xref: /linux/arch/x86/events/amd/core.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 #include <linux/perf_event.h>
2 #include <linux/export.h>
3 #include <linux/types.h>
4 #include <linux/init.h>
5 #include <linux/slab.h>
6 #include <asm/apicdef.h>
7 
8 #include "../perf_event.h"
9 
10 static __initconst const u64 amd_hw_cache_event_ids
11 				[PERF_COUNT_HW_CACHE_MAX]
12 				[PERF_COUNT_HW_CACHE_OP_MAX]
13 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
14 {
15  [ C(L1D) ] = {
16 	[ C(OP_READ) ] = {
17 		[ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses        */
18 		[ C(RESULT_MISS)   ] = 0x0141, /* Data Cache Misses          */
19 	},
20 	[ C(OP_WRITE) ] = {
21 		[ C(RESULT_ACCESS) ] = 0,
22 		[ C(RESULT_MISS)   ] = 0,
23 	},
24 	[ C(OP_PREFETCH) ] = {
25 		[ C(RESULT_ACCESS) ] = 0x0267, /* Data Prefetcher :attempts  */
26 		[ C(RESULT_MISS)   ] = 0x0167, /* Data Prefetcher :cancelled */
27 	},
28  },
29  [ C(L1I ) ] = {
30 	[ C(OP_READ) ] = {
31 		[ C(RESULT_ACCESS) ] = 0x0080, /* Instruction cache fetches  */
32 		[ C(RESULT_MISS)   ] = 0x0081, /* Instruction cache misses   */
33 	},
34 	[ C(OP_WRITE) ] = {
35 		[ C(RESULT_ACCESS) ] = -1,
36 		[ C(RESULT_MISS)   ] = -1,
37 	},
38 	[ C(OP_PREFETCH) ] = {
39 		[ C(RESULT_ACCESS) ] = 0x014B, /* Prefetch Instructions :Load */
40 		[ C(RESULT_MISS)   ] = 0,
41 	},
42  },
43  [ C(LL  ) ] = {
44 	[ C(OP_READ) ] = {
45 		[ C(RESULT_ACCESS) ] = 0x037D, /* Requests to L2 Cache :IC+DC */
46 		[ C(RESULT_MISS)   ] = 0x037E, /* L2 Cache Misses : IC+DC     */
47 	},
48 	[ C(OP_WRITE) ] = {
49 		[ C(RESULT_ACCESS) ] = 0x017F, /* L2 Fill/Writeback           */
50 		[ C(RESULT_MISS)   ] = 0,
51 	},
52 	[ C(OP_PREFETCH) ] = {
53 		[ C(RESULT_ACCESS) ] = 0,
54 		[ C(RESULT_MISS)   ] = 0,
55 	},
56  },
57  [ C(DTLB) ] = {
58 	[ C(OP_READ) ] = {
59 		[ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses        */
60 		[ C(RESULT_MISS)   ] = 0x0746, /* L1_DTLB_AND_L2_DLTB_MISS.ALL */
61 	},
62 	[ C(OP_WRITE) ] = {
63 		[ C(RESULT_ACCESS) ] = 0,
64 		[ C(RESULT_MISS)   ] = 0,
65 	},
66 	[ C(OP_PREFETCH) ] = {
67 		[ C(RESULT_ACCESS) ] = 0,
68 		[ C(RESULT_MISS)   ] = 0,
69 	},
70  },
71  [ C(ITLB) ] = {
72 	[ C(OP_READ) ] = {
73 		[ C(RESULT_ACCESS) ] = 0x0080, /* Instruction fecthes        */
74 		[ C(RESULT_MISS)   ] = 0x0385, /* L1_ITLB_AND_L2_ITLB_MISS.ALL */
75 	},
76 	[ C(OP_WRITE) ] = {
77 		[ C(RESULT_ACCESS) ] = -1,
78 		[ C(RESULT_MISS)   ] = -1,
79 	},
80 	[ C(OP_PREFETCH) ] = {
81 		[ C(RESULT_ACCESS) ] = -1,
82 		[ C(RESULT_MISS)   ] = -1,
83 	},
84  },
85  [ C(BPU ) ] = {
86 	[ C(OP_READ) ] = {
87 		[ C(RESULT_ACCESS) ] = 0x00c2, /* Retired Branch Instr.      */
88 		[ C(RESULT_MISS)   ] = 0x00c3, /* Retired Mispredicted BI    */
89 	},
90 	[ C(OP_WRITE) ] = {
91 		[ C(RESULT_ACCESS) ] = -1,
92 		[ C(RESULT_MISS)   ] = -1,
93 	},
94 	[ C(OP_PREFETCH) ] = {
95 		[ C(RESULT_ACCESS) ] = -1,
96 		[ C(RESULT_MISS)   ] = -1,
97 	},
98  },
99  [ C(NODE) ] = {
100 	[ C(OP_READ) ] = {
101 		[ C(RESULT_ACCESS) ] = 0xb8e9, /* CPU Request to Memory, l+r */
102 		[ C(RESULT_MISS)   ] = 0x98e9, /* CPU Request to Memory, r   */
103 	},
104 	[ C(OP_WRITE) ] = {
105 		[ C(RESULT_ACCESS) ] = -1,
106 		[ C(RESULT_MISS)   ] = -1,
107 	},
108 	[ C(OP_PREFETCH) ] = {
109 		[ C(RESULT_ACCESS) ] = -1,
110 		[ C(RESULT_MISS)   ] = -1,
111 	},
112  },
113 };
114 
115 /*
116  * AMD Performance Monitor K7 and later.
