1/* SPDX-License-Identifier: GPL-2.0 */ 2/* 3 * linux/arch/x86_64/entry.S 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * Copyright (C) 2000, 2001, 2002 Andi Kleen SuSE Labs 7 * Copyright (C) 2000 Pavel Machek <pavel@suse.cz> 8 * 9 * entry.S contains the system-call and fault low-level handling routines. 10 * 11 * Some of this is documented in Documentation/x86/entry_64.rst 12 * 13 * A note on terminology: 14 * - iret frame: Architecture defined interrupt frame from SS to RIP 15 * at the top of the kernel process stack. 16 * 17 * Some macro usage: 18 * - SYM_FUNC_START/END:Define functions in the symbol table. 19 * - idtentry: Define exception entry points. 20 */ 21#include <linux/linkage.h> 22#include <asm/segment.h> 23#include <asm/cache.h> 24#include <asm/errno.h> 25#include <asm/asm-offsets.h> 26#include <asm/msr.h> 27#include <asm/unistd.h> 28#include <asm/thread_info.h> 29#include <asm/hw_irq.h> 30#include <asm/page_types.h> 31#include <asm/irqflags.h> 32#include <asm/paravirt.h> 33#include <asm/percpu.h> 34#include <asm/asm.h> 35#include <asm/smap.h> 36#include <asm/pgtable_types.h> 37#include <asm/export.h> 38#include <asm/frame.h> 39#include <asm/trapnr.h> 40#include <asm/nospec-branch.h> 41#include <linux/err.h> 42 43#include "calling.h" 44 45.code64 46.section .entry.text, "ax" 47 48#ifdef CONFIG_PARAVIRT 49SYM_CODE_START(native_usergs_sysret64) 50 UNWIND_HINT_EMPTY 51 swapgs 52 sysretq 53SYM_CODE_END(native_usergs_sysret64) 54#endif /* CONFIG_PARAVIRT */ 55 56/* 57 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers. 58 * 59 * This is the only entry point used for 64-bit system calls. The 60 * hardware interface is reasonably well designed and the register to 61 * argument mapping Linux uses fits well with the registers that are 62 * available when SYSCALL is used. 63 * 64 * SYSCALL instructions can be found inlined in libc implementations as 65 * well as some other programs and libraries. There are also a handful 66 * of SYSCALL instructions in the vDSO used, for example, as a 67 * clock_gettimeofday fallback. 68 * 69 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11, 70 * then loads new ss, cs, and rip from previously programmed MSRs. 71 * rflags gets masked by a value from another MSR (so CLD and CLAC 72 * are not needed). SYSCALL does not save anything on the stack 73 * and does not change rsp. 74 * 75 * Registers on entry: 76 * rax system call number 77 * rcx return address 78 * r11 saved rflags (note: r11 is callee-clobbered register in C ABI) 79 * rdi arg0 80 * rsi arg1 81 * rdx arg2 82 * r10 arg3 (needs to be moved to rcx to conform to C ABI) 83 * r8 arg4 84 * r9 arg5 85 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI) 86 * 87 * Only called from user space. 88 * 89 * When user can change pt_regs->foo always force IRET. That is because 90 * it deals with uncanonical addresses better. SYSRET has trouble 91 * with them due to bugs in both AMD and Intel CPUs. 92 */ 93 94SYM_CODE_START(entry_SYSCALL_64) 95 UNWIND_HINT_EMPTY 96 97 swapgs 98 /* tss.sp2 is scratch space. */ 99 movq %rsp, PER_CPU_VAR(cpu_tss_rw + TSS_sp2) 100 SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp 101 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp 102 103 /* Construct struct pt_regs on stack */ 104 pushq $__USER_DS /* pt_regs->ss */ 105 pushq PER_CPU_VAR(cpu_tss_rw + TSS_sp2) /* pt_regs->sp */ 106 pushq %r11 /* pt_regs->flags */ 107 pushq $__USER_CS /* pt_regs->cs */ 108 pushq %rcx /* pt_regs->ip */ 109SYM_INNER_LABEL(entry_SYSCALL_64_after_hwframe, SYM_L_GLOBAL) 110 pushq %rax /* pt_regs->orig_ax */ 111 112 PUSH_AND_CLEAR_REGS rax=$-ENOSYS 113 114 /* IRQs are off. */ 115 movq %rax, %rdi 116 movq %rsp, %rsi 117 call do_syscall_64 /* returns with IRQs disabled */ 118 119 /* 120 * Try to use SYSRET instead of IRET if we're returning to 121 * a completely clean 64-bit userspace context. If we're not, 122 * go to the slow exit path. 123 */ 124 movq RCX(%rsp), %rcx 125 movq RIP(%rsp), %r11 126 127 cmpq %rcx, %r11 /* SYSRET requires RCX == RIP */ 128 jne swapgs_restore_regs_and_return_to_usermode 129 130 /* 131 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP 132 * in kernel space. This essentially lets the user take over 133 * the kernel, since userspace controls RSP. 134 * 135 * If width of "canonical tail" ever becomes variable, this will need 136 * to be updated to remain correct on both old and new CPUs. 137 * 138 * Change top bits to match most significant bit (47th or 56th bit 139 * depending on paging mode) in the address. 140 */ 141#ifdef CONFIG_X86_5LEVEL 142 ALTERNATIVE "shl $(64 - 48), %rcx; sar $(64 - 48), %rcx", \ 143 "shl $(64 - 57), %rcx; sar $(64 - 57), %rcx", X86_FEATURE_LA57 144#else 145 shl $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx 146 sar $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx 147#endif 148 149 /* If this changed %rcx, it was not canonical */ 150 cmpq %rcx, %r11 151 jne swapgs_restore_regs_and_return_to_usermode 152 153 cmpq $__USER_CS, CS(%rsp) /* CS must match SYSRET */ 154 jne swapgs_restore_regs_and_return_to_usermode 155 156 movq R11(%rsp), %r11 157 cmpq %r11, EFLAGS(%rsp) /* R11 == RFLAGS */ 158 jne swapgs_restore_regs_and_return_to_usermode 159 160 /* 161 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot 162 * restore RF properly. If the slowpath sets it for whatever reason, we 163 * need to restore it correctly. 