xref: /linux/arch/x86/events/amd/core.c (revision 173b0b5b0e865348684c02bd9cb1d22b5d46e458)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/perf_event.h>
3 #include <linux/jump_label.h>
4 #include <linux/export.h>
5 #include <linux/types.h>
6 #include <linux/init.h>
7 #include <linux/slab.h>
8 #include <linux/delay.h>
9 #include <linux/jiffies.h>
10 #include <asm/apicdef.h>
11 #include <asm/apic.h>
12 #include <asm/nmi.h>
13 
14 #include "../perf_event.h"
15 
16 static DEFINE_PER_CPU(unsigned long, perf_nmi_tstamp);
17 static unsigned long perf_nmi_window;
18 
19 /* AMD Event 0xFFF: Merge.  Used with Large Increment per Cycle events */
20 #define AMD_MERGE_EVENT ((0xFULL << 32) | 0xFFULL)
21 #define AMD_MERGE_EVENT_ENABLE (AMD_MERGE_EVENT | ARCH_PERFMON_EVENTSEL_ENABLE)
22 
23 /* PMC Enable and Overflow bits for PerfCntrGlobal* registers */
24 static u64 amd_pmu_global_cntr_mask __read_mostly;
25 
26 static __initconst const u64 amd_hw_cache_event_ids
27 				[PERF_COUNT_HW_CACHE_MAX]
28 				[PERF_COUNT_HW_CACHE_OP_MAX]
29 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
30 {
31  [ C(L1D) ] = {
32 	[ C(OP_READ) ] = {
33 		[ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses        */
34 		[ C(RESULT_MISS)   ] = 0x0141, /* Data Cache Misses          */
35 	},
36 	[ C(OP_WRITE) ] = {
37 		[ C(RESULT_ACCESS) ] = 0,
38 		[ C(RESULT_MISS)   ] = 0,
39 	},
40 	[ C(OP_PREFETCH) ] = {
41 		[ C(RESULT_ACCESS) ] = 0x0267, /* Data Prefetcher :attempts  */
42 		[ C(RESULT_MISS)   ] = 0x0167, /* Data Prefetcher :cancelled */
43 	},
44  },
45  [ C(L1I ) ] = {
46 	[ C(OP_READ) ] = {
47 		[ C(RESULT_ACCESS) ] = 0x0080, /* Instruction cache fetches  */
48 		[ C(RESULT_MISS)   ] = 0x0081, /* Instruction cache misses   */
49 	},
50 	[ C(OP_WRITE) ] = {
51 		[ C(RESULT_ACCESS) ] = -1,
52 		[ C(RESULT_MISS)   ] = -1,
53 	},
54 	[ C(OP_PREFETCH) ] = {
55 		[ C(RESULT_ACCESS) ] = 0x014B, /* Prefetch Instructions :Load */
56 		[ C(RESULT_MISS)   ] = 0,
57 	},
58  },
59  [ C(LL  ) ] = {
60 	[ C(OP_READ) ] = {
61 		[ C(RESULT_ACCESS) ] = 0x037D, /* Requests to L2 Cache :IC+DC */
62 		[ C(RESULT_MISS)   ] = 0x037E, /* L2 Cache Misses : IC+DC     */
63 	},
64 	[ C(OP_WRITE) ] = {
65 		[ C(RESULT_ACCESS) ] = 0x017F, /* L2 Fill/Writeback           */
66 		[ C(RESULT_MISS)   ] = 0,
67 	},
68 	[ C(OP_PREFETCH) ] = {
69 		[ C(RESULT_ACCESS) ] = 0,
70 		[ C(RESULT_MISS)   ] = 0,
71 	},
72  },
73  [ C(DTLB) ] = {
74 	[ C(OP_READ) ] = {
75 		[ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses        */
76 		[ C(RESULT_MISS)   ] = 0x0746, /* L1_DTLB_AND_L2_DLTB_MISS.ALL */
77 	},
78 	[ C(OP_WRITE) ] = {
79 		[ C(RESULT_ACCESS) ] = 0,
80 		[ C(RESULT_MISS)   ] = 0,
81 	},
82 	[ C(OP_PREFETCH) ] = {
83 		[ C(RESULT_ACCESS) ] = 0,
84 		[ C(RESULT_MISS)   ] = 0,
85 	},
86  },
87  [ C(ITLB) ] = {
88 	[ C(OP_READ) ] = {
89 		[ C(RESULT_ACCESS) ] = 0x0080, /* Instruction fecthes        */
90 		[ C(RESULT_MISS)   ] = 0x0385, /* L1_ITLB_AND_L2_ITLB_MISS.ALL */
91 	},
92 	[ C(OP_WRITE) ] = {
93 		[ C(RESULT_ACCESS) ] = -1,
94 		[ C(RESULT_MISS)   ] = -1,
95 	},
96 	[ C(OP_PREFETCH) ] = {
97 		[ C(RESULT_ACCESS) ] = -1,
98 		[ C(RESULT_MISS)   ] = -1,
99 	},
100  },
101  [ C(BPU ) ] = {
102 	[ C(OP_READ) ] = {
103 		[ C(RESULT_ACCESS) ] = 0x00c2, /* Retired Branch Instr.      */
104 		[ C(RESULT_MISS)   ] = 0x00c3, /* Retired Mispredicted BI    */
105 	},
106 	[ C(OP_WRITE) ] = {
107 		[ C(RESULT_ACCESS) ] = -1,
108 		[ C(RESULT_MISS)   ] = -1,
109 	},
110 	[ C(OP_PREFETCH) ] = {
111 		[ C(RESULT_ACCESS) ] = -1,
112 		[ C(RESULT_MISS)   ] = -1,
113 	},
114  },
115  [ C(NODE) ] = {
116 	[ C(OP_READ) ] = {
117 		[ C(RESULT_ACCESS) ] = 0xb8e9, /* CPU Request to Memory, l+r */
118 		[ C(RESULT_MISS)   ] = 0x98e9, /* CPU Request to Memory, r   */
119 	},
120 	[ C(OP_WRITE) ] = {
121 		[ C(RESULT_ACCESS) ] = -1,
122 		[ C(RESULT_MISS)   ] = -1,
123 	},
124 	[ C(OP_PREFETCH) ] = {
125 		[ C(RESULT_ACCESS) ] = -1,
126 		[ C(RESULT_MISS)   ] = -1,
127 	},
128  },
129 };
130 
131 static __initconst const u64 amd_hw_cache_event_ids_f17h
132 				[PERF_COUNT_HW_CACHE_MAX]
133 				[PERF_COUNT_HW_CACHE_OP_MAX]
134 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
135 [C(L1D)] = {
136 	[C(OP_READ)] = {
137 		[C(RESULT_ACCESS)] = 0x0040, /* Data Cache Accesses */
138 		[C(RESULT_MISS)]   = 0xc860, /* L2$ access from DC Miss */
139 	},
140 	[C(OP_WRITE)] = {
141 		[C(RESULT_ACCESS)] = 0,
142 		[C(RESULT_MISS)]   = 0,
143 	},
144 	[C(OP_PREFETCH)] = {
145 		[C(RESULT_ACCESS)] = 0xff5a, /* h/w prefetch DC Fills */
146 		[C(RESULT_MISS)]   = 0,
147 	},
148 },
149 [C(L1I)] = {
150 	[C(OP_READ)] = {
151 		[C(RESULT_ACCESS)] = 0x0080, /* Instruction cache fetches  */
152 		[C(RESULT_MISS)]   = 0x0081, /* Instruction cache misses   */
153 	},
154 	[C(OP_WRITE)] = {
155 		[C(RESULT_ACCESS)] = -1,
156 		[C(RESULT_MISS)]   = -1,
157 	},
158 	[C(OP_PREFETCH)] = {
159 		[C(RESULT_ACCESS)] = 0,
160 		[C(RESULT_MISS)]   = 0,
161 	},
162 },
163 [C(LL)] = {
164 	[C(OP_READ)] = {
165 		[C(RESULT_ACCESS)] = 0,
166 		[C(RESULT_MISS)]   = 0,
167 	},
168 	[C(OP_WRITE)] = {
169 		[C(RESULT_ACCESS)] = 0,
170 		[C(RESULT_MISS)]   = 0,
171 	},
172 	[C(OP_PREFETCH)] = {
