xref: /linux/arch/x86/events/amd/ibs.c (revision 288440de9e5fdb4a3ff73864850f080c1250fc81)
1 /*
2  * Performance events - AMD IBS
3  *
4  *  Copyright (C) 2011 Advanced Micro Devices, Inc., Robert Richter
5  *
6  *  For licencing details see kernel-base/COPYING
7  */
8 
9 #include <linux/perf_event.h>
10 #include <linux/init.h>
11 #include <linux/export.h>
12 #include <linux/pci.h>
13 #include <linux/ptrace.h>
14 #include <linux/syscore_ops.h>
15 #include <linux/sched/clock.h>
16 
17 #include <asm/apic.h>
18 
19 #include "../perf_event.h"
20 
21 static u32 ibs_caps;
22 
23 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_AMD)
24 
25 #include <linux/kprobes.h>
26 #include <linux/hardirq.h>
27 
28 #include <asm/nmi.h>
29 #include <asm/amd-ibs.h>
30 
31 #define IBS_FETCH_CONFIG_MASK	(IBS_FETCH_RAND_EN | IBS_FETCH_MAX_CNT)
32 #define IBS_OP_CONFIG_MASK	IBS_OP_MAX_CNT
33 
34 
35 /*
36  * IBS states:
37  *
38  * ENABLED; tracks the pmu::add(), pmu::del() state, when set the counter is taken
39  * and any further add()s must fail.
40  *
41  * STARTED/STOPPING/STOPPED; deal with pmu::start(), pmu::stop() state but are
42  * complicated by the fact that the IBS hardware can send late NMIs (ie. after
43  * we've cleared the EN bit).
44  *
45  * In order to consume these late NMIs we have the STOPPED state, any NMI that
46  * happens after we've cleared the EN state will clear this bit and report the
47  * NMI handled (this is fundamentally racy in the face or multiple NMI sources,
48  * someone else can consume our BIT and our NMI will go unhandled).
49  *
50  * And since we cannot set/clear this separate bit together with the EN bit,
51  * there are races; if we cleared STARTED early, an NMI could land in
52  * between clearing STARTED and clearing the EN bit (in fact multiple NMIs
53  * could happen if the period is small enough), and consume our STOPPED bit
54  * and trigger streams of unhandled NMIs.
55  *
56  * If, however, we clear STARTED late, an NMI can hit between clearing the
57  * EN bit and clearing STARTED, still see STARTED set and process the event.
58  * If this event will have the VALID bit clear, we bail properly, but this
59  * is not a given. With VALID set we can end up calling pmu::stop() again
60  * (the throttle logic) and trigger the WARNs in there.
61  *
62  * So what we do is set STOPPING before clearing EN to avoid the pmu::stop()
63  * nesting, and clear STARTED late, so that we have a well defined state over
64  * the clearing of the EN bit.
65  *
66  * XXX: we could probably be using !atomic bitops for all this.
67  */
68 
69 enum ibs_states {
70 	IBS_ENABLED	= 0,
71 	IBS_STARTED	= 1,
72 	IBS_STOPPING	= 2,
73 	IBS_STOPPED	= 3,
74 
75 	IBS_MAX_STATES,
76 };
77 
78 struct cpu_perf_ibs {
79 	struct perf_event	*event;
80 	unsigned long		state[BITS_TO_LONGS(IBS_MAX_STATES)];
81 };
82 
83 struct perf_ibs {
84 	struct pmu			pmu;
85 	unsigned int			msr;
86 	u64				config_mask;
87 	u64				cnt_mask;
88 	u64				enable_mask;
89 	u64				valid_mask;
90 	u64				max_period;
91 	unsigned long			offset_mask[1];
92 	int				offset_max;
93 	unsigned int			fetch_count_reset_broken : 1;
94 	unsigned int			fetch_ignore_if_zero_rip : 1;
95 	struct cpu_perf_ibs __percpu	*pcpu;
96 
97 	u64				(*get_count)(u64 config);
98 };
99 
100 static int
101 perf_event_set_period(struct hw_perf_event *hwc, u64 min, u64 max, u64 *hw_period)
102 {
103 	s64 left = local64_read(&hwc->period_left);
104 	s64 period = hwc->sample_period;
105 	int overflow = 0;
106 
107 	/*
108 	 * If we are way outside a reasonable range then just skip forward:
109 	 */
110 	if (unlikely(left <= -period)) {
111 		left = period;
112 		local64_set(&hwc->period_left, left);
113 		hwc->last_period = period;
114 		overflow = 1;
115 	}
116 
117 	if (unlikely(left < (s64)min)) {
118 		left += period;
119 		local64_set(&hwc->period_left, left);
120 		hwc->last_period = period;
121 		overflow = 1;
122 	}
123 
124 	/*
125 	 * If the hw period that triggers the sw overflow is too short
126 	 * we might hit the irq handler. This biases the results.
127 	 * Thus we shorten the next-to-last period and set the last
128 	 * period to the max period.
129 	 */
130 	if (left > max) {
131 		left -= max;
132 		if (left > max)
133 			left = max;
134 		else if (left < min)
135 			left = min;
136 	}
137 
138 	*hw_period = (u64)left;
139 
140 	return overflow;
141 }
142 
143 static  int
144 perf_event_try_update(struct perf_event *event, u64 new_raw_count, int width)
145 {
146 	struct hw_perf_event *hwc = &event->hw;
147 	int shift = 64 - width;
148 	u64 prev_raw_count;
149 	u64 delta;
150 
151 	/*
152 	 * Careful: an NMI might modify the previous event value.