117  */
118 static const u64 amd_perfmon_event_map[PERF_COUNT_HW_MAX] =
119 {
120   [PERF_COUNT_HW_CPU_CYCLES]			= 0x0076,
121   [PERF_COUNT_HW_INSTRUCTIONS]			= 0x00c0,
122   [PERF_COUNT_HW_CACHE_REFERENCES]		= 0x0080,
123   [PERF_COUNT_HW_CACHE_MISSES]			= 0x0081,
124   [PERF_COUNT_HW_BRANCH_INSTRUCTIONS]		= 0x00c2,
125   [PERF_COUNT_HW_BRANCH_MISSES]			= 0x00c3,
126   [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND]	= 0x00d0, /* "Decoder empty" event */
127   [PERF_COUNT_HW_STALLED_CYCLES_BACKEND]	= 0x00d1, /* "Dispatch stalls" event */
128 };
129 
130 static u64 amd_pmu_event_map(int hw_event)
131 {
132 	return amd_perfmon_event_map[hw_event];
133 }
134 
135 /*
136  * Previously calculated offsets
137  */
138 static unsigned int event_offsets[X86_PMC_IDX_MAX] __read_mostly;
139 static unsigned int count_offsets[X86_PMC_IDX_MAX] __read_mostly;
140 
141 /*
142  * Legacy CPUs:
143  *   4 counters starting at 0xc0010000 each offset by 1
144  *
145  * CPUs with core performance counter extensions:
146  *   6 counters starting at 0xc0010200 each offset by 2
147  */
148 static inline int amd_pmu_addr_offset(int index, bool eventsel)
149 {
150 	int offset;
151 
152 	if (!index)
153 		return index;
154 
155 	if (eventsel)
156 		offset = event_offsets[index];
157 	else
158 		offset = count_offsets[index];
159 
160 	if (offset)
161 		return offset;
162 
163 	if (!boot_cpu_has(X86_FEATURE_PERFCTR_CORE))
164 		offset = index;
165 	else
166 		offset = index << 1;
167 
168 	if (eventsel)
169 		event_offsets[index] = offset;
170 	else
171 		count_offsets[index] = offset;
172 
173 	return offset;
174 }
175 
176 static int amd_core_hw_config(struct perf_event *event)
177 {
178 	if (event->attr.exclude_host && event->attr.exclude_guest)
179 		/*
180 		 * When HO == GO == 1 the hardware treats that as GO == HO == 0
181 		 * and will count in both modes. We don't want to count in that
182 		 * case so we emulate no-counting by setting US = OS = 0.
183 		 */
184 		event->hw.config &= ~(ARCH_PERFMON_EVENTSEL_USR |
185 				      ARCH_PERFMON_EVENTSEL_OS);
186 	else if (event->attr.exclude_host)
187 		event->hw.config |= AMD64_EVENTSEL_GUESTONLY;
188 	else if (event->attr.exclude_guest)
189 		event->hw.config |= AMD64_EVENTSEL_HOSTONLY;
190 
191 	return 0;
192 }
193 
194 /*
195  * AMD64 events are detected based on their event codes.
