1/* SPDX-License-Identifier: GPL-2.0 */ 2/* 3 * linux/arch/x86_64/entry.S 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * Copyright (C) 2000, 2001, 2002 Andi Kleen SuSE Labs 7 * Copyright (C) 2000 Pavel Machek <pavel@suse.cz> 8 * 9 * entry.S contains the system-call and fault low-level handling routines. 10 * 11 * Some of this is documented in Documentation/arch/x86/entry_64.rst 12 * 13 * A note on terminology: 14 * - iret frame: Architecture defined interrupt frame from SS to RIP 15 * at the top of the kernel process stack. 16 * 17 * Some macro usage: 18 * - SYM_FUNC_START/END:Define functions in the symbol table. 19 * - idtentry: Define exception entry points. 20 */ 21#include <linux/export.h> 22#include <linux/linkage.h> 23#include <asm/segment.h> 24#include <asm/cache.h> 25#include <asm/errno.h> 26#include <asm/asm-offsets.h> 27#include <asm/msr.h> 28#include <asm/unistd.h> 29#include <asm/thread_info.h> 30#include <asm/hw_irq.h> 31#include <asm/page_types.h> 32#include <asm/irqflags.h> 33#include <asm/paravirt.h> 34#include <asm/percpu.h> 35#include <asm/asm.h> 36#include <asm/smap.h> 37#include <asm/pgtable_types.h> 38#include <asm/frame.h> 39#include <asm/trapnr.h> 40#include <asm/nospec-branch.h> 41#include <asm/fsgsbase.h> 42#include <linux/err.h> 43 44#include "calling.h" 45 46.code64 47.section .entry.text, "ax" 48 49/* 50 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers. 51 * 52 * This is the only entry point used for 64-bit system calls. The 53 * hardware interface is reasonably well designed and the register to 54 * argument mapping Linux uses fits well with the registers that are 55 * available when SYSCALL is used. 56 * 57 * SYSCALL instructions can be found inlined in libc implementations as 58 * well as some other programs and libraries. There are also a handful 59 * of SYSCALL instructions in the vDSO used, for example, as a 60 * clock_gettimeofday fallback. 61 * 62 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11, 63 * then loads new ss, cs, and rip from previously programmed MSRs. 64 * rflags gets masked by a value from another MSR (so CLD and CLAC 65 * are not needed). SYSCALL does not save anything on the stack 66 * and does not change rsp. 67 * 68 * Registers on entry: 69 * rax system call number 70 * rcx return address 71 * r11 saved rflags (note: r11 is callee-clobbered register in C ABI) 72 * rdi arg0 73 * rsi arg1 74 * rdx arg2 75 * r10 arg3 (needs to be moved to rcx to conform to C ABI) 76 * r8 arg4 77 * r9 arg5 78 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI) 79 * 80 * Only called from user space. 81 * 82 * When user can change pt_regs->foo always force IRET. That is because 83 * it deals with uncanonical addresses better. SYSRET has trouble 84 * with them due to bugs in both AMD and Intel CPUs. 85 */ 86 87SYM_CODE_START(entry_SYSCALL_64) 88 UNWIND_HINT_ENTRY 89 ENDBR 90 91 swapgs 92 /* tss.sp2 is scratch space. */ 93 movq %rsp, PER_CPU_VAR(cpu_tss_rw + TSS_sp2) 94 SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp 95 movq PER_CPU_VAR(pcpu_hot + X86_top_of_stack), %rsp 96 97SYM_INNER_LABEL(entry_SYSCALL_64_safe_stack, SYM_L_GLOBAL) 98 ANNOTATE_NOENDBR 99 100 /* Construct struct pt_regs on stack */ 101 pushq $__USER_DS /* pt_regs->ss */ 102 pushq PER_CPU_VAR(cpu_tss_rw + TSS_sp2) /* pt_regs->sp */ 103 pushq %r11 /* pt_regs->flags */ 104 pushq $__USER_CS /* pt_regs->cs */ 105 pushq %rcx /* pt_regs->ip */ 106SYM_INNER_LABEL(entry_SYSCALL_64_after_hwframe, SYM_L_GLOBAL) 107 pushq %rax /* pt_regs->orig_ax */ 108 109 PUSH_AND_CLEAR_REGS rax=$-ENOSYS 110 111 /* IRQs are off. */ 112 movq %rsp, %rdi 113 /* Sign extend the lower 32bit as syscall numbers are treated as int */ 114 movslq %eax, %rsi 115 116 /* clobbers %rax, make sure it is after saving the syscall nr */ 117 IBRS_ENTER 118 UNTRAIN_RET 119 CLEAR_BRANCH_HISTORY 120 121 call do_syscall_64 /* returns with IRQs disabled */ 122 123 /* 124 * Try to use SYSRET instead of IRET if we're returning to 125 * a completely clean 64-bit userspace context. If we're not, 126 * go to the slow exit path. 127 * In the Xen PV case we must use iret anyway. 128 */ 129 130 ALTERNATIVE "testb %al, %al; jz swapgs_restore_regs_and_return_to_usermode", \ 131 "jmp swapgs_restore_regs_and_return_to_usermode", X86_FEATURE_XENPV 132 133 /* 134 * We win! This label is here just for ease of understanding 135 * perf profiles. Nothing jumps here. 136 */ 137syscall_return_via_sysret: 138 IBRS_EXIT 139 POP_REGS pop_rdi=0 140 141 /* 142 * Now all regs are restored except RSP and RDI. 143 * Save old stack pointer and switch to trampoline stack. 144 */ 145 movq %rsp, %rdi 146 movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp 147 UNWIND_HINT_END_OF_STACK 148 149 pushq RSP-RDI(%rdi) /* RSP */ 150 pushq (%rdi) /* RDI */ 151 152 /* 153 * We are on the trampoline stack. All regs except RDI are live. 154 * We can do future final exit work right here. 155 */ 156 STACKLEAK_ERASE_NOCLOBBER 157 158 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi 159 160 popq %rdi 161 popq %rsp 162SYM_INNER_LABEL(entry_SYSRETQ_unsafe_stack, SYM_L_GLOBAL) 163 ANNOTATE_NOENDBR 164 swapgs 165 CLEAR_CPU_BUFFERS 166 sysretq 167SYM_INNER_LABEL(entry_SYSRETQ_end, SYM_L_GLOBAL) 168 ANNOTATE_NOENDBR 169 int3 170SYM_CODE_END(entry_SYSCALL_64) 171 172/* 173 * %rdi: prev task 174 * %rsi: next task 175 */ 176.pushsection .text, "ax" 177SYM_FUNC_START(__switch_to_asm) 178 /* 179 * Save callee-saved registers 180 * This must match the order in inactive_task_frame 181 */ 182 pushq %rbp 183 pushq %rbx 184 pushq %r12 185 pushq %r13 186 pushq %r14 187 pushq %r15 188 189 /* switch stack */ 190 movq %rsp, TASK_threadsp(%rdi) 191 movq TASK_threadsp(%rsi), %rsp 192 193#ifdef CONFIG_STACKPROTECTOR 194 movq TASK_stack_canary(%rsi), %rbx 195 movq %rbx, PER_CPU_VAR(fixed_percpu_data + FIXED_stack_canary) 196#endif 197 198 /* 199 * When switching from a shallower to a deeper call stack 200 * the RSB may either underflow or use entries populated 201 * with userspace addresses. On CPUs where those concerns 202 * exist, overwrite the RSB with entries which capture 203 * speculative execution to prevent attack. 