153 	 *
154 	 * Our tactic to handle this is to first atomically read and
155 	 * exchange a new raw count - then add that new-prev delta
156 	 * count to the generic event atomically:
157 	 */
158 	prev_raw_count = local64_read(&hwc->prev_count);
159 	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
160 					new_raw_count) != prev_raw_count)
161 		return 0;
162 
163 	/*
164 	 * Now we have the new raw value and have updated the prev
165 	 * timestamp already. We can now calculate the elapsed delta
166 	 * (event-)time and add that to the generic event.
167 	 *
168 	 * Careful, not all hw sign-extends above the physical width
169 	 * of the count.
170 	 */
171 	delta = (new_raw_count << shift) - (prev_raw_count << shift);
172 	delta >>= shift;
173 
174 	local64_add(delta, &event->count);
175 	local64_sub(delta, &hwc->period_left);
176 
177 	return 1;
178 }
179 
180 static struct perf_ibs perf_ibs_fetch;
181 static struct perf_ibs perf_ibs_op;
182 
183 static struct perf_ibs *get_ibs_pmu(int type)
184 {
185 	if (perf_ibs_fetch.pmu.type == type)
186 		return &perf_ibs_fetch;
187 	if (perf_ibs_op.pmu.type == type)
188 		return &perf_ibs_op;
189 	return NULL;
190 }
191 
192 /*
193  * Use IBS for precise event sampling:
194  *
195  *  perf record -a -e cpu-cycles:p ...    # use ibs op counting cycle count
196  *  perf record -a -e r076:p ...          # same as -e cpu-cycles:p
197  *  perf record -a -e r0C1:p ...          # use ibs op counting micro-ops
198  *
199  * IbsOpCntCtl (bit 19) of IBS Execution Control Register (IbsOpCtl,
200  * MSRC001_1033) is used to select either cycle or micro-ops counting
201  * mode.
202  *
203  * The rip of IBS samples has skid 0. Thus, IBS supports precise
204  * levels 1 and 2 and the PERF_EFLAGS_EXACT is set. In rare cases the
205  * rip is invalid when IBS was not able to record the rip correctly.
206  * We clear PERF_EFLAGS_EXACT and take the rip from pt_regs then.
207  *
208  */
209 static int perf_ibs_precise_event(struct perf_event *event, u64 *config)
210 {
211 	switch (event->attr.precise_ip) {
212 	case 0:
213 		return -ENOENT;
214 	case 1:
215 	case 2:
216 		break;
217 	default:
218 		return -EOPNOTSUPP;
219 	}
220 
221 	switch (event->attr.type) {
222 	case PERF_TYPE_HARDWARE:
223 		switch (event->attr.config) {
224 		case PERF_COUNT_HW_CPU_CYCLES:
225 			*config = 0;
226 			return 0;
227 		}
228 		break;
229 	case PERF_TYPE_RAW:
230 		switch (event->attr.config) {
231 		case 0x0076:
232 			*config = 0;
233 			return 0;
234 		case 0x00C1:
235 			*config = IBS_OP_CNT_CTL;
236 			return 0;
237 		}
238 		break;
239 	default:
240 		return -ENOENT;
241 	}
242 
243 	return -EOPNOTSUPP;
244 }
245 
246 static int perf_ibs_init(struct perf_event *event)
247 {
248 	struct hw_perf_event *hwc = &event->hw;
249 	struct perf_ibs *perf_ibs;
250 	u64 max_cnt, config;
251 	int ret;
252 
253 	perf_ibs = get_ibs_pmu(event->attr.type);
254 	if (perf_ibs) {
255 		config = event->attr.config;
256 	} else {
257 		perf_ibs = &perf_ibs_op;
258 		ret = perf_ibs_precise_event(event, &config);
259 		if (ret)
260 			return ret;
261 	}
262 
263 	if (event->pmu != &perf_ibs->pmu)
264 		return -ENOENT;
265 
266 	if (config & ~perf_ibs->config_mask)
267 		return -EINVAL;
268 
269 	if (hwc->sample_period) {
270 		if (config & perf_ibs->cnt_mask)
271 			/* raw max_cnt may not be set */
272 			return -EINVAL;
273 		if (!event->attr.sample_freq && hwc->sample_period & 0x0f)
274 			/*
275 			 * lower 4 bits can not be set in ibs max cnt,
276 			 * but allowing it in case we adjust the
277 			 * sample period to set a frequency.
278 			 */
279 			return -EINVAL;
280 		hwc->sample_period &= ~0x0FULL;
281 		if (!hwc->sample_period)
282 			hwc->sample_period = 0x10;
283 	} else {
284 		max_cnt = config & perf_ibs->cnt_mask;
285 		config &= ~perf_ibs->cnt_mask;
286 		event->attr.sample_period = max_cnt << 4;
287 		hwc->sample_period = event->attr.sample_period;
288 	}
289 
290 	if (!hwc->sample_period)
291 		return -EINVAL;
292 
293 	/*
294 	 * If we modify hwc->sample_period, we also need to update
295 	 * hwc->last_period and hwc->period_left.
296 	 */
297 	hwc->last_period = hwc->sample_period;
298 	local64_set(&hwc->period_left, hwc->sample_period);
299 
300 	hwc->config_base = perf_ibs->msr;
301 	hwc->config = config;
302 
303 	/*
304 	 * rip recorded by IbsOpRip will not be consistent with rsp and rbp
305 	 * recorded as part of interrupt regs. Thus we need to use rip from
306 	 * interrupt regs while unwinding call stack. Setting _EARLY flag
307 	 * makes sure we unwind call-stack before perf sample rip is set to
308 	 * IbsOpRip.
