xref: /linux/arch/x86/entry/entry_64.S (revision 7fc2cd2e4b398c57c9cf961cfea05eadbf34c05c)
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 *  linux/arch/x86_64/entry.S
4 *
5 *  Copyright (C) 1991, 1992  Linus Torvalds
6 *  Copyright (C) 2000, 2001, 2002  Andi Kleen SuSE Labs
7 *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
8 *
9 * entry.S contains the system-call and fault low-level handling routines.
10 *
11 * Some of this is documented in Documentation/arch/x86/entry_64.rst
12 *
13 * A note on terminology:
14 * - iret frame:	Architecture defined interrupt frame from SS to RIP
15 *			at the top of the kernel process stack.
16 *
17 * Some macro usage:
18 * - SYM_FUNC_START/END:Define functions in the symbol table.
19 * - idtentry:		Define exception entry points.
20 */
21#include <linux/export.h>
22#include <linux/kvm_types.h>
23#include <linux/linkage.h>
24#include <asm/segment.h>
25#include <asm/cache.h>
26#include <asm/errno.h>
27#include <asm/asm-offsets.h>
28#include <asm/msr.h>
29#include <asm/unistd.h>
30#include <asm/thread_info.h>
31#include <asm/hw_irq.h>
32#include <asm/page_types.h>
33#include <asm/irqflags.h>
34#include <asm/paravirt.h>
35#include <asm/percpu.h>
36#include <asm/asm.h>
37#include <asm/smap.h>
38#include <asm/pgtable_types.h>
39#include <asm/frame.h>
40#include <asm/trapnr.h>
41#include <asm/nospec-branch.h>
42#include <asm/fsgsbase.h>
43#include <linux/err.h>
44
45#include "calling.h"
46
47.code64
48.section .entry.text, "ax"
49
50/*
51 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
52 *
53 * This is the only entry point used for 64-bit system calls.  The
54 * hardware interface is reasonably well designed and the register to
55 * argument mapping Linux uses fits well with the registers that are
56 * available when SYSCALL is used.
57 *
58 * SYSCALL instructions can be found inlined in libc implementations as
59 * well as some other programs and libraries.  There are also a handful
60 * of SYSCALL instructions in the vDSO used, for example, as a
61 * clock_gettimeofday fallback.
62 *
63 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
64 * then loads new ss, cs, and rip from previously programmed MSRs.
65 * rflags gets masked by a value from another MSR (so CLD and CLAC
66 * are not needed). SYSCALL does not save anything on the stack
67 * and does not change rsp.
68 *
69 * Registers on entry:
70 * rax  system call number
71 * rcx  return address
72 * r11  saved rflags (note: r11 is callee-clobbered register in C ABI)
73 * rdi  arg0
74 * rsi  arg1
75 * rdx  arg2
76 * r10  arg3 (needs to be moved to rcx to conform to C ABI)
77 * r8   arg4
78 * r9   arg5
79 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
80 *
81 * Only called from user space.
82 *
83 * When user can change pt_regs->foo always force IRET. That is because
84 * it deals with uncanonical addresses better. SYSRET has trouble
85 * with them due to bugs in both AMD and Intel CPUs.
86 */
87
88SYM_CODE_START(entry_SYSCALL_64)
89	UNWIND_HINT_ENTRY
90	ENDBR
91
92	swapgs
93	/* tss.sp2 is scratch space. */
94	movq	%rsp, PER_CPU_VAR(cpu_tss_rw + TSS_sp2)
95	SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp
96	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
97
98SYM_INNER_LABEL(entry_SYSCALL_64_safe_stack, SYM_L_GLOBAL)
99	ANNOTATE_NOENDBR
100
101	/* Construct struct pt_regs on stack */
102	pushq	$__USER_DS				/* pt_regs->ss */
103	pushq	PER_CPU_VAR(cpu_tss_rw + TSS_sp2)	/* pt_regs->sp */
104	pushq	%r11					/* pt_regs->flags */
105	pushq	$__USER_CS				/* pt_regs->cs */
106	pushq	%rcx					/* pt_regs->ip */
107SYM_INNER_LABEL(entry_SYSCALL_64_after_hwframe, SYM_L_GLOBAL)
108	pushq	%rax					/* pt_regs->orig_ax */
109
110	PUSH_AND_CLEAR_REGS rax=$-ENOSYS
111
112	/* IRQs are off. */
113	movq	%rsp, %rdi
114	/* Sign extend the lower 32bit as syscall numbers are treated as int */
115	movslq	%eax, %rsi
116
117	/* clobbers %rax, make sure it is after saving the syscall nr */
118	IBRS_ENTER
119	UNTRAIN_RET
120	CLEAR_BRANCH_HISTORY
121
122	call	do_syscall_64		/* returns with IRQs disabled */
123
124	/*
125	 * Try to use SYSRET instead of IRET if we're returning to
126	 * a completely clean 64-bit userspace context.  If we're not,
127	 * go to the slow exit path.