204 */ 205 FILL_RETURN_BUFFER %r12, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW 206 207 /* restore callee-saved registers */ 208 popq %r15 209 popq %r14 210 popq %r13 211 popq %r12 212 popq %rbx 213 popq %rbp 214 215 jmp __switch_to 216SYM_FUNC_END(__switch_to_asm) 217.popsection 218 219/* 220 * A newly forked process directly context switches into this address. 221 * 222 * rax: prev task we switched from 223 * rbx: kernel thread func (NULL for user thread) 224 * r12: kernel thread arg 225 */ 226.pushsection .text, "ax" 227SYM_CODE_START(ret_from_fork_asm) 228 /* 229 * This is the start of the kernel stack; even through there's a 230 * register set at the top, the regset isn't necessarily coherent 231 * (consider kthreads) and one cannot unwind further. 232 * 233 * This ensures stack unwinds of kernel threads terminate in a known 234 * good state. 235 */ 236 UNWIND_HINT_END_OF_STACK 237 ANNOTATE_NOENDBR // copy_thread 238 CALL_DEPTH_ACCOUNT 239 240 movq %rax, %rdi /* prev */ 241 movq %rsp, %rsi /* regs */ 242 movq %rbx, %rdx /* fn */ 243 movq %r12, %rcx /* fn_arg */ 244 call ret_from_fork 245 246 /* 247 * Set the stack state to what is expected for the target function 248 * -- at this point the register set should be a valid user set 249 * and unwind should work normally. 250 */ 251 UNWIND_HINT_REGS 252 253#ifdef CONFIG_X86_FRED 254 ALTERNATIVE "jmp swapgs_restore_regs_and_return_to_usermode", \ 255 "jmp asm_fred_exit_user", X86_FEATURE_FRED 256#else 257 jmp swapgs_restore_regs_and_return_to_usermode 258#endif 259SYM_CODE_END(ret_from_fork_asm) 260.popsection 261 262.macro DEBUG_ENTRY_ASSERT_IRQS_OFF 263#ifdef CONFIG_DEBUG_ENTRY 264 pushq %rax 265 SAVE_FLAGS 266 testl $X86_EFLAGS_IF, %eax 267 jz .Lokay_\@ 268 ud2 269.Lokay_\@: 270 popq %rax 271#endif 272.endm 273 274SYM_CODE_START(xen_error_entry) 275 ANNOTATE_NOENDBR 276 UNWIND_HINT_FUNC 277 PUSH_AND_CLEAR_REGS save_ret=1 278 ENCODE_FRAME_POINTER 8 279 UNTRAIN_RET_FROM_CALL 280 RET 281SYM_CODE_END(xen_error_entry) 282 283/** 284 * idtentry_body - Macro to emit code calling the C function 285 * @cfunc: C function to be called 286 * @has_error_code: Hardware pushed error code on stack 287 */ 288.macro idtentry_body cfunc has_error_code:req 289 290 /* 291 * Call error_entry() and switch to the task stack if from userspace. 292 * 293 * When in XENPV, it is already in the task stack, and it can't fault 294 * for native_iret() nor native_load_gs_index() since XENPV uses its 295 * own pvops for IRET and load_gs_index(). And it doesn't need to 296 * switch the CR3. So it can skip invoking error_entry(). 297 */ 298 ALTERNATIVE "call error_entry; movq %rax, %rsp", \ 299 "call xen_error_entry", X86_FEATURE_XENPV 300 301 ENCODE_FRAME_POINTER 302 UNWIND_HINT_REGS 303 304 movq %rsp, %rdi /* pt_regs pointer into 1st argument*/ 305 306 .if \has_error_code == 1 307 movq ORIG_RAX(%rsp), %rsi /* get error code into 2nd argument*/ 308 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */ 309 .endif 310 311 /* For some configurations \cfunc ends up being a noreturn. */ 312 ANNOTATE_REACHABLE 313 call \cfunc 314 315 jmp error_return 316.endm 317 318/** 319 * idtentry - Macro to generate entry stubs for simple IDT entries 320 * @vector: Vector number 321 * @asmsym: ASM symbol for the entry point 322 * @cfunc: C function to be called 323 * @has_error_code: Hardware pushed error code on stack 324 * 325 * The macro emits code to set up the kernel context for straight forward 326 * and simple IDT entries. No IST stack, no paranoid entry checks. 327 */ 328.macro idtentry vector asmsym cfunc has_error_code:req 329SYM_CODE_START(\asmsym) 330 331 .if \vector == X86_TRAP_BP 332 /* #BP advances %rip to the next instruction */ 333 UNWIND_HINT_IRET_ENTRY offset=\has_error_code*8 signal=0 334 .else 335 UNWIND_HINT_IRET_ENTRY offset=\has_error_code*8 336 .endif 337 338 ENDBR 339 ASM_CLAC 340 cld 341 342 .if \has_error_code == 0 343 pushq $-1 /* ORIG_RAX: no syscall to restart */ 344 .endif 345 346 .if \vector == X86_TRAP_BP 347 /* 348 * If coming from kernel space, create a 6-word gap to allow the 349 * int3 handler to emulate a call instruction. 350 */ 351 testb $3, CS-ORIG_RAX(%rsp) 352 jnz .Lfrom_usermode_no_gap_\@ 353 .rept 6 354 pushq 5*8(%rsp) 355 .endr 356 UNWIND_HINT_IRET_REGS offset=8 357.Lfrom_usermode_no_gap_\@: 358 .endif 359 360 idtentry_body \cfunc \has_error_code 361 362_ASM_NOKPROBE(\asmsym) 363SYM_CODE_END(\asmsym) 364.endm 365 366/* 367 * Interrupt entry/exit. 368 * 369 + The interrupt stubs push (vector) onto the stack, which is the error_code 370 * position of idtentry exceptions, and jump to one of the two idtentry points 371 * (common/spurious). 372 * 373 * common_interrupt is a hotpath, align it to a cache line 374 */ 375.macro idtentry_irq vector cfunc 376 .p2align CONFIG_X86_L1_CACHE_SHIFT 377 idtentry \vector asm_\cfunc \cfunc has_error_code=1 378.endm 379 380/** 381 * idtentry_mce_db - Macro to generate entry stubs for #MC and #DB 382 * @vector: Vector number 383 * @asmsym: ASM symbol for the entry point 384 * @cfunc: C function to be called 385 * 386 * The macro emits code to set up the kernel context for #MC and #DB 387 * 388 * If the entry comes from user space it uses the normal entry path 389 * including the return to user space work and preemption checks on 390 * exit. 391 * 392 * If hits in kernel mode then it needs to go through the paranoid 393 * entry as the exception can hit any random state. No preemption 394 * check on exit to keep the paranoid path simple. 395 */ 396.macro idtentry_mce_db vector asmsym cfunc 397SYM_CODE_START(\asmsym) 398 UNWIND_HINT_IRET_ENTRY 399 ENDBR 400 ASM_CLAC 401 cld 402 403 pushq $-1 /* ORIG_RAX: no syscall to restart */ 404 405 /* 406 * If the entry is from userspace, switch stacks and treat it as 407 * a normal entry. 