196  */
197 static inline unsigned int amd_get_event_code(struct hw_perf_event *hwc)
198 {
199 	return ((hwc->config >> 24) & 0x0f00) | (hwc->config & 0x00ff);
200 }
201 
202 static inline int amd_is_nb_event(struct hw_perf_event *hwc)
203 {
204 	return (hwc->config & 0xe0) == 0xe0;
205 }
206 
207 static inline int amd_has_nb(struct cpu_hw_events *cpuc)
208 {
209 	struct amd_nb *nb = cpuc->amd_nb;
210 
211 	return nb && nb->nb_id != -1;
212 }
213 
214 static int amd_pmu_hw_config(struct perf_event *event)
215 {
216 	int ret;
217 
218 	/* pass precise event sampling to ibs: */
219 	if (event->attr.precise_ip && get_ibs_caps())
220 		return -ENOENT;
221 
222 	if (has_branch_stack(event))
223 		return -EOPNOTSUPP;
224 
225 	ret = x86_pmu_hw_config(event);
226 	if (ret)
227 		return ret;
228 
229 	if (event->attr.type == PERF_TYPE_RAW)
230 		event->hw.config |= event->attr.config & AMD64_RAW_EVENT_MASK;
231 
232 	return amd_core_hw_config(event);
233 }
234 
235 static void __amd_put_nb_event_constraints(struct cpu_hw_events *cpuc,
236 					   struct perf_event *event)
237 {
238 	struct amd_nb *nb = cpuc->amd_nb;
239 	int i;
240 
241 	/*
242 	 * need to scan whole list because event may not have
243 	 * been assigned during scheduling
244 	 *
245 	 * no race condition possible because event can only
246 	 * be removed on one CPU at a time AND PMU is disabled
247 	 * when we come here
248 	 */
249 	for (i = 0; i < x86_pmu.num_counters; i++) {
250 		if (cmpxchg(nb->owners + i, event, NULL) == event)
251 			break;
252 	}
253 }
254 
255  /*
256   * AMD64 NorthBridge events need special treatment because
257   * counter access needs to be synchronized across all cores
258   * of a package. Refer to BKDG section 3.12
259   *
260   * NB events are events measuring L3 cache, Hypertransport
261   * traffic. They are identified by an event code >= 0xe00.
262   * They measure events on the NorthBride which is shared
263   * by all cores on a package. NB events are counted on a
264   * shared set of counters. When a NB event is programmed
265   * in a counter, the data actually comes from a shared
266   * counter. Thus, access to those counters needs to be
267   * synchronized.
268   *
269   * We implement the synchronization such that no two cores
270   * can be measuring NB events using the same counters. Thus,
271   * we maintain a per-NB allocation table. The available slot
272   * is propagated using the event_constraint structure.
273   *
274   * We provide only one choice for each NB event based on
275   * the fact that only NB events have restrictions. Consequently,
276   * if a counter is available, there is a guarantee the NB event
277   * will be assigned to it. If no slot is available, an empty
278   * constraint is returned and scheduling will eventually fail
279   * for this event.
280   *
281   * Note that all cores attached the same NB compete for the same
282   * counters to host NB events, this is why we use atomic ops. Some
283   * multi-chip CPUs may have more than one NB.
284   *
285   * Given that resources are allocated (cmpxchg), they must be
286   * eventually freed for others to use. This is accomplished by
287   * calling __amd_put_nb_event_constraints()
288   *
289   * Non NB events are not impacted by this restriction.