309 	 */
310 	if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
311 		event->attr.sample_type |= __PERF_SAMPLE_CALLCHAIN_EARLY;
312 
313 	return 0;
314 }
315 
316 static int perf_ibs_set_period(struct perf_ibs *perf_ibs,
317 			       struct hw_perf_event *hwc, u64 *period)
318 {
319 	int overflow;
320 
321 	/* ignore lower 4 bits in min count: */
322 	overflow = perf_event_set_period(hwc, 1<<4, perf_ibs->max_period, period);
323 	local64_set(&hwc->prev_count, 0);
324 
325 	return overflow;
326 }
327 
328 static u64 get_ibs_fetch_count(u64 config)
329 {
330 	union ibs_fetch_ctl fetch_ctl = (union ibs_fetch_ctl)config;
331 
332 	return fetch_ctl.fetch_cnt << 4;
333 }
334 
335 static u64 get_ibs_op_count(u64 config)
336 {
337 	union ibs_op_ctl op_ctl = (union ibs_op_ctl)config;
338 	u64 count = 0;
339 
340 	/*
341 	 * If the internal 27-bit counter rolled over, the count is MaxCnt
342 	 * and the lower 7 bits of CurCnt are randomized.
343 	 * Otherwise CurCnt has the full 27-bit current counter value.
344 	 */
345 	if (op_ctl.op_val) {
346 		count = op_ctl.opmaxcnt << 4;
347 		if (ibs_caps & IBS_CAPS_OPCNTEXT)
348 			count += op_ctl.opmaxcnt_ext << 20;
349 	} else if (ibs_caps & IBS_CAPS_RDWROPCNT) {
350 		count = op_ctl.opcurcnt;
351 	}
352 
353 	return count;
354 }
355 
356 static void
357 perf_ibs_event_update(struct perf_ibs *perf_ibs, struct perf_event *event,
358 		      u64 *config)
359 {
360 	u64 count = perf_ibs->get_count(*config);
361 
362 	/*
363 	 * Set width to 64 since we do not overflow on max width but
364 	 * instead on max count. In perf_ibs_set_period() we clear
365 	 * prev count manually on overflow.
366 	 */
367 	while (!perf_event_try_update(event, count, 64)) {
368 		rdmsrl(event->hw.config_base, *config);
369 		count = perf_ibs->get_count(*config);
370 	}
371 }
372 
373 static inline void perf_ibs_enable_event(struct perf_ibs *perf_ibs,
374 					 struct hw_perf_event *hwc, u64 config)
375 {
376 	u64 tmp = hwc->config | config;
377 
378 	if (perf_ibs->fetch_count_reset_broken)
379 		wrmsrl(hwc->config_base, tmp & ~perf_ibs->enable_mask);
380 
381 	wrmsrl(hwc->config_base, tmp | perf_ibs->enable_mask);
382 }
383 
384 /*
385  * Erratum #420 Instruction-Based Sampling Engine May Generate
386  * Interrupt that Cannot Be Cleared:
387  *
388  * Must clear counter mask first, then clear the enable bit. See
389  * Revision Guide for AMD Family 10h Processors, Publication #41322.
390  */
391 static inline void perf_ibs_disable_event(struct perf_ibs *perf_ibs,
392 					  struct hw_perf_event *hwc, u64 config)
393 {
394 	config &= ~perf_ibs->cnt_mask;
395 	if (boot_cpu_data.x86 == 0x10)
396 		wrmsrl(hwc->config_base, config);
397 	config &= ~perf_ibs->enable_mask;
398 	wrmsrl(hwc->config_base, config);
399 }
400 
401 /*
402  * We cannot restore the ibs pmu state, so we always needs to update
403  * the event while stopping it and then reset the state when starting
404  * again. Thus, ignoring PERF_EF_RELOAD and PERF_EF_UPDATE flags in
405  * perf_ibs_start()/perf_ibs_stop() and instead always do it.
406  */
407 static void perf_ibs_start(struct perf_event *event, int flags)
408 {
409 	struct hw_perf_event *hwc = &event->hw;
410 	struct perf_ibs *perf_ibs = container_of(event->pmu, struct perf_ibs, pmu);
411 	struct cpu_perf_ibs *pcpu = this_cpu_ptr(perf_ibs->pcpu);
412 	u64 period, config = 0;
413 
414 	if (WARN_ON_ONCE(!(hwc->state & PERF_HES_STOPPED)))
415 		return;
416 
417 	WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
418 	hwc->state = 0;
419 
420 	perf_ibs_set_period(perf_ibs, hwc, &period);
421 	if (perf_ibs == &perf_ibs_op && (ibs_caps & IBS_CAPS_OPCNTEXT)) {
422 		config |= period & IBS_OP_MAX_CNT_EXT_MASK;
423 		period &= ~IBS_OP_MAX_CNT_EXT_MASK;
424 	}
425 	config |= period >> 4;
426 
427 	/*
428 	 * Set STARTED before enabling the hardware, such that a subsequent NMI
429 	 * must observe it.
430 	 */
431 	set_bit(IBS_STARTED,    pcpu->state);
432 	clear_bit(IBS_STOPPING, pcpu->state);
433 	perf_ibs_enable_event(perf_ibs, hwc, config);
434 
435 	perf_event_update_userpage(event);
436 }
437 
438 static void perf_ibs_stop(struct perf_event *event, int flags)
439 {
440 	struct hw_perf_event *hwc = &event->hw;
441 	struct perf_ibs *perf_ibs = container_of(event->pmu, struct perf_ibs, pmu);
442 	struct cpu_perf_ibs *pcpu = this_cpu_ptr(perf_ibs->pcpu);
443 	u64 config;
444 	int stopping;
445 
446 	if (test_and_set_bit(IBS_STOPPING, pcpu->state))
447 		return;
448 
449 	stopping = test_bit(IBS_STARTED, pcpu->state);
450 
451 	if (!stopping && (hwc->state & PERF_HES_UPTODATE))
452 		return;
453 
454 	rdmsrl(hwc->config_base, config);
455 
456 	if (stopping) {
457 		/*
458 		 * Set STOPPED before disabling the hardware, such that it
459 		 * must be visible to NMIs the moment we clear the EN bit,
460 		 * at which point we can generate an !VALID sample which
461 		 * we need to consume.
