1/* SPDX-License-Identifier: GPL-2.0 */ 2/* 3 * linux/arch/x86_64/entry.S 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * Copyright (C) 2000, 2001, 2002 Andi Kleen SuSE Labs 7 * Copyright (C) 2000 Pavel Machek <pavel@suse.cz> 8 * 9 * entry.S contains the system-call and fault low-level handling routines. 10 * 11 * Some of this is documented in Documentation/x86/entry_64.rst 12 * 13 * A note on terminology: 14 * - iret frame: Architecture defined interrupt frame from SS to RIP 15 * at the top of the kernel process stack. 16 * 17 * Some macro usage: 18 * - SYM_FUNC_START/END:Define functions in the symbol table. 19 * - idtentry: Define exception entry points. 20 */ 21#include <linux/linkage.h> 22#include <asm/segment.h> 23#include <asm/cache.h> 24#include <asm/errno.h> 25#include <asm/asm-offsets.h> 26#include <asm/msr.h> 27#include <asm/unistd.h> 28#include <asm/thread_info.h> 29#include <asm/hw_irq.h> 30#include <asm/page_types.h> 31#include <asm/irqflags.h> 32#include <asm/paravirt.h> 33#include <asm/percpu.h> 34#include <asm/asm.h> 35#include <asm/smap.h> 36#include <asm/pgtable_types.h> 37#include <asm/export.h> 38#include <asm/frame.h> 39#include <asm/trapnr.h> 40#include <asm/nospec-branch.h> 41#include <asm/fsgsbase.h> 42#include <linux/err.h> 43 44#include "calling.h" 45 46.code64 47.section .entry.text, "ax" 48 49/* 50 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers. 51 * 52 * This is the only entry point used for 64-bit system calls. The 53 * hardware interface is reasonably well designed and the register to 54 * argument mapping Linux uses fits well with the registers that are 55 * available when SYSCALL is used. 56 * 57 * SYSCALL instructions can be found inlined in libc implementations as 58 * well as some other programs and libraries. There are also a handful 59 * of SYSCALL instructions in the vDSO used, for example, as a 60 * clock_gettimeofday fallback. 61 * 62 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11, 63 * then loads new ss, cs, and rip from previously programmed MSRs. 64 * rflags gets masked by a value from another MSR (so CLD and CLAC 65 * are not needed). SYSCALL does not save anything on the stack 66 * and does not change rsp. 67 * 68 * Registers on entry: 69 * rax system call number 70 * rcx return address 71 * r11 saved rflags (note: r11 is callee-clobbered register in C ABI) 72 * rdi arg0 73 * rsi arg1 74 * rdx arg2 75 * r10 arg3 (needs to be moved to rcx to conform to C ABI) 76 * r8 arg4 77 * r9 arg5 78 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI) 79 * 80 * Only called from user space. 81 * 82 * When user can change pt_regs->foo always force IRET. That is because 83 * it deals with uncanonical addresses better. SYSRET has trouble 84 * with them due to bugs in both AMD and Intel CPUs. 85 */ 86 87SYM_CODE_START(entry_SYSCALL_64) 88 UNWIND_HINT_ENTRY 89 ENDBR 90 91 swapgs 92 /* tss.sp2 is scratch space. */ 93 movq %rsp, PER_CPU_VAR(cpu_tss_rw + TSS_sp2) 94 SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp 95 movq PER_CPU_VAR(pcpu_hot + X86_top_of_stack), %rsp 96 97SYM_INNER_LABEL(entry_SYSCALL_64_safe_stack, SYM_L_GLOBAL) 98 ANNOTATE_NOENDBR 99 100 /* Construct struct pt_regs on stack */ 101 pushq $__USER_DS /* pt_regs->ss */ 102 pushq PER_CPU_VAR(cpu_tss_rw + TSS_sp2) /* pt_regs->sp */ 103 pushq %r11 /* pt_regs->flags */ 104 pushq $__USER_CS /* pt_regs->cs */ 105 pushq %rcx /* pt_regs->ip */ 106SYM_INNER_LABEL(entry_SYSCALL_64_after_hwframe, SYM_L_GLOBAL) 107 pushq %rax /* pt_regs->orig_ax */ 108 109 PUSH_AND_CLEAR_REGS rax=$-ENOSYS 110 111 /* IRQs are off. */ 112 movq %rsp, %rdi 113 /* Sign extend the lower 32bit as syscall numbers are treated as int */ 114 movslq %eax, %rsi 115 116 /* clobbers %rax, make sure it is after saving the syscall nr */ 117 IBRS_ENTER 118 UNTRAIN_RET 119 120 call do_syscall_64 /* returns with IRQs disabled */ 121 122 /* 123 * Try to use SYSRET instead of IRET if we're returning to 124 * a completely clean 64-bit userspace context. If we're not, 125 * go to the slow exit path. 126 * In the Xen PV case we must use iret anyway. 127 */ 128 129 ALTERNATIVE "", "jmp swapgs_restore_regs_and_return_to_usermode", \ 130 X86_FEATURE_XENPV 131 132 movq RCX(%rsp), %rcx 133 movq RIP(%rsp), %r11 134 135 cmpq %rcx, %r11 /* SYSRET requires RCX == RIP */ 136 jne swapgs_restore_regs_and_return_to_usermode 137 138 /* 139 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP 140 * in kernel space. This essentially lets the user take over 141 * the kernel, since userspace controls RSP. 142 * 143 * If width of "canonical tail" ever becomes variable, this will need 144 * to be updated to remain correct on both old and new CPUs. 145 * 146 * Change top bits to match most significant bit (47th or 56th bit 147 * depending on paging mode) in the address. 148 */ 149#ifdef CONFIG_X86_5LEVEL 150 ALTERNATIVE "shl $(64 - 48), %rcx; sar $(64 - 48), %rcx", \ 151 "shl $(64 - 57), %rcx; sar $(64 - 57), %rcx", X86_FEATURE_LA57 152#else 153 shl $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx 154 sar $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx 155#endif 156 157 /* If this changed %rcx, it was not canonical */ 158 cmpq %rcx, %r11 159 jne swapgs_restore_regs_and_return_to_usermode 160 161 cmpq $__USER_CS, CS(%rsp) /* CS must match SYSRET */ 162 jne swapgs_restore_regs_and_return_to_usermode 163 164 movq R11(%rsp), %r11 165 cmpq %r11, EFLAGS(%rsp) /* R11 == RFLAGS */ 166 jne swapgs_restore_regs_and_return_to_usermode 167 168 /* 169 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot 170 * restore RF properly. If the slowpath sets it for whatever reason, we 171 * need to restore it correctly. 172 * 173 * SYSRET can restore TF, but unlike IRET, restoring TF results in a 174 * trap from userspace immediately after SYSRET. This would cause an 175 * infinite loop whenever #DB happens with register state that satisfies 176 * the opportunistic SYSRET conditions. For example, single-stepping 177 * this user code: 178 * 179 * movq $stuck_here, %rcx 180 * pushfq 181 * popq %r11 182 * stuck_here: 183 * 184 * would never get past 'stuck_here'. 