408 */ 409 testb $3, CS-ORIG_RAX(%rsp) 410 jnz .Lfrom_usermode_switch_stack_\@ 411 412 /* paranoid_entry returns GS information for paranoid_exit in EBX. */ 413 call paranoid_entry 414 415 UNWIND_HINT_REGS 416 417 movq %rsp, %rdi /* pt_regs pointer */ 418 419 call \cfunc 420 421 jmp paranoid_exit 422 423 /* Switch to the regular task stack and use the noist entry point */ 424.Lfrom_usermode_switch_stack_\@: 425 idtentry_body noist_\cfunc, has_error_code=0 426 427_ASM_NOKPROBE(\asmsym) 428SYM_CODE_END(\asmsym) 429.endm 430 431#ifdef CONFIG_AMD_MEM_ENCRYPT 432/** 433 * idtentry_vc - Macro to generate entry stub for #VC 434 * @vector: Vector number 435 * @asmsym: ASM symbol for the entry point 436 * @cfunc: C function to be called 437 * 438 * The macro emits code to set up the kernel context for #VC. The #VC handler 439 * runs on an IST stack and needs to be able to cause nested #VC exceptions. 440 * 441 * To make this work the #VC entry code tries its best to pretend it doesn't use 442 * an IST stack by switching to the task stack if coming from user-space (which 443 * includes early SYSCALL entry path) or back to the stack in the IRET frame if 444 * entered from kernel-mode. 445 * 446 * If entered from kernel-mode the return stack is validated first, and if it is 447 * not safe to use (e.g. because it points to the entry stack) the #VC handler 448 * will switch to a fall-back stack (VC2) and call a special handler function. 449 * 450 * The macro is only used for one vector, but it is planned to be extended in 451 * the future for the #HV exception. 452 */ 453.macro idtentry_vc vector asmsym cfunc 454SYM_CODE_START(\asmsym) 455 UNWIND_HINT_IRET_ENTRY 456 ENDBR 457 ASM_CLAC 458 cld 459 460 /* 461 * If the entry is from userspace, switch stacks and treat it as 462 * a normal entry. 463 */ 464 testb $3, CS-ORIG_RAX(%rsp) 465 jnz .Lfrom_usermode_switch_stack_\@ 466 467 /* 468 * paranoid_entry returns SWAPGS flag for paranoid_exit in EBX. 469 * EBX == 0 -> SWAPGS, EBX == 1 -> no SWAPGS 470 */ 471 call paranoid_entry 472 473 UNWIND_HINT_REGS 474 475 /* 476 * Switch off the IST stack to make it free for nested exceptions. The 477 * vc_switch_off_ist() function will switch back to the interrupted 478 * stack if it is safe to do so. If not it switches to the VC fall-back 479 * stack. 480 */ 481 movq %rsp, %rdi /* pt_regs pointer */ 482 call vc_switch_off_ist 483 movq %rax, %rsp /* Switch to new stack */ 484 485 ENCODE_FRAME_POINTER 486 UNWIND_HINT_REGS 487 488 /* Update pt_regs */ 489 movq ORIG_RAX(%rsp), %rsi /* get error code into 2nd argument*/ 490 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */ 491 492 movq %rsp, %rdi /* pt_regs pointer */ 493 494 call kernel_\cfunc 495 496 /* 497 * No need to switch back to the IST stack. The current stack is either 498 * identical to the stack in the IRET frame or the VC fall-back stack, 499 * so it is definitely mapped even with PTI enabled. 500 */ 501 jmp paranoid_exit 502 503 /* Switch to the regular task stack */ 504.Lfrom_usermode_switch_stack_\@: 505 idtentry_body user_\cfunc, has_error_code=1 506 507_ASM_NOKPROBE(\asmsym) 508SYM_CODE_END(\asmsym) 509.endm 510#endif 511 512/* 513 * Double fault entry. Straight paranoid. No checks from which context 514 * this comes because for the espfix induced #DF this would do the wrong 515 * thing. 516 */ 517.macro idtentry_df vector asmsym cfunc 518SYM_CODE_START(\asmsym) 519 UNWIND_HINT_IRET_ENTRY offset=8 520 ENDBR 521 ASM_CLAC 522 cld 523 524 /* paranoid_entry returns GS information for paranoid_exit in EBX. */ 525 call paranoid_entry 526 UNWIND_HINT_REGS 527 528 movq %rsp, %rdi /* pt_regs pointer into first argument */ 529 movq ORIG_RAX(%rsp), %rsi /* get error code into 2nd argument*/ 530 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */ 531 532 /* For some configurations \cfunc ends up being a noreturn. */ 533 ANNOTATE_REACHABLE 534 call \cfunc 535 536 jmp paranoid_exit 537 538_ASM_NOKPROBE(\asmsym) 539SYM_CODE_END(\asmsym) 540.endm 541 542/* 543 * Include the defines which emit the idt entries which are shared 544 * shared between 32 and 64 bit and emit the __irqentry_text_* markers 545 * so the stacktrace boundary checks work. 546 */ 547 __ALIGN 548 .globl __irqentry_text_start 549__irqentry_text_start: 550 551#include <asm/idtentry.h> 552 553 __ALIGN 554 .globl __irqentry_text_end 555__irqentry_text_end: 556 ANNOTATE_NOENDBR 557 558SYM_CODE_START_LOCAL(common_interrupt_return) 559SYM_INNER_LABEL(swapgs_restore_regs_and_return_to_usermode, SYM_L_GLOBAL) 560 IBRS_EXIT 561#ifdef CONFIG_XEN_PV 562 ALTERNATIVE "", "jmp xenpv_restore_regs_and_return_to_usermode", X86_FEATURE_XENPV 563#endif 564#ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION 565 ALTERNATIVE "", "jmp .Lpti_restore_regs_and_return_to_usermode", X86_FEATURE_PTI 566#endif 567 568 STACKLEAK_ERASE 569 POP_REGS 570 add $8, %rsp /* orig_ax */ 571 UNWIND_HINT_IRET_REGS 572 573.Lswapgs_and_iret: 574 swapgs 575 CLEAR_CPU_BUFFERS 576 /* Assert that the IRET frame indicates user mode. */ 577 testb $3, 8(%rsp) 578 jnz .Lnative_iret 579 ud2 580 581#ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION 582.Lpti_restore_regs_and_return_to_usermode: 583 POP_REGS pop_rdi=0 584 585 /* 586 * The stack is now user RDI, orig_ax, RIP, CS, EFLAGS, RSP, SS. 587 * Save old stack pointer and switch to trampoline stack. 588 */ 589 movq %rsp, %rdi 590 movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp 591 UNWIND_HINT_END_OF_STACK 592 593 /* Copy the IRET frame to the trampoline stack. */ 594 pushq 6*8(%rdi) /* SS */ 595 pushq 5*8(%rdi) /* RSP */ 596 pushq 4*8(%rdi) /* EFLAGS */ 597 pushq 3*8(%rdi) /* CS */ 598 pushq 2*8(%rdi) /* RIP */ 599 600 /* Push user RDI on the trampoline stack. */ 601 pushq (%rdi) 602 603 /* 604 * We are on the trampoline stack. All regs except RDI are live. 605 * We can do future final exit work right here. 606 */ 607 STACKLEAK_ERASE_NOCLOBBER 608 609 push %rax 610 SWITCH_TO_USER_CR3 scratch_reg=%rdi scratch_reg2=%rax 611 pop %rax 612 613 /* Restore RDI. */ 614 popq %rdi 615 jmp .Lswapgs_and_iret 616#endif 617 618SYM_INNER_LABEL(restore_regs_and_return_to_kernel, SYM_L_GLOBAL) 619#ifdef CONFIG_DEBUG_ENTRY 620 /* Assert that pt_regs indicates kernel mode. */ 621 testb $3, CS(%rsp) 622 jz 1f 623 ud2 6241: 625#endif 626 POP_REGS 627 addq $8, %rsp /* skip regs->orig_ax */ 628 /* 629 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization 630 * when returning from IPI handler. 