462 		 */
463 		set_bit(IBS_STOPPED, pcpu->state);
464 		perf_ibs_disable_event(perf_ibs, hwc, config);
465 		/*
466 		 * Clear STARTED after disabling the hardware; if it were
467 		 * cleared before an NMI hitting after the clear but before
468 		 * clearing the EN bit might think it a spurious NMI and not
469 		 * handle it.
470 		 *
471 		 * Clearing it after, however, creates the problem of the NMI
472 		 * handler seeing STARTED but not having a valid sample.
473 		 */
474 		clear_bit(IBS_STARTED, pcpu->state);
475 		WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
476 		hwc->state |= PERF_HES_STOPPED;
477 	}
478 
479 	if (hwc->state & PERF_HES_UPTODATE)
480 		return;
481 
482 	/*
483 	 * Clear valid bit to not count rollovers on update, rollovers
484 	 * are only updated in the irq handler.
485 	 */
486 	config &= ~perf_ibs->valid_mask;
487 
488 	perf_ibs_event_update(perf_ibs, event, &config);
489 	hwc->state |= PERF_HES_UPTODATE;
490 }
491 
492 static int perf_ibs_add(struct perf_event *event, int flags)
493 {
494 	struct perf_ibs *perf_ibs = container_of(event->pmu, struct perf_ibs, pmu);
495 	struct cpu_perf_ibs *pcpu = this_cpu_ptr(perf_ibs->pcpu);
496 
497 	if (test_and_set_bit(IBS_ENABLED, pcpu->state))
498 		return -ENOSPC;
499 
500 	event->hw.state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
501 
502 	pcpu->event = event;
503 
504 	if (flags & PERF_EF_START)
505 		perf_ibs_start(event, PERF_EF_RELOAD);
506 
507 	return 0;
508 }
509 
510 static void perf_ibs_del(struct perf_event *event, int flags)
511 {
512 	struct perf_ibs *perf_ibs = container_of(event->pmu, struct perf_ibs, pmu);
513 	struct cpu_perf_ibs *pcpu = this_cpu_ptr(perf_ibs->pcpu);
514 
515 	if (!test_and_clear_bit(IBS_ENABLED, pcpu->state))
516 		return;
517 
518 	perf_ibs_stop(event, PERF_EF_UPDATE);
519 
520 	pcpu->event = NULL;
521 
522 	perf_event_update_userpage(event);
523 }
524 
525 static void perf_ibs_read(struct perf_event *event) { }
526 
527 /*
528  * We need to initialize with empty group if all attributes in the
529  * group are dynamic.
530  */
531 static struct attribute *attrs_empty[] = {
532 	NULL,
533 };
534 
535 static struct attribute_group empty_format_group = {
536 	.name = "format",
537 	.attrs = attrs_empty,
538 };
539 
540 static struct attribute_group empty_caps_group = {
541 	.name = "caps",
542 	.attrs = attrs_empty,
543 };
544 
545 static const struct attribute_group *empty_attr_groups[] = {
546 	&empty_format_group,
547 	&empty_caps_group,
548 	NULL,
549 };
550 
551 PMU_FORMAT_ATTR(rand_en,	"config:57");
552 PMU_FORMAT_ATTR(cnt_ctl,	"config:19");
553 PMU_EVENT_ATTR_STRING(l3missonly, fetch_l3missonly, "config:59");
554 PMU_EVENT_ATTR_STRING(l3missonly, op_l3missonly, "config:16");
555 PMU_EVENT_ATTR_STRING(zen4_ibs_extensions, zen4_ibs_extensions, "1");
556 
557 static umode_t
558 zen4_ibs_extensions_is_visible(struct kobject *kobj, struct attribute *attr, int i)
559 {
560 	return ibs_caps & IBS_CAPS_ZEN4 ? attr->mode : 0;
561 }
562 
563 static struct attribute *rand_en_attrs[] = {
564 	&format_attr_rand_en.attr,
565 	NULL,
566 };
567 
568 static struct attribute *fetch_l3missonly_attrs[] = {
569 	&fetch_l3missonly.attr.attr,
570 	NULL,
571 };
572 
573 static struct attribute *zen4_ibs_extensions_attrs[] = {
574 	&zen4_ibs_extensions.attr.attr,
575 	NULL,
576 };
577 
578 static struct attribute_group group_rand_en = {
579 	.name = "format",
580 	.attrs = rand_en_attrs,
581 };
582 
583 static struct attribute_group group_fetch_l3missonly = {
584 	.name = "format",
585 	.attrs = fetch_l3missonly_attrs,
586 	.is_visible = zen4_ibs_extensions_is_visible,
587 };
588 
589 static struct attribute_group group_zen4_ibs_extensions = {
590 	.name = "caps",
591 	.attrs = zen4_ibs_extensions_attrs,
592 	.is_visible = zen4_ibs_extensions_is_visible,
593 };
594 
595 static const struct attribute_group *fetch_attr_groups[] = {
596 	&group_rand_en,
597 	&empty_caps_group,
598 	NULL,
599 };
600 
601 static const struct attribute_group *fetch_attr_update[] = {
602 	&group_fetch_l3missonly,
603 	&group_zen4_ibs_extensions,
604 	NULL,
605 };
606 
607 static umode_t
608 cnt_ctl_is_visible(struct kobject *kobj, struct attribute *attr, int i)
609 {
610 	return ibs_caps & IBS_CAPS_OPCNT ? attr->mode : 0;
