xref: /linux/arch/x86/events/core.c (revision 1f20a5769446a1acae67ac9e63d07a594829a789)
1 /*
2  * Performance events x86 architecture code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2009 Jaswinder Singh Rajput
7  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
9  *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10  *  Copyright (C) 2009 Google, Inc., Stephane Eranian
11  *
12  *  For licencing details see kernel-base/COPYING
13  */
14 
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/export.h>
21 #include <linux/init.h>
22 #include <linux/kdebug.h>
23 #include <linux/sched/mm.h>
24 #include <linux/sched/clock.h>
25 #include <linux/uaccess.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/bitops.h>
29 #include <linux/device.h>
30 #include <linux/nospec.h>
31 #include <linux/static_call.h>
32 
33 #include <asm/apic.h>
34 #include <asm/stacktrace.h>
35 #include <asm/nmi.h>
36 #include <asm/smp.h>
37 #include <asm/alternative.h>
38 #include <asm/mmu_context.h>
39 #include <asm/tlbflush.h>
40 #include <asm/timer.h>
41 #include <asm/desc.h>
42 #include <asm/ldt.h>
43 #include <asm/unwind.h>
44 
45 #include "perf_event.h"
46 
47 struct x86_pmu x86_pmu __read_mostly;
48 static struct pmu pmu;
49 
50 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
51 	.enabled = 1,
52 	.pmu = &pmu,
53 };
54 
55 DEFINE_STATIC_KEY_FALSE(rdpmc_never_available_key);
56 DEFINE_STATIC_KEY_FALSE(rdpmc_always_available_key);
57 DEFINE_STATIC_KEY_FALSE(perf_is_hybrid);
58 
59 /*
60  * This here uses DEFINE_STATIC_CALL_NULL() to get a static_call defined
61  * from just a typename, as opposed to an actual function.
62  */
63 DEFINE_STATIC_CALL_NULL(x86_pmu_handle_irq,  *x86_pmu.handle_irq);
64 DEFINE_STATIC_CALL_NULL(x86_pmu_disable_all, *x86_pmu.disable_all);
65 DEFINE_STATIC_CALL_NULL(x86_pmu_enable_all,  *x86_pmu.enable_all);
66 DEFINE_STATIC_CALL_NULL(x86_pmu_enable,	     *x86_pmu.enable);
67 DEFINE_STATIC_CALL_NULL(x86_pmu_disable,     *x86_pmu.disable);
68 
69 DEFINE_STATIC_CALL_NULL(x86_pmu_assign, *x86_pmu.assign);
70 
71 DEFINE_STATIC_CALL_NULL(x86_pmu_add,  *x86_pmu.add);
72 DEFINE_STATIC_CALL_NULL(x86_pmu_del,  *x86_pmu.del);
73 DEFINE_STATIC_CALL_NULL(x86_pmu_read, *x86_pmu.read);
74 
75 DEFINE_STATIC_CALL_NULL(x86_pmu_set_period,   *x86_pmu.set_period);
76 DEFINE_STATIC_CALL_NULL(x86_pmu_update,       *x86_pmu.update);
77 DEFINE_STATIC_CALL_NULL(x86_pmu_limit_period, *x86_pmu.limit_period);
78 
79 DEFINE_STATIC_CALL_NULL(x86_pmu_schedule_events,       *x86_pmu.schedule_events);
80 DEFINE_STATIC_CALL_NULL(x86_pmu_get_event_constraints, *x86_pmu.get_event_constraints);
81 DEFINE_STATIC_CALL_NULL(x86_pmu_put_event_constraints, *x86_pmu.put_event_constraints);
82 
83 DEFINE_STATIC_CALL_NULL(x86_pmu_start_scheduling,  *x86_pmu.start_scheduling);
84 DEFINE_STATIC_CALL_NULL(x86_pmu_commit_scheduling, *x86_pmu.commit_scheduling);
85 DEFINE_STATIC_CALL_NULL(x86_pmu_stop_scheduling,   *x86_pmu.stop_scheduling);
86 
87 DEFINE_STATIC_CALL_NULL(x86_pmu_sched_task,    *x86_pmu.sched_task);
88 DEFINE_STATIC_CALL_NULL(x86_pmu_swap_task_ctx, *x86_pmu.swap_task_ctx);
89 
90 DEFINE_STATIC_CALL_NULL(x86_pmu_drain_pebs,   *x86_pmu.drain_pebs);
91 DEFINE_STATIC_CALL_NULL(x86_pmu_pebs_aliases, *x86_pmu.pebs_aliases);
92 
93 DEFINE_STATIC_CALL_NULL(x86_pmu_filter, *x86_pmu.filter);
94 
95 /*
96  * This one is magic, it will get called even when PMU init fails (because
97  * there is no PMU), in which case it should simply return NULL.
98  */
99 DEFINE_STATIC_CALL_RET0(x86_pmu_guest_get_msrs, *x86_pmu.guest_get_msrs);
100 
101 u64 __read_mostly hw_cache_event_ids
102 				[PERF_COUNT_HW_CACHE_MAX]
103 				[PERF_COUNT_HW_CACHE_OP_MAX]
104 				[PERF_COUNT_HW_CACHE_RESULT_MAX];
105 u64 __read_mostly hw_cache_extra_regs
106 				[PERF_COUNT_HW_CACHE_MAX]
107 				[PERF_COUNT_HW_CACHE_OP_MAX]
108 				[PERF_COUNT_HW_CACHE_RESULT_MAX];
109 
110 /*
111  * Propagate event elapsed time into the generic event.
112  * Can only be executed on the CPU where the event is active.
113  * Returns the delta events processed.
114  */
115 u64 x86_perf_event_update(struct perf_event *event)
116 {
117 	struct hw_perf_event *hwc = &event->hw;
118 	int shift = 64 - x86_pmu.cntval_bits;
119 	u64 prev_raw_count, new_raw_count;
120 	u64 delta;
121 
122 	if (unlikely(!hwc->event_base))
123 		return 0;
124 
125 	/*
126 	 * Careful: an NMI might modify the previous event value.
127 	 *
128 	 * Our tactic to handle this is to first atomically read and
129 	 * exchange a new raw count - then add that new-prev delta
130 	 * count to the generic event atomically:
131 	 */
132 	prev_raw_count = local64_read(&hwc->prev_count);
133 	do {
134 		rdpmcl(hwc->event_base_rdpmc, new_raw_count);
135 	} while (!local64_try_cmpxchg(&hwc->prev_count,
136 				      &prev_raw_count, new_raw_count));
137 
138 	/*
139 	 * Now we have the new raw value and have updated the prev
140 	 * timestamp already. We can now calculate the elapsed delta
141 	 * (event-)time and add that to the generic event.
142 	 *
143 	 * Careful, not all hw sign-extends above the physical width
144 	 * of the count.
145 	 */
146 	delta = (new_raw_count << shift) - (prev_raw_count << shift);
147 	delta >>= shift;
148 
149 	local64_add(delta, &event->count);
150 	local64_sub(delta, &hwc->period_left);
151 
152 	return new_raw_count;
153 }
154 
155 /*
156  * Find and validate any extra registers to set up.
157  */
158 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
159 {
160 	struct extra_reg *extra_regs = hybrid(event->pmu, extra_regs);
161 	struct hw_perf_event_extra *reg;
162 	struct extra_reg *er;
163 
164 	reg = &event->hw.extra_reg;
165 
166 	if (!extra_regs)
167 		return 0;
168 
169 	for (er = extra_regs; er->msr; er++) {
170 		if (er->event != (config & er->config_mask))
171 			continue;
172 		if (event->attr.config1 & ~er->valid_mask)
173 			return -EINVAL;
174 		/* Check if the extra msrs can be safely accessed*/
175 		if (!er->extra_msr_access)
176 			return -ENXIO;
177 
178 		reg->idx = er->idx;
179 		reg->config = event->attr.config1;
180 		reg->reg = er->msr;
181 		break;
182 	}
183 	return 0;
184 }
185 
186 static atomic_t active_events;
187 static atomic_t pmc_refcount;
188 static DEFINE_MUTEX(pmc_reserve_mutex);
189 
190 #ifdef CONFIG_X86_LOCAL_APIC
191 
192 static inline int get_possible_num_counters(void)
193 {
194 	int i, num_counters = x86_pmu.num_counters;
195 
196 	if (!is_hybrid())
197 		return num_counters;
198 
199 	for (i = 0; i < x86_pmu.num_hybrid_pmus; i++)
200 		num_counters = max_t(int, num_counters, x86_pmu.hybrid_pmu[i].num_counters);
201 
202 	return num_counters;
203 }
204 
205 static bool reserve_pmc_hardware(void)
206 {
207 	int i, num_counters = get_possible_num_counters();
208 
209 	for (i = 0; i < num_counters; i++) {
210 		if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
211 			goto perfctr_fail;
212 	}
213 
214 	for (i = 0; i < num_counters; i++) {
215 		if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
216 			goto eventsel_fail;
217 	}
218 
219 	return true;
220 
221 eventsel_fail:
222 	for (i--; i >= 0; i--)
223 		release_evntsel_nmi(x86_pmu_config_addr(i));
224 
225 	i = num_counters;
226 
227 perfctr_fail:
228 	for (i--; i >= 0; i--)
229 		release_perfctr_nmi(x86_pmu_event_addr(i));
230 
231 	return false;
232 }
233 
234 static void release_pmc_hardware(void)
235 {
236 	int i, num_counters = get_possible_num_counters();
237 
238 	for (i = 0; i < num_counters; i++) {
239 		release_perfctr_nmi(x86_pmu_event_addr(i));
240 		release_evntsel_nmi(x86_pmu_config_addr(i));
241 	}
242 }
243 
244 #else
245 
246 static bool reserve_pmc_hardware(void) { return true; }
247 static void release_pmc_hardware(void) {}
248 
249 #endif
250 
251 bool check_hw_exists(struct pmu *pmu, int num_counters, int num_counters_fixed)
252 {
253 	u64 val, val_fail = -1, val_new= ~0;
254 	int i, reg, reg_fail = -1, ret = 0;
255 	int bios_fail = 0;
256 	int reg_safe = -1;
257 
258 	/*
259 	 * Check to see if the BIOS enabled any of the counters, if so
260 	 * complain and bail.
261 	 */
262 	for (i = 0; i < num_counters; i++) {
263 		reg = x86_pmu_config_addr(i);
264 		ret = rdmsrl_safe(reg, &val);
265 		if (ret)
266 			goto msr_fail;
267 		if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
268 			bios_fail = 1;
269 			val_fail = val;
270 			reg_fail = reg;
271 		} else {
272 			reg_safe = i;
273 		}
274 	}
275 
276 	if (num_counters_fixed) {
277 		reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
278 		ret = rdmsrl_safe(reg, &val);
279 		if (ret)
280 			goto msr_fail;
281 		for (i = 0; i < num_counters_fixed; i++) {
282 			if (fixed_counter_disabled(i, pmu))
283 				continue;
284 			if (val & (0x03ULL << i*4)) {
285 				bios_fail = 1;
286 				val_fail = val;
287 				reg_fail = reg;
288 			}
289 		}
290 	}
291 
292 	/*
293 	 * If all the counters are enabled, the below test will always
294 	 * fail.  The tools will also become useless in this scenario.
295 	 * Just fail and disable the hardware counters.
