1/* SPDX-License-Identifier: GPL-2.0 */ 2/* 3 * linux/arch/x86_64/entry.S 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * Copyright (C) 2000, 2001, 2002 Andi Kleen SuSE Labs 7 * Copyright (C) 2000 Pavel Machek <pavel@suse.cz> 8 * 9 * entry.S contains the system-call and fault low-level handling routines. 10 * 11 * Some of this is documented in Documentation/arch/x86/entry_64.rst 12 * 13 * A note on terminology: 14 * - iret frame: Architecture defined interrupt frame from SS to RIP 15 * at the top of the kernel process stack. 16 * 17 * Some macro usage: 18 * - SYM_FUNC_START/END:Define functions in the symbol table. 19 * - idtentry: Define exception entry points. 20 */ 21#include <linux/export.h> 22#include <linux/kvm_types.h> 23#include <linux/linkage.h> 24#include <asm/segment.h> 25#include <asm/cache.h> 26#include <asm/errno.h> 27#include <asm/asm-offsets.h> 28#include <asm/msr.h> 29#include <asm/unistd.h> 30#include <asm/thread_info.h> 31#include <asm/hw_irq.h> 32#include <asm/page_types.h> 33#include <asm/irqflags.h> 34#include <asm/paravirt.h> 35#include <asm/percpu.h> 36#include <asm/asm.h> 37#include <asm/smap.h> 38#include <asm/pgtable_types.h> 39#include <asm/frame.h> 40#include <asm/trapnr.h> 41#include <asm/nospec-branch.h> 42#include <asm/fsgsbase.h> 43#include <linux/err.h> 44 45#include "calling.h" 46 47.code64 48.section .entry.text, "ax" 49 50/* 51 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers. 52 * 53 * This is the only entry point used for 64-bit system calls. The 54 * hardware interface is reasonably well designed and the register to 55 * argument mapping Linux uses fits well with the registers that are 56 * available when SYSCALL is used. 57 * 58 * SYSCALL instructions can be found inlined in libc implementations as 59 * well as some other programs and libraries. There are also a handful 60 * of SYSCALL instructions in the vDSO used, for example, as a 61 * clock_gettimeofday fallback. 62 * 63 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11, 64 * then loads new ss, cs, and rip from previously programmed MSRs. 65 * rflags gets masked by a value from another MSR (so CLD and CLAC 66 * are not needed). SYSCALL does not save anything on the stack 67 * and does not change rsp. 68 * 69 * Registers on entry: 70 * rax system call number 71 * rcx return address 72 * r11 saved rflags (note: r11 is callee-clobbered register in C ABI) 73 * rdi arg0 74 * rsi arg1 75 * rdx arg2 76 * r10 arg3 (needs to be moved to rcx to conform to C ABI) 77 * r8 arg4 78 * r9 arg5 79 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI) 80 * 81 * Only called from user space. 82 * 83 * When user can change pt_regs->foo always force IRET. That is because 84 * it deals with uncanonical addresses better. SYSRET has trouble 85 * with them due to bugs in both AMD and Intel CPUs. 86 */ 87 88SYM_CODE_START(entry_SYSCALL_64) 89 UNWIND_HINT_ENTRY 90 ENDBR 91 92 swapgs 93 /* tss.sp2 is scratch space. */ 94 movq %rsp, PER_CPU_VAR(cpu_tss_rw + TSS_sp2) 95 SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp 96 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp 97 98SYM_INNER_LABEL(entry_SYSCALL_64_safe_stack, SYM_L_GLOBAL) 99 ANNOTATE_NOENDBR 100 101 /* Construct struct pt_regs on stack */ 102 pushq $__USER_DS /* pt_regs->ss */ 103 pushq PER_CPU_VAR(cpu_tss_rw + TSS_sp2) /* pt_regs->sp */ 104 pushq %r11 /* pt_regs->flags */ 105 pushq $__USER_CS /* pt_regs->cs */ 106 pushq %rcx /* pt_regs->ip */ 107SYM_INNER_LABEL(entry_SYSCALL_64_after_hwframe, SYM_L_GLOBAL) 108 pushq %rax /* pt_regs->orig_ax */ 109 110 PUSH_AND_CLEAR_REGS rax=$-ENOSYS 111 112 /* IRQs are off. */ 113 movq %rsp, %rdi 114 /* Sign extend the lower 32bit as syscall numbers are treated as int */ 115 movslq %eax, %rsi 116 117 /* clobbers %rax, make sure it is after saving the syscall nr */ 118 IBRS_ENTER 119 UNTRAIN_RET 120 CLEAR_BRANCH_HISTORY 121 122 call do_syscall_64 /* returns with IRQs disabled */ 123 124 /* 125 * Try to use SYSRET instead of IRET if we're returning to 126 * a completely clean 64-bit userspace context. If we're not, 127 * go to the slow exit path. 128 * In the Xen PV case we must use iret anyway. 129 */ 130 131 ALTERNATIVE "testb %al, %al; jz swapgs_restore_regs_and_return_to_usermode", \ 132 "jmp swapgs_restore_regs_and_return_to_usermode", X86_FEATURE_XENPV 133 134 /* 135 * We win! This label is here just for ease of understanding 136 * perf profiles. Nothing jumps here. 137 */ 138syscall_return_via_sysret: 139 IBRS_EXIT 140 POP_REGS pop_rdi=0 141 142 /* 143 * Now all regs are restored except RSP and RDI. 144 * Save old stack pointer and switch to trampoline stack. 145 */ 146 movq %rsp, %rdi 147 movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp 148 UNWIND_HINT_END_OF_STACK 149 150 pushq RSP-RDI(%rdi) /* RSP */ 151 pushq (%rdi) /* RDI */ 152 153 /* 154 * We are on the trampoline stack. All regs except RDI are live. 155 * We can do future final exit work right here. 156 */ 157 STACKLEAK_ERASE_NOCLOBBER 158 159 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi 160 161 popq %rdi 162 popq %rsp 163SYM_INNER_LABEL(entry_SYSRETQ_unsafe_stack, SYM_L_GLOBAL) 164 ANNOTATE_NOENDBR 165 swapgs 166 CLEAR_CPU_BUFFERS 167 sysretq 168SYM_INNER_LABEL(entry_SYSRETQ_end, SYM_L_GLOBAL) 169 ANNOTATE_NOENDBR 170 int3 171SYM_CODE_END(entry_SYSCALL_64) 172 173/* 174 * %rdi: prev task 175 * %rsi: next task 176 */ 177.pushsection .text, "ax" 178SYM_FUNC_START(__switch_to_asm) 179 ANNOTATE_NOENDBR 180 /* 181 * Save callee-saved registers 182 * This must match the order in inactive_task_frame 183 */ 184 pushq %rbp 185 pushq %rbx 186 pushq %r12 187 pushq %r13 188 pushq %r14 189 pushq %r15 190 191 /* switch stack */ 192 movq %rsp, TASK_threadsp(%rdi) 193 movq TASK_threadsp(%rsi), %rsp 194 195#ifdef CONFIG_STACKPROTECTOR 196 movq TASK_stack_canary(%rsi), %rbx 197 movq %rbx, PER_CPU_VAR(__stack_chk_guard) 198#endif 199 200 /* 201 * When switching from a shallower to a deeper call stack 202 * the RSB may either underflow or use entries populated 203 * with userspace addresses. On CPUs where those concerns 204 * exist, overwrite the RSB with entries which capture 205 * speculative execution to prevent attack. 