611 }
612 
613 static struct attribute *cnt_ctl_attrs[] = {
614 	&format_attr_cnt_ctl.attr,
615 	NULL,
616 };
617 
618 static struct attribute *op_l3missonly_attrs[] = {
619 	&op_l3missonly.attr.attr,
620 	NULL,
621 };
622 
623 static struct attribute_group group_cnt_ctl = {
624 	.name = "format",
625 	.attrs = cnt_ctl_attrs,
626 	.is_visible = cnt_ctl_is_visible,
627 };
628 
629 static struct attribute_group group_op_l3missonly = {
630 	.name = "format",
631 	.attrs = op_l3missonly_attrs,
632 	.is_visible = zen4_ibs_extensions_is_visible,
633 };
634 
635 static const struct attribute_group *op_attr_update[] = {
636 	&group_cnt_ctl,
637 	&group_op_l3missonly,
638 	&group_zen4_ibs_extensions,
639 	NULL,
640 };
641 
642 static struct perf_ibs perf_ibs_fetch = {
643 	.pmu = {
644 		.task_ctx_nr	= perf_invalid_context,
645 
646 		.event_init	= perf_ibs_init,
647 		.add		= perf_ibs_add,
648 		.del		= perf_ibs_del,
649 		.start		= perf_ibs_start,
650 		.stop		= perf_ibs_stop,
651 		.read		= perf_ibs_read,
652 		.capabilities	= PERF_PMU_CAP_NO_EXCLUDE,
653 	},
654 	.msr			= MSR_AMD64_IBSFETCHCTL,
655 	.config_mask		= IBS_FETCH_CONFIG_MASK,
656 	.cnt_mask		= IBS_FETCH_MAX_CNT,
657 	.enable_mask		= IBS_FETCH_ENABLE,
658 	.valid_mask		= IBS_FETCH_VAL,
659 	.max_period		= IBS_FETCH_MAX_CNT << 4,
660 	.offset_mask		= { MSR_AMD64_IBSFETCH_REG_MASK },
661 	.offset_max		= MSR_AMD64_IBSFETCH_REG_COUNT,
662 
663 	.get_count		= get_ibs_fetch_count,
664 };
665 
666 static struct perf_ibs perf_ibs_op = {
667 	.pmu = {
668 		.task_ctx_nr	= perf_invalid_context,
669 
670 		.event_init	= perf_ibs_init,
671 		.add		= perf_ibs_add,
672 		.del		= perf_ibs_del,
673 		.start		= perf_ibs_start,
674 		.stop		= perf_ibs_stop,
675 		.read		= perf_ibs_read,
676 		.capabilities	= PERF_PMU_CAP_NO_EXCLUDE,
677 	},
678 	.msr			= MSR_AMD64_IBSOPCTL,
679 	.config_mask		= IBS_OP_CONFIG_MASK,
680 	.cnt_mask		= IBS_OP_MAX_CNT | IBS_OP_CUR_CNT |
681 				  IBS_OP_CUR_CNT_RAND,
682 	.enable_mask		= IBS_OP_ENABLE,
683 	.valid_mask		= IBS_OP_VAL,
684 	.max_period		= IBS_OP_MAX_CNT << 4,
685 	.offset_mask		= { MSR_AMD64_IBSOP_REG_MASK },
686 	.offset_max		= MSR_AMD64_IBSOP_REG_COUNT,
687 
688 	.get_count		= get_ibs_op_count,
689 };
690 
691 static int perf_ibs_handle_irq(struct perf_ibs *perf_ibs, struct pt_regs *iregs)
692 {
693 	struct cpu_perf_ibs *pcpu = this_cpu_ptr(perf_ibs->pcpu);
694 	struct perf_event *event = pcpu->event;
695 	struct hw_perf_event *hwc;
696 	struct perf_sample_data data;
697 	struct perf_raw_record raw;
698 	struct pt_regs regs;
699 	struct perf_ibs_data ibs_data;
700 	int offset, size, check_rip, offset_max, throttle = 0;
701 	unsigned int msr;
702 	u64 *buf, *config, period, new_config = 0;
703 
704 	if (!test_bit(IBS_STARTED, pcpu->state)) {
705 fail:
706 		/*
707 		 * Catch spurious interrupts after stopping IBS: After
708 		 * disabling IBS there could be still incoming NMIs
709 		 * with samples that even have the valid bit cleared.
710 		 * Mark all this NMIs as handled.
711 		 */
712 		if (test_and_clear_bit(IBS_STOPPED, pcpu->state))
713 			return 1;
714 
715 		return 0;
716 	}
717 
718 	if (WARN_ON_ONCE(!event))
719 		goto fail;
720 
721 	hwc = &event->hw;
722 	msr = hwc->config_base;
723 	buf = ibs_data.regs;
724 	rdmsrl(msr, *buf);
725 	if (!(*buf++ & perf_ibs->valid_mask))
726 		goto fail;
727 
728 	config = &ibs_data.regs[0];
729 	perf_ibs_event_update(perf_ibs, event, config);
730 	perf_sample_data_init(&data, 0, hwc->last_period);
731 	if (!perf_ibs_set_period(perf_ibs, hwc, &period))
732 		goto out;	/* no sw counter overflow */
733 
734 	ibs_data.caps = ibs_caps;
735 	size = 1;
736 	offset = 1;
737 	check_rip = (perf_ibs == &perf_ibs_op && (ibs_caps & IBS_CAPS_RIPINVALIDCHK));
738 	if (event->attr.sample_type & PERF_SAMPLE_RAW)
739 		offset_max = perf_ibs->offset_max;
740 	else if (check_rip)
741 		offset_max = 3;
742 	else
743 		offset_max = 1;
744 	do {
745 		rdmsrl(msr + offset, *buf++);
746 		size++;
747 		offset = find_next_bit(perf_ibs->offset_mask,
748 				       perf_ibs->offset_max,
749 				       offset + 1);
750 	} while (offset < offset_max);
751 	/*
752 	 * Read IbsBrTarget, IbsOpData4, and IbsExtdCtl separately
753 	 * depending on their availability.
