1/* SPDX-License-Identifier: GPL-2.0 */ 2/* 3 * linux/arch/x86_64/entry.S 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * Copyright (C) 2000, 2001, 2002 Andi Kleen SuSE Labs 7 * Copyright (C) 2000 Pavel Machek <pavel@suse.cz> 8 * 9 * entry.S contains the system-call and fault low-level handling routines. 10 * 11 * Some of this is documented in Documentation/x86/entry_64.rst 12 * 13 * A note on terminology: 14 * - iret frame: Architecture defined interrupt frame from SS to RIP 15 * at the top of the kernel process stack. 16 * 17 * Some macro usage: 18 * - SYM_FUNC_START/END:Define functions in the symbol table. 19 * - idtentry: Define exception entry points. 20 */ 21#include <linux/linkage.h> 22#include <asm/segment.h> 23#include <asm/cache.h> 24#include <asm/errno.h> 25#include <asm/asm-offsets.h> 26#include <asm/msr.h> 27#include <asm/unistd.h> 28#include <asm/thread_info.h> 29#include <asm/hw_irq.h> 30#include <asm/page_types.h> 31#include <asm/irqflags.h> 32#include <asm/paravirt.h> 33#include <asm/percpu.h> 34#include <asm/asm.h> 35#include <asm/smap.h> 36#include <asm/pgtable_types.h> 37#include <asm/export.h> 38#include <asm/frame.h> 39#include <asm/trapnr.h> 40#include <asm/nospec-branch.h> 41#include <asm/fsgsbase.h> 42#include <linux/err.h> 43 44#include "calling.h" 45 46.code64 47.section .entry.text, "ax" 48 49/* 50 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers. 51 * 52 * This is the only entry point used for 64-bit system calls. The 53 * hardware interface is reasonably well designed and the register to 54 * argument mapping Linux uses fits well with the registers that are 55 * available when SYSCALL is used. 56 * 57 * SYSCALL instructions can be found inlined in libc implementations as 58 * well as some other programs and libraries. There are also a handful 59 * of SYSCALL instructions in the vDSO used, for example, as a 60 * clock_gettimeofday fallback. 61 * 62 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11, 63 * then loads new ss, cs, and rip from previously programmed MSRs. 64 * rflags gets masked by a value from another MSR (so CLD and CLAC 65 * are not needed). SYSCALL does not save anything on the stack 66 * and does not change rsp. 67 * 68 * Registers on entry: 69 * rax system call number 70 * rcx return address 71 * r11 saved rflags (note: r11 is callee-clobbered register in C ABI) 72 * rdi arg0 73 * rsi arg1 74 * rdx arg2 75 * r10 arg3 (needs to be moved to rcx to conform to C ABI) 76 * r8 arg4 77 * r9 arg5 78 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI) 79 * 80 * Only called from user space. 81 * 82 * When user can change pt_regs->foo always force IRET. That is because 83 * it deals with uncanonical addresses better. SYSRET has trouble 84 * with them due to bugs in both AMD and Intel CPUs. 85 */ 86 87SYM_CODE_START(entry_SYSCALL_64) 88 UNWIND_HINT_EMPTY 89 90 swapgs 91 /* tss.sp2 is scratch space. */ 92 movq %rsp, PER_CPU_VAR(cpu_tss_rw + TSS_sp2) 93 SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp 94 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp 95 96SYM_INNER_LABEL(entry_SYSCALL_64_safe_stack, SYM_L_GLOBAL) 97 98 /* Construct struct pt_regs on stack */ 99 pushq $__USER_DS /* pt_regs->ss */ 100 pushq PER_CPU_VAR(cpu_tss_rw + TSS_sp2) /* pt_regs->sp */ 101 pushq %r11 /* pt_regs->flags */ 102 pushq $__USER_CS /* pt_regs->cs */ 103 pushq %rcx /* pt_regs->ip */ 104SYM_INNER_LABEL(entry_SYSCALL_64_after_hwframe, SYM_L_GLOBAL) 105 pushq %rax /* pt_regs->orig_ax */ 106 107 PUSH_AND_CLEAR_REGS rax=$-ENOSYS 108 109 /* IRQs are off. */ 110 movq %rax, %rdi 111 movq %rsp, %rsi 112 call do_syscall_64 /* returns with IRQs disabled */ 113 114 /* 115 * Try to use SYSRET instead of IRET if we're returning to 116 * a completely clean 64-bit userspace context. If we're not, 117 * go to the slow exit path. 118 * In the Xen PV case we must use iret anyway. 119 */ 120 121 ALTERNATIVE "", "jmp swapgs_restore_regs_and_return_to_usermode", \ 122 X86_FEATURE_XENPV 123 124 movq RCX(%rsp), %rcx 125 movq RIP(%rsp), %r11 126 127 cmpq %rcx, %r11 /* SYSRET requires RCX == RIP */ 128 jne swapgs_restore_regs_and_return_to_usermode 129 130 /* 131 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP 132 * in kernel space. This essentially lets the user take over 133 * the kernel, since userspace controls RSP. 134 * 135 * If width of "canonical tail" ever becomes variable, this will need 136 * to be updated to remain correct on both old and new CPUs. 137 * 138 * Change top bits to match most significant bit (47th or 56th bit 139 * depending on paging mode) in the address. 140 */ 141#ifdef CONFIG_X86_5LEVEL 142 ALTERNATIVE "shl $(64 - 48), %rcx; sar $(64 - 48), %rcx", \ 143 "shl $(64 - 57), %rcx; sar $(64 - 57), %rcx", X86_FEATURE_LA57 144#else 145 shl $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx 146 sar $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx 147#endif 148 149 /* If this changed %rcx, it was not canonical */ 150 cmpq %rcx, %r11 151 jne swapgs_restore_regs_and_return_to_usermode 152 153 cmpq $__USER_CS, CS(%rsp) /* CS must match SYSRET */ 154 jne swapgs_restore_regs_and_return_to_usermode 155 156 movq R11(%rsp), %r11 157 cmpq %r11, EFLAGS(%rsp) /* R11 == RFLAGS */ 158 jne swapgs_restore_regs_and_return_to_usermode 159 160 /* 161 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot 162 * restore RF properly. If the slowpath sets it for whatever reason, we 163 * need to restore it correctly. 164 * 165 * SYSRET can restore TF, but unlike IRET, restoring TF results in a 166 * trap from userspace immediately after SYSRET. This would cause an 167 * infinite loop whenever #DB happens with register state that satisfies 168 * the opportunistic SYSRET conditions. For example, single-stepping 169 * this user code: 170 * 171 * movq $stuck_here, %rcx 172 * pushfq 173 * popq %r11 174 * stuck_here: 175 * 176 * would never get past 'stuck_here'. 