296 	 */
297 
298 	if (reg_safe == -1) {
299 		reg = reg_safe;
300 		goto msr_fail;
301 	}
302 
303 	/*
304 	 * Read the current value, change it and read it back to see if it
305 	 * matches, this is needed to detect certain hardware emulators
306 	 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
307 	 */
308 	reg = x86_pmu_event_addr(reg_safe);
309 	if (rdmsrl_safe(reg, &val))
310 		goto msr_fail;
311 	val ^= 0xffffUL;
312 	ret = wrmsrl_safe(reg, val);
313 	ret |= rdmsrl_safe(reg, &val_new);
314 	if (ret || val != val_new)
315 		goto msr_fail;
316 
317 	/*
318 	 * We still allow the PMU driver to operate:
319 	 */
320 	if (bios_fail) {
321 		pr_cont("Broken BIOS detected, complain to your hardware vendor.\n");
322 		pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n",
323 			      reg_fail, val_fail);
324 	}
325 
326 	return true;
327 
328 msr_fail:
329 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
330 		pr_cont("PMU not available due to virtualization, using software events only.\n");
331 	} else {
332 		pr_cont("Broken PMU hardware detected, using software events only.\n");
333 		pr_err("Failed to access perfctr msr (MSR %x is %Lx)\n",
334 		       reg, val_new);
335 	}
336 
337 	return false;
338 }
339 
340 static void hw_perf_event_destroy(struct perf_event *event)
341 {
342 	x86_release_hardware();
343 	atomic_dec(&active_events);
344 }
345 
346 void hw_perf_lbr_event_destroy(struct perf_event *event)
347 {
348 	hw_perf_event_destroy(event);
349 
350 	/* undo the lbr/bts event accounting */
351 	x86_del_exclusive(x86_lbr_exclusive_lbr);
352 }
353 
354 static inline int x86_pmu_initialized(void)
355 {
356 	return x86_pmu.handle_irq != NULL;
357 }
358 
359 static inline int
360 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
361 {
362 	struct perf_event_attr *attr = &event->attr;
363 	unsigned int cache_type, cache_op, cache_result;
364 	u64 config, val;
365 
366 	config = attr->config;
367 
368 	cache_type = (config >> 0) & 0xff;
369 	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
370 		return -EINVAL;
371 	cache_type = array_index_nospec(cache_type, PERF_COUNT_HW_CACHE_MAX);
372 
373 	cache_op = (config >>  8) & 0xff;
374 	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
375 		return -EINVAL;
376 	cache_op = array_index_nospec(cache_op, PERF_COUNT_HW_CACHE_OP_MAX);
377 
378 	cache_result = (config >> 16) & 0xff;
379 	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
380 		return -EINVAL;
381 	cache_result = array_index_nospec(cache_result, PERF_COUNT_HW_CACHE_RESULT_MAX);
382 
383 	val = hybrid_var(event->pmu, hw_cache_event_ids)[cache_type][cache_op][cache_result];
384 	if (val == 0)
385 		return -ENOENT;
386 
387 	if (val == -1)
388 		return -EINVAL;
389 
390 	hwc->config |= val;
391 	attr->config1 = hybrid_var(event->pmu, hw_cache_extra_regs)[cache_type][cache_op][cache_result];
392 	return x86_pmu_extra_regs(val, event);
393 }
394 
395 int x86_reserve_hardware(void)
396 {
397 	int err = 0;
398 
399 	if (!atomic_inc_not_zero(&pmc_refcount)) {
400 		mutex_lock(&pmc_reserve_mutex);
401 		if (atomic_read(&pmc_refcount) == 0) {
402 			if (!reserve_pmc_hardware()) {
403 				err = -EBUSY;
404 			} else {
405 				reserve_ds_buffers();
406 				reserve_lbr_buffers();
407 			}
408 		}
409 		if (!err)
410 			atomic_inc(&pmc_refcount);
411 		mutex_unlock(&pmc_reserve_mutex);
412 	}
413 
414 	return err;
415 }
416 
417 void x86_release_hardware(void)
418 {
419 	if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) {
420 		release_pmc_hardware();
421 		release_ds_buffers();
422 		release_lbr_buffers();
423 		mutex_unlock(&pmc_reserve_mutex);
424 	}
425 }
426 
427 /*
428  * Check if we can create event of a certain type (that no conflicting events
429  * are present).
430  */
431 int x86_add_exclusive(unsigned int what)
432 {
433 	int i;
434 
435 	/*
436 	 * When lbr_pt_coexist we allow PT to coexist with either LBR or BTS.
437 	 * LBR and BTS are still mutually exclusive.
438 	 */
439 	if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
440 		goto out;
441 
442 	if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) {
443 		mutex_lock(&pmc_reserve_mutex);
444 		for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) {
445 			if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
446 				goto fail_unlock;
447 		}
448 		atomic_inc(&x86_pmu.lbr_exclusive[what]);
449 		mutex_unlock(&pmc_reserve_mutex);
450 	}
451 
452 out:
453 	atomic_inc(&active_events);
454 	return 0;
455 
456 fail_unlock:
457 	mutex_unlock(&pmc_reserve_mutex);
458 	return -EBUSY;
459 }
460 
461 void x86_del_exclusive(unsigned int what)
462 {
463 	atomic_dec(&active_events);
464 
465 	/*
466 	 * See the comment in x86_add_exclusive().
467 	 */
468 	if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
469 		return;
470 
471 	atomic_dec(&x86_pmu.lbr_exclusive[what]);
472 }
473 
474 int x86_setup_perfctr(struct perf_event *event)
475 {
476 	struct perf_event_attr *attr = &event->attr;
477 	struct hw_perf_event *hwc = &event->hw;
478 	u64 config;
479 
480 	if (!is_sampling_event(event)) {
481 		hwc->sample_period = x86_pmu.max_period;
482 		hwc->last_period = hwc->sample_period;
483 		local64_set(&hwc->period_left, hwc->sample_period);
484 	}
485 
486 	if (attr->type == event->pmu->type)
487 		return x86_pmu_extra_regs(event->attr.config, event);
488 
489 	if (attr->type == PERF_TYPE_HW_CACHE)
490 		return set_ext_hw_attr(hwc, event);
491 
492 	if (attr->config >= x86_pmu.max_events)
493 		return -EINVAL;
494 
495 	attr->config = array_index_nospec((unsigned long)attr->config, x86_pmu.max_events);
496 
497 	/*
498 	 * The generic map:
499 	 */
500 	config = x86_pmu.event_map(attr->config);
501 
502 	if (config == 0)
503 		return -ENOENT;
504 
505 	if (config == -1LL)
506 		return -EINVAL;
507 
508 	hwc->config |= config;
509 
510 	return 0;
511 }
512 
513 /*
514  * check that branch_sample_type is compatible with
515  * settings needed for precise_ip > 1 which implies
516  * using the LBR to capture ALL taken branches at the
517  * priv levels of the measurement
518  */
519 static inline int precise_br_compat(struct perf_event *event)
520 {
521 	u64 m = event->attr.branch_sample_type;
522 	u64 b = 0;
523 
524 	/* must capture all branches */
525 	if (!(m & PERF_SAMPLE_BRANCH_ANY))
526 		return 0;
527 
528 	m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
529 
530 	if (!event->attr.exclude_user)
531 		b |= PERF_SAMPLE_BRANCH_USER;
532 
533 	if (!event->attr.exclude_kernel)
534 		b |= PERF_SAMPLE_BRANCH_KERNEL;
535 
536 	/*
537 	 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
538 	 */
539 
540 	return m == b;
541 }
542 
543 int x86_pmu_max_precise(void)
544 {
545 	int precise = 0;
546 
547 	/* Support for constant skid */
548 	if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
549 		precise++;
550 
551 		/* Support for IP fixup */
552 		if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
553 			precise++;
554 
555 		if (x86_pmu.pebs_prec_dist)
556 			precise++;
557 	}
558 	return precise;
559 }
560 
561 int x86_pmu_hw_config(struct perf_event *event)
562 {
563 	if (event->attr.precise_ip) {
564 		int precise = x86_pmu_max_precise();
565 
566 		if (event->attr.precise_ip > precise)
567 			return -EOPNOTSUPP;
568 
569 		/* There's no sense in having PEBS for non sampling events: */
570 		if (!is_sampling_event(event))
571 			return -EINVAL;
572 	}
573 	/*
574 	 * check that PEBS LBR correction does not conflict with
575 	 * whatever the user is asking with attr->branch_sample_type
576 	 */
577 	if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
578 		u64 *br_type = &event->attr.branch_sample_type;
579 
580 		if (has_branch_stack(event)) {
581 			if (!precise_br_compat(event))
582 				return -EOPNOTSUPP;
583 
584 			/* branch_sample_type is compatible */
585 
586 		} else {
587 			/*
588 			 * user did not specify  branch_sample_type
589 			 *
590 			 * For PEBS fixups, we capture all
591 			 * the branches at the priv level of the
592 			 * event.
593 			 */
594 			*br_type = PERF_SAMPLE_BRANCH_ANY;
595 
596 			if (!event->attr.exclude_user)
597 				*br_type |= PERF_SAMPLE_BRANCH_USER;
598 
599 			if (!event->attr.exclude_kernel)
600 				*br_type |= PERF_SAMPLE_BRANCH_KERNEL;
601 		}
602 	}
603 
604 	if (branch_sample_call_stack(event))
605 		event->attach_state |= PERF_ATTACH_TASK_DATA;
606 
607 	/*
608 	 * Generate PMC IRQs:
609 	 * (keep 'enabled' bit clear for now)
610 	 */
611 	event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
612 
613 	/*
614 	 * Count user and OS events unless requested not to
615 	 */
616 	if (!event->attr.exclude_user)
617 		event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
618 	if (!event->attr.exclude_kernel)
619 		event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
620 
621 	if (event->attr.type == event->pmu->type)
622 		event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
623 
624 	if (event->attr.sample_period && x86_pmu.limit_period) {
625 		s64 left = event->attr.sample_period;
626 		x86_pmu.limit_period(event, &left);
627 		if (left > event->attr.sample_period)
628 			return -EINVAL;
629 	}
630 
631 	/* sample_regs_user never support XMM registers */
632 	if (unlikely(event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK))
633 		return -EINVAL;
634 	/*
635 	 * Besides the general purpose registers, XMM registers may
636 	 * be collected in PEBS on some platforms, e.g. Icelake
637 	 */
638 	if (unlikely(event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK)) {
639 		if (!(event->pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS))
640 			return -EINVAL;
641 
642 		if (!event->attr.precise_ip)
643 			return -EINVAL;
644 	}
645 
646 	return x86_setup_perfctr(event);
647 }
648 
649 /*
650  * Setup the hardware configuration for a given attr_type
651  */
652 static int __x86_pmu_event_init(struct perf_event *event)
653 {
654 	int err;
655 
656 	if (!x86_pmu_initialized())
657 		return -ENODEV;
658 
659 	err = x86_reserve_hardware();
660 	if (err)
661 		return err;
662 
663 	atomic_inc(&active_events);
664 	event->destroy = hw_perf_event_destroy;
665 
666 	event->hw.idx = -1;
667 	event->hw.last_cpu = -1;
668 	event->hw.last_tag = ~0ULL;
669 
670 	/* mark unused */
671 	event->hw.extra_reg.idx = EXTRA_REG_NONE;
672 	event->hw.branch_reg.idx = EXTRA_REG_NONE;
673 
674 	return x86_pmu.hw_config(event);
675 }
676 
677 void x86_pmu_disable_all(void)
678 {
679 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
680 	int idx;
681 
682 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
683 		struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
684 		u64 val;
685 
686 		if (!test_bit(idx, cpuc->active_mask))
687 			continue;
688 		rdmsrl(x86_pmu_config_addr(idx), val);
689 		if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
690 			continue;
691 		val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
692 		wrmsrl(x86_pmu_config_addr(idx), val);
693 		if (is_counter_pair(hwc))
694 			wrmsrl(x86_pmu_config_addr(idx + 1), 0);
695 	}
696 }
697 
698 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr, void *data)
699 {
700 	return static_call(x86_pmu_guest_get_msrs)(nr, data);
701 }
702 EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
703 
704 /*
705  * There may be PMI landing after enabled=0. The PMI hitting could be before or
706  * after disable_all.
707  *
708  * If PMI hits before disable_all, the PMU will be disabled in the NMI handler.
709  * It will not be re-enabled in the NMI handler again, because enabled=0. After
710  * handling the NMI, disable_all will be called, which will not change the
711  * state either. If PMI hits after disable_all, the PMU is already disabled
712  * before entering NMI handler. The NMI handler will not change the state
713  * either.
714  *
715  * So either situation is harmless.
716  */
717 static void x86_pmu_disable(struct pmu *pmu)
718 {
719 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
720 
721 	if (!x86_pmu_initialized())
722 		return;
723 
724 	if (!cpuc->enabled)
725 		return;
726 
727 	cpuc->n_added = 0;
728 	cpuc->enabled = 0;
729 	barrier();
730 
731 	static_call(x86_pmu_disable_all)();
732 }
733 
734 void x86_pmu_enable_all(int added)
735 {
736 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
737 	int idx;
738 
739 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
740 		struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
741 
742 		if (!test_bit(idx, cpuc->active_mask))
743 			continue;
744 
745 		__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
746 	}
747 }
748 
749 static inline int is_x86_event(struct perf_event *event)
750 {
751 	int i;
752 
753 	if (!is_hybrid())
754 		return event->pmu == &pmu;
755 
756 	for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
757 		if (event->pmu == &x86_pmu.hybrid_pmu[i].pmu)
758 			return true;
759 	}
760 
761 	return false;
762 }
763 
764 struct pmu *x86_get_pmu(unsigned int cpu)
765 {
766 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
767 
768 	/*
769 	 * All CPUs of the hybrid type have been offline.
770 	 * The x86_get_pmu() should not be invoked.
771 	 */
772 	if (WARN_ON_ONCE(!cpuc->pmu))
773 		return &pmu;
774 
775 	return cpuc->pmu;
776 }
777 /*
778  * Event scheduler state:
779  *
780  * Assign events iterating over all events and counters, beginning
781  * with events with least weights first. Keep the current iterator
782  * state in struct sched_state.
783  */
784 struct sched_state {
785 	int	weight;
786 	int	event;		/* event index */
787 	int	counter;	/* counter index */
788 	int	unassigned;	/* number of events to be assigned left */
789 	int	nr_gp;		/* number of GP counters used */
790 	u64	used;
791 };
792 
793 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
794 #define	SCHED_STATES_MAX	2
795 
796 struct perf_sched {
797 	int			max_weight;
798 	int			max_events;
799 	int			max_gp;
800 	int			saved_states;
801 	struct event_constraint	**constraints;
802 	struct sched_state	state;
803 	struct sched_state	saved[SCHED_STATES_MAX];
804 };
805 
806 /*
807  * Initialize iterator that runs through all events and counters.