185 */ 186 testq $(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11 187 jnz swapgs_restore_regs_and_return_to_usermode 188 189 /* nothing to check for RSP */ 190 191 cmpq $__USER_DS, SS(%rsp) /* SS must match SYSRET */ 192 jne swapgs_restore_regs_and_return_to_usermode 193 194 /* 195 * We win! This label is here just for ease of understanding 196 * perf profiles. Nothing jumps here. 197 */ 198syscall_return_via_sysret: 199 IBRS_EXIT 200 POP_REGS pop_rdi=0 201 202 /* 203 * Now all regs are restored except RSP and RDI. 204 * Save old stack pointer and switch to trampoline stack. 205 */ 206 movq %rsp, %rdi 207 movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp 208 UNWIND_HINT_EMPTY 209 210 pushq RSP-RDI(%rdi) /* RSP */ 211 pushq (%rdi) /* RDI */ 212 213 /* 214 * We are on the trampoline stack. All regs except RDI are live. 215 * We can do future final exit work right here. 216 */ 217 STACKLEAK_ERASE_NOCLOBBER 218 219 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi 220 221 popq %rdi 222 popq %rsp 223SYM_INNER_LABEL(entry_SYSRETQ_unsafe_stack, SYM_L_GLOBAL) 224 ANNOTATE_NOENDBR 225 swapgs 226 sysretq 227SYM_INNER_LABEL(entry_SYSRETQ_end, SYM_L_GLOBAL) 228 ANNOTATE_NOENDBR 229 int3 230SYM_CODE_END(entry_SYSCALL_64) 231 232/* 233 * %rdi: prev task 234 * %rsi: next task 235 */ 236.pushsection .text, "ax" 237SYM_FUNC_START(__switch_to_asm) 238 /* 239 * Save callee-saved registers 240 * This must match the order in inactive_task_frame 241 */ 242 pushq %rbp 243 pushq %rbx 244 pushq %r12 245 pushq %r13 246 pushq %r14 247 pushq %r15 248 249 /* switch stack */ 250 movq %rsp, TASK_threadsp(%rdi) 251 movq TASK_threadsp(%rsi), %rsp 252 253#ifdef CONFIG_STACKPROTECTOR 254 movq TASK_stack_canary(%rsi), %rbx 255 movq %rbx, PER_CPU_VAR(fixed_percpu_data) + FIXED_stack_canary 256#endif 257 258 /* 259 * When switching from a shallower to a deeper call stack 260 * the RSB may either underflow or use entries populated 261 * with userspace addresses. On CPUs where those concerns 262 * exist, overwrite the RSB with entries which capture 263 * speculative execution to prevent attack. 264 */ 265 FILL_RETURN_BUFFER %r12, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW 266 267 /* restore callee-saved registers */ 268 popq %r15 269 popq %r14 270 popq %r13 271 popq %r12 272 popq %rbx 273 popq %rbp 274 275 jmp __switch_to 276SYM_FUNC_END(__switch_to_asm) 277.popsection 278 279/* 280 * A newly forked process directly context switches into this address. 281 * 282 * rax: prev task we switched from 283 * rbx: kernel thread func (NULL for user thread) 284 * r12: kernel thread arg 285 */ 286.pushsection .text, "ax" 287 __FUNC_ALIGN 288SYM_CODE_START_NOALIGN(ret_from_fork) 289 UNWIND_HINT_EMPTY 290 ANNOTATE_NOENDBR // copy_thread 291 CALL_DEPTH_ACCOUNT 292 movq %rax, %rdi 293 call schedule_tail /* rdi: 'prev' task parameter */ 294 295 testq %rbx, %rbx /* from kernel_thread? */ 296 jnz 1f /* kernel threads are uncommon */ 297 2982: 299 UNWIND_HINT_REGS 300 movq %rsp, %rdi 301 call syscall_exit_to_user_mode /* returns with IRQs disabled */ 302 jmp swapgs_restore_regs_and_return_to_usermode 303 3041: 305 /* kernel thread */ 306 UNWIND_HINT_EMPTY 307 movq %r12, %rdi 308 CALL_NOSPEC rbx 309 /* 310 * A kernel thread is allowed to return here after successfully 311 * calling kernel_execve(). Exit to userspace to complete the execve() 312 * syscall. 313 */ 314 movq $0, RAX(%rsp) 315 jmp 2b 316SYM_CODE_END(ret_from_fork) 317.popsection 318 319.macro DEBUG_ENTRY_ASSERT_IRQS_OFF 320#ifdef CONFIG_DEBUG_ENTRY 321 pushq %rax 322 SAVE_FLAGS 323 testl $X86_EFLAGS_IF, %eax 324 jz .Lokay_\@ 325 ud2 326.Lokay_\@: 327 popq %rax 328#endif 329.endm 330 331SYM_CODE_START(xen_error_entry) 332 ANNOTATE_NOENDBR 333 UNWIND_HINT_FUNC 334 PUSH_AND_CLEAR_REGS save_ret=1 335 ENCODE_FRAME_POINTER 8 336 UNTRAIN_RET_FROM_CALL 337 RET 338SYM_CODE_END(xen_error_entry) 339 340/** 341 * idtentry_body - Macro to emit code calling the C function 342 * @cfunc: C function to be called 343 * @has_error_code: Hardware pushed error code on stack 344 */ 345.macro idtentry_body cfunc has_error_code:req 346 347 /* 348 * Call error_entry() and switch to the task stack if from userspace. 349 * 350 * When in XENPV, it is already in the task stack, and it can't fault 351 * for native_iret() nor native_load_gs_index() since XENPV uses its 352 * own pvops for IRET and load_gs_index(). And it doesn't need to 353 * switch the CR3. So it can skip invoking error_entry(). 354 */ 355 ALTERNATIVE "call error_entry; movq %rax, %rsp", \ 356 "call xen_error_entry", X86_FEATURE_XENPV 357 358 ENCODE_FRAME_POINTER 359 UNWIND_HINT_REGS 360 361 movq %rsp, %rdi /* pt_regs pointer into 1st argument*/ 362 363 .if \has_error_code == 1 364 movq ORIG_RAX(%rsp), %rsi /* get error code into 2nd argument*/ 365 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */ 366 .endif 367 368 call \cfunc 369 370 /* For some configurations \cfunc ends up being a noreturn. */ 371 REACHABLE 372 373 jmp error_return 374.endm 375 376/** 377 * idtentry - Macro to generate entry stubs for simple IDT entries 378 * @vector: Vector number 379 * @asmsym: ASM symbol for the entry point 380 * @cfunc: C function to be called 381 * @has_error_code: Hardware pushed error code on stack 382 * 383 * The macro emits code to set up the kernel context for straight forward 384 * and simple IDT entries. No IST stack, no paranoid entry checks. 385 */ 386.macro idtentry vector asmsym cfunc has_error_code:req 387SYM_CODE_START(\asmsym) 388 UNWIND_HINT_IRET_REGS offset=\has_error_code*8 389 ENDBR 390 ASM_CLAC 391 cld 392 393 .if \has_error_code == 0 394 pushq $-1 /* ORIG_RAX: no syscall to restart */ 395 .endif 396 397 .if \vector == X86_TRAP_BP 398 /* 399 * If coming from kernel space, create a 6-word gap to allow the 400 * int3 handler to emulate a call instruction. 