177 */ 178 testq $(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11 179 jnz swapgs_restore_regs_and_return_to_usermode 180 181 /* nothing to check for RSP */ 182 183 cmpq $__USER_DS, SS(%rsp) /* SS must match SYSRET */ 184 jne swapgs_restore_regs_and_return_to_usermode 185 186 /* 187 * We win! This label is here just for ease of understanding 188 * perf profiles. Nothing jumps here. 189 */ 190syscall_return_via_sysret: 191 /* rcx and r11 are already restored (see code above) */ 192 POP_REGS pop_rdi=0 skip_r11rcx=1 193 194 /* 195 * Now all regs are restored except RSP and RDI. 196 * Save old stack pointer and switch to trampoline stack. 197 */ 198 movq %rsp, %rdi 199 movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp 200 UNWIND_HINT_EMPTY 201 202 pushq RSP-RDI(%rdi) /* RSP */ 203 pushq (%rdi) /* RDI */ 204 205 /* 206 * We are on the trampoline stack. All regs except RDI are live. 207 * We can do future final exit work right here. 208 */ 209 STACKLEAK_ERASE_NOCLOBBER 210 211 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi 212 213 popq %rdi 214 popq %rsp 215 swapgs 216 sysretq 217SYM_CODE_END(entry_SYSCALL_64) 218 219/* 220 * %rdi: prev task 221 * %rsi: next task 222 */ 223.pushsection .text, "ax" 224SYM_FUNC_START(__switch_to_asm) 225 /* 226 * Save callee-saved registers 227 * This must match the order in inactive_task_frame 228 */ 229 pushq %rbp 230 pushq %rbx 231 pushq %r12 232 pushq %r13 233 pushq %r14 234 pushq %r15 235 236 /* switch stack */ 237 movq %rsp, TASK_threadsp(%rdi) 238 movq TASK_threadsp(%rsi), %rsp 239 240#ifdef CONFIG_STACKPROTECTOR 241 movq TASK_stack_canary(%rsi), %rbx 242 movq %rbx, PER_CPU_VAR(fixed_percpu_data) + stack_canary_offset 243#endif 244 245#ifdef CONFIG_RETPOLINE 246 /* 247 * When switching from a shallower to a deeper call stack 248 * the RSB may either underflow or use entries populated 249 * with userspace addresses. On CPUs where those concerns 250 * exist, overwrite the RSB with entries which capture 251 * speculative execution to prevent attack. 252 */ 253 FILL_RETURN_BUFFER %r12, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW 254#endif 255 256 /* restore callee-saved registers */ 257 popq %r15 258 popq %r14 259 popq %r13 260 popq %r12 261 popq %rbx 262 popq %rbp 263 264 jmp __switch_to 265SYM_FUNC_END(__switch_to_asm) 266.popsection 267 268/* 269 * A newly forked process directly context switches into this address. 270 * 271 * rax: prev task we switched from 272 * rbx: kernel thread func (NULL for user thread) 273 * r12: kernel thread arg 274 */ 275.pushsection .text, "ax" 276SYM_CODE_START(ret_from_fork) 277 UNWIND_HINT_EMPTY 278 movq %rax, %rdi 279 call schedule_tail /* rdi: 'prev' task parameter */ 280 281 testq %rbx, %rbx /* from kernel_thread? */ 282 jnz 1f /* kernel threads are uncommon */ 283 2842: 285 UNWIND_HINT_REGS 286 movq %rsp, %rdi 287 call syscall_exit_to_user_mode /* returns with IRQs disabled */ 288 jmp swapgs_restore_regs_and_return_to_usermode 289 2901: 291 /* kernel thread */ 292 UNWIND_HINT_EMPTY 293 movq %r12, %rdi 294 CALL_NOSPEC rbx 295 /* 296 * A kernel thread is allowed to return here after successfully 297 * calling kernel_execve(). Exit to userspace to complete the execve() 298 * syscall. 299 */ 300 movq $0, RAX(%rsp) 301 jmp 2b 302SYM_CODE_END(ret_from_fork) 303.popsection 304 305.macro DEBUG_ENTRY_ASSERT_IRQS_OFF 306#ifdef CONFIG_DEBUG_ENTRY 307 pushq %rax 308 SAVE_FLAGS(CLBR_RAX) 309 testl $X86_EFLAGS_IF, %eax 310 jz .Lokay_\@ 311 ud2 312.Lokay_\@: 313 popq %rax 314#endif 315.endm 316 317/** 318 * idtentry_body - Macro to emit code calling the C function 319 * @cfunc: C function to be called 320 * @has_error_code: Hardware pushed error code on stack 321 */ 322.macro idtentry_body cfunc has_error_code:req 323 324 call error_entry 325 UNWIND_HINT_REGS 326 327 movq %rsp, %rdi /* pt_regs pointer into 1st argument*/ 328 329 .if \has_error_code == 1 330 movq ORIG_RAX(%rsp), %rsi /* get error code into 2nd argument*/ 331 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */ 332 .endif 333 334 call \cfunc 335 336 jmp error_return 337.endm 338 339/** 340 * idtentry - Macro to generate entry stubs for simple IDT entries 341 * @vector: Vector number 342 * @asmsym: ASM symbol for the entry point 343 * @cfunc: C function to be called 344 * @has_error_code: Hardware pushed error code on stack 345 * 346 * The macro emits code to set up the kernel context for straight forward 347 * and simple IDT entries. No IST stack, no paranoid entry checks. 348 */ 349.macro idtentry vector asmsym cfunc has_error_code:req 350SYM_CODE_START(\asmsym) 351 UNWIND_HINT_IRET_REGS offset=\has_error_code*8 352 ASM_CLAC 353 354 .if \has_error_code == 0 355 pushq $-1 /* ORIG_RAX: no syscall to restart */ 356 .endif 357 358 .if \vector == X86_TRAP_BP 359 /* 360 * If coming from kernel space, create a 6-word gap to allow the 361 * int3 handler to emulate a call instruction. 362 */ 363 testb $3, CS-ORIG_RAX(%rsp) 364 jnz .Lfrom_usermode_no_gap_\@ 365 .rept 6 366 pushq 5*8(%rsp) 367 .endr 368 UNWIND_HINT_IRET_REGS offset=8 369.Lfrom_usermode_no_gap_\@: 370 .endif 371 372 idtentry_body \cfunc \has_error_code 373 374_ASM_NOKPROBE(\asmsym) 375SYM_CODE_END(\asmsym) 376.endm 377 378/* 379 * Interrupt entry/exit. 380 * 381 + The interrupt stubs push (vector) onto the stack, which is the error_code 382 * position of idtentry exceptions, and jump to one of the two idtentry points 383 * (common/spurious). 