206 */ 207 FILL_RETURN_BUFFER %r12, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW 208 209 /* restore callee-saved registers */ 210 popq %r15 211 popq %r14 212 popq %r13 213 popq %r12 214 popq %rbx 215 popq %rbp 216 217 jmp __switch_to 218SYM_FUNC_END(__switch_to_asm) 219.popsection 220 221/* 222 * A newly forked process directly context switches into this address. 223 * 224 * rax: prev task we switched from 225 * rbx: kernel thread func (NULL for user thread) 226 * r12: kernel thread arg 227 */ 228.pushsection .text, "ax" 229SYM_CODE_START(ret_from_fork_asm) 230 /* 231 * This is the start of the kernel stack; even through there's a 232 * register set at the top, the regset isn't necessarily coherent 233 * (consider kthreads) and one cannot unwind further. 234 * 235 * This ensures stack unwinds of kernel threads terminate in a known 236 * good state. 237 */ 238 UNWIND_HINT_END_OF_STACK 239 ANNOTATE_NOENDBR // copy_thread 240 CALL_DEPTH_ACCOUNT 241 242 movq %rax, %rdi /* prev */ 243 movq %rsp, %rsi /* regs */ 244 movq %rbx, %rdx /* fn */ 245 movq %r12, %rcx /* fn_arg */ 246 call ret_from_fork 247 248 /* 249 * Set the stack state to what is expected for the target function 250 * -- at this point the register set should be a valid user set 251 * and unwind should work normally. 252 */ 253 UNWIND_HINT_REGS 254 255#ifdef CONFIG_X86_FRED 256 ALTERNATIVE "jmp swapgs_restore_regs_and_return_to_usermode", \ 257 "jmp asm_fred_exit_user", X86_FEATURE_FRED 258#else 259 jmp swapgs_restore_regs_and_return_to_usermode 260#endif 261SYM_CODE_END(ret_from_fork_asm) 262.popsection 263 264.macro DEBUG_ENTRY_ASSERT_IRQS_OFF 265#ifdef CONFIG_DEBUG_ENTRY 266 pushq %rax 267 SAVE_FLAGS 268 testl $X86_EFLAGS_IF, %eax 269 jz .Lokay_\@ 270 ud2 271.Lokay_\@: 272 popq %rax 273#endif 274.endm 275 276SYM_CODE_START(xen_error_entry) 277 ANNOTATE_NOENDBR 278 UNWIND_HINT_FUNC 279 PUSH_AND_CLEAR_REGS save_ret=1 280 ENCODE_FRAME_POINTER 8 281 UNTRAIN_RET_FROM_CALL 282 RET 283SYM_CODE_END(xen_error_entry) 284 285/** 286 * idtentry_body - Macro to emit code calling the C function 287 * @cfunc: C function to be called 288 * @has_error_code: Hardware pushed error code on stack 289 */ 290.macro idtentry_body cfunc has_error_code:req 291 292 /* 293 * Call error_entry() and switch to the task stack if from userspace. 294 * 295 * When in XENPV, it is already in the task stack, and it can't fault 296 * for native_iret() nor native_load_gs_index() since XENPV uses its 297 * own pvops for IRET and load_gs_index(). And it doesn't need to 298 * switch the CR3. So it can skip invoking error_entry(). 299 */ 300 ALTERNATIVE "call error_entry; movq %rax, %rsp", \ 301 "call xen_error_entry", X86_FEATURE_XENPV 302 303 ENCODE_FRAME_POINTER 304 UNWIND_HINT_REGS 305 306 movq %rsp, %rdi /* pt_regs pointer into 1st argument*/ 307 308 .if \has_error_code == 1 309 movq ORIG_RAX(%rsp), %rsi /* get error code into 2nd argument*/ 310 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */ 311 .endif 312 313 /* For some configurations \cfunc ends up being a noreturn. */ 314 ANNOTATE_REACHABLE 315 call \cfunc 316 317 jmp error_return 318.endm 319 320/** 321 * idtentry - Macro to generate entry stubs for simple IDT entries 322 * @vector: Vector number 323 * @asmsym: ASM symbol for the entry point 324 * @cfunc: C function to be called 325 * @has_error_code: Hardware pushed error code on stack 326 * 327 * The macro emits code to set up the kernel context for straight forward 328 * and simple IDT entries. No IST stack, no paranoid entry checks. 329 */ 330.macro idtentry vector asmsym cfunc has_error_code:req 331SYM_CODE_START(\asmsym) 332 333 .if \vector == X86_TRAP_BP 334 /* #BP advances %rip to the next instruction */ 335 UNWIND_HINT_IRET_ENTRY offset=\has_error_code*8 signal=0 336 .else 337 UNWIND_HINT_IRET_ENTRY offset=\has_error_code*8 338 .endif 339 340 ENDBR 341 ASM_CLAC 342 cld 343 344 .if \has_error_code == 0 345 pushq $-1 /* ORIG_RAX: no syscall to restart */ 346 .endif 347 348 .if \vector == X86_TRAP_BP 349 /* 350 * If coming from kernel space, create a 6-word gap to allow the 351 * int3 handler to emulate a call instruction. 352 */ 353 testb $3, CS-ORIG_RAX(%rsp) 354 jnz .Lfrom_usermode_no_gap_\@ 355 .rept 6 356 pushq 5*8(%rsp) 357 .endr 358 UNWIND_HINT_IRET_REGS offset=8 359.Lfrom_usermode_no_gap_\@: 360 .endif 361 362 idtentry_body \cfunc \has_error_code 363 364_ASM_NOKPROBE(\asmsym) 365SYM_CODE_END(\asmsym) 366.endm 367 368/* 369 * Interrupt entry/exit. 370 * 371 + The interrupt stubs push (vector) onto the stack, which is the error_code 372 * position of idtentry exceptions, and jump to one of the two idtentry points 373 * (common/spurious). 374 * 375 * common_interrupt is a hotpath, align it to a cache line 376 */ 377.macro idtentry_irq vector cfunc 378 .p2align CONFIG_X86_L1_CACHE_SHIFT 379 idtentry \vector asm_\cfunc \cfunc has_error_code=1 380.endm 381 382/** 383 * idtentry_mce_db - Macro to generate entry stubs for #MC and #DB 384 * @vector: Vector number 385 * @asmsym: ASM symbol for the entry point 386 * @cfunc: C function to be called 387 * 388 * The macro emits code to set up the kernel context for #MC and #DB 389 * 390 * If the entry comes from user space it uses the normal entry path 391 * including the return to user space work and preemption checks on 392 * exit. 393 * 394 * If hits in kernel mode then it needs to go through the paranoid 395 * entry as the exception can hit any random state. No preemption 396 * check on exit to keep the paranoid path simple. 397 */ 398.macro idtentry_mce_db vector asmsym cfunc 399SYM_CODE_START(\asmsym) 400 UNWIND_HINT_IRET_ENTRY 401 ENDBR 402 ASM_CLAC 403 cld 404 405 pushq $-1 /* ORIG_RAX: no syscall to restart */ 406 407 /* 408 * If the entry is from userspace, switch stacks and treat it as 409 * a normal entry. 