1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2007 Andi Kleen, SUSE Labs. 4 * 5 * This contains most of the x86 vDSO kernel-side code. 6 */ 7 #include <linux/mm.h> 8 #include <linux/err.h> 9 #include <linux/sched.h> 10 #include <linux/sched/task_stack.h> 11 #include <linux/slab.h> 12 #include <linux/init.h> 13 #include <linux/random.h> 14 #include <linux/elf.h> 15 #include <linux/cpu.h> 16 #include <linux/ptrace.h> 17 #include <linux/time_namespace.h> 18 19 #include <asm/pvclock.h> 20 #include <asm/vgtod.h> 21 #include <asm/proto.h> 22 #include <asm/vdso.h> 23 #include <asm/vvar.h> 24 #include <asm/tlb.h> 25 #include <asm/page.h> 26 #include <asm/desc.h> 27 #include <asm/cpufeature.h> 28 #include <clocksource/hyperv_timer.h> 29 30 #undef _ASM_X86_VVAR_H 31 #define EMIT_VVAR(name, offset) \ 32 const size_t name ## _offset = offset; 33 #include <asm/vvar.h> 34 35 struct vdso_data *arch_get_vdso_data(void *vvar_page) 36 { 37 return (struct vdso_data *)(vvar_page + _vdso_data_offset); 38 } 39 #undef EMIT_VVAR 40 41 unsigned int vclocks_used __read_mostly; 42 43 #if defined(CONFIG_X86_64) 44 unsigned int __read_mostly vdso64_enabled = 1; 45 #endif 46 47 void __init init_vdso_image(const struct vdso_image *image) 48 { 49 BUG_ON(image->size % PAGE_SIZE != 0); 50 51 apply_alternatives((struct alt_instr *)(image->data + image->alt), 52 (struct alt_instr *)(image->data + image->alt + 53 image->alt_len)); 54 } 55 56 static const struct vm_special_mapping vvar_mapping; 57 struct linux_binprm; 58 59 static vm_fault_t vdso_fault(const struct vm_special_mapping *sm, 60 struct vm_area_struct *vma, struct vm_fault *vmf) 61 { 62 const struct vdso_image *image = vma->vm_mm->context.vdso_image; 63 64 if (!image || (vmf->pgoff << PAGE_SHIFT) >= image->size) 65 return VM_FAULT_SIGBUS; 66 67 vmf->page = virt_to_page(image->data + (vmf->pgoff << PAGE_SHIFT)); 68 get_page(vmf->page); 69 return 0; 70 } 71 72 static void vdso_fix_landing(const struct vdso_image *image, 73 struct vm_area_struct *new_vma) 74 { 75 #if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION 76 if (in_ia32_syscall() && image == &vdso_image_32) { 77 struct pt_regs *regs = current_pt_regs(); 78 unsigned long vdso_land = image->sym_int80_landing_pad; 79 unsigned long old_land_addr = vdso_land + 80 (unsigned long)current->mm->context.vdso; 81 82 /* Fixing userspace landing - look at do_fast_syscall_32 */ 83 if (regs->ip == old_land_addr) 84 regs->ip = new_vma->vm_start + vdso_land; 85 } 86 #endif 87 } 88 89 static int vdso_mremap(const struct vm_special_mapping *sm, 90 struct vm_area_struct *new_vma) 91 { 92 const struct vdso_image *image = current->mm->context.vdso_image; 93 94 vdso_fix_landing(image, new_vma); 95 current->mm->context.vdso = (void __user *)new_vma->vm_start; 96 97 return 0; 98 } 99 100 #ifdef CONFIG_TIME_NS 101 /* 102 * The vvar page layout depends on whether a task belongs to the root or 103 * non-root time namespace. Whenever a task changes its namespace, the VVAR 104 * page tables are cleared and then they will re-faulted with a 105 * corresponding layout. 