164 * 165 * SYSRET can restore TF, but unlike IRET, restoring TF results in a 166 * trap from userspace immediately after SYSRET. This would cause an 167 * infinite loop whenever #DB happens with register state that satisfies 168 * the opportunistic SYSRET conditions. For example, single-stepping 169 * this user code: 170 * 171 * movq $stuck_here, %rcx 172 * pushfq 173 * popq %r11 174 * stuck_here: 175 * 176 * would never get past 'stuck_here'. 177 */ 178 testq $(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11 179 jnz swapgs_restore_regs_and_return_to_usermode 180 181 /* nothing to check for RSP */ 182 183 cmpq $__USER_DS, SS(%rsp) /* SS must match SYSRET */ 184 jne swapgs_restore_regs_and_return_to_usermode 185 186 /* 187 * We win! This label is here just for ease of understanding 188 * perf profiles. Nothing jumps here. 189 */ 190syscall_return_via_sysret: 191 /* rcx and r11 are already restored (see code above) */ 192 POP_REGS pop_rdi=0 skip_r11rcx=1 193 194 /* 195 * Now all regs are restored except RSP and RDI. 196 * Save old stack pointer and switch to trampoline stack. 197 */ 198 movq %rsp, %rdi 199 movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp 200 UNWIND_HINT_EMPTY 201 202 pushq RSP-RDI(%rdi) /* RSP */ 203 pushq (%rdi) /* RDI */ 204 205 /* 206 * We are on the trampoline stack. All regs except RDI are live. 207 * We can do future final exit work right here. 208 */ 209 STACKLEAK_ERASE_NOCLOBBER 210 211 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi 212 213 popq %rdi 214 popq %rsp 215 USERGS_SYSRET64 216SYM_CODE_END(entry_SYSCALL_64) 217 218/* 219 * %rdi: prev task 220 * %rsi: next task 221 */ 222.pushsection .text, "ax" 223SYM_FUNC_START(__switch_to_asm) 224 /* 225 * Save callee-saved registers 226 * This must match the order in inactive_task_frame 227 */ 228 pushq %rbp 229 pushq %rbx 230 pushq %r12 231 pushq %r13 232 pushq %r14 233 pushq %r15 234 235 /* switch stack */ 236 movq %rsp, TASK_threadsp(%rdi) 237 movq TASK_threadsp(%rsi), %rsp 238 239#ifdef CONFIG_STACKPROTECTOR 240 movq TASK_stack_canary(%rsi), %rbx 241 movq %rbx, PER_CPU_VAR(fixed_percpu_data) + stack_canary_offset 242#endif 243 244#ifdef CONFIG_RETPOLINE 245 /* 246 * When switching from a shallower to a deeper call stack 247 * the RSB may either underflow or use entries populated 248 * with userspace addresses. On CPUs where those concerns 249 * exist, overwrite the RSB with entries which capture 250 * speculative execution to prevent attack. 251 */ 252 FILL_RETURN_BUFFER %r12, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW 253#endif 254 255 /* restore callee-saved registers */ 256 popq %r15 257 popq %r14 258 popq %r13 259 popq %r12 260 popq %rbx 261 popq %rbp 262 263 jmp __switch_to 264SYM_FUNC_END(__switch_to_asm) 265.popsection 266 267/* 268 * A newly forked process directly context switches into this address. 269 * 270 * rax: prev task we switched from 271 * rbx: kernel thread func (NULL for user thread) 272 * r12: kernel thread arg 273 */ 274.pushsection .text, "ax" 275SYM_CODE_START(ret_from_fork) 276 UNWIND_HINT_EMPTY 277 movq %rax, %rdi 278 call schedule_tail /* rdi: 'prev' task parameter */ 279 280 testq %rbx, %rbx /* from kernel_thread? */ 281 jnz 1f /* kernel threads are uncommon */ 282 2832: 284 UNWIND_HINT_REGS 285 movq %rsp, %rdi 286 call syscall_return_slowpath /* returns with IRQs disabled */ 287 jmp swapgs_restore_regs_and_return_to_usermode 288 2891: 290 /* kernel thread */ 291 UNWIND_HINT_EMPTY 292 movq %r12, %rdi 293 CALL_NOSPEC rbx 294 /* 295 * A kernel thread is allowed to return here after successfully 296 * calling do_execve(). Exit to userspace to complete the execve() 297 * syscall. 298 */ 299 movq $0, RAX(%rsp) 300 jmp 2b 301SYM_CODE_END(ret_from_fork) 302.popsection 303 304.macro DEBUG_ENTRY_ASSERT_IRQS_OFF 305#ifdef CONFIG_DEBUG_ENTRY 306 pushq %rax 307 SAVE_FLAGS(CLBR_RAX) 308 testl $X86_EFLAGS_IF, %eax 309 jz .Lokay_\@ 310 ud2 311.Lokay_\@: 312 popq %rax 313#endif 314.endm 315 316/** 317 * idtentry_body - Macro to emit code calling the C function 318 * @cfunc: C function to be called 319 * @has_error_code: Hardware pushed error code on stack 320 */ 321.macro idtentry_body cfunc has_error_code:req 322 323 call error_entry 324 UNWIND_HINT_REGS 325 326 movq %rsp, %rdi /* pt_regs pointer into 1st argument*/ 327 328 .if \has_error_code == 1 329 movq ORIG_RAX(%rsp), %rsi /* get error code into 2nd argument*/ 330 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */ 331 .endif 332 333 call \cfunc 334 335 jmp error_return 336.endm 337 338/** 339 * idtentry - Macro to generate entry stubs for simple IDT entries 340 * @vector: Vector number 341 * @asmsym: ASM symbol for the entry point 342 * @cfunc: C function to be called 343 * @has_error_code: Hardware pushed error code on stack 344 * 345 * The macro emits code to set up the kernel context for straight forward 346 * and simple IDT entries. No IST stack, no paranoid entry checks. 