410 */ 411 testb $3, CS-ORIG_RAX(%rsp) 412 jnz .Lfrom_usermode_switch_stack_\@ 413 414 /* paranoid_entry returns GS information for paranoid_exit in EBX. */ 415 call paranoid_entry 416 417 UNWIND_HINT_REGS 418 419 movq %rsp, %rdi /* pt_regs pointer */ 420 421 call \cfunc 422 423 jmp paranoid_exit 424 425 /* Switch to the regular task stack and use the noist entry point */ 426.Lfrom_usermode_switch_stack_\@: 427 idtentry_body noist_\cfunc, has_error_code=0 428 429_ASM_NOKPROBE(\asmsym) 430SYM_CODE_END(\asmsym) 431.endm 432 433#ifdef CONFIG_AMD_MEM_ENCRYPT 434/** 435 * idtentry_vc - Macro to generate entry stub for #VC 436 * @vector: Vector number 437 * @asmsym: ASM symbol for the entry point 438 * @cfunc: C function to be called 439 * 440 * The macro emits code to set up the kernel context for #VC. The #VC handler 441 * runs on an IST stack and needs to be able to cause nested #VC exceptions. 442 * 443 * To make this work the #VC entry code tries its best to pretend it doesn't use 444 * an IST stack by switching to the task stack if coming from user-space (which 445 * includes early SYSCALL entry path) or back to the stack in the IRET frame if 446 * entered from kernel-mode. 447 * 448 * If entered from kernel-mode the return stack is validated first, and if it is 449 * not safe to use (e.g. because it points to the entry stack) the #VC handler 450 * will switch to a fall-back stack (VC2) and call a special handler function. 451 * 452 * The macro is only used for one vector, but it is planned to be extended in 453 * the future for the #HV exception. 454 */ 455.macro idtentry_vc vector asmsym cfunc 456SYM_CODE_START(\asmsym) 457 UNWIND_HINT_IRET_ENTRY 458 ENDBR 459 ASM_CLAC 460 cld 461 462 /* 463 * If the entry is from userspace, switch stacks and treat it as 464 * a normal entry. 465 */ 466 testb $3, CS-ORIG_RAX(%rsp) 467 jnz .Lfrom_usermode_switch_stack_\@ 468 469 /* 470 * paranoid_entry returns SWAPGS flag for paranoid_exit in EBX. 471 * EBX == 0 -> SWAPGS, EBX == 1 -> no SWAPGS 472 */ 473 call paranoid_entry 474 475 UNWIND_HINT_REGS 476 477 /* 478 * Switch off the IST stack to make it free for nested exceptions. The 479 * vc_switch_off_ist() function will switch back to the interrupted 480 * stack if it is safe to do so. If not it switches to the VC fall-back 481 * stack. 482 */ 483 movq %rsp, %rdi /* pt_regs pointer */ 484 call vc_switch_off_ist 485 movq %rax, %rsp /* Switch to new stack */ 486 487 ENCODE_FRAME_POINTER 488 UNWIND_HINT_REGS 489 490 /* Update pt_regs */ 491 movq ORIG_RAX(%rsp), %rsi /* get error code into 2nd argument*/ 492 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */ 493 494 movq %rsp, %rdi /* pt_regs pointer */ 495 496 call kernel_\cfunc 497 498 /* 499 * No need to switch back to the IST stack. The current stack is either 500 * identical to the stack in the IRET frame or the VC fall-back stack, 501 * so it is definitely mapped even with PTI enabled. 502 */ 503 jmp paranoid_exit 504 505 /* Switch to the regular task stack */ 506.Lfrom_usermode_switch_stack_\@: 507 idtentry_body user_\cfunc, has_error_code=1 508 509_ASM_NOKPROBE(\asmsym) 510SYM_CODE_END(\asmsym) 511.endm 512#endif 513 514/* 515 * Double fault entry. Straight paranoid. No checks from which context 516 * this comes because for the espfix induced #DF this would do the wrong 517 * thing. 518 */ 519.macro idtentry_df vector asmsym cfunc 520SYM_CODE_START(\asmsym) 521 UNWIND_HINT_IRET_ENTRY offset=8 522 ENDBR 523 ASM_CLAC 524 cld 525 526 /* paranoid_entry returns GS information for paranoid_exit in EBX. */ 527 call paranoid_entry 528 UNWIND_HINT_REGS 529 530 movq %rsp, %rdi /* pt_regs pointer into first argument */ 531 movq ORIG_RAX(%rsp), %rsi /* get error code into 2nd argument*/ 532 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */ 533 534 /* For some configurations \cfunc ends up being a noreturn. */ 535 ANNOTATE_REACHABLE 536 call \cfunc 537 538 jmp paranoid_exit 539 540_ASM_NOKPROBE(\asmsym) 541SYM_CODE_END(\asmsym) 542.endm 543 544/* 545 * Include the defines which emit the idt entries which are shared 546 * shared between 32 and 64 bit and emit the __irqentry_text_* markers 547 * so the stacktrace boundary checks work. 548 */ 549 __ALIGN 550 .globl __irqentry_text_start 551__irqentry_text_start: 552 553#include <asm/idtentry.h> 554 555 __ALIGN 556 .globl __irqentry_text_end 557__irqentry_text_end: 558 ANNOTATE_NOENDBR 559 560SYM_CODE_START_LOCAL(common_interrupt_return) 561SYM_INNER_LABEL(swapgs_restore_regs_and_return_to_usermode, SYM_L_GLOBAL) 562 IBRS_EXIT 563#ifdef CONFIG_XEN_PV 564 ALTERNATIVE "", "jmp xenpv_restore_regs_and_return_to_usermode", X86_FEATURE_XENPV 565#endif 566#ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION 567 ALTERNATIVE "", "jmp .Lpti_restore_regs_and_return_to_usermode", X86_FEATURE_PTI 568#endif 569 570 STACKLEAK_ERASE 571 POP_REGS 572 add $8, %rsp /* orig_ax */ 573 UNWIND_HINT_IRET_REGS 574 575.Lswapgs_and_iret: 576 swapgs 577 CLEAR_CPU_BUFFERS 578 /* Assert that the IRET frame indicates user mode. */ 579 testb $3, 8(%rsp) 580 jnz .Lnative_iret 581 ud2 582 583#ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION 584.Lpti_restore_regs_and_return_to_usermode: 585 POP_REGS pop_rdi=0 586 587 /* 588 * The stack is now user RDI, orig_ax, RIP, CS, EFLAGS, RSP, SS. 589 * Save old stack pointer and switch to trampoline stack. 590 */ 591 movq %rsp, %rdi 592 movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp 593 UNWIND_HINT_END_OF_STACK 594 595 /* Copy the IRET frame to the trampoline stack. */ 596 pushq 6*8(%rdi) /* SS */ 597 pushq 5*8(%rdi) /* RSP */ 598 pushq 4*8(%rdi) /* EFLAGS */ 599 pushq 3*8(%rdi) /* CS */ 600 pushq 2*8(%rdi) /* RIP */ 601 602 /* Push user RDI on the trampoline stack. */ 603 pushq (%rdi) 604 605 /* 606 * We are on the trampoline stack. All regs except RDI are live. 607 * We can do future final exit work right here. 608 */ 609 STACKLEAK_ERASE_NOCLOBBER 610 611 push %rax 612 SWITCH_TO_USER_CR3 scratch_reg=%rdi scratch_reg2=%rax 613 pop %rax 614 615 /* Restore RDI. */ 616 popq %rdi 617 jmp .Lswapgs_and_iret 618#endif 619 620SYM_INNER_LABEL(restore_regs_and_return_to_kernel, SYM_L_GLOBAL) 621#ifdef CONFIG_DEBUG_ENTRY 622 /* Assert that pt_regs indicates kernel mode. */ 623 testb $3, CS(%rsp) 624 jz 1f 625 ud2 6261: 627#endif 628 POP_REGS 629 addq $8, %rsp /* skip regs->orig_ax */ 630 /* 631 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization 632 * when returning from IPI handler. 