128	 * In the Xen PV case we must use iret anyway.
129	 */
130
131	ALTERNATIVE "testb %al, %al; jz swapgs_restore_regs_and_return_to_usermode", \
132		"jmp swapgs_restore_regs_and_return_to_usermode", X86_FEATURE_XENPV
133
134	/*
135	 * We win! This label is here just for ease of understanding
136	 * perf profiles. Nothing jumps here.
137	 */
138syscall_return_via_sysret:
139	IBRS_EXIT
140	POP_REGS pop_rdi=0
141
142	/*
143	 * Now all regs are restored except RSP and RDI.
144	 * Save old stack pointer and switch to trampoline stack.
145	 */
146	movq	%rsp, %rdi
147	movq	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
148	UNWIND_HINT_END_OF_STACK
149
150	pushq	RSP-RDI(%rdi)	/* RSP */
151	pushq	(%rdi)		/* RDI */
152
153	/*
154	 * We are on the trampoline stack.  All regs except RDI are live.
155	 * We can do future final exit work right here.
156	 */
157	STACKLEAK_ERASE_NOCLOBBER
158
159	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
160
161	popq	%rdi
162	popq	%rsp
163SYM_INNER_LABEL(entry_SYSRETQ_unsafe_stack, SYM_L_GLOBAL)
164	ANNOTATE_NOENDBR
165	swapgs
166	CLEAR_CPU_BUFFERS
167	sysretq
168SYM_INNER_LABEL(entry_SYSRETQ_end, SYM_L_GLOBAL)
169	ANNOTATE_NOENDBR
170	int3
171SYM_CODE_END(entry_SYSCALL_64)
172
173/*
174 * %rdi: prev task
175 * %rsi: next task
176 */
177.pushsection .text, "ax"
178SYM_FUNC_START(__switch_to_asm)
179	ANNOTATE_NOENDBR
180	/*
181	 * Save callee-saved registers
182	 * This must match the order in inactive_task_frame
183	 */
184	pushq	%rbp
185	pushq	%rbx
186	pushq	%r12
187	pushq	%r13
188	pushq	%r14
189	pushq	%r15
190
191	/* switch stack */
192	movq	%rsp, TASK_threadsp(%rdi)
193	movq	TASK_threadsp(%rsi), %rsp
194
195#ifdef CONFIG_STACKPROTECTOR
196	movq	TASK_stack_canary(%rsi), %rbx
197	movq	%rbx, PER_CPU_VAR(__stack_chk_guard)
198#endif
199
200	/*
201	 * When switching from a shallower to a deeper call stack
202	 * the RSB may either underflow or use entries populated
203	 * with userspace addresses. On CPUs where those concerns
204	 * exist, overwrite the RSB with entries which capture
205	 * speculative execution to prevent attack.
206	 */
207	FILL_RETURN_BUFFER %r12, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
208
209	/* restore callee-saved registers */
210	popq	%r15
211	popq	%r14
212	popq	%r13
213	popq	%r12
214	popq	%rbx
215	popq	%rbp
216
217	jmp	__switch_to
218SYM_FUNC_END(__switch_to_asm)
219.popsection
220
221/*
222 * A newly forked process directly context switches into this address.
223 *
224 * rax: prev task we switched from
225 * rbx: kernel thread func (NULL for user thread)
226 * r12: kernel thread arg
227 */
228.pushsection .text, "ax"
229SYM_CODE_START(ret_from_fork_asm)
230	/*
231	 * This is the start of the kernel stack; even through there's a
232	 * register set at the top, the regset isn't necessarily coherent
233	 * (consider kthreads) and one cannot unwind further.
234	 *
235	 * This ensures stack unwinds of kernel threads terminate in a known
236	 * good state.