347 */ 348.macro idtentry vector asmsym cfunc has_error_code:req 349SYM_CODE_START(\asmsym) 350 UNWIND_HINT_IRET_REGS offset=\has_error_code*8 351 ASM_CLAC 352 353 .if \has_error_code == 0 354 pushq $-1 /* ORIG_RAX: no syscall to restart */ 355 .endif 356 357 .if \vector == X86_TRAP_BP 358 /* 359 * If coming from kernel space, create a 6-word gap to allow the 360 * int3 handler to emulate a call instruction. 361 */ 362 testb $3, CS-ORIG_RAX(%rsp) 363 jnz .Lfrom_usermode_no_gap_\@ 364 .rept 6 365 pushq 5*8(%rsp) 366 .endr 367 UNWIND_HINT_IRET_REGS offset=8 368.Lfrom_usermode_no_gap_\@: 369 .endif 370 371 idtentry_body \cfunc \has_error_code 372 373_ASM_NOKPROBE(\asmsym) 374SYM_CODE_END(\asmsym) 375.endm 376 377/* 378 * Interrupt entry/exit. 379 * 380 + The interrupt stubs push (vector) onto the stack, which is the error_code 381 * position of idtentry exceptions, and jump to one of the two idtentry points 382 * (common/spurious). 383 * 384 * common_interrupt is a hotpath, align it to a cache line 385 */ 386.macro idtentry_irq vector cfunc 387 .p2align CONFIG_X86_L1_CACHE_SHIFT 388 idtentry \vector asm_\cfunc \cfunc has_error_code=1 389.endm 390 391/* 392 * System vectors which invoke their handlers directly and are not 393 * going through the regular common device interrupt handling code. 394 */ 395.macro idtentry_sysvec vector cfunc 396 idtentry \vector asm_\cfunc \cfunc has_error_code=0 397.endm 398 399/** 400 * idtentry_mce_db - Macro to generate entry stubs for #MC and #DB 401 * @vector: Vector number 402 * @asmsym: ASM symbol for the entry point 403 * @cfunc: C function to be called 404 * 405 * The macro emits code to set up the kernel context for #MC and #DB 406 * 407 * If the entry comes from user space it uses the normal entry path 408 * including the return to user space work and preemption checks on 409 * exit. 410 * 411 * If hits in kernel mode then it needs to go through the paranoid 412 * entry as the exception can hit any random state. No preemption 413 * check on exit to keep the paranoid path simple. 414 */ 415.macro idtentry_mce_db vector asmsym cfunc 416SYM_CODE_START(\asmsym) 417 UNWIND_HINT_IRET_REGS 418 ASM_CLAC 419 420 pushq $-1 /* ORIG_RAX: no syscall to restart */ 421 422 /* 423 * If the entry is from userspace, switch stacks and treat it as 424 * a normal entry. 425 */ 426 testb $3, CS-ORIG_RAX(%rsp) 427 jnz .Lfrom_usermode_switch_stack_\@ 428 429 /* 430 * paranoid_entry returns SWAPGS flag for paranoid_exit in EBX. 431 * EBX == 0 -> SWAPGS, EBX == 1 -> no SWAPGS 432 */ 433 call paranoid_entry 434 435 UNWIND_HINT_REGS 436 437 movq %rsp, %rdi /* pt_regs pointer */ 438 439 call \cfunc 440 441 jmp paranoid_exit 442 443 /* Switch to the regular task stack and use the noist entry point */ 444.Lfrom_usermode_switch_stack_\@: 445 idtentry_body noist_\cfunc, has_error_code=0 446 447_ASM_NOKPROBE(\asmsym) 448SYM_CODE_END(\asmsym) 449.endm 450 451/* 452 * Double fault entry. Straight paranoid. No checks from which context 453 * this comes because for the espfix induced #DF this would do the wrong 454 * thing. 455 */ 456.macro idtentry_df vector asmsym cfunc 457SYM_CODE_START(\asmsym) 458 UNWIND_HINT_IRET_REGS offset=8 459 ASM_CLAC 460 461 /* 462 * paranoid_entry returns SWAPGS flag for paranoid_exit in EBX. 463 * EBX == 0 -> SWAPGS, EBX == 1 -> no SWAPGS 464 */ 465 call paranoid_entry 466 UNWIND_HINT_REGS 467 468 movq %rsp, %rdi /* pt_regs pointer into first argument */ 469 movq ORIG_RAX(%rsp), %rsi /* get error code into 2nd argument*/ 470 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */ 471 call \cfunc 472 473 jmp paranoid_exit 474 475_ASM_NOKPROBE(\asmsym) 476SYM_CODE_END(\asmsym) 477.endm 478 479/* 480 * Include the defines which emit the idt entries which are shared 481 * shared between 32 and 64 bit. 482 */ 483#include <asm/idtentry.h> 484 485SYM_CODE_START_LOCAL(common_interrupt_return) 486SYM_INNER_LABEL(swapgs_restore_regs_and_return_to_usermode, SYM_L_GLOBAL) 487#ifdef CONFIG_DEBUG_ENTRY 488 /* Assert that pt_regs indicates user mode. */ 489 testb $3, CS(%rsp) 490 jnz 1f 491 ud2 4921: 493#endif 494 POP_REGS pop_rdi=0 495 496 /* 497 * The stack is now user RDI, orig_ax, RIP, CS, EFLAGS, RSP, SS. 498 * Save old stack pointer and switch to trampoline stack. 499 */ 500 movq %rsp, %rdi 501 movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp 502 UNWIND_HINT_EMPTY 503 504 /* Copy the IRET frame to the trampoline stack. */ 505 pushq 6*8(%rdi) /* SS */ 506 pushq 5*8(%rdi) /* RSP */ 507 pushq 4*8(%rdi) /* EFLAGS */ 508 pushq 3*8(%rdi) /* CS */ 509 pushq 2*8(%rdi) /* RIP */ 510 511 /* Push user RDI on the trampoline stack. */ 512 pushq (%rdi) 513 514 /* 515 * We are on the trampoline stack. All regs except RDI are live. 516 * We can do future final exit work right here. 517 */ 518 STACKLEAK_ERASE_NOCLOBBER 519 520 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi 521 522 /* Restore RDI. */ 523 popq %rdi 524 SWAPGS 525 INTERRUPT_RETURN 526 527 528SYM_INNER_LABEL(restore_regs_and_return_to_kernel, SYM_L_GLOBAL) 529#ifdef CONFIG_DEBUG_ENTRY 530 /* Assert that pt_regs indicates kernel mode. */ 531 testb $3, CS(%rsp) 532 jz 1f 533 ud2 5341: 535#endif 536 POP_REGS 537 addq $8, %rsp /* skip regs->orig_ax */ 538 /* 539 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization 540 * when returning from IPI handler. 