754 	 * Can't add to offset_max as they are staggered
755 	 */
756 	if (event->attr.sample_type & PERF_SAMPLE_RAW) {
757 		if (perf_ibs == &perf_ibs_op) {
758 			if (ibs_caps & IBS_CAPS_BRNTRGT) {
759 				rdmsrl(MSR_AMD64_IBSBRTARGET, *buf++);
760 				size++;
761 			}
762 			if (ibs_caps & IBS_CAPS_OPDATA4) {
763 				rdmsrl(MSR_AMD64_IBSOPDATA4, *buf++);
764 				size++;
765 			}
766 		}
767 		if (perf_ibs == &perf_ibs_fetch && (ibs_caps & IBS_CAPS_FETCHCTLEXTD)) {
768 			rdmsrl(MSR_AMD64_ICIBSEXTDCTL, *buf++);
769 			size++;
770 		}
771 	}
772 	ibs_data.size = sizeof(u64) * size;
773 
774 	regs = *iregs;
775 	if (check_rip && (ibs_data.regs[2] & IBS_RIP_INVALID)) {
776 		regs.flags &= ~PERF_EFLAGS_EXACT;
777 	} else {
778 		/* Workaround for erratum #1197 */
779 		if (perf_ibs->fetch_ignore_if_zero_rip && !(ibs_data.regs[1]))
780 			goto out;
781 
782 		set_linear_ip(&regs, ibs_data.regs[1]);
783 		regs.flags |= PERF_EFLAGS_EXACT;
784 	}
785 
786 	if (event->attr.sample_type & PERF_SAMPLE_RAW) {
787 		raw = (struct perf_raw_record){
788 			.frag = {
789 				.size = sizeof(u32) + ibs_data.size,
790 				.data = ibs_data.data,
791 			},
792 		};
793 		data.raw = &raw;
794 	}
795 
796 	/*
797 	 * rip recorded by IbsOpRip will not be consistent with rsp and rbp
798 	 * recorded as part of interrupt regs. Thus we need to use rip from
799 	 * interrupt regs while unwinding call stack.
800 	 */
801 	if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
802 		data.callchain = perf_callchain(event, iregs);
803 
804 	throttle = perf_event_overflow(event, &data, &regs);
805 out:
806 	if (throttle) {
807 		perf_ibs_stop(event, 0);
808 	} else {
809 		if (perf_ibs == &perf_ibs_op) {
810 			if (ibs_caps & IBS_CAPS_OPCNTEXT) {
811 				new_config = period & IBS_OP_MAX_CNT_EXT_MASK;
812 				period &= ~IBS_OP_MAX_CNT_EXT_MASK;
813 			}
814 			if ((ibs_caps & IBS_CAPS_RDWROPCNT) && (*config & IBS_OP_CNT_CTL))
815 				new_config |= *config & IBS_OP_CUR_CNT_RAND;
816 		}
817 		new_config |= period >> 4;
818 
819 		perf_ibs_enable_event(perf_ibs, hwc, new_config);
820 	}
821 
822 	perf_event_update_userpage(event);
823 
824 	return 1;
825 }
826 
827 static int
828 perf_ibs_nmi_handler(unsigned int cmd, struct pt_regs *regs)
829 {
830 	u64 stamp = sched_clock();
831 	int handled = 0;
832 
833 	handled += perf_ibs_handle_irq(&perf_ibs_fetch, regs);
834 	handled += perf_ibs_handle_irq(&perf_ibs_op, regs);
835 
836 	if (handled)
837 		inc_irq_stat(apic_perf_irqs);
838 
839 	perf_sample_event_took(sched_clock() - stamp);
840 
841 	return handled;
842 }
843 NOKPROBE_SYMBOL(perf_ibs_nmi_handler);
844 
845 static __init int perf_ibs_pmu_init(struct perf_ibs *perf_ibs, char *name)
846 {
847 	struct cpu_perf_ibs __percpu *pcpu;
848 	int ret;
849 
850 	pcpu = alloc_percpu(struct cpu_perf_ibs);
851 	if (!pcpu)
852 		return -ENOMEM;
853 
854 	perf_ibs->pcpu = pcpu;
855 
856 	ret = perf_pmu_register(&perf_ibs->pmu, name, -1);
857 	if (ret) {
858 		perf_ibs->pcpu = NULL;
859 		free_percpu(pcpu);
860 	}
861 
862 	return ret;
863 }
864 
865 static __init int perf_ibs_fetch_init(void)
866 {
867 	/*
868 	 * Some chips fail to reset the fetch count when it is written; instead
869 	 * they need a 0-1 transition of IbsFetchEn.