631 */ 632#ifdef CONFIG_XEN_PV 633SYM_INNER_LABEL(early_xen_iret_patch, SYM_L_GLOBAL) 634 ANNOTATE_NOENDBR 635 .byte 0xe9 636 .long .Lnative_iret - (. + 4) 637#endif 638 639.Lnative_iret: 640 UNWIND_HINT_IRET_REGS 641 /* 642 * Are we returning to a stack segment from the LDT? Note: in 643 * 64-bit mode SS:RSP on the exception stack is always valid. 644 */ 645#ifdef CONFIG_X86_ESPFIX64 646 testb $4, (SS-RIP)(%rsp) 647 jnz native_irq_return_ldt 648#endif 649 650SYM_INNER_LABEL(native_irq_return_iret, SYM_L_GLOBAL) 651 ANNOTATE_NOENDBR // exc_double_fault 652 /* 653 * This may fault. Non-paranoid faults on return to userspace are 654 * handled by fixup_bad_iret. These include #SS, #GP, and #NP. 655 * Double-faults due to espfix64 are handled in exc_double_fault. 656 * Other faults here are fatal. 657 */ 658 iretq 659 660#ifdef CONFIG_X86_ESPFIX64 661native_irq_return_ldt: 662 /* 663 * We are running with user GSBASE. All GPRs contain their user 664 * values. We have a percpu ESPFIX stack that is eight slots 665 * long (see ESPFIX_STACK_SIZE). espfix_waddr points to the bottom 666 * of the ESPFIX stack. 667 * 668 * We clobber RAX and RDI in this code. We stash RDI on the 669 * normal stack and RAX on the ESPFIX stack. 670 * 671 * The ESPFIX stack layout we set up looks like this: 672 * 673 * --- top of ESPFIX stack --- 674 * SS 675 * RSP 676 * RFLAGS 677 * CS 678 * RIP <-- RSP points here when we're done 679 * RAX <-- espfix_waddr points here 680 * --- bottom of ESPFIX stack --- 681 */ 682 683 pushq %rdi /* Stash user RDI */ 684 swapgs /* to kernel GS */ 685 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi /* to kernel CR3 */ 686 687 movq PER_CPU_VAR(espfix_waddr), %rdi 688 movq %rax, (0*8)(%rdi) /* user RAX */ 689 movq (1*8)(%rsp), %rax /* user RIP */ 690 movq %rax, (1*8)(%rdi) 691 movq (2*8)(%rsp), %rax /* user CS */ 692 movq %rax, (2*8)(%rdi) 693 movq (3*8)(%rsp), %rax /* user RFLAGS */ 694 movq %rax, (3*8)(%rdi) 695 movq (5*8)(%rsp), %rax /* user SS */ 696 movq %rax, (5*8)(%rdi) 697 movq (4*8)(%rsp), %rax /* user RSP */ 698 movq %rax, (4*8)(%rdi) 699 /* Now RAX == RSP. */ 700 701 andl $0xffff0000, %eax /* RAX = (RSP & 0xffff0000) */ 702 703 /* 704 * espfix_stack[31:16] == 0. The page tables are set up such that 705 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of 706 * espfix_waddr for any X. That is, there are 65536 RO aliases of 707 * the same page. Set up RSP so that RSP[31:16] contains the 708 * respective 16 bits of the /userspace/ RSP and RSP nonetheless 709 * still points to an RO alias of the ESPFIX stack. 710 */ 711 orq PER_CPU_VAR(espfix_stack), %rax 712 713 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi 714 swapgs /* to user GS */ 715 popq %rdi /* Restore user RDI */ 716 717 movq %rax, %rsp 718 UNWIND_HINT_IRET_REGS offset=8 719 720 /* 721 * At this point, we cannot write to the stack any more, but we can 722 * still read. 723 */ 724 popq %rax /* Restore user RAX */ 725 726 CLEAR_CPU_BUFFERS 727 728 /* 729 * RSP now points to an ordinary IRET frame, except that the page 730 * is read-only and RSP[31:16] are preloaded with the userspace 731 * values. We can now IRET back to userspace. 732 */ 733 jmp native_irq_return_iret 734#endif 735SYM_CODE_END(common_interrupt_return) 736_ASM_NOKPROBE(common_interrupt_return) 737 738/* 739 * Reload gs selector with exception handling 740 * di: new selector 741 * 742 * Is in entry.text as it shouldn't be instrumented. 743 */ 744SYM_FUNC_START(asm_load_gs_index) 745 FRAME_BEGIN 746 swapgs 747.Lgs_change: 748 ANNOTATE_NOENDBR // error_entry 749 movl %edi, %gs 7502: ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE 751 swapgs 752 FRAME_END 753 RET 754 755 /* running with kernelgs */ 756.Lbad_gs: 757 swapgs /* switch back to user gs */ 758.macro ZAP_GS 759 /* This can't be a string because the preprocessor needs to see it. */ 760 movl $__USER_DS, %eax 761 movl %eax, %gs 762.endm 763 ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG 764 xorl %eax, %eax 765 movl %eax, %gs 766 jmp 2b 767 768 _ASM_EXTABLE(.Lgs_change, .Lbad_gs) 769 770SYM_FUNC_END(asm_load_gs_index) 771EXPORT_SYMBOL(asm_load_gs_index) 772 773#ifdef CONFIG_XEN_PV 774/* 775 * A note on the "critical region" in our callback handler. 776 * We want to avoid stacking callback handlers due to events occurring 777 * during handling of the last event. To do this, we keep events disabled 778 * until we've done all processing. HOWEVER, we must enable events before 779 * popping the stack frame (can't be done atomically) and so it would still 780 * be possible to get enough handler activations to overflow the stack. 781 * Although unlikely, bugs of that kind are hard to track down, so we'd 782 * like to avoid the possibility. 783 * So, on entry to the handler we detect whether we interrupted an 784 * existing activation in its critical region -- if so, we pop the current 785 * activation and restart the handler using the previous one. 786 * 787 * C calling convention: exc_xen_hypervisor_callback(struct *pt_regs) 788 */ 789 __FUNC_ALIGN 790SYM_CODE_START_LOCAL_NOALIGN(exc_xen_hypervisor_callback) 791 792/* 793 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will 794 * see the correct pointer to the pt_regs 795 */ 796 UNWIND_HINT_FUNC 797 movq %rdi, %rsp /* we don't return, adjust the stack frame */ 798 UNWIND_HINT_REGS 799 800 call xen_pv_evtchn_do_upcall 801 802 jmp error_return 803SYM_CODE_END(exc_xen_hypervisor_callback) 804 805/* 806 * Hypervisor uses this for application faults while it executes. 