808  */
809 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
810 			    int num, int wmin, int wmax, int gpmax)
811 {
812 	int idx;
813 
814 	memset(sched, 0, sizeof(*sched));
815 	sched->max_events	= num;
816 	sched->max_weight	= wmax;
817 	sched->max_gp		= gpmax;
818 	sched->constraints	= constraints;
819 
820 	for (idx = 0; idx < num; idx++) {
821 		if (constraints[idx]->weight == wmin)
822 			break;
823 	}
824 
825 	sched->state.event	= idx;		/* start with min weight */
826 	sched->state.weight	= wmin;
827 	sched->state.unassigned	= num;
828 }
829 
830 static void perf_sched_save_state(struct perf_sched *sched)
831 {
832 	if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
833 		return;
834 
835 	sched->saved[sched->saved_states] = sched->state;
836 	sched->saved_states++;
837 }
838 
839 static bool perf_sched_restore_state(struct perf_sched *sched)
840 {
841 	if (!sched->saved_states)
842 		return false;
843 
844 	sched->saved_states--;
845 	sched->state = sched->saved[sched->saved_states];
846 
847 	/* this assignment didn't work out */
848 	/* XXX broken vs EVENT_PAIR */
849 	sched->state.used &= ~BIT_ULL(sched->state.counter);
850 
851 	/* try the next one */
852 	sched->state.counter++;
853 
854 	return true;
855 }
856 
857 /*
858  * Select a counter for the current event to schedule. Return true on
859  * success.
860  */
861 static bool __perf_sched_find_counter(struct perf_sched *sched)
862 {
863 	struct event_constraint *c;
864 	int idx;
865 
866 	if (!sched->state.unassigned)
867 		return false;
868 
869 	if (sched->state.event >= sched->max_events)
870 		return false;
871 
872 	c = sched->constraints[sched->state.event];
873 	/* Prefer fixed purpose counters */
874 	if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
875 		idx = INTEL_PMC_IDX_FIXED;
876 		for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
877 			u64 mask = BIT_ULL(idx);
878 
879 			if (sched->state.used & mask)
880 				continue;
881 
882 			sched->state.used |= mask;
883 			goto done;
884 		}
885 	}
886 
887 	/* Grab the first unused counter starting with idx */
888 	idx = sched->state.counter;
889 	for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
890 		u64 mask = BIT_ULL(idx);
891 
892 		if (c->flags & PERF_X86_EVENT_PAIR)
893 			mask |= mask << 1;
894 
895 		if (sched->state.used & mask)
896 			continue;
897 
898 		if (sched->state.nr_gp++ >= sched->max_gp)
899 			return false;
900 
901 		sched->state.used |= mask;
902 		goto done;
903 	}
904 
905 	return false;
906 
907 done:
908 	sched->state.counter = idx;
909 
910 	if (c->overlap)
911 		perf_sched_save_state(sched);
912 
913 	return true;
914 }
915 
916 static bool perf_sched_find_counter(struct perf_sched *sched)
917 {
918 	while (!__perf_sched_find_counter(sched)) {
919 		if (!perf_sched_restore_state(sched))
920 			return false;
921 	}
922 
923 	return true;
924 }
925 
926 /*
927  * Go through all unassigned events and find the next one to schedule.
928  * Take events with the least weight first. Return true on success.
929  */
930 static bool perf_sched_next_event(struct perf_sched *sched)
931 {
932 	struct event_constraint *c;
933 
934 	if (!sched->state.unassigned || !--sched->state.unassigned)
935 		return false;
936 
937 	do {
938 		/* next event */
939 		sched->state.event++;
940 		if (sched->state.event >= sched->max_events) {
941 			/* next weight */
942 			sched->state.event = 0;
943 			sched->state.weight++;
944 			if (sched->state.weight > sched->max_weight)
945 				return false;
946 		}
947 		c = sched->constraints[sched->state.event];
948 	} while (c->weight != sched->state.weight);
949 
950 	sched->state.counter = 0;	/* start with first counter */
951 
952 	return true;
953 }
954 
955 /*
956  * Assign a counter for each event.
957  */
958 int perf_assign_events(struct event_constraint **constraints, int n,
959 			int wmin, int wmax, int gpmax, int *assign)
960 {
961 	struct perf_sched sched;
962 
963 	perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
964 
965 	do {
966 		if (!perf_sched_find_counter(&sched))
967 			break;	/* failed */
968 		if (assign)
969 			assign[sched.state.event] = sched.state.counter;
970 	} while (perf_sched_next_event(&sched));
971 
972 	return sched.state.unassigned;
973 }
974 EXPORT_SYMBOL_GPL(perf_assign_events);
975 
976 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
977 {
978 	int num_counters = hybrid(cpuc->pmu, num_counters);
979 	struct event_constraint *c;
980 	struct perf_event *e;
981 	int n0, i, wmin, wmax, unsched = 0;
982 	struct hw_perf_event *hwc;
983 	u64 used_mask = 0;
984 
985 	/*
986 	 * Compute the number of events already present; see x86_pmu_add(),
987 	 * validate_group() and x86_pmu_commit_txn(). For the former two
988 	 * cpuc->n_events hasn't been updated yet, while for the latter
989 	 * cpuc->n_txn contains the number of events added in the current
990 	 * transaction.
991 	 */
992 	n0 = cpuc->n_events;
993 	if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
994 		n0 -= cpuc->n_txn;
995 
996 	static_call_cond(x86_pmu_start_scheduling)(cpuc);
997 
998 	for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
999 		c = cpuc->event_constraint[i];
1000 
1001 		/*
1002 		 * Previously scheduled events should have a cached constraint,
1003 		 * while new events should not have one.
1004 		 */
1005 		WARN_ON_ONCE((c && i >= n0) || (!c && i < n0));
1006 
1007 		/*
1008 		 * Request constraints for new events; or for those events that
1009 		 * have a dynamic constraint -- for those the constraint can
1010 		 * change due to external factors (sibling state, allow_tfa).
1011 		 */
1012 		if (!c || (c->flags & PERF_X86_EVENT_DYNAMIC)) {
1013 			c = static_call(x86_pmu_get_event_constraints)(cpuc, i, cpuc->event_list[i]);
1014 			cpuc->event_constraint[i] = c;
1015 		}
1016 
1017 		wmin = min(wmin, c->weight);
1018 		wmax = max(wmax, c->weight);
1019 	}
1020 
1021 	/*
1022 	 * fastpath, try to reuse previous register
1023 	 */
1024 	for (i = 0; i < n; i++) {
1025 		u64 mask;
1026 
1027 		hwc = &cpuc->event_list[i]->hw;
1028 		c = cpuc->event_constraint[i];
1029 
1030 		/* never assigned */
1031 		if (hwc->idx == -1)
1032 			break;
1033 
1034 		/* constraint still honored */
1035 		if (!test_bit(hwc->idx, c->idxmsk))
1036 			break;
1037 
1038 		mask = BIT_ULL(hwc->idx);
1039 		if (is_counter_pair(hwc))
1040 			mask |= mask << 1;
1041 
1042 		/* not already used */
1043 		if (used_mask & mask)
1044 			break;
1045 
1046 		used_mask |= mask;
1047 
1048 		if (assign)
1049 			assign[i] = hwc->idx;
1050 	}
1051 
1052 	/* slow path */
1053 	if (i != n) {
1054 		int gpmax = num_counters;
1055 
1056 		/*
1057 		 * Do not allow scheduling of more than half the available
1058 		 * generic counters.
1059 		 *
1060 		 * This helps avoid counter starvation of sibling thread by
1061 		 * ensuring at most half the counters cannot be in exclusive
1062 		 * mode. There is no designated counters for the limits. Any
1063 		 * N/2 counters can be used. This helps with events with
1064 		 * specific counter constraints.
1065 		 */
1066 		if (is_ht_workaround_enabled() && !cpuc->is_fake &&
1067 		    READ_ONCE(cpuc->excl_cntrs->exclusive_present))
1068 			gpmax /= 2;
1069 
1070 		/*
1071 		 * Reduce the amount of available counters to allow fitting
1072 		 * the extra Merge events needed by large increment events.
1073 		 */
1074 		if (x86_pmu.flags & PMU_FL_PAIR) {
1075 			gpmax = num_counters - cpuc->n_pair;
1076 			WARN_ON(gpmax <= 0);
1077 		}
1078 
1079 		unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
1080 					     wmax, gpmax, assign);
1081 	}
1082 
1083 	/*
1084 	 * In case of success (unsched = 0), mark events as committed,
1085 	 * so we do not put_constraint() in case new events are added
1086 	 * and fail to be scheduled
1087 	 *
1088 	 * We invoke the lower level commit callback to lock the resource
1089 	 *
1090 	 * We do not need to do all of this in case we are called to
1091 	 * validate an event group (assign == NULL)
1092 	 */
1093 	if (!unsched && assign) {
1094 		for (i = 0; i < n; i++)
1095 			static_call_cond(x86_pmu_commit_scheduling)(cpuc, i, assign[i]);
1096 	} else {
1097 		for (i = n0; i < n; i++) {
1098 			e = cpuc->event_list[i];
1099 
1100 			/*
1101 			 * release events that failed scheduling
1102 			 */
1103 			static_call_cond(x86_pmu_put_event_constraints)(cpuc, e);
1104 
1105 			cpuc->event_constraint[i] = NULL;
1106 		}
1107 	}
1108 
1109 	static_call_cond(x86_pmu_stop_scheduling)(cpuc);
1110 
1111 	return unsched ? -EINVAL : 0;
1112 }
1113 
1114 static int add_nr_metric_event(struct cpu_hw_events *cpuc,
1115 			       struct perf_event *event)
1116 {
1117 	if (is_metric_event(event)) {
1118 		if (cpuc->n_metric == INTEL_TD_METRIC_NUM)
1119 			return -EINVAL;
1120 		cpuc->n_metric++;
1121 		cpuc->n_txn_metric++;
1122 	}
1123 
1124 	return 0;
1125 }
1126 
1127 static void del_nr_metric_event(struct cpu_hw_events *cpuc,
1128 				struct perf_event *event)
1129 {
1130 	if (is_metric_event(event))
1131 		cpuc->n_metric--;
1132 }
1133 
1134 static int collect_event(struct cpu_hw_events *cpuc, struct perf_event *event,
1135 			 int max_count, int n)
1136 {
1137 	union perf_capabilities intel_cap = hybrid(cpuc->pmu, intel_cap);
1138 
1139 	if (intel_cap.perf_metrics && add_nr_metric_event(cpuc, event))
1140 		return -EINVAL;
1141 
1142 	if (n >= max_count + cpuc->n_metric)
1143 		return -EINVAL;
1144 
1145 	cpuc->event_list[n] = event;
1146 	if (is_counter_pair(&event->hw)) {
1147 		cpuc->n_pair++;
1148 		cpuc->n_txn_pair++;
1149 	}
1150 
1151 	return 0;
1152 }
1153 
1154 /*
1155  * dogrp: true if must collect siblings events (group)
1156  * returns total number of events and error code
1157  */
1158 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
1159 {
1160 	int num_counters = hybrid(cpuc->pmu, num_counters);
1161 	int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
1162 	struct perf_event *event;
1163 	int n, max_count;
1164 
1165 	max_count = num_counters + num_counters_fixed;
1166 
1167 	/* current number of events already accepted */
1168 	n = cpuc->n_events;
1169 	if (!cpuc->n_events)
1170 		cpuc->pebs_output = 0;
1171 
1172 	if (!cpuc->is_fake && leader->attr.precise_ip) {
1173 		/*
1174 		 * For PEBS->PT, if !aux_event, the group leader (PT) went
1175 		 * away, the group was broken down and this singleton event
1176 		 * can't schedule any more.