237	 */
238	UNWIND_HINT_END_OF_STACK
239	ANNOTATE_NOENDBR // copy_thread
240	CALL_DEPTH_ACCOUNT
241
242	movq	%rax, %rdi		/* prev */
243	movq	%rsp, %rsi		/* regs */
244	movq	%rbx, %rdx		/* fn */
245	movq	%r12, %rcx		/* fn_arg */
246	call	ret_from_fork
247
248	/*
249	 * Set the stack state to what is expected for the target function
250	 * -- at this point the register set should be a valid user set
251	 * and unwind should work normally.
252	 */
253	UNWIND_HINT_REGS
254
255#ifdef CONFIG_X86_FRED
256	ALTERNATIVE "jmp swapgs_restore_regs_and_return_to_usermode", \
257		    "jmp asm_fred_exit_user", X86_FEATURE_FRED
258#else
259	jmp	swapgs_restore_regs_and_return_to_usermode
260#endif
261SYM_CODE_END(ret_from_fork_asm)
262.popsection
263
264.macro DEBUG_ENTRY_ASSERT_IRQS_OFF
265#ifdef CONFIG_DEBUG_ENTRY
266	pushq %rax
267	SAVE_FLAGS
268	testl $X86_EFLAGS_IF, %eax
269	jz .Lokay_\@
270	ud2
271.Lokay_\@:
272	popq %rax
273#endif
274.endm
275
276SYM_CODE_START(xen_error_entry)
277	ANNOTATE_NOENDBR
278	UNWIND_HINT_FUNC
279	PUSH_AND_CLEAR_REGS save_ret=1
280	ENCODE_FRAME_POINTER 8
281	UNTRAIN_RET_FROM_CALL
282	RET
283SYM_CODE_END(xen_error_entry)
284
285/**
286 * idtentry_body - Macro to emit code calling the C function
287 * @cfunc:		C function to be called
288 * @has_error_code:	Hardware pushed error code on stack
289 */
290.macro idtentry_body cfunc has_error_code:req
291
292	/*
293	 * Call error_entry() and switch to the task stack if from userspace.
294	 *
295	 * When in XENPV, it is already in the task stack, and it can't fault
296	 * for native_iret() nor native_load_gs_index() since XENPV uses its
297	 * own pvops for IRET and load_gs_index().  And it doesn't need to
298	 * switch the CR3.  So it can skip invoking error_entry().
299	 */
300	ALTERNATIVE "call error_entry; movq %rax, %rsp", \
301		    "call xen_error_entry", X86_FEATURE_XENPV
302
303	ENCODE_FRAME_POINTER
304	UNWIND_HINT_REGS
305
306	movq	%rsp, %rdi			/* pt_regs pointer into 1st argument*/
307
308	.if \has_error_code == 1
309		movq	ORIG_RAX(%rsp), %rsi	/* get error code into 2nd argument*/
310		movq	$-1, ORIG_RAX(%rsp)	/* no syscall to restart */
311	.endif
312
313	/* For some configurations \cfunc ends up being a noreturn. */
314	ANNOTATE_REACHABLE
315	call	\cfunc
316
317	jmp	error_return
318.endm
319
320/**
321 * idtentry - Macro to generate entry stubs for simple IDT entries
322 * @vector:		Vector number
323 * @asmsym:		ASM symbol for the entry point
324 * @cfunc:		C function to be called
325 * @has_error_code:	Hardware pushed error code on stack
326 *
327 * The macro emits code to set up the kernel context for straight forward
328 * and simple IDT entries. No IST stack, no paranoid entry checks.
329 */
330.macro idtentry vector asmsym cfunc has_error_code:req
331SYM_CODE_START(\asmsym)
332
333	.if \vector == X86_TRAP_BP
334		/* #BP advances %rip to the next instruction */
335		UNWIND_HINT_IRET_ENTRY offset=\has_error_code*8 signal=0
336	.else
337		UNWIND_HINT_IRET_ENTRY offset=\has_error_code*8
338	.endif
339
340	ENDBR
341	ASM_CLAC
342	cld
343
344	.if \has_error_code == 0
345		pushq	$-1			/* ORIG_RAX: no syscall to restart */
346	.endif
347
348	.if \vector == X86_TRAP_BP
349		/*
350		 * If coming from kernel space, create a 6-word gap to allow the
351		 * int3 handler to emulate a call instruction.
352		 */
353		testb	$3, CS-ORIG_RAX(%rsp)
354		jnz	.Lfrom_usermode_no_gap_\@
355		.rept	6
356		pushq	5*8(%rsp)
357		.endr
358		UNWIND_HINT_IRET_REGS offset=8
359.Lfrom_usermode_no_gap_\@:
360	.endif
361
362	idtentry_body \cfunc \has_error_code
363
364_ASM_NOKPROBE(\asmsym)
365SYM_CODE_END(\asmsym)
366.endm
367
368/*
369 * Interrupt entry/exit.