401 */ 402 testb $3, CS-ORIG_RAX(%rsp) 403 jnz .Lfrom_usermode_no_gap_\@ 404 .rept 6 405 pushq 5*8(%rsp) 406 .endr 407 UNWIND_HINT_IRET_REGS offset=8 408.Lfrom_usermode_no_gap_\@: 409 .endif 410 411 idtentry_body \cfunc \has_error_code 412 413_ASM_NOKPROBE(\asmsym) 414SYM_CODE_END(\asmsym) 415.endm 416 417/* 418 * Interrupt entry/exit. 419 * 420 + The interrupt stubs push (vector) onto the stack, which is the error_code 421 * position of idtentry exceptions, and jump to one of the two idtentry points 422 * (common/spurious). 423 * 424 * common_interrupt is a hotpath, align it to a cache line 425 */ 426.macro idtentry_irq vector cfunc 427 .p2align CONFIG_X86_L1_CACHE_SHIFT 428 idtentry \vector asm_\cfunc \cfunc has_error_code=1 429.endm 430 431/* 432 * System vectors which invoke their handlers directly and are not 433 * going through the regular common device interrupt handling code. 434 */ 435.macro idtentry_sysvec vector cfunc 436 idtentry \vector asm_\cfunc \cfunc has_error_code=0 437.endm 438 439/** 440 * idtentry_mce_db - Macro to generate entry stubs for #MC and #DB 441 * @vector: Vector number 442 * @asmsym: ASM symbol for the entry point 443 * @cfunc: C function to be called 444 * 445 * The macro emits code to set up the kernel context for #MC and #DB 446 * 447 * If the entry comes from user space it uses the normal entry path 448 * including the return to user space work and preemption checks on 449 * exit. 450 * 451 * If hits in kernel mode then it needs to go through the paranoid 452 * entry as the exception can hit any random state. No preemption 453 * check on exit to keep the paranoid path simple. 454 */ 455.macro idtentry_mce_db vector asmsym cfunc 456SYM_CODE_START(\asmsym) 457 UNWIND_HINT_IRET_REGS 458 ENDBR 459 ASM_CLAC 460 cld 461 462 pushq $-1 /* ORIG_RAX: no syscall to restart */ 463 464 /* 465 * If the entry is from userspace, switch stacks and treat it as 466 * a normal entry. 467 */ 468 testb $3, CS-ORIG_RAX(%rsp) 469 jnz .Lfrom_usermode_switch_stack_\@ 470 471 /* paranoid_entry returns GS information for paranoid_exit in EBX. */ 472 call paranoid_entry 473 474 UNWIND_HINT_REGS 475 476 movq %rsp, %rdi /* pt_regs pointer */ 477 478 call \cfunc 479 480 jmp paranoid_exit 481 482 /* Switch to the regular task stack and use the noist entry point */ 483.Lfrom_usermode_switch_stack_\@: 484 idtentry_body noist_\cfunc, has_error_code=0 485 486_ASM_NOKPROBE(\asmsym) 487SYM_CODE_END(\asmsym) 488.endm 489 490#ifdef CONFIG_AMD_MEM_ENCRYPT 491/** 492 * idtentry_vc - Macro to generate entry stub for #VC 493 * @vector: Vector number 494 * @asmsym: ASM symbol for the entry point 495 * @cfunc: C function to be called 496 * 497 * The macro emits code to set up the kernel context for #VC. The #VC handler 498 * runs on an IST stack and needs to be able to cause nested #VC exceptions. 499 * 500 * To make this work the #VC entry code tries its best to pretend it doesn't use 501 * an IST stack by switching to the task stack if coming from user-space (which 502 * includes early SYSCALL entry path) or back to the stack in the IRET frame if 503 * entered from kernel-mode. 504 * 505 * If entered from kernel-mode the return stack is validated first, and if it is 506 * not safe to use (e.g. because it points to the entry stack) the #VC handler 507 * will switch to a fall-back stack (VC2) and call a special handler function. 508 * 509 * The macro is only used for one vector, but it is planned to be extended in 510 * the future for the #HV exception. 511 */ 512.macro idtentry_vc vector asmsym cfunc 513SYM_CODE_START(\asmsym) 514 UNWIND_HINT_IRET_REGS 515 ENDBR 516 ASM_CLAC 517 cld 518 519 /* 520 * If the entry is from userspace, switch stacks and treat it as 521 * a normal entry. 522 */ 523 testb $3, CS-ORIG_RAX(%rsp) 524 jnz .Lfrom_usermode_switch_stack_\@ 525 526 /* 527 * paranoid_entry returns SWAPGS flag for paranoid_exit in EBX. 528 * EBX == 0 -> SWAPGS, EBX == 1 -> no SWAPGS 529 */ 530 call paranoid_entry 531 532 UNWIND_HINT_REGS 533 534 /* 535 * Switch off the IST stack to make it free for nested exceptions. The 536 * vc_switch_off_ist() function will switch back to the interrupted 537 * stack if it is safe to do so. If not it switches to the VC fall-back 538 * stack. 539 */ 540 movq %rsp, %rdi /* pt_regs pointer */ 541 call vc_switch_off_ist 542 movq %rax, %rsp /* Switch to new stack */ 543 544 ENCODE_FRAME_POINTER 545 UNWIND_HINT_REGS 546 547 /* Update pt_regs */ 548 movq ORIG_RAX(%rsp), %rsi /* get error code into 2nd argument*/ 549 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */ 550 551 movq %rsp, %rdi /* pt_regs pointer */ 552 553 call kernel_\cfunc 554 555 /* 556 * No need to switch back to the IST stack. The current stack is either 557 * identical to the stack in the IRET frame or the VC fall-back stack, 558 * so it is definitely mapped even with PTI enabled. 559 */ 560 jmp paranoid_exit 561 562 /* Switch to the regular task stack */ 563.Lfrom_usermode_switch_stack_\@: 564 idtentry_body user_\cfunc, has_error_code=1 565 566_ASM_NOKPROBE(\asmsym) 567SYM_CODE_END(\asmsym) 568.endm 569#endif 570 571/* 572 * Double fault entry. Straight paranoid. No checks from which context 573 * this comes because for the espfix induced #DF this would do the wrong 574 * thing. 