1177 		 */
1178 		if (is_pebs_pt(leader) && !leader->aux_event)
1179 			return -EINVAL;
1180 
1181 		/*
1182 		 * pebs_output: 0: no PEBS so far, 1: PT, 2: DS
1183 		 */
1184 		if (cpuc->pebs_output &&
1185 		    cpuc->pebs_output != is_pebs_pt(leader) + 1)
1186 			return -EINVAL;
1187 
1188 		cpuc->pebs_output = is_pebs_pt(leader) + 1;
1189 	}
1190 
1191 	if (is_x86_event(leader)) {
1192 		if (collect_event(cpuc, leader, max_count, n))
1193 			return -EINVAL;
1194 		n++;
1195 	}
1196 
1197 	if (!dogrp)
1198 		return n;
1199 
1200 	for_each_sibling_event(event, leader) {
1201 		if (!is_x86_event(event) || event->state <= PERF_EVENT_STATE_OFF)
1202 			continue;
1203 
1204 		if (collect_event(cpuc, event, max_count, n))
1205 			return -EINVAL;
1206 
1207 		n++;
1208 	}
1209 	return n;
1210 }
1211 
1212 static inline void x86_assign_hw_event(struct perf_event *event,
1213 				struct cpu_hw_events *cpuc, int i)
1214 {
1215 	struct hw_perf_event *hwc = &event->hw;
1216 	int idx;
1217 
1218 	idx = hwc->idx = cpuc->assign[i];
1219 	hwc->last_cpu = smp_processor_id();
1220 	hwc->last_tag = ++cpuc->tags[i];
1221 
1222 	static_call_cond(x86_pmu_assign)(event, idx);
1223 
1224 	switch (hwc->idx) {
1225 	case INTEL_PMC_IDX_FIXED_BTS:
1226 	case INTEL_PMC_IDX_FIXED_VLBR:
1227 		hwc->config_base = 0;
1228 		hwc->event_base	= 0;
1229 		break;
1230 
1231 	case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
1232 		/* All the metric events are mapped onto the fixed counter 3. */
1233 		idx = INTEL_PMC_IDX_FIXED_SLOTS;
1234 		fallthrough;
1235 	case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS-1:
1236 		hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
1237 		hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 +
1238 				(idx - INTEL_PMC_IDX_FIXED);
1239 		hwc->event_base_rdpmc = (idx - INTEL_PMC_IDX_FIXED) |
1240 					INTEL_PMC_FIXED_RDPMC_BASE;
1241 		break;
1242 
1243 	default:
1244 		hwc->config_base = x86_pmu_config_addr(hwc->idx);
1245 		hwc->event_base  = x86_pmu_event_addr(hwc->idx);
1246 		hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
1247 		break;
1248 	}
1249 }
1250 
1251 /**
1252  * x86_perf_rdpmc_index - Return PMC counter used for event
1253  * @event: the perf_event to which the PMC counter was assigned
1254  *
1255  * The counter assigned to this performance event may change if interrupts
1256  * are enabled. This counter should thus never be used while interrupts are
1257  * enabled. Before this function is used to obtain the assigned counter the
1258  * event should be checked for validity using, for example,
1259  * perf_event_read_local(), within the same interrupt disabled section in
1260  * which this counter is planned to be used.
1261  *
1262  * Return: The index of the performance monitoring counter assigned to
1263  * @perf_event.
1264  */
1265 int x86_perf_rdpmc_index(struct perf_event *event)
1266 {
1267 	lockdep_assert_irqs_disabled();
1268 
1269 	return event->hw.event_base_rdpmc;
1270 }
1271 
1272 static inline int match_prev_assignment(struct hw_perf_event *hwc,
1273 					struct cpu_hw_events *cpuc,
1274 					int i)
1275 {
1276 	return hwc->idx == cpuc->assign[i] &&
1277 		hwc->last_cpu == smp_processor_id() &&
1278 		hwc->last_tag == cpuc->tags[i];
1279 }
1280 
1281 static void x86_pmu_start(struct perf_event *event, int flags);
1282 
1283 static void x86_pmu_enable(struct pmu *pmu)
1284 {
1285 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1286 	struct perf_event *event;
1287 	struct hw_perf_event *hwc;
1288 	int i, added = cpuc->n_added;
1289 
1290 	if (!x86_pmu_initialized())
1291 		return;
1292 
1293 	if (cpuc->enabled)
1294 		return;
1295 
1296 	if (cpuc->n_added) {
1297 		int n_running = cpuc->n_events - cpuc->n_added;
1298 		/*
1299 		 * apply assignment obtained either from
1300 		 * hw_perf_group_sched_in() or x86_pmu_enable()
1301 		 *
1302 		 * step1: save events moving to new counters
1303 		 */
1304 		for (i = 0; i < n_running; i++) {
1305 			event = cpuc->event_list[i];
1306 			hwc = &event->hw;
1307 
1308 			/*
1309 			 * we can avoid reprogramming counter if:
1310 			 * - assigned same counter as last time
1311 			 * - running on same CPU as last time
1312 			 * - no other event has used the counter since
1313 			 */
1314 			if (hwc->idx == -1 ||
1315 			    match_prev_assignment(hwc, cpuc, i))
1316 				continue;
1317 
1318 			/*
1319 			 * Ensure we don't accidentally enable a stopped
1320 			 * counter simply because we rescheduled.
1321 			 */
1322 			if (hwc->state & PERF_HES_STOPPED)
1323 				hwc->state |= PERF_HES_ARCH;
1324 
1325 			x86_pmu_stop(event, PERF_EF_UPDATE);
1326 		}
1327 
1328 		/*
1329 		 * step2: reprogram moved events into new counters
1330 		 */
1331 		for (i = 0; i < cpuc->n_events; i++) {
1332 			event = cpuc->event_list[i];
1333 			hwc = &event->hw;
1334 
1335 			if (!match_prev_assignment(hwc, cpuc, i))
1336 				x86_assign_hw_event(event, cpuc, i);
1337 			else if (i < n_running)
1338 				continue;
1339 
1340 			if (hwc->state & PERF_HES_ARCH)
1341 				continue;
1342 
1343 			/*
1344 			 * if cpuc->enabled = 0, then no wrmsr as
1345 			 * per x86_pmu_enable_event()
1346 			 */
1347 			x86_pmu_start(event, PERF_EF_RELOAD);
1348 		}
1349 		cpuc->n_added = 0;
1350 		perf_events_lapic_init();
1351 	}
1352 
1353 	cpuc->enabled = 1;
1354 	barrier();
1355 
1356 	static_call(x86_pmu_enable_all)(added);
1357 }
1358 
1359 DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1360 
1361 /*
1362  * Set the next IRQ period, based on the hwc->period_left value.
1363  * To be called with the event disabled in hw:
1364  */
1365 int x86_perf_event_set_period(struct perf_event *event)
1366 {
1367 	struct hw_perf_event *hwc = &event->hw;
1368 	s64 left = local64_read(&hwc->period_left);
1369 	s64 period = hwc->sample_period;
1370 	int ret = 0, idx = hwc->idx;
1371 
1372 	if (unlikely(!hwc->event_base))
1373 		return 0;
1374 
1375 	/*
1376 	 * If we are way outside a reasonable range then just skip forward:
1377 	 */
1378 	if (unlikely(left <= -period)) {
1379 		left = period;
1380 		local64_set(&hwc->period_left, left);
1381 		hwc->last_period = period;
1382 		ret = 1;
1383 	}
1384 
1385 	if (unlikely(left <= 0)) {
1386 		left += period;
1387 		local64_set(&hwc->period_left, left);
1388 		hwc->last_period = period;
1389 		ret = 1;
1390 	}
1391 	/*
1392 	 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1393 	 */
1394 	if (unlikely(left < 2))
1395 		left = 2;
1396 
1397 	if (left > x86_pmu.max_period)
1398 		left = x86_pmu.max_period;
1399 
1400 	static_call_cond(x86_pmu_limit_period)(event, &left);
1401 
1402 	this_cpu_write(pmc_prev_left[idx], left);
1403 
1404 	/*
1405 	 * The hw event starts counting from this event offset,
1406 	 * mark it to be able to extra future deltas:
1407 	 */
1408 	local64_set(&hwc->prev_count, (u64)-left);
1409 
1410 	wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1411 
1412 	/*
1413 	 * Sign extend the Merge event counter's upper 16 bits since
1414 	 * we currently declare a 48-bit counter width
1415 	 */
1416 	if (is_counter_pair(hwc))
1417 		wrmsrl(x86_pmu_event_addr(idx + 1), 0xffff);
1418 
1419 	perf_event_update_userpage(event);
1420 
1421 	return ret;
1422 }
1423 
1424 void x86_pmu_enable_event(struct perf_event *event)
1425 {
1426 	if (__this_cpu_read(cpu_hw_events.enabled))
1427 		__x86_pmu_enable_event(&event->hw,
1428 				       ARCH_PERFMON_EVENTSEL_ENABLE);
1429 }
1430 
1431 /*
1432  * Add a single event to the PMU.
1433  *
1434  * The event is added to the group of enabled events
1435  * but only if it can be scheduled with existing events.
1436  */
1437 static int x86_pmu_add(struct perf_event *event, int flags)
1438 {
1439 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1440 	struct hw_perf_event *hwc;
1441 	int assign[X86_PMC_IDX_MAX];
1442 	int n, n0, ret;
1443 
1444 	hwc = &event->hw;
1445 
1446 	n0 = cpuc->n_events;
1447 	ret = n = collect_events(cpuc, event, false);
1448 	if (ret < 0)
1449 		goto out;
1450 
1451 	hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1452 	if (!(flags & PERF_EF_START))
1453 		hwc->state |= PERF_HES_ARCH;
1454 
1455 	/*
1456 	 * If group events scheduling transaction was started,
1457 	 * skip the schedulability test here, it will be performed
1458 	 * at commit time (->commit_txn) as a whole.
1459 	 *
1460 	 * If commit fails, we'll call ->del() on all events
1461 	 * for which ->add() was called.
1462 	 */
1463 	if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1464 		goto done_collect;
1465 
1466 	ret = static_call(x86_pmu_schedule_events)(cpuc, n, assign);
1467 	if (ret)
1468 		goto out;
1469 	/*
1470 	 * copy new assignment, now we know it is possible
1471 	 * will be used by hw_perf_enable()
1472 	 */
1473 	memcpy(cpuc->assign, assign, n*sizeof(int));
1474 
1475 done_collect:
1476 	/*
1477 	 * Commit the collect_events() state. See x86_pmu_del() and
1478 	 * x86_pmu_*_txn().
1479 	 */
1480 	cpuc->n_events = n;
1481 	cpuc->n_added += n - n0;
1482 	cpuc->n_txn += n - n0;
1483 
1484 	/*
1485 	 * This is before x86_pmu_enable() will call x86_pmu_start(),
1486 	 * so we enable LBRs before an event needs them etc..
1487 	 */
1488 	static_call_cond(x86_pmu_add)(event);
1489 
1490 	ret = 0;
1491 out:
1492 	return ret;
1493 }
1494 
1495 static void x86_pmu_start(struct perf_event *event, int flags)
1496 {
1497 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1498 	int idx = event->hw.idx;
1499 
1500 	if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1501 		return;
1502 
1503 	if (WARN_ON_ONCE(idx == -1))
1504 		return;
1505 
1506 	if (flags & PERF_EF_RELOAD) {
1507 		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1508 		static_call(x86_pmu_set_period)(event);
1509 	}
1510 
1511 	event->hw.state = 0;
1512 
1513 	cpuc->events[idx] = event;
1514 	__set_bit(idx, cpuc->active_mask);
1515 	static_call(x86_pmu_enable)(event);
1516 	perf_event_update_userpage(event);
1517 }
1518 
1519 void perf_event_print_debug(void)
1520 {
1521 	u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1522 	u64 pebs, debugctl;
1523 	int cpu = smp_processor_id();
1524 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1525 	int num_counters = hybrid(cpuc->pmu, num_counters);
1526 	int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
1527 	struct event_constraint *pebs_constraints = hybrid(cpuc->pmu, pebs_constraints);
1528 	unsigned long flags;
1529 	int idx;
1530 
1531 	if (!num_counters)
1532 		return;
1533 
1534 	local_irq_save(flags);
1535 
1536 	if (x86_pmu.version >= 2) {
1537 		rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1538 		rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1539 		rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1540 		rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1541 
1542 		pr_info("\n");
1543 		pr_info("CPU#%d: ctrl:       %016llx\n", cpu, ctrl);
1544 		pr_info("CPU#%d: status:     %016llx\n", cpu, status);
1545 		pr_info("CPU#%d: overflow:   %016llx\n", cpu, overflow);
1546 		pr_info("CPU#%d: fixed:      %016llx\n", cpu, fixed);
1547 		if (pebs_constraints) {
1548 			rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1549 			pr_info("CPU#%d: pebs:       %016llx\n", cpu, pebs);
1550 		}
1551 		if (x86_pmu.lbr_nr) {
1552 			rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1553 			pr_info("CPU#%d: debugctl:   %016llx\n", cpu, debugctl);
1554 		}
1555 	}
1556 	pr_info("CPU#%d: active:     %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1557 
1558 	for (idx = 0; idx < num_counters; idx++) {
1559 		rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1560 		rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1561 
1562 		prev_left = per_cpu(pmc_prev_left[idx], cpu);
1563 
1564 		pr_info("CPU#%d:   gen-PMC%d ctrl:  %016llx\n",
1565 			cpu, idx, pmc_ctrl);
1566 		pr_info("CPU#%d:   gen-PMC%d count: %016llx\n",
1567 			cpu, idx, pmc_count);
1568 		pr_info("CPU#%d:   gen-PMC%d left:  %016llx\n",
1569 			cpu, idx, prev_left);
1570 	}
1571 	for (idx = 0; idx < num_counters_fixed; idx++) {
1572 		if (fixed_counter_disabled(idx, cpuc->pmu))
1573 			continue;
1574 		rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1575 
1576 		pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1577 			cpu, idx, pmc_count);
1578 	}
1579 	local_irq_restore(flags);
1580 }
1581 
1582 void x86_pmu_stop(struct perf_event *event, int flags)
1583 {
1584 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1585 	struct hw_perf_event *hwc = &event->hw;
1586 
1587 	if (test_bit(hwc->idx, cpuc->active_mask)) {
1588 		static_call(x86_pmu_disable)(event);
1589 		__clear_bit(hwc->idx, cpuc->active_mask);
1590 		cpuc->events[hwc->idx] = NULL;
1591 		WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1592 		hwc->state |= PERF_HES_STOPPED;
1593 	}
1594 
1595 	if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1596 		/*
1597 		 * Drain the remaining delta count out of a event
1598 		 * that we are disabling:
1599 		 */
1600 		static_call(x86_pmu_update)(event);
1601 		hwc->state |= PERF_HES_UPTODATE;
1602 	}
1603 }
1604 
1605 static void x86_pmu_del(struct perf_event *event, int flags)
1606 {
1607 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1608 	union perf_capabilities intel_cap = hybrid(cpuc->pmu, intel_cap);
1609 	int i;
1610 
1611 	/*
1612 	 * If we're called during a txn, we only need to undo x86_pmu.add.
