1/* SPDX-License-Identifier: GPL-2.0 */ 2/* 3 * linux/arch/x86_64/entry.S 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * Copyright (C) 2000, 2001, 2002 Andi Kleen SuSE Labs 7 * Copyright (C) 2000 Pavel Machek <pavel@suse.cz> 8 * 9 * entry.S contains the system-call and fault low-level handling routines. 10 * 11 * Some of this is documented in Documentation/x86/entry_64.rst 12 * 13 * A note on terminology: 14 * - iret frame: Architecture defined interrupt frame from SS to RIP 15 * at the top of the kernel process stack. 16 * 17 * Some macro usage: 18 * - SYM_FUNC_START/END:Define functions in the symbol table. 19 * - idtentry: Define exception entry points. 20 */ 21#include <linux/linkage.h> 22#include <asm/segment.h> 23#include <asm/cache.h> 24#include <asm/errno.h> 25#include <asm/asm-offsets.h> 26#include <asm/msr.h> 27#include <asm/unistd.h> 28#include <asm/thread_info.h> 29#include <asm/hw_irq.h> 30#include <asm/page_types.h> 31#include <asm/irqflags.h> 32#include <asm/paravirt.h> 33#include <asm/percpu.h> 34#include <asm/asm.h> 35#include <asm/smap.h> 36#include <asm/pgtable_types.h> 37#include <asm/export.h> 38#include <asm/frame.h> 39#include <asm/trapnr.h> 40#include <asm/nospec-branch.h> 41#include <asm/fsgsbase.h> 42#include <linux/err.h> 43 44#include "calling.h" 45 46.code64 47.section .entry.text, "ax" 48 49/* 50 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers. 51 * 52 * This is the only entry point used for 64-bit system calls. The 53 * hardware interface is reasonably well designed and the register to 54 * argument mapping Linux uses fits well with the registers that are 55 * available when SYSCALL is used. 56 * 57 * SYSCALL instructions can be found inlined in libc implementations as 58 * well as some other programs and libraries. There are also a handful 59 * of SYSCALL instructions in the vDSO used, for example, as a 60 * clock_gettimeofday fallback. 61 * 62 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11, 63 * then loads new ss, cs, and rip from previously programmed MSRs. 64 * rflags gets masked by a value from another MSR (so CLD and CLAC 65 * are not needed). SYSCALL does not save anything on the stack 66 * and does not change rsp. 67 * 68 * Registers on entry: 69 * rax system call number 70 * rcx return address 71 * r11 saved rflags (note: r11 is callee-clobbered register in C ABI) 72 * rdi arg0 73 * rsi arg1 74 * rdx arg2 75 * r10 arg3 (needs to be moved to rcx to conform to C ABI) 76 * r8 arg4 77 * r9 arg5 78 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI) 79 * 80 * Only called from user space. 81 * 82 * When user can change pt_regs->foo always force IRET. That is because 83 * it deals with uncanonical addresses better. SYSRET has trouble 84 * with them due to bugs in both AMD and Intel CPUs. 85 */ 86 87SYM_CODE_START(entry_SYSCALL_64) 88 UNWIND_HINT_ENTRY 89 ENDBR 90 91 swapgs 92 /* tss.sp2 is scratch space. */ 93 movq %rsp, PER_CPU_VAR(cpu_tss_rw + TSS_sp2) 94 SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp 95 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp 96 97SYM_INNER_LABEL(entry_SYSCALL_64_safe_stack, SYM_L_GLOBAL) 98 ANNOTATE_NOENDBR 99 100 /* Construct struct pt_regs on stack */ 101 pushq $__USER_DS /* pt_regs->ss */ 102 pushq PER_CPU_VAR(cpu_tss_rw + TSS_sp2) /* pt_regs->sp */ 103 pushq %r11 /* pt_regs->flags */ 104 pushq $__USER_CS /* pt_regs->cs */ 105 pushq %rcx /* pt_regs->ip */ 106SYM_INNER_LABEL(entry_SYSCALL_64_after_hwframe, SYM_L_GLOBAL) 107 pushq %rax /* pt_regs->orig_ax */ 108 109 PUSH_AND_CLEAR_REGS rax=$-ENOSYS 110 111 /* IRQs are off. */ 112 movq %rsp, %rdi 113 /* Sign extend the lower 32bit as syscall numbers are treated as int */ 114 movslq %eax, %rsi 115 116 /* clobbers %rax, make sure it is after saving the syscall nr */ 117 IBRS_ENTER 118 UNTRAIN_RET 119 120 call do_syscall_64 /* returns with IRQs disabled */ 121 122 /* 123 * Try to use SYSRET instead of IRET if we're returning to 124 * a completely clean 64-bit userspace context. If we're not, 125 * go to the slow exit path. 126 * In the Xen PV case we must use iret anyway. 127 */ 128 129 ALTERNATIVE "", "jmp swapgs_restore_regs_and_return_to_usermode", \ 130 X86_FEATURE_XENPV 131 132 movq RCX(%rsp), %rcx 133 movq RIP(%rsp), %r11 134 135 cmpq %rcx, %r11 /* SYSRET requires RCX == RIP */ 136 jne swapgs_restore_regs_and_return_to_usermode 137 138 /* 139 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP 140 * in kernel space. This essentially lets the user take over 141 * the kernel, since userspace controls RSP. 142 * 143 * If width of "canonical tail" ever becomes variable, this will need 144 * to be updated to remain correct on both old and new CPUs. 145 * 146 * Change top bits to match most significant bit (47th or 56th bit 147 * depending on paging mode) in the address. 148 */ 149#ifdef CONFIG_X86_5LEVEL 150 ALTERNATIVE "shl $(64 - 48), %rcx; sar $(64 - 48), %rcx", \ 151 "shl $(64 - 57), %rcx; sar $(64 - 57), %rcx", X86_FEATURE_LA57 152#else 153 shl $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx 154 sar $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx 155#endif 156 157 /* If this changed %rcx, it was not canonical */ 158 cmpq %rcx, %r11 159 jne swapgs_restore_regs_and_return_to_usermode 160 161 cmpq $__USER_CS, CS(%rsp) /* CS must match SYSRET */ 162 jne swapgs_restore_regs_and_return_to_usermode 163 164 movq R11(%rsp), %r11 165 cmpq %r11, EFLAGS(%rsp) /* R11 == RFLAGS */ 166 jne swapgs_restore_regs_and_return_to_usermode 167 168 /* 169 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot 170 * restore RF properly. If the slowpath sets it for whatever reason, we 171 * need to restore it correctly. 172 * 173 * SYSRET can restore TF, but unlike IRET, restoring TF results in a 174 * trap from userspace immediately after SYSRET. This would cause an 175 * infinite loop whenever #DB happens with register state that satisfies 176 * the opportunistic SYSRET conditions. For example, single-stepping 177 * this user code: 178 * 179 * movq $stuck_here, %rcx 180 * pushfq 181 * popq %r11 182 * stuck_here: 183 * 184 * would never get past 'stuck_here'. 