807 * We get here for two reasons: 808 * 1. Fault while reloading DS, ES, FS or GS 809 * 2. Fault while executing IRET 810 * Category 1 we do not need to fix up as Xen has already reloaded all segment 811 * registers that could be reloaded and zeroed the others. 812 * Category 2 we fix up by killing the current process. We cannot use the 813 * normal Linux return path in this case because if we use the IRET hypercall 814 * to pop the stack frame we end up in an infinite loop of failsafe callbacks. 815 * We distinguish between categories by comparing each saved segment register 816 * with its current contents: any discrepancy means we in category 1. 817 */ 818 __FUNC_ALIGN 819SYM_CODE_START_NOALIGN(xen_failsafe_callback) 820 UNWIND_HINT_UNDEFINED 821 ENDBR 822 movl %ds, %ecx 823 cmpw %cx, 0x10(%rsp) 824 jne 1f 825 movl %es, %ecx 826 cmpw %cx, 0x18(%rsp) 827 jne 1f 828 movl %fs, %ecx 829 cmpw %cx, 0x20(%rsp) 830 jne 1f 831 movl %gs, %ecx 832 cmpw %cx, 0x28(%rsp) 833 jne 1f 834 /* All segments match their saved values => Category 2 (Bad IRET). */ 835 movq (%rsp), %rcx 836 movq 8(%rsp), %r11 837 addq $0x30, %rsp 838 pushq $0 /* RIP */ 839 UNWIND_HINT_IRET_REGS offset=8 840 jmp asm_exc_general_protection 8411: /* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */ 842 movq (%rsp), %rcx 843 movq 8(%rsp), %r11 844 addq $0x30, %rsp 845 UNWIND_HINT_IRET_REGS 846 pushq $-1 /* orig_ax = -1 => not a system call */ 847 PUSH_AND_CLEAR_REGS 848 ENCODE_FRAME_POINTER 849 jmp error_return 850SYM_CODE_END(xen_failsafe_callback) 851#endif /* CONFIG_XEN_PV */ 852 853/* 854 * Save all registers in pt_regs. Return GSBASE related information 855 * in EBX depending on the availability of the FSGSBASE instructions: 856 * 857 * FSGSBASE R/EBX 858 * N 0 -> SWAPGS on exit 859 * 1 -> no SWAPGS on exit 860 * 861 * Y GSBASE value at entry, must be restored in paranoid_exit 862 * 863 * R14 - old CR3 864 * R15 - old SPEC_CTRL 865 */ 866SYM_CODE_START(paranoid_entry) 867 ANNOTATE_NOENDBR 868 UNWIND_HINT_FUNC 869 PUSH_AND_CLEAR_REGS save_ret=1 870 ENCODE_FRAME_POINTER 8 871 872 /* 873 * Always stash CR3 in %r14. This value will be restored, 874 * verbatim, at exit. Needed if paranoid_entry interrupted 875 * another entry that already switched to the user CR3 value 876 * but has not yet returned to userspace. 877 * 878 * This is also why CS (stashed in the "iret frame" by the 879 * hardware at entry) can not be used: this may be a return 880 * to kernel code, but with a user CR3 value. 881 * 882 * Switching CR3 does not depend on kernel GSBASE so it can 883 * be done before switching to the kernel GSBASE. This is 884 * required for FSGSBASE because the kernel GSBASE has to 885 * be retrieved from a kernel internal table. 886 */ 887 SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg=%rax save_reg=%r14 888 889 /* 890 * Handling GSBASE depends on the availability of FSGSBASE. 891 * 892 * Without FSGSBASE the kernel enforces that negative GSBASE 893 * values indicate kernel GSBASE. With FSGSBASE no assumptions 894 * can be made about the GSBASE value when entering from user 895 * space. 896 */ 897 ALTERNATIVE "jmp .Lparanoid_entry_checkgs", "", X86_FEATURE_FSGSBASE 898 899 /* 900 * Read the current GSBASE and store it in %rbx unconditionally, 901 * retrieve and set the current CPUs kernel GSBASE. The stored value 902 * has to be restored in paranoid_exit unconditionally. 903 * 904 * The unconditional write to GS base below ensures that no subsequent 905 * loads based on a mispredicted GS base can happen, therefore no LFENCE 906 * is needed here. 907 */ 908 SAVE_AND_SET_GSBASE scratch_reg=%rax save_reg=%rbx 909 jmp .Lparanoid_gsbase_done 910 911.Lparanoid_entry_checkgs: 912 /* EBX = 1 -> kernel GSBASE active, no restore required */ 913 movl $1, %ebx 914 915 /* 916 * The kernel-enforced convention is a negative GSBASE indicates 917 * a kernel value. No SWAPGS needed on entry and exit. 918 */ 919 movl $MSR_GS_BASE, %ecx 920 rdmsr 921 testl %edx, %edx 922 js .Lparanoid_kernel_gsbase 923 924 /* EBX = 0 -> SWAPGS required on exit */ 925 xorl %ebx, %ebx 926 swapgs 927.Lparanoid_kernel_gsbase: 928 FENCE_SWAPGS_KERNEL_ENTRY 929.Lparanoid_gsbase_done: 930 931 /* 932 * Once we have CR3 and %GS setup save and set SPEC_CTRL. Just like 933 * CR3 above, keep the old value in a callee saved register. 934 */ 935 IBRS_ENTER save_reg=%r15 936 UNTRAIN_RET_FROM_CALL 937 938 RET 939SYM_CODE_END(paranoid_entry) 940 941/* 942 * "Paranoid" exit path from exception stack. This is invoked 943 * only on return from non-NMI IST interrupts that came 944 * from kernel space. 945 * 946 * We may be returning to very strange contexts (e.g. very early 947 * in syscall entry), so checking for preemption here would 948 * be complicated. Fortunately, there's no good reason to try 949 * to handle preemption here. 950 * 951 * R/EBX contains the GSBASE related information depending on the 952 * availability of the FSGSBASE instructions: 953 * 954 * FSGSBASE R/EBX 955 * N 0 -> SWAPGS on exit 956 * 1 -> no SWAPGS on exit 957 * 958 * Y User space GSBASE, must be restored unconditionally 959 * 960 * R14 - old CR3 961 * R15 - old SPEC_CTRL 962 */ 963SYM_CODE_START_LOCAL(paranoid_exit) 964 UNWIND_HINT_REGS 965 966 /* 967 * Must restore IBRS state before both CR3 and %GS since we need access 968 * to the per-CPU x86_spec_ctrl_shadow variable. 969 */ 970 IBRS_EXIT save_reg=%r15 971 972 /* 973 * The order of operations is important. PARANOID_RESTORE_CR3 requires 974 * kernel GSBASE. 975 * 976 * NB to anyone to try to optimize this code: this code does 977 * not execute at all for exceptions from user mode. Those 978 * exceptions go through error_return instead. 979 */ 980 PARANOID_RESTORE_CR3 scratch_reg=%rax save_reg=%r14 981 982 /* Handle the three GSBASE cases */ 983 ALTERNATIVE "jmp .Lparanoid_exit_checkgs", "", X86_FEATURE_FSGSBASE 984 985 /* With FSGSBASE enabled, unconditionally restore GSBASE */ 986 wrgsbase %rbx 987 jmp restore_regs_and_return_to_kernel 988 989.Lparanoid_exit_checkgs: 990 /* On non-FSGSBASE systems, conditionally do SWAPGS */ 991 testl %ebx, %ebx 992 jnz restore_regs_and_return_to_kernel 993 994 /* We are returning to a context with user GSBASE */ 995 swapgs 996 jmp restore_regs_and_return_to_kernel 997SYM_CODE_END(paranoid_exit) 998 999/* 1000 * Switch GS and CR3 if needed. 