1613 	 * The events never got scheduled and ->cancel_txn will truncate
1614 	 * the event_list.
1615 	 *
1616 	 * XXX assumes any ->del() called during a TXN will only be on
1617 	 * an event added during that same TXN.
1618 	 */
1619 	if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1620 		goto do_del;
1621 
1622 	__set_bit(event->hw.idx, cpuc->dirty);
1623 
1624 	/*
1625 	 * Not a TXN, therefore cleanup properly.
1626 	 */
1627 	x86_pmu_stop(event, PERF_EF_UPDATE);
1628 
1629 	for (i = 0; i < cpuc->n_events; i++) {
1630 		if (event == cpuc->event_list[i])
1631 			break;
1632 	}
1633 
1634 	if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1635 		return;
1636 
1637 	/* If we have a newly added event; make sure to decrease n_added. */
1638 	if (i >= cpuc->n_events - cpuc->n_added)
1639 		--cpuc->n_added;
1640 
1641 	static_call_cond(x86_pmu_put_event_constraints)(cpuc, event);
1642 
1643 	/* Delete the array entry. */
1644 	while (++i < cpuc->n_events) {
1645 		cpuc->event_list[i-1] = cpuc->event_list[i];
1646 		cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
1647 		cpuc->assign[i-1] = cpuc->assign[i];
1648 	}
1649 	cpuc->event_constraint[i-1] = NULL;
1650 	--cpuc->n_events;
1651 	if (intel_cap.perf_metrics)
1652 		del_nr_metric_event(cpuc, event);
1653 
1654 	perf_event_update_userpage(event);
1655 
1656 do_del:
1657 
1658 	/*
1659 	 * This is after x86_pmu_stop(); so we disable LBRs after any
1660 	 * event can need them etc..
1661 	 */
1662 	static_call_cond(x86_pmu_del)(event);
1663 }
1664 
1665 int x86_pmu_handle_irq(struct pt_regs *regs)
1666 {
1667 	struct perf_sample_data data;
1668 	struct cpu_hw_events *cpuc;
1669 	struct perf_event *event;
1670 	int idx, handled = 0;
1671 	u64 val;
1672 
1673 	cpuc = this_cpu_ptr(&cpu_hw_events);
1674 
1675 	/*
1676 	 * Some chipsets need to unmask the LVTPC in a particular spot
1677 	 * inside the nmi handler.  As a result, the unmasking was pushed
1678 	 * into all the nmi handlers.
1679 	 *
1680 	 * This generic handler doesn't seem to have any issues where the
1681 	 * unmasking occurs so it was left at the top.
1682 	 */
1683 	apic_write(APIC_LVTPC, APIC_DM_NMI);
1684 
1685 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1686 		if (!test_bit(idx, cpuc->active_mask))
1687 			continue;
1688 
1689 		event = cpuc->events[idx];
1690 
1691 		val = static_call(x86_pmu_update)(event);
1692 		if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1693 			continue;
1694 
1695 		/*
1696 		 * event overflow
1697 		 */
1698 		handled++;
1699 
1700 		if (!static_call(x86_pmu_set_period)(event))
1701 			continue;
1702 
1703 		perf_sample_data_init(&data, 0, event->hw.last_period);
1704 
1705 		if (has_branch_stack(event))
1706 			perf_sample_save_brstack(&data, event, &cpuc->lbr_stack, NULL);
1707 
1708 		if (perf_event_overflow(event, &data, regs))
1709 			x86_pmu_stop(event, 0);
1710 	}
1711 
1712 	if (handled)
1713 		inc_irq_stat(apic_perf_irqs);
1714 
1715 	return handled;
1716 }
1717 
1718 void perf_events_lapic_init(void)
1719 {
1720 	if (!x86_pmu.apic || !x86_pmu_initialized())
1721 		return;
1722 
1723 	/*
1724 	 * Always use NMI for PMU
1725 	 */
1726 	apic_write(APIC_LVTPC, APIC_DM_NMI);
1727 }
1728 
1729 static int
1730 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1731 {
1732 	u64 start_clock;
1733 	u64 finish_clock;
1734 	int ret;
1735 
1736 	/*
1737 	 * All PMUs/events that share this PMI handler should make sure to
1738 	 * increment active_events for their events.
1739 	 */
1740 	if (!atomic_read(&active_events))
1741 		return NMI_DONE;
1742 
1743 	start_clock = sched_clock();
1744 	ret = static_call(x86_pmu_handle_irq)(regs);
1745 	finish_clock = sched_clock();
1746 
1747 	perf_sample_event_took(finish_clock - start_clock);
1748 
1749 	return ret;
1750 }
1751 NOKPROBE_SYMBOL(perf_event_nmi_handler);
1752 
1753 struct event_constraint emptyconstraint;
1754 struct event_constraint unconstrained;
1755 
1756 static int x86_pmu_prepare_cpu(unsigned int cpu)
1757 {
1758 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1759 	int i;
1760 
1761 	for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1762 		cpuc->kfree_on_online[i] = NULL;
1763 	if (x86_pmu.cpu_prepare)
1764 		return x86_pmu.cpu_prepare(cpu);
1765 	return 0;
1766 }
1767 
1768 static int x86_pmu_dead_cpu(unsigned int cpu)
1769 {
1770 	if (x86_pmu.cpu_dead)
1771 		x86_pmu.cpu_dead(cpu);
1772 	return 0;
1773 }
1774 
1775 static int x86_pmu_online_cpu(unsigned int cpu)
1776 {
1777 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1778 	int i;
1779 
1780 	for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1781 		kfree(cpuc->kfree_on_online[i]);
1782 		cpuc->kfree_on_online[i] = NULL;
1783 	}
1784 	return 0;
1785 }
1786 
1787 static int x86_pmu_starting_cpu(unsigned int cpu)
1788 {
1789 	if (x86_pmu.cpu_starting)
1790 		x86_pmu.cpu_starting(cpu);
1791 	return 0;
1792 }
1793 
1794 static int x86_pmu_dying_cpu(unsigned int cpu)
1795 {
1796 	if (x86_pmu.cpu_dying)
1797 		x86_pmu.cpu_dying(cpu);
1798 	return 0;
1799 }
1800 
1801 static void __init pmu_check_apic(void)
1802 {
1803 	if (boot_cpu_has(X86_FEATURE_APIC))
1804 		return;
1805 
1806 	x86_pmu.apic = 0;
1807 	pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1808 	pr_info("no hardware sampling interrupt available.\n");
1809 
1810 	/*
1811 	 * If we have a PMU initialized but no APIC
1812 	 * interrupts, we cannot sample hardware
1813 	 * events (user-space has to fall back and
1814 	 * sample via a hrtimer based software event):
1815 	 */
1816 	pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1817 
1818 }
1819 
1820 static struct attribute_group x86_pmu_format_group __ro_after_init = {
1821 	.name = "format",
1822 	.attrs = NULL,
1823 };
1824 
1825 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page)
1826 {
1827 	struct perf_pmu_events_attr *pmu_attr =
1828 		container_of(attr, struct perf_pmu_events_attr, attr);
1829 	u64 config = 0;
1830 
1831 	if (pmu_attr->id < x86_pmu.max_events)
1832 		config = x86_pmu.event_map(pmu_attr->id);
1833 
1834 	/* string trumps id */
1835 	if (pmu_attr->event_str)
1836 		return sprintf(page, "%s\n", pmu_attr->event_str);
1837 
1838 	return x86_pmu.events_sysfs_show(page, config);
1839 }
1840 EXPORT_SYMBOL_GPL(events_sysfs_show);
1841 
1842 ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr,
1843 			  char *page)
1844 {
1845 	struct perf_pmu_events_ht_attr *pmu_attr =
1846 		container_of(attr, struct perf_pmu_events_ht_attr, attr);
1847 
1848 	/*
1849 	 * Report conditional events depending on Hyper-Threading.
1850 	 *
1851 	 * This is overly conservative as usually the HT special
1852 	 * handling is not needed if the other CPU thread is idle.
1853 	 *
1854 	 * Note this does not (and cannot) handle the case when thread
1855 	 * siblings are invisible, for example with virtualization
1856 	 * if they are owned by some other guest.  The user tool
1857 	 * has to re-read when a thread sibling gets onlined later.
1858 	 */
1859 	return sprintf(page, "%s",
1860 			topology_max_smt_threads() > 1 ?
1861 			pmu_attr->event_str_ht :
1862 			pmu_attr->event_str_noht);
1863 }
1864 
1865 ssize_t events_hybrid_sysfs_show(struct device *dev,
1866 				 struct device_attribute *attr,
1867 				 char *page)
1868 {
1869 	struct perf_pmu_events_hybrid_attr *pmu_attr =
1870 		container_of(attr, struct perf_pmu_events_hybrid_attr, attr);
1871 	struct x86_hybrid_pmu *pmu;
1872 	const char *str, *next_str;
1873 	int i;
1874 
1875 	if (hweight64(pmu_attr->pmu_type) == 1)
1876 		return sprintf(page, "%s", pmu_attr->event_str);
1877 
1878 	/*
1879 	 * Hybrid PMUs may support the same event name, but with different
1880 	 * event encoding, e.g., the mem-loads event on an Atom PMU has
1881 	 * different event encoding from a Core PMU.
1882 	 *
1883 	 * The event_str includes all event encodings. Each event encoding
1884 	 * is divided by ";". The order of the event encodings must follow
1885 	 * the order of the hybrid PMU index.
1886 	 */
1887 	pmu = container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
1888 
1889 	str = pmu_attr->event_str;
1890 	for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
1891 		if (!(x86_pmu.hybrid_pmu[i].pmu_type & pmu_attr->pmu_type))
1892 			continue;
1893 		if (x86_pmu.hybrid_pmu[i].pmu_type & pmu->pmu_type) {
1894 			next_str = strchr(str, ';');
1895 			if (next_str)
1896 				return snprintf(page, next_str - str + 1, "%s", str);
1897 			else
1898 				return sprintf(page, "%s", str);
1899 		}
1900 		str = strchr(str, ';');
1901 		str++;
1902 	}
1903 
1904 	return 0;
1905 }
1906 EXPORT_SYMBOL_GPL(events_hybrid_sysfs_show);
1907 
1908 EVENT_ATTR(cpu-cycles,			CPU_CYCLES		);
1909 EVENT_ATTR(instructions,		INSTRUCTIONS		);
1910 EVENT_ATTR(cache-references,		CACHE_REFERENCES	);
1911 EVENT_ATTR(cache-misses, 		CACHE_MISSES		);
1912 EVENT_ATTR(branch-instructions,		BRANCH_INSTRUCTIONS	);
1913 EVENT_ATTR(branch-misses,		BRANCH_MISSES		);
1914 EVENT_ATTR(bus-cycles,			BUS_CYCLES		);
1915 EVENT_ATTR(stalled-cycles-frontend,	STALLED_CYCLES_FRONTEND	);
1916 EVENT_ATTR(stalled-cycles-backend,	STALLED_CYCLES_BACKEND	);
1917 EVENT_ATTR(ref-cycles,			REF_CPU_CYCLES		);
1918 
1919 static struct attribute *empty_attrs;
1920 
1921 static struct attribute *events_attr[] = {
1922 	EVENT_PTR(CPU_CYCLES),
1923 	EVENT_PTR(INSTRUCTIONS),
1924 	EVENT_PTR(CACHE_REFERENCES),
1925 	EVENT_PTR(CACHE_MISSES),
1926 	EVENT_PTR(BRANCH_INSTRUCTIONS),
1927 	EVENT_PTR(BRANCH_MISSES),
1928 	EVENT_PTR(BUS_CYCLES),
1929 	EVENT_PTR(STALLED_CYCLES_FRONTEND),
1930 	EVENT_PTR(STALLED_CYCLES_BACKEND),
1931 	EVENT_PTR(REF_CPU_CYCLES),
1932 	NULL,
1933 };
1934 
1935 /*
1936  * Remove all undefined events (x86_pmu.event_map(id) == 0)
1937  * out of events_attr attributes.