384 * 385 * common_interrupt is a hotpath, align it to a cache line 386 */ 387.macro idtentry_irq vector cfunc 388 .p2align CONFIG_X86_L1_CACHE_SHIFT 389 idtentry \vector asm_\cfunc \cfunc has_error_code=1 390.endm 391 392/* 393 * System vectors which invoke their handlers directly and are not 394 * going through the regular common device interrupt handling code. 395 */ 396.macro idtentry_sysvec vector cfunc 397 idtentry \vector asm_\cfunc \cfunc has_error_code=0 398.endm 399 400/** 401 * idtentry_mce_db - Macro to generate entry stubs for #MC and #DB 402 * @vector: Vector number 403 * @asmsym: ASM symbol for the entry point 404 * @cfunc: C function to be called 405 * 406 * The macro emits code to set up the kernel context for #MC and #DB 407 * 408 * If the entry comes from user space it uses the normal entry path 409 * including the return to user space work and preemption checks on 410 * exit. 411 * 412 * If hits in kernel mode then it needs to go through the paranoid 413 * entry as the exception can hit any random state. No preemption 414 * check on exit to keep the paranoid path simple. 415 */ 416.macro idtentry_mce_db vector asmsym cfunc 417SYM_CODE_START(\asmsym) 418 UNWIND_HINT_IRET_REGS 419 ASM_CLAC 420 421 pushq $-1 /* ORIG_RAX: no syscall to restart */ 422 423 /* 424 * If the entry is from userspace, switch stacks and treat it as 425 * a normal entry. 426 */ 427 testb $3, CS-ORIG_RAX(%rsp) 428 jnz .Lfrom_usermode_switch_stack_\@ 429 430 /* paranoid_entry returns GS information for paranoid_exit in EBX. */ 431 call paranoid_entry 432 433 UNWIND_HINT_REGS 434 435 movq %rsp, %rdi /* pt_regs pointer */ 436 437 call \cfunc 438 439 jmp paranoid_exit 440 441 /* Switch to the regular task stack and use the noist entry point */ 442.Lfrom_usermode_switch_stack_\@: 443 idtentry_body noist_\cfunc, has_error_code=0 444 445_ASM_NOKPROBE(\asmsym) 446SYM_CODE_END(\asmsym) 447.endm 448 449#ifdef CONFIG_AMD_MEM_ENCRYPT 450/** 451 * idtentry_vc - Macro to generate entry stub for #VC 452 * @vector: Vector number 453 * @asmsym: ASM symbol for the entry point 454 * @cfunc: C function to be called 455 * 456 * The macro emits code to set up the kernel context for #VC. The #VC handler 457 * runs on an IST stack and needs to be able to cause nested #VC exceptions. 458 * 459 * To make this work the #VC entry code tries its best to pretend it doesn't use 460 * an IST stack by switching to the task stack if coming from user-space (which 461 * includes early SYSCALL entry path) or back to the stack in the IRET frame if 462 * entered from kernel-mode. 463 * 464 * If entered from kernel-mode the return stack is validated first, and if it is 465 * not safe to use (e.g. because it points to the entry stack) the #VC handler 466 * will switch to a fall-back stack (VC2) and call a special handler function. 467 * 468 * The macro is only used for one vector, but it is planned to be extended in 469 * the future for the #HV exception. 470 */ 471.macro idtentry_vc vector asmsym cfunc 472SYM_CODE_START(\asmsym) 473 UNWIND_HINT_IRET_REGS 474 ASM_CLAC 475 476 /* 477 * If the entry is from userspace, switch stacks and treat it as 478 * a normal entry. 479 */ 480 testb $3, CS-ORIG_RAX(%rsp) 481 jnz .Lfrom_usermode_switch_stack_\@ 482 483 /* 484 * paranoid_entry returns SWAPGS flag for paranoid_exit in EBX. 485 * EBX == 0 -> SWAPGS, EBX == 1 -> no SWAPGS 486 */ 487 call paranoid_entry 488 489 UNWIND_HINT_REGS 490 491 /* 492 * Switch off the IST stack to make it free for nested exceptions. The 493 * vc_switch_off_ist() function will switch back to the interrupted 494 * stack if it is safe to do so. If not it switches to the VC fall-back 495 * stack. 496 */ 497 movq %rsp, %rdi /* pt_regs pointer */ 498 call vc_switch_off_ist 499 movq %rax, %rsp /* Switch to new stack */ 500 501 UNWIND_HINT_REGS 502 503 /* Update pt_regs */ 504 movq ORIG_RAX(%rsp), %rsi /* get error code into 2nd argument*/ 505 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */ 506 507 movq %rsp, %rdi /* pt_regs pointer */ 508 509 call \cfunc 510 511 /* 512 * No need to switch back to the IST stack. The current stack is either 513 * identical to the stack in the IRET frame or the VC fall-back stack, 514 * so it is definitly mapped even with PTI enabled. 515 */ 516 jmp paranoid_exit 517 518 /* Switch to the regular task stack */ 519.Lfrom_usermode_switch_stack_\@: 520 idtentry_body safe_stack_\cfunc, has_error_code=1 521 522_ASM_NOKPROBE(\asmsym) 523SYM_CODE_END(\asmsym) 524.endm 525#endif 526 527/* 528 * Double fault entry. Straight paranoid. No checks from which context 529 * this comes because for the espfix induced #DF this would do the wrong 530 * thing. 531 */ 532.macro idtentry_df vector asmsym cfunc 533SYM_CODE_START(\asmsym) 534 UNWIND_HINT_IRET_REGS offset=8 535 ASM_CLAC 536 537 /* paranoid_entry returns GS information for paranoid_exit in EBX. */ 538 call paranoid_entry 539 UNWIND_HINT_REGS 540 541 movq %rsp, %rdi /* pt_regs pointer into first argument */ 542 movq ORIG_RAX(%rsp), %rsi /* get error code into 2nd argument*/ 543 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */ 544 call \cfunc 545 546 jmp paranoid_exit 547 548_ASM_NOKPROBE(\asmsym) 549SYM_CODE_END(\asmsym) 550.endm 551 552/* 553 * Include the defines which emit the idt entries which are shared 554 * shared between 32 and 64 bit and emit the __irqentry_text_* markers 555 * so the stacktrace boundary checks work. 556 */ 557 .align 16 558 .globl __irqentry_text_start 559__irqentry_text_start: 560 561#include <asm/idtentry.h> 562 563 .align 16 564 .globl __irqentry_text_end 565__irqentry_text_end: 566 567SYM_CODE_START_LOCAL(common_interrupt_return) 568SYM_INNER_LABEL(swapgs_restore_regs_and_return_to_usermode, SYM_L_GLOBAL) 569#ifdef CONFIG_DEBUG_ENTRY 570 /* Assert that pt_regs indicates user mode. */ 571 testb $3, CS(%rsp) 572 jnz 1f 573 ud2 5741: 575#endif 576 POP_REGS pop_rdi=0 577 578 /* 579 * The stack is now user RDI, orig_ax, RIP, CS, EFLAGS, RSP, SS. 580 * Save old stack pointer and switch to trampoline stack. 