633 */ 634#ifdef CONFIG_XEN_PV 635SYM_INNER_LABEL(early_xen_iret_patch, SYM_L_GLOBAL) 636 ANNOTATE_NOENDBR 637 .byte 0xe9 638 .long .Lnative_iret - (. + 4) 639#endif 640 641.Lnative_iret: 642 UNWIND_HINT_IRET_REGS 643 /* 644 * Are we returning to a stack segment from the LDT? Note: in 645 * 64-bit mode SS:RSP on the exception stack is always valid. 646 */ 647#ifdef CONFIG_X86_ESPFIX64 648 testb $4, (SS-RIP)(%rsp) 649 jnz native_irq_return_ldt 650#endif 651 652SYM_INNER_LABEL(native_irq_return_iret, SYM_L_GLOBAL) 653 ANNOTATE_NOENDBR // exc_double_fault 654 /* 655 * This may fault. Non-paranoid faults on return to userspace are 656 * handled by fixup_bad_iret. These include #SS, #GP, and #NP. 657 * Double-faults due to espfix64 are handled in exc_double_fault. 658 * Other faults here are fatal. 659 */ 660 iretq 661 662#ifdef CONFIG_X86_ESPFIX64 663native_irq_return_ldt: 664 /* 665 * We are running with user GSBASE. All GPRs contain their user 666 * values. We have a percpu ESPFIX stack that is eight slots 667 * long (see ESPFIX_STACK_SIZE). espfix_waddr points to the bottom 668 * of the ESPFIX stack. 669 * 670 * We clobber RAX and RDI in this code. We stash RDI on the 671 * normal stack and RAX on the ESPFIX stack. 672 * 673 * The ESPFIX stack layout we set up looks like this: 674 * 675 * --- top of ESPFIX stack --- 676 * SS 677 * RSP 678 * RFLAGS 679 * CS 680 * RIP <-- RSP points here when we're done 681 * RAX <-- espfix_waddr points here 682 * --- bottom of ESPFIX stack --- 683 */ 684 685 pushq %rdi /* Stash user RDI */ 686 swapgs /* to kernel GS */ 687 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi /* to kernel CR3 */ 688 689 movq PER_CPU_VAR(espfix_waddr), %rdi 690 movq %rax, (0*8)(%rdi) /* user RAX */ 691 movq (1*8)(%rsp), %rax /* user RIP */ 692 movq %rax, (1*8)(%rdi) 693 movq (2*8)(%rsp), %rax /* user CS */ 694 movq %rax, (2*8)(%rdi) 695 movq (3*8)(%rsp), %rax /* user RFLAGS */ 696 movq %rax, (3*8)(%rdi) 697 movq (5*8)(%rsp), %rax /* user SS */ 698 movq %rax, (5*8)(%rdi) 699 movq (4*8)(%rsp), %rax /* user RSP */ 700 movq %rax, (4*8)(%rdi) 701 /* Now RAX == RSP. */ 702 703 andl $0xffff0000, %eax /* RAX = (RSP & 0xffff0000) */ 704 705 /* 706 * espfix_stack[31:16] == 0. The page tables are set up such that 707 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of 708 * espfix_waddr for any X. That is, there are 65536 RO aliases of 709 * the same page. Set up RSP so that RSP[31:16] contains the 710 * respective 16 bits of the /userspace/ RSP and RSP nonetheless 711 * still points to an RO alias of the ESPFIX stack. 712 */ 713 orq PER_CPU_VAR(espfix_stack), %rax 714 715 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi 716 swapgs /* to user GS */ 717 popq %rdi /* Restore user RDI */ 718 719 movq %rax, %rsp 720 UNWIND_HINT_IRET_REGS offset=8 721 722 /* 723 * At this point, we cannot write to the stack any more, but we can 724 * still read. 725 */ 726 popq %rax /* Restore user RAX */ 727 728 CLEAR_CPU_BUFFERS 729 730 /* 731 * RSP now points to an ordinary IRET frame, except that the page 732 * is read-only and RSP[31:16] are preloaded with the userspace 733 * values. We can now IRET back to userspace. 734 */ 735 jmp native_irq_return_iret 736#endif 737SYM_CODE_END(common_interrupt_return) 738_ASM_NOKPROBE(common_interrupt_return) 739 740/* 741 * Reload gs selector with exception handling 742 * di: new selector 743 * 744 * Is in entry.text as it shouldn't be instrumented. 745 */ 746SYM_FUNC_START(asm_load_gs_index) 747 ANNOTATE_NOENDBR 748 FRAME_BEGIN 749 swapgs 750.Lgs_change: 751 ANNOTATE_NOENDBR // error_entry 752 movl %edi, %gs 7532: ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE 754 swapgs 755 FRAME_END 756 RET 757 758 /* running with kernelgs */ 759.Lbad_gs: 760 swapgs /* switch back to user gs */ 761.macro ZAP_GS 762 /* This can't be a string because the preprocessor needs to see it. */ 763 movl $__USER_DS, %eax 764 movl %eax, %gs 765.endm 766 ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG 767 xorl %eax, %eax 768 movl %eax, %gs 769 jmp 2b 770 771 _ASM_EXTABLE(.Lgs_change, .Lbad_gs) 772 773SYM_FUNC_END(asm_load_gs_index) 774EXPORT_SYMBOL(asm_load_gs_index) 775 776#ifdef CONFIG_XEN_PV 777/* 778 * A note on the "critical region" in our callback handler. 779 * We want to avoid stacking callback handlers due to events occurring 780 * during handling of the last event. To do this, we keep events disabled 781 * until we've done all processing. HOWEVER, we must enable events before 782 * popping the stack frame (can't be done atomically) and so it would still 783 * be possible to get enough handler activations to overflow the stack. 784 * Although unlikely, bugs of that kind are hard to track down, so we'd 785 * like to avoid the possibility. 786 * So, on entry to the handler we detect whether we interrupted an 787 * existing activation in its critical region -- if so, we pop the current 788 * activation and restart the handler using the previous one. 789 * 790 * C calling convention: exc_xen_hypervisor_callback(struct *pt_regs) 791 */ 792 __FUNC_ALIGN 793SYM_CODE_START_LOCAL_NOALIGN(exc_xen_hypervisor_callback) 794 795/* 796 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will 797 * see the correct pointer to the pt_regs 798 */ 799 UNWIND_HINT_FUNC 800 movq %rdi, %rsp /* we don't return, adjust the stack frame */ 801 UNWIND_HINT_REGS 802 803 call xen_pv_evtchn_do_upcall 804 805 jmp error_return 806SYM_CODE_END(exc_xen_hypervisor_callback) 807 808/* 809 * Hypervisor uses this for application faults while it executes. 810 * We get here for two reasons: 811 * 1. Fault while reloading DS, ES, FS or GS 812 * 2. Fault while executing IRET 813 * Category 1 we do not need to fix up as Xen has already reloaded all segment 814 * registers that could be reloaded and zeroed the others. 