290   */
291 static struct event_constraint *
292 __amd_get_nb_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
293 			       struct event_constraint *c)
294 {
295 	struct hw_perf_event *hwc = &event->hw;
296 	struct amd_nb *nb = cpuc->amd_nb;
297 	struct perf_event *old;
298 	int idx, new = -1;
299 
300 	if (!c)
301 		c = &unconstrained;
302 
303 	if (cpuc->is_fake)
304 		return c;
305 
306 	/*
307 	 * detect if already present, if so reuse
308 	 *
309 	 * cannot merge with actual allocation
310 	 * because of possible holes
311 	 *
312 	 * event can already be present yet not assigned (in hwc->idx)
313 	 * because of successive calls to x86_schedule_events() from
314 	 * hw_perf_group_sched_in() without hw_perf_enable()
315 	 */
316 	for_each_set_bit(idx, c->idxmsk, x86_pmu.num_counters) {
317 		if (new == -1 || hwc->idx == idx)
318 			/* assign free slot, prefer hwc->idx */
319 			old = cmpxchg(nb->owners + idx, NULL, event);
320 		else if (nb->owners[idx] == event)
321 			/* event already present */
322 			old = event;
323 		else
324 			continue;
325 
326 		if (old && old != event)
327 			continue;
328 
329 		/* reassign to this slot */
330 		if (new != -1)
331 			cmpxchg(nb->owners + new, event, NULL);
332 		new = idx;
333 
334 		/* already present, reuse */
335 		if (old == event)
336 			break;
337 	}
338 
339 	if (new == -1)
340 		return &emptyconstraint;
341 
342 	return &nb->event_constraints[new];
343 }
344 
345 static struct amd_nb *amd_alloc_nb(int cpu)
346 {
347 	struct amd_nb *nb;
348 	int i;
349 
350 	nb = kzalloc_node(sizeof(struct amd_nb), GFP_KERNEL, cpu_to_node(cpu));
351 	if (!nb)
352 		return NULL;
353 
354 	nb->nb_id = -1;
355 
356 	/*
357 	 * initialize all possible NB constraints
358 	 */
359 	for (i = 0; i < x86_pmu.num_counters; i++) {
360 		__set_bit(i, nb->event_constraints[i].idxmsk);
361 		nb->event_constraints[i].weight = 1;
362 	}
363 	return nb;
364 }
365 
366 static int amd_pmu_cpu_prepare(int cpu)
367 {
368 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
369 
370 	WARN_ON_ONCE(cpuc->amd_nb);
371 
372 	if (!x86_pmu.amd_nb_constraints)
373 		return NOTIFY_OK;
374 
375 	cpuc->amd_nb = amd_alloc_nb(cpu);
376 	if (!cpuc->amd_nb)
377 		return NOTIFY_BAD;
378 
379 	return NOTIFY_OK;
380 }
381 
382 static void amd_pmu_cpu_starting(int cpu)
383 {
384 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
385 	void **onln = &cpuc->kfree_on_online[X86_PERF_KFREE_SHARED];
386 	struct amd_nb *nb;
387 	int i, nb_id;
388 
389 	cpuc->perf_ctr_virt_mask = AMD64_EVENTSEL_HOSTONLY;
390 
391 	if (!x86_pmu.amd_nb_constraints)
392 		return;
393 
394 	nb_id = amd_get_nb_id(cpu);
395 	WARN_ON_ONCE(nb_id == BAD_APICID);
396 
397 	for_each_online_cpu(i) {
398 		nb = per_cpu(cpu_hw_events, i).amd_nb;
399 		if (WARN_ON_ONCE(!nb))
400 			continue;
401 
402 		if (nb->nb_id == nb_id) {
403 			*onln = cpuc->amd_nb;
404 			cpuc->amd_nb = nb;
405 			break;
406 		}
407 	}
408 
409 	cpuc->amd_nb->nb_id = nb_id;
410 	cpuc->amd_nb->refcnt++;
411 }
412 
413 static void amd_pmu_cpu_dead(int cpu)
414 {
415 	struct cpu_hw_events *cpuhw;
416 
417 	if (!x86_pmu.amd_nb_constraints)
418 		return;
419 
420 	cpuhw = &per_cpu(cpu_hw_events, cpu);