1938  */
1939 static umode_t
1940 is_visible(struct kobject *kobj, struct attribute *attr, int idx)
1941 {
1942 	struct perf_pmu_events_attr *pmu_attr;
1943 
1944 	if (idx >= x86_pmu.max_events)
1945 		return 0;
1946 
1947 	pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr.attr);
1948 	/* str trumps id */
1949 	return pmu_attr->event_str || x86_pmu.event_map(idx) ? attr->mode : 0;
1950 }
1951 
1952 static struct attribute_group x86_pmu_events_group __ro_after_init = {
1953 	.name = "events",
1954 	.attrs = events_attr,
1955 	.is_visible = is_visible,
1956 };
1957 
1958 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1959 {
1960 	u64 umask  = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1961 	u64 cmask  = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1962 	bool edge  = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1963 	bool pc    = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1964 	bool any   = (config & ARCH_PERFMON_EVENTSEL_ANY);
1965 	bool inv   = (config & ARCH_PERFMON_EVENTSEL_INV);
1966 	ssize_t ret;
1967 
1968 	/*
1969 	* We have whole page size to spend and just little data
1970 	* to write, so we can safely use sprintf.
1971 	*/
1972 	ret = sprintf(page, "event=0x%02llx", event);
1973 
1974 	if (umask)
1975 		ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1976 
1977 	if (edge)
1978 		ret += sprintf(page + ret, ",edge");
1979 
1980 	if (pc)
1981 		ret += sprintf(page + ret, ",pc");
1982 
1983 	if (any)
1984 		ret += sprintf(page + ret, ",any");
1985 
1986 	if (inv)
1987 		ret += sprintf(page + ret, ",inv");
1988 
1989 	if (cmask)
1990 		ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1991 
1992 	ret += sprintf(page + ret, "\n");
1993 
1994 	return ret;
1995 }
1996 
1997 static struct attribute_group x86_pmu_attr_group;
1998 static struct attribute_group x86_pmu_caps_group;
1999 
2000 static void x86_pmu_static_call_update(void)
2001 {
2002 	static_call_update(x86_pmu_handle_irq, x86_pmu.handle_irq);
2003 	static_call_update(x86_pmu_disable_all, x86_pmu.disable_all);
2004 	static_call_update(x86_pmu_enable_all, x86_pmu.enable_all);
2005 	static_call_update(x86_pmu_enable, x86_pmu.enable);
2006 	static_call_update(x86_pmu_disable, x86_pmu.disable);
2007 
2008 	static_call_update(x86_pmu_assign, x86_pmu.assign);
2009 
2010 	static_call_update(x86_pmu_add, x86_pmu.add);
2011 	static_call_update(x86_pmu_del, x86_pmu.del);
2012 	static_call_update(x86_pmu_read, x86_pmu.read);
2013 
2014 	static_call_update(x86_pmu_set_period, x86_pmu.set_period);
2015 	static_call_update(x86_pmu_update, x86_pmu.update);
2016 	static_call_update(x86_pmu_limit_period, x86_pmu.limit_period);
2017 
2018 	static_call_update(x86_pmu_schedule_events, x86_pmu.schedule_events);
2019 	static_call_update(x86_pmu_get_event_constraints, x86_pmu.get_event_constraints);
2020 	static_call_update(x86_pmu_put_event_constraints, x86_pmu.put_event_constraints);
2021 
2022 	static_call_update(x86_pmu_start_scheduling, x86_pmu.start_scheduling);
2023 	static_call_update(x86_pmu_commit_scheduling, x86_pmu.commit_scheduling);
2024 	static_call_update(x86_pmu_stop_scheduling, x86_pmu.stop_scheduling);
2025 
2026 	static_call_update(x86_pmu_sched_task, x86_pmu.sched_task);
2027 	static_call_update(x86_pmu_swap_task_ctx, x86_pmu.swap_task_ctx);
2028 
2029 	static_call_update(x86_pmu_drain_pebs, x86_pmu.drain_pebs);
2030 	static_call_update(x86_pmu_pebs_aliases, x86_pmu.pebs_aliases);
2031 
2032 	static_call_update(x86_pmu_guest_get_msrs, x86_pmu.guest_get_msrs);
2033 	static_call_update(x86_pmu_filter, x86_pmu.filter);
2034 }
2035 
2036 static void _x86_pmu_read(struct perf_event *event)
2037 {
2038 	static_call(x86_pmu_update)(event);
2039 }
2040 
2041 void x86_pmu_show_pmu_cap(int num_counters, int num_counters_fixed,
2042 			  u64 intel_ctrl)
2043 {
2044 	pr_info("... version:                %d\n",     x86_pmu.version);
2045 	pr_info("... bit width:              %d\n",     x86_pmu.cntval_bits);
2046 	pr_info("... generic registers:      %d\n",     num_counters);
2047 	pr_info("... value mask:             %016Lx\n", x86_pmu.cntval_mask);
2048 	pr_info("... max period:             %016Lx\n", x86_pmu.max_period);
2049 	pr_info("... fixed-purpose events:   %lu\n",
2050 			hweight64((((1ULL << num_counters_fixed) - 1)
2051 					<< INTEL_PMC_IDX_FIXED) & intel_ctrl));
2052 	pr_info("... event mask:             %016Lx\n", intel_ctrl);
2053 }
2054 
2055 static int __init init_hw_perf_events(void)
2056 {
2057 	struct x86_pmu_quirk *quirk;
2058 	int err;
2059 
2060 	pr_info("Performance Events: ");
2061 
2062 	switch (boot_cpu_data.x86_vendor) {
2063 	case X86_VENDOR_INTEL:
2064 		err = intel_pmu_init();
2065 		break;
2066 	case X86_VENDOR_AMD:
2067 		err = amd_pmu_init();
2068 		break;
2069 	case X86_VENDOR_HYGON:
2070 		err = amd_pmu_init();
2071 		x86_pmu.name = "HYGON";
2072 		break;
2073 	case X86_VENDOR_ZHAOXIN:
2074 	case X86_VENDOR_CENTAUR:
2075 		err = zhaoxin_pmu_init();
2076 		break;
2077 	default:
2078 		err = -ENOTSUPP;
2079 	}
2080 	if (err != 0) {
2081 		pr_cont("no PMU driver, software events only.\n");
2082 		err = 0;
2083 		goto out_bad_pmu;
2084 	}
2085 
2086 	pmu_check_apic();
2087 
2088 	/* sanity check that the hardware exists or is emulated */
2089 	if (!check_hw_exists(&pmu, x86_pmu.num_counters, x86_pmu.num_counters_fixed))
2090 		goto out_bad_pmu;
2091 
2092 	pr_cont("%s PMU driver.\n", x86_pmu.name);
2093 
2094 	x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
2095 
2096 	for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
2097 		quirk->func();
2098 
2099 	if (!x86_pmu.intel_ctrl)
2100 		x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
2101 
2102 	perf_events_lapic_init();
2103 	register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
2104 
2105 	unconstrained = (struct event_constraint)
2106 		__EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
2107 				   0, x86_pmu.num_counters, 0, 0);
2108 
2109 	x86_pmu_format_group.attrs = x86_pmu.format_attrs;
2110 
2111 	if (!x86_pmu.events_sysfs_show)
2112 		x86_pmu_events_group.attrs = &empty_attrs;
2113 
2114 	pmu.attr_update = x86_pmu.attr_update;
2115 
2116 	if (!is_hybrid()) {
2117 		x86_pmu_show_pmu_cap(x86_pmu.num_counters,
2118 				     x86_pmu.num_counters_fixed,
2119 				     x86_pmu.intel_ctrl);
2120 	}
2121 
2122 	if (!x86_pmu.read)
2123 		x86_pmu.read = _x86_pmu_read;
2124 
2125 	if (!x86_pmu.guest_get_msrs)
2126 		x86_pmu.guest_get_msrs = (void *)&__static_call_return0;
2127 
2128 	if (!x86_pmu.set_period)
2129 		x86_pmu.set_period = x86_perf_event_set_period;
2130 
2131 	if (!x86_pmu.update)
2132 		x86_pmu.update = x86_perf_event_update;
2133 
2134 	x86_pmu_static_call_update();
2135 
2136 	/*
2137 	 * Install callbacks. Core will call them for each online
2138 	 * cpu.
2139 	 */
2140 	err = cpuhp_setup_state(CPUHP_PERF_X86_PREPARE, "perf/x86:prepare",
2141 				x86_pmu_prepare_cpu, x86_pmu_dead_cpu);
2142 	if (err)
2143 		return err;
2144 
2145 	err = cpuhp_setup_state(CPUHP_AP_PERF_X86_STARTING,
2146 				"perf/x86:starting", x86_pmu_starting_cpu,
2147 				x86_pmu_dying_cpu);
2148 	if (err)
2149 		goto out;
2150 
2151 	err = cpuhp_setup_state(CPUHP_AP_PERF_X86_ONLINE, "perf/x86:online",
2152 				x86_pmu_online_cpu, NULL);
2153 	if (err)
2154 		goto out1;
2155 
2156 	if (!is_hybrid()) {
2157 		err = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
2158 		if (err)
2159 			goto out2;
2160 	} else {
2161 		struct x86_hybrid_pmu *hybrid_pmu;
2162 		int i, j;
2163 
2164 		for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
2165 			hybrid_pmu = &x86_pmu.hybrid_pmu[i];
2166 
2167 			hybrid_pmu->pmu = pmu;
2168 			hybrid_pmu->pmu.type = -1;
2169 			hybrid_pmu->pmu.attr_update = x86_pmu.attr_update;
2170 			hybrid_pmu->pmu.capabilities |= PERF_PMU_CAP_EXTENDED_HW_TYPE;
2171 
2172 			err = perf_pmu_register(&hybrid_pmu->pmu, hybrid_pmu->name,
2173 						(hybrid_pmu->pmu_type == hybrid_big) ? PERF_TYPE_RAW : -1);
2174 			if (err)
2175 				break;
2176 		}
2177 
2178 		if (i < x86_pmu.num_hybrid_pmus) {
2179 			for (j = 0; j < i; j++)
2180 				perf_pmu_unregister(&x86_pmu.hybrid_pmu[j].pmu);
2181 			pr_warn("Failed to register hybrid PMUs\n");
2182 			kfree(x86_pmu.hybrid_pmu);
2183 			x86_pmu.hybrid_pmu = NULL;
2184 			x86_pmu.num_hybrid_pmus = 0;
2185 			goto out2;
2186 		}
2187 	}
2188 
2189 	return 0;
2190 
2191 out2:
2192 	cpuhp_remove_state(CPUHP_AP_PERF_X86_ONLINE);
2193 out1:
2194 	cpuhp_remove_state(CPUHP_AP_PERF_X86_STARTING);
2195 out:
2196 	cpuhp_remove_state(CPUHP_PERF_X86_PREPARE);
2197 out_bad_pmu:
2198 	memset(&x86_pmu, 0, sizeof(x86_pmu));
2199 	return err;
2200 }
2201 early_initcall(init_hw_perf_events);
2202 
2203 static void x86_pmu_read(struct perf_event *event)
2204 {
2205 	static_call(x86_pmu_read)(event);
2206 }
2207 
2208 /*
2209  * Start group events scheduling transaction
2210  * Set the flag to make pmu::enable() not perform the
2211  * schedulability test, it will be performed at commit time
2212  *
2213  * We only support PERF_PMU_TXN_ADD transactions. Save the
2214  * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
2215  * transactions.
2216  */
2217 static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
2218 {
2219 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2220 
2221 	WARN_ON_ONCE(cpuc->txn_flags);		/* txn already in flight */
2222 
2223 	cpuc->txn_flags = txn_flags;
2224 	if (txn_flags & ~PERF_PMU_TXN_ADD)
2225 		return;
2226 
2227 	perf_pmu_disable(pmu);
2228 	__this_cpu_write(cpu_hw_events.n_txn, 0);
2229 	__this_cpu_write(cpu_hw_events.n_txn_pair, 0);
2230 	__this_cpu_write(cpu_hw_events.n_txn_metric, 0);
2231 }
2232 
2233 /*
2234  * Stop group events scheduling transaction
2235  * Clear the flag and pmu::enable() will perform the
2236  * schedulability test.
2237  */
2238 static void x86_pmu_cancel_txn(struct pmu *pmu)
2239 {
2240 	unsigned int txn_flags;
2241 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2242 
2243 	WARN_ON_ONCE(!cpuc->txn_flags);	/* no txn in flight */
2244 
2245 	txn_flags = cpuc->txn_flags;
2246 	cpuc->txn_flags = 0;
2247 	if (txn_flags & ~PERF_PMU_TXN_ADD)
2248 		return;
2249 
2250 	/*
2251 	 * Truncate collected array by the number of events added in this
2252 	 * transaction. See x86_pmu_add() and x86_pmu_*_txn().
2253 	 */
2254 	__this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
2255 	__this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
2256 	__this_cpu_sub(cpu_hw_events.n_pair, __this_cpu_read(cpu_hw_events.n_txn_pair));
2257 	__this_cpu_sub(cpu_hw_events.n_metric, __this_cpu_read(cpu_hw_events.n_txn_metric));
2258 	perf_pmu_enable(pmu);
2259 }
2260 
2261 /*
2262  * Commit group events scheduling transaction
2263  * Perform the group schedulability test as a whole
2264  * Return 0 if success
2265  *
2266  * Does not cancel the transaction on failure; expects the caller to do this.