370 *
371 + The interrupt stubs push (vector) onto the stack, which is the error_code
372 * position of idtentry exceptions, and jump to one of the two idtentry points
373 * (common/spurious).
374 *
375 * common_interrupt is a hotpath, align it to a cache line
376 */
377.macro idtentry_irq vector cfunc
378	.p2align CONFIG_X86_L1_CACHE_SHIFT
379	idtentry \vector asm_\cfunc \cfunc has_error_code=1
380.endm
381
382/**
383 * idtentry_mce_db - Macro to generate entry stubs for #MC and #DB
384 * @vector:		Vector number
385 * @asmsym:		ASM symbol for the entry point
386 * @cfunc:		C function to be called
387 *
388 * The macro emits code to set up the kernel context for #MC and #DB
389 *
390 * If the entry comes from user space it uses the normal entry path
391 * including the return to user space work and preemption checks on
392 * exit.
393 *
394 * If hits in kernel mode then it needs to go through the paranoid
395 * entry as the exception can hit any random state. No preemption
396 * check on exit to keep the paranoid path simple.
397 */
398.macro idtentry_mce_db vector asmsym cfunc
399SYM_CODE_START(\asmsym)
400	UNWIND_HINT_IRET_ENTRY
401	ENDBR
402	ASM_CLAC
403	cld
404
405	pushq	$-1			/* ORIG_RAX: no syscall to restart */
406
407	/*
408	 * If the entry is from userspace, switch stacks and treat it as
409	 * a normal entry.
410	 */
411	testb	$3, CS-ORIG_RAX(%rsp)
412	jnz	.Lfrom_usermode_switch_stack_\@
413
414	/* paranoid_entry returns GS information for paranoid_exit in EBX. */
415	call	paranoid_entry
416
417	UNWIND_HINT_REGS
418
419	movq	%rsp, %rdi		/* pt_regs pointer */
420
421	call	\cfunc
422
423	jmp	paranoid_exit
424
425	/* Switch to the regular task stack and use the noist entry point */
426.Lfrom_usermode_switch_stack_\@:
427	idtentry_body noist_\cfunc, has_error_code=0
428
429_ASM_NOKPROBE(\asmsym)
430SYM_CODE_END(\asmsym)
431.endm
432
433#ifdef CONFIG_AMD_MEM_ENCRYPT
434/**
435 * idtentry_vc - Macro to generate entry stub for #VC
436 * @vector:		Vector number
437 * @asmsym:		ASM symbol for the entry point
438 * @cfunc:		C function to be called
439 *
440 * The macro emits code to set up the kernel context for #VC. The #VC handler
441 * runs on an IST stack and needs to be able to cause nested #VC exceptions.
442 *
443 * To make this work the #VC entry code tries its best to pretend it doesn't use
444 * an IST stack by switching to the task stack if coming from user-space (which
445 * includes early SYSCALL entry path) or back to the stack in the IRET frame if
446 * entered from kernel-mode.
447 *
448 * If entered from kernel-mode the return stack is validated first, and if it is
449 * not safe to use (e.g. because it points to the entry stack) the #VC handler
450 * will switch to a fall-back stack (VC2) and call a special handler function.
451 *
452 * The macro is only used for one vector, but it is planned to be extended in
453 * the future for the #HV exception.
454 */
455.macro idtentry_vc vector asmsym cfunc
456SYM_CODE_START(\asmsym)
457	UNWIND_HINT_IRET_ENTRY
458	ENDBR
459	ASM_CLAC
460	cld
461
462	/*
463	 * If the entry is from userspace, switch stacks and treat it as
464	 * a normal entry.
465	 */
466	testb	$3, CS-ORIG_RAX(%rsp)
467	jnz	.Lfrom_usermode_switch_stack_\@
468
469	/*
470	 * paranoid_entry returns SWAPGS flag for paranoid_exit in EBX.
471	 * EBX == 0 -> SWAPGS, EBX == 1 -> no SWAPGS
472	 */
473	call	paranoid_entry
474
475	UNWIND_HINT_REGS
476
477	/*
478	 * Switch off the IST stack to make it free for nested exceptions. The
479	 * vc_switch_off_ist() function will switch back to the interrupted
480	 * stack if it is safe to do so. If not it switches to the VC fall-back
481	 * stack.