173 		[C(RESULT_ACCESS)] = 0,
174 		[C(RESULT_MISS)]   = 0,
175 	},
176 },
177 [C(DTLB)] = {
178 	[C(OP_READ)] = {
179 		[C(RESULT_ACCESS)] = 0xff45, /* All L2 DTLB accesses */
180 		[C(RESULT_MISS)]   = 0xf045, /* L2 DTLB misses (PT walks) */
181 	},
182 	[C(OP_WRITE)] = {
183 		[C(RESULT_ACCESS)] = 0,
184 		[C(RESULT_MISS)]   = 0,
185 	},
186 	[C(OP_PREFETCH)] = {
187 		[C(RESULT_ACCESS)] = 0,
188 		[C(RESULT_MISS)]   = 0,
189 	},
190 },
191 [C(ITLB)] = {
192 	[C(OP_READ)] = {
193 		[C(RESULT_ACCESS)] = 0x0084, /* L1 ITLB misses, L2 ITLB hits */
194 		[C(RESULT_MISS)]   = 0xff85, /* L1 ITLB misses, L2 misses */
195 	},
196 	[C(OP_WRITE)] = {
197 		[C(RESULT_ACCESS)] = -1,
198 		[C(RESULT_MISS)]   = -1,
199 	},
200 	[C(OP_PREFETCH)] = {
201 		[C(RESULT_ACCESS)] = -1,
202 		[C(RESULT_MISS)]   = -1,
203 	},
204 },
205 [C(BPU)] = {
206 	[C(OP_READ)] = {
207 		[C(RESULT_ACCESS)] = 0x00c2, /* Retired Branch Instr.      */
208 		[C(RESULT_MISS)]   = 0x00c3, /* Retired Mispredicted BI    */
209 	},
210 	[C(OP_WRITE)] = {
211 		[C(RESULT_ACCESS)] = -1,
212 		[C(RESULT_MISS)]   = -1,
213 	},
214 	[C(OP_PREFETCH)] = {
215 		[C(RESULT_ACCESS)] = -1,
216 		[C(RESULT_MISS)]   = -1,
217 	},
218 },
219 [C(NODE)] = {
220 	[C(OP_READ)] = {
221 		[C(RESULT_ACCESS)] = 0,
222 		[C(RESULT_MISS)]   = 0,
223 	},
224 	[C(OP_WRITE)] = {
225 		[C(RESULT_ACCESS)] = -1,
226 		[C(RESULT_MISS)]   = -1,
227 	},
228 	[C(OP_PREFETCH)] = {
229 		[C(RESULT_ACCESS)] = -1,
230 		[C(RESULT_MISS)]   = -1,
231 	},
232 },
233 };
234 
235 /*
236  * AMD Performance Monitor K7 and later, up to and including Family 16h:
237  */
238 static const u64 amd_perfmon_event_map[PERF_COUNT_HW_MAX] =
239 {
240 	[PERF_COUNT_HW_CPU_CYCLES]		= 0x0076,
241 	[PERF_COUNT_HW_INSTRUCTIONS]		= 0x00c0,
242 	[PERF_COUNT_HW_CACHE_REFERENCES]	= 0x077d,
243 	[PERF_COUNT_HW_CACHE_MISSES]		= 0x077e,
244 	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS]	= 0x00c2,
245 	[PERF_COUNT_HW_BRANCH_MISSES]		= 0x00c3,
246 	[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND]	= 0x00d0, /* "Decoder empty" event */
247 	[PERF_COUNT_HW_STALLED_CYCLES_BACKEND]	= 0x00d1, /* "Dispatch stalls" event */
248 };
249 
250 /*
251  * AMD Performance Monitor Family 17h and later:
252  */
253 static const u64 amd_zen1_perfmon_event_map[PERF_COUNT_HW_MAX] =
254 {
255 	[PERF_COUNT_HW_CPU_CYCLES]		= 0x0076,
256 	[PERF_COUNT_HW_INSTRUCTIONS]		= 0x00c0,
257 	[PERF_COUNT_HW_CACHE_REFERENCES]	= 0xff60,
258 	[PERF_COUNT_HW_CACHE_MISSES]		= 0x0964,
259 	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS]	= 0x00c2,
260 	[PERF_COUNT_HW_BRANCH_MISSES]		= 0x00c3,
261 	[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND]	= 0x0287,
262 	[PERF_COUNT_HW_STALLED_CYCLES_BACKEND]	= 0x0187,
263 };
264 
265 static const u64 amd_zen2_perfmon_event_map[PERF_COUNT_HW_MAX] =
266 {
267 	[PERF_COUNT_HW_CPU_CYCLES]		= 0x0076,
268 	[PERF_COUNT_HW_INSTRUCTIONS]		= 0x00c0,
269 	[PERF_COUNT_HW_CACHE_REFERENCES]	= 0xff60,
270 	[PERF_COUNT_HW_CACHE_MISSES]		= 0x0964,
271 	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS]	= 0x00c2,
272 	[PERF_COUNT_HW_BRANCH_MISSES]		= 0x00c3,
273 	[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND]	= 0x00a9,
274 };
275 
276 static const u64 amd_zen4_perfmon_event_map[PERF_COUNT_HW_MAX] =
277 {
278 	[PERF_COUNT_HW_CPU_CYCLES]		= 0x0076,
279 	[PERF_COUNT_HW_INSTRUCTIONS]		= 0x00c0,
280 	[PERF_COUNT_HW_CACHE_REFERENCES]	= 0xff60,
281 	[PERF_COUNT_HW_CACHE_MISSES]		= 0x0964,
282 	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS]	= 0x00c2,
283 	[PERF_COUNT_HW_BRANCH_MISSES]		= 0x00c3,
284 	[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND]	= 0x00a9,
285 	[PERF_COUNT_HW_REF_CPU_CYCLES]		= 0x100000120,
286 };
287 
288 static u64 amd_pmu_event_map(int hw_event)
289 {
290 	if (cpu_feature_enabled(X86_FEATURE_ZEN4) || boot_cpu_data.x86 >= 0x1a)
291 		return amd_zen4_perfmon_event_map[hw_event];
292 
293 	if (cpu_feature_enabled(X86_FEATURE_ZEN2) || boot_cpu_data.x86 >= 0x19)
294 		return amd_zen2_perfmon_event_map[hw_event];
295 
296 	if (cpu_feature_enabled(X86_FEATURE_ZEN1))
297 		return amd_zen1_perfmon_event_map[hw_event];
298 
299 	return amd_perfmon_event_map[hw_event];
300 }
301 
302 /*
303  * Previously calculated offsets
304  */
305 static unsigned int event_offsets[X86_PMC_IDX_MAX] __read_mostly;
306 static unsigned int count_offsets[X86_PMC_IDX_MAX] __read_mostly;
307 
308 /*
309  * Legacy CPUs:
310  *   4 counters starting at 0xc0010000 each offset by 1
311  *
312  * CPUs with core performance counter extensions:
313  *   6 counters starting at 0xc0010200 each offset by 2
314  */
315 static inline int amd_pmu_addr_offset(int index, bool eventsel)
316 {
317 	int offset;
318 
319 	if (!index)
320 		return index;
321 
322 	if (eventsel)
323 		offset = event_offsets[index];
324 	else
325 		offset = count_offsets[index];
326 
327 	if (offset)
328 		return offset;
329 
330 	if (!boot_cpu_has(X86_FEATURE_PERFCTR_CORE))
331 		offset = index;
332 	else
333 		offset = index << 1;
334 
335 	if (eventsel)
336 		event_offsets[index] = offset;
337 	else
338 		count_offsets[index] = offset;
339 
340 	return offset;
341 }
342 
343 /*
344  * AMD64 events are detected based on their event codes.