541 */ 542 INTERRUPT_RETURN 543 544SYM_INNER_LABEL_ALIGN(native_iret, SYM_L_GLOBAL) 545 UNWIND_HINT_IRET_REGS 546 /* 547 * Are we returning to a stack segment from the LDT? Note: in 548 * 64-bit mode SS:RSP on the exception stack is always valid. 549 */ 550#ifdef CONFIG_X86_ESPFIX64 551 testb $4, (SS-RIP)(%rsp) 552 jnz native_irq_return_ldt 553#endif 554 555SYM_INNER_LABEL(native_irq_return_iret, SYM_L_GLOBAL) 556 /* 557 * This may fault. Non-paranoid faults on return to userspace are 558 * handled by fixup_bad_iret. These include #SS, #GP, and #NP. 559 * Double-faults due to espfix64 are handled in exc_double_fault. 560 * Other faults here are fatal. 561 */ 562 iretq 563 564#ifdef CONFIG_X86_ESPFIX64 565native_irq_return_ldt: 566 /* 567 * We are running with user GSBASE. All GPRs contain their user 568 * values. We have a percpu ESPFIX stack that is eight slots 569 * long (see ESPFIX_STACK_SIZE). espfix_waddr points to the bottom 570 * of the ESPFIX stack. 571 * 572 * We clobber RAX and RDI in this code. We stash RDI on the 573 * normal stack and RAX on the ESPFIX stack. 574 * 575 * The ESPFIX stack layout we set up looks like this: 576 * 577 * --- top of ESPFIX stack --- 578 * SS 579 * RSP 580 * RFLAGS 581 * CS 582 * RIP <-- RSP points here when we're done 583 * RAX <-- espfix_waddr points here 584 * --- bottom of ESPFIX stack --- 585 */ 586 587 pushq %rdi /* Stash user RDI */ 588 SWAPGS /* to kernel GS */ 589 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi /* to kernel CR3 */ 590 591 movq PER_CPU_VAR(espfix_waddr), %rdi 592 movq %rax, (0*8)(%rdi) /* user RAX */ 593 movq (1*8)(%rsp), %rax /* user RIP */ 594 movq %rax, (1*8)(%rdi) 595 movq (2*8)(%rsp), %rax /* user CS */ 596 movq %rax, (2*8)(%rdi) 597 movq (3*8)(%rsp), %rax /* user RFLAGS */ 598 movq %rax, (3*8)(%rdi) 599 movq (5*8)(%rsp), %rax /* user SS */ 600 movq %rax, (5*8)(%rdi) 601 movq (4*8)(%rsp), %rax /* user RSP */ 602 movq %rax, (4*8)(%rdi) 603 /* Now RAX == RSP. */ 604 605 andl $0xffff0000, %eax /* RAX = (RSP & 0xffff0000) */ 606 607 /* 608 * espfix_stack[31:16] == 0. The page tables are set up such that 609 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of 610 * espfix_waddr for any X. That is, there are 65536 RO aliases of 611 * the same page. Set up RSP so that RSP[31:16] contains the 612 * respective 16 bits of the /userspace/ RSP and RSP nonetheless 613 * still points to an RO alias of the ESPFIX stack. 614 */ 615 orq PER_CPU_VAR(espfix_stack), %rax 616 617 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi 618 SWAPGS /* to user GS */ 619 popq %rdi /* Restore user RDI */ 620 621 movq %rax, %rsp 622 UNWIND_HINT_IRET_REGS offset=8 623 624 /* 625 * At this point, we cannot write to the stack any more, but we can 626 * still read. 627 */ 628 popq %rax /* Restore user RAX */ 629 630 /* 631 * RSP now points to an ordinary IRET frame, except that the page 632 * is read-only and RSP[31:16] are preloaded with the userspace 633 * values. We can now IRET back to userspace. 634 */ 635 jmp native_irq_return_iret 636#endif 637SYM_CODE_END(common_interrupt_return) 638_ASM_NOKPROBE(common_interrupt_return) 639 640/* 641 * Reload gs selector with exception handling 642 * edi: new selector 643 * 644 * Is in entry.text as it shouldn't be instrumented. 645 */ 646SYM_FUNC_START(asm_load_gs_index) 647 FRAME_BEGIN 648 swapgs 649.Lgs_change: 650 movl %edi, %gs 6512: ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE 652 swapgs 653 FRAME_END 654 ret 655SYM_FUNC_END(asm_load_gs_index) 656EXPORT_SYMBOL(asm_load_gs_index) 657 658 _ASM_EXTABLE(.Lgs_change, .Lbad_gs) 659 .section .fixup, "ax" 660 /* running with kernelgs */ 661SYM_CODE_START_LOCAL_NOALIGN(.Lbad_gs) 662 swapgs /* switch back to user gs */ 663.macro ZAP_GS 664 /* This can't be a string because the preprocessor needs to see it. */ 665 movl $__USER_DS, %eax 666 movl %eax, %gs 667.endm 668 ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG 669 xorl %eax, %eax 670 movl %eax, %gs 671 jmp 2b 672SYM_CODE_END(.Lbad_gs) 673 .previous 674 675/* 676 * rdi: New stack pointer points to the top word of the stack 677 * rsi: Function pointer 678 * rdx: Function argument (can be NULL if none) 679 */ 680SYM_FUNC_START(asm_call_on_stack) 681 /* 682 * Save the frame pointer unconditionally. This allows the ORC 683 * unwinder to handle the stack switch. 684 */ 685 pushq %rbp 686 mov %rsp, %rbp 687 688 /* 689 * The unwinder relies on the word at the top of the new stack 690 * page linking back to the previous RSP. 691 */ 692 mov %rsp, (%rdi) 693 mov %rdi, %rsp 694 /* Move the argument to the right place */ 695 mov %rdx, %rdi 696 6971: 698 .pushsection .discard.instr_begin 699 .long 1b - . 700 .popsection 701 702 CALL_NOSPEC rsi 703 7042: 705 .pushsection .discard.instr_end 706 .long 2b - . 