870 	 */
871 	if (boot_cpu_data.x86 >= 0x16 && boot_cpu_data.x86 <= 0x18)
872 		perf_ibs_fetch.fetch_count_reset_broken = 1;
873 
874 	if (boot_cpu_data.x86 == 0x19 && boot_cpu_data.x86_model < 0x10)
875 		perf_ibs_fetch.fetch_ignore_if_zero_rip = 1;
876 
877 	if (ibs_caps & IBS_CAPS_ZEN4)
878 		perf_ibs_fetch.config_mask |= IBS_FETCH_L3MISSONLY;
879 
880 	perf_ibs_fetch.pmu.attr_groups = fetch_attr_groups;
881 	perf_ibs_fetch.pmu.attr_update = fetch_attr_update;
882 
883 	return perf_ibs_pmu_init(&perf_ibs_fetch, "ibs_fetch");
884 }
885 
886 static __init int perf_ibs_op_init(void)
887 {
888 	if (ibs_caps & IBS_CAPS_OPCNT)
889 		perf_ibs_op.config_mask |= IBS_OP_CNT_CTL;
890 
891 	if (ibs_caps & IBS_CAPS_OPCNTEXT) {
892 		perf_ibs_op.max_period  |= IBS_OP_MAX_CNT_EXT_MASK;
893 		perf_ibs_op.config_mask	|= IBS_OP_MAX_CNT_EXT_MASK;
894 		perf_ibs_op.cnt_mask    |= IBS_OP_MAX_CNT_EXT_MASK;
895 	}
896 
897 	if (ibs_caps & IBS_CAPS_ZEN4)
898 		perf_ibs_op.config_mask |= IBS_OP_L3MISSONLY;
899 
900 	perf_ibs_op.pmu.attr_groups = empty_attr_groups;
901 	perf_ibs_op.pmu.attr_update = op_attr_update;
902 
903 	return perf_ibs_pmu_init(&perf_ibs_op, "ibs_op");
904 }
905 
906 static __init int perf_event_ibs_init(void)
907 {
908 	int ret;
909 
910 	ret = perf_ibs_fetch_init();
911 	if (ret)
912 		return ret;
913 
914 	ret = perf_ibs_op_init();
915 	if (ret)
916 		goto err_op;
917 
918 	ret = register_nmi_handler(NMI_LOCAL, perf_ibs_nmi_handler, 0, "perf_ibs");
919 	if (ret)
920 		goto err_nmi;
921 
922 	pr_info("perf: AMD IBS detected (0x%08x)\n", ibs_caps);
923 	return 0;
924 
925 err_nmi:
926 	perf_pmu_unregister(&perf_ibs_op.pmu);
927 	free_percpu(perf_ibs_op.pcpu);
928 	perf_ibs_op.pcpu = NULL;
929 err_op:
930 	perf_pmu_unregister(&perf_ibs_fetch.pmu);
931 	free_percpu(perf_ibs_fetch.pcpu);
932 	perf_ibs_fetch.pcpu = NULL;
933 
934 	return ret;
935 }
936 
937 #else /* defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_AMD) */
938 
939 static __init int perf_event_ibs_init(void)
940 {
941 	return 0;
942 }
943 
944 #endif
945 
946 /* IBS - apic initialization, for perf and oprofile */
947 
948 static __init u32 __get_ibs_caps(void)
949 {
950 	u32 caps;
951 	unsigned int max_level;
952 
953 	if (!boot_cpu_has(X86_FEATURE_IBS))
954 		return 0;
955 
956 	/* check IBS cpuid feature flags */
957 	max_level = cpuid_eax(0x80000000);
958 	if (max_level < IBS_CPUID_FEATURES)
959 		return IBS_CAPS_DEFAULT;
960 
961 	caps = cpuid_eax(IBS_CPUID_FEATURES);
962 	if (!(caps & IBS_CAPS_AVAIL))
963 		/* cpuid flags not valid */
964 		return IBS_CAPS_DEFAULT;
965 
966 	return caps;
967 }
968 
969 u32 get_ibs_caps(void)
970 {
971 	return ibs_caps;
972 }
973 
974 EXPORT_SYMBOL(get_ibs_caps);
975 
976 static inline int get_eilvt(int offset)
977 {
978 	return !setup_APIC_eilvt(offset, 0, APIC_EILVT_MSG_NMI, 1);
979 }
980 
981 static inline int put_eilvt(int offset)
982 {
983 	return !setup_APIC_eilvt(offset, 0, 0, 1);
984 }
985 
986 /*
987  * Check and reserve APIC extended interrupt LVT offset for IBS if available.
988  */
989 static inline int ibs_eilvt_valid(void)
990 {
991 	int offset;
992 	u64 val;
993 	int valid = 0;
994 
995 	preempt_disable();
996 
997 	rdmsrl(MSR_AMD64_IBSCTL, val);
998 	offset = val & IBSCTL_LVT_OFFSET_MASK;
999 
1000 	if (!(val & IBSCTL_LVT_OFFSET_VALID)) {
1001 		pr_err(FW_BUG "cpu %d, invalid IBS interrupt offset %d (MSR%08X=0x%016llx)\n",
1002 		       smp_processor_id(), offset, MSR_AMD64_IBSCTL, val);
1003 		goto out;
1004 	}
1005 
1006 	if (!get_eilvt(offset)) {
1007 		pr_err(FW_BUG "cpu %d, IBS interrupt offset %d not available (MSR%08X=0x%016llx)\n",
1008 		       smp_processor_id(), offset, MSR_AMD64_IBSCTL, val);
1009 		goto out;
1010 	}
1011 
1012 	valid = 1;
1013 out:
1014 	preempt_enable();
1015 
1016 	return valid;
1017 }
1018 
1019 static int setup_ibs_ctl(int ibs_eilvt_off)
1020 {
1021 	struct pci_dev *cpu_cfg;
1022 	int nodes;
1023 	u32 value = 0;
1024 
1025 	nodes = 0;
1026 	cpu_cfg = NULL;
1027 	do {
1028 		cpu_cfg = pci_get_device(PCI_VENDOR_ID_AMD,
1029 					 PCI_DEVICE_ID_AMD_10H_NB_MISC,
1030 					 cpu_cfg);
1031 		if (!cpu_cfg)
1032 			break;
1033 		++nodes;
1034 		pci_write_config_dword(cpu_cfg, IBSCTL, ibs_eilvt_off
1035 				       | IBSCTL_LVT_OFFSET_VALID);
1036 		pci_read_config_dword(cpu_cfg, IBSCTL, &value);
1037 		if (value != (ibs_eilvt_off | IBSCTL_LVT_OFFSET_VALID)) {
1038 			pci_dev_put(cpu_cfg);
1039 			pr_debug("Failed to setup IBS LVT offset, IBSCTL = 0x%08x\n",
1040 				 value);
1041 			return -EINVAL;
1042 		}
1043 	} while (1);
1044 
1045 	if (!nodes) {
1046 		pr_debug("No CPU node configured for IBS\n");
1047 		return -ENODEV;
1048 	}
1049 
1050 	return 0;
1051 }
1052 
1053 /*
1054  * This runs only on the current cpu. We try to find an LVT offset and
1055  * setup the local APIC. For this we must disable preemption. On
1056  * success we initialize all nodes with this offset. This updates then
1057  * the offset in the IBS_CTL per-node msr. The per-core APIC setup of
1058  * the IBS interrupt vector is handled by perf_ibs_cpu_notifier that
1059  * is using the new offset.