2267  */
2268 static int x86_pmu_commit_txn(struct pmu *pmu)
2269 {
2270 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2271 	int assign[X86_PMC_IDX_MAX];
2272 	int n, ret;
2273 
2274 	WARN_ON_ONCE(!cpuc->txn_flags);	/* no txn in flight */
2275 
2276 	if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
2277 		cpuc->txn_flags = 0;
2278 		return 0;
2279 	}
2280 
2281 	n = cpuc->n_events;
2282 
2283 	if (!x86_pmu_initialized())
2284 		return -EAGAIN;
2285 
2286 	ret = static_call(x86_pmu_schedule_events)(cpuc, n, assign);
2287 	if (ret)
2288 		return ret;
2289 
2290 	/*
2291 	 * copy new assignment, now we know it is possible
2292 	 * will be used by hw_perf_enable()
2293 	 */
2294 	memcpy(cpuc->assign, assign, n*sizeof(int));
2295 
2296 	cpuc->txn_flags = 0;
2297 	perf_pmu_enable(pmu);
2298 	return 0;
2299 }
2300 /*
2301  * a fake_cpuc is used to validate event groups. Due to
2302  * the extra reg logic, we need to also allocate a fake
2303  * per_core and per_cpu structure. Otherwise, group events
2304  * using extra reg may conflict without the kernel being
2305  * able to catch this when the last event gets added to
2306  * the group.
2307  */
2308 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
2309 {
2310 	intel_cpuc_finish(cpuc);
2311 	kfree(cpuc);
2312 }
2313 
2314 static struct cpu_hw_events *allocate_fake_cpuc(struct pmu *event_pmu)
2315 {
2316 	struct cpu_hw_events *cpuc;
2317 	int cpu;
2318 
2319 	cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
2320 	if (!cpuc)
2321 		return ERR_PTR(-ENOMEM);
2322 	cpuc->is_fake = 1;
2323 
2324 	if (is_hybrid()) {
2325 		struct x86_hybrid_pmu *h_pmu;
2326 
2327 		h_pmu = hybrid_pmu(event_pmu);
2328 		if (cpumask_empty(&h_pmu->supported_cpus))
2329 			goto error;
2330 		cpu = cpumask_first(&h_pmu->supported_cpus);
2331 	} else
2332 		cpu = raw_smp_processor_id();
2333 	cpuc->pmu = event_pmu;
2334 
2335 	if (intel_cpuc_prepare(cpuc, cpu))
2336 		goto error;
2337 
2338 	return cpuc;
2339 error:
2340 	free_fake_cpuc(cpuc);
2341 	return ERR_PTR(-ENOMEM);
2342 }
2343 
2344 /*
2345  * validate that we can schedule this event
2346  */
2347 static int validate_event(struct perf_event *event)
2348 {
2349 	struct cpu_hw_events *fake_cpuc;
2350 	struct event_constraint *c;
2351 	int ret = 0;
2352 
2353 	fake_cpuc = allocate_fake_cpuc(event->pmu);
2354 	if (IS_ERR(fake_cpuc))
2355 		return PTR_ERR(fake_cpuc);
2356 
2357 	c = x86_pmu.get_event_constraints(fake_cpuc, 0, event);
2358 
2359 	if (!c || !c->weight)
2360 		ret = -EINVAL;
2361 
2362 	if (x86_pmu.put_event_constraints)
2363 		x86_pmu.put_event_constraints(fake_cpuc, event);
2364 
2365 	free_fake_cpuc(fake_cpuc);
2366 
2367 	return ret;
2368 }
2369 
2370 /*
2371  * validate a single event group
2372  *
2373  * validation include:
2374  *	- check events are compatible which each other
2375  *	- events do not compete for the same counter
2376  *	- number of events <= number of counters
2377  *
2378  * validation ensures the group can be loaded onto the
2379  * PMU if it was the only group available.
2380  */
2381 static int validate_group(struct perf_event *event)
2382 {
2383 	struct perf_event *leader = event->group_leader;
2384 	struct cpu_hw_events *fake_cpuc;
2385 	int ret = -EINVAL, n;
2386 
2387 	/*
2388 	 * Reject events from different hybrid PMUs.
2389 	 */
2390 	if (is_hybrid()) {
2391 		struct perf_event *sibling;
2392 		struct pmu *pmu = NULL;
2393 
2394 		if (is_x86_event(leader))
2395 			pmu = leader->pmu;
2396 
2397 		for_each_sibling_event(sibling, leader) {
2398 			if (!is_x86_event(sibling))
2399 				continue;
2400 			if (!pmu)
2401 				pmu = sibling->pmu;
2402 			else if (pmu != sibling->pmu)
2403 				return ret;
2404 		}
2405 	}
2406 
2407 	fake_cpuc = allocate_fake_cpuc(event->pmu);
2408 	if (IS_ERR(fake_cpuc))
2409 		return PTR_ERR(fake_cpuc);
2410 	/*
2411 	 * the event is not yet connected with its
2412 	 * siblings therefore we must first collect
2413 	 * existing siblings, then add the new event
2414 	 * before we can simulate the scheduling
2415 	 */
2416 	n = collect_events(fake_cpuc, leader, true);
2417 	if (n < 0)
2418 		goto out;
2419 
2420 	fake_cpuc->n_events = n;
2421 	n = collect_events(fake_cpuc, event, false);
2422 	if (n < 0)
2423 		goto out;
2424 
2425 	fake_cpuc->n_events = 0;
2426 	ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
2427 
2428 out:
2429 	free_fake_cpuc(fake_cpuc);
2430 	return ret;
2431 }
2432 
2433 static int x86_pmu_event_init(struct perf_event *event)
2434 {
2435 	struct x86_hybrid_pmu *pmu = NULL;
2436 	int err;
2437 
2438 	if ((event->attr.type != event->pmu->type) &&
2439 	    (event->attr.type != PERF_TYPE_HARDWARE) &&
2440 	    (event->attr.type != PERF_TYPE_HW_CACHE))
2441 		return -ENOENT;
2442 
2443 	if (is_hybrid() && (event->cpu != -1)) {
2444 		pmu = hybrid_pmu(event->pmu);
2445 		if (!cpumask_test_cpu(event->cpu, &pmu->supported_cpus))
2446 			return -ENOENT;
2447 	}
2448 
2449 	err = __x86_pmu_event_init(event);
2450 	if (!err) {
2451 		if (event->group_leader != event)
2452 			err = validate_group(event);
2453 		else
2454 			err = validate_event(event);
2455 	}
2456 	if (err) {
2457 		if (event->destroy)
2458 			event->destroy(event);
2459 		event->destroy = NULL;
2460 	}
2461 
2462 	if (READ_ONCE(x86_pmu.attr_rdpmc) &&
2463 	    !(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS))
2464 		event->hw.flags |= PERF_EVENT_FLAG_USER_READ_CNT;
2465 
2466 	return err;
2467 }
2468 
2469 void perf_clear_dirty_counters(void)
2470 {
2471 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2472 	int i;
2473 
2474 	 /* Don't need to clear the assigned counter. */
2475 	for (i = 0; i < cpuc->n_events; i++)
2476 		__clear_bit(cpuc->assign[i], cpuc->dirty);
2477 
2478 	if (bitmap_empty(cpuc->dirty, X86_PMC_IDX_MAX))
2479 		return;
2480 
2481 	for_each_set_bit(i, cpuc->dirty, X86_PMC_IDX_MAX) {
2482 		if (i >= INTEL_PMC_IDX_FIXED) {
2483 			/* Metrics and fake events don't have corresponding HW counters. */
2484 			if ((i - INTEL_PMC_IDX_FIXED) >= hybrid(cpuc->pmu, num_counters_fixed))
2485 				continue;
2486 
2487 			wrmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + (i - INTEL_PMC_IDX_FIXED), 0);
2488 		} else {
2489 			wrmsrl(x86_pmu_event_addr(i), 0);
2490 		}
2491 	}
2492 
2493 	bitmap_zero(cpuc->dirty, X86_PMC_IDX_MAX);
2494 }
2495 
2496 static void x86_pmu_event_mapped(struct perf_event *event, struct mm_struct *mm)
2497 {
2498 	if (!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT))
2499 		return;
2500 
2501 	/*
2502 	 * This function relies on not being called concurrently in two
2503 	 * tasks in the same mm.  Otherwise one task could observe
2504 	 * perf_rdpmc_allowed > 1 and return all the way back to
2505 	 * userspace with CR4.PCE clear while another task is still
2506 	 * doing on_each_cpu_mask() to propagate CR4.PCE.
2507 	 *
2508 	 * For now, this can't happen because all callers hold mmap_lock
2509 	 * for write.  If this changes, we'll need a different solution.
2510 	 */
2511 	mmap_assert_write_locked(mm);
2512 
2513 	if (atomic_inc_return(&mm->context.perf_rdpmc_allowed) == 1)
2514 		on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1);
2515 }
2516 
2517 static void x86_pmu_event_unmapped(struct perf_event *event, struct mm_struct *mm)
2518 {
2519 	if (!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT))
2520 		return;
2521 
2522 	if (atomic_dec_and_test(&mm->context.perf_rdpmc_allowed))
2523 		on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1);
2524 }
2525 
2526 static int x86_pmu_event_idx(struct perf_event *event)
2527 {
2528 	struct hw_perf_event *hwc = &event->hw;
2529 
2530 	if (!(hwc->flags & PERF_EVENT_FLAG_USER_READ_CNT))
2531 		return 0;
2532 
2533 	if (is_metric_idx(hwc->idx))
2534 		return INTEL_PMC_FIXED_RDPMC_METRICS + 1;
2535 	else
2536 		return hwc->event_base_rdpmc + 1;
2537 }
2538 
2539 static ssize_t get_attr_rdpmc(struct device *cdev,
2540 			      struct device_attribute *attr,
2541 			      char *buf)
2542 {
2543 	return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
2544 }
2545 
2546 static ssize_t set_attr_rdpmc(struct device *cdev,
2547 			      struct device_attribute *attr,
2548 			      const char *buf, size_t count)
2549 {
2550 	unsigned long val;
2551 	ssize_t ret;
2552 
2553 	ret = kstrtoul(buf, 0, &val);
2554 	if (ret)
2555 		return ret;
2556 
2557 	if (val > 2)
2558 		return -EINVAL;
2559 
2560 	if (x86_pmu.attr_rdpmc_broken)
2561 		return -ENOTSUPP;
2562 
2563 	if (val != x86_pmu.attr_rdpmc) {
2564 		/*
2565 		 * Changing into or out of never available or always available,
2566 		 * aka perf-event-bypassing mode. This path is extremely slow,
2567 		 * but only root can trigger it, so it's okay.