106 * See also the comment near timens_setup_vdso_data() for details. 107 */ 108 int vdso_join_timens(struct task_struct *task, struct time_namespace *ns) 109 { 110 struct mm_struct *mm = task->mm; 111 struct vm_area_struct *vma; 112 VMA_ITERATOR(vmi, mm, 0); 113 114 mmap_read_lock(mm); 115 for_each_vma(vmi, vma) { 116 unsigned long size = vma->vm_end - vma->vm_start; 117 118 if (vma_is_special_mapping(vma, &vvar_mapping)) 119 zap_page_range(vma, vma->vm_start, size); 120 } 121 mmap_read_unlock(mm); 122 123 return 0; 124 } 125 #endif 126 127 static vm_fault_t vvar_fault(const struct vm_special_mapping *sm, 128 struct vm_area_struct *vma, struct vm_fault *vmf) 129 { 130 const struct vdso_image *image = vma->vm_mm->context.vdso_image; 131 unsigned long pfn; 132 long sym_offset; 133 134 if (!image) 135 return VM_FAULT_SIGBUS; 136 137 sym_offset = (long)(vmf->pgoff << PAGE_SHIFT) + 138 image->sym_vvar_start; 139 140 /* 141 * Sanity check: a symbol offset of zero means that the page 142 * does not exist for this vdso image, not that the page is at 143 * offset zero relative to the text mapping. This should be 144 * impossible here, because sym_offset should only be zero for 145 * the page past the end of the vvar mapping. 146 */ 147 if (sym_offset == 0) 148 return VM_FAULT_SIGBUS; 149 150 if (sym_offset == image->sym_vvar_page) { 151 struct page *timens_page = find_timens_vvar_page(vma); 152 153 pfn = __pa_symbol(&__vvar_page) >> PAGE_SHIFT; 154 155 /* 156 * If a task belongs to a time namespace then a namespace 157 * specific VVAR is mapped with the sym_vvar_page offset and 158 * the real VVAR page is mapped with the sym_timens_page 159 * offset. 160 * See also the comment near timens_setup_vdso_data(). 161 */ 162 if (timens_page) { 163 unsigned long addr; 164 vm_fault_t err; 165 166 /* 167 * Optimization: inside time namespace pre-fault 168 * VVAR page too. As on timens page there are only 169 * offsets for clocks on VVAR, it'll be faulted 170 * shortly by VDSO code. 171 */ 172 addr = vmf->address + (image->sym_timens_page - sym_offset); 173 err = vmf_insert_pfn(vma, addr, pfn); 174 if (unlikely(err & VM_FAULT_ERROR)) 175 return err; 176 177 pfn = page_to_pfn(timens_page); 178 } 179 180 return vmf_insert_pfn(vma, vmf->address, pfn); 181 } else if (sym_offset == image->sym_pvclock_page) { 182 struct pvclock_vsyscall_time_info *pvti = 183 pvclock_get_pvti_cpu0_va(); 184 if (pvti && vclock_was_used(VDSO_CLOCKMODE_PVCLOCK)) { 185 return vmf_insert_pfn_prot(vma, vmf->address, 186 __pa(pvti) >> PAGE_SHIFT, 187 pgprot_decrypted(vma->vm_page_prot)); 188 } 189 } else if (sym_offset == image->sym_hvclock_page) { 190 pfn = hv_get_tsc_pfn(); 191 192 if (pfn && vclock_was_used(VDSO_CLOCKMODE_HVCLOCK)) 193 return vmf_insert_pfn(vma, vmf->address, pfn); 194 } else if (sym_offset == image->sym_timens_page) { 195 struct page *timens_page = find_timens_vvar_page(vma); 196 197 if (!timens_page) 198 return VM_FAULT_SIGBUS; 199 200 pfn = __pa_symbol(&__vvar_page) >> PAGE_SHIFT; 201 return vmf_insert_pfn(vma, vmf->address, pfn); 202 } 203 204 return VM_FAULT_SIGBUS; 205 } 206 207 static const struct vm_special_mapping vdso_mapping = { 208 .name = "[vdso]", 209 .fault = vdso_fault, 210 .mremap = vdso_mremap, 211 }; 212 static const struct vm_special_mapping vvar_mapping = { 213 .name = "[vvar]", 214 .fault = vvar_fault, 215 }; 216 217 /* 218 * Add vdso and vvar mappings to current process. 