575 */ 576.macro idtentry_df vector asmsym cfunc 577SYM_CODE_START(\asmsym) 578 UNWIND_HINT_IRET_REGS offset=8 579 ENDBR 580 ASM_CLAC 581 cld 582 583 /* paranoid_entry returns GS information for paranoid_exit in EBX. */ 584 call paranoid_entry 585 UNWIND_HINT_REGS 586 587 movq %rsp, %rdi /* pt_regs pointer into first argument */ 588 movq ORIG_RAX(%rsp), %rsi /* get error code into 2nd argument*/ 589 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */ 590 call \cfunc 591 592 /* For some configurations \cfunc ends up being a noreturn. */ 593 REACHABLE 594 595 jmp paranoid_exit 596 597_ASM_NOKPROBE(\asmsym) 598SYM_CODE_END(\asmsym) 599.endm 600 601/* 602 * Include the defines which emit the idt entries which are shared 603 * shared between 32 and 64 bit and emit the __irqentry_text_* markers 604 * so the stacktrace boundary checks work. 605 */ 606 __ALIGN 607 .globl __irqentry_text_start 608__irqentry_text_start: 609 610#include <asm/idtentry.h> 611 612 __ALIGN 613 .globl __irqentry_text_end 614__irqentry_text_end: 615 ANNOTATE_NOENDBR 616 617SYM_CODE_START_LOCAL(common_interrupt_return) 618SYM_INNER_LABEL(swapgs_restore_regs_and_return_to_usermode, SYM_L_GLOBAL) 619 IBRS_EXIT 620#ifdef CONFIG_DEBUG_ENTRY 621 /* Assert that pt_regs indicates user mode. */ 622 testb $3, CS(%rsp) 623 jnz 1f 624 ud2 6251: 626#endif 627#ifdef CONFIG_XEN_PV 628 ALTERNATIVE "", "jmp xenpv_restore_regs_and_return_to_usermode", X86_FEATURE_XENPV 629#endif 630 631 POP_REGS pop_rdi=0 632 633 /* 634 * The stack is now user RDI, orig_ax, RIP, CS, EFLAGS, RSP, SS. 635 * Save old stack pointer and switch to trampoline stack. 636 */ 637 movq %rsp, %rdi 638 movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp 639 UNWIND_HINT_EMPTY 640 641 /* Copy the IRET frame to the trampoline stack. */ 642 pushq 6*8(%rdi) /* SS */ 643 pushq 5*8(%rdi) /* RSP */ 644 pushq 4*8(%rdi) /* EFLAGS */ 645 pushq 3*8(%rdi) /* CS */ 646 pushq 2*8(%rdi) /* RIP */ 647 648 /* Push user RDI on the trampoline stack. */ 649 pushq (%rdi) 650 651 /* 652 * We are on the trampoline stack. All regs except RDI are live. 653 * We can do future final exit work right here. 654 */ 655 STACKLEAK_ERASE_NOCLOBBER 656 657 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi 658 659 /* Restore RDI. */ 660 popq %rdi 661 swapgs 662 jmp .Lnative_iret 663 664 665SYM_INNER_LABEL(restore_regs_and_return_to_kernel, SYM_L_GLOBAL) 666#ifdef CONFIG_DEBUG_ENTRY 667 /* Assert that pt_regs indicates kernel mode. */ 668 testb $3, CS(%rsp) 669 jz 1f 670 ud2 6711: 672#endif 673 POP_REGS 674 addq $8, %rsp /* skip regs->orig_ax */ 675 /* 676 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization 677 * when returning from IPI handler. 678 */ 679#ifdef CONFIG_XEN_PV 680SYM_INNER_LABEL(early_xen_iret_patch, SYM_L_GLOBAL) 681 ANNOTATE_NOENDBR 682 .byte 0xe9 683 .long .Lnative_iret - (. + 4) 684#endif 685 686.Lnative_iret: 687 UNWIND_HINT_IRET_REGS 688 /* 689 * Are we returning to a stack segment from the LDT? Note: in 690 * 64-bit mode SS:RSP on the exception stack is always valid. 691 */ 692#ifdef CONFIG_X86_ESPFIX64 693 testb $4, (SS-RIP)(%rsp) 694 jnz native_irq_return_ldt 695#endif 696 697SYM_INNER_LABEL(native_irq_return_iret, SYM_L_GLOBAL) 698 ANNOTATE_NOENDBR // exc_double_fault 699 /* 700 * This may fault. Non-paranoid faults on return to userspace are 701 * handled by fixup_bad_iret. These include #SS, #GP, and #NP. 702 * Double-faults due to espfix64 are handled in exc_double_fault. 703 * Other faults here are fatal. 704 */ 705 iretq 706 707#ifdef CONFIG_X86_ESPFIX64 708native_irq_return_ldt: 709 /* 710 * We are running with user GSBASE. All GPRs contain their user 711 * values. We have a percpu ESPFIX stack that is eight slots 712 * long (see ESPFIX_STACK_SIZE). espfix_waddr points to the bottom 713 * of the ESPFIX stack. 714 * 715 * We clobber RAX and RDI in this code. We stash RDI on the 716 * normal stack and RAX on the ESPFIX stack. 717 * 718 * The ESPFIX stack layout we set up looks like this: 719 * 720 * --- top of ESPFIX stack --- 721 * SS 722 * RSP 723 * RFLAGS 724 * CS 725 * RIP <-- RSP points here when we're done 726 * RAX <-- espfix_waddr points here 727 * --- bottom of ESPFIX stack --- 728 */ 729 730 pushq %rdi /* Stash user RDI */ 731 swapgs /* to kernel GS */ 732 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi /* to kernel CR3 */ 733 734 movq PER_CPU_VAR(espfix_waddr), %rdi 735 movq %rax, (0*8)(%rdi) /* user RAX */ 736 movq (1*8)(%rsp), %rax /* user RIP */ 737 movq %rax, (1*8)(%rdi) 738 movq (2*8)(%rsp), %rax /* user CS */ 739 movq %rax, (2*8)(%rdi) 740 movq (3*8)(%rsp), %rax /* user RFLAGS */ 741 movq %rax, (3*8)(%rdi) 742 movq (5*8)(%rsp), %rax /* user SS */ 743 movq %rax, (5*8)(%rdi) 744 movq (4*8)(%rsp), %rax /* user RSP */ 745 movq %rax, (4*8)(%rdi) 746 /* Now RAX == RSP. */ 747 748 andl $0xffff0000, %eax /* RAX = (RSP & 0xffff0000) */ 749 750 /* 751 * espfix_stack[31:16] == 0. The page tables are set up such that 752 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of 753 * espfix_waddr for any X. That is, there are 65536 RO aliases of 754 * the same page. Set up RSP so that RSP[31:16] contains the 755 * respective 16 bits of the /userspace/ RSP and RSP nonetheless 756 * still points to an RO alias of the ESPFIX stack. 757 */ 758 orq PER_CPU_VAR(espfix_stack), %rax 759 760 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi 761 swapgs /* to user GS */ 762 popq %rdi /* Restore user RDI */ 763 764 movq %rax, %rsp 765 UNWIND_HINT_IRET_REGS offset=8 766 767 /* 768 * At this point, we cannot write to the stack any more, but we can 769 * still read. 770 */ 771 popq %rax /* Restore user RAX */ 772 773 /* 774 * RSP now points to an ordinary IRET frame, except that the page 775 * is read-only and RSP[31:16] are preloaded with the userspace 776 * values. We can now IRET back to userspace. 777 */ 778 jmp native_irq_return_iret 779#endif 780SYM_CODE_END(common_interrupt_return) 781_ASM_NOKPROBE(common_interrupt_return) 782 783/* 784 * Reload gs selector with exception handling 785 * edi: new selector 786 * 787 * Is in entry.text as it shouldn't be instrumented. 788 */ 789SYM_FUNC_START(asm_load_gs_index) 790 FRAME_BEGIN 791 swapgs 792.Lgs_change: 793 ANNOTATE_NOENDBR // error_entry 794 movl %edi, %gs 7952: ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE 796 swapgs 797 FRAME_END 798 RET 799 800 /* running with kernelgs */ 801.Lbad_gs: 802 swapgs /* switch back to user gs */ 803.macro ZAP_GS 804 /* This can't be a string because the preprocessor needs to see it. */ 805 movl $__USER_DS, %eax 806 movl %eax, %gs 807.endm 808 ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG 809 xorl %eax, %eax 810 movl %eax, %gs 811 jmp 2b 812 813 _ASM_EXTABLE(.Lgs_change, .Lbad_gs) 814 815SYM_FUNC_END(asm_load_gs_index) 816EXPORT_SYMBOL(asm_load_gs_index) 817 818#ifdef CONFIG_XEN_PV 819/* 820 * A note on the "critical region" in our callback handler. 