185 */ 186 testq $(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11 187 jnz swapgs_restore_regs_and_return_to_usermode 188 189 /* nothing to check for RSP */ 190 191 cmpq $__USER_DS, SS(%rsp) /* SS must match SYSRET */ 192 jne swapgs_restore_regs_and_return_to_usermode 193 194 /* 195 * We win! This label is here just for ease of understanding 196 * perf profiles. Nothing jumps here. 197 */ 198syscall_return_via_sysret: 199 IBRS_EXIT 200 POP_REGS pop_rdi=0 201 202 /* 203 * Now all regs are restored except RSP and RDI. 204 * Save old stack pointer and switch to trampoline stack. 205 */ 206 movq %rsp, %rdi 207 movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp 208 UNWIND_HINT_EMPTY 209 210 pushq RSP-RDI(%rdi) /* RSP */ 211 pushq (%rdi) /* RDI */ 212 213 /* 214 * We are on the trampoline stack. All regs except RDI are live. 215 * We can do future final exit work right here. 216 */ 217 STACKLEAK_ERASE_NOCLOBBER 218 219 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi 220 221 popq %rdi 222 popq %rsp 223SYM_INNER_LABEL(entry_SYSRETQ_unsafe_stack, SYM_L_GLOBAL) 224 ANNOTATE_NOENDBR 225 swapgs 226 sysretq 227SYM_INNER_LABEL(entry_SYSRETQ_end, SYM_L_GLOBAL) 228 ANNOTATE_NOENDBR 229 int3 230SYM_CODE_END(entry_SYSCALL_64) 231 232/* 233 * %rdi: prev task 234 * %rsi: next task 235 */ 236.pushsection .text, "ax" 237SYM_FUNC_START(__switch_to_asm) 238 /* 239 * Save callee-saved registers 240 * This must match the order in inactive_task_frame 241 */ 242 pushq %rbp 243 pushq %rbx 244 pushq %r12 245 pushq %r13 246 pushq %r14 247 pushq %r15 248 249 /* switch stack */ 250 movq %rsp, TASK_threadsp(%rdi) 251 movq TASK_threadsp(%rsi), %rsp 252 253#ifdef CONFIG_STACKPROTECTOR 254 movq TASK_stack_canary(%rsi), %rbx 255 movq %rbx, PER_CPU_VAR(fixed_percpu_data) + stack_canary_offset 256#endif 257 258 /* 259 * When switching from a shallower to a deeper call stack 260 * the RSB may either underflow or use entries populated 261 * with userspace addresses. On CPUs where those concerns 262 * exist, overwrite the RSB with entries which capture 263 * speculative execution to prevent attack. 264 */ 265 FILL_RETURN_BUFFER %r12, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW 266 267 /* restore callee-saved registers */ 268 popq %r15 269 popq %r14 270 popq %r13 271 popq %r12 272 popq %rbx 273 popq %rbp 274 275 jmp __switch_to 276SYM_FUNC_END(__switch_to_asm) 277.popsection 278 279/* 280 * A newly forked process directly context switches into this address. 281 * 282 * rax: prev task we switched from 283 * rbx: kernel thread func (NULL for user thread) 284 * r12: kernel thread arg 285 */ 286.pushsection .text, "ax" 287SYM_CODE_START(ret_from_fork) 288 UNWIND_HINT_EMPTY 289 ANNOTATE_NOENDBR // copy_thread 290 movq %rax, %rdi 291 call schedule_tail /* rdi: 'prev' task parameter */ 292 293 testq %rbx, %rbx /* from kernel_thread? */ 294 jnz 1f /* kernel threads are uncommon */ 295 2962: 297 UNWIND_HINT_REGS 298 movq %rsp, %rdi 299 call syscall_exit_to_user_mode /* returns with IRQs disabled */ 300 jmp swapgs_restore_regs_and_return_to_usermode 301 3021: 303 /* kernel thread */ 304 UNWIND_HINT_EMPTY 305 movq %r12, %rdi 306 CALL_NOSPEC rbx 307 /* 308 * A kernel thread is allowed to return here after successfully 309 * calling kernel_execve(). Exit to userspace to complete the execve() 310 * syscall. 311 */ 312 movq $0, RAX(%rsp) 313 jmp 2b 314SYM_CODE_END(ret_from_fork) 315.popsection 316 317.macro DEBUG_ENTRY_ASSERT_IRQS_OFF 318#ifdef CONFIG_DEBUG_ENTRY 319 pushq %rax 320 SAVE_FLAGS 321 testl $X86_EFLAGS_IF, %eax 322 jz .Lokay_\@ 323 ud2 324.Lokay_\@: 325 popq %rax 326#endif 327.endm 328 329SYM_CODE_START_LOCAL(xen_error_entry) 330 UNWIND_HINT_FUNC 331 PUSH_AND_CLEAR_REGS save_ret=1 332 ENCODE_FRAME_POINTER 8 333 UNTRAIN_RET 334 RET 335SYM_CODE_END(xen_error_entry) 336 337/** 338 * idtentry_body - Macro to emit code calling the C function 339 * @cfunc: C function to be called 340 * @has_error_code: Hardware pushed error code on stack 341 */ 342.macro idtentry_body cfunc has_error_code:req 343 344 /* 345 * Call error_entry() and switch to the task stack if from userspace. 346 * 347 * When in XENPV, it is already in the task stack, and it can't fault 348 * for native_iret() nor native_load_gs_index() since XENPV uses its 349 * own pvops for IRET and load_gs_index(). And it doesn't need to 350 * switch the CR3. So it can skip invoking error_entry(). 351 */ 352 ALTERNATIVE "call error_entry; movq %rax, %rsp", \ 353 "call xen_error_entry", X86_FEATURE_XENPV 354 355 ENCODE_FRAME_POINTER 356 UNWIND_HINT_REGS 357 358 movq %rsp, %rdi /* pt_regs pointer into 1st argument*/ 359 360 .if \has_error_code == 1 361 movq ORIG_RAX(%rsp), %rsi /* get error code into 2nd argument*/ 362 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */ 363 .endif 364 365 call \cfunc 366 367 /* For some configurations \cfunc ends up being a noreturn. */ 368 REACHABLE 369 370 jmp error_return 371.endm 372 373/** 374 * idtentry - Macro to generate entry stubs for simple IDT entries 375 * @vector: Vector number 376 * @asmsym: ASM symbol for the entry point 377 * @cfunc: C function to be called 378 * @has_error_code: Hardware pushed error code on stack 379 * 380 * The macro emits code to set up the kernel context for straight forward 381 * and simple IDT entries. No IST stack, no paranoid entry checks. 382 */ 383.macro idtentry vector asmsym cfunc has_error_code:req 384SYM_CODE_START(\asmsym) 385 UNWIND_HINT_IRET_REGS offset=\has_error_code*8 386 ENDBR 387 ASM_CLAC 388 cld 389 390 .if \has_error_code == 0 391 pushq $-1 /* ORIG_RAX: no syscall to restart */ 392 .endif 393 394 .if \vector == X86_TRAP_BP 395 /* 396 * If coming from kernel space, create a 6-word gap to allow the 397 * int3 handler to emulate a call instruction. 