345  */
346 static inline unsigned int amd_get_event_code(struct hw_perf_event *hwc)
347 {
348 	return ((hwc->config >> 24) & 0x0f00) | (hwc->config & 0x00ff);
349 }
350 
351 static inline bool amd_is_pair_event_code(struct hw_perf_event *hwc)
352 {
353 	if (!(x86_pmu.flags & PMU_FL_PAIR))
354 		return false;
355 
356 	switch (amd_get_event_code(hwc)) {
357 	case 0x003:	return true;	/* Retired SSE/AVX FLOPs */
358 	default:	return false;
359 	}
360 }
361 
362 DEFINE_STATIC_CALL_RET0(amd_pmu_branch_hw_config, *x86_pmu.hw_config);
363 
364 static int amd_core_hw_config(struct perf_event *event)
365 {
366 	if (event->attr.exclude_host && event->attr.exclude_guest)
367 		/*
368 		 * When HO == GO == 1 the hardware treats that as GO == HO == 0
369 		 * and will count in both modes. We don't want to count in that
370 		 * case so we emulate no-counting by setting US = OS = 0.
371 		 */
372 		event->hw.config &= ~(ARCH_PERFMON_EVENTSEL_USR |
373 				      ARCH_PERFMON_EVENTSEL_OS);
374 	else if (event->attr.exclude_host)
375 		event->hw.config |= AMD64_EVENTSEL_GUESTONLY;
376 	else if (event->attr.exclude_guest)
377 		event->hw.config |= AMD64_EVENTSEL_HOSTONLY;
378 
379 	if ((x86_pmu.flags & PMU_FL_PAIR) && amd_is_pair_event_code(&event->hw))
380 		event->hw.flags |= PERF_X86_EVENT_PAIR;
381 
382 	if (has_branch_stack(event))
383 		return static_call(amd_pmu_branch_hw_config)(event);
384 
385 	return 0;
386 }
387 
388 static inline int amd_is_nb_event(struct hw_perf_event *hwc)
389 {
390 	return (hwc->config & 0xe0) == 0xe0;
391 }
392 
393 static inline int amd_has_nb(struct cpu_hw_events *cpuc)
394 {
395 	struct amd_nb *nb = cpuc->amd_nb;
396 
397 	return nb && nb->nb_id != -1;
398 }
399 
400 static int amd_pmu_hw_config(struct perf_event *event)
401 {
402 	int ret;
403 
404 	/* pass precise event sampling to ibs: */
405 	if (event->attr.precise_ip && get_ibs_caps())
406 		return forward_event_to_ibs(event);
407 
408 	if (has_branch_stack(event) && !x86_pmu.lbr_nr)
409 		return -EOPNOTSUPP;
410 
411 	ret = x86_pmu_hw_config(event);
412 	if (ret)
413 		return ret;
414 
415 	if (event->attr.type == PERF_TYPE_RAW)
416 		event->hw.config |= event->attr.config & AMD64_RAW_EVENT_MASK;
417 
418 	return amd_core_hw_config(event);
419 }
420 
421 static void __amd_put_nb_event_constraints(struct cpu_hw_events *cpuc,
422 					   struct perf_event *event)
423 {
424 	struct amd_nb *nb = cpuc->amd_nb;
425 	int i;
426 
427 	/*
428 	 * need to scan whole list because event may not have
429 	 * been assigned during scheduling
430 	 *
431 	 * no race condition possible because event can only
432 	 * be removed on one CPU at a time AND PMU is disabled
433 	 * when we come here
434 	 */
435 	for (i = 0; i < x86_pmu.num_counters; i++) {
436 		if (cmpxchg(nb->owners + i, event, NULL) == event)
437 			break;
438 	}
439 }
440 
441  /*
442   * AMD64 NorthBridge events need special treatment because
443   * counter access needs to be synchronized across all cores
444   * of a package. Refer to BKDG section 3.12
445   *
446   * NB events are events measuring L3 cache, Hypertransport
447   * traffic. They are identified by an event code >= 0xe00.
448   * They measure events on the NorthBride which is shared
449   * by all cores on a package. NB events are counted on a
450   * shared set of counters. When a NB event is programmed
451   * in a counter, the data actually comes from a shared
452   * counter. Thus, access to those counters needs to be
453   * synchronized.
454   *
455   * We implement the synchronization such that no two cores
456   * can be measuring NB events using the same counters. Thus,
457   * we maintain a per-NB allocation table. The available slot
458   * is propagated using the event_constraint structure.
459   *
460   * We provide only one choice for each NB event based on
461   * the fact that only NB events have restrictions. Consequently,
462   * if a counter is available, there is a guarantee the NB event
463   * will be assigned to it. If no slot is available, an empty
464   * constraint is returned and scheduling will eventually fail
465   * for this event.
466   *
467   * Note that all cores attached the same NB compete for the same
468   * counters to host NB events, this is why we use atomic ops. Some
469   * multi-chip CPUs may have more than one NB.
470   *
471   * Given that resources are allocated (cmpxchg), they must be
472   * eventually freed for others to use. This is accomplished by
473   * calling __amd_put_nb_event_constraints()
474   *
475   * Non NB events are not impacted by this restriction.
476   */
477 static struct event_constraint *
478 __amd_get_nb_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
479 			       struct event_constraint *c)
480 {
481 	struct hw_perf_event *hwc = &event->hw;
482 	struct amd_nb *nb = cpuc->amd_nb;
483 	struct perf_event *old;
484 	int idx, new = -1;
485 
486 	if (!c)
487 		c = &unconstrained;
488 
489 	if (cpuc->is_fake)
490 		return c;
491 
492 	/*
493 	 * detect if already present, if so reuse
494 	 *
495 	 * cannot merge with actual allocation
496 	 * because of possible holes
497 	 *
498 	 * event can already be present yet not assigned (in hwc->idx)
499 	 * because of successive calls to x86_schedule_events() from
500 	 * hw_perf_group_sched_in() without hw_perf_enable()
501 	 */
502 	for_each_set_bit(idx, c->idxmsk, x86_pmu.num_counters) {
503 		if (new == -1 || hwc->idx == idx)
504 			/* assign free slot, prefer hwc->idx */
505 			old = cmpxchg(nb->owners + idx, NULL, event);
506 		else if (nb->owners[idx] == event)
507 			/* event already present */
508 			old = event;
509 		else
510 			continue;
511 
512 		if (old && old != event)
513 			continue;
514 
515 		/* reassign to this slot */
516 		if (new != -1)
517 			cmpxchg(nb->owners + new, event, NULL);
518 		new = idx;
519 
520 		/* already present, reuse */
521 		if (old == event)
522 			break;
523 	}
524 
525 	if (new == -1)
526 		return &emptyconstraint;
527 
528 	return &nb->event_constraints[new];
529 }
530 
531 static struct amd_nb *amd_alloc_nb(int cpu)
532 {
533 	struct amd_nb *nb;
534 	int i;
535 
536 	nb = kzalloc_node(sizeof(struct amd_nb), GFP_KERNEL, cpu_to_node(cpu));
537 	if (!nb)
538 		return NULL;
539 
540 	nb->nb_id = -1;
541 
542 	/*
543 	 * initialize all possible NB constraints
544 	 */
545 	for (i = 0; i < x86_pmu.num_counters; i++) {
546 		__set_bit(i, nb->event_constraints[i].idxmsk);
547 		nb->event_constraints[i].weight = 1;
548 	}
549 	return nb;
550 }
551 
552 typedef void (amd_pmu_branch_reset_t)(void);
553 DEFINE_STATIC_CALL_NULL(amd_pmu_branch_reset, amd_pmu_branch_reset_t);
554 
555 static void amd_pmu_cpu_reset(int cpu)
556 {
557 	if (x86_pmu.lbr_nr)
558 		static_call(amd_pmu_branch_reset)();
559 
560 	if (x86_pmu.version < 2)