821 * We want to avoid stacking callback handlers due to events occurring 822 * during handling of the last event. To do this, we keep events disabled 823 * until we've done all processing. HOWEVER, we must enable events before 824 * popping the stack frame (can't be done atomically) and so it would still 825 * be possible to get enough handler activations to overflow the stack. 826 * Although unlikely, bugs of that kind are hard to track down, so we'd 827 * like to avoid the possibility. 828 * So, on entry to the handler we detect whether we interrupted an 829 * existing activation in its critical region -- if so, we pop the current 830 * activation and restart the handler using the previous one. 831 * 832 * C calling convention: exc_xen_hypervisor_callback(struct *pt_regs) 833 */ 834 __FUNC_ALIGN 835SYM_CODE_START_LOCAL_NOALIGN(exc_xen_hypervisor_callback) 836 837/* 838 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will 839 * see the correct pointer to the pt_regs 840 */ 841 UNWIND_HINT_FUNC 842 movq %rdi, %rsp /* we don't return, adjust the stack frame */ 843 UNWIND_HINT_REGS 844 845 call xen_pv_evtchn_do_upcall 846 847 jmp error_return 848SYM_CODE_END(exc_xen_hypervisor_callback) 849 850/* 851 * Hypervisor uses this for application faults while it executes. 852 * We get here for two reasons: 853 * 1. Fault while reloading DS, ES, FS or GS 854 * 2. Fault while executing IRET 855 * Category 1 we do not need to fix up as Xen has already reloaded all segment 856 * registers that could be reloaded and zeroed the others. 857 * Category 2 we fix up by killing the current process. We cannot use the 858 * normal Linux return path in this case because if we use the IRET hypercall 859 * to pop the stack frame we end up in an infinite loop of failsafe callbacks. 860 * We distinguish between categories by comparing each saved segment register 861 * with its current contents: any discrepancy means we in category 1. 862 */ 863 __FUNC_ALIGN 864SYM_CODE_START_NOALIGN(xen_failsafe_callback) 865 UNWIND_HINT_EMPTY 866 ENDBR 867 movl %ds, %ecx 868 cmpw %cx, 0x10(%rsp) 869 jne 1f 870 movl %es, %ecx 871 cmpw %cx, 0x18(%rsp) 872 jne 1f 873 movl %fs, %ecx 874 cmpw %cx, 0x20(%rsp) 875 jne 1f 876 movl %gs, %ecx 877 cmpw %cx, 0x28(%rsp) 878 jne 1f 879 /* All segments match their saved values => Category 2 (Bad IRET). */ 880 movq (%rsp), %rcx 881 movq 8(%rsp), %r11 882 addq $0x30, %rsp 883 pushq $0 /* RIP */ 884 UNWIND_HINT_IRET_REGS offset=8 885 jmp asm_exc_general_protection 8861: /* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */ 887 movq (%rsp), %rcx 888 movq 8(%rsp), %r11 889 addq $0x30, %rsp 890 UNWIND_HINT_IRET_REGS 891 pushq $-1 /* orig_ax = -1 => not a system call */ 892 PUSH_AND_CLEAR_REGS 893 ENCODE_FRAME_POINTER 894 jmp error_return 895SYM_CODE_END(xen_failsafe_callback) 896#endif /* CONFIG_XEN_PV */ 897 898/* 899 * Save all registers in pt_regs. Return GSBASE related information 900 * in EBX depending on the availability of the FSGSBASE instructions: 901 * 902 * FSGSBASE R/EBX 903 * N 0 -> SWAPGS on exit 904 * 1 -> no SWAPGS on exit 905 * 906 * Y GSBASE value at entry, must be restored in paranoid_exit 907 * 908 * R14 - old CR3 909 * R15 - old SPEC_CTRL 910 */ 911SYM_CODE_START(paranoid_entry) 912 ANNOTATE_NOENDBR 913 UNWIND_HINT_FUNC 914 PUSH_AND_CLEAR_REGS save_ret=1 915 ENCODE_FRAME_POINTER 8 916 917 /* 918 * Always stash CR3 in %r14. This value will be restored, 919 * verbatim, at exit. Needed if paranoid_entry interrupted 920 * another entry that already switched to the user CR3 value 921 * but has not yet returned to userspace. 922 * 923 * This is also why CS (stashed in the "iret frame" by the 924 * hardware at entry) can not be used: this may be a return 925 * to kernel code, but with a user CR3 value. 926 * 927 * Switching CR3 does not depend on kernel GSBASE so it can 928 * be done before switching to the kernel GSBASE. This is 929 * required for FSGSBASE because the kernel GSBASE has to 930 * be retrieved from a kernel internal table. 931 */ 932 SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg=%rax save_reg=%r14 933 934 /* 935 * Handling GSBASE depends on the availability of FSGSBASE. 936 * 937 * Without FSGSBASE the kernel enforces that negative GSBASE 938 * values indicate kernel GSBASE. With FSGSBASE no assumptions 939 * can be made about the GSBASE value when entering from user 940 * space. 941 */ 942 ALTERNATIVE "jmp .Lparanoid_entry_checkgs", "", X86_FEATURE_FSGSBASE 943 944 /* 945 * Read the current GSBASE and store it in %rbx unconditionally, 946 * retrieve and set the current CPUs kernel GSBASE. The stored value 947 * has to be restored in paranoid_exit unconditionally. 948 * 949 * The unconditional write to GS base below ensures that no subsequent 950 * loads based on a mispredicted GS base can happen, therefore no LFENCE 951 * is needed here. 952 */ 953 SAVE_AND_SET_GSBASE scratch_reg=%rax save_reg=%rbx 954 jmp .Lparanoid_gsbase_done 955 956.Lparanoid_entry_checkgs: 957 /* EBX = 1 -> kernel GSBASE active, no restore required */ 958 movl $1, %ebx 959 960 /* 961 * The kernel-enforced convention is a negative GSBASE indicates 962 * a kernel value. No SWAPGS needed on entry and exit. 963 */ 964 movl $MSR_GS_BASE, %ecx 965 rdmsr 966 testl %edx, %edx 967 js .Lparanoid_kernel_gsbase 968 969 /* EBX = 0 -> SWAPGS required on exit */ 970 xorl %ebx, %ebx 971 swapgs 972.Lparanoid_kernel_gsbase: 973 FENCE_SWAPGS_KERNEL_ENTRY 974.Lparanoid_gsbase_done: 975 976 /* 977 * Once we have CR3 and %GS setup save and set SPEC_CTRL. Just like 978 * CR3 above, keep the old value in a callee saved register. 