398 */ 399 testb $3, CS-ORIG_RAX(%rsp) 400 jnz .Lfrom_usermode_no_gap_\@ 401 .rept 6 402 pushq 5*8(%rsp) 403 .endr 404 UNWIND_HINT_IRET_REGS offset=8 405.Lfrom_usermode_no_gap_\@: 406 .endif 407 408 idtentry_body \cfunc \has_error_code 409 410_ASM_NOKPROBE(\asmsym) 411SYM_CODE_END(\asmsym) 412.endm 413 414/* 415 * Interrupt entry/exit. 416 * 417 + The interrupt stubs push (vector) onto the stack, which is the error_code 418 * position of idtentry exceptions, and jump to one of the two idtentry points 419 * (common/spurious). 420 * 421 * common_interrupt is a hotpath, align it to a cache line 422 */ 423.macro idtentry_irq vector cfunc 424 .p2align CONFIG_X86_L1_CACHE_SHIFT 425 idtentry \vector asm_\cfunc \cfunc has_error_code=1 426.endm 427 428/* 429 * System vectors which invoke their handlers directly and are not 430 * going through the regular common device interrupt handling code. 431 */ 432.macro idtentry_sysvec vector cfunc 433 idtentry \vector asm_\cfunc \cfunc has_error_code=0 434.endm 435 436/** 437 * idtentry_mce_db - Macro to generate entry stubs for #MC and #DB 438 * @vector: Vector number 439 * @asmsym: ASM symbol for the entry point 440 * @cfunc: C function to be called 441 * 442 * The macro emits code to set up the kernel context for #MC and #DB 443 * 444 * If the entry comes from user space it uses the normal entry path 445 * including the return to user space work and preemption checks on 446 * exit. 447 * 448 * If hits in kernel mode then it needs to go through the paranoid 449 * entry as the exception can hit any random state. No preemption 450 * check on exit to keep the paranoid path simple. 451 */ 452.macro idtentry_mce_db vector asmsym cfunc 453SYM_CODE_START(\asmsym) 454 UNWIND_HINT_IRET_REGS 455 ENDBR 456 ASM_CLAC 457 cld 458 459 pushq $-1 /* ORIG_RAX: no syscall to restart */ 460 461 /* 462 * If the entry is from userspace, switch stacks and treat it as 463 * a normal entry. 464 */ 465 testb $3, CS-ORIG_RAX(%rsp) 466 jnz .Lfrom_usermode_switch_stack_\@ 467 468 /* paranoid_entry returns GS information for paranoid_exit in EBX. */ 469 call paranoid_entry 470 471 UNWIND_HINT_REGS 472 473 movq %rsp, %rdi /* pt_regs pointer */ 474 475 call \cfunc 476 477 jmp paranoid_exit 478 479 /* Switch to the regular task stack and use the noist entry point */ 480.Lfrom_usermode_switch_stack_\@: 481 idtentry_body noist_\cfunc, has_error_code=0 482 483_ASM_NOKPROBE(\asmsym) 484SYM_CODE_END(\asmsym) 485.endm 486 487#ifdef CONFIG_AMD_MEM_ENCRYPT 488/** 489 * idtentry_vc - Macro to generate entry stub for #VC 490 * @vector: Vector number 491 * @asmsym: ASM symbol for the entry point 492 * @cfunc: C function to be called 493 * 494 * The macro emits code to set up the kernel context for #VC. The #VC handler 495 * runs on an IST stack and needs to be able to cause nested #VC exceptions. 496 * 497 * To make this work the #VC entry code tries its best to pretend it doesn't use 498 * an IST stack by switching to the task stack if coming from user-space (which 499 * includes early SYSCALL entry path) or back to the stack in the IRET frame if 500 * entered from kernel-mode. 501 * 502 * If entered from kernel-mode the return stack is validated first, and if it is 503 * not safe to use (e.g. because it points to the entry stack) the #VC handler 504 * will switch to a fall-back stack (VC2) and call a special handler function. 505 * 506 * The macro is only used for one vector, but it is planned to be extended in 507 * the future for the #HV exception. 508 */ 509.macro idtentry_vc vector asmsym cfunc 510SYM_CODE_START(\asmsym) 511 UNWIND_HINT_IRET_REGS 512 ENDBR 513 ASM_CLAC 514 cld 515 516 /* 517 * If the entry is from userspace, switch stacks and treat it as 518 * a normal entry. 519 */ 520 testb $3, CS-ORIG_RAX(%rsp) 521 jnz .Lfrom_usermode_switch_stack_\@ 522 523 /* 524 * paranoid_entry returns SWAPGS flag for paranoid_exit in EBX. 525 * EBX == 0 -> SWAPGS, EBX == 1 -> no SWAPGS 526 */ 527 call paranoid_entry 528 529 UNWIND_HINT_REGS 530 531 /* 532 * Switch off the IST stack to make it free for nested exceptions. The 533 * vc_switch_off_ist() function will switch back to the interrupted 534 * stack if it is safe to do so. If not it switches to the VC fall-back 535 * stack. 536 */ 537 movq %rsp, %rdi /* pt_regs pointer */ 538 call vc_switch_off_ist 539 movq %rax, %rsp /* Switch to new stack */ 540 541 ENCODE_FRAME_POINTER 542 UNWIND_HINT_REGS 543 544 /* Update pt_regs */ 545 movq ORIG_RAX(%rsp), %rsi /* get error code into 2nd argument*/ 546 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */ 547 548 movq %rsp, %rdi /* pt_regs pointer */ 549 550 call kernel_\cfunc 551 552 /* 553 * No need to switch back to the IST stack. The current stack is either 554 * identical to the stack in the IRET frame or the VC fall-back stack, 555 * so it is definitely mapped even with PTI enabled. 556 */ 557 jmp paranoid_exit 558 559 /* Switch to the regular task stack */ 560.Lfrom_usermode_switch_stack_\@: 561 idtentry_body user_\cfunc, has_error_code=1 562 563_ASM_NOKPROBE(\asmsym) 564SYM_CODE_END(\asmsym) 565.endm 566#endif 567 568/* 569 * Double fault entry. Straight paranoid. No checks from which context 570 * this comes because for the espfix induced #DF this would do the wrong 571 * thing. 