561 		return;
562 
563 	/* Clear enable bits i.e. PerfCntrGlobalCtl.PerfCntrEn */
564 	wrmsrl(MSR_AMD64_PERF_CNTR_GLOBAL_CTL, 0);
565 
566 	/*
567 	 * Clear freeze and overflow bits i.e. PerfCntrGLobalStatus.LbrFreeze
568 	 * and PerfCntrGLobalStatus.PerfCntrOvfl
569 	 */
570 	wrmsrl(MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR,
571 	       GLOBAL_STATUS_LBRS_FROZEN | amd_pmu_global_cntr_mask);
572 }
573 
574 static int amd_pmu_cpu_prepare(int cpu)
575 {
576 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
577 
578 	cpuc->lbr_sel = kzalloc_node(sizeof(struct er_account), GFP_KERNEL,
579 				     cpu_to_node(cpu));
580 	if (!cpuc->lbr_sel)
581 		return -ENOMEM;
582 
583 	WARN_ON_ONCE(cpuc->amd_nb);
584 
585 	if (!x86_pmu.amd_nb_constraints)
586 		return 0;
587 
588 	cpuc->amd_nb = amd_alloc_nb(cpu);
589 	if (cpuc->amd_nb)
590 		return 0;
591 
592 	kfree(cpuc->lbr_sel);
593 	cpuc->lbr_sel = NULL;
594 
595 	return -ENOMEM;
596 }
597 
598 static void amd_pmu_cpu_starting(int cpu)
599 {
600 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
601 	void **onln = &cpuc->kfree_on_online[X86_PERF_KFREE_SHARED];
602 	struct amd_nb *nb;
603 	int i, nb_id;
604 
605 	cpuc->perf_ctr_virt_mask = AMD64_EVENTSEL_HOSTONLY;
606 	amd_pmu_cpu_reset(cpu);
607 
608 	if (!x86_pmu.amd_nb_constraints)
609 		return;
610 
611 	nb_id = topology_amd_node_id(cpu);
612 	WARN_ON_ONCE(nb_id == BAD_APICID);
613 
614 	for_each_online_cpu(i) {
615 		nb = per_cpu(cpu_hw_events, i).amd_nb;
616 		if (WARN_ON_ONCE(!nb))
617 			continue;
618 
619 		if (nb->nb_id == nb_id) {
620 			*onln = cpuc->amd_nb;
621 			cpuc->amd_nb = nb;
622 			break;
623 		}
624 	}
625 
626 	cpuc->amd_nb->nb_id = nb_id;
627 	cpuc->amd_nb->refcnt++;
628 }
629 
630 static void amd_pmu_cpu_dead(int cpu)
631 {
632 	struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
633 
634 	kfree(cpuhw->lbr_sel);
635 	cpuhw->lbr_sel = NULL;
636 
637 	if (!x86_pmu.amd_nb_constraints)
638 		return;
639 
640 	if (cpuhw->amd_nb) {
641 		struct amd_nb *nb = cpuhw->amd_nb;
642 
643 		if (nb->nb_id == -1 || --nb->refcnt == 0)
644 			kfree(nb);
645 
646 		cpuhw->amd_nb = NULL;
647 	}
648 }
649 
650 static inline void amd_pmu_set_global_ctl(u64 ctl)
651 {
652 	wrmsrl(MSR_AMD64_PERF_CNTR_GLOBAL_CTL, ctl);
653 }
654 
655 static inline u64 amd_pmu_get_global_status(void)
656 {
657 	u64 status;
658 
659 	/* PerfCntrGlobalStatus is read-only */
660 	rdmsrl(MSR_AMD64_PERF_CNTR_GLOBAL_STATUS, status);
661 
662 	return status;
663 }
664 
665 static inline void amd_pmu_ack_global_status(u64 status)
666 {
667 	/*
668 	 * PerfCntrGlobalStatus is read-only but an overflow acknowledgment
669 	 * mechanism exists; writing 1 to a bit in PerfCntrGlobalStatusClr
670 	 * clears the same bit in PerfCntrGlobalStatus
671 	 */
672 
673 	wrmsrl(MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR, status);
674 }
675 
676 static bool amd_pmu_test_overflow_topbit(int idx)
677 {
678 	u64 counter;
679 
680 	rdmsrl(x86_pmu_event_addr(idx), counter);
681 
682 	return !(counter & BIT_ULL(x86_pmu.cntval_bits - 1));
683 }
684 
685 static bool amd_pmu_test_overflow_status(int idx)
686 {
687 	return amd_pmu_get_global_status() & BIT_ULL(idx);
688 }
689 
690 DEFINE_STATIC_CALL(amd_pmu_test_overflow, amd_pmu_test_overflow_topbit);
691 
692 /*
693  * When a PMC counter overflows, an NMI is used to process the event and
694  * reset the counter. NMI latency can result in the counter being updated
695  * before the NMI can run, which can result in what appear to be spurious
696  * NMIs. This function is intended to wait for the NMI to run and reset
697  * the counter to avoid possible unhandled NMI messages.
698  */
699 #define OVERFLOW_WAIT_COUNT	50
700 
701 static void amd_pmu_wait_on_overflow(int idx)
702 {
703 	unsigned int i;
704 
705 	/*
706 	 * Wait for the counter to be reset if it has overflowed. This loop
707 	 * should exit very, very quickly, but just in case, don't wait
708 	 * forever...
709 	 */
710 	for (i = 0; i < OVERFLOW_WAIT_COUNT; i++) {
711 		if (!static_call(amd_pmu_test_overflow)(idx))
712 			break;
713 
714 		/* Might be in IRQ context, so can't sleep */
715 		udelay(1);
716 	}
717 }
718 
719 static void amd_pmu_check_overflow(void)
720 {
721 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
722 	int idx;
723 
724 	/*
725 	 * This shouldn't be called from NMI context, but add a safeguard here
726 	 * to return, since if we're in NMI context we can't wait for an NMI
727 	 * to reset an overflowed counter value.
728 	 */
729 	if (in_nmi())
730 		return;
731 
732 	/*
733 	 * Check each counter for overflow and wait for it to be reset by the
734 	 * NMI if it has overflowed. This relies on the fact that all active
735 	 * counters are always enabled when this function is called and
736 	 * ARCH_PERFMON_EVENTSEL_INT is always set.
737 	 */
738 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
739 		if (!test_bit(idx, cpuc->active_mask))
740 			continue;
741 
742 		amd_pmu_wait_on_overflow(idx);
743 	}
744 }
745 
746 static void amd_pmu_enable_event(struct perf_event *event)
747 {
748 	x86_pmu_enable_event(event);
749 }
750 
751 static void amd_pmu_enable_all(int added)
752 {
753 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
754 	int idx;
755 
756 	amd_brs_enable_all();
757 
758 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
759 		/* only activate events which are marked as active */
760 		if (!test_bit(idx, cpuc->active_mask))
761 			continue;
762 
763 		amd_pmu_enable_event(cpuc->events[idx]);
764 	}
765 }
766 
767 static void amd_pmu_v2_enable_event(struct perf_event *event)
768 {
769 	struct hw_perf_event *hwc = &event->hw;
770 
771 	/*
772 	 * Testing cpu_hw_events.enabled should be skipped in this case unlike
773 	 * in x86_pmu_enable_event().
774 	 *
775 	 * Since cpu_hw_events.enabled is set only after returning from
776 	 * x86_pmu_start(), the PMCs must be programmed and kept ready.
777 	 * Counting starts only after x86_pmu_enable_all() is called.
778 	 */
779 	__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
780 }
781 
782 static __always_inline void amd_pmu_core_enable_all(void)
783 {
784 	amd_pmu_set_global_ctl(amd_pmu_global_cntr_mask);
785 }
786 
787 static void amd_pmu_v2_enable_all(int added)
788 {
789 	amd_pmu_lbr_enable_all();
790 	amd_pmu_core_enable_all();
791 }
792 
793 static void amd_pmu_disable_event(struct perf_event *event)
794 {
795 	x86_pmu_disable_event(event);
796 
797 	/*
798 	 * This can be called from NMI context (via x86_pmu_stop). The counter
799 	 * may have overflowed, but either way, we'll never see it get reset
800 	 * by the NMI if we're already in the NMI. And the NMI latency support
801 	 * below will take care of any pending NMI that might have been
802 	 * generated by the overflow.
