next_frame, &fp->next_frame)) 2895 break; 2896 if (__get_user(frame.return_address, &fp->return_address)) 2897 break; 2898 2899 perf_callchain_store(entry, frame.return_address); 2900 fp = (void __user *)frame.next_frame; 2901 } 2902 pagefault_enable(); 2903 } 2904 2905 /* 2906 * Deal with code segment offsets for the various execution modes: 2907 * 2908 * VM86 - the good olde 16 bit days, where the linear address is 2909 * 20 bits and we use regs->ip + 0x10 * regs->cs. 2910 * 2911 * IA32 - Where we need to look at GDT/LDT segment descriptor tables 2912 * to figure out what the 32bit base address is. 2913 * 2914 * X32 - has TIF_X32 set, but is running in x86_64 2915 * 2916 * X86_64 - CS,DS,SS,ES are all zero based. 2917 */ 2918 static unsigned long code_segment_base(struct pt_regs *regs) 2919 { 2920 /* 2921 * For IA32 we look at the GDT/LDT segment base to convert the 2922 * effective IP to a linear address. 2923 */ 2924 2925 #ifdef CONFIG_X86_32 2926 /* 2927 * If we are in VM86 mode, add the segment offset to convert to a 2928 * linear address. 2929 */ 2930 if (regs->flags & X86_VM_MASK) 2931 return 0x10 * regs->cs; 2932 2933 if (user_mode(regs) && regs->cs != __USER_CS) 2934 return get_segment_base(regs->cs); 2935 #else 2936 if (user_mode(regs) && !user_64bit_mode(regs) && 2937 regs->cs != __USER32_CS) 2938 return get_segment_base(regs->cs); 2939 #endif 2940 return 0; 2941 } 2942 2943 unsigned long perf_instruction_pointer(struct pt_regs *regs) 2944 { 2945 if (perf_guest_state()) 2946 return perf_guest_get_ip(); 2947 2948 return regs->ip + code_segment_base(regs); 2949 } 2950 2951 unsigned long perf_misc_flags(struct pt_regs *regs) 2952 { 2953 unsigned int guest_state = perf_guest_state(); 2954 int misc = 0; 2955 2956 if (guest_state) { 2957 if (guest_state & PERF_GUEST_USER) 2958 misc |= PERF_RECORD_MISC_GUEST_USER; 2959 else 2960 misc |= PERF_RECORD_MISC_GUEST_KERNEL; 2961 } else { 2962 if (user_mode(regs)) 2963 misc |= PERF_RECORD_MISC_USER; 2964 else 2965 misc |= PERF_RECORD_MISC_KERNEL; 2966 } 2967 2968 if (regs->flags & PERF_EFLAGS_EXACT) 2969 misc |= PERF_RECORD_MISC_EXACT_IP; 2970 2971 return misc; 2972 } 2973 2974 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap) 2975 { 2976 /* This API doesn't currently support enumerating hybrid PMUs. */ 2977 if (WARN_ON_ONCE(cpu_feature_enabled(X86_FEATURE_HYBRID_CPU)) || 2978 !x86_pmu_initialized()) { 2979 memset(cap, 0, sizeof(*cap)); 2980 return; 2981 } 2982 2983 /* 2984 * Note, hybrid CPU models get tracked as having hybrid PMUs even when 2985 * all E-cores are disabled via BIOS. When E-cores are disabled, the 2986 * base PMU holds the correct number of counters for P-cores. 2987 */ 2988 cap->version = x86_pmu.version; 2989 cap->num_counters_gp = x86_pmu_num_counters(NULL); 2990 cap->num_counters_fixed = x86_pmu_num_counters_fixed(NULL); 2991 cap->bit_width_gp = x86_pmu.cntval_bits; 2992 cap->bit_width_fixed = x86_pmu.cntval_bits; 2993 cap->events_mask = (unsigned int)x86_pmu.events_maskl; 2994 cap->events_mask_len = x86_pmu.events_mask_len; 2995 cap->pebs_ept = x86_pmu.pebs_ept; 2996 } 2997 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability); 2998 2999 u64 perf_get_hw_event_config(int hw_event) 3000 { 3001 int max = x86_pmu.max_events; 3002 3003 if (hw_event < max) 3004 return x86_pmu.event_map(array_index_nospec(hw_event, max)); 3005 3006 return 0; 3007 } 3008 EXPORT_SYMBOL_GPL(perf_get_hw_event_config); 3009