572 */ 573.macro idtentry_df vector asmsym cfunc 574SYM_CODE_START(\asmsym) 575 UNWIND_HINT_IRET_REGS offset=8 576 ENDBR 577 ASM_CLAC 578 cld 579 580 /* paranoid_entry returns GS information for paranoid_exit in EBX. */ 581 call paranoid_entry 582 UNWIND_HINT_REGS 583 584 movq %rsp, %rdi /* pt_regs pointer into first argument */ 585 movq ORIG_RAX(%rsp), %rsi /* get error code into 2nd argument*/ 586 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */ 587 call \cfunc 588 589 /* For some configurations \cfunc ends up being a noreturn. */ 590 REACHABLE 591 592 jmp paranoid_exit 593 594_ASM_NOKPROBE(\asmsym) 595SYM_CODE_END(\asmsym) 596.endm 597 598/* 599 * Include the defines which emit the idt entries which are shared 600 * shared between 32 and 64 bit and emit the __irqentry_text_* markers 601 * so the stacktrace boundary checks work. 602 */ 603 .align 16 604 .globl __irqentry_text_start 605__irqentry_text_start: 606 607#include <asm/idtentry.h> 608 609 .align 16 610 .globl __irqentry_text_end 611__irqentry_text_end: 612 ANNOTATE_NOENDBR 613 614SYM_CODE_START_LOCAL(common_interrupt_return) 615SYM_INNER_LABEL(swapgs_restore_regs_and_return_to_usermode, SYM_L_GLOBAL) 616 IBRS_EXIT 617#ifdef CONFIG_DEBUG_ENTRY 618 /* Assert that pt_regs indicates user mode. */ 619 testb $3, CS(%rsp) 620 jnz 1f 621 ud2 6221: 623#endif 624#ifdef CONFIG_XEN_PV 625 ALTERNATIVE "", "jmp xenpv_restore_regs_and_return_to_usermode", X86_FEATURE_XENPV 626#endif 627 628 POP_REGS pop_rdi=0 629 630 /* 631 * The stack is now user RDI, orig_ax, RIP, CS, EFLAGS, RSP, SS. 632 * Save old stack pointer and switch to trampoline stack. 633 */ 634 movq %rsp, %rdi 635 movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp 636 UNWIND_HINT_EMPTY 637 638 /* Copy the IRET frame to the trampoline stack. */ 639 pushq 6*8(%rdi) /* SS */ 640 pushq 5*8(%rdi) /* RSP */ 641 pushq 4*8(%rdi) /* EFLAGS */ 642 pushq 3*8(%rdi) /* CS */ 643 pushq 2*8(%rdi) /* RIP */ 644 645 /* Push user RDI on the trampoline stack. */ 646 pushq (%rdi) 647 648 /* 649 * We are on the trampoline stack. All regs except RDI are live. 650 * We can do future final exit work right here. 651 */ 652 STACKLEAK_ERASE_NOCLOBBER 653 654 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi 655 656 /* Restore RDI. */ 657 popq %rdi 658 swapgs 659 jmp .Lnative_iret 660 661 662SYM_INNER_LABEL(restore_regs_and_return_to_kernel, SYM_L_GLOBAL) 663#ifdef CONFIG_DEBUG_ENTRY 664 /* Assert that pt_regs indicates kernel mode. */ 665 testb $3, CS(%rsp) 666 jz 1f 667 ud2 6681: 669#endif 670 POP_REGS 671 addq $8, %rsp /* skip regs->orig_ax */ 672 /* 673 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization 674 * when returning from IPI handler. 675 */ 676#ifdef CONFIG_XEN_PV 677SYM_INNER_LABEL(early_xen_iret_patch, SYM_L_GLOBAL) 678 ANNOTATE_NOENDBR 679 .byte 0xe9 680 .long .Lnative_iret - (. + 4) 681#endif 682 683.Lnative_iret: 684 UNWIND_HINT_IRET_REGS 685 /* 686 * Are we returning to a stack segment from the LDT? Note: in 687 * 64-bit mode SS:RSP on the exception stack is always valid. 688 */ 689#ifdef CONFIG_X86_ESPFIX64 690 testb $4, (SS-RIP)(%rsp) 691 jnz native_irq_return_ldt 692#endif 693 694SYM_INNER_LABEL(native_irq_return_iret, SYM_L_GLOBAL) 695 ANNOTATE_NOENDBR // exc_double_fault 696 /* 697 * This may fault. Non-paranoid faults on return to userspace are 698 * handled by fixup_bad_iret. These include #SS, #GP, and #NP. 699 * Double-faults due to espfix64 are handled in exc_double_fault. 700 * Other faults here are fatal. 701 */ 702 iretq 703 704#ifdef CONFIG_X86_ESPFIX64 705native_irq_return_ldt: 706 /* 707 * We are running with user GSBASE. All GPRs contain their user 708 * values. We have a percpu ESPFIX stack that is eight slots 709 * long (see ESPFIX_STACK_SIZE). espfix_waddr points to the bottom 710 * of the ESPFIX stack. 711 * 712 * We clobber RAX and RDI in this code. We stash RDI on the 713 * normal stack and RAX on the ESPFIX stack. 714 * 715 * The ESPFIX stack layout we set up looks like this: 716 * 717 * --- top of ESPFIX stack --- 718 * SS 719 * RSP 720 * RFLAGS 721 * CS 722 * RIP <-- RSP points here when we're done 723 * RAX <-- espfix_waddr points here 724 * --- bottom of ESPFIX stack --- 725 */ 726 727 pushq %rdi /* Stash user RDI */ 728 swapgs /* to kernel GS */ 729 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi /* to kernel CR3 */ 730 UNTRAIN_RET 731 732 movq PER_CPU_VAR(espfix_waddr), %rdi 733 movq %rax, (0*8)(%rdi) /* user RAX */ 734 movq (1*8)(%rsp), %rax /* user RIP */ 735 movq %rax, (1*8)(%rdi) 736 movq (2*8)(%rsp), %rax /* user CS */ 737 movq %rax, (2*8)(%rdi) 738 movq (3*8)(%rsp), %rax /* user RFLAGS */ 739 movq %rax, (3*8)(%rdi) 740 movq (5*8)(%rsp), %rax /* user SS */ 741 movq %rax, (5*8)(%rdi) 742 movq (4*8)(%rsp), %rax /* user RSP */ 743 movq %rax, (4*8)(%rdi) 744 /* Now RAX == RSP. */ 745 746 andl $0xffff0000, %eax /* RAX = (RSP & 0xffff0000) */ 747 748 /* 749 * espfix_stack[31:16] == 0. The page tables are set up such that 750 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of 751 * espfix_waddr for any X. That is, there are 65536 RO aliases of 752 * the same page. Set up RSP so that RSP[31:16] contains the 753 * respective 16 bits of the /userspace/ RSP and RSP nonetheless 754 * still points to an RO alias of the ESPFIX stack. 755 */ 756 orq PER_CPU_VAR(espfix_stack), %rax 757 758 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi 759 swapgs /* to user GS */ 760 popq %rdi /* Restore user RDI */ 761 762 movq %rax, %rsp 763 UNWIND_HINT_IRET_REGS offset=8 764 765 /* 766 * At this point, we cannot write to the stack any more, but we can 767 * still read. 768 */ 769 popq %rax /* Restore user RAX */ 770 771 /* 772 * RSP now points to an ordinary IRET frame, except that the page 773 * is read-only and RSP[31:16] are preloaded with the userspace 774 * values. We can now IRET back to userspace. 775 */ 776 jmp native_irq_return_iret 777#endif 778SYM_CODE_END(common_interrupt_return) 779_ASM_NOKPROBE(common_interrupt_return) 780 781/* 782 * Reload gs selector with exception handling 783 * edi: new selector 784 * 785 * Is in entry.text as it shouldn't be instrumented. 786 */ 787SYM_FUNC_START(asm_load_gs_index) 788 FRAME_BEGIN 789 swapgs 790.Lgs_change: 791 ANNOTATE_NOENDBR // error_entry 792 movl %edi, %gs 7932: ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE 794 swapgs 795 FRAME_END 796 RET 797 798 /* running with kernelgs */ 799.Lbad_gs: 800 swapgs /* switch back to user gs */ 801.macro ZAP_GS 802 /* This can't be a string because the preprocessor needs to see it. */ 803 movl $__USER_DS, %eax 804 movl %eax, %gs 805.endm 806 ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG 807 xorl %eax, %eax 808 movl %eax, %gs 809 jmp 2b 810 811 _ASM_EXTABLE(.Lgs_change, .Lbad_gs) 812 813SYM_FUNC_END(asm_load_gs_index) 814EXPORT_SYMBOL(asm_load_gs_index) 815 816#ifdef CONFIG_XEN_PV 817/* 818 * A note on the "critical region" in our callback handler. 