803 	 */
804 	if (in_nmi())
805 		return;
806 
807 	amd_pmu_wait_on_overflow(event->hw.idx);
808 }
809 
810 static void amd_pmu_disable_all(void)
811 {
812 	amd_brs_disable_all();
813 	x86_pmu_disable_all();
814 	amd_pmu_check_overflow();
815 }
816 
817 static __always_inline void amd_pmu_core_disable_all(void)
818 {
819 	amd_pmu_set_global_ctl(0);
820 }
821 
822 static void amd_pmu_v2_disable_all(void)
823 {
824 	amd_pmu_core_disable_all();
825 	amd_pmu_lbr_disable_all();
826 	amd_pmu_check_overflow();
827 }
828 
829 DEFINE_STATIC_CALL_NULL(amd_pmu_branch_add, *x86_pmu.add);
830 
831 static void amd_pmu_add_event(struct perf_event *event)
832 {
833 	if (needs_branch_stack(event))
834 		static_call(amd_pmu_branch_add)(event);
835 }
836 
837 DEFINE_STATIC_CALL_NULL(amd_pmu_branch_del, *x86_pmu.del);
838 
839 static void amd_pmu_del_event(struct perf_event *event)
840 {
841 	if (needs_branch_stack(event))
842 		static_call(amd_pmu_branch_del)(event);
843 }
844 
845 /*
846  * Because of NMI latency, if multiple PMC counters are active or other sources
847  * of NMIs are received, the perf NMI handler can handle one or more overflowed
848  * PMC counters outside of the NMI associated with the PMC overflow. If the NMI
849  * doesn't arrive at the LAPIC in time to become a pending NMI, then the kernel
850  * back-to-back NMI support won't be active. This PMC handler needs to take into
851  * account that this can occur, otherwise this could result in unknown NMI
852  * messages being issued. Examples of this is PMC overflow while in the NMI
853  * handler when multiple PMCs are active or PMC overflow while handling some
854  * other source of an NMI.
855  *
856  * Attempt to mitigate this by creating an NMI window in which un-handled NMIs
857  * received during this window will be claimed. This prevents extending the
858  * window past when it is possible that latent NMIs should be received. The
859  * per-CPU perf_nmi_tstamp will be set to the window end time whenever perf has
860  * handled a counter. When an un-handled NMI is received, it will be claimed
861  * only if arriving within that window.
862  */
863 static inline int amd_pmu_adjust_nmi_window(int handled)
864 {
865 	/*
866 	 * If a counter was handled, record a timestamp such that un-handled
867 	 * NMIs will be claimed if arriving within that window.
868 	 */
869 	if (handled) {
870 		this_cpu_write(perf_nmi_tstamp, jiffies + perf_nmi_window);
871 
872 		return handled;
873 	}
874 
875 	if (time_after(jiffies, this_cpu_read(perf_nmi_tstamp)))
876 		return NMI_DONE;
877 
878 	return NMI_HANDLED;
879 }
880 
881 static int amd_pmu_handle_irq(struct pt_regs *regs)
882 {
883 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
884 	int handled;
885 	int pmu_enabled;
886 
887 	/*
888 	 * Save the PMU state.
889 	 * It needs to be restored when leaving the handler.
890 	 */
891 	pmu_enabled = cpuc->enabled;
892 	cpuc->enabled = 0;
893 
894 	amd_brs_disable_all();
895 
896 	/* Drain BRS is in use (could be inactive) */
897 	if (cpuc->lbr_users)
898 		amd_brs_drain();
899 
900 	/* Process any counter overflows */
901 	handled = x86_pmu_handle_irq(regs);
902 
903 	cpuc->enabled = pmu_enabled;
904 	if (pmu_enabled)
905 		amd_brs_enable_all();
906 
907 	return amd_pmu_adjust_nmi_window(handled);
908 }
909 
910 static int amd_pmu_v2_handle_irq(struct pt_regs *regs)
911 {
912 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
913 	struct perf_sample_data data;
914 	struct hw_perf_event *hwc;
915 	struct perf_event *event;
916 	int handled = 0, idx;
917 	u64 reserved, status, mask;
918 	bool pmu_enabled;
919 
920 	/*
921 	 * Save the PMU state as it needs to be restored when leaving the
922 	 * handler
923 	 */
924 	pmu_enabled = cpuc->enabled;
925 	cpuc->enabled = 0;
926 
927 	/* Stop counting but do not disable LBR */
928 	amd_pmu_core_disable_all();
929 
930 	status = amd_pmu_get_global_status();
931 
932 	/* Check if any overflows are pending */
933 	if (!status)
934 		goto done;
935 
936 	/* Read branch records */
937 	if (x86_pmu.lbr_nr) {
938 		amd_pmu_lbr_read();
939 		status &= ~GLOBAL_STATUS_LBRS_FROZEN;
940 	}
941 
942 	reserved = status & ~amd_pmu_global_cntr_mask;
943 	if (reserved)
944 		pr_warn_once("Reserved PerfCntrGlobalStatus bits are set (0x%llx), please consider updating microcode\n",
945 			     reserved);
946 
947 	/* Clear any reserved bits set by buggy microcode */
948 	status &= amd_pmu_global_cntr_mask;
949 
950 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
951 		if (!test_bit(idx, cpuc->active_mask))
952 			continue;
953 
954 		event = cpuc->events[idx];
955 		hwc = &event->hw;
956 		x86_perf_event_update(event);
957 		mask = BIT_ULL(idx);
958 
959 		if (!(status & mask))
960 			continue;
961 
962 		/* Event overflow */
963 		handled++;
964 		status &= ~mask;
965 		perf_sample_data_init(&data, 0, hwc->last_period);
966 
967 		if (!x86_perf_event_set_period(event))
968 			continue;
969 
970 		if (has_branch_stack(event))
971 			perf_sample_save_brstack(&data, event, &cpuc->lbr_stack, NULL);
972 
973 		if (perf_event_overflow(event, &data, regs))
974 			x86_pmu_stop(event, 0);
975 	}
976 
977 	/*
978 	 * It should never be the case that some overflows are not handled as
979 	 * the corresponding PMCs are expected to be inactive according to the
980 	 * active_mask
981 	 */
982 	WARN_ON(status > 0);
983 
984 	/* Clear overflow and freeze bits */
985 	amd_pmu_ack_global_status(~status);
986 
987 	/*
988 	 * Unmasking the LVTPC is not required as the Mask (M) bit of the LVT
989 	 * PMI entry is not set by the local APIC when a PMC overflow occurs
990 	 */
991 	inc_irq_stat(apic_perf_irqs);
992 
993 done:
994 	cpuc->enabled = pmu_enabled;
995 
996 	/* Resume counting only if PMU is active */
997 	if (pmu_enabled)
998 		amd_pmu_core_enable_all();
999 
1000 	return amd_pmu_adjust_nmi_window(handled);
1001 }
1002 
1003 static struct event_constraint *
1004 amd_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
1005 			  struct perf_event *event)
1006 {
1007 	/*
1008 	 * if not NB event or no NB, then no constraints
1009 	 */
1010 	if (!(amd_has_nb(cpuc) && amd_is_nb_event(&event->hw)))
1011 		return &unconstrained;
1012 
1013 	return __amd_get_nb_event_constraints(cpuc, event, NULL);
1014 }
1015 