219 * @image - blob to map 220 * @addr - request a specific address (zero to map at free addr) 221 */ 222 static int map_vdso(const struct vdso_image *image, unsigned long addr) 223 { 224 struct mm_struct *mm = current->mm; 225 struct vm_area_struct *vma; 226 unsigned long text_start; 227 int ret = 0; 228 229 if (mmap_write_lock_killable(mm)) 230 return -EINTR; 231 232 addr = get_unmapped_area(NULL, addr, 233 image->size - image->sym_vvar_start, 0, 0); 234 if (IS_ERR_VALUE(addr)) { 235 ret = addr; 236 goto up_fail; 237 } 238 239 text_start = addr - image->sym_vvar_start; 240 241 /* 242 * MAYWRITE to allow gdb to COW and set breakpoints 243 */ 244 vma = _install_special_mapping(mm, 245 text_start, 246 image->size, 247 VM_READ|VM_EXEC| 248 VM_MAYREAD|VM_MAYWRITE|VM_MAYEXEC, 249 &vdso_mapping); 250 251 if (IS_ERR(vma)) { 252 ret = PTR_ERR(vma); 253 goto up_fail; 254 } 255 256 vma = _install_special_mapping(mm, 257 addr, 258 -image->sym_vvar_start, 259 VM_READ|VM_MAYREAD|VM_IO|VM_DONTDUMP| 260 VM_PFNMAP, 261 &vvar_mapping); 262 263 if (IS_ERR(vma)) { 264 ret = PTR_ERR(vma); 265 do_munmap(mm, text_start, image->size, NULL); 266 } else { 267 current->mm->context.vdso = (void __user *)text_start; 268 current->mm->context.vdso_image = image; 269 } 270 271 up_fail: 272 mmap_write_unlock(mm); 273 return ret; 274 } 275 276 #ifdef CONFIG_X86_64 277 /* 278 * Put the vdso above the (randomized) stack with another randomized 279 * offset. This way there is no hole in the middle of address space. 280 * To save memory make sure it is still in the same PTE as the stack 281 * top. This doesn't give that many random bits. 282 * 283 * Note that this algorithm is imperfect: the distribution of the vdso 284 * start address within a PMD is biased toward the end. 285 * 286 * Only used for the 64-bit and x32 vdsos. 287 */ 288 static unsigned long vdso_addr(unsigned long start, unsigned len) 289 { 290 unsigned long addr, end; 291 unsigned offset; 292 293 /* 294 * Round up the start address. It can start out unaligned as a result 295 * of stack start randomization. 296 */ 297 start = PAGE_ALIGN(start); 298 299 /* Round the lowest possible end address up to a PMD boundary. */ 300 end = (start + len + PMD_SIZE - 1) & PMD_MASK; 301 if (end >= TASK_SIZE_MAX) 302 end = TASK_SIZE_MAX; 303 end -= len; 304 305 if (end > start) { 306 offset = get_random_u32_below(((end - start) >> PAGE_SHIFT) + 1); 307 addr = start + (offset << PAGE_SHIFT); 308 } else { 309 addr = start; 310 } 311 312 /* 313 * Forcibly align the final address in case we have a hardware 314 * issue that requires alignment for performance reasons. 