819 * We want to avoid stacking callback handlers due to events occurring 820 * during handling of the last event. To do this, we keep events disabled 821 * until we've done all processing. HOWEVER, we must enable events before 822 * popping the stack frame (can't be done atomically) and so it would still 823 * be possible to get enough handler activations to overflow the stack. 824 * Although unlikely, bugs of that kind are hard to track down, so we'd 825 * like to avoid the possibility. 826 * So, on entry to the handler we detect whether we interrupted an 827 * existing activation in its critical region -- if so, we pop the current 828 * activation and restart the handler using the previous one. 829 * 830 * C calling convention: exc_xen_hypervisor_callback(struct *pt_regs) 831 */ 832SYM_CODE_START_LOCAL(exc_xen_hypervisor_callback) 833 834/* 835 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will 836 * see the correct pointer to the pt_regs 837 */ 838 UNWIND_HINT_FUNC 839 movq %rdi, %rsp /* we don't return, adjust the stack frame */ 840 UNWIND_HINT_REGS 841 842 call xen_pv_evtchn_do_upcall 843 844 jmp error_return 845SYM_CODE_END(exc_xen_hypervisor_callback) 846 847/* 848 * Hypervisor uses this for application faults while it executes. 849 * We get here for two reasons: 850 * 1. Fault while reloading DS, ES, FS or GS 851 * 2. Fault while executing IRET 852 * Category 1 we do not need to fix up as Xen has already reloaded all segment 853 * registers that could be reloaded and zeroed the others. 854 * Category 2 we fix up by killing the current process. We cannot use the 855 * normal Linux return path in this case because if we use the IRET hypercall 856 * to pop the stack frame we end up in an infinite loop of failsafe callbacks. 857 * We distinguish between categories by comparing each saved segment register 858 * with its current contents: any discrepancy means we in category 1. 859 */ 860SYM_CODE_START(xen_failsafe_callback) 861 UNWIND_HINT_EMPTY 862 ENDBR 863 movl %ds, %ecx 864 cmpw %cx, 0x10(%rsp) 865 jne 1f 866 movl %es, %ecx 867 cmpw %cx, 0x18(%rsp) 868 jne 1f 869 movl %fs, %ecx 870 cmpw %cx, 0x20(%rsp) 871 jne 1f 872 movl %gs, %ecx 873 cmpw %cx, 0x28(%rsp) 874 jne 1f 875 /* All segments match their saved values => Category 2 (Bad IRET). */ 876 movq (%rsp), %rcx 877 movq 8(%rsp), %r11 878 addq $0x30, %rsp 879 pushq $0 /* RIP */ 880 UNWIND_HINT_IRET_REGS offset=8 881 jmp asm_exc_general_protection 8821: /* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */ 883 movq (%rsp), %rcx 884 movq 8(%rsp), %r11 885 addq $0x30, %rsp 886 UNWIND_HINT_IRET_REGS 887 pushq $-1 /* orig_ax = -1 => not a system call */ 888 PUSH_AND_CLEAR_REGS 889 ENCODE_FRAME_POINTER 890 jmp error_return 891SYM_CODE_END(xen_failsafe_callback) 892#endif /* CONFIG_XEN_PV */ 893 894/* 895 * Save all registers in pt_regs. Return GSBASE related information 896 * in EBX depending on the availability of the FSGSBASE instructions: 897 * 898 * FSGSBASE R/EBX 899 * N 0 -> SWAPGS on exit 900 * 1 -> no SWAPGS on exit 901 * 902 * Y GSBASE value at entry, must be restored in paranoid_exit 903 * 904 * R14 - old CR3 905 * R15 - old SPEC_CTRL 906 */ 907SYM_CODE_START_LOCAL(paranoid_entry) 908 UNWIND_HINT_FUNC 909 PUSH_AND_CLEAR_REGS save_ret=1 910 ENCODE_FRAME_POINTER 8 911 912 /* 913 * Always stash CR3 in %r14. This value will be restored, 914 * verbatim, at exit. Needed if paranoid_entry interrupted 915 * another entry that already switched to the user CR3 value 916 * but has not yet returned to userspace. 917 * 918 * This is also why CS (stashed in the "iret frame" by the 919 * hardware at entry) can not be used: this may be a return 920 * to kernel code, but with a user CR3 value. 921 * 922 * Switching CR3 does not depend on kernel GSBASE so it can 923 * be done before switching to the kernel GSBASE. This is 924 * required for FSGSBASE because the kernel GSBASE has to 925 * be retrieved from a kernel internal table. 926 */ 927 SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg=%rax save_reg=%r14 928 929 /* 930 * Handling GSBASE depends on the availability of FSGSBASE. 931 * 932 * Without FSGSBASE the kernel enforces that negative GSBASE 933 * values indicate kernel GSBASE. With FSGSBASE no assumptions 934 * can be made about the GSBASE value when entering from user 935 * space. 936 */ 937 ALTERNATIVE "jmp .Lparanoid_entry_checkgs", "", X86_FEATURE_FSGSBASE 938 939 /* 940 * Read the current GSBASE and store it in %rbx unconditionally, 941 * retrieve and set the current CPUs kernel GSBASE. The stored value 942 * has to be restored in paranoid_exit unconditionally. 943 * 944 * The unconditional write to GS base below ensures that no subsequent 945 * loads based on a mispredicted GS base can happen, therefore no LFENCE 946 * is needed here. 947 */ 948 SAVE_AND_SET_GSBASE scratch_reg=%rax save_reg=%rbx 949 jmp .Lparanoid_gsbase_done 950 951.Lparanoid_entry_checkgs: 952 /* EBX = 1 -> kernel GSBASE active, no restore required */ 953 movl $1, %ebx 954 955 /* 956 * The kernel-enforced convention is a negative GSBASE indicates 957 * a kernel value. No SWAPGS needed on entry and exit. 958 */ 959 movl $MSR_GS_BASE, %ecx 960 rdmsr 961 testl %edx, %edx 962 js .Lparanoid_kernel_gsbase 963 964 /* EBX = 0 -> SWAPGS required on exit */ 965 xorl %ebx, %ebx 966 swapgs 967.Lparanoid_kernel_gsbase: 968 FENCE_SWAPGS_KERNEL_ENTRY 969.Lparanoid_gsbase_done: 970 971 /* 972 * Once we have CR3 and %GS setup save and set SPEC_CTRL. Just like 973 * CR3 above, keep the old value in a callee saved register. 