xref: /linux/arch/x86/entry/entry_64_compat.S (revision 173b0b5b0e865348684c02bd9cb1d22b5d46e458)
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * Compatibility mode system call entry point for x86-64.
4 *
5 * Copyright 2000-2002 Andi Kleen, SuSE Labs.
6 */
7#include <asm/asm-offsets.h>
8#include <asm/current.h>
9#include <asm/errno.h>
10#include <asm/ia32_unistd.h>
11#include <asm/thread_info.h>
12#include <asm/segment.h>
13#include <asm/irqflags.h>
14#include <asm/asm.h>
15#include <asm/smap.h>
16#include <asm/nospec-branch.h>
17#include <linux/linkage.h>
18#include <linux/err.h>
19
20#include "calling.h"
21
22	.section .entry.text, "ax"
23
24/*
25 * 32-bit SYSENTER entry.
26 *
27 * 32-bit system calls through the vDSO's __kernel_vsyscall enter here
28 * on 64-bit kernels running on Intel CPUs.
29 *
30 * The SYSENTER instruction, in principle, should *only* occur in the
31 * vDSO.  In practice, a small number of Android devices were shipped
32 * with a copy of Bionic that inlined a SYSENTER instruction.  This
33 * never happened in any of Google's Bionic versions -- it only happened
34 * in a narrow range of Intel-provided versions.
35 *
36 * SYSENTER loads SS, RSP, CS, and RIP from previously programmed MSRs.
37 * IF and VM in RFLAGS are cleared (IOW: interrupts are off).
38 * SYSENTER does not save anything on the stack,
39 * and does not save old RIP (!!!), RSP, or RFLAGS.
40 *
41 * Arguments:
42 * eax  system call number
43 * ebx  arg1
44 * ecx  arg2
45 * edx  arg3
46 * esi  arg4
47 * edi  arg5
48 * ebp  user stack
49 * 0(%ebp) arg6
50 */
51SYM_CODE_START(entry_SYSENTER_compat)
52	UNWIND_HINT_ENTRY
53	ENDBR
54	/* Interrupts are off on entry. */
55	swapgs
56
57	pushq	%rax
58	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
59	popq	%rax
60
61	movq	PER_CPU_VAR(pcpu_hot + X86_top_of_stack), %rsp
62
63	/* Construct struct pt_regs on stack */
64	pushq	$__USER_DS		/* pt_regs->ss */
65	pushq	$0			/* pt_regs->sp = 0 (placeholder) */
66
67	/*
68	 * Push flags.  This is nasty.  First, interrupts are currently
69	 * off, but we need pt_regs->flags to have IF set.  Second, if TS
70	 * was set in usermode, it's still set, and we're singlestepping
71	 * through this code.  do_SYSENTER_32() will fix up IF.
72	 */
73	pushfq				/* pt_regs->flags (except IF = 0) */
74	pushq	$__USER32_CS		/* pt_regs->cs */
75	pushq	$0			/* pt_regs->ip = 0 (placeholder) */
76SYM_INNER_LABEL(entry_SYSENTER_compat_after_hwframe, SYM_L_GLOBAL)
77
78	/*
79	 * User tracing code (ptrace or signal handlers) might assume that
80	 * the saved RAX contains a 32-bit number when we're invoking a 32-bit
81	 * syscall.  Just in case the high bits are nonzero, zero-extend
82	 * the syscall number.  (This could almost certainly be deleted
83	 * with no ill effects.)
84	 */
85	movl	%eax, %eax
86
87	pushq	%rax			/* pt_regs->orig_ax */
88	PUSH_AND_CLEAR_REGS rax=$-ENOSYS
89	UNWIND_HINT_REGS
90
91	cld
92
93	IBRS_ENTER
94	UNTRAIN_RET
95	CLEAR_BRANCH_HISTORY
96
97	/*
98	 * SYSENTER doesn't filter flags, so we need to clear NT and AC
99	 * ourselves.  To save a few cycles, we can check whether
100	 * either was set instead of doing an unconditional popfq.
101	 * This needs to happen before enabling interrupts so that
102	 * we don't get preempted with NT set.
103	 *
104	 * If TF is set, we will single-step all the way to here -- do_debug
105	 * will ignore all the traps.  (Yes, this is slow, but so is
106	 * single-stepping in general.  This allows us to avoid having
107	 * a more complicated code to handle the case where a user program
108	 * forces us to single-step through the SYSENTER entry code.)