581 */ 582 movq %rsp, %rdi 583 movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp 584 UNWIND_HINT_EMPTY 585 586 /* Copy the IRET frame to the trampoline stack. */ 587 pushq 6*8(%rdi) /* SS */ 588 pushq 5*8(%rdi) /* RSP */ 589 pushq 4*8(%rdi) /* EFLAGS */ 590 pushq 3*8(%rdi) /* CS */ 591 pushq 2*8(%rdi) /* RIP */ 592 593 /* Push user RDI on the trampoline stack. */ 594 pushq (%rdi) 595 596 /* 597 * We are on the trampoline stack. All regs except RDI are live. 598 * We can do future final exit work right here. 599 */ 600 STACKLEAK_ERASE_NOCLOBBER 601 602 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi 603 604 /* Restore RDI. */ 605 popq %rdi 606 SWAPGS 607 INTERRUPT_RETURN 608 609 610SYM_INNER_LABEL(restore_regs_and_return_to_kernel, SYM_L_GLOBAL) 611#ifdef CONFIG_DEBUG_ENTRY 612 /* Assert that pt_regs indicates kernel mode. */ 613 testb $3, CS(%rsp) 614 jz 1f 615 ud2 6161: 617#endif 618 POP_REGS 619 addq $8, %rsp /* skip regs->orig_ax */ 620 /* 621 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization 622 * when returning from IPI handler. 623 */ 624 INTERRUPT_RETURN 625 626SYM_INNER_LABEL_ALIGN(native_iret, SYM_L_GLOBAL) 627 UNWIND_HINT_IRET_REGS 628 /* 629 * Are we returning to a stack segment from the LDT? Note: in 630 * 64-bit mode SS:RSP on the exception stack is always valid. 631 */ 632#ifdef CONFIG_X86_ESPFIX64 633 testb $4, (SS-RIP)(%rsp) 634 jnz native_irq_return_ldt 635#endif 636 637SYM_INNER_LABEL(native_irq_return_iret, SYM_L_GLOBAL) 638 /* 639 * This may fault. Non-paranoid faults on return to userspace are 640 * handled by fixup_bad_iret. These include #SS, #GP, and #NP. 641 * Double-faults due to espfix64 are handled in exc_double_fault. 642 * Other faults here are fatal. 643 */ 644 iretq 645 646#ifdef CONFIG_X86_ESPFIX64 647native_irq_return_ldt: 648 /* 649 * We are running with user GSBASE. All GPRs contain their user 650 * values. We have a percpu ESPFIX stack that is eight slots 651 * long (see ESPFIX_STACK_SIZE). espfix_waddr points to the bottom 652 * of the ESPFIX stack. 653 * 654 * We clobber RAX and RDI in this code. We stash RDI on the 655 * normal stack and RAX on the ESPFIX stack. 656 * 657 * The ESPFIX stack layout we set up looks like this: 658 * 659 * --- top of ESPFIX stack --- 660 * SS 661 * RSP 662 * RFLAGS 663 * CS 664 * RIP <-- RSP points here when we're done 665 * RAX <-- espfix_waddr points here 666 * --- bottom of ESPFIX stack --- 667 */ 668 669 pushq %rdi /* Stash user RDI */ 670 swapgs /* to kernel GS */ 671 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi /* to kernel CR3 */ 672 673 movq PER_CPU_VAR(espfix_waddr), %rdi 674 movq %rax, (0*8)(%rdi) /* user RAX */ 675 movq (1*8)(%rsp), %rax /* user RIP */ 676 movq %rax, (1*8)(%rdi) 677 movq (2*8)(%rsp), %rax /* user CS */ 678 movq %rax, (2*8)(%rdi) 679 movq (3*8)(%rsp), %rax /* user RFLAGS */ 680 movq %rax, (3*8)(%rdi) 681 movq (5*8)(%rsp), %rax /* user SS */ 682 movq %rax, (5*8)(%rdi) 683 movq (4*8)(%rsp), %rax /* user RSP */ 684 movq %rax, (4*8)(%rdi) 685 /* Now RAX == RSP. */ 686 687 andl $0xffff0000, %eax /* RAX = (RSP & 0xffff0000) */ 688 689 /* 690 * espfix_stack[31:16] == 0. The page tables are set up such that 691 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of 692 * espfix_waddr for any X. That is, there are 65536 RO aliases of 693 * the same page. Set up RSP so that RSP[31:16] contains the 694 * respective 16 bits of the /userspace/ RSP and RSP nonetheless 695 * still points to an RO alias of the ESPFIX stack. 696 */ 697 orq PER_CPU_VAR(espfix_stack), %rax 698 699 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi 700 swapgs /* to user GS */ 701 popq %rdi /* Restore user RDI */ 702 703 movq %rax, %rsp 704 UNWIND_HINT_IRET_REGS offset=8 705 706 /* 707 * At this point, we cannot write to the stack any more, but we can 708 * still read. 709 */ 710 popq %rax /* Restore user RAX */ 711 712 /* 713 * RSP now points to an ordinary IRET frame, except that the page 714 * is read-only and RSP[31:16] are preloaded with the userspace 715 * values. We can now IRET back to userspace. 716 */ 717 jmp native_irq_return_iret 718#endif 719SYM_CODE_END(common_interrupt_return) 720_ASM_NOKPROBE(common_interrupt_return) 721 722/* 723 * Reload gs selector with exception handling 724 * edi: new selector 725 * 726 * Is in entry.text as it shouldn't be instrumented. 727 */ 728SYM_FUNC_START(asm_load_gs_index) 729 FRAME_BEGIN 730 swapgs 731.Lgs_change: 732 movl %edi, %gs 7332: ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE 734 swapgs 735 FRAME_END 736 ret 737SYM_FUNC_END(asm_load_gs_index) 738EXPORT_SYMBOL(asm_load_gs_index) 739 740 _ASM_EXTABLE(.Lgs_change, .Lbad_gs) 741 .section .fixup, "ax" 742 /* running with kernelgs */ 743SYM_CODE_START_LOCAL_NOALIGN(.Lbad_gs) 744 swapgs /* switch back to user gs */ 745.macro ZAP_GS 746 /* This can't be a string because the preprocessor needs to see it. */ 747 movl $__USER_DS, %eax 748 movl %eax, %gs 749.endm 750 ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG 751 xorl %eax, %eax 752 movl %eax, %gs 753 jmp 2b 754SYM_CODE_END(.Lbad_gs) 755 .previous 756 757/* 758 * rdi: New stack pointer points to the top word of the stack 759 * rsi: Function pointer 760 * rdx: Function argument (can be NULL if none) 761 */ 762SYM_FUNC_START(asm_call_on_stack) 763SYM_INNER_LABEL(asm_call_sysvec_on_stack, SYM_L_GLOBAL) 764SYM_INNER_LABEL(asm_call_irq_on_stack, SYM_L_GLOBAL) 765 /* 766 * Save the frame pointer unconditionally. This allows the ORC 767 * unwinder to handle the stack switch. 768 */ 769 pushq %rbp 770 mov %rsp, %rbp 771 772 /* 773 * The unwinder relies on the word at the top of the new stack 774 * page linking back to the previous RSP. 775 */ 776 mov %rsp, (%rdi) 777 mov %rdi, %rsp 778 /* Move the argument to the right place */ 779 mov %rdx, %rdi 780 7811: 782 .pushsection .discard.instr_begin 783 .long 1b - . 