482	 */
483	movq	%rsp, %rdi		/* pt_regs pointer */
484	call	vc_switch_off_ist
485	movq	%rax, %rsp		/* Switch to new stack */
486
487	ENCODE_FRAME_POINTER
488	UNWIND_HINT_REGS
489
490	/* Update pt_regs */
491	movq	ORIG_RAX(%rsp), %rsi	/* get error code into 2nd argument*/
492	movq	$-1, ORIG_RAX(%rsp)	/* no syscall to restart */
493
494	movq	%rsp, %rdi		/* pt_regs pointer */
495
496	call	kernel_\cfunc
497
498	/*
499	 * No need to switch back to the IST stack. The current stack is either
500	 * identical to the stack in the IRET frame or the VC fall-back stack,
501	 * so it is definitely mapped even with PTI enabled.
502	 */
503	jmp	paranoid_exit
504
505	/* Switch to the regular task stack */
506.Lfrom_usermode_switch_stack_\@:
507	idtentry_body user_\cfunc, has_error_code=1
508
509_ASM_NOKPROBE(\asmsym)
510SYM_CODE_END(\asmsym)
511.endm
512#endif
513
514/*
515 * Double fault entry. Straight paranoid. No checks from which context
516 * this comes because for the espfix induced #DF this would do the wrong
517 * thing.
518 */
519.macro idtentry_df vector asmsym cfunc
520SYM_CODE_START(\asmsym)
521	UNWIND_HINT_IRET_ENTRY offset=8
522	ENDBR
523	ASM_CLAC
524	cld
525
526	/* paranoid_entry returns GS information for paranoid_exit in EBX. */
527	call	paranoid_entry
528	UNWIND_HINT_REGS
529
530	movq	%rsp, %rdi		/* pt_regs pointer into first argument */
531	movq	ORIG_RAX(%rsp), %rsi	/* get error code into 2nd argument*/
532	movq	$-1, ORIG_RAX(%rsp)	/* no syscall to restart */
533
534	/* For some configurations \cfunc ends up being a noreturn. */
535	ANNOTATE_REACHABLE
536	call	\cfunc
537
538	jmp	paranoid_exit
539
540_ASM_NOKPROBE(\asmsym)
541SYM_CODE_END(\asmsym)
542.endm
543
544/*
545 * Include the defines which emit the idt entries which are shared
546 * shared between 32 and 64 bit and emit the __irqentry_text_* markers
547 * so the stacktrace boundary checks work.
548 */
549	__ALIGN
550	.globl __irqentry_text_start
551__irqentry_text_start:
552
553#include <asm/idtentry.h>
554
555	__ALIGN
556	.globl __irqentry_text_end
557__irqentry_text_end:
558	ANNOTATE_NOENDBR
559
560SYM_CODE_START_LOCAL(common_interrupt_return)
561SYM_INNER_LABEL(swapgs_restore_regs_and_return_to_usermode, SYM_L_GLOBAL)
562	IBRS_EXIT
563#ifdef CONFIG_XEN_PV
564	ALTERNATIVE "", "jmp xenpv_restore_regs_and_return_to_usermode", X86_FEATURE_XENPV
565#endif
566#ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION
567	ALTERNATIVE "", "jmp .Lpti_restore_regs_and_return_to_usermode", X86_FEATURE_PTI
568#endif
569
570	STACKLEAK_ERASE
571	POP_REGS
572	add	$8, %rsp	/* orig_ax */
573	UNWIND_HINT_IRET_REGS
574
575.Lswapgs_and_iret:
576	swapgs
577	CLEAR_CPU_BUFFERS
578	/* Assert that the IRET frame indicates user mode. */
579	testb	$3, 8(%rsp)
580	jnz	.Lnative_iret
581	ud2
582
583#ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION
584.Lpti_restore_regs_and_return_to_usermode:
585	POP_REGS pop_rdi=0
586
587	/*
588	 * The stack is now user RDI, orig_ax, RIP, CS, EFLAGS, RSP, SS.
589	 * Save old stack pointer and switch to trampoline stack.
590	 */
591	movq	%rsp, %rdi
592	movq	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
593	UNWIND_HINT_END_OF_STACK
594
595	/* Copy the IRET frame to the trampoline stack. */
596	pushq	6*8(%rdi)	/* SS */
597	pushq	5*8(%rdi)	/* RSP */
598	pushq	4*8(%rdi)	/* EFLAGS */
599	pushq	3*8(%rdi)	/* CS */
600	pushq	2*8(%rdi)	/* RIP */
601
602	/* Push user RDI on the trampoline stack. */
603	pushq	(%rdi)
604
605	/*
606	 * We are on the trampoline stack.  All regs except RDI are live.