979 */ 980 IBRS_ENTER save_reg=%r15 981 UNTRAIN_RET_FROM_CALL 982 983 RET 984SYM_CODE_END(paranoid_entry) 985 986/* 987 * "Paranoid" exit path from exception stack. This is invoked 988 * only on return from non-NMI IST interrupts that came 989 * from kernel space. 990 * 991 * We may be returning to very strange contexts (e.g. very early 992 * in syscall entry), so checking for preemption here would 993 * be complicated. Fortunately, there's no good reason to try 994 * to handle preemption here. 995 * 996 * R/EBX contains the GSBASE related information depending on the 997 * availability of the FSGSBASE instructions: 998 * 999 * FSGSBASE R/EBX 1000 * N 0 -> SWAPGS on exit 1001 * 1 -> no SWAPGS on exit 1002 * 1003 * Y User space GSBASE, must be restored unconditionally 1004 * 1005 * R14 - old CR3 1006 * R15 - old SPEC_CTRL 1007 */ 1008SYM_CODE_START_LOCAL(paranoid_exit) 1009 UNWIND_HINT_REGS 1010 1011 /* 1012 * Must restore IBRS state before both CR3 and %GS since we need access 1013 * to the per-CPU x86_spec_ctrl_shadow variable. 1014 */ 1015 IBRS_EXIT save_reg=%r15 1016 1017 /* 1018 * The order of operations is important. RESTORE_CR3 requires 1019 * kernel GSBASE. 1020 * 1021 * NB to anyone to try to optimize this code: this code does 1022 * not execute at all for exceptions from user mode. Those 1023 * exceptions go through error_exit instead. 1024 */ 1025 RESTORE_CR3 scratch_reg=%rax save_reg=%r14 1026 1027 /* Handle the three GSBASE cases */ 1028 ALTERNATIVE "jmp .Lparanoid_exit_checkgs", "", X86_FEATURE_FSGSBASE 1029 1030 /* With FSGSBASE enabled, unconditionally restore GSBASE */ 1031 wrgsbase %rbx 1032 jmp restore_regs_and_return_to_kernel 1033 1034.Lparanoid_exit_checkgs: 1035 /* On non-FSGSBASE systems, conditionally do SWAPGS */ 1036 testl %ebx, %ebx 1037 jnz restore_regs_and_return_to_kernel 1038 1039 /* We are returning to a context with user GSBASE */ 1040 swapgs 1041 jmp restore_regs_and_return_to_kernel 1042SYM_CODE_END(paranoid_exit) 1043 1044/* 1045 * Switch GS and CR3 if needed. 1046 */ 1047SYM_CODE_START(error_entry) 1048 ANNOTATE_NOENDBR 1049 UNWIND_HINT_FUNC 1050 1051 PUSH_AND_CLEAR_REGS save_ret=1 1052 ENCODE_FRAME_POINTER 8 1053 1054 testb $3, CS+8(%rsp) 1055 jz .Lerror_kernelspace 1056 1057 /* 1058 * We entered from user mode or we're pretending to have entered 1059 * from user mode due to an IRET fault. 1060 */ 1061 swapgs 1062 FENCE_SWAPGS_USER_ENTRY 1063 /* We have user CR3. Change to kernel CR3. */ 1064 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax 1065 IBRS_ENTER 1066 UNTRAIN_RET_FROM_CALL 1067 1068 leaq 8(%rsp), %rdi /* arg0 = pt_regs pointer */ 1069 /* Put us onto the real thread stack. */ 1070 jmp sync_regs 1071 1072 /* 1073 * There are two places in the kernel that can potentially fault with 1074 * usergs. Handle them here. B stepping K8s sometimes report a 1075 * truncated RIP for IRET exceptions returning to compat mode. Check 1076 * for these here too. 1077 */ 1078.Lerror_kernelspace: 1079 leaq native_irq_return_iret(%rip), %rcx 1080 cmpq %rcx, RIP+8(%rsp) 1081 je .Lerror_bad_iret 1082 movl %ecx, %eax /* zero extend */ 1083 cmpq %rax, RIP+8(%rsp) 1084 je .Lbstep_iret 1085 cmpq $.Lgs_change, RIP+8(%rsp) 1086 jne .Lerror_entry_done_lfence 1087 1088 /* 1089 * hack: .Lgs_change can fail with user gsbase. If this happens, fix up 1090 * gsbase and proceed. We'll fix up the exception and land in 1091 * .Lgs_change's error handler with kernel gsbase. 1092 */ 1093 swapgs 1094 1095 /* 1096 * Issue an LFENCE to prevent GS speculation, regardless of whether it is a 1097 * kernel or user gsbase. 1098 */ 1099.Lerror_entry_done_lfence: 1100 FENCE_SWAPGS_KERNEL_ENTRY 1101 CALL_DEPTH_ACCOUNT 1102 leaq 8(%rsp), %rax /* return pt_regs pointer */ 1103 ANNOTATE_UNRET_END 1104 RET 1105 1106.Lbstep_iret: 1107 /* Fix truncated RIP */ 1108 movq %rcx, RIP+8(%rsp) 1109 /* fall through */ 1110 1111.Lerror_bad_iret: 1112 /* 1113 * We came from an IRET to user mode, so we have user 1114 * gsbase and CR3. Switch to kernel gsbase and CR3: 1115 */ 1116 swapgs 1117 FENCE_SWAPGS_USER_ENTRY 1118 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax 1119 IBRS_ENTER 1120 UNTRAIN_RET_FROM_CALL 1121 1122 /* 1123 * Pretend that the exception came from user mode: set up pt_regs 1124 * as if we faulted immediately after IRET. 1125 */ 1126 leaq 8(%rsp), %rdi /* arg0 = pt_regs pointer */ 1127 call fixup_bad_iret 1128 mov %rax, %rdi 1129 jmp sync_regs 1130SYM_CODE_END(error_entry) 1131 1132SYM_CODE_START_LOCAL(error_return) 1133 UNWIND_HINT_REGS 1134 DEBUG_ENTRY_ASSERT_IRQS_OFF 1135 testb $3, CS(%rsp) 1136 jz restore_regs_and_return_to_kernel 1137 jmp swapgs_restore_regs_and_return_to_usermode 1138SYM_CODE_END(error_return) 1139 1140/* 1141 * Runs on exception stack. Xen PV does not go through this path at all, 1142 * so we can use real assembly here. 1143 * 1144 * Registers: 1145 * %r14: Used to save/restore the CR3 of the interrupted context 1146 * when PAGE_TABLE_ISOLATION is in use. Do not clobber. 1147 */ 1148SYM_CODE_START(asm_exc_nmi) 1149 UNWIND_HINT_IRET_REGS 1150 ENDBR 1151 1152 /* 1153 * We allow breakpoints in NMIs. If a breakpoint occurs, then 1154 * the iretq it performs will take us out of NMI context. 1155 * This means that we can have nested NMIs where the next 1156 * NMI is using the top of the stack of the previous NMI. We 1157 * can't let it execute because the nested NMI will corrupt the 1158 * stack of the previous NMI. NMI handlers are not re-entrant 1159 * anyway. 1160 * 1161 * To handle this case we do the following: 1162 * Check the a special location on the stack that contains 1163 * a variable that is set when NMIs are executing. 1164 * The interrupted task's stack is also checked to see if it 1165 * is an NMI stack. 