109	 *
110	 * NB.: .Lsysenter_fix_flags is a label with the code under it moved
111	 * out-of-line as an optimization: NT is unlikely to be set in the
112	 * majority of the cases and instead of polluting the I$ unnecessarily,
113	 * we're keeping that code behind a branch which will predict as
114	 * not-taken and therefore its instructions won't be fetched.
115	 */
116	testl	$X86_EFLAGS_NT|X86_EFLAGS_AC|X86_EFLAGS_TF, EFLAGS(%rsp)
117	jnz	.Lsysenter_fix_flags
118.Lsysenter_flags_fixed:
119
120	movq	%rsp, %rdi
121	call	do_SYSENTER_32
122	jmp	sysret32_from_system_call
123
124.Lsysenter_fix_flags:
125	pushq	$X86_EFLAGS_FIXED
126	popfq
127	jmp	.Lsysenter_flags_fixed
128SYM_INNER_LABEL(__end_entry_SYSENTER_compat, SYM_L_GLOBAL)
129SYM_CODE_END(entry_SYSENTER_compat)
130
131/*
132 * 32-bit SYSCALL entry.
133 *
134 * 32-bit system calls through the vDSO's __kernel_vsyscall enter here
135 * on 64-bit kernels running on AMD CPUs.
136 *
137 * The SYSCALL instruction, in principle, should *only* occur in the
138 * vDSO.  In practice, it appears that this really is the case.
139 * As evidence:
140 *
141 *  - The calling convention for SYSCALL has changed several times without
142 *    anyone noticing.
143 *
144 *  - Prior to the in-kernel X86_BUG_SYSRET_SS_ATTRS fixup, anything
145 *    user task that did SYSCALL without immediately reloading SS
146 *    would randomly crash.
147 *
148 *  - Most programmers do not directly target AMD CPUs, and the 32-bit
149 *    SYSCALL instruction does not exist on Intel CPUs.  Even on AMD
150 *    CPUs, Linux disables the SYSCALL instruction on 32-bit kernels
151 *    because the SYSCALL instruction in legacy/native 32-bit mode (as
152 *    opposed to compat mode) is sufficiently poorly designed as to be
153 *    essentially unusable.
154 *
155 * 32-bit SYSCALL saves RIP to RCX, clears RFLAGS.RF, then saves
156 * RFLAGS to R11, then loads new SS, CS, and RIP from previously
157 * programmed MSRs.  RFLAGS gets masked by a value from another MSR
158 * (so CLD and CLAC are not needed).  SYSCALL does not save anything on
159 * the stack and does not change RSP.
160 *
161 * Note: RFLAGS saving+masking-with-MSR happens only in Long mode
162 * (in legacy 32-bit mode, IF, RF and VM bits are cleared and that's it).
163 * Don't get confused: RFLAGS saving+masking depends on Long Mode Active bit
164 * (EFER.LMA=1), NOT on bitness of userspace where SYSCALL executes
165 * or target CS descriptor's L bit (SYSCALL does not read segment descriptors).
166 *
167 * Arguments:
168 * eax  system call number
169 * ecx  return address
170 * ebx  arg1
171 * ebp  arg2	(note: not saved in the stack frame, should not be touched)
172 * edx  arg3
173 * esi  arg4
174 * edi  arg5
175 * esp  user stack
176 * 0(%esp) arg6
177 */
178SYM_CODE_START(entry_SYSCALL_compat)
179	UNWIND_HINT_ENTRY
180	ENDBR
181	/* Interrupts are off on entry. */
182	swapgs
183
184	/* Stash user ESP */
185	movl	%esp, %r8d
186
187	/* Use %rsp as scratch reg. User ESP is stashed in r8 */
188	SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp
189
190	/* Switch to the kernel stack */
191	movq	PER_CPU_VAR(pcpu_hot + X86_top_of_stack), %rsp
192
193SYM_INNER_LABEL(entry_SYSCALL_compat_safe_stack, SYM_L_GLOBAL)
194	ANNOTATE_NOENDBR
195
196	/* Construct struct pt_regs on stack */
197	pushq	$__USER_DS		/* pt_regs->ss */
198	pushq	%r8			/* pt_regs->sp */
199	pushq	%r11			/* pt_regs->flags */
200	pushq	$__USER32_CS		/* pt_regs->cs */
201	pushq	%rcx			/* pt_regs->ip */
202SYM_INNER_LABEL(entry_SYSCALL_compat_after_hwframe, SYM_L_GLOBAL)
203	movl	%eax, %eax		/* discard orig_ax high bits */
204	pushq	%rax			/* pt_regs->orig_ax */
205	PUSH_AND_CLEAR_REGS rcx=%rbp rax=$-ENOSYS
206	UNWIND_HINT_REGS
207
208	IBRS_ENTER
209	UNTRAIN_RET
210	CLEAR_BRANCH_HISTORY
211
212	movq	%rsp, %rdi
213	call	do_fast_syscall_32
214
215sysret32_from_system_call:
216	/* XEN PV guests always use IRET path */
217	ALTERNATIVE "testb %al, %al; jz swapgs_restore_regs_and_return_to_usermode", \
218		    "jmp swapgs_restore_regs_and_return_to_usermode", X86_FEATURE_XENPV
219
220	/*
221	 * Opportunistic SYSRET
222	 *
223	 * We are not going to return to userspace from the trampoline
224	 * stack. So let's erase the thread stack right now.