607	 * We can do future final exit work right here.
608	 */
609	STACKLEAK_ERASE_NOCLOBBER
610
611	push	%rax
612	SWITCH_TO_USER_CR3 scratch_reg=%rdi scratch_reg2=%rax
613	pop	%rax
614
615	/* Restore RDI. */
616	popq	%rdi
617	jmp	.Lswapgs_and_iret
618#endif
619
620SYM_INNER_LABEL(restore_regs_and_return_to_kernel, SYM_L_GLOBAL)
621#ifdef CONFIG_DEBUG_ENTRY
622	/* Assert that pt_regs indicates kernel mode. */
623	testb	$3, CS(%rsp)
624	jz	1f
625	ud2
6261:
627#endif
628	POP_REGS
629	addq	$8, %rsp	/* skip regs->orig_ax */
630	/*
631	 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization
632	 * when returning from IPI handler.
633	 */
634#ifdef CONFIG_XEN_PV
635SYM_INNER_LABEL(early_xen_iret_patch, SYM_L_GLOBAL)
636	ANNOTATE_NOENDBR
637	.byte 0xe9
638	.long .Lnative_iret - (. + 4)
639#endif
640
641.Lnative_iret:
642	UNWIND_HINT_IRET_REGS
643	/*
644	 * Are we returning to a stack segment from the LDT?  Note: in
645	 * 64-bit mode SS:RSP on the exception stack is always valid.
646	 */
647#ifdef CONFIG_X86_ESPFIX64
648	testb	$4, (SS-RIP)(%rsp)
649	jnz	native_irq_return_ldt
650#endif
651
652SYM_INNER_LABEL(native_irq_return_iret, SYM_L_GLOBAL)
653	ANNOTATE_NOENDBR // exc_double_fault
654	/*
655	 * This may fault.  Non-paranoid faults on return to userspace are
656	 * handled by fixup_bad_iret.  These include #SS, #GP, and #NP.
657	 * Double-faults due to espfix64 are handled in exc_double_fault.
658	 * Other faults here are fatal.
659	 */
660	iretq
661
662#ifdef CONFIG_X86_ESPFIX64
663native_irq_return_ldt:
664	/*
665	 * We are running with user GSBASE.  All GPRs contain their user
666	 * values.  We have a percpu ESPFIX stack that is eight slots
667	 * long (see ESPFIX_STACK_SIZE).  espfix_waddr points to the bottom
668	 * of the ESPFIX stack.
669	 *
670	 * We clobber RAX and RDI in this code.  We stash RDI on the
671	 * normal stack and RAX on the ESPFIX stack.
672	 *
673	 * The ESPFIX stack layout we set up looks like this:
674	 *
675	 * --- top of ESPFIX stack ---
676	 * SS
677	 * RSP
678	 * RFLAGS
679	 * CS
680	 * RIP  <-- RSP points here when we're done
681	 * RAX  <-- espfix_waddr points here
682	 * --- bottom of ESPFIX stack ---
683	 */
684
685	pushq	%rdi				/* Stash user RDI */
686	swapgs					/* to kernel GS */
687	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi	/* to kernel CR3 */
688
689	movq	PER_CPU_VAR(espfix_waddr), %rdi
690	movq	%rax, (0*8)(%rdi)		/* user RAX */
691	movq	(1*8)(%rsp), %rax		/* user RIP */
692	movq	%rax, (1*8)(%rdi)
693	movq	(2*8)(%rsp), %rax		/* user CS */
694	movq	%rax, (2*8)(%rdi)
695	movq	(3*8)(%rsp), %rax		/* user RFLAGS */
696	movq	%rax, (3*8)(%rdi)
697	movq	(5*8)(%rsp), %rax		/* user SS */
698	movq	%rax, (5*8)(%rdi)
699	movq	(4*8)(%rsp), %rax		/* user RSP */
700	movq	%rax, (4*8)(%rdi)
701	/* Now RAX == RSP. */
702
703	andl	$0xffff0000, %eax		/* RAX = (RSP & 0xffff0000) */
704
705	/*
706	 * espfix_stack[31:16] == 0.  The page tables are set up such that
707	 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
708	 * espfix_waddr for any X.  That is, there are 65536 RO aliases of
709	 * the same page.  Set up RSP so that RSP[31:16] contains the
710	 * respective 16 bits of the /userspace/ RSP and RSP nonetheless
711	 * still points to an RO alias of the ESPFIX stack.