421 
422 	if (cpuhw->amd_nb) {
423 		struct amd_nb *nb = cpuhw->amd_nb;
424 
425 		if (nb->nb_id == -1 || --nb->refcnt == 0)
426 			kfree(nb);
427 
428 		cpuhw->amd_nb = NULL;
429 	}
430 }
431 
432 static struct event_constraint *
433 amd_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
434 			  struct perf_event *event)
435 {
436 	/*
437 	 * if not NB event or no NB, then no constraints
438 	 */
439 	if (!(amd_has_nb(cpuc) && amd_is_nb_event(&event->hw)))
440 		return &unconstrained;
441 
442 	return __amd_get_nb_event_constraints(cpuc, event, NULL);
443 }
444 
445 static void amd_put_event_constraints(struct cpu_hw_events *cpuc,
446 				      struct perf_event *event)
447 {
448 	if (amd_has_nb(cpuc) && amd_is_nb_event(&event->hw))
449 		__amd_put_nb_event_constraints(cpuc, event);
450 }
451 
452 PMU_FORMAT_ATTR(event,	"config:0-7,32-35");
453 PMU_FORMAT_ATTR(umask,	"config:8-15"	);
454 PMU_FORMAT_ATTR(edge,	"config:18"	);
455 PMU_FORMAT_ATTR(inv,	"config:23"	);
456 PMU_FORMAT_ATTR(cmask,	"config:24-31"	);
457 
458 static struct attribute *amd_format_attr[] = {
459 	&format_attr_event.attr,
460 	&format_attr_umask.attr,
461 	&format_attr_edge.attr,
462 	&format_attr_inv.attr,
463 	&format_attr_cmask.attr,
464 	NULL,
465 };
466 
467 /* AMD Family 15h */
468 
469 #define AMD_EVENT_TYPE_MASK	0x000000F0ULL
470 
471 #define AMD_EVENT_FP		0x00000000ULL ... 0x00000010ULL
472 #define AMD_EVENT_LS		0x00000020ULL ... 0x00000030ULL
473 #define AMD_EVENT_DC		0x00000040ULL ... 0x00000050ULL
474 #define AMD_EVENT_CU		0x00000060ULL ... 0x00000070ULL
475 #define AMD_EVENT_IC_DE		0x00000080ULL ... 0x00000090ULL
476 #define AMD_EVENT_EX_LS		0x000000C0ULL
477 #define AMD_EVENT_DE		0x000000D0ULL
478 #define AMD_EVENT_NB		0x000000E0ULL ... 0x000000F0ULL
479 
480 /*
481  * AMD family 15h event code/PMC mappings:
482  *
483  * type = event_code & 0x0F0:
484  *
485  * 0x000	FP	PERF_CTL[5:3]
486  * 0x010	FP	PERF_CTL[5:3]
487  * 0x020	LS	PERF_CTL[5:0]
488  * 0x030	LS	PERF_CTL[5:0]
489  * 0x040	DC	PERF_CTL[5:0]
490  * 0x050	DC	PERF_CTL[5:0]
491  * 0x060	CU	PERF_CTL[2:0]
492  * 0x070	CU	PERF_CTL[2:0]
493  * 0x080	IC/DE	PERF_CTL[2:0]
494  * 0x090	IC/DE	PERF_CTL[2:0]
495  * 0x0A0	---
496  * 0x0B0	---
497  * 0x0C0	EX/LS	PERF_CTL[5:0]
498  * 0x0D0	DE	PERF_CTL[2:0]
499  * 0x0E0	NB	NB_PERF_CTL[3:0]
500  * 0x0F0	NB	NB_PERF_CTL[3:0]
501  *
502  * Exceptions:
503  *
504  * 0x000	FP	PERF_CTL[3], PERF_CTL[5:3] (*)
505  * 0x003	FP	PERF_CTL[3]
506  * 0x004	FP	PERF_CTL[3], PERF_CTL[5:3] (*)
507  * 0x00B	FP	PERF_CTL[3]
508  * 0x00D	FP	PERF_CTL[3]
509  * 0x023	DE	PERF_CTL[2:0]
510  * 0x02D	LS	PERF_CTL[3]
511  * 0x02E	LS	PERF_CTL[3,0]
512  * 0x031	LS	PERF_CTL[2:0] (**)
513  * 0x043	CU	PERF_CTL[2:0]
514  * 0x045	CU	PERF_CTL[2:0]
515  * 0x046	CU	PERF_CTL[2:0]
516  * 0x054	CU	PERF_CTL[2:0]
517  * 0x055	CU	PERF_CTL[2:0]
518  * 0x08F	IC	PERF_CTL[0]
519  * 0x187	DE	PERF_CTL[0]
520  * 0x188	DE	PERF_CTL[0]
521  * 0x0DB	EX	PERF_CTL[5:0]
522  * 0x0DC	LS	PERF_CTL[5:0]
523  * 0x0DD	LS	PERF_CTL[5:0]
524  * 0x0DE	LS	PERF_CTL[5:0]
525  * 0x0DF	LS	PERF_CTL[5:0]
526  * 0x1C0	EX	PERF_CTL[5:3]
527  * 0x1D6	EX	PERF_CTL[5:0]
528  * 0x1D8	EX	PERF_CTL[5:0]
529  *