784 .popsection 785 786 CALL_NOSPEC rsi 787 7882: 789 .pushsection .discard.instr_end 790 .long 2b - . 791 .popsection 792 793 /* Restore the previous stack pointer from RBP. */ 794 leaveq 795 ret 796SYM_FUNC_END(asm_call_on_stack) 797 798#ifdef CONFIG_XEN_PV 799/* 800 * A note on the "critical region" in our callback handler. 801 * We want to avoid stacking callback handlers due to events occurring 802 * during handling of the last event. To do this, we keep events disabled 803 * until we've done all processing. HOWEVER, we must enable events before 804 * popping the stack frame (can't be done atomically) and so it would still 805 * be possible to get enough handler activations to overflow the stack. 806 * Although unlikely, bugs of that kind are hard to track down, so we'd 807 * like to avoid the possibility. 808 * So, on entry to the handler we detect whether we interrupted an 809 * existing activation in its critical region -- if so, we pop the current 810 * activation and restart the handler using the previous one. 811 * 812 * C calling convention: exc_xen_hypervisor_callback(struct *pt_regs) 813 */ 814SYM_CODE_START_LOCAL(exc_xen_hypervisor_callback) 815 816/* 817 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will 818 * see the correct pointer to the pt_regs 819 */ 820 UNWIND_HINT_FUNC 821 movq %rdi, %rsp /* we don't return, adjust the stack frame */ 822 UNWIND_HINT_REGS 823 824 call xen_pv_evtchn_do_upcall 825 826 jmp error_return 827SYM_CODE_END(exc_xen_hypervisor_callback) 828 829/* 830 * Hypervisor uses this for application faults while it executes. 831 * We get here for two reasons: 832 * 1. Fault while reloading DS, ES, FS or GS 833 * 2. Fault while executing IRET 834 * Category 1 we do not need to fix up as Xen has already reloaded all segment 835 * registers that could be reloaded and zeroed the others. 836 * Category 2 we fix up by killing the current process. We cannot use the 837 * normal Linux return path in this case because if we use the IRET hypercall 838 * to pop the stack frame we end up in an infinite loop of failsafe callbacks. 839 * We distinguish between categories by comparing each saved segment register 840 * with its current contents: any discrepancy means we in category 1. 841 */ 842SYM_CODE_START(xen_failsafe_callback) 843 UNWIND_HINT_EMPTY 844 movl %ds, %ecx 845 cmpw %cx, 0x10(%rsp) 846 jne 1f 847 movl %es, %ecx 848 cmpw %cx, 0x18(%rsp) 849 jne 1f 850 movl %fs, %ecx 851 cmpw %cx, 0x20(%rsp) 852 jne 1f 853 movl %gs, %ecx 854 cmpw %cx, 0x28(%rsp) 855 jne 1f 856 /* All segments match their saved values => Category 2 (Bad IRET). */ 857 movq (%rsp), %rcx 858 movq 8(%rsp), %r11 859 addq $0x30, %rsp 860 pushq $0 /* RIP */ 861 UNWIND_HINT_IRET_REGS offset=8 862 jmp asm_exc_general_protection 8631: /* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */ 864 movq (%rsp), %rcx 865 movq 8(%rsp), %r11 866 addq $0x30, %rsp 867 UNWIND_HINT_IRET_REGS 868 pushq $-1 /* orig_ax = -1 => not a system call */ 869 PUSH_AND_CLEAR_REGS 870 ENCODE_FRAME_POINTER 871 jmp error_return 872SYM_CODE_END(xen_failsafe_callback) 873#endif /* CONFIG_XEN_PV */ 874 875/* 876 * Save all registers in pt_regs. Return GSBASE related information 877 * in EBX depending on the availability of the FSGSBASE instructions: 878 * 879 * FSGSBASE R/EBX 880 * N 0 -> SWAPGS on exit 881 * 1 -> no SWAPGS on exit 882 * 883 * Y GSBASE value at entry, must be restored in paranoid_exit 884 */ 885SYM_CODE_START_LOCAL(paranoid_entry) 886 UNWIND_HINT_FUNC 887 cld 888 PUSH_AND_CLEAR_REGS save_ret=1 889 ENCODE_FRAME_POINTER 8 890 891 /* 892 * Always stash CR3 in %r14. This value will be restored, 893 * verbatim, at exit. Needed if paranoid_entry interrupted 894 * another entry that already switched to the user CR3 value 895 * but has not yet returned to userspace. 896 * 897 * This is also why CS (stashed in the "iret frame" by the 898 * hardware at entry) can not be used: this may be a return 899 * to kernel code, but with a user CR3 value. 900 * 901 * Switching CR3 does not depend on kernel GSBASE so it can 902 * be done before switching to the kernel GSBASE. This is 903 * required for FSGSBASE because the kernel GSBASE has to 904 * be retrieved from a kernel internal table. 905 */ 906 SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg=%rax save_reg=%r14 907 908 /* 909 * Handling GSBASE depends on the availability of FSGSBASE. 910 * 911 * Without FSGSBASE the kernel enforces that negative GSBASE 912 * values indicate kernel GSBASE. With FSGSBASE no assumptions 913 * can be made about the GSBASE value when entering from user 914 * space. 915 */ 916 ALTERNATIVE "jmp .Lparanoid_entry_checkgs", "", X86_FEATURE_FSGSBASE 917 918 /* 919 * Read the current GSBASE and store it in %rbx unconditionally, 920 * retrieve and set the current CPUs kernel GSBASE. The stored value 921 * has to be restored in paranoid_exit unconditionally. 922 * 923 * The unconditional write to GS base below ensures that no subsequent 924 * loads based on a mispredicted GS base can happen, therefore no LFENCE 925 * is needed here. 926 */ 927 SAVE_AND_SET_GSBASE scratch_reg=%rax save_reg=%rbx 928 ret 929 930.Lparanoid_entry_checkgs: 931 /* EBX = 1 -> kernel GSBASE active, no restore required */ 932 movl $1, %ebx 933 /* 934 * The kernel-enforced convention is a negative GSBASE indicates 935 * a kernel value. No SWAPGS needed on entry and exit. 936 */ 937 movl $MSR_GS_BASE, %ecx 938 rdmsr 939 testl %edx, %edx 940 jns .Lparanoid_entry_swapgs 941 ret 942 943.Lparanoid_entry_swapgs: 944 swapgs 945 946 /* 947 * The above SAVE_AND_SWITCH_TO_KERNEL_CR3 macro doesn't do an 948 * unconditional CR3 write, even in the PTI case. So do an lfence 949 * to prevent GS speculation, regardless of whether PTI is enabled. 