1016 static void amd_put_event_constraints(struct cpu_hw_events *cpuc,
1017 				      struct perf_event *event)
1018 {
1019 	if (amd_has_nb(cpuc) && amd_is_nb_event(&event->hw))
1020 		__amd_put_nb_event_constraints(cpuc, event);
1021 }
1022 
1023 PMU_FORMAT_ATTR(event,	"config:0-7,32-35");
1024 PMU_FORMAT_ATTR(umask,	"config:8-15"	);
1025 PMU_FORMAT_ATTR(edge,	"config:18"	);
1026 PMU_FORMAT_ATTR(inv,	"config:23"	);
1027 PMU_FORMAT_ATTR(cmask,	"config:24-31"	);
1028 
1029 static struct attribute *amd_format_attr[] = {
1030 	&format_attr_event.attr,
1031 	&format_attr_umask.attr,
1032 	&format_attr_edge.attr,
1033 	&format_attr_inv.attr,
1034 	&format_attr_cmask.attr,
1035 	NULL,
1036 };
1037 
1038 /* AMD Family 15h */
1039 
1040 #define AMD_EVENT_TYPE_MASK	0x000000F0ULL
1041 
1042 #define AMD_EVENT_FP		0x00000000ULL ... 0x00000010ULL
1043 #define AMD_EVENT_LS		0x00000020ULL ... 0x00000030ULL
1044 #define AMD_EVENT_DC		0x00000040ULL ... 0x00000050ULL
1045 #define AMD_EVENT_CU		0x00000060ULL ... 0x00000070ULL
1046 #define AMD_EVENT_IC_DE		0x00000080ULL ... 0x00000090ULL
1047 #define AMD_EVENT_EX_LS		0x000000C0ULL
1048 #define AMD_EVENT_DE		0x000000D0ULL
1049 #define AMD_EVENT_NB		0x000000E0ULL ... 0x000000F0ULL
1050 
1051 /*
1052  * AMD family 15h event code/PMC mappings:
1053  *
1054  * type = event_code & 0x0F0:
1055  *
1056  * 0x000	FP	PERF_CTL[5:3]
1057  * 0x010	FP	PERF_CTL[5:3]
1058  * 0x020	LS	PERF_CTL[5:0]
1059  * 0x030	LS	PERF_CTL[5:0]
1060  * 0x040	DC	PERF_CTL[5:0]
1061  * 0x050	DC	PERF_CTL[5:0]
1062  * 0x060	CU	PERF_CTL[2:0]
1063  * 0x070	CU	PERF_CTL[2:0]
1064  * 0x080	IC/DE	PERF_CTL[2:0]
1065  * 0x090	IC/DE	PERF_CTL[2:0]
1066  * 0x0A0	---
1067  * 0x0B0	---
1068  * 0x0C0	EX/LS	PERF_CTL[5:0]
1069  * 0x0D0	DE	PERF_CTL[2:0]
1070  * 0x0E0	NB	NB_PERF_CTL[3:0]
1071  * 0x0F0	NB	NB_PERF_CTL[3:0]
1072  *
1073  * Exceptions:
1074  *
1075  * 0x000	FP	PERF_CTL[3], PERF_CTL[5:3] (*)
1076  * 0x003	FP	PERF_CTL[3]
1077  * 0x004	FP	PERF_CTL[3], PERF_CTL[5:3] (*)
1078  * 0x00B	FP	PERF_CTL[3]
1079  * 0x00D	FP	PERF_CTL[3]
1080  * 0x023	DE	PERF_CTL[2:0]
1081  * 0x02D	LS	PERF_CTL[3]
1082  * 0x02E	LS	PERF_CTL[3,0]
1083  * 0x031	LS	PERF_CTL[2:0] (**)
1084  * 0x043	CU	PERF_CTL[2:0]
1085  * 0x045	CU	PERF_CTL[2:0]
1086  * 0x046	CU	PERF_CTL[2:0]
1087  * 0x054	CU	PERF_CTL[2:0]
1088  * 0x055	CU	PERF_CTL[2:0]
1089  * 0x08F	IC	PERF_CTL[0]
1090  * 0x187	DE	PERF_CTL[0]
1091  * 0x188	DE	PERF_CTL[0]
1092  * 0x0DB	EX	PERF_CTL[5:0]
1093  * 0x0DC	LS	PERF_CTL[5:0]
1094  * 0x0DD	LS	PERF_CTL[5:0]
1095  * 0x0DE	LS	PERF_CTL[5:0]
1096  * 0x0DF	LS	PERF_CTL[5:0]
1097  * 0x1C0	EX	PERF_CTL[5:3]
1098  * 0x1D6	EX	PERF_CTL[5:0]
1099  * 0x1D8	EX	PERF_CTL[5:0]
1100  *
1101  * (*)  depending on the umask all FPU counters may be used
1102  * (**) only one unitmask enabled at a time
1103  */
1104 
1105 static struct event_constraint amd_f15_PMC0  = EVENT_CONSTRAINT(0, 0x01, 0);
1106 static struct event_constraint amd_f15_PMC20 = EVENT_CONSTRAINT(0, 0x07, 0);
1107 static struct event_constraint amd_f15_PMC3  = EVENT_CONSTRAINT(0, 0x08, 0);
1108 static struct event_constraint amd_f15_PMC30 = EVENT_CONSTRAINT_OVERLAP(0, 0x09, 0);
1109 static struct event_constraint amd_f15_PMC50 = EVENT_CONSTRAINT(0, 0x3F, 0);
1110 static struct event_constraint amd_f15_PMC53 = EVENT_CONSTRAINT(0, 0x38, 0);
1111 
1112 static struct event_constraint *
1113 amd_get_event_constraints_f15h(struct cpu_hw_events *cpuc, int idx,
1114 			       struct perf_event *event)
1115 {
1116 	struct hw_perf_event *hwc = &event->hw;
1117 	unsigned int event_code = amd_get_event_code(hwc);
1118 
1119 	switch (event_code & AMD_EVENT_TYPE_MASK) {
1120 	case AMD_EVENT_FP:
1121 		switch (event_code) {
1122 		case 0x000:
1123 			if (!(hwc->config & 0x0000F000ULL))
1124 				break;
1125 			if (!(hwc->config & 0x00000F00ULL))
1126 				break;
1127 			return &amd_f15_PMC3;
1128 		case 0x004:
1129 			if (hweight_long(hwc->config & ARCH_PERFMON_EVENTSEL_UMASK) <= 1)
1130 				break;
1131 			return &amd_f15_PMC3;
1132 		case 0x003:
1133 		case 0x00B:
1134 		case 0x00D:
1135 			return &amd_f15_PMC3;
1136 		}
1137 		return &amd_f15_PMC53;
1138 	case AMD_EVENT_LS:
1139 	case AMD_EVENT_DC:
1140 	case AMD_EVENT_EX_LS:
1141 		switch (event_code) {
1142 		case 0x023:
1143 		case 0x043:
1144 		case 0x045:
1145 		case 0x046:
1146 		case 0x054:
1147 		case 0x055:
1148 			return &amd_f15_PMC20;
1149 		case 0x02D:
1150 			return &amd_f15_PMC3;
1151 		case 0x02E:
1152 			return &amd_f15_PMC30;
1153 		case 0x031:
1154 			if (hweight_long(hwc->config & ARCH_PERFMON_EVENTSEL_UMASK) <= 1)
1155 				return &amd_f15_PMC20;
1156 			return &emptyconstraint;
1157 		case 0x1C0:
1158 			return &amd_f15_PMC53;
1159 		default:
1160 			return &amd_f15_PMC50;
1161 		}
1162 	case AMD_EVENT_CU:
1163 	case AMD_EVENT_IC_DE:
1164 	case AMD_EVENT_DE:
1165 		switch (event_code) {
1166 		case 0x08F:
1167 		case 0x187:
1168 		case 0x188:
1169 			return &amd_f15_PMC0;
1170 		case 0x0DB ... 0x0DF:
1171 		case 0x1D6:
1172 		case 0x1D8:
1173 			return &amd_f15_PMC50;
1174 		default:
1175 			return &amd_f15_PMC20;
1176 		}
1177 	case AMD_EVENT_NB:
1178 		/* moved to uncore.c */
1179 		return &emptyconstraint;
1180 	default:
1181 		return &emptyconstraint;
1182 	}
1183 }
1184 
1185 static struct event_constraint pair_constraint;
1186 
1187 static struct event_constraint *
1188 amd_get_event_constraints_f17h(struct cpu_hw_events *cpuc, int idx,
1189 			       struct perf_event *event)
1190 {
1191 	struct hw_perf_event *hwc = &event->hw;
1192 
1193 	if (amd_is_pair_event_code(hwc))
1194 		return &pair_constraint;
1195 
1196 	return &unconstrained;
1197 }
1198 
1199 static void amd_put_event_constraints_f17h(struct cpu_hw_events *cpuc,
1200 					   struct perf_event *event)
1201 {
1202 	struct hw_perf_event *hwc = &event->hw;
1203 
1204 	if (is_counter_pair(hwc))
1205 		--cpuc->n_pair;
1206 }
1207 
1208 /*
1209  * Because of the way BRS operates with an inactive and active phases, and
1210  * the link to one counter, it is not possible to have two events using BRS
1211  * scheduled at the same time. There would be an issue with enforcing the
1212  * period of each one and given that the BRS saturates, it would not be possible
1213  * to guarantee correlated content for all events. Therefore, in situations
1214  * where multiple events want to use BRS, the kernel enforces mutual exclusion.