707 .popsection 708 709 /* Restore the previous stack pointer from RBP. */ 710 leaveq 711 ret 712SYM_FUNC_END(asm_call_on_stack) 713 714#ifdef CONFIG_XEN_PV 715/* 716 * A note on the "critical region" in our callback handler. 717 * We want to avoid stacking callback handlers due to events occurring 718 * during handling of the last event. To do this, we keep events disabled 719 * until we've done all processing. HOWEVER, we must enable events before 720 * popping the stack frame (can't be done atomically) and so it would still 721 * be possible to get enough handler activations to overflow the stack. 722 * Although unlikely, bugs of that kind are hard to track down, so we'd 723 * like to avoid the possibility. 724 * So, on entry to the handler we detect whether we interrupted an 725 * existing activation in its critical region -- if so, we pop the current 726 * activation and restart the handler using the previous one. 727 * 728 * C calling convention: exc_xen_hypervisor_callback(struct *pt_regs) 729 */ 730SYM_CODE_START_LOCAL(exc_xen_hypervisor_callback) 731 732/* 733 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will 734 * see the correct pointer to the pt_regs 735 */ 736 UNWIND_HINT_FUNC 737 movq %rdi, %rsp /* we don't return, adjust the stack frame */ 738 UNWIND_HINT_REGS 739 740 call xen_pv_evtchn_do_upcall 741 742 jmp error_return 743SYM_CODE_END(exc_xen_hypervisor_callback) 744 745/* 746 * Hypervisor uses this for application faults while it executes. 747 * We get here for two reasons: 748 * 1. Fault while reloading DS, ES, FS or GS 749 * 2. Fault while executing IRET 750 * Category 1 we do not need to fix up as Xen has already reloaded all segment 751 * registers that could be reloaded and zeroed the others. 752 * Category 2 we fix up by killing the current process. We cannot use the 753 * normal Linux return path in this case because if we use the IRET hypercall 754 * to pop the stack frame we end up in an infinite loop of failsafe callbacks. 755 * We distinguish between categories by comparing each saved segment register 756 * with its current contents: any discrepancy means we in category 1. 757 */ 758SYM_CODE_START(xen_failsafe_callback) 759 UNWIND_HINT_EMPTY 760 movl %ds, %ecx 761 cmpw %cx, 0x10(%rsp) 762 jne 1f 763 movl %es, %ecx 764 cmpw %cx, 0x18(%rsp) 765 jne 1f 766 movl %fs, %ecx 767 cmpw %cx, 0x20(%rsp) 768 jne 1f 769 movl %gs, %ecx 770 cmpw %cx, 0x28(%rsp) 771 jne 1f 772 /* All segments match their saved values => Category 2 (Bad IRET). */ 773 movq (%rsp), %rcx 774 movq 8(%rsp), %r11 775 addq $0x30, %rsp 776 pushq $0 /* RIP */ 777 UNWIND_HINT_IRET_REGS offset=8 778 jmp asm_exc_general_protection 7791: /* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */ 780 movq (%rsp), %rcx 781 movq 8(%rsp), %r11 782 addq $0x30, %rsp 783 UNWIND_HINT_IRET_REGS 784 pushq $-1 /* orig_ax = -1 => not a system call */ 785 PUSH_AND_CLEAR_REGS 786 ENCODE_FRAME_POINTER 787 jmp error_return 788SYM_CODE_END(xen_failsafe_callback) 789#endif /* CONFIG_XEN_PV */ 790 791/* 792 * Save all registers in pt_regs, and switch gs if needed. 793 * Use slow, but surefire "are we in kernel?" check. 794 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise 795 */ 796SYM_CODE_START_LOCAL(paranoid_entry) 797 UNWIND_HINT_FUNC 798 cld 799 PUSH_AND_CLEAR_REGS save_ret=1 800 ENCODE_FRAME_POINTER 8 801 movl $1, %ebx 802 movl $MSR_GS_BASE, %ecx 803 rdmsr 804 testl %edx, %edx 805 js 1f /* negative -> in kernel */ 806 SWAPGS 807 xorl %ebx, %ebx 808 8091: 810 /* 811 * Always stash CR3 in %r14. This value will be restored, 812 * verbatim, at exit. Needed if paranoid_entry interrupted 813 * another entry that already switched to the user CR3 value 814 * but has not yet returned to userspace. 815 * 816 * This is also why CS (stashed in the "iret frame" by the 817 * hardware at entry) can not be used: this may be a return 818 * to kernel code, but with a user CR3 value. 819 */ 820 SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg=%rax save_reg=%r14 821 822 /* 823 * The above SAVE_AND_SWITCH_TO_KERNEL_CR3 macro doesn't do an 824 * unconditional CR3 write, even in the PTI case. So do an lfence 825 * to prevent GS speculation, regardless of whether PTI is enabled. 826 */ 827 FENCE_SWAPGS_KERNEL_ENTRY 828 829 ret 830SYM_CODE_END(paranoid_entry) 831 832/* 833 * "Paranoid" exit path from exception stack. This is invoked 834 * only on return from non-NMI IST interrupts that came 835 * from kernel space. 836 * 837 * We may be returning to very strange contexts (e.g. very early 838 * in syscall entry), so checking for preemption here would 839 * be complicated. Fortunately, we there's no good reason 840 * to try to handle preemption here. 841 * 842 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it) 843 */ 844SYM_CODE_START_LOCAL(paranoid_exit) 845 UNWIND_HINT_REGS 846 testl %ebx, %ebx /* swapgs needed? */ 847 jnz .Lparanoid_exit_no_swapgs 848 /* Always restore stashed CR3 value (see paranoid_entry) */ 849 RESTORE_CR3 scratch_reg=%rbx save_reg=%r14 850 SWAPGS_UNSAFE_STACK 851 jmp restore_regs_and_return_to_kernel 852.Lparanoid_exit_no_swapgs: 853 /* Always restore stashed CR3 value (see paranoid_entry) */ 854 RESTORE_CR3 scratch_reg=%rbx save_reg=%r14 855 jmp restore_regs_and_return_to_kernel 856SYM_CODE_END(paranoid_exit) 857 858/* 859 * Save all registers in pt_regs, and switch GS if needed. 