950 */ 951 FENCE_SWAPGS_KERNEL_ENTRY 952 953 /* EBX = 0 -> SWAPGS required on exit */ 954 xorl %ebx, %ebx 955 ret 956SYM_CODE_END(paranoid_entry) 957 958/* 959 * "Paranoid" exit path from exception stack. This is invoked 960 * only on return from non-NMI IST interrupts that came 961 * from kernel space. 962 * 963 * We may be returning to very strange contexts (e.g. very early 964 * in syscall entry), so checking for preemption here would 965 * be complicated. Fortunately, there's no good reason to try 966 * to handle preemption here. 967 * 968 * R/EBX contains the GSBASE related information depending on the 969 * availability of the FSGSBASE instructions: 970 * 971 * FSGSBASE R/EBX 972 * N 0 -> SWAPGS on exit 973 * 1 -> no SWAPGS on exit 974 * 975 * Y User space GSBASE, must be restored unconditionally 976 */ 977SYM_CODE_START_LOCAL(paranoid_exit) 978 UNWIND_HINT_REGS 979 /* 980 * The order of operations is important. RESTORE_CR3 requires 981 * kernel GSBASE. 982 * 983 * NB to anyone to try to optimize this code: this code does 984 * not execute at all for exceptions from user mode. Those 985 * exceptions go through error_exit instead. 986 */ 987 RESTORE_CR3 scratch_reg=%rax save_reg=%r14 988 989 /* Handle the three GSBASE cases */ 990 ALTERNATIVE "jmp .Lparanoid_exit_checkgs", "", X86_FEATURE_FSGSBASE 991 992 /* With FSGSBASE enabled, unconditionally restore GSBASE */ 993 wrgsbase %rbx 994 jmp restore_regs_and_return_to_kernel 995 996.Lparanoid_exit_checkgs: 997 /* On non-FSGSBASE systems, conditionally do SWAPGS */ 998 testl %ebx, %ebx 999 jnz restore_regs_and_return_to_kernel 1000 1001 /* We are returning to a context with user GSBASE */ 1002 swapgs 1003 jmp restore_regs_and_return_to_kernel 1004SYM_CODE_END(paranoid_exit) 1005 1006/* 1007 * Save all registers in pt_regs, and switch GS if needed. 1008 */ 1009SYM_CODE_START_LOCAL(error_entry) 1010 UNWIND_HINT_FUNC 1011 cld 1012 PUSH_AND_CLEAR_REGS save_ret=1 1013 ENCODE_FRAME_POINTER 8 1014 testb $3, CS+8(%rsp) 1015 jz .Lerror_kernelspace 1016 1017 /* 1018 * We entered from user mode or we're pretending to have entered 1019 * from user mode due to an IRET fault. 1020 */ 1021 SWAPGS 1022 FENCE_SWAPGS_USER_ENTRY 1023 /* We have user CR3. Change to kernel CR3. */ 1024 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax 1025 1026.Lerror_entry_from_usermode_after_swapgs: 1027 /* Put us onto the real thread stack. */ 1028 popq %r12 /* save return addr in %12 */ 1029 movq %rsp, %rdi /* arg0 = pt_regs pointer */ 1030 call sync_regs 1031 movq %rax, %rsp /* switch stack */ 1032 ENCODE_FRAME_POINTER 1033 pushq %r12 1034 ret 1035 1036.Lerror_entry_done_lfence: 1037 FENCE_SWAPGS_KERNEL_ENTRY 1038.Lerror_entry_done: 1039 ret 1040 1041 /* 1042 * There are two places in the kernel that can potentially fault with 1043 * usergs. Handle them here. B stepping K8s sometimes report a 1044 * truncated RIP for IRET exceptions returning to compat mode. Check 1045 * for these here too. 1046 */ 1047.Lerror_kernelspace: 1048 leaq native_irq_return_iret(%rip), %rcx 1049 cmpq %rcx, RIP+8(%rsp) 1050 je .Lerror_bad_iret 1051 movl %ecx, %eax /* zero extend */ 1052 cmpq %rax, RIP+8(%rsp) 1053 je .Lbstep_iret 1054 cmpq $.Lgs_change, RIP+8(%rsp) 1055 jne .Lerror_entry_done_lfence 1056 1057 /* 1058 * hack: .Lgs_change can fail with user gsbase. If this happens, fix up 1059 * gsbase and proceed. We'll fix up the exception and land in 1060 * .Lgs_change's error handler with kernel gsbase. 1061 */ 1062 SWAPGS 1063 FENCE_SWAPGS_USER_ENTRY 1064 jmp .Lerror_entry_done 1065 1066.Lbstep_iret: 1067 /* Fix truncated RIP */ 1068 movq %rcx, RIP+8(%rsp) 1069 /* fall through */ 1070 1071.Lerror_bad_iret: 1072 /* 1073 * We came from an IRET to user mode, so we have user 1074 * gsbase and CR3. Switch to kernel gsbase and CR3: 1075 */ 1076 SWAPGS 1077 FENCE_SWAPGS_USER_ENTRY 1078 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax 1079 1080 /* 1081 * Pretend that the exception came from user mode: set up pt_regs 1082 * as if we faulted immediately after IRET. 1083 */ 1084 mov %rsp, %rdi 1085 call fixup_bad_iret 1086 mov %rax, %rsp 1087 jmp .Lerror_entry_from_usermode_after_swapgs 1088SYM_CODE_END(error_entry) 1089 1090SYM_CODE_START_LOCAL(error_return) 1091 UNWIND_HINT_REGS 1092 DEBUG_ENTRY_ASSERT_IRQS_OFF 1093 testb $3, CS(%rsp) 1094 jz restore_regs_and_return_to_kernel 1095 jmp swapgs_restore_regs_and_return_to_usermode 1096SYM_CODE_END(error_return) 1097 1098/* 1099 * Runs on exception stack. Xen PV does not go through this path at all, 1100 * so we can use real assembly here. 1101 * 1102 * Registers: 1103 * %r14: Used to save/restore the CR3 of the interrupted context 1104 * when PAGE_TABLE_ISOLATION is in use. Do not clobber. 1105 */ 1106SYM_CODE_START(asm_exc_nmi) 1107 UNWIND_HINT_IRET_REGS 1108 1109 /* 1110 * We allow breakpoints in NMIs. If a breakpoint occurs, then 1111 * the iretq it performs will take us out of NMI context. 1112 * This means that we can have nested NMIs where the next 1113 * NMI is using the top of the stack of the previous NMI. We 1114 * can't let it execute because the nested NMI will corrupt the 1115 * stack of the previous NMI. NMI handlers are not re-entrant 1116 * anyway. 1117 * 1118 * To handle this case we do the following: 1119 * Check the a special location on the stack that contains 1120 * a variable that is set when NMIs are executing. 1121 * The interrupted task's stack is also checked to see if it 1122 * is an NMI stack. 