225	 */
226	STACKLEAK_ERASE
227
228	IBRS_EXIT
229
230	movq	RBX(%rsp), %rbx		/* pt_regs->rbx */
231	movq	RBP(%rsp), %rbp		/* pt_regs->rbp */
232	movq	EFLAGS(%rsp), %r11	/* pt_regs->flags (in r11) */
233	movq	RIP(%rsp), %rcx		/* pt_regs->ip (in rcx) */
234	addq	$RAX, %rsp		/* Skip r8-r15 */
235	popq	%rax			/* pt_regs->rax */
236	popq	%rdx			/* Skip pt_regs->cx */
237	popq	%rdx			/* pt_regs->dx */
238	popq	%rsi			/* pt_regs->si */
239	popq	%rdi			/* pt_regs->di */
240
241        /*
242         * USERGS_SYSRET32 does:
243         *  GSBASE = user's GS base
244         *  EIP = ECX
245         *  RFLAGS = R11
246         *  CS = __USER32_CS
247         *  SS = __USER_DS
248         *
249	 * ECX will not match pt_regs->cx, but we're returning to a vDSO
250	 * trampoline that will fix up RCX, so this is okay.
251	 *
252	 * R12-R15 are callee-saved, so they contain whatever was in them
253	 * when the system call started, which is already known to user
254	 * code.  We zero R8-R10 to avoid info leaks.
255         */
256	movq	RSP-ORIG_RAX(%rsp), %rsp
257SYM_INNER_LABEL(entry_SYSRETL_compat_unsafe_stack, SYM_L_GLOBAL)
258	ANNOTATE_NOENDBR
259
260	/*
261	 * The original userspace %rsp (RSP-ORIG_RAX(%rsp)) is stored
262	 * on the process stack which is not mapped to userspace and
263	 * not readable after we SWITCH_TO_USER_CR3.  Delay the CR3
264	 * switch until after after the last reference to the process
265	 * stack.
266	 *
267	 * %r8/%r9 are zeroed before the sysret, thus safe to clobber.
268	 */
269	SWITCH_TO_USER_CR3_NOSTACK scratch_reg=%r8 scratch_reg2=%r9
270
271	xorl	%r8d, %r8d
272	xorl	%r9d, %r9d
273	xorl	%r10d, %r10d
274	swapgs
275	CLEAR_CPU_BUFFERS
276	sysretl
277SYM_INNER_LABEL(entry_SYSRETL_compat_end, SYM_L_GLOBAL)
278	ANNOTATE_NOENDBR
279	int3
280SYM_CODE_END(entry_SYSCALL_compat)
281
282/*
283 * int 0x80 is used by 32 bit mode as a system call entry. Normally idt entries
284 * point to C routines, however since this is a system call interface the branch
285 * history needs to be scrubbed to protect against BHI attacks, and that
286 * scrubbing needs to take place in assembly code prior to entering any C
287 * routines.
288 */
289SYM_CODE_START(int80_emulation)
290	ANNOTATE_NOENDBR
291	UNWIND_HINT_FUNC
292	CLEAR_BRANCH_HISTORY
293	jmp do_int80_emulation
294SYM_CODE_END(int80_emulation)
295