860 */ 861SYM_CODE_START_LOCAL(error_entry) 862 UNWIND_HINT_FUNC 863 cld 864 PUSH_AND_CLEAR_REGS save_ret=1 865 ENCODE_FRAME_POINTER 8 866 testb $3, CS+8(%rsp) 867 jz .Lerror_kernelspace 868 869 /* 870 * We entered from user mode or we're pretending to have entered 871 * from user mode due to an IRET fault. 872 */ 873 SWAPGS 874 FENCE_SWAPGS_USER_ENTRY 875 /* We have user CR3. Change to kernel CR3. */ 876 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax 877 878.Lerror_entry_from_usermode_after_swapgs: 879 /* Put us onto the real thread stack. */ 880 popq %r12 /* save return addr in %12 */ 881 movq %rsp, %rdi /* arg0 = pt_regs pointer */ 882 call sync_regs 883 movq %rax, %rsp /* switch stack */ 884 ENCODE_FRAME_POINTER 885 pushq %r12 886 ret 887 888.Lerror_entry_done_lfence: 889 FENCE_SWAPGS_KERNEL_ENTRY 890.Lerror_entry_done: 891 ret 892 893 /* 894 * There are two places in the kernel that can potentially fault with 895 * usergs. Handle them here. B stepping K8s sometimes report a 896 * truncated RIP for IRET exceptions returning to compat mode. Check 897 * for these here too. 898 */ 899.Lerror_kernelspace: 900 leaq native_irq_return_iret(%rip), %rcx 901 cmpq %rcx, RIP+8(%rsp) 902 je .Lerror_bad_iret 903 movl %ecx, %eax /* zero extend */ 904 cmpq %rax, RIP+8(%rsp) 905 je .Lbstep_iret 906 cmpq $.Lgs_change, RIP+8(%rsp) 907 jne .Lerror_entry_done_lfence 908 909 /* 910 * hack: .Lgs_change can fail with user gsbase. If this happens, fix up 911 * gsbase and proceed. We'll fix up the exception and land in 912 * .Lgs_change's error handler with kernel gsbase. 913 */ 914 SWAPGS 915 FENCE_SWAPGS_USER_ENTRY 916 jmp .Lerror_entry_done 917 918.Lbstep_iret: 919 /* Fix truncated RIP */ 920 movq %rcx, RIP+8(%rsp) 921 /* fall through */ 922 923.Lerror_bad_iret: 924 /* 925 * We came from an IRET to user mode, so we have user 926 * gsbase and CR3. Switch to kernel gsbase and CR3: 927 */ 928 SWAPGS 929 FENCE_SWAPGS_USER_ENTRY 930 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax 931 932 /* 933 * Pretend that the exception came from user mode: set up pt_regs 934 * as if we faulted immediately after IRET. 935 */ 936 mov %rsp, %rdi 937 call fixup_bad_iret 938 mov %rax, %rsp 939 jmp .Lerror_entry_from_usermode_after_swapgs 940SYM_CODE_END(error_entry) 941 942SYM_CODE_START_LOCAL(error_return) 943 UNWIND_HINT_REGS 944 DEBUG_ENTRY_ASSERT_IRQS_OFF 945 testb $3, CS(%rsp) 946 jz restore_regs_and_return_to_kernel 947 jmp swapgs_restore_regs_and_return_to_usermode 948SYM_CODE_END(error_return) 949 950/* 951 * Runs on exception stack. Xen PV does not go through this path at all, 952 * so we can use real assembly here. 953 * 954 * Registers: 955 * %r14: Used to save/restore the CR3 of the interrupted context 956 * when PAGE_TABLE_ISOLATION is in use. Do not clobber. 957 */ 958SYM_CODE_START(asm_exc_nmi) 959 UNWIND_HINT_IRET_REGS 960 961 /* 962 * We allow breakpoints in NMIs. If a breakpoint occurs, then 963 * the iretq it performs will take us out of NMI context. 964 * This means that we can have nested NMIs where the next 965 * NMI is using the top of the stack of the previous NMI. We 966 * can't let it execute because the nested NMI will corrupt the 967 * stack of the previous NMI. NMI handlers are not re-entrant 968 * anyway. 969 * 970 * To handle this case we do the following: 971 * Check the a special location on the stack that contains 972 * a variable that is set when NMIs are executing. 973 * The interrupted task's stack is also checked to see if it 974 * is an NMI stack. 975 * If the variable is not set and the stack is not the NMI 976 * stack then: 977 * o Set the special variable on the stack 978 * o Copy the interrupt frame into an "outermost" location on the 979 * stack 980 * o Copy the interrupt frame into an "iret" location on the stack 981 * o Continue processing the NMI 982 * If the variable is set or the previous stack is the NMI stack: 983 * o Modify the "iret" location to jump to the repeat_nmi 984 * o return back to the first NMI 985 * 986 * Now on exit of the first NMI, we first clear the stack variable 987 * The NMI stack will tell any nested NMIs at that point that it is 988 * nested. Then we pop the stack normally with iret, and if there was 989 * a nested NMI that updated the copy interrupt stack frame, a 990 * jump will be made to the repeat_nmi code that will handle the second 991 * NMI. 992 * 993 * However, espfix prevents us from directly returning to userspace 994 * with a single IRET instruction. Similarly, IRET to user mode 995 * can fault. We therefore handle NMIs from user space like 996 * other IST entries. 