1166 * If the variable is not set and the stack is not the NMI 1167 * stack then: 1168 * o Set the special variable on the stack 1169 * o Copy the interrupt frame into an "outermost" location on the 1170 * stack 1171 * o Copy the interrupt frame into an "iret" location on the stack 1172 * o Continue processing the NMI 1173 * If the variable is set or the previous stack is the NMI stack: 1174 * o Modify the "iret" location to jump to the repeat_nmi 1175 * o return back to the first NMI 1176 * 1177 * Now on exit of the first NMI, we first clear the stack variable 1178 * The NMI stack will tell any nested NMIs at that point that it is 1179 * nested. Then we pop the stack normally with iret, and if there was 1180 * a nested NMI that updated the copy interrupt stack frame, a 1181 * jump will be made to the repeat_nmi code that will handle the second 1182 * NMI. 1183 * 1184 * However, espfix prevents us from directly returning to userspace 1185 * with a single IRET instruction. Similarly, IRET to user mode 1186 * can fault. We therefore handle NMIs from user space like 1187 * other IST entries. 1188 */ 1189 1190 ASM_CLAC 1191 cld 1192 1193 /* Use %rdx as our temp variable throughout */ 1194 pushq %rdx 1195 1196 testb $3, CS-RIP+8(%rsp) 1197 jz .Lnmi_from_kernel 1198 1199 /* 1200 * NMI from user mode. We need to run on the thread stack, but we 1201 * can't go through the normal entry paths: NMIs are masked, and 1202 * we don't want to enable interrupts, because then we'll end 1203 * up in an awkward situation in which IRQs are on but NMIs 1204 * are off. 1205 * 1206 * We also must not push anything to the stack before switching 1207 * stacks lest we corrupt the "NMI executing" variable. 1208 */ 1209 1210 swapgs 1211 FENCE_SWAPGS_USER_ENTRY 1212 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdx 1213 movq %rsp, %rdx 1214 movq PER_CPU_VAR(pcpu_hot + X86_top_of_stack), %rsp 1215 UNWIND_HINT_IRET_REGS base=%rdx offset=8 1216 pushq 5*8(%rdx) /* pt_regs->ss */ 1217 pushq 4*8(%rdx) /* pt_regs->rsp */ 1218 pushq 3*8(%rdx) /* pt_regs->flags */ 1219 pushq 2*8(%rdx) /* pt_regs->cs */ 1220 pushq 1*8(%rdx) /* pt_regs->rip */ 1221 UNWIND_HINT_IRET_REGS 1222 pushq $-1 /* pt_regs->orig_ax */ 1223 PUSH_AND_CLEAR_REGS rdx=(%rdx) 1224 ENCODE_FRAME_POINTER 1225 1226 IBRS_ENTER 1227 UNTRAIN_RET 1228 1229 /* 1230 * At this point we no longer need to worry about stack damage 1231 * due to nesting -- we're on the normal thread stack and we're 1232 * done with the NMI stack. 1233 */ 1234 1235 movq %rsp, %rdi 1236 movq $-1, %rsi 1237 call exc_nmi 1238 1239 /* 1240 * Return back to user mode. We must *not* do the normal exit 1241 * work, because we don't want to enable interrupts. 1242 */ 1243 jmp swapgs_restore_regs_and_return_to_usermode 1244 1245.Lnmi_from_kernel: 1246 /* 1247 * Here's what our stack frame will look like: 1248 * +---------------------------------------------------------+ 1249 * | original SS | 1250 * | original Return RSP | 1251 * | original RFLAGS | 1252 * | original CS | 1253 * | original RIP | 1254 * +---------------------------------------------------------+ 1255 * | temp storage for rdx | 1256 * +---------------------------------------------------------+ 1257 * | "NMI executing" variable | 1258 * +---------------------------------------------------------+ 1259 * | iret SS } Copied from "outermost" frame | 1260 * | iret Return RSP } on each loop iteration; overwritten | 1261 * | iret RFLAGS } by a nested NMI to force another | 1262 * | iret CS } iteration if needed. | 1263 * | iret RIP } | 1264 * +---------------------------------------------------------+ 1265 * | outermost SS } initialized in first_nmi; | 1266 * | outermost Return RSP } will not be changed before | 1267 * | outermost RFLAGS } NMI processing is done. | 1268 * | outermost CS } Copied to "iret" frame on each | 1269 * | outermost RIP } iteration. | 1270 * +---------------------------------------------------------+ 1271 * | pt_regs | 1272 * +---------------------------------------------------------+ 1273 * 1274 * The "original" frame is used by hardware. Before re-enabling 1275 * NMIs, we need to be done with it, and we need to leave enough 1276 * space for the asm code here. 1277 * 1278 * We return by executing IRET while RSP points to the "iret" frame. 1279 * That will either return for real or it will loop back into NMI 1280 * processing. 1281 * 1282 * The "outermost" frame is copied to the "iret" frame on each 1283 * iteration of the loop, so each iteration starts with the "iret" 1284 * frame pointing to the final return target. 1285 */ 1286 1287 /* 1288 * Determine whether we're a nested NMI. 1289 * 1290 * If we interrupted kernel code between repeat_nmi and 1291 * end_repeat_nmi, then we are a nested NMI. We must not 1292 * modify the "iret" frame because it's being written by 1293 * the outer NMI. That's okay; the outer NMI handler is 1294 * about to about to call exc_nmi() anyway, so we can just 1295 * resume the outer NMI. 1296 */ 1297 1298 movq $repeat_nmi, %rdx 1299 cmpq 8(%rsp), %rdx 1300 ja 1f 1301 movq $end_repeat_nmi, %rdx 1302 cmpq 8(%rsp), %rdx 1303 ja nested_nmi_out 13041: 1305 1306 /* 1307 * Now check "NMI executing". If it's set, then we're nested. 1308 * This will not detect if we interrupted an outer NMI just 1309 * before IRET. 1310 */ 1311 cmpl $1, -8(%rsp) 1312 je nested_nmi 1313 1314 /* 1315 * Now test if the previous stack was an NMI stack. This covers 1316 * the case where we interrupt an outer NMI after it clears 1317 * "NMI executing" but before IRET. We need to be careful, though: 1318 * there is one case in which RSP could point to the NMI stack 1319 * despite there being no NMI active: naughty userspace controls 1320 * RSP at the very beginning of the SYSCALL targets. We can 1321 * pull a fast one on naughty userspace, though: we program 1322 * SYSCALL to mask DF, so userspace cannot cause DF to be set 1323 * if it controls the kernel's RSP. We set DF before we clear 1324 * "NMI executing". 