1123 * If the variable is not set and the stack is not the NMI 1124 * stack then: 1125 * o Set the special variable on the stack 1126 * o Copy the interrupt frame into an "outermost" location on the 1127 * stack 1128 * o Copy the interrupt frame into an "iret" location on the stack 1129 * o Continue processing the NMI 1130 * If the variable is set or the previous stack is the NMI stack: 1131 * o Modify the "iret" location to jump to the repeat_nmi 1132 * o return back to the first NMI 1133 * 1134 * Now on exit of the first NMI, we first clear the stack variable 1135 * The NMI stack will tell any nested NMIs at that point that it is 1136 * nested. Then we pop the stack normally with iret, and if there was 1137 * a nested NMI that updated the copy interrupt stack frame, a 1138 * jump will be made to the repeat_nmi code that will handle the second 1139 * NMI. 1140 * 1141 * However, espfix prevents us from directly returning to userspace 1142 * with a single IRET instruction. Similarly, IRET to user mode 1143 * can fault. We therefore handle NMIs from user space like 1144 * other IST entries. 1145 */ 1146 1147 ASM_CLAC 1148 1149 /* Use %rdx as our temp variable throughout */ 1150 pushq %rdx 1151 1152 testb $3, CS-RIP+8(%rsp) 1153 jz .Lnmi_from_kernel 1154 1155 /* 1156 * NMI from user mode. We need to run on the thread stack, but we 1157 * can't go through the normal entry paths: NMIs are masked, and 1158 * we don't want to enable interrupts, because then we'll end 1159 * up in an awkward situation in which IRQs are on but NMIs 1160 * are off. 1161 * 1162 * We also must not push anything to the stack before switching 1163 * stacks lest we corrupt the "NMI executing" variable. 1164 */ 1165 1166 swapgs 1167 cld 1168 FENCE_SWAPGS_USER_ENTRY 1169 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdx 1170 movq %rsp, %rdx 1171 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp 1172 UNWIND_HINT_IRET_REGS base=%rdx offset=8 1173 pushq 5*8(%rdx) /* pt_regs->ss */ 1174 pushq 4*8(%rdx) /* pt_regs->rsp */ 1175 pushq 3*8(%rdx) /* pt_regs->flags */ 1176 pushq 2*8(%rdx) /* pt_regs->cs */ 1177 pushq 1*8(%rdx) /* pt_regs->rip */ 1178 UNWIND_HINT_IRET_REGS 1179 pushq $-1 /* pt_regs->orig_ax */ 1180 PUSH_AND_CLEAR_REGS rdx=(%rdx) 1181 ENCODE_FRAME_POINTER 1182 1183 /* 1184 * At this point we no longer need to worry about stack damage 1185 * due to nesting -- we're on the normal thread stack and we're 1186 * done with the NMI stack. 1187 */ 1188 1189 movq %rsp, %rdi 1190 movq $-1, %rsi 1191 call exc_nmi 1192 1193 /* 1194 * Return back to user mode. We must *not* do the normal exit 1195 * work, because we don't want to enable interrupts. 1196 */ 1197 jmp swapgs_restore_regs_and_return_to_usermode 1198 1199.Lnmi_from_kernel: 1200 /* 1201 * Here's what our stack frame will look like: 1202 * +---------------------------------------------------------+ 1203 * | original SS | 1204 * | original Return RSP | 1205 * | original RFLAGS | 1206 * | original CS | 1207 * | original RIP | 1208 * +---------------------------------------------------------+ 1209 * | temp storage for rdx | 1210 * +---------------------------------------------------------+ 1211 * | "NMI executing" variable | 1212 * +---------------------------------------------------------+ 1213 * | iret SS } Copied from "outermost" frame | 1214 * | iret Return RSP } on each loop iteration; overwritten | 1215 * | iret RFLAGS } by a nested NMI to force another | 1216 * | iret CS } iteration if needed. | 1217 * | iret RIP } | 1218 * +---------------------------------------------------------+ 1219 * | outermost SS } initialized in first_nmi; | 1220 * | outermost Return RSP } will not be changed before | 1221 * | outermost RFLAGS } NMI processing is done. | 1222 * | outermost CS } Copied to "iret" frame on each | 1223 * | outermost RIP } iteration. | 1224 * +---------------------------------------------------------+ 1225 * | pt_regs | 1226 * +---------------------------------------------------------+ 1227 * 1228 * The "original" frame is used by hardware. Before re-enabling 1229 * NMIs, we need to be done with it, and we need to leave enough 1230 * space for the asm code here. 1231 * 1232 * We return by executing IRET while RSP points to the "iret" frame. 1233 * That will either return for real or it will loop back into NMI 1234 * processing. 1235 * 1236 * The "outermost" frame is copied to the "iret" frame on each 1237 * iteration of the loop, so each iteration starts with the "iret" 1238 * frame pointing to the final return target. 1239 */ 1240 1241 /* 1242 * Determine whether we're a nested NMI. 1243 * 1244 * If we interrupted kernel code between repeat_nmi and 1245 * end_repeat_nmi, then we are a nested NMI. We must not 1246 * modify the "iret" frame because it's being written by 1247 * the outer NMI. That's okay; the outer NMI handler is 1248 * about to about to call exc_nmi() anyway, so we can just 1249 * resume the outer NMI. 1250 */ 1251 1252 movq $repeat_nmi, %rdx 1253 cmpq 8(%rsp), %rdx 1254 ja 1f 1255 movq $end_repeat_nmi, %rdx 1256 cmpq 8(%rsp), %rdx 1257 ja nested_nmi_out 12581: 1259 1260 /* 1261 * Now check "NMI executing". If it's set, then we're nested. 1262 * This will not detect if we interrupted an outer NMI just 1263 * before IRET. 1264 */ 1265 cmpl $1, -8(%rsp) 1266 je nested_nmi 1267 1268 /* 1269 * Now test if the previous stack was an NMI stack. This covers 1270 * the case where we interrupt an outer NMI after it clears 1271 * "NMI executing" but before IRET. We need to be careful, though: 1272 * there is one case in which RSP could point to the NMI stack 1273 * despite there being no NMI active: naughty userspace controls 1274 * RSP at the very beginning of the SYSCALL targets. We can 1275 * pull a fast one on naughty userspace, though: we program 1276 * SYSCALL to mask DF, so userspace cannot cause DF to be set 1277 * if it controls the kernel's RSP. We set DF before we clear 1278 * "NMI executing". 