997 */ 998 999 ASM_CLAC 1000 1001 /* Use %rdx as our temp variable throughout */ 1002 pushq %rdx 1003 1004 testb $3, CS-RIP+8(%rsp) 1005 jz .Lnmi_from_kernel 1006 1007 /* 1008 * NMI from user mode. We need to run on the thread stack, but we 1009 * can't go through the normal entry paths: NMIs are masked, and 1010 * we don't want to enable interrupts, because then we'll end 1011 * up in an awkward situation in which IRQs are on but NMIs 1012 * are off. 1013 * 1014 * We also must not push anything to the stack before switching 1015 * stacks lest we corrupt the "NMI executing" variable. 1016 */ 1017 1018 swapgs 1019 cld 1020 FENCE_SWAPGS_USER_ENTRY 1021 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdx 1022 movq %rsp, %rdx 1023 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp 1024 UNWIND_HINT_IRET_REGS base=%rdx offset=8 1025 pushq 5*8(%rdx) /* pt_regs->ss */ 1026 pushq 4*8(%rdx) /* pt_regs->rsp */ 1027 pushq 3*8(%rdx) /* pt_regs->flags */ 1028 pushq 2*8(%rdx) /* pt_regs->cs */ 1029 pushq 1*8(%rdx) /* pt_regs->rip */ 1030 UNWIND_HINT_IRET_REGS 1031 pushq $-1 /* pt_regs->orig_ax */ 1032 PUSH_AND_CLEAR_REGS rdx=(%rdx) 1033 ENCODE_FRAME_POINTER 1034 1035 /* 1036 * At this point we no longer need to worry about stack damage 1037 * due to nesting -- we're on the normal thread stack and we're 1038 * done with the NMI stack. 1039 */ 1040 1041 movq %rsp, %rdi 1042 movq $-1, %rsi 1043 call exc_nmi 1044 1045 /* 1046 * Return back to user mode. We must *not* do the normal exit 1047 * work, because we don't want to enable interrupts. 1048 */ 1049 jmp swapgs_restore_regs_and_return_to_usermode 1050 1051.Lnmi_from_kernel: 1052 /* 1053 * Here's what our stack frame will look like: 1054 * +---------------------------------------------------------+ 1055 * | original SS | 1056 * | original Return RSP | 1057 * | original RFLAGS | 1058 * | original CS | 1059 * | original RIP | 1060 * +---------------------------------------------------------+ 1061 * | temp storage for rdx | 1062 * +---------------------------------------------------------+ 1063 * | "NMI executing" variable | 1064 * +---------------------------------------------------------+ 1065 * | iret SS } Copied from "outermost" frame | 1066 * | iret Return RSP } on each loop iteration; overwritten | 1067 * | iret RFLAGS } by a nested NMI to force another | 1068 * | iret CS } iteration if needed. | 1069 * | iret RIP } | 1070 * +---------------------------------------------------------+ 1071 * | outermost SS } initialized in first_nmi; | 1072 * | outermost Return RSP } will not be changed before | 1073 * | outermost RFLAGS } NMI processing is done. | 1074 * | outermost CS } Copied to "iret" frame on each | 1075 * | outermost RIP } iteration. | 1076 * +---------------------------------------------------------+ 1077 * | pt_regs | 1078 * +---------------------------------------------------------+ 1079 * 1080 * The "original" frame is used by hardware. Before re-enabling 1081 * NMIs, we need to be done with it, and we need to leave enough 1082 * space for the asm code here. 1083 * 1084 * We return by executing IRET while RSP points to the "iret" frame. 1085 * That will either return for real or it will loop back into NMI 1086 * processing. 1087 * 1088 * The "outermost" frame is copied to the "iret" frame on each 1089 * iteration of the loop, so each iteration starts with the "iret" 1090 * frame pointing to the final return target. 1091 */ 1092 1093 /* 1094 * Determine whether we're a nested NMI. 1095 * 1096 * If we interrupted kernel code between repeat_nmi and 1097 * end_repeat_nmi, then we are a nested NMI. We must not 1098 * modify the "iret" frame because it's being written by 1099 * the outer NMI. That's okay; the outer NMI handler is 1100 * about to about to call exc_nmi() anyway, so we can just 1101 * resume the outer NMI. 1102 */ 1103 1104 movq $repeat_nmi, %rdx 1105 cmpq 8(%rsp), %rdx 1106 ja 1f 1107 movq $end_repeat_nmi, %rdx 1108 cmpq 8(%rsp), %rdx 1109 ja nested_nmi_out 11101: 1111 1112 /* 1113 * Now check "NMI executing". If it's set, then we're nested. 1114 * This will not detect if we interrupted an outer NMI just 1115 * before IRET. 1116 */ 1117 cmpl $1, -8(%rsp) 1118 je nested_nmi 1119 1120 /* 1121 * Now test if the previous stack was an NMI stack. This covers 1122 * the case where we interrupt an outer NMI after it clears 1123 * "NMI executing" but before IRET. We need to be careful, though: 1124 * there is one case in which RSP could point to the NMI stack 1125 * despite there being no NMI active: naughty userspace controls 1126 * RSP at the very beginning of the SYSCALL targets. We can 1127 * pull a fast one on naughty userspace, though: we program 1128 * SYSCALL to mask DF, so userspace cannot cause DF to be set 1129 * if it controls the kernel's RSP. We set DF before we clear 1130 * "NMI executing". 1131 */ 1132 lea 6*8(%rsp), %rdx 1133 /* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */ 1134 cmpq %rdx, 4*8(%rsp) 1135 /* If the stack pointer is above the NMI stack, this is a normal NMI */ 1136 ja first_nmi 1137 1138 subq $EXCEPTION_STKSZ, %rdx 1139 cmpq %rdx, 4*8(%rsp) 1140 /* If it is below the NMI stack, it is a normal NMI */ 1141 jb first_nmi 1142 1143 /* Ah, it is within the NMI stack. */ 1144 1145 testb $(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp) 1146 jz first_nmi /* RSP was user controlled. */ 1147 1148 /* This is a nested NMI. */ 1149 1150nested_nmi: 1151 /* 1152 * Modify the "iret" frame to point to repeat_nmi, forcing another 1153 * iteration of NMI handling. 