1060  */
1061 static void force_ibs_eilvt_setup(void)
1062 {
1063 	int offset;
1064 	int ret;
1065 
1066 	preempt_disable();
1067 	/* find the next free available EILVT entry, skip offset 0 */
1068 	for (offset = 1; offset < APIC_EILVT_NR_MAX; offset++) {
1069 		if (get_eilvt(offset))
1070 			break;
1071 	}
1072 	preempt_enable();
1073 
1074 	if (offset == APIC_EILVT_NR_MAX) {
1075 		pr_debug("No EILVT entry available\n");
1076 		return;
1077 	}
1078 
1079 	ret = setup_ibs_ctl(offset);
1080 	if (ret)
1081 		goto out;
1082 
1083 	if (!ibs_eilvt_valid())
1084 		goto out;
1085 
1086 	pr_info("LVT offset %d assigned\n", offset);
1087 
1088 	return;
1089 out:
1090 	preempt_disable();
1091 	put_eilvt(offset);
1092 	preempt_enable();
1093 	return;
1094 }
1095 
1096 static void ibs_eilvt_setup(void)
1097 {
1098 	/*
1099 	 * Force LVT offset assignment for family 10h: The offsets are
1100 	 * not assigned by the BIOS for this family, so the OS is
1101 	 * responsible for doing it. If the OS assignment fails, fall
1102 	 * back to BIOS settings and try to setup this.
1103 	 */
1104 	if (boot_cpu_data.x86 == 0x10)
1105 		force_ibs_eilvt_setup();
1106 }
1107 
1108 static inline int get_ibs_lvt_offset(void)
1109 {
1110 	u64 val;
1111 
1112 	rdmsrl(MSR_AMD64_IBSCTL, val);
1113 	if (!(val & IBSCTL_LVT_OFFSET_VALID))
1114 		return -EINVAL;
1115 
1116 	return val & IBSCTL_LVT_OFFSET_MASK;
1117 }
1118 
1119 static void setup_APIC_ibs(void)
1120 {
1121 	int offset;
1122 
1123 	offset = get_ibs_lvt_offset();
1124 	if (offset < 0)
1125 		goto failed;
1126 
1127 	if (!setup_APIC_eilvt(offset, 0, APIC_EILVT_MSG_NMI, 0))
1128 		return;
1129 failed:
1130 	pr_warn("perf: IBS APIC setup failed on cpu #%d\n",
1131 		smp_processor_id());
1132 }
1133 
1134 static void clear_APIC_ibs(void)
1135 {
1136 	int offset;
1137 
1138 	offset = get_ibs_lvt_offset();
1139 	if (offset >= 0)
1140 		setup_APIC_eilvt(offset, 0, APIC_EILVT_MSG_FIX, 1);
1141 }
1142 
1143 static int x86_pmu_amd_ibs_starting_cpu(unsigned int cpu)
1144 {
1145 	setup_APIC_ibs();
1146 	return 0;
1147 }
1148 
1149 #ifdef CONFIG_PM
1150 
1151 static int perf_ibs_suspend(void)
1152 {
1153 	clear_APIC_ibs();
1154 	return 0;
1155 }
1156 
1157 static void perf_ibs_resume(void)
1158 {
1159 	ibs_eilvt_setup();
1160 	setup_APIC_ibs();
1161 }
1162 
1163 static struct syscore_ops perf_ibs_syscore_ops = {
1164 	.resume		= perf_ibs_resume,
1165 	.suspend	= perf_ibs_suspend,
1166 };
1167 
1168 static void perf_ibs_pm_init(void)
1169 {
1170 	register_syscore_ops(&perf_ibs_syscore_ops);
1171 }
1172 
1173 #else
1174 
1175 static inline void perf_ibs_pm_init(void) { }
1176 
1177 #endif
1178 
1179 static int x86_pmu_amd_ibs_dying_cpu(unsigned int cpu)
1180 {
1181 	clear_APIC_ibs();
1182 	return 0;
1183 }
1184 
1185 static __init int amd_ibs_init(void)
1186 {
1187 	u32 caps;
1188 
1189 	caps = __get_ibs_caps();
1190 	if (!caps)
1191 		return -ENODEV;	/* ibs not supported by the cpu */
1192 
1193 	ibs_eilvt_setup();
1194 
1195 	if (!ibs_eilvt_valid())
1196 		return -EINVAL;
1197 
1198 	perf_ibs_pm_init();
1199 
1200 	ibs_caps = caps;
1201 	/* make ibs_caps visible to other cpus: */
1202 	smp_mb();
1203 	/*
1204 	 * x86_pmu_amd_ibs_starting_cpu will be called from core on
1205 	 * all online cpus.
1206 	 */
1207 	cpuhp_setup_state(CPUHP_AP_PERF_X86_AMD_IBS_STARTING,
1208 			  "perf/x86/amd/ibs:starting",
1209 			  x86_pmu_amd_ibs_starting_cpu,
1210 			  x86_pmu_amd_ibs_dying_cpu);
1211 
1212 	return perf_event_ibs_init();
1213 }
1214 
1215 /* Since we need the pci subsystem to init ibs we can't do this earlier: */
1216 device_initcall(amd_ibs_init);
1217