2568 		 */
2569 		if (val == 0)
2570 			static_branch_inc(&rdpmc_never_available_key);
2571 		else if (x86_pmu.attr_rdpmc == 0)
2572 			static_branch_dec(&rdpmc_never_available_key);
2573 
2574 		if (val == 2)
2575 			static_branch_inc(&rdpmc_always_available_key);
2576 		else if (x86_pmu.attr_rdpmc == 2)
2577 			static_branch_dec(&rdpmc_always_available_key);
2578 
2579 		on_each_cpu(cr4_update_pce, NULL, 1);
2580 		x86_pmu.attr_rdpmc = val;
2581 	}
2582 
2583 	return count;
2584 }
2585 
2586 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
2587 
2588 static struct attribute *x86_pmu_attrs[] = {
2589 	&dev_attr_rdpmc.attr,
2590 	NULL,
2591 };
2592 
2593 static struct attribute_group x86_pmu_attr_group __ro_after_init = {
2594 	.attrs = x86_pmu_attrs,
2595 };
2596 
2597 static ssize_t max_precise_show(struct device *cdev,
2598 				  struct device_attribute *attr,
2599 				  char *buf)
2600 {
2601 	return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu_max_precise());
2602 }
2603 
2604 static DEVICE_ATTR_RO(max_precise);
2605 
2606 static struct attribute *x86_pmu_caps_attrs[] = {
2607 	&dev_attr_max_precise.attr,
2608 	NULL
2609 };
2610 
2611 static struct attribute_group x86_pmu_caps_group __ro_after_init = {
2612 	.name = "caps",
2613 	.attrs = x86_pmu_caps_attrs,
2614 };
2615 
2616 static const struct attribute_group *x86_pmu_attr_groups[] = {
2617 	&x86_pmu_attr_group,
2618 	&x86_pmu_format_group,
2619 	&x86_pmu_events_group,
2620 	&x86_pmu_caps_group,
2621 	NULL,
2622 };
2623 
2624 static void x86_pmu_sched_task(struct perf_event_pmu_context *pmu_ctx, bool sched_in)
2625 {
2626 	static_call_cond(x86_pmu_sched_task)(pmu_ctx, sched_in);
2627 }
2628 
2629 static void x86_pmu_swap_task_ctx(struct perf_event_pmu_context *prev_epc,
2630 				  struct perf_event_pmu_context *next_epc)
2631 {
2632 	static_call_cond(x86_pmu_swap_task_ctx)(prev_epc, next_epc);
2633 }
2634 
2635 void perf_check_microcode(void)
2636 {
2637 	if (x86_pmu.check_microcode)
2638 		x86_pmu.check_microcode();
2639 }
2640 
2641 static int x86_pmu_check_period(struct perf_event *event, u64 value)
2642 {
2643 	if (x86_pmu.check_period && x86_pmu.check_period(event, value))
2644 		return -EINVAL;
2645 
2646 	if (value && x86_pmu.limit_period) {
2647 		s64 left = value;
2648 		x86_pmu.limit_period(event, &left);
2649 		if (left > value)
2650 			return -EINVAL;
2651 	}
2652 
2653 	return 0;
2654 }
2655 
2656 static int x86_pmu_aux_output_match(struct perf_event *event)
2657 {
2658 	if (!(pmu.capabilities & PERF_PMU_CAP_AUX_OUTPUT))
2659 		return 0;
2660 
2661 	if (x86_pmu.aux_output_match)
2662 		return x86_pmu.aux_output_match(event);
2663 
2664 	return 0;
2665 }
2666 
2667 static bool x86_pmu_filter(struct pmu *pmu, int cpu)
2668 {
2669 	bool ret = false;
2670 
2671 	static_call_cond(x86_pmu_filter)(pmu, cpu, &ret);
2672 
2673 	return ret;
2674 }
2675 
2676 static struct pmu pmu = {
2677 	.pmu_enable		= x86_pmu_enable,
2678 	.pmu_disable		= x86_pmu_disable,
2679 
2680 	.attr_groups		= x86_pmu_attr_groups,
2681 
2682 	.event_init		= x86_pmu_event_init,
2683 
2684 	.event_mapped		= x86_pmu_event_mapped,
2685 	.event_unmapped		= x86_pmu_event_unmapped,
2686 
2687 	.add			= x86_pmu_add,
2688 	.del			= x86_pmu_del,
2689 	.start			= x86_pmu_start,
2690 	.stop			= x86_pmu_stop,
2691 	.read			= x86_pmu_read,
2692 
2693 	.start_txn		= x86_pmu_start_txn,
2694 	.cancel_txn		= x86_pmu_cancel_txn,
2695 	.commit_txn		= x86_pmu_commit_txn,
2696 
2697 	.event_idx		= x86_pmu_event_idx,
2698 	.sched_task		= x86_pmu_sched_task,
2699 	.swap_task_ctx		= x86_pmu_swap_task_ctx,
2700 	.check_period		= x86_pmu_check_period,
2701 
2702 	.aux_output_match	= x86_pmu_aux_output_match,
2703 
2704 	.filter			= x86_pmu_filter,
2705 };
2706 
2707 void arch_perf_update_userpage(struct perf_event *event,
2708 			       struct perf_event_mmap_page *userpg, u64 now)
2709 {
2710 	struct cyc2ns_data data;
2711 	u64 offset;
2712 
2713 	userpg->cap_user_time = 0;
2714 	userpg->cap_user_time_zero = 0;
2715 	userpg->cap_user_rdpmc =
2716 		!!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT);
2717 	userpg->pmc_width = x86_pmu.cntval_bits;
2718 
2719 	if (!using_native_sched_clock() || !sched_clock_stable())
2720 		return;
2721 
2722 	cyc2ns_read_begin(&data);
2723 
2724 	offset = data.cyc2ns_offset + __sched_clock_offset;
2725 
2726 	/*
2727 	 * Internal timekeeping for enabled/running/stopped times
2728 	 * is always in the local_clock domain.
2729 	 */
2730 	userpg->cap_user_time = 1;
2731 	userpg->time_mult = data.cyc2ns_mul;
2732 	userpg->time_shift = data.cyc2ns_shift;
2733 	userpg->time_offset = offset - now;
2734 
2735 	/*
2736 	 * cap_user_time_zero doesn't make sense when we're using a different
2737 	 * time base for the records.
2738 	 */
2739 	if (!event->attr.use_clockid) {
2740 		userpg->cap_user_time_zero = 1;
2741 		userpg->time_zero = offset;
2742 	}
2743 
2744 	cyc2ns_read_end();
2745 }
2746 
2747 /*
2748  * Determine whether the regs were taken from an irq/exception handler rather
2749  * than from perf_arch_fetch_caller_regs().
2750  */
2751 static bool perf_hw_regs(struct pt_regs *regs)
2752 {
2753 	return regs->flags & X86_EFLAGS_FIXED;
2754 }
2755 
2756 void
2757 perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2758 {
2759 	struct unwind_state state;
2760 	unsigned long addr;
2761 
2762 	if (perf_guest_state()) {
2763 		/* TODO: We don't support guest os callchain now */
2764 		return;
2765 	}
2766 
2767 	if (perf_callchain_store(entry, regs->ip))
2768 		return;
2769 
2770 	if (perf_hw_regs(regs))
2771 		unwind_start(&state, current, regs, NULL);
2772 	else
2773 		unwind_start(&state, current, NULL, (void *)regs->sp);
2774 
2775 	for (; !unwind_done(&state); unwind_next_frame(&state)) {
2776 		addr = unwind_get_return_address(&state);
2777 		if (!addr || perf_callchain_store(entry, addr))
2778 			return;
2779 	}
2780 }
2781 
2782 static inline int
2783 valid_user_frame(const void __user *fp, unsigned long size)
2784 {
2785 	return __access_ok(fp, size);
2786 }
2787 
2788 static unsigned long get_segment_base(unsigned int segment)
2789 {
2790 	struct desc_struct *desc;
2791 	unsigned int idx = segment >> 3;
2792 
2793 	if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2794 #ifdef CONFIG_MODIFY_LDT_SYSCALL
2795 		struct ldt_struct *ldt;
2796 
2797 		/* IRQs are off, so this synchronizes with smp_store_release */
2798 		ldt = READ_ONCE(current->active_mm->context.ldt);
2799 		if (!ldt || idx >= ldt->nr_entries)
2800 			return 0;
2801 
2802 		desc = &ldt->entries[idx];
2803 #else
2804 		return 0;
2805 #endif
2806 	} else {
2807 		if (idx >= GDT_ENTRIES)
2808 			return 0;
2809 
2810 		desc = raw_cpu_ptr(gdt_page.gdt) + idx;
2811 	}
2812 
2813 	return get_desc_base(desc);
2814 }
2815 
2816 #ifdef CONFIG_IA32_EMULATION
2817 
2818 #include <linux/compat.h>
2819 
2820 static inline int
2821 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2822 {
2823 	/* 32-bit process in 64-bit kernel. */
2824 	unsigned long ss_base, cs_base;
2825 	struct stack_frame_ia32 frame;
2826 	const struct stack_frame_ia32 __user *fp;
2827 
2828 	if (user_64bit_mode(regs))
2829 		return 0;
2830 
2831 	cs_base = get_segment_base(regs->cs);
2832 	ss_base = get_segment_base(regs->ss);
2833 
2834 	fp = compat_ptr(ss_base + regs->bp);
2835 	pagefault_disable();
2836 	while (entry->nr < entry->max_stack) {
2837 		if (!valid_user_frame(fp, sizeof(frame)))
2838 			break;
2839 
2840 		if (__get_user(frame.next_frame, &fp->next_frame))
2841 			break;
2842 		if (__get_user(frame.return_address, &fp->return_address))
2843 			break;
2844 
2845 		perf_callchain_store(entry, cs_base + frame.return_address);
2846 		fp = compat_ptr(ss_base + frame.next_frame);
2847 	}
2848 	pagefault_enable();
2849 	return 1;
2850 }
2851 #else
2852 static inline int
2853 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2854 {
2855     return 0;
2856 }
2857 #endif
2858 
2859 void
2860 perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2861 {
2862 	struct stack_frame frame;
2863 	const struct stack_frame __user *fp;
2864 
2865 	if (perf_guest_state()) {
2866 		/* TODO: We don't support guest os callchain now */
2867 		return;
2868 	}
2869 
2870 	/*
2871 	 * We don't know what to do with VM86 stacks.. ignore them for now.
2872 	 */
2873 	if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2874 		return;
2875 
2876 	fp = (void __user *)regs->bp;
2877 
2878 	perf_callchain_store(entry, regs->ip);
2879 
2880 	if (!nmi_uaccess_okay())
2881 		return;
2882 
2883 	if (perf_callchain_user32(regs, entry))
2884 		return;
2885 
2886 	pagefault_disable();
2887 	while (entry->nr < entry->max_stack) {
2888 		if (!valid_user_frame(fp, sizeof(frame)))
2889 			break;
2890 
2891 		if (__get_user(frame.next_frame, &fp->next_frame))
2892 			break;
2893 		if (__get_user(frame.return_address, &fp->return_address))
2894 			break;
2895 
2896 		perf_callchain_store(entry, frame.return_address);
2897 		fp = (void __user *)frame.next_frame;
2898 	}
2899 	pagefault_enable();
2900 }
2901 
2902 /*
2903  * Deal with code segment offsets for the various execution modes:
2904  *
2905  *   VM86 - the good olde 16 bit days, where the linear address is
2906  *          20 bits and we use regs->ip + 0x10 * regs->cs.
2907  *
2908  *   IA32 - Where we need to look at GDT/LDT segment descriptor tables
2909  *          to figure out what the 32bit base address is.
2910  *
2911  *    X32 - has TIF_X32 set, but is running in x86_64
2912  *
2913  * X86_64 - CS,DS,SS,ES are all zero based.
2914  */
2915 static unsigned long code_segment_base(struct pt_regs *regs)
2916 {
2917 	/*
2918 	 * For IA32 we look at the GDT/LDT segment base to convert the
2919 	 * effective IP to a linear address.
2920 	 */
2921 
2922 #ifdef CONFIG_X86_32
2923 	/*
2924 	 * If we are in VM86 mode, add the segment offset to convert to a
2925 	 * linear address.
2926 	 */
2927 	if (regs->flags & X86_VM_MASK)
2928 		return 0x10 * regs->cs;
2929 
2930 	if (user_mode(regs) && regs->cs != __USER_CS)
2931 		return get_segment_base(regs->cs);
2932 #else
2933 	if (user_mode(regs) && !user_64bit_mode(regs) &&
2934 	    regs->cs != __USER32_CS)
2935 		return get_segment_base(regs->cs);
2936 #endif
2937 	return 0;
2938 }
2939 
2940 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2941 {
2942 	if (perf_guest_state())
2943 		return perf_guest_get_ip();
2944 
2945 	return regs->ip + code_segment_base(regs);
2946 }
2947 
2948 unsigned long perf_misc_flags(struct pt_regs *regs)
2949 {
2950 	unsigned int guest_state = perf_guest_state();
2951 	int misc = 0;
2952 
2953 	if (guest_state) {
2954 		if (guest_state & PERF_GUEST_USER)
2955 			misc |= PERF_RECORD_MISC_GUEST_USER;
2956 		else
2957 			misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2958 	} else {
2959 		if (user_mode(regs))
2960 			misc |= PERF_RECORD_MISC_USER;
2961 		else
2962 			misc |= PERF_RECORD_MISC_KERNEL;
2963 	}
2964 
2965 	if (regs->flags & PERF_EFLAGS_EXACT)
2966 		misc |= PERF_RECORD_MISC_EXACT_IP;
2967 
2968 	return misc;
2969 }
2970 
2971 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2972 {
2973 	/* This API doesn't currently support enumerating hybrid PMUs. */
2974 	if (WARN_ON_ONCE(cpu_feature_enabled(X86_FEATURE_HYBRID_CPU)) ||
2975 	    !x86_pmu_initialized()) {
2976 		memset(cap, 0, sizeof(*cap));
2977 		return;
2978 	}
2979 
2980 	/*
2981 	 * Note, hybrid CPU models get tracked as having hybrid PMUs even when
2982 	 * all E-cores are disabled via BIOS.  When E-cores are disabled, the
2983 	 * base PMU holds the correct number of counters for P-cores.
2984 	 */
2985 	cap->version		= x86_pmu.version;
2986 	cap->num_counters_gp	= x86_pmu.num_counters;
2987 	cap->num_counters_fixed	= x86_pmu.num_counters_fixed;
2988 	cap->bit_width_gp	= x86_pmu.cntval_bits;
2989 	cap->bit_width_fixed	= x86_pmu.cntval_bits;
2990 	cap->events_mask	= (unsigned int)x86_pmu.events_maskl;
2991 	cap->events_mask_len	= x86_pmu.events_mask_len;
2992 	cap->pebs_ept		= x86_pmu.pebs_ept;
2993 }
2994 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);
2995 
2996 u64 perf_get_hw_event_config(int hw_event)
2997 {
2998 	int max = x86_pmu.max_events;
2999 
3000 	if (hw_event < max)
3001 		return x86_pmu.event_map(array_index_nospec(hw_event, max));
3002 
3003 	return 0;
3004 }
3005 EXPORT_SYMBOL_GPL(perf_get_hw_event_config);
3006