815 * Category 2 we fix up by killing the current process. We cannot use the 816 * normal Linux return path in this case because if we use the IRET hypercall 817 * to pop the stack frame we end up in an infinite loop of failsafe callbacks. 818 * We distinguish between categories by comparing each saved segment register 819 * with its current contents: any discrepancy means we in category 1. 820 */ 821 __FUNC_ALIGN 822SYM_CODE_START_NOALIGN(xen_failsafe_callback) 823 UNWIND_HINT_UNDEFINED 824 ENDBR 825 movl %ds, %ecx 826 cmpw %cx, 0x10(%rsp) 827 jne 1f 828 movl %es, %ecx 829 cmpw %cx, 0x18(%rsp) 830 jne 1f 831 movl %fs, %ecx 832 cmpw %cx, 0x20(%rsp) 833 jne 1f 834 movl %gs, %ecx 835 cmpw %cx, 0x28(%rsp) 836 jne 1f 837 /* All segments match their saved values => Category 2 (Bad IRET). */ 838 movq (%rsp), %rcx 839 movq 8(%rsp), %r11 840 addq $0x30, %rsp 841 pushq $0 /* RIP */ 842 UNWIND_HINT_IRET_REGS offset=8 843 jmp asm_exc_general_protection 8441: /* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */ 845 movq (%rsp), %rcx 846 movq 8(%rsp), %r11 847 addq $0x30, %rsp 848 UNWIND_HINT_IRET_REGS 849 pushq $-1 /* orig_ax = -1 => not a system call */ 850 PUSH_AND_CLEAR_REGS 851 ENCODE_FRAME_POINTER 852 jmp error_return 853SYM_CODE_END(xen_failsafe_callback) 854#endif /* CONFIG_XEN_PV */ 855 856/* 857 * Save all registers in pt_regs. Return GSBASE related information 858 * in EBX depending on the availability of the FSGSBASE instructions: 859 * 860 * FSGSBASE R/EBX 861 * N 0 -> SWAPGS on exit 862 * 1 -> no SWAPGS on exit 863 * 864 * Y GSBASE value at entry, must be restored in paranoid_exit 865 * 866 * R14 - old CR3 867 * R15 - old SPEC_CTRL 868 */ 869SYM_CODE_START(paranoid_entry) 870 ANNOTATE_NOENDBR 871 UNWIND_HINT_FUNC 872 PUSH_AND_CLEAR_REGS save_ret=1 873 ENCODE_FRAME_POINTER 8 874 875 /* 876 * Always stash CR3 in %r14. This value will be restored, 877 * verbatim, at exit. Needed if paranoid_entry interrupted 878 * another entry that already switched to the user CR3 value 879 * but has not yet returned to userspace. 880 * 881 * This is also why CS (stashed in the "iret frame" by the 882 * hardware at entry) can not be used: this may be a return 883 * to kernel code, but with a user CR3 value. 884 * 885 * Switching CR3 does not depend on kernel GSBASE so it can 886 * be done before switching to the kernel GSBASE. This is 887 * required for FSGSBASE because the kernel GSBASE has to 888 * be retrieved from a kernel internal table. 889 */ 890 SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg=%rax save_reg=%r14 891 892 /* 893 * Handling GSBASE depends on the availability of FSGSBASE. 894 * 895 * Without FSGSBASE the kernel enforces that negative GSBASE 896 * values indicate kernel GSBASE. With FSGSBASE no assumptions 897 * can be made about the GSBASE value when entering from user 898 * space. 899 */ 900 ALTERNATIVE "jmp .Lparanoid_entry_checkgs", "", X86_FEATURE_FSGSBASE 901 902 /* 903 * Read the current GSBASE and store it in %rbx unconditionally, 904 * retrieve and set the current CPUs kernel GSBASE. The stored value 905 * has to be restored in paranoid_exit unconditionally. 906 * 907 * The unconditional write to GS base below ensures that no subsequent 908 * loads based on a mispredicted GS base can happen, therefore no LFENCE 909 * is needed here. 910 */ 911 SAVE_AND_SET_GSBASE scratch_reg=%rax save_reg=%rbx 912 jmp .Lparanoid_gsbase_done 913 914.Lparanoid_entry_checkgs: 915 /* EBX = 1 -> kernel GSBASE active, no restore required */ 916 movl $1, %ebx 917 918 /* 919 * The kernel-enforced convention is a negative GSBASE indicates 920 * a kernel value. No SWAPGS needed on entry and exit. 921 */ 922 movl $MSR_GS_BASE, %ecx 923 rdmsr 924 testl %edx, %edx 925 js .Lparanoid_kernel_gsbase 926 927 /* EBX = 0 -> SWAPGS required on exit */ 928 xorl %ebx, %ebx 929 swapgs 930.Lparanoid_kernel_gsbase: 931 FENCE_SWAPGS_KERNEL_ENTRY 932.Lparanoid_gsbase_done: 933 934 /* 935 * Once we have CR3 and %GS setup save and set SPEC_CTRL. Just like 936 * CR3 above, keep the old value in a callee saved register. 937 */ 938 IBRS_ENTER save_reg=%r15 939 UNTRAIN_RET_FROM_CALL 940 941 RET 942SYM_CODE_END(paranoid_entry) 943 944/* 945 * "Paranoid" exit path from exception stack. This is invoked 946 * only on return from non-NMI IST interrupts that came 947 * from kernel space. 948 * 949 * We may be returning to very strange contexts (e.g. very early 950 * in syscall entry), so checking for preemption here would 951 * be complicated. Fortunately, there's no good reason to try 952 * to handle preemption here. 953 * 954 * R/EBX contains the GSBASE related information depending on the 955 * availability of the FSGSBASE instructions: 956 * 957 * FSGSBASE R/EBX 958 * N 0 -> SWAPGS on exit 959 * 1 -> no SWAPGS on exit 960 * 961 * Y User space GSBASE, must be restored unconditionally 962 * 963 * R14 - old CR3 964 * R15 - old SPEC_CTRL 965 */ 966SYM_CODE_START_LOCAL(paranoid_exit) 967 UNWIND_HINT_REGS 968 969 /* 970 * Must restore IBRS state before both CR3 and %GS since we need access 971 * to the per-CPU x86_spec_ctrl_shadow variable. 972 */ 973 IBRS_EXIT save_reg=%r15 974 975 /* 976 * The order of operations is important. PARANOID_RESTORE_CR3 requires 977 * kernel GSBASE. 978 * 979 * NB to anyone to try to optimize this code: this code does 980 * not execute at all for exceptions from user mode. Those 981 * exceptions go through error_return instead. 982 */ 983 PARANOID_RESTORE_CR3 scratch_reg=%rax save_reg=%r14 984 985 /* Handle the three GSBASE cases */ 986 ALTERNATIVE "jmp .Lparanoid_exit_checkgs", "", X86_FEATURE_FSGSBASE 987 988 /* With FSGSBASE enabled, unconditionally restore GSBASE */ 989 wrgsbase %rbx 990 jmp restore_regs_and_return_to_kernel 991 992.Lparanoid_exit_checkgs: 993 /* On non-FSGSBASE systems, conditionally do SWAPGS */ 994 testl %ebx, %ebx 995 jnz restore_regs_and_return_to_kernel 996 997 /* We are returning to a context with user GSBASE */ 998 swapgs 999 jmp restore_regs_and_return_to_kernel 1000SYM_CODE_END(paranoid_exit) 1001 1002/* 1003 * Switch GS and CR3 if needed. 