712	 */
713	orq	PER_CPU_VAR(espfix_stack), %rax
714
715	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
716	swapgs					/* to user GS */
717	popq	%rdi				/* Restore user RDI */
718
719	movq	%rax, %rsp
720	UNWIND_HINT_IRET_REGS offset=8
721
722	/*
723	 * At this point, we cannot write to the stack any more, but we can
724	 * still read.
725	 */
726	popq	%rax				/* Restore user RAX */
727
728	CLEAR_CPU_BUFFERS
729
730	/*
731	 * RSP now points to an ordinary IRET frame, except that the page
732	 * is read-only and RSP[31:16] are preloaded with the userspace
733	 * values.  We can now IRET back to userspace.
734	 */
735	jmp	native_irq_return_iret
736#endif
737SYM_CODE_END(common_interrupt_return)
738_ASM_NOKPROBE(common_interrupt_return)
739
740/*
741 * Reload gs selector with exception handling
742 *  di:  new selector
743 *
744 * Is in entry.text as it shouldn't be instrumented.
745 */
746SYM_FUNC_START(asm_load_gs_index)
747	ANNOTATE_NOENDBR
748	FRAME_BEGIN
749	swapgs
750.Lgs_change:
751	ANNOTATE_NOENDBR // error_entry
752	movl	%edi, %gs
7532:	ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
754	swapgs
755	FRAME_END
756	RET
757
758	/* running with kernelgs */
759.Lbad_gs:
760	swapgs					/* switch back to user gs */
761.macro ZAP_GS
762	/* This can't be a string because the preprocessor needs to see it. */
763	movl $__USER_DS, %eax
764	movl %eax, %gs
765.endm
766	ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
767	xorl	%eax, %eax
768	movl	%eax, %gs
769	jmp	2b
770
771	_ASM_EXTABLE(.Lgs_change, .Lbad_gs)
772
773SYM_FUNC_END(asm_load_gs_index)
774EXPORT_SYMBOL(asm_load_gs_index)
775
776#ifdef CONFIG_XEN_PV
777/*
778 * A note on the "critical region" in our callback handler.
779 * We want to avoid stacking callback handlers due to events occurring
780 * during handling of the last event. To do this, we keep events disabled
781 * until we've done all processing. HOWEVER, we must enable events before
782 * popping the stack frame (can't be done atomically) and so it would still
783 * be possible to get enough handler activations to overflow the stack.
784 * Although unlikely, bugs of that kind are hard to track down, so we'd
785 * like to avoid the possibility.
786 * So, on entry to the handler we detect whether we interrupted an
787 * existing activation in its critical region -- if so, we pop the current
788 * activation and restart the handler using the previous one.
789 *
790 * C calling convention: exc_xen_hypervisor_callback(struct *pt_regs)
791 */
792	__FUNC_ALIGN
793SYM_CODE_START_LOCAL_NOALIGN(exc_xen_hypervisor_callback)
794
795/*
796 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
797 * see the correct pointer to the pt_regs
798 */
799	UNWIND_HINT_FUNC
800	movq	%rdi, %rsp			/* we don't return, adjust the stack frame */
801	UNWIND_HINT_REGS
802
803	call	xen_pv_evtchn_do_upcall
804
805	jmp	error_return
806SYM_CODE_END(exc_xen_hypervisor_callback)
807
808/*
809 * Hypervisor uses this for application faults while it executes.
810 * We get here for two reasons:
811 *  1. Fault while reloading DS, ES, FS or GS
812 *  2. Fault while executing IRET
813 * Category 1 we do not need to fix up as Xen has already reloaded all segment
814 * registers that could be reloaded and zeroed the others.
815 * Category 2 we fix up by killing the current process. We cannot use the
816 * normal Linux return path in this case because if we use the IRET hypercall
817 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
818 * We distinguish between categories by comparing each saved segment register
819 * with its current contents: any discrepancy means we in category 1.