974 */ 975 IBRS_ENTER save_reg=%r15 976 UNTRAIN_RET 977 978 RET 979SYM_CODE_END(paranoid_entry) 980 981/* 982 * "Paranoid" exit path from exception stack. This is invoked 983 * only on return from non-NMI IST interrupts that came 984 * from kernel space. 985 * 986 * We may be returning to very strange contexts (e.g. very early 987 * in syscall entry), so checking for preemption here would 988 * be complicated. Fortunately, there's no good reason to try 989 * to handle preemption here. 990 * 991 * R/EBX contains the GSBASE related information depending on the 992 * availability of the FSGSBASE instructions: 993 * 994 * FSGSBASE R/EBX 995 * N 0 -> SWAPGS on exit 996 * 1 -> no SWAPGS on exit 997 * 998 * Y User space GSBASE, must be restored unconditionally 999 * 1000 * R14 - old CR3 1001 * R15 - old SPEC_CTRL 1002 */ 1003SYM_CODE_START_LOCAL(paranoid_exit) 1004 UNWIND_HINT_REGS 1005 1006 /* 1007 * Must restore IBRS state before both CR3 and %GS since we need access 1008 * to the per-CPU x86_spec_ctrl_shadow variable. 1009 */ 1010 IBRS_EXIT save_reg=%r15 1011 1012 /* 1013 * The order of operations is important. RESTORE_CR3 requires 1014 * kernel GSBASE. 1015 * 1016 * NB to anyone to try to optimize this code: this code does 1017 * not execute at all for exceptions from user mode. Those 1018 * exceptions go through error_exit instead. 1019 */ 1020 RESTORE_CR3 scratch_reg=%rax save_reg=%r14 1021 1022 /* Handle the three GSBASE cases */ 1023 ALTERNATIVE "jmp .Lparanoid_exit_checkgs", "", X86_FEATURE_FSGSBASE 1024 1025 /* With FSGSBASE enabled, unconditionally restore GSBASE */ 1026 wrgsbase %rbx 1027 jmp restore_regs_and_return_to_kernel 1028 1029.Lparanoid_exit_checkgs: 1030 /* On non-FSGSBASE systems, conditionally do SWAPGS */ 1031 testl %ebx, %ebx 1032 jnz restore_regs_and_return_to_kernel 1033 1034 /* We are returning to a context with user GSBASE */ 1035 swapgs 1036 jmp restore_regs_and_return_to_kernel 1037SYM_CODE_END(paranoid_exit) 1038 1039/* 1040 * Switch GS and CR3 if needed. 1041 */ 1042SYM_CODE_START_LOCAL(error_entry) 1043 UNWIND_HINT_FUNC 1044 1045 PUSH_AND_CLEAR_REGS save_ret=1 1046 ENCODE_FRAME_POINTER 8 1047 1048 testb $3, CS+8(%rsp) 1049 jz .Lerror_kernelspace 1050 1051 /* 1052 * We entered from user mode or we're pretending to have entered 1053 * from user mode due to an IRET fault. 1054 */ 1055 swapgs 1056 FENCE_SWAPGS_USER_ENTRY 1057 /* We have user CR3. Change to kernel CR3. */ 1058 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax 1059 IBRS_ENTER 1060 UNTRAIN_RET 1061 1062 leaq 8(%rsp), %rdi /* arg0 = pt_regs pointer */ 1063.Lerror_entry_from_usermode_after_swapgs: 1064 1065 /* Put us onto the real thread stack. */ 1066 call sync_regs 1067 RET 1068 1069 /* 1070 * There are two places in the kernel that can potentially fault with 1071 * usergs. Handle them here. B stepping K8s sometimes report a 1072 * truncated RIP for IRET exceptions returning to compat mode. Check 1073 * for these here too. 1074 */ 1075.Lerror_kernelspace: 1076 leaq native_irq_return_iret(%rip), %rcx 1077 cmpq %rcx, RIP+8(%rsp) 1078 je .Lerror_bad_iret 1079 movl %ecx, %eax /* zero extend */ 1080 cmpq %rax, RIP+8(%rsp) 1081 je .Lbstep_iret 1082 cmpq $.Lgs_change, RIP+8(%rsp) 1083 jne .Lerror_entry_done_lfence 1084 1085 /* 1086 * hack: .Lgs_change can fail with user gsbase. If this happens, fix up 1087 * gsbase and proceed. We'll fix up the exception and land in 1088 * .Lgs_change's error handler with kernel gsbase. 1089 */ 1090 swapgs 1091 1092 /* 1093 * Issue an LFENCE to prevent GS speculation, regardless of whether it is a 1094 * kernel or user gsbase. 1095 */ 1096.Lerror_entry_done_lfence: 1097 FENCE_SWAPGS_KERNEL_ENTRY 1098 leaq 8(%rsp), %rax /* return pt_regs pointer */ 1099 ANNOTATE_UNRET_END 1100 RET 1101 1102.Lbstep_iret: 1103 /* Fix truncated RIP */ 1104 movq %rcx, RIP+8(%rsp) 1105 /* fall through */ 1106 1107.Lerror_bad_iret: 1108 /* 1109 * We came from an IRET to user mode, so we have user 1110 * gsbase and CR3. Switch to kernel gsbase and CR3: 1111 */ 1112 swapgs 1113 FENCE_SWAPGS_USER_ENTRY 1114 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax 1115 IBRS_ENTER 1116 UNTRAIN_RET 1117 1118 /* 1119 * Pretend that the exception came from user mode: set up pt_regs 1120 * as if we faulted immediately after IRET. 1121 */ 1122 leaq 8(%rsp), %rdi /* arg0 = pt_regs pointer */ 1123 call fixup_bad_iret 1124 mov %rax, %rdi 1125 jmp .Lerror_entry_from_usermode_after_swapgs 1126SYM_CODE_END(error_entry) 1127 1128SYM_CODE_START_LOCAL(error_return) 1129 UNWIND_HINT_REGS 1130 DEBUG_ENTRY_ASSERT_IRQS_OFF 1131 testb $3, CS(%rsp) 1132 jz restore_regs_and_return_to_kernel 1133 jmp swapgs_restore_regs_and_return_to_usermode 1134SYM_CODE_END(error_return) 1135 1136/* 1137 * Runs on exception stack. Xen PV does not go through this path at all, 1138 * so we can use real assembly here. 1139 * 1140 * Registers: 1141 * %r14: Used to save/restore the CR3 of the interrupted context 1142 * when PAGE_TABLE_ISOLATION is in use. Do not clobber. 1143 */ 1144SYM_CODE_START(asm_exc_nmi) 1145 UNWIND_HINT_IRET_REGS 1146 ENDBR 1147 1148 /* 1149 * We allow breakpoints in NMIs. If a breakpoint occurs, then 1150 * the iretq it performs will take us out of NMI context. 1151 * This means that we can have nested NMIs where the next 1152 * NMI is using the top of the stack of the previous NMI. We 1153 * can't let it execute because the nested NMI will corrupt the 1154 * stack of the previous NMI. NMI handlers are not re-entrant 1155 * anyway. 1156 * 1157 * To handle this case we do the following: 1158 * Check the a special location on the stack that contains 1159 * a variable that is set when NMIs are executing. 1160 * The interrupted task's stack is also checked to see if it 1161 * is an NMI stack. 