1004 */ 1005SYM_CODE_START(error_entry) 1006 ANNOTATE_NOENDBR 1007 UNWIND_HINT_FUNC 1008 1009 PUSH_AND_CLEAR_REGS save_ret=1 1010 ENCODE_FRAME_POINTER 8 1011 1012 testb $3, CS+8(%rsp) 1013 jz .Lerror_kernelspace 1014 1015 /* 1016 * We entered from user mode or we're pretending to have entered 1017 * from user mode due to an IRET fault. 1018 */ 1019 swapgs 1020 FENCE_SWAPGS_USER_ENTRY 1021 /* We have user CR3. Change to kernel CR3. */ 1022 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax 1023 IBRS_ENTER 1024 UNTRAIN_RET_FROM_CALL 1025 1026 leaq 8(%rsp), %rdi /* arg0 = pt_regs pointer */ 1027 /* Put us onto the real thread stack. */ 1028 jmp sync_regs 1029 1030 /* 1031 * There are two places in the kernel that can potentially fault with 1032 * usergs. Handle them here. B stepping K8s sometimes report a 1033 * truncated RIP for IRET exceptions returning to compat mode. Check 1034 * for these here too. 1035 */ 1036.Lerror_kernelspace: 1037 leaq native_irq_return_iret(%rip), %rcx 1038 cmpq %rcx, RIP+8(%rsp) 1039 je .Lerror_bad_iret 1040 movl %ecx, %eax /* zero extend */ 1041 cmpq %rax, RIP+8(%rsp) 1042 je .Lbstep_iret 1043 cmpq $.Lgs_change, RIP+8(%rsp) 1044 jne .Lerror_entry_done_lfence 1045 1046 /* 1047 * hack: .Lgs_change can fail with user gsbase. If this happens, fix up 1048 * gsbase and proceed. We'll fix up the exception and land in 1049 * .Lgs_change's error handler with kernel gsbase. 1050 */ 1051 swapgs 1052 1053 /* 1054 * Issue an LFENCE to prevent GS speculation, regardless of whether it is a 1055 * kernel or user gsbase. 1056 */ 1057.Lerror_entry_done_lfence: 1058 FENCE_SWAPGS_KERNEL_ENTRY 1059 CALL_DEPTH_ACCOUNT 1060 leaq 8(%rsp), %rax /* return pt_regs pointer */ 1061 VALIDATE_UNRET_END 1062 RET 1063 1064.Lbstep_iret: 1065 /* Fix truncated RIP */ 1066 movq %rcx, RIP+8(%rsp) 1067 /* fall through */ 1068 1069.Lerror_bad_iret: 1070 /* 1071 * We came from an IRET to user mode, so we have user 1072 * gsbase and CR3. Switch to kernel gsbase and CR3: 1073 */ 1074 swapgs 1075 FENCE_SWAPGS_USER_ENTRY 1076 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax 1077 IBRS_ENTER 1078 UNTRAIN_RET_FROM_CALL 1079 1080 /* 1081 * Pretend that the exception came from user mode: set up pt_regs 1082 * as if we faulted immediately after IRET. 1083 */ 1084 leaq 8(%rsp), %rdi /* arg0 = pt_regs pointer */ 1085 call fixup_bad_iret 1086 mov %rax, %rdi 1087 jmp sync_regs 1088SYM_CODE_END(error_entry) 1089 1090SYM_CODE_START_LOCAL(error_return) 1091 UNWIND_HINT_REGS 1092 DEBUG_ENTRY_ASSERT_IRQS_OFF 1093 testb $3, CS(%rsp) 1094 jz restore_regs_and_return_to_kernel 1095 jmp swapgs_restore_regs_and_return_to_usermode 1096SYM_CODE_END(error_return) 1097 1098/* 1099 * Runs on exception stack. Xen PV does not go through this path at all, 1100 * so we can use real assembly here. 1101 * 1102 * Registers: 1103 * %r14: Used to save/restore the CR3 of the interrupted context 1104 * when MITIGATION_PAGE_TABLE_ISOLATION is in use. Do not clobber. 1105 */ 1106SYM_CODE_START(asm_exc_nmi) 1107 UNWIND_HINT_IRET_ENTRY 1108 ENDBR 1109 1110 /* 1111 * We allow breakpoints in NMIs. If a breakpoint occurs, then 1112 * the iretq it performs will take us out of NMI context. 1113 * This means that we can have nested NMIs where the next 1114 * NMI is using the top of the stack of the previous NMI. We 1115 * can't let it execute because the nested NMI will corrupt the 1116 * stack of the previous NMI. NMI handlers are not re-entrant 1117 * anyway. 1118 * 1119 * To handle this case we do the following: 1120 * Check a special location on the stack that contains a 1121 * variable that is set when NMIs are executing. 1122 * The interrupted task's stack is also checked to see if it 1123 * is an NMI stack. 1124 * If the variable is not set and the stack is not the NMI 1125 * stack then: 1126 * o Set the special variable on the stack 1127 * o Copy the interrupt frame into an "outermost" location on the 1128 * stack 1129 * o Copy the interrupt frame into an "iret" location on the stack 1130 * o Continue processing the NMI 1131 * If the variable is set or the previous stack is the NMI stack: 1132 * o Modify the "iret" location to jump to the repeat_nmi 1133 * o return back to the first NMI 1134 * 1135 * Now on exit of the first NMI, we first clear the stack variable 1136 * The NMI stack will tell any nested NMIs at that point that it is 1137 * nested. Then we pop the stack normally with iret, and if there was 1138 * a nested NMI that updated the copy interrupt stack frame, a 1139 * jump will be made to the repeat_nmi code that will handle the second 1140 * NMI. 1141 * 1142 * However, espfix prevents us from directly returning to userspace 1143 * with a single IRET instruction. Similarly, IRET to user mode 1144 * can fault. We therefore handle NMIs from user space like 1145 * other IST entries. 1146 */ 1147 1148 ASM_CLAC 1149 cld 1150 1151 /* Use %rdx as our temp variable throughout */ 1152 pushq %rdx 1153 1154 testb $3, CS-RIP+8(%rsp) 1155 jz .Lnmi_from_kernel 1156 1157 /* 1158 * NMI from user mode. We need to run on the thread stack, but we 1159 * can't go through the normal entry paths: NMIs are masked, and 1160 * we don't want to enable interrupts, because then we'll end 1161 * up in an awkward situation in which IRQs are on but NMIs 1162 * are off. 1163 * 1164 * We also must not push anything to the stack before switching 1165 * stacks lest we corrupt the "NMI executing" variable. 1166 */ 1167 1168 swapgs 1169 FENCE_SWAPGS_USER_ENTRY 1170 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdx 1171 movq %rsp, %rdx 1172 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp 1173 UNWIND_HINT_IRET_REGS base=%rdx offset=8 1174 pushq 5*8(%rdx) /* pt_regs->ss */ 1175 pushq 4*8(%rdx) /* pt_regs->rsp */ 1176 pushq 3*8(%rdx) /* pt_regs->flags */ 1177 pushq 2*8(%rdx) /* pt_regs->cs */ 1178 pushq 1*8(%rdx) /* pt_regs->rip */ 1179 UNWIND_HINT_IRET_REGS 1180 pushq $-1 /* pt_regs->orig_ax */ 1181 PUSH_AND_CLEAR_REGS rdx=(%rdx) 1182 ENCODE_FRAME_POINTER 1183 1184 IBRS_ENTER 1185 UNTRAIN_RET 1186 1187 /* 1188 * At this point we no longer need to worry about stack damage 1189 * due to nesting -- we're on the normal thread stack and we're 1190 * done with the NMI stack. 