1001 */ 1002SYM_CODE_START(error_entry) 1003 ANNOTATE_NOENDBR 1004 UNWIND_HINT_FUNC 1005 1006 PUSH_AND_CLEAR_REGS save_ret=1 1007 ENCODE_FRAME_POINTER 8 1008 1009 testb $3, CS+8(%rsp) 1010 jz .Lerror_kernelspace 1011 1012 /* 1013 * We entered from user mode or we're pretending to have entered 1014 * from user mode due to an IRET fault. 1015 */ 1016 swapgs 1017 FENCE_SWAPGS_USER_ENTRY 1018 /* We have user CR3. Change to kernel CR3. */ 1019 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax 1020 IBRS_ENTER 1021 UNTRAIN_RET_FROM_CALL 1022 1023 leaq 8(%rsp), %rdi /* arg0 = pt_regs pointer */ 1024 /* Put us onto the real thread stack. */ 1025 jmp sync_regs 1026 1027 /* 1028 * There are two places in the kernel that can potentially fault with 1029 * usergs. Handle them here. B stepping K8s sometimes report a 1030 * truncated RIP for IRET exceptions returning to compat mode. Check 1031 * for these here too. 1032 */ 1033.Lerror_kernelspace: 1034 leaq native_irq_return_iret(%rip), %rcx 1035 cmpq %rcx, RIP+8(%rsp) 1036 je .Lerror_bad_iret 1037 movl %ecx, %eax /* zero extend */ 1038 cmpq %rax, RIP+8(%rsp) 1039 je .Lbstep_iret 1040 cmpq $.Lgs_change, RIP+8(%rsp) 1041 jne .Lerror_entry_done_lfence 1042 1043 /* 1044 * hack: .Lgs_change can fail with user gsbase. If this happens, fix up 1045 * gsbase and proceed. We'll fix up the exception and land in 1046 * .Lgs_change's error handler with kernel gsbase. 1047 */ 1048 swapgs 1049 1050 /* 1051 * Issue an LFENCE to prevent GS speculation, regardless of whether it is a 1052 * kernel or user gsbase. 1053 */ 1054.Lerror_entry_done_lfence: 1055 FENCE_SWAPGS_KERNEL_ENTRY 1056 CALL_DEPTH_ACCOUNT 1057 leaq 8(%rsp), %rax /* return pt_regs pointer */ 1058 VALIDATE_UNRET_END 1059 RET 1060 1061.Lbstep_iret: 1062 /* Fix truncated RIP */ 1063 movq %rcx, RIP+8(%rsp) 1064 /* fall through */ 1065 1066.Lerror_bad_iret: 1067 /* 1068 * We came from an IRET to user mode, so we have user 1069 * gsbase and CR3. Switch to kernel gsbase and CR3: 1070 */ 1071 swapgs 1072 FENCE_SWAPGS_USER_ENTRY 1073 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax 1074 IBRS_ENTER 1075 UNTRAIN_RET_FROM_CALL 1076 1077 /* 1078 * Pretend that the exception came from user mode: set up pt_regs 1079 * as if we faulted immediately after IRET. 1080 */ 1081 leaq 8(%rsp), %rdi /* arg0 = pt_regs pointer */ 1082 call fixup_bad_iret 1083 mov %rax, %rdi 1084 jmp sync_regs 1085SYM_CODE_END(error_entry) 1086 1087SYM_CODE_START_LOCAL(error_return) 1088 UNWIND_HINT_REGS 1089 DEBUG_ENTRY_ASSERT_IRQS_OFF 1090 testb $3, CS(%rsp) 1091 jz restore_regs_and_return_to_kernel 1092 jmp swapgs_restore_regs_and_return_to_usermode 1093SYM_CODE_END(error_return) 1094 1095/* 1096 * Runs on exception stack. Xen PV does not go through this path at all, 1097 * so we can use real assembly here. 1098 * 1099 * Registers: 1100 * %r14: Used to save/restore the CR3 of the interrupted context 1101 * when MITIGATION_PAGE_TABLE_ISOLATION is in use. Do not clobber. 1102 */ 1103SYM_CODE_START(asm_exc_nmi) 1104 UNWIND_HINT_IRET_ENTRY 1105 ENDBR 1106 1107 /* 1108 * We allow breakpoints in NMIs. If a breakpoint occurs, then 1109 * the iretq it performs will take us out of NMI context. 1110 * This means that we can have nested NMIs where the next 1111 * NMI is using the top of the stack of the previous NMI. We 1112 * can't let it execute because the nested NMI will corrupt the 1113 * stack of the previous NMI. NMI handlers are not re-entrant 1114 * anyway. 1115 * 1116 * To handle this case we do the following: 1117 * Check a special location on the stack that contains a 1118 * variable that is set when NMIs are executing. 1119 * The interrupted task's stack is also checked to see if it 1120 * is an NMI stack. 1121 * If the variable is not set and the stack is not the NMI 1122 * stack then: 1123 * o Set the special variable on the stack 1124 * o Copy the interrupt frame into an "outermost" location on the 1125 * stack 1126 * o Copy the interrupt frame into an "iret" location on the stack 1127 * o Continue processing the NMI 1128 * If the variable is set or the previous stack is the NMI stack: 1129 * o Modify the "iret" location to jump to the repeat_nmi 1130 * o return back to the first NMI 1131 * 1132 * Now on exit of the first NMI, we first clear the stack variable 1133 * The NMI stack will tell any nested NMIs at that point that it is 1134 * nested. Then we pop the stack normally with iret, and if there was 1135 * a nested NMI that updated the copy interrupt stack frame, a 1136 * jump will be made to the repeat_nmi code that will handle the second 1137 * NMI. 1138 * 1139 * However, espfix prevents us from directly returning to userspace 1140 * with a single IRET instruction. Similarly, IRET to user mode 1141 * can fault. We therefore handle NMIs from user space like 1142 * other IST entries. 1143 */ 1144 1145 ASM_CLAC 1146 cld 1147 1148 /* Use %rdx as our temp variable throughout */ 1149 pushq %rdx 1150 1151 testb $3, CS-RIP+8(%rsp) 1152 jz .Lnmi_from_kernel 1153 1154 /* 1155 * NMI from user mode. We need to run on the thread stack, but we 1156 * can't go through the normal entry paths: NMIs are masked, and 1157 * we don't want to enable interrupts, because then we'll end 1158 * up in an awkward situation in which IRQs are on but NMIs 1159 * are off. 1160 * 1161 * We also must not push anything to the stack before switching 1162 * stacks lest we corrupt the "NMI executing" variable. 