315 */ 316 addr = align_vdso_addr(addr); 317 318 return addr; 319 } 320 321 static int map_vdso_randomized(const struct vdso_image *image) 322 { 323 unsigned long addr = vdso_addr(current->mm->start_stack, image->size-image->sym_vvar_start); 324 325 return map_vdso(image, addr); 326 } 327 #endif 328 329 int map_vdso_once(const struct vdso_image *image, unsigned long addr) 330 { 331 struct mm_struct *mm = current->mm; 332 struct vm_area_struct *vma; 333 VMA_ITERATOR(vmi, mm, 0); 334 335 mmap_write_lock(mm); 336 /* 337 * Check if we have already mapped vdso blob - fail to prevent 338 * abusing from userspace install_special_mapping, which may 339 * not do accounting and rlimit right. 340 * We could search vma near context.vdso, but it's a slowpath, 341 * so let's explicitly check all VMAs to be completely sure. 342 */ 343 for_each_vma(vmi, vma) { 344 if (vma_is_special_mapping(vma, &vdso_mapping) || 345 vma_is_special_mapping(vma, &vvar_mapping)) { 346 mmap_write_unlock(mm); 347 return -EEXIST; 348 } 349 } 350 mmap_write_unlock(mm); 351 352 return map_vdso(image, addr); 353 } 354 355 #if defined(CONFIG_X86_32) || defined(CONFIG_IA32_EMULATION) 356 static int load_vdso32(void) 357 { 358 if (vdso32_enabled != 1) /* Other values all mean "disabled" */ 359 return 0; 360 361 return map_vdso(&vdso_image_32, 0); 362 } 363 #endif 364 365 #ifdef CONFIG_X86_64 366 int arch_setup_additional_pages(struct linux_binprm *bprm, int uses_interp) 367 { 368 if (!vdso64_enabled) 369 return 0; 370 371 return map_vdso_randomized(&vdso_image_64); 372 } 373 374 #ifdef CONFIG_COMPAT 375 int compat_arch_setup_additional_pages(struct linux_binprm *bprm, 376 int uses_interp, bool x32) 377 { 378 #ifdef CONFIG_X86_X32_ABI 379 if (x32) { 380 if (!vdso64_enabled) 381 return 0; 382 return map_vdso_randomized(&vdso_image_x32); 383 } 384 #endif 385 #ifdef CONFIG_IA32_EMULATION 386 return load_vdso32(); 387 #else 388 return 0; 389 #endif 390 } 391 #endif 392 #else 393 int arch_setup_additional_pages(struct linux_binprm *bprm, int uses_interp) 394 { 395 return load_vdso32(); 396 } 397 #endif 398 399 bool arch_syscall_is_vdso_sigreturn(struct pt_regs *regs) 400 { 401 #if defined(CONFIG_X86_32) || defined(CONFIG_IA32_EMULATION) 402 const struct vdso_image *image = current->mm->context.vdso_image; 403 unsigned long vdso = (unsigned long) current->mm->context.vdso; 404 405 if (in_ia32_syscall() && image == &vdso_image_32) { 406 if (regs->ip == vdso + image->sym_vdso32_sigreturn_landing_pad || 407 regs->ip == vdso + image->sym_vdso32_rt_sigreturn_landing_pad) 408 return true; 409 } 410 #endif 411 return false; 412 } 413 414 #ifdef CONFIG_X86_64 415 static __init int vdso_setup(char *s) 416 { 417 vdso64_enabled = simple_strtoul(s, NULL, 0); 418 return 1; 419 } 420 __setup("vdso=", vdso_setup); 421 422 static int __init init_vdso(void) 423 { 424 BUILD_BUG_ON(VDSO_CLOCKMODE_MAX >= 32); 425 426 init_vdso_image(&vdso_image_64); 427 428 #ifdef CONFIG_X86_X32_ABI 429 init_vdso_image(&vdso_image_x32); 430 #endif 431 432 return 0; 433 } 434 subsys_initcall(init_vdso); 435 #endif /* CONFIG_X86_64 */ 436