1191 */ 1192 1193 movq %rsp, %rdi 1194 call exc_nmi 1195 1196 /* 1197 * Return back to user mode. We must *not* do the normal exit 1198 * work, because we don't want to enable interrupts. 1199 */ 1200 jmp swapgs_restore_regs_and_return_to_usermode 1201 1202.Lnmi_from_kernel: 1203 /* 1204 * Here's what our stack frame will look like: 1205 * +---------------------------------------------------------+ 1206 * | original SS | 1207 * | original Return RSP | 1208 * | original RFLAGS | 1209 * | original CS | 1210 * | original RIP | 1211 * +---------------------------------------------------------+ 1212 * | temp storage for rdx | 1213 * +---------------------------------------------------------+ 1214 * | "NMI executing" variable | 1215 * +---------------------------------------------------------+ 1216 * | iret SS } Copied from "outermost" frame | 1217 * | iret Return RSP } on each loop iteration; overwritten | 1218 * | iret RFLAGS } by a nested NMI to force another | 1219 * | iret CS } iteration if needed. | 1220 * | iret RIP } | 1221 * +---------------------------------------------------------+ 1222 * | outermost SS } initialized in first_nmi; | 1223 * | outermost Return RSP } will not be changed before | 1224 * | outermost RFLAGS } NMI processing is done. | 1225 * | outermost CS } Copied to "iret" frame on each | 1226 * | outermost RIP } iteration. | 1227 * +---------------------------------------------------------+ 1228 * | pt_regs | 1229 * +---------------------------------------------------------+ 1230 * 1231 * The "original" frame is used by hardware. Before re-enabling 1232 * NMIs, we need to be done with it, and we need to leave enough 1233 * space for the asm code here. 1234 * 1235 * We return by executing IRET while RSP points to the "iret" frame. 1236 * That will either return for real or it will loop back into NMI 1237 * processing. 1238 * 1239 * The "outermost" frame is copied to the "iret" frame on each 1240 * iteration of the loop, so each iteration starts with the "iret" 1241 * frame pointing to the final return target. 1242 */ 1243 1244 /* 1245 * Determine whether we're a nested NMI. 1246 * 1247 * If we interrupted kernel code between repeat_nmi and 1248 * end_repeat_nmi, then we are a nested NMI. We must not 1249 * modify the "iret" frame because it's being written by 1250 * the outer NMI. That's okay; the outer NMI handler is 1251 * about to call exc_nmi() anyway, so we can just resume 1252 * the outer NMI. 1253 */ 1254 1255 movq $repeat_nmi, %rdx 1256 cmpq 8(%rsp), %rdx 1257 ja 1f 1258 movq $end_repeat_nmi, %rdx 1259 cmpq 8(%rsp), %rdx 1260 ja nested_nmi_out 12611: 1262 1263 /* 1264 * Now check "NMI executing". If it's set, then we're nested. 1265 * This will not detect if we interrupted an outer NMI just 1266 * before IRET. 1267 */ 1268 cmpl $1, -8(%rsp) 1269 je nested_nmi 1270 1271 /* 1272 * Now test if the previous stack was an NMI stack. This covers 1273 * the case where we interrupt an outer NMI after it clears 1274 * "NMI executing" but before IRET. We need to be careful, though: 1275 * there is one case in which RSP could point to the NMI stack 1276 * despite there being no NMI active: naughty userspace controls 1277 * RSP at the very beginning of the SYSCALL targets. We can 1278 * pull a fast one on naughty userspace, though: we program 1279 * SYSCALL to mask DF, so userspace cannot cause DF to be set 1280 * if it controls the kernel's RSP. We set DF before we clear 1281 * "NMI executing". 1282 */ 1283 lea 6*8(%rsp), %rdx 1284 /* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */ 1285 cmpq %rdx, 4*8(%rsp) 1286 /* If the stack pointer is above the NMI stack, this is a normal NMI */ 1287 ja first_nmi 1288 1289 subq $EXCEPTION_STKSZ, %rdx 1290 cmpq %rdx, 4*8(%rsp) 1291 /* If it is below the NMI stack, it is a normal NMI */ 1292 jb first_nmi 1293 1294 /* Ah, it is within the NMI stack. */ 1295 1296 testb $(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp) 1297 jz first_nmi /* RSP was user controlled. */ 1298 1299 /* This is a nested NMI. */ 1300 1301nested_nmi: 1302 /* 1303 * Modify the "iret" frame to point to repeat_nmi, forcing another 1304 * iteration of NMI handling. 1305 */ 1306 subq $8, %rsp 1307 leaq -10*8(%rsp), %rdx 1308 pushq $__KERNEL_DS 1309 pushq %rdx 1310 pushfq 1311 pushq $__KERNEL_CS 1312 pushq $repeat_nmi 1313 1314 /* Put stack back */ 1315 addq $(6*8), %rsp 1316 1317nested_nmi_out: 1318 popq %rdx 1319 1320 /* We are returning to kernel mode, so this cannot result in a fault. */ 1321 iretq 1322 1323first_nmi: 1324 /* Restore rdx. */ 1325 movq (%rsp), %rdx 1326 1327 /* Make room for "NMI executing". */ 1328 pushq $0 1329 1330 /* Leave room for the "iret" frame */ 1331 subq $(5*8), %rsp 1332 1333 /* Copy the "original" frame to the "outermost" frame */ 1334 .rept 5 1335 pushq 11*8(%rsp) 1336 .endr 1337 UNWIND_HINT_IRET_REGS 1338 1339 /* Everything up to here is safe from nested NMIs */ 1340 1341#ifdef CONFIG_DEBUG_ENTRY 1342 /* 1343 * For ease of testing, unmask NMIs right away. Disabled by 1344 * default because IRET is very expensive. 1345 */ 1346 pushq $0 /* SS */ 1347 pushq %rsp /* RSP (minus 8 because of the previous push) */ 1348 addq $8, (%rsp) /* Fix up RSP */ 1349 pushfq /* RFLAGS */ 1350 pushq $__KERNEL_CS /* CS */ 1351 pushq $1f /* RIP */ 1352 iretq /* continues at repeat_nmi below */ 1353 UNWIND_HINT_IRET_REGS 13541: 1355#endif 1356 1357repeat_nmi: 1358 ANNOTATE_NOENDBR // this code 1359 /* 1360 * If there was a nested NMI, the first NMI's iret will return 1361 * here. But NMIs are still enabled and we can take another 1362 * nested NMI. The nested NMI checks the interrupted RIP to see 1363 * if it is between repeat_nmi and end_repeat_nmi, and if so 1364 * it will just return, as we are about to repeat an NMI anyway. 1365 * This makes it safe to copy to the stack frame that a nested 1366 * NMI will update. 