1163 */ 1164 1165 swapgs 1166 FENCE_SWAPGS_USER_ENTRY 1167 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdx 1168 movq %rsp, %rdx 1169 movq PER_CPU_VAR(pcpu_hot + X86_top_of_stack), %rsp 1170 UNWIND_HINT_IRET_REGS base=%rdx offset=8 1171 pushq 5*8(%rdx) /* pt_regs->ss */ 1172 pushq 4*8(%rdx) /* pt_regs->rsp */ 1173 pushq 3*8(%rdx) /* pt_regs->flags */ 1174 pushq 2*8(%rdx) /* pt_regs->cs */ 1175 pushq 1*8(%rdx) /* pt_regs->rip */ 1176 UNWIND_HINT_IRET_REGS 1177 pushq $-1 /* pt_regs->orig_ax */ 1178 PUSH_AND_CLEAR_REGS rdx=(%rdx) 1179 ENCODE_FRAME_POINTER 1180 1181 IBRS_ENTER 1182 UNTRAIN_RET 1183 1184 /* 1185 * At this point we no longer need to worry about stack damage 1186 * due to nesting -- we're on the normal thread stack and we're 1187 * done with the NMI stack. 1188 */ 1189 1190 movq %rsp, %rdi 1191 call exc_nmi 1192 1193 /* 1194 * Return back to user mode. We must *not* do the normal exit 1195 * work, because we don't want to enable interrupts. 1196 */ 1197 jmp swapgs_restore_regs_and_return_to_usermode 1198 1199.Lnmi_from_kernel: 1200 /* 1201 * Here's what our stack frame will look like: 1202 * +---------------------------------------------------------+ 1203 * | original SS | 1204 * | original Return RSP | 1205 * | original RFLAGS | 1206 * | original CS | 1207 * | original RIP | 1208 * +---------------------------------------------------------+ 1209 * | temp storage for rdx | 1210 * +---------------------------------------------------------+ 1211 * | "NMI executing" variable | 1212 * +---------------------------------------------------------+ 1213 * | iret SS } Copied from "outermost" frame | 1214 * | iret Return RSP } on each loop iteration; overwritten | 1215 * | iret RFLAGS } by a nested NMI to force another | 1216 * | iret CS } iteration if needed. | 1217 * | iret RIP } | 1218 * +---------------------------------------------------------+ 1219 * | outermost SS } initialized in first_nmi; | 1220 * | outermost Return RSP } will not be changed before | 1221 * | outermost RFLAGS } NMI processing is done. | 1222 * | outermost CS } Copied to "iret" frame on each | 1223 * | outermost RIP } iteration. | 1224 * +---------------------------------------------------------+ 1225 * | pt_regs | 1226 * +---------------------------------------------------------+ 1227 * 1228 * The "original" frame is used by hardware. Before re-enabling 1229 * NMIs, we need to be done with it, and we need to leave enough 1230 * space for the asm code here. 1231 * 1232 * We return by executing IRET while RSP points to the "iret" frame. 1233 * That will either return for real or it will loop back into NMI 1234 * processing. 1235 * 1236 * The "outermost" frame is copied to the "iret" frame on each 1237 * iteration of the loop, so each iteration starts with the "iret" 1238 * frame pointing to the final return target. 1239 */ 1240 1241 /* 1242 * Determine whether we're a nested NMI. 1243 * 1244 * If we interrupted kernel code between repeat_nmi and 1245 * end_repeat_nmi, then we are a nested NMI. We must not 1246 * modify the "iret" frame because it's being written by 1247 * the outer NMI. That's okay; the outer NMI handler is 1248 * about to call exc_nmi() anyway, so we can just resume 1249 * the outer NMI. 1250 */ 1251 1252 movq $repeat_nmi, %rdx 1253 cmpq 8(%rsp), %rdx 1254 ja 1f 1255 movq $end_repeat_nmi, %rdx 1256 cmpq 8(%rsp), %rdx 1257 ja nested_nmi_out 12581: 1259 1260 /* 1261 * Now check "NMI executing". If it's set, then we're nested. 1262 * This will not detect if we interrupted an outer NMI just 1263 * before IRET. 1264 */ 1265 cmpl $1, -8(%rsp) 1266 je nested_nmi 1267 1268 /* 1269 * Now test if the previous stack was an NMI stack. This covers 1270 * the case where we interrupt an outer NMI after it clears 1271 * "NMI executing" but before IRET. We need to be careful, though: 1272 * there is one case in which RSP could point to the NMI stack 1273 * despite there being no NMI active: naughty userspace controls 1274 * RSP at the very beginning of the SYSCALL targets. We can 1275 * pull a fast one on naughty userspace, though: we program 1276 * SYSCALL to mask DF, so userspace cannot cause DF to be set 1277 * if it controls the kernel's RSP. We set DF before we clear 1278 * "NMI executing". 1279 */ 1280 lea 6*8(%rsp), %rdx 1281 /* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */ 1282 cmpq %rdx, 4*8(%rsp) 1283 /* If the stack pointer is above the NMI stack, this is a normal NMI */ 1284 ja first_nmi 1285 1286 subq $EXCEPTION_STKSZ, %rdx 1287 cmpq %rdx, 4*8(%rsp) 1288 /* If it is below the NMI stack, it is a normal NMI */ 1289 jb first_nmi 1290 1291 /* Ah, it is within the NMI stack. */ 1292 1293 testb $(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp) 1294 jz first_nmi /* RSP was user controlled. */ 1295 1296 /* This is a nested NMI. */ 1297 1298nested_nmi: 1299 /* 1300 * Modify the "iret" frame to point to repeat_nmi, forcing another 1301 * iteration of NMI handling. 1302 */ 1303 subq $8, %rsp 1304 leaq -10*8(%rsp), %rdx 1305 pushq $__KERNEL_DS 1306 pushq %rdx 1307 pushfq 1308 pushq $__KERNEL_CS 1309 pushq $repeat_nmi 1310 1311 /* Put stack back */ 1312 addq $(6*8), %rsp 1313 1314nested_nmi_out: 1315 popq %rdx 1316 1317 /* We are returning to kernel mode, so this cannot result in a fault. */ 1318 iretq 1319 1320first_nmi: 1321 /* Restore rdx. */ 1322 movq (%rsp), %rdx 1323 1324 /* Make room for "NMI executing". */ 1325 pushq $0 1326 1327 /* Leave room for the "iret" frame */ 1328 subq $(5*8), %rsp 1329 1330 /* Copy the "original" frame to the "outermost" frame */ 1331 .rept 5 1332 pushq 11*8(%rsp) 1333 .endr 1334 UNWIND_HINT_IRET_REGS 1335 1336 /* Everything up to here is safe from nested NMIs */ 1337 1338#ifdef CONFIG_DEBUG_ENTRY 1339 /* 1340 * For ease of testing, unmask NMIs right away. Disabled by 1341 * default because IRET is very expensive. 1342 */ 1343 pushq $0 /* SS */ 1344 pushq %rsp /* RSP (minus 8 because of the previous push) */ 1345 addq $8, (%rsp) /* Fix up RSP */ 1346 pushfq /* RFLAGS */ 1347 pushq $__KERNEL_CS /* CS */ 1348 pushq $1f /* RIP */ 1349 iretq /* continues at repeat_nmi below */ 1350 UNWIND_HINT_IRET_REGS 13511: 1352#endif 1353 1354repeat_nmi: 1355 ANNOTATE_NOENDBR // this code 1356 /* 1357 * If there was a nested NMI, the first NMI's iret will return 1358 * here. But NMIs are still enabled and we can take another 1359 * nested NMI. The nested NMI checks the interrupted RIP to see 1360 * if it is between repeat_nmi and end_repeat_nmi, and if so 1361 * it will just return, as we are about to repeat an NMI anyway. 