530  * (*)  depending on the umask all FPU counters may be used
531  * (**) only one unitmask enabled at a time
532  */
533 
534 static struct event_constraint amd_f15_PMC0  = EVENT_CONSTRAINT(0, 0x01, 0);
535 static struct event_constraint amd_f15_PMC20 = EVENT_CONSTRAINT(0, 0x07, 0);
536 static struct event_constraint amd_f15_PMC3  = EVENT_CONSTRAINT(0, 0x08, 0);
537 static struct event_constraint amd_f15_PMC30 = EVENT_CONSTRAINT_OVERLAP(0, 0x09, 0);
538 static struct event_constraint amd_f15_PMC50 = EVENT_CONSTRAINT(0, 0x3F, 0);
539 static struct event_constraint amd_f15_PMC53 = EVENT_CONSTRAINT(0, 0x38, 0);
540 
541 static struct event_constraint *
542 amd_get_event_constraints_f15h(struct cpu_hw_events *cpuc, int idx,
543 			       struct perf_event *event)
544 {
545 	struct hw_perf_event *hwc = &event->hw;
546 	unsigned int event_code = amd_get_event_code(hwc);
547 
548 	switch (event_code & AMD_EVENT_TYPE_MASK) {
549 	case AMD_EVENT_FP:
550 		switch (event_code) {
551 		case 0x000:
552 			if (!(hwc->config & 0x0000F000ULL))
553 				break;
554 			if (!(hwc->config & 0x00000F00ULL))
555 				break;
556 			return &amd_f15_PMC3;
557 		case 0x004:
558 			if (hweight_long(hwc->config & ARCH_PERFMON_EVENTSEL_UMASK) <= 1)
559 				break;
560 			return &amd_f15_PMC3;
561 		case 0x003:
562 		case 0x00B:
563 		case 0x00D:
564 			return &amd_f15_PMC3;
565 		}
566 		return &amd_f15_PMC53;
567 	case AMD_EVENT_LS:
568 	case AMD_EVENT_DC:
569 	case AMD_EVENT_EX_LS:
570 		switch (event_code) {
571 		case 0x023:
572 		case 0x043:
573 		case 0x045:
574 		case 0x046:
575 		case 0x054:
576 		case 0x055:
577 			return &amd_f15_PMC20;
578 		case 0x02D:
579 			return &amd_f15_PMC3;
580 		case 0x02E:
581 			return &amd_f15_PMC30;
582 		case 0x031:
583 			if (hweight_long(hwc->config & ARCH_PERFMON_EVENTSEL_UMASK) <= 1)
584 				return &amd_f15_PMC20;
585 			return &emptyconstraint;
586 		case 0x1C0:
587 			return &amd_f15_PMC53;
588 		default:
589 			return &amd_f15_PMC50;
590 		}
591 	case AMD_EVENT_CU:
592 	case AMD_EVENT_IC_DE:
593 	case AMD_EVENT_DE:
594 		switch (event_code) {
595 		case 0x08F:
596 		case 0x187:
597 		case 0x188:
598 			return &amd_f15_PMC0;
599 		case 0x0DB ... 0x0DF:
600 		case 0x1D6:
601 		case 0x1D8:
602 			return &amd_f15_PMC50;
603 		default:
604 			return &amd_f15_PMC20;
605 		}
606 	case AMD_EVENT_NB:
607 		/* moved to perf_event_amd_uncore.c */
608 		return &emptyconstraint;
609 	default:
610 		return &emptyconstraint;
611 	}
612 }
613 
614 static ssize_t amd_event_sysfs_show(char *page, u64 config)
615 {
616 	u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT) |
617 		    (config & AMD64_EVENTSEL_EVENT) >> 24;
618 
619 	return x86_event_sysfs_show(page, config, event);
620 }
621 
622 static __initconst const struct x86_pmu amd_pmu = {
623 	.name			= "AMD",
624 	.handle_irq		= x86_pmu_handle_irq,
625 	.disable_all		= x86_pmu_disable_all,
626 	.enable_all		= x86_pmu_enable_all,
627 	.enable			= x86_pmu_enable_event,
628 	.disable		= x86_pmu_disable_event,
629 	.hw_config		= amd_pmu_hw_config,
630 	.schedule_events	= x86_schedule_events,
631 	.eventsel		= MSR_K7_EVNTSEL0,
632 	.perfctr		= MSR_K7_PERFCTR0,