1279 */ 1280 lea 6*8(%rsp), %rdx 1281 /* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */ 1282 cmpq %rdx, 4*8(%rsp) 1283 /* If the stack pointer is above the NMI stack, this is a normal NMI */ 1284 ja first_nmi 1285 1286 subq $EXCEPTION_STKSZ, %rdx 1287 cmpq %rdx, 4*8(%rsp) 1288 /* If it is below the NMI stack, it is a normal NMI */ 1289 jb first_nmi 1290 1291 /* Ah, it is within the NMI stack. */ 1292 1293 testb $(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp) 1294 jz first_nmi /* RSP was user controlled. */ 1295 1296 /* This is a nested NMI. */ 1297 1298nested_nmi: 1299 /* 1300 * Modify the "iret" frame to point to repeat_nmi, forcing another 1301 * iteration of NMI handling. 1302 */ 1303 subq $8, %rsp 1304 leaq -10*8(%rsp), %rdx 1305 pushq $__KERNEL_DS 1306 pushq %rdx 1307 pushfq 1308 pushq $__KERNEL_CS 1309 pushq $repeat_nmi 1310 1311 /* Put stack back */ 1312 addq $(6*8), %rsp 1313 1314nested_nmi_out: 1315 popq %rdx 1316 1317 /* We are returning to kernel mode, so this cannot result in a fault. */ 1318 iretq 1319 1320first_nmi: 1321 /* Restore rdx. */ 1322 movq (%rsp), %rdx 1323 1324 /* Make room for "NMI executing". */ 1325 pushq $0 1326 1327 /* Leave room for the "iret" frame */ 1328 subq $(5*8), %rsp 1329 1330 /* Copy the "original" frame to the "outermost" frame */ 1331 .rept 5 1332 pushq 11*8(%rsp) 1333 .endr 1334 UNWIND_HINT_IRET_REGS 1335 1336 /* Everything up to here is safe from nested NMIs */ 1337 1338#ifdef CONFIG_DEBUG_ENTRY 1339 /* 1340 * For ease of testing, unmask NMIs right away. Disabled by 1341 * default because IRET is very expensive. 1342 */ 1343 pushq $0 /* SS */ 1344 pushq %rsp /* RSP (minus 8 because of the previous push) */ 1345 addq $8, (%rsp) /* Fix up RSP */ 1346 pushfq /* RFLAGS */ 1347 pushq $__KERNEL_CS /* CS */ 1348 pushq $1f /* RIP */ 1349 iretq /* continues at repeat_nmi below */ 1350 UNWIND_HINT_IRET_REGS 13511: 1352#endif 1353 1354repeat_nmi: 1355 /* 1356 * If there was a nested NMI, the first NMI's iret will return 1357 * here. But NMIs are still enabled and we can take another 1358 * nested NMI. The nested NMI checks the interrupted RIP to see 1359 * if it is between repeat_nmi and end_repeat_nmi, and if so 1360 * it will just return, as we are about to repeat an NMI anyway. 1361 * This makes it safe to copy to the stack frame that a nested 1362 * NMI will update. 1363 * 1364 * RSP is pointing to "outermost RIP". gsbase is unknown, but, if 1365 * we're repeating an NMI, gsbase has the same value that it had on 1366 * the first iteration. paranoid_entry will load the kernel 1367 * gsbase if needed before we call exc_nmi(). "NMI executing" 1368 * is zero. 1369 */ 1370 movq $1, 10*8(%rsp) /* Set "NMI executing". */ 1371 1372 /* 1373 * Copy the "outermost" frame to the "iret" frame. NMIs that nest 1374 * here must not modify the "iret" frame while we're writing to 1375 * it or it will end up containing garbage. 1376 */ 1377 addq $(10*8), %rsp 1378 .rept 5 1379 pushq -6*8(%rsp) 1380 .endr 1381 subq $(5*8), %rsp 1382end_repeat_nmi: 1383 1384 /* 1385 * Everything below this point can be preempted by a nested NMI. 1386 * If this happens, then the inner NMI will change the "iret" 1387 * frame to point back to repeat_nmi. 1388 */ 1389 pushq $-1 /* ORIG_RAX: no syscall to restart */ 1390 1391 /* 1392 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit 1393 * as we should not be calling schedule in NMI context. 1394 * Even with normal interrupts enabled. An NMI should not be 1395 * setting NEED_RESCHED or anything that normal interrupts and 1396 * exceptions might do. 1397 */ 1398 call paranoid_entry 1399 UNWIND_HINT_REGS 1400 1401 movq %rsp, %rdi 1402 movq $-1, %rsi 1403 call exc_nmi 1404 1405 /* Always restore stashed CR3 value (see paranoid_entry) */ 1406 RESTORE_CR3 scratch_reg=%r15 save_reg=%r14 1407 1408 /* 1409 * The above invocation of paranoid_entry stored the GSBASE 1410 * related information in R/EBX depending on the availability 1411 * of FSGSBASE. 1412 * 1413 * If FSGSBASE is enabled, restore the saved GSBASE value 1414 * unconditionally, otherwise take the conditional SWAPGS path. 1415 */ 1416 ALTERNATIVE "jmp nmi_no_fsgsbase", "", X86_FEATURE_FSGSBASE 1417 1418 wrgsbase %rbx 1419 jmp nmi_restore 1420 1421nmi_no_fsgsbase: 1422 /* EBX == 0 -> invoke SWAPGS */ 1423 testl %ebx, %ebx 1424 jnz nmi_restore 1425 1426nmi_swapgs: 1427 swapgs 1428 1429nmi_restore: 1430 POP_REGS 1431 1432 /* 1433 * Skip orig_ax and the "outermost" frame to point RSP at the "iret" 1434 * at the "iret" frame. 1435 */ 1436 addq $6*8, %rsp 1437 1438 /* 1439 * Clear "NMI executing". Set DF first so that we can easily 1440 * distinguish the remaining code between here and IRET from 1441 * the SYSCALL entry and exit paths. 1442 * 1443 * We arguably should just inspect RIP instead, but I (Andy) wrote 1444 * this code when I had the misapprehension that Xen PV supported 1445 * NMIs, and Xen PV would break that approach. 1446 */ 1447 std 1448 movq $0, 5*8(%rsp) /* clear "NMI executing" */ 1449 1450 /* 1451 * iretq reads the "iret" frame and exits the NMI stack in a 1452 * single instruction. We are returning to kernel mode, so this 1453 * cannot result in a fault. Similarly, we don't need to worry 1454 * about espfix64 on the way back to kernel mode. 1455 */ 1456 iretq 1457SYM_CODE_END(asm_exc_nmi) 1458 1459#ifndef CONFIG_IA32_EMULATION 1460/* 1461 * This handles SYSCALL from 32-bit code. There is no way to program 1462 * MSRs to fully disable 32-bit SYSCALL. 1463 */ 1464SYM_CODE_START(ignore_sysret) 1465 UNWIND_HINT_EMPTY 1466 mov $-ENOSYS, %eax 1467 sysretl 1468SYM_CODE_END(ignore_sysret) 1469#endif 1470 1471.pushsection .text, "ax" 1472SYM_CODE_START(rewind_stack_do_exit) 1473 UNWIND_HINT_FUNC 1474 /* Prevent any naive code from trying to unwind to our caller. */ 1475 xorl %ebp, %ebp 1476 1477 movq PER_CPU_VAR(cpu_current_top_of_stack), %rax 1478 leaq -PTREGS_SIZE(%rax), %rsp 1479 UNWIND_HINT_REGS 1480 1481 call do_exit 1482SYM_CODE_END(rewind_stack_do_exit) 1483.popsection 1484