1215  * Exclusion is enforced by choosing only one counter for events using BRS.
1216  * The event scheduling logic will then automatically multiplex the
1217  * events and ensure that at most one event is actively using BRS.
1218  *
1219  * The BRS counter could be any counter, but there is no constraint on Fam19h,
1220  * therefore all counters are equal and thus we pick the first one: PMC0
1221  */
1222 static struct event_constraint amd_fam19h_brs_cntr0_constraint =
1223 	EVENT_CONSTRAINT(0, 0x1, AMD64_RAW_EVENT_MASK);
1224 
1225 static struct event_constraint amd_fam19h_brs_pair_cntr0_constraint =
1226 	__EVENT_CONSTRAINT(0, 0x1, AMD64_RAW_EVENT_MASK, 1, 0, PERF_X86_EVENT_PAIR);
1227 
1228 static struct event_constraint *
1229 amd_get_event_constraints_f19h(struct cpu_hw_events *cpuc, int idx,
1230 			  struct perf_event *event)
1231 {
1232 	struct hw_perf_event *hwc = &event->hw;
1233 	bool has_brs = has_amd_brs(hwc);
1234 
1235 	/*
1236 	 * In case BRS is used with an event requiring a counter pair,
1237 	 * the kernel allows it but only on counter 0 & 1 to enforce
1238 	 * multiplexing requiring to protect BRS in case of multiple
1239 	 * BRS users
1240 	 */
1241 	if (amd_is_pair_event_code(hwc)) {
1242 		return has_brs ? &amd_fam19h_brs_pair_cntr0_constraint
1243 			       : &pair_constraint;
1244 	}
1245 
1246 	if (has_brs)
1247 		return &amd_fam19h_brs_cntr0_constraint;
1248 
1249 	return &unconstrained;
1250 }
1251 
1252 
1253 static ssize_t amd_event_sysfs_show(char *page, u64 config)
1254 {
1255 	u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT) |
1256 		    (config & AMD64_EVENTSEL_EVENT) >> 24;
1257 
1258 	return x86_event_sysfs_show(page, config, event);
1259 }
1260 
1261 static void amd_pmu_limit_period(struct perf_event *event, s64 *left)
1262 {
1263 	/*
1264 	 * Decrease period by the depth of the BRS feature to get the last N
1265 	 * taken branches and approximate the desired period
1266 	 */
1267 	if (has_branch_stack(event) && *left > x86_pmu.lbr_nr)
1268 		*left -= x86_pmu.lbr_nr;
1269 }
1270 
1271 static __initconst const struct x86_pmu amd_pmu = {
1272 	.name			= "AMD",
1273 	.handle_irq		= amd_pmu_handle_irq,
1274 	.disable_all		= amd_pmu_disable_all,
1275 	.enable_all		= amd_pmu_enable_all,
1276 	.enable			= amd_pmu_enable_event,
1277 	.disable		= amd_pmu_disable_event,
1278 	.hw_config		= amd_pmu_hw_config,
1279 	.schedule_events	= x86_schedule_events,
1280 	.eventsel		= MSR_K7_EVNTSEL0,
1281 	.perfctr		= MSR_K7_PERFCTR0,
1282 	.addr_offset            = amd_pmu_addr_offset,
1283 	.event_map		= amd_pmu_event_map,
1284 	.max_events		= ARRAY_SIZE(amd_perfmon_event_map),
1285 	.num_counters		= AMD64_NUM_COUNTERS,
1286 	.add			= amd_pmu_add_event,
1287 	.del			= amd_pmu_del_event,
1288 	.cntval_bits		= 48,
1289 	.cntval_mask		= (1ULL << 48) - 1,
1290 	.apic			= 1,
1291 	/* use highest bit to detect overflow */
1292 	.max_period		= (1ULL << 47) - 1,
1293 	.get_event_constraints	= amd_get_event_constraints,
1294 	.put_event_constraints	= amd_put_event_constraints,
1295 
1296 	.format_attrs		= amd_format_attr,
1297 	.events_sysfs_show	= amd_event_sysfs_show,
1298 
1299 	.cpu_prepare		= amd_pmu_cpu_prepare,
1300 	.cpu_starting		= amd_pmu_cpu_starting,
1301 	.cpu_dead		= amd_pmu_cpu_dead,
1302 
1303 	.amd_nb_constraints	= 1,
1304 };
1305 
1306 static ssize_t branches_show(struct device *cdev,
1307 			      struct device_attribute *attr,
1308 			      char *buf)
1309 {
1310 	return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu.lbr_nr);
1311 }
1312 
1313 static DEVICE_ATTR_RO(branches);
1314 
1315 static struct attribute *amd_pmu_branches_attrs[] = {
1316 	&dev_attr_branches.attr,
1317 	NULL,
1318 };
1319 
1320 static umode_t
1321 amd_branches_is_visible(struct kobject *kobj, struct attribute *attr, int i)
1322 {
1323 	return x86_pmu.lbr_nr ? attr->mode : 0;
1324 }
1325 
1326 static struct attribute_group group_caps_amd_branches = {
1327 	.name  = "caps",
1328 	.attrs = amd_pmu_branches_attrs,
1329 	.is_visible = amd_branches_is_visible,
1330 };
1331 
1332 #ifdef CONFIG_PERF_EVENTS_AMD_BRS
1333 
1334 EVENT_ATTR_STR(branch-brs, amd_branch_brs,
1335 	       "event=" __stringify(AMD_FAM19H_BRS_EVENT)"\n");
1336 
1337 static struct attribute *amd_brs_events_attrs[] = {
1338 	EVENT_PTR(amd_branch_brs),
1339 	NULL,
1340 };
1341 
1342 static umode_t
1343 amd_brs_is_visible(struct kobject *kobj, struct attribute *attr, int i)
1344 {
1345 	return static_cpu_has(X86_FEATURE_BRS) && x86_pmu.lbr_nr ?
1346 	       attr->mode : 0;
1347 }
1348 
1349 static struct attribute_group group_events_amd_brs = {
1350 	.name       = "events",
1351 	.attrs      = amd_brs_events_attrs,
1352 	.is_visible = amd_brs_is_visible,
1353 };
1354 
1355 #endif	/* CONFIG_PERF_EVENTS_AMD_BRS */
1356 
1357 static const struct attribute_group *amd_attr_update[] = {
1358 	&group_caps_amd_branches,
1359 #ifdef CONFIG_PERF_EVENTS_AMD_BRS
1360 	&group_events_amd_brs,
1361 #endif
1362 	NULL,
1363 };
1364 
1365 static int __init amd_core_pmu_init(void)
1366 {
1367 	union cpuid_0x80000022_ebx ebx;
1368 	u64 even_ctr_mask = 0ULL;
1369 	int i;
1370 
1371 	if (!boot_cpu_has(X86_FEATURE_PERFCTR_CORE))
1372 		return 0;
1373 
1374 	/* Avoid calculating the value each time in the NMI handler */
1375 	perf_nmi_window = msecs_to_jiffies(100);
1376 
1377 	/*
1378 	 * If core performance counter extensions exists, we must use
1379 	 * MSR_F15H_PERF_CTL/MSR_F15H_PERF_CTR msrs. See also
1380 	 * amd_pmu_addr_offset().