1162 * If the variable is not set and the stack is not the NMI 1163 * stack then: 1164 * o Set the special variable on the stack 1165 * o Copy the interrupt frame into an "outermost" location on the 1166 * stack 1167 * o Copy the interrupt frame into an "iret" location on the stack 1168 * o Continue processing the NMI 1169 * If the variable is set or the previous stack is the NMI stack: 1170 * o Modify the "iret" location to jump to the repeat_nmi 1171 * o return back to the first NMI 1172 * 1173 * Now on exit of the first NMI, we first clear the stack variable 1174 * The NMI stack will tell any nested NMIs at that point that it is 1175 * nested. Then we pop the stack normally with iret, and if there was 1176 * a nested NMI that updated the copy interrupt stack frame, a 1177 * jump will be made to the repeat_nmi code that will handle the second 1178 * NMI. 1179 * 1180 * However, espfix prevents us from directly returning to userspace 1181 * with a single IRET instruction. Similarly, IRET to user mode 1182 * can fault. We therefore handle NMIs from user space like 1183 * other IST entries. 1184 */ 1185 1186 ASM_CLAC 1187 cld 1188 1189 /* Use %rdx as our temp variable throughout */ 1190 pushq %rdx 1191 1192 testb $3, CS-RIP+8(%rsp) 1193 jz .Lnmi_from_kernel 1194 1195 /* 1196 * NMI from user mode. We need to run on the thread stack, but we 1197 * can't go through the normal entry paths: NMIs are masked, and 1198 * we don't want to enable interrupts, because then we'll end 1199 * up in an awkward situation in which IRQs are on but NMIs 1200 * are off. 1201 * 1202 * We also must not push anything to the stack before switching 1203 * stacks lest we corrupt the "NMI executing" variable. 1204 */ 1205 1206 swapgs 1207 FENCE_SWAPGS_USER_ENTRY 1208 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdx 1209 movq %rsp, %rdx 1210 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp 1211 UNWIND_HINT_IRET_REGS base=%rdx offset=8 1212 pushq 5*8(%rdx) /* pt_regs->ss */ 1213 pushq 4*8(%rdx) /* pt_regs->rsp */ 1214 pushq 3*8(%rdx) /* pt_regs->flags */ 1215 pushq 2*8(%rdx) /* pt_regs->cs */ 1216 pushq 1*8(%rdx) /* pt_regs->rip */ 1217 UNWIND_HINT_IRET_REGS 1218 pushq $-1 /* pt_regs->orig_ax */ 1219 PUSH_AND_CLEAR_REGS rdx=(%rdx) 1220 ENCODE_FRAME_POINTER 1221 1222 IBRS_ENTER 1223 UNTRAIN_RET 1224 1225 /* 1226 * At this point we no longer need to worry about stack damage 1227 * due to nesting -- we're on the normal thread stack and we're 1228 * done with the NMI stack. 1229 */ 1230 1231 movq %rsp, %rdi 1232 movq $-1, %rsi 1233 call exc_nmi 1234 1235 /* 1236 * Return back to user mode. We must *not* do the normal exit 1237 * work, because we don't want to enable interrupts. 1238 */ 1239 jmp swapgs_restore_regs_and_return_to_usermode 1240 1241.Lnmi_from_kernel: 1242 /* 1243 * Here's what our stack frame will look like: 1244 * +---------------------------------------------------------+ 1245 * | original SS | 1246 * | original Return RSP | 1247 * | original RFLAGS | 1248 * | original CS | 1249 * | original RIP | 1250 * +---------------------------------------------------------+ 1251 * | temp storage for rdx | 1252 * +---------------------------------------------------------+ 1253 * | "NMI executing" variable | 1254 * +---------------------------------------------------------+ 1255 * | iret SS } Copied from "outermost" frame | 1256 * | iret Return RSP } on each loop iteration; overwritten | 1257 * | iret RFLAGS } by a nested NMI to force another | 1258 * | iret CS } iteration if needed. | 1259 * | iret RIP } | 1260 * +---------------------------------------------------------+ 1261 * | outermost SS } initialized in first_nmi; | 1262 * | outermost Return RSP } will not be changed before | 1263 * | outermost RFLAGS } NMI processing is done. | 1264 * | outermost CS } Copied to "iret" frame on each | 1265 * | outermost RIP } iteration. | 1266 * +---------------------------------------------------------+ 1267 * | pt_regs | 1268 * +---------------------------------------------------------+ 1269 * 1270 * The "original" frame is used by hardware. Before re-enabling 1271 * NMIs, we need to be done with it, and we need to leave enough 1272 * space for the asm code here. 1273 * 1274 * We return by executing IRET while RSP points to the "iret" frame. 1275 * That will either return for real or it will loop back into NMI 1276 * processing. 1277 * 1278 * The "outermost" frame is copied to the "iret" frame on each 1279 * iteration of the loop, so each iteration starts with the "iret" 1280 * frame pointing to the final return target. 1281 */ 1282 1283 /* 1284 * Determine whether we're a nested NMI. 1285 * 1286 * If we interrupted kernel code between repeat_nmi and 1287 * end_repeat_nmi, then we are a nested NMI. We must not 1288 * modify the "iret" frame because it's being written by 1289 * the outer NMI. That's okay; the outer NMI handler is 1290 * about to about to call exc_nmi() anyway, so we can just 1291 * resume the outer NMI. 1292 */ 1293 1294 movq $repeat_nmi, %rdx 1295 cmpq 8(%rsp), %rdx 1296 ja 1f 1297 movq $end_repeat_nmi, %rdx 1298 cmpq 8(%rsp), %rdx 1299 ja nested_nmi_out 13001: 1301 1302 /* 1303 * Now check "NMI executing". If it's set, then we're nested. 1304 * This will not detect if we interrupted an outer NMI just 1305 * before IRET. 1306 */ 1307 cmpl $1, -8(%rsp) 1308 je nested_nmi 1309 1310 /* 1311 * Now test if the previous stack was an NMI stack. This covers 1312 * the case where we interrupt an outer NMI after it clears 1313 * "NMI executing" but before IRET. We need to be careful, though: 1314 * there is one case in which RSP could point to the NMI stack 1315 * despite there being no NMI active: naughty userspace controls 1316 * RSP at the very beginning of the SYSCALL targets. We can 1317 * pull a fast one on naughty userspace, though: we program 1318 * SYSCALL to mask DF, so userspace cannot cause DF to be set 1319 * if it controls the kernel's RSP. We set DF before we clear 1320 * "NMI executing". 