1154 */ 1155 subq $8, %rsp 1156 leaq -10*8(%rsp), %rdx 1157 pushq $__KERNEL_DS 1158 pushq %rdx 1159 pushfq 1160 pushq $__KERNEL_CS 1161 pushq $repeat_nmi 1162 1163 /* Put stack back */ 1164 addq $(6*8), %rsp 1165 1166nested_nmi_out: 1167 popq %rdx 1168 1169 /* We are returning to kernel mode, so this cannot result in a fault. */ 1170 iretq 1171 1172first_nmi: 1173 /* Restore rdx. */ 1174 movq (%rsp), %rdx 1175 1176 /* Make room for "NMI executing". */ 1177 pushq $0 1178 1179 /* Leave room for the "iret" frame */ 1180 subq $(5*8), %rsp 1181 1182 /* Copy the "original" frame to the "outermost" frame */ 1183 .rept 5 1184 pushq 11*8(%rsp) 1185 .endr 1186 UNWIND_HINT_IRET_REGS 1187 1188 /* Everything up to here is safe from nested NMIs */ 1189 1190#ifdef CONFIG_DEBUG_ENTRY 1191 /* 1192 * For ease of testing, unmask NMIs right away. Disabled by 1193 * default because IRET is very expensive. 1194 */ 1195 pushq $0 /* SS */ 1196 pushq %rsp /* RSP (minus 8 because of the previous push) */ 1197 addq $8, (%rsp) /* Fix up RSP */ 1198 pushfq /* RFLAGS */ 1199 pushq $__KERNEL_CS /* CS */ 1200 pushq $1f /* RIP */ 1201 iretq /* continues at repeat_nmi below */ 1202 UNWIND_HINT_IRET_REGS 12031: 1204#endif 1205 1206repeat_nmi: 1207 /* 1208 * If there was a nested NMI, the first NMI's iret will return 1209 * here. But NMIs are still enabled and we can take another 1210 * nested NMI. The nested NMI checks the interrupted RIP to see 1211 * if it is between repeat_nmi and end_repeat_nmi, and if so 1212 * it will just return, as we are about to repeat an NMI anyway. 1213 * This makes it safe to copy to the stack frame that a nested 1214 * NMI will update. 1215 * 1216 * RSP is pointing to "outermost RIP". gsbase is unknown, but, if 1217 * we're repeating an NMI, gsbase has the same value that it had on 1218 * the first iteration. paranoid_entry will load the kernel 1219 * gsbase if needed before we call exc_nmi(). "NMI executing" 1220 * is zero. 1221 */ 1222 movq $1, 10*8(%rsp) /* Set "NMI executing". */ 1223 1224 /* 1225 * Copy the "outermost" frame to the "iret" frame. NMIs that nest 1226 * here must not modify the "iret" frame while we're writing to 1227 * it or it will end up containing garbage. 1228 */ 1229 addq $(10*8), %rsp 1230 .rept 5 1231 pushq -6*8(%rsp) 1232 .endr 1233 subq $(5*8), %rsp 1234end_repeat_nmi: 1235 1236 /* 1237 * Everything below this point can be preempted by a nested NMI. 1238 * If this happens, then the inner NMI will change the "iret" 1239 * frame to point back to repeat_nmi. 1240 */ 1241 pushq $-1 /* ORIG_RAX: no syscall to restart */ 1242 1243 /* 1244 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit 1245 * as we should not be calling schedule in NMI context. 1246 * Even with normal interrupts enabled. An NMI should not be 1247 * setting NEED_RESCHED or anything that normal interrupts and 1248 * exceptions might do. 1249 */ 1250 call paranoid_entry 1251 UNWIND_HINT_REGS 1252 1253 movq %rsp, %rdi 1254 movq $-1, %rsi 1255 call exc_nmi 1256 1257 /* Always restore stashed CR3 value (see paranoid_entry) */ 1258 RESTORE_CR3 scratch_reg=%r15 save_reg=%r14 1259 1260 testl %ebx, %ebx /* swapgs needed? */ 1261 jnz nmi_restore 1262nmi_swapgs: 1263 SWAPGS_UNSAFE_STACK 1264nmi_restore: 1265 POP_REGS 1266 1267 /* 1268 * Skip orig_ax and the "outermost" frame to point RSP at the "iret" 1269 * at the "iret" frame. 1270 */ 1271 addq $6*8, %rsp 1272 1273 /* 1274 * Clear "NMI executing". Set DF first so that we can easily 1275 * distinguish the remaining code between here and IRET from 1276 * the SYSCALL entry and exit paths. 1277 * 1278 * We arguably should just inspect RIP instead, but I (Andy) wrote 1279 * this code when I had the misapprehension that Xen PV supported 1280 * NMIs, and Xen PV would break that approach. 1281 */ 1282 std 1283 movq $0, 5*8(%rsp) /* clear "NMI executing" */ 1284 1285 /* 1286 * iretq reads the "iret" frame and exits the NMI stack in a 1287 * single instruction. We are returning to kernel mode, so this 1288 * cannot result in a fault. Similarly, we don't need to worry 1289 * about espfix64 on the way back to kernel mode. 1290 */ 1291 iretq 1292SYM_CODE_END(asm_exc_nmi) 1293 1294#ifndef CONFIG_IA32_EMULATION 1295/* 1296 * This handles SYSCALL from 32-bit code. There is no way to program 1297 * MSRs to fully disable 32-bit SYSCALL. 1298 */ 1299SYM_CODE_START(ignore_sysret) 1300 UNWIND_HINT_EMPTY 1301 mov $-ENOSYS, %eax 1302 sysretl 1303SYM_CODE_END(ignore_sysret) 1304#endif 1305 1306.pushsection .text, "ax" 1307SYM_CODE_START(rewind_stack_do_exit) 1308 UNWIND_HINT_FUNC 1309 /* Prevent any naive code from trying to unwind to our caller. */ 1310 xorl %ebp, %ebp 1311 1312 movq PER_CPU_VAR(cpu_current_top_of_stack), %rax 1313 leaq -PTREGS_SIZE(%rax), %rsp 1314 UNWIND_HINT_REGS 1315 1316 call do_exit 1317SYM_CODE_END(rewind_stack_do_exit) 1318.popsection 1319