1381 	 */
1382 	x86_pmu.eventsel	= MSR_F15H_PERF_CTL;
1383 	x86_pmu.perfctr		= MSR_F15H_PERF_CTR;
1384 	x86_pmu.num_counters	= AMD64_NUM_COUNTERS_CORE;
1385 
1386 	/* Check for Performance Monitoring v2 support */
1387 	if (boot_cpu_has(X86_FEATURE_PERFMON_V2)) {
1388 		ebx.full = cpuid_ebx(EXT_PERFMON_DEBUG_FEATURES);
1389 
1390 		/* Update PMU version for later usage */
1391 		x86_pmu.version = 2;
1392 
1393 		/* Find the number of available Core PMCs */
1394 		x86_pmu.num_counters = ebx.split.num_core_pmc;
1395 
1396 		amd_pmu_global_cntr_mask = (1ULL << x86_pmu.num_counters) - 1;
1397 
1398 		/* Update PMC handling functions */
1399 		x86_pmu.enable_all = amd_pmu_v2_enable_all;
1400 		x86_pmu.disable_all = amd_pmu_v2_disable_all;
1401 		x86_pmu.enable = amd_pmu_v2_enable_event;
1402 		x86_pmu.handle_irq = amd_pmu_v2_handle_irq;
1403 		static_call_update(amd_pmu_test_overflow, amd_pmu_test_overflow_status);
1404 	}
1405 
1406 	/*
1407 	 * AMD Core perfctr has separate MSRs for the NB events, see
1408 	 * the amd/uncore.c driver.
1409 	 */
1410 	x86_pmu.amd_nb_constraints = 0;
1411 
1412 	if (boot_cpu_data.x86 == 0x15) {
1413 		pr_cont("Fam15h ");
1414 		x86_pmu.get_event_constraints = amd_get_event_constraints_f15h;
1415 	}
1416 	if (boot_cpu_data.x86 >= 0x17) {
1417 		pr_cont("Fam17h+ ");
1418 		/*
1419 		 * Family 17h and compatibles have constraints for Large
1420 		 * Increment per Cycle events: they may only be assigned an
1421 		 * even numbered counter that has a consecutive adjacent odd
1422 		 * numbered counter following it.
1423 		 */
1424 		for (i = 0; i < x86_pmu.num_counters - 1; i += 2)
1425 			even_ctr_mask |= BIT_ULL(i);
1426 
1427 		pair_constraint = (struct event_constraint)
1428 				    __EVENT_CONSTRAINT(0, even_ctr_mask, 0,
1429 				    x86_pmu.num_counters / 2, 0,
1430 				    PERF_X86_EVENT_PAIR);
1431 
1432 		x86_pmu.get_event_constraints = amd_get_event_constraints_f17h;
1433 		x86_pmu.put_event_constraints = amd_put_event_constraints_f17h;
1434 		x86_pmu.perf_ctr_pair_en = AMD_MERGE_EVENT_ENABLE;
1435 		x86_pmu.flags |= PMU_FL_PAIR;
1436 	}
1437 
1438 	/* LBR and BRS are mutually exclusive features */
1439 	if (!amd_pmu_lbr_init()) {
1440 		/* LBR requires flushing on context switch */
1441 		x86_pmu.sched_task = amd_pmu_lbr_sched_task;
1442 		static_call_update(amd_pmu_branch_hw_config, amd_pmu_lbr_hw_config);
1443 		static_call_update(amd_pmu_branch_reset, amd_pmu_lbr_reset);
1444 		static_call_update(amd_pmu_branch_add, amd_pmu_lbr_add);
1445 		static_call_update(amd_pmu_branch_del, amd_pmu_lbr_del);
1446 	} else if (!amd_brs_init()) {
1447 		/*
1448 		 * BRS requires special event constraints and flushing on ctxsw.
1449 		 */
1450 		x86_pmu.get_event_constraints = amd_get_event_constraints_f19h;
1451 		x86_pmu.sched_task = amd_pmu_brs_sched_task;
1452 		x86_pmu.limit_period = amd_pmu_limit_period;
1453 
1454 		static_call_update(amd_pmu_branch_hw_config, amd_brs_hw_config);
1455 		static_call_update(amd_pmu_branch_reset, amd_brs_reset);
1456 		static_call_update(amd_pmu_branch_add, amd_pmu_brs_add);
1457 		static_call_update(amd_pmu_branch_del, amd_pmu_brs_del);
1458 
1459 		/*
1460 		 * put_event_constraints callback same as Fam17h, set above
1461 		 */
1462 
1463 		/* branch sampling must be stopped when entering low power */
1464 		amd_brs_lopwr_init();
1465 	}
1466 
1467 	x86_pmu.attr_update = amd_attr_update;
1468 
1469 	pr_cont("core perfctr, ");
1470 	return 0;
1471 }
1472 
1473 __init int amd_pmu_init(void)
1474 {
1475 	int ret;
1476 
1477 	/* Performance-monitoring supported from K7 and later: */
1478 	if (boot_cpu_data.x86 < 6)
1479 		return -ENODEV;
1480 
1481 	x86_pmu = amd_pmu;
1482 
1483 	ret = amd_core_pmu_init();
1484 	if (ret)
1485 		return ret;
1486 
1487 	if (num_possible_cpus() == 1) {
1488 		/*
1489 		 * No point in allocating data structures to serialize
1490 		 * against other CPUs, when there is only the one CPU.
1491 		 */
1492 		x86_pmu.amd_nb_constraints = 0;
1493 	}
1494 
1495 	if (boot_cpu_data.x86 >= 0x17)
1496 		memcpy(hw_cache_event_ids, amd_hw_cache_event_ids_f17h, sizeof(hw_cache_event_ids));
1497 	else
1498 		memcpy(hw_cache_event_ids, amd_hw_cache_event_ids, sizeof(hw_cache_event_ids));
1499 
1500 	return 0;
1501 }
1502 
1503 static inline void amd_pmu_reload_virt(void)
1504 {
1505 	if (x86_pmu.version >= 2) {
1506 		/*
1507 		 * Clear global enable bits, reprogram the PERF_CTL
1508 		 * registers with updated perf_ctr_virt_mask and then
1509 		 * set global enable bits once again
1510 		 */
1511 		amd_pmu_v2_disable_all();
1512 		amd_pmu_enable_all(0);
1513 		amd_pmu_v2_enable_all(0);
1514 		return;
1515 	}
1516 
1517 	amd_pmu_disable_all();
1518 	amd_pmu_enable_all(0);
1519 }
1520 
1521 void amd_pmu_enable_virt(void)
1522 {
1523 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1524 
1525 	cpuc->perf_ctr_virt_mask = 0;
1526 
1527 	/* Reload all events */
1528 	amd_pmu_reload_virt();
1529 }
1530 EXPORT_SYMBOL_GPL(amd_pmu_enable_virt);
1531 
1532 void amd_pmu_disable_virt(void)
1533 {
1534 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1535 
1536 	/*
1537 	 * We only mask out the Host-only bit so that host-only counting works
1538 	 * when SVM is disabled. If someone sets up a guest-only counter when
1539 	 * SVM is disabled the Guest-only bits still gets set and the counter
1540 	 * will not count anything.
1541 	 */
1542 	cpuc->perf_ctr_virt_mask = AMD64_EVENTSEL_HOSTONLY;
1543 
1544 	/* Reload all events */
1545 	amd_pmu_reload_virt();
1546 }
1547 EXPORT_SYMBOL_GPL(amd_pmu_disable_virt);
1548