1362 * This makes it safe to copy to the stack frame that a nested 1363 * NMI will update. 1364 * 1365 * RSP is pointing to "outermost RIP". gsbase is unknown, but, if 1366 * we're repeating an NMI, gsbase has the same value that it had on 1367 * the first iteration. paranoid_entry will load the kernel 1368 * gsbase if needed before we call exc_nmi(). "NMI executing" 1369 * is zero. 1370 */ 1371 movq $1, 10*8(%rsp) /* Set "NMI executing". */ 1372 1373 /* 1374 * Copy the "outermost" frame to the "iret" frame. NMIs that nest 1375 * here must not modify the "iret" frame while we're writing to 1376 * it or it will end up containing garbage. 1377 */ 1378 addq $(10*8), %rsp 1379 .rept 5 1380 pushq -6*8(%rsp) 1381 .endr 1382 subq $(5*8), %rsp 1383end_repeat_nmi: 1384 ANNOTATE_NOENDBR // this code 1385 1386 /* 1387 * Everything below this point can be preempted by a nested NMI. 1388 * If this happens, then the inner NMI will change the "iret" 1389 * frame to point back to repeat_nmi. 1390 */ 1391 pushq $-1 /* ORIG_RAX: no syscall to restart */ 1392 1393 /* 1394 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit 1395 * as we should not be calling schedule in NMI context. 1396 * Even with normal interrupts enabled. An NMI should not be 1397 * setting NEED_RESCHED or anything that normal interrupts and 1398 * exceptions might do. 1399 */ 1400 call paranoid_entry 1401 UNWIND_HINT_REGS 1402 1403 movq %rsp, %rdi 1404 call exc_nmi 1405 1406 /* Always restore stashed SPEC_CTRL value (see paranoid_entry) */ 1407 IBRS_EXIT save_reg=%r15 1408 1409 PARANOID_RESTORE_CR3 scratch_reg=%r15 save_reg=%r14 1410 1411 /* 1412 * The above invocation of paranoid_entry stored the GSBASE 1413 * related information in R/EBX depending on the availability 1414 * of FSGSBASE. 1415 * 1416 * If FSGSBASE is enabled, restore the saved GSBASE value 1417 * unconditionally, otherwise take the conditional SWAPGS path. 1418 */ 1419 ALTERNATIVE "jmp nmi_no_fsgsbase", "", X86_FEATURE_FSGSBASE 1420 1421 wrgsbase %rbx 1422 jmp nmi_restore 1423 1424nmi_no_fsgsbase: 1425 /* EBX == 0 -> invoke SWAPGS */ 1426 testl %ebx, %ebx 1427 jnz nmi_restore 1428 1429nmi_swapgs: 1430 swapgs 1431 1432nmi_restore: 1433 POP_REGS 1434 1435 /* 1436 * Skip orig_ax and the "outermost" frame to point RSP at the "iret" 1437 * at the "iret" frame. 1438 */ 1439 addq $6*8, %rsp 1440 1441 /* 1442 * Clear "NMI executing". Set DF first so that we can easily 1443 * distinguish the remaining code between here and IRET from 1444 * the SYSCALL entry and exit paths. 1445 * 1446 * We arguably should just inspect RIP instead, but I (Andy) wrote 1447 * this code when I had the misapprehension that Xen PV supported 1448 * NMIs, and Xen PV would break that approach. 1449 */ 1450 std 1451 movq $0, 5*8(%rsp) /* clear "NMI executing" */ 1452 1453 /* 1454 * Skip CLEAR_CPU_BUFFERS here, since it only helps in rare cases like 1455 * NMI in kernel after user state is restored. For an unprivileged user 1456 * these conditions are hard to meet. 1457 */ 1458 1459 /* 1460 * iretq reads the "iret" frame and exits the NMI stack in a 1461 * single instruction. We are returning to kernel mode, so this 1462 * cannot result in a fault. Similarly, we don't need to worry 1463 * about espfix64 on the way back to kernel mode. 1464 */ 1465 iretq 1466SYM_CODE_END(asm_exc_nmi) 1467 1468/* 1469 * This handles SYSCALL from 32-bit code. There is no way to program 1470 * MSRs to fully disable 32-bit SYSCALL. 1471 */ 1472SYM_CODE_START(entry_SYSCALL32_ignore) 1473 UNWIND_HINT_END_OF_STACK 1474 ENDBR 1475 mov $-ENOSYS, %eax 1476 CLEAR_CPU_BUFFERS 1477 sysretl 1478SYM_CODE_END(entry_SYSCALL32_ignore) 1479 1480.pushsection .text, "ax" 1481 __FUNC_ALIGN 1482SYM_CODE_START_NOALIGN(rewind_stack_and_make_dead) 1483 UNWIND_HINT_FUNC 1484 /* Prevent any naive code from trying to unwind to our caller. */ 1485 xorl %ebp, %ebp 1486 1487 movq PER_CPU_VAR(pcpu_hot + X86_top_of_stack), %rax 1488 leaq -PTREGS_SIZE(%rax), %rsp 1489 UNWIND_HINT_REGS 1490 1491 call make_task_dead 1492SYM_CODE_END(rewind_stack_and_make_dead) 1493.popsection 1494 1495/* 1496 * This sequence executes branches in order to remove user branch information 1497 * from the branch history tracker in the Branch Predictor, therefore removing 1498 * user influence on subsequent BTB lookups. 1499 * 1500 * It should be used on parts prior to Alder Lake. Newer parts should use the 1501 * BHI_DIS_S hardware control instead. If a pre-Alder Lake part is being 1502 * virtualized on newer hardware the VMM should protect against BHI attacks by 1503 * setting BHI_DIS_S for the guests. 1504 * 1505 * CALLs/RETs are necessary to prevent Loop Stream Detector(LSD) from engaging 1506 * and not clearing the branch history. The call tree looks like: 1507 * 1508 * call 1 1509 * call 2 1510 * call 2 1511 * call 2 1512 * call 2 1513 * call 2 1514 * ret 1515 * ret 1516 * ret 1517 * ret 1518 * ret 1519 * ret 1520 * 1521 * This means that the stack is non-constant and ORC can't unwind it with %rsp 1522 * alone. Therefore we unconditionally set up the frame pointer, which allows 1523 * ORC to unwind properly. 1524 * 1525 * The alignment is for performance and not for safety, and may be safely 1526 * refactored in the future if needed. 1527 */ 1528SYM_FUNC_START(clear_bhb_loop) 1529 push %rbp 1530 mov %rsp, %rbp 1531 movl $5, %ecx 1532 ANNOTATE_INTRA_FUNCTION_CALL 1533 call 1f 1534 jmp 5f 1535 .align 64, 0xcc 1536 ANNOTATE_INTRA_FUNCTION_CALL 15371: call 2f 1538 RET 1539 .align 64, 0xcc 15402: movl $5, %eax 15413: jmp 4f 1542 nop 15434: sub $1, %eax 1544 jnz 3b 1545 sub $1, %ecx 1546 jnz 1b 1547 RET 15485: lfence 1549 pop %rbp 1550 RET 1551SYM_FUNC_END(clear_bhb_loop) 1552EXPORT_SYMBOL_GPL(clear_bhb_loop) 1553STACK_FRAME_NON_STANDARD(clear_bhb_loop) 1554