1325 */ 1326 lea 6*8(%rsp), %rdx 1327 /* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */ 1328 cmpq %rdx, 4*8(%rsp) 1329 /* If the stack pointer is above the NMI stack, this is a normal NMI */ 1330 ja first_nmi 1331 1332 subq $EXCEPTION_STKSZ, %rdx 1333 cmpq %rdx, 4*8(%rsp) 1334 /* If it is below the NMI stack, it is a normal NMI */ 1335 jb first_nmi 1336 1337 /* Ah, it is within the NMI stack. */ 1338 1339 testb $(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp) 1340 jz first_nmi /* RSP was user controlled. */ 1341 1342 /* This is a nested NMI. */ 1343 1344nested_nmi: 1345 /* 1346 * Modify the "iret" frame to point to repeat_nmi, forcing another 1347 * iteration of NMI handling. 1348 */ 1349 subq $8, %rsp 1350 leaq -10*8(%rsp), %rdx 1351 pushq $__KERNEL_DS 1352 pushq %rdx 1353 pushfq 1354 pushq $__KERNEL_CS 1355 pushq $repeat_nmi 1356 1357 /* Put stack back */ 1358 addq $(6*8), %rsp 1359 1360nested_nmi_out: 1361 popq %rdx 1362 1363 /* We are returning to kernel mode, so this cannot result in a fault. */ 1364 iretq 1365 1366first_nmi: 1367 /* Restore rdx. */ 1368 movq (%rsp), %rdx 1369 1370 /* Make room for "NMI executing". */ 1371 pushq $0 1372 1373 /* Leave room for the "iret" frame */ 1374 subq $(5*8), %rsp 1375 1376 /* Copy the "original" frame to the "outermost" frame */ 1377 .rept 5 1378 pushq 11*8(%rsp) 1379 .endr 1380 UNWIND_HINT_IRET_REGS 1381 1382 /* Everything up to here is safe from nested NMIs */ 1383 1384#ifdef CONFIG_DEBUG_ENTRY 1385 /* 1386 * For ease of testing, unmask NMIs right away. Disabled by 1387 * default because IRET is very expensive. 1388 */ 1389 pushq $0 /* SS */ 1390 pushq %rsp /* RSP (minus 8 because of the previous push) */ 1391 addq $8, (%rsp) /* Fix up RSP */ 1392 pushfq /* RFLAGS */ 1393 pushq $__KERNEL_CS /* CS */ 1394 pushq $1f /* RIP */ 1395 iretq /* continues at repeat_nmi below */ 1396 UNWIND_HINT_IRET_REGS 13971: 1398#endif 1399 1400repeat_nmi: 1401 ANNOTATE_NOENDBR // this code 1402 /* 1403 * If there was a nested NMI, the first NMI's iret will return 1404 * here. But NMIs are still enabled and we can take another 1405 * nested NMI. The nested NMI checks the interrupted RIP to see 1406 * if it is between repeat_nmi and end_repeat_nmi, and if so 1407 * it will just return, as we are about to repeat an NMI anyway. 1408 * This makes it safe to copy to the stack frame that a nested 1409 * NMI will update. 1410 * 1411 * RSP is pointing to "outermost RIP". gsbase is unknown, but, if 1412 * we're repeating an NMI, gsbase has the same value that it had on 1413 * the first iteration. paranoid_entry will load the kernel 1414 * gsbase if needed before we call exc_nmi(). "NMI executing" 1415 * is zero. 1416 */ 1417 movq $1, 10*8(%rsp) /* Set "NMI executing". */ 1418 1419 /* 1420 * Copy the "outermost" frame to the "iret" frame. NMIs that nest 1421 * here must not modify the "iret" frame while we're writing to 1422 * it or it will end up containing garbage. 1423 */ 1424 addq $(10*8), %rsp 1425 .rept 5 1426 pushq -6*8(%rsp) 1427 .endr 1428 subq $(5*8), %rsp 1429end_repeat_nmi: 1430 ANNOTATE_NOENDBR // this code 1431 1432 /* 1433 * Everything below this point can be preempted by a nested NMI. 1434 * If this happens, then the inner NMI will change the "iret" 1435 * frame to point back to repeat_nmi. 1436 */ 1437 pushq $-1 /* ORIG_RAX: no syscall to restart */ 1438 1439 /* 1440 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit 1441 * as we should not be calling schedule in NMI context. 1442 * Even with normal interrupts enabled. An NMI should not be 1443 * setting NEED_RESCHED or anything that normal interrupts and 1444 * exceptions might do. 1445 */ 1446 call paranoid_entry 1447 UNWIND_HINT_REGS 1448 1449 movq %rsp, %rdi 1450 movq $-1, %rsi 1451 call exc_nmi 1452 1453 /* Always restore stashed SPEC_CTRL value (see paranoid_entry) */ 1454 IBRS_EXIT save_reg=%r15 1455 1456 /* Always restore stashed CR3 value (see paranoid_entry) */ 1457 RESTORE_CR3 scratch_reg=%r15 save_reg=%r14 1458 1459 /* 1460 * The above invocation of paranoid_entry stored the GSBASE 1461 * related information in R/EBX depending on the availability 1462 * of FSGSBASE. 1463 * 1464 * If FSGSBASE is enabled, restore the saved GSBASE value 1465 * unconditionally, otherwise take the conditional SWAPGS path. 1466 */ 1467 ALTERNATIVE "jmp nmi_no_fsgsbase", "", X86_FEATURE_FSGSBASE 1468 1469 wrgsbase %rbx 1470 jmp nmi_restore 1471 1472nmi_no_fsgsbase: 1473 /* EBX == 0 -> invoke SWAPGS */ 1474 testl %ebx, %ebx 1475 jnz nmi_restore 1476 1477nmi_swapgs: 1478 swapgs 1479 1480nmi_restore: 1481 POP_REGS 1482 1483 /* 1484 * Skip orig_ax and the "outermost" frame to point RSP at the "iret" 1485 * at the "iret" frame. 1486 */ 1487 addq $6*8, %rsp 1488 1489 /* 1490 * Clear "NMI executing". Set DF first so that we can easily 1491 * distinguish the remaining code between here and IRET from 1492 * the SYSCALL entry and exit paths. 1493 * 1494 * We arguably should just inspect RIP instead, but I (Andy) wrote 1495 * this code when I had the misapprehension that Xen PV supported 1496 * NMIs, and Xen PV would break that approach. 1497 */ 1498 std 1499 movq $0, 5*8(%rsp) /* clear "NMI executing" */ 1500 1501 /* 1502 * iretq reads the "iret" frame and exits the NMI stack in a 1503 * single instruction. We are returning to kernel mode, so this 1504 * cannot result in a fault. Similarly, we don't need to worry 1505 * about espfix64 on the way back to kernel mode. 1506 */ 1507 iretq 1508SYM_CODE_END(asm_exc_nmi) 1509 1510#ifndef CONFIG_IA32_EMULATION 1511/* 1512 * This handles SYSCALL from 32-bit code. There is no way to program 1513 * MSRs to fully disable 32-bit SYSCALL. 1514 */ 1515SYM_CODE_START(ignore_sysret) 1516 UNWIND_HINT_EMPTY 1517 ENDBR 1518 mov $-ENOSYS, %eax 1519 sysretl 1520SYM_CODE_END(ignore_sysret) 1521#endif 1522 1523.pushsection .text, "ax" 1524 __FUNC_ALIGN 1525SYM_CODE_START_NOALIGN(rewind_stack_and_make_dead) 1526 UNWIND_HINT_FUNC 1527 /* Prevent any naive code from trying to unwind to our caller. */ 1528 xorl %ebp, %ebp 1529 1530 movq PER_CPU_VAR(pcpu_hot + X86_top_of_stack), %rax 1531 leaq -PTREGS_SIZE(%rax), %rsp 1532 UNWIND_HINT_REGS 1533 1534 call make_task_dead 1535SYM_CODE_END(rewind_stack_and_make_dead) 1536.popsection 1537