633 	.addr_offset            = amd_pmu_addr_offset,
634 	.event_map		= amd_pmu_event_map,
635 	.max_events		= ARRAY_SIZE(amd_perfmon_event_map),
636 	.num_counters		= AMD64_NUM_COUNTERS,
637 	.cntval_bits		= 48,
638 	.cntval_mask		= (1ULL << 48) - 1,
639 	.apic			= 1,
640 	/* use highest bit to detect overflow */
641 	.max_period		= (1ULL << 47) - 1,
642 	.get_event_constraints	= amd_get_event_constraints,
643 	.put_event_constraints	= amd_put_event_constraints,
644 
645 	.format_attrs		= amd_format_attr,
646 	.events_sysfs_show	= amd_event_sysfs_show,
647 
648 	.cpu_prepare		= amd_pmu_cpu_prepare,
649 	.cpu_starting		= amd_pmu_cpu_starting,
650 	.cpu_dead		= amd_pmu_cpu_dead,
651 
652 	.amd_nb_constraints	= 1,
653 };
654 
655 static int __init amd_core_pmu_init(void)
656 {
657 	if (!boot_cpu_has(X86_FEATURE_PERFCTR_CORE))
658 		return 0;
659 
660 	switch (boot_cpu_data.x86) {
661 	case 0x15:
662 		pr_cont("Fam15h ");
663 		x86_pmu.get_event_constraints = amd_get_event_constraints_f15h;
664 		break;
665 
666 	default:
667 		pr_err("core perfctr but no constraints; unknown hardware!\n");
668 		return -ENODEV;
669 	}
670 
671 	/*
672 	 * If core performance counter extensions exists, we must use
673 	 * MSR_F15H_PERF_CTL/MSR_F15H_PERF_CTR msrs. See also
674 	 * amd_pmu_addr_offset().
675 	 */
676 	x86_pmu.eventsel	= MSR_F15H_PERF_CTL;
677 	x86_pmu.perfctr		= MSR_F15H_PERF_CTR;
678 	x86_pmu.num_counters	= AMD64_NUM_COUNTERS_CORE;
679 	/*
680 	 * AMD Core perfctr has separate MSRs for the NB events, see
681 	 * the amd/uncore.c driver.
682 	 */
683 	x86_pmu.amd_nb_constraints = 0;
684 
685 	pr_cont("core perfctr, ");
686 	return 0;
687 }
688 
689 __init int amd_pmu_init(void)
690 {
691 	int ret;
692 
693 	/* Performance-monitoring supported from K7 and later: */
694 	if (boot_cpu_data.x86 < 6)
695 		return -ENODEV;
696 
697 	x86_pmu = amd_pmu;
698 
699 	ret = amd_core_pmu_init();
700 	if (ret)
701 		return ret;
702 
703 	if (num_possible_cpus() == 1) {
704 		/*
705 		 * No point in allocating data structures to serialize
706 		 * against other CPUs, when there is only the one CPU.
707 		 */
708 		x86_pmu.amd_nb_constraints = 0;
709 	}
710 
711 	/* Events are common for all AMDs */
712 	memcpy(hw_cache_event_ids, amd_hw_cache_event_ids,
713 	       sizeof(hw_cache_event_ids));
714 
715 	return 0;
716 }
717 
718 void amd_pmu_enable_virt(void)
719 {
720 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
721 
722 	cpuc->perf_ctr_virt_mask = 0;
723 
724 	/* Reload all events */
725 	x86_pmu_disable_all();
726 	x86_pmu_enable_all(0);
727 }
728 EXPORT_SYMBOL_GPL(amd_pmu_enable_virt);
729 
730 void amd_pmu_disable_virt(void)
731 {
732 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
733 
734 	/*
735 	 * We only mask out the Host-only bit so that host-only counting works
736 	 * when SVM is disabled. If someone sets up a guest-only counter when
737 	 * SVM is disabled the Guest-only bits still gets set and the counter
738 	 * will not count anything.
739 	 */
740 	cpuc->perf_ctr_virt_mask = AMD64_EVENTSEL_HOSTONLY;
741 
742 	/* Reload all events */
743 	x86_pmu_disable_all();
744 	x86_pmu_enable_all(0);
745 }
746 EXPORT_SYMBOL_GPL(amd_pmu_disable_virt);
747