1321 */ 1322 lea 6*8(%rsp), %rdx 1323 /* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */ 1324 cmpq %rdx, 4*8(%rsp) 1325 /* If the stack pointer is above the NMI stack, this is a normal NMI */ 1326 ja first_nmi 1327 1328 subq $EXCEPTION_STKSZ, %rdx 1329 cmpq %rdx, 4*8(%rsp) 1330 /* If it is below the NMI stack, it is a normal NMI */ 1331 jb first_nmi 1332 1333 /* Ah, it is within the NMI stack. */ 1334 1335 testb $(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp) 1336 jz first_nmi /* RSP was user controlled. */ 1337 1338 /* This is a nested NMI. */ 1339 1340nested_nmi: 1341 /* 1342 * Modify the "iret" frame to point to repeat_nmi, forcing another 1343 * iteration of NMI handling. 1344 */ 1345 subq $8, %rsp 1346 leaq -10*8(%rsp), %rdx 1347 pushq $__KERNEL_DS 1348 pushq %rdx 1349 pushfq 1350 pushq $__KERNEL_CS 1351 pushq $repeat_nmi 1352 1353 /* Put stack back */ 1354 addq $(6*8), %rsp 1355 1356nested_nmi_out: 1357 popq %rdx 1358 1359 /* We are returning to kernel mode, so this cannot result in a fault. */ 1360 iretq 1361 1362first_nmi: 1363 /* Restore rdx. */ 1364 movq (%rsp), %rdx 1365 1366 /* Make room for "NMI executing". */ 1367 pushq $0 1368 1369 /* Leave room for the "iret" frame */ 1370 subq $(5*8), %rsp 1371 1372 /* Copy the "original" frame to the "outermost" frame */ 1373 .rept 5 1374 pushq 11*8(%rsp) 1375 .endr 1376 UNWIND_HINT_IRET_REGS 1377 1378 /* Everything up to here is safe from nested NMIs */ 1379 1380#ifdef CONFIG_DEBUG_ENTRY 1381 /* 1382 * For ease of testing, unmask NMIs right away. Disabled by 1383 * default because IRET is very expensive. 1384 */ 1385 pushq $0 /* SS */ 1386 pushq %rsp /* RSP (minus 8 because of the previous push) */ 1387 addq $8, (%rsp) /* Fix up RSP */ 1388 pushfq /* RFLAGS */ 1389 pushq $__KERNEL_CS /* CS */ 1390 pushq $1f /* RIP */ 1391 iretq /* continues at repeat_nmi below */ 1392 UNWIND_HINT_IRET_REGS 13931: 1394#endif 1395 1396repeat_nmi: 1397 ANNOTATE_NOENDBR // this code 1398 /* 1399 * If there was a nested NMI, the first NMI's iret will return 1400 * here. But NMIs are still enabled and we can take another 1401 * nested NMI. The nested NMI checks the interrupted RIP to see 1402 * if it is between repeat_nmi and end_repeat_nmi, and if so 1403 * it will just return, as we are about to repeat an NMI anyway. 1404 * This makes it safe to copy to the stack frame that a nested 1405 * NMI will update. 1406 * 1407 * RSP is pointing to "outermost RIP". gsbase is unknown, but, if 1408 * we're repeating an NMI, gsbase has the same value that it had on 1409 * the first iteration. paranoid_entry will load the kernel 1410 * gsbase if needed before we call exc_nmi(). "NMI executing" 1411 * is zero. 1412 */ 1413 movq $1, 10*8(%rsp) /* Set "NMI executing". */ 1414 1415 /* 1416 * Copy the "outermost" frame to the "iret" frame. NMIs that nest 1417 * here must not modify the "iret" frame while we're writing to 1418 * it or it will end up containing garbage. 1419 */ 1420 addq $(10*8), %rsp 1421 .rept 5 1422 pushq -6*8(%rsp) 1423 .endr 1424 subq $(5*8), %rsp 1425end_repeat_nmi: 1426 ANNOTATE_NOENDBR // this code 1427 1428 /* 1429 * Everything below this point can be preempted by a nested NMI. 1430 * If this happens, then the inner NMI will change the "iret" 1431 * frame to point back to repeat_nmi. 1432 */ 1433 pushq $-1 /* ORIG_RAX: no syscall to restart */ 1434 1435 /* 1436 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit 1437 * as we should not be calling schedule in NMI context. 1438 * Even with normal interrupts enabled. An NMI should not be 1439 * setting NEED_RESCHED or anything that normal interrupts and 1440 * exceptions might do. 1441 */ 1442 call paranoid_entry 1443 UNWIND_HINT_REGS 1444 1445 movq %rsp, %rdi 1446 movq $-1, %rsi 1447 call exc_nmi 1448 1449 /* Always restore stashed SPEC_CTRL value (see paranoid_entry) */ 1450 IBRS_EXIT save_reg=%r15 1451 1452 /* Always restore stashed CR3 value (see paranoid_entry) */ 1453 RESTORE_CR3 scratch_reg=%r15 save_reg=%r14 1454 1455 /* 1456 * The above invocation of paranoid_entry stored the GSBASE 1457 * related information in R/EBX depending on the availability 1458 * of FSGSBASE. 1459 * 1460 * If FSGSBASE is enabled, restore the saved GSBASE value 1461 * unconditionally, otherwise take the conditional SWAPGS path. 1462 */ 1463 ALTERNATIVE "jmp nmi_no_fsgsbase", "", X86_FEATURE_FSGSBASE 1464 1465 wrgsbase %rbx 1466 jmp nmi_restore 1467 1468nmi_no_fsgsbase: 1469 /* EBX == 0 -> invoke SWAPGS */ 1470 testl %ebx, %ebx 1471 jnz nmi_restore 1472 1473nmi_swapgs: 1474 swapgs 1475 1476nmi_restore: 1477 POP_REGS 1478 1479 /* 1480 * Skip orig_ax and the "outermost" frame to point RSP at the "iret" 1481 * at the "iret" frame. 1482 */ 1483 addq $6*8, %rsp 1484 1485 /* 1486 * Clear "NMI executing". Set DF first so that we can easily 1487 * distinguish the remaining code between here and IRET from 1488 * the SYSCALL entry and exit paths. 1489 * 1490 * We arguably should just inspect RIP instead, but I (Andy) wrote 1491 * this code when I had the misapprehension that Xen PV supported 1492 * NMIs, and Xen PV would break that approach. 1493 */ 1494 std 1495 movq $0, 5*8(%rsp) /* clear "NMI executing" */ 1496 1497 /* 1498 * iretq reads the "iret" frame and exits the NMI stack in a 1499 * single instruction. We are returning to kernel mode, so this 1500 * cannot result in a fault. Similarly, we don't need to worry 1501 * about espfix64 on the way back to kernel mode. 1502 */ 1503 iretq 1504SYM_CODE_END(asm_exc_nmi) 1505 1506#ifndef CONFIG_IA32_EMULATION 1507/* 1508 * This handles SYSCALL from 32-bit code. There is no way to program 1509 * MSRs to fully disable 32-bit SYSCALL. 1510 */ 1511SYM_CODE_START(ignore_sysret) 1512 UNWIND_HINT_EMPTY 1513 ENDBR 1514 mov $-ENOSYS, %eax 1515 sysretl 1516SYM_CODE_END(ignore_sysret) 1517#endif 1518 1519.pushsection .text, "ax" 1520SYM_CODE_START(rewind_stack_and_make_dead) 1521 UNWIND_HINT_FUNC 1522 /* Prevent any naive code from trying to unwind to our caller. */ 1523 xorl %ebp, %ebp 1524 1525 movq PER_CPU_VAR(cpu_current_top_of_stack), %rax 1526 leaq -PTREGS_SIZE(%rax), %rsp 1527 UNWIND_HINT_REGS 1528 1529 call make_task_dead 1530SYM_CODE_END(rewind_stack_and_make_dead) 1531.popsection 1532