1367 * 1368 * RSP is pointing to "outermost RIP". gsbase is unknown, but, if 1369 * we're repeating an NMI, gsbase has the same value that it had on 1370 * the first iteration. paranoid_entry will load the kernel 1371 * gsbase if needed before we call exc_nmi(). "NMI executing" 1372 * is zero. 1373 */ 1374 movq $1, 10*8(%rsp) /* Set "NMI executing". */ 1375 1376 /* 1377 * Copy the "outermost" frame to the "iret" frame. NMIs that nest 1378 * here must not modify the "iret" frame while we're writing to 1379 * it or it will end up containing garbage. 1380 */ 1381 addq $(10*8), %rsp 1382 .rept 5 1383 pushq -6*8(%rsp) 1384 .endr 1385 subq $(5*8), %rsp 1386end_repeat_nmi: 1387 ANNOTATE_NOENDBR // this code 1388 1389 /* 1390 * Everything below this point can be preempted by a nested NMI. 1391 * If this happens, then the inner NMI will change the "iret" 1392 * frame to point back to repeat_nmi. 1393 */ 1394 pushq $-1 /* ORIG_RAX: no syscall to restart */ 1395 1396 /* 1397 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit 1398 * as we should not be calling schedule in NMI context. 1399 * Even with normal interrupts enabled. An NMI should not be 1400 * setting NEED_RESCHED or anything that normal interrupts and 1401 * exceptions might do. 1402 */ 1403 call paranoid_entry 1404 UNWIND_HINT_REGS 1405 1406 movq %rsp, %rdi 1407 call exc_nmi 1408 1409 /* Always restore stashed SPEC_CTRL value (see paranoid_entry) */ 1410 IBRS_EXIT save_reg=%r15 1411 1412 PARANOID_RESTORE_CR3 scratch_reg=%r15 save_reg=%r14 1413 1414 /* 1415 * The above invocation of paranoid_entry stored the GSBASE 1416 * related information in R/EBX depending on the availability 1417 * of FSGSBASE. 1418 * 1419 * If FSGSBASE is enabled, restore the saved GSBASE value 1420 * unconditionally, otherwise take the conditional SWAPGS path. 1421 */ 1422 ALTERNATIVE "jmp nmi_no_fsgsbase", "", X86_FEATURE_FSGSBASE 1423 1424 wrgsbase %rbx 1425 jmp nmi_restore 1426 1427nmi_no_fsgsbase: 1428 /* EBX == 0 -> invoke SWAPGS */ 1429 testl %ebx, %ebx 1430 jnz nmi_restore 1431 1432nmi_swapgs: 1433 swapgs 1434 1435nmi_restore: 1436 POP_REGS 1437 1438 /* 1439 * Skip orig_ax and the "outermost" frame to point RSP at the "iret" 1440 * at the "iret" frame. 1441 */ 1442 addq $6*8, %rsp 1443 1444 /* 1445 * Clear "NMI executing". Set DF first so that we can easily 1446 * distinguish the remaining code between here and IRET from 1447 * the SYSCALL entry and exit paths. 1448 * 1449 * We arguably should just inspect RIP instead, but I (Andy) wrote 1450 * this code when I had the misapprehension that Xen PV supported 1451 * NMIs, and Xen PV would break that approach. 1452 */ 1453 std 1454 movq $0, 5*8(%rsp) /* clear "NMI executing" */ 1455 1456 /* 1457 * Skip CLEAR_CPU_BUFFERS here, since it only helps in rare cases like 1458 * NMI in kernel after user state is restored. For an unprivileged user 1459 * these conditions are hard to meet. 1460 */ 1461 1462 /* 1463 * iretq reads the "iret" frame and exits the NMI stack in a 1464 * single instruction. We are returning to kernel mode, so this 1465 * cannot result in a fault. Similarly, we don't need to worry 1466 * about espfix64 on the way back to kernel mode. 1467 */ 1468 iretq 1469SYM_CODE_END(asm_exc_nmi) 1470 1471/* 1472 * This handles SYSCALL from 32-bit code. There is no way to program 1473 * MSRs to fully disable 32-bit SYSCALL. 1474 */ 1475SYM_CODE_START(entry_SYSCALL32_ignore) 1476 UNWIND_HINT_END_OF_STACK 1477 ENDBR 1478 mov $-ENOSYS, %eax 1479 CLEAR_CPU_BUFFERS 1480 sysretl 1481SYM_CODE_END(entry_SYSCALL32_ignore) 1482 1483.pushsection .text, "ax" 1484 __FUNC_ALIGN 1485SYM_CODE_START_NOALIGN(rewind_stack_and_make_dead) 1486 UNWIND_HINT_FUNC 1487 /* Prevent any naive code from trying to unwind to our caller. */ 1488 xorl %ebp, %ebp 1489 1490 movq PER_CPU_VAR(cpu_current_top_of_stack), %rax 1491 leaq -PTREGS_SIZE(%rax), %rsp 1492 UNWIND_HINT_REGS 1493 1494 call make_task_dead 1495SYM_CODE_END(rewind_stack_and_make_dead) 1496.popsection 1497 1498/* 1499 * This sequence executes branches in order to remove user branch information 1500 * from the branch history tracker in the Branch Predictor, therefore removing 1501 * user influence on subsequent BTB lookups. 1502 * 1503 * It should be used on parts prior to Alder Lake. Newer parts should use the 1504 * BHI_DIS_S hardware control instead. If a pre-Alder Lake part is being 1505 * virtualized on newer hardware the VMM should protect against BHI attacks by 1506 * setting BHI_DIS_S for the guests. 1507 * 1508 * CALLs/RETs are necessary to prevent Loop Stream Detector(LSD) from engaging 1509 * and not clearing the branch history. The call tree looks like: 1510 * 1511 * call 1 1512 * call 2 1513 * call 2 1514 * call 2 1515 * call 2 1516 * call 2 1517 * ret 1518 * ret 1519 * ret 1520 * ret 1521 * ret 1522 * ret 1523 * 1524 * This means that the stack is non-constant and ORC can't unwind it with %rsp 1525 * alone. Therefore we unconditionally set up the frame pointer, which allows 1526 * ORC to unwind properly. 1527 * 1528 * The alignment is for performance and not for safety, and may be safely 1529 * refactored in the future if needed. The .skips are for safety, to ensure 1530 * that all RETs are in the second half of a cacheline to mitigate Indirect 1531 * Target Selection, rather than taking the slowpath via its_return_thunk. 1532 */ 1533SYM_FUNC_START(clear_bhb_loop) 1534 ANNOTATE_NOENDBR 1535 push %rbp 1536 mov %rsp, %rbp 1537 movl $5, %ecx 1538 ANNOTATE_INTRA_FUNCTION_CALL 1539 call 1f 1540 jmp 5f 1541 .align 64, 0xcc 1542 /* 1543 * Shift instructions so that the RET is in the upper half of the 1544 * cacheline and don't take the slowpath to its_return_thunk. 1545 */ 1546 .skip 32 - (.Lret1 - 1f), 0xcc 1547 ANNOTATE_INTRA_FUNCTION_CALL 15481: call 2f 1549.Lret1: RET 1550 .align 64, 0xcc 1551 /* 1552 * As above shift instructions for RET at .Lret2 as well. 1553 * 1554 * This should be ideally be: .skip 32 - (.Lret2 - 2f), 0xcc 1555 * but some Clang versions (e.g. 18) don't like this. 1556 */ 1557 .skip 32 - 18, 0xcc 15582: movl $5, %eax 15593: jmp 4f 1560 nop 15614: sub $1, %eax 1562 jnz 3b 1563 sub $1, %ecx 1564 jnz 1b 1565.Lret2: RET 15665: lfence 1567 pop %rbp 1568 RET 1569SYM_FUNC_END(clear_bhb_loop) 1570EXPORT_SYMBOL_FOR_KVM(clear_bhb_loop) 1571STACK_FRAME_NON_STANDARD(clear_bhb_loop) 1572