820 */
821	__FUNC_ALIGN
822SYM_CODE_START_NOALIGN(xen_failsafe_callback)
823	UNWIND_HINT_UNDEFINED
824	ENDBR
825	movl	%ds, %ecx
826	cmpw	%cx, 0x10(%rsp)
827	jne	1f
828	movl	%es, %ecx
829	cmpw	%cx, 0x18(%rsp)
830	jne	1f
831	movl	%fs, %ecx
832	cmpw	%cx, 0x20(%rsp)
833	jne	1f
834	movl	%gs, %ecx
835	cmpw	%cx, 0x28(%rsp)
836	jne	1f
837	/* All segments match their saved values => Category 2 (Bad IRET). */
838	movq	(%rsp), %rcx
839	movq	8(%rsp), %r11
840	addq	$0x30, %rsp
841	pushq	$0				/* RIP */
842	UNWIND_HINT_IRET_REGS offset=8
843	jmp	asm_exc_general_protection
8441:	/* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
845	movq	(%rsp), %rcx
846	movq	8(%rsp), %r11
847	addq	$0x30, %rsp
848	UNWIND_HINT_IRET_REGS
849	pushq	$-1 /* orig_ax = -1 => not a system call */
850	PUSH_AND_CLEAR_REGS
851	ENCODE_FRAME_POINTER
852	jmp	error_return
853SYM_CODE_END(xen_failsafe_callback)
854#endif /* CONFIG_XEN_PV */
855
856/*
857 * Save all registers in pt_regs. Return GSBASE related information
858 * in EBX depending on the availability of the FSGSBASE instructions:
859 *
860 * FSGSBASE	R/EBX
861 *     N        0 -> SWAPGS on exit
862 *              1 -> no SWAPGS on exit
863 *
864 *     Y        GSBASE value at entry, must be restored in paranoid_exit
865 *
866 * R14 - old CR3
867 * R15 - old SPEC_CTRL
868 */
869SYM_CODE_START(paranoid_entry)
870	ANNOTATE_NOENDBR
871	UNWIND_HINT_FUNC
872	PUSH_AND_CLEAR_REGS save_ret=1
873	ENCODE_FRAME_POINTER 8
874
875	/*
876	 * Always stash CR3 in %r14.  This value will be restored,
877	 * verbatim, at exit.  Needed if paranoid_entry interrupted
878	 * another entry that already switched to the user CR3 value
879	 * but has not yet returned to userspace.
880	 *
881	 * This is also why CS (stashed in the "iret frame" by the
882	 * hardware at entry) can not be used: this may be a return
883	 * to kernel code, but with a user CR3 value.
884	 *
885	 * Switching CR3 does not depend on kernel GSBASE so it can
886	 * be done before switching to the kernel GSBASE. This is
887	 * required for FSGSBASE because the kernel GSBASE has to
888	 * be retrieved from a kernel internal table.
889	 */
890	SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg=%rax save_reg=%r14
891
892	/*
893	 * Handling GSBASE depends on the availability of FSGSBASE.
894	 *
895	 * Without FSGSBASE the kernel enforces that negative GSBASE
896	 * values indicate kernel GSBASE. With FSGSBASE no assumptions
897	 * can be made about the GSBASE value when entering from user
898	 * space.
899	 */
900	ALTERNATIVE "jmp .Lparanoid_entry_checkgs", "", X86_FEATURE_FSGSBASE
901
902	/*
903	 * Read the current GSBASE and store it in %rbx unconditionally,
904	 * retrieve and set the current CPUs kernel GSBASE. The stored value
905	 * has to be restored in paranoid_exit unconditionally.
906	 *
907	 * The unconditional write to GS base below ensures that no subsequent
908	 * loads based on a mispredicted GS base can happen, therefore no LFENCE
909	 * is needed here.
910	 */
911	SAVE_AND_SET_GSBASE scratch_reg=%rax save_reg=%rbx
912	jmp .Lparanoid_gsbase_done
913
914.Lparanoid_entry_checkgs:
915	/* EBX = 1 -> kernel GSBASE active, no restore required */
916	movl	$1, %ebx
917
918	/*
919	 * The kernel-enforced convention is a negative GSBASE indicates
920	 * a kernel value. No SWAPGS needed on entry and exit.
921	 */
922	movl	$MSR_GS_BASE, %ecx
923	rdmsr
924	testl	%edx, %edx
925	js	.Lparanoid_kernel_gsbase
926
927	/* EBX = 0 -> SWAPGS required on exit */
928	xorl	%ebx, %ebx
929	swapgs
930.Lparanoid_kernel_gsbase:
931	FENCE_SWAPGS_KERNEL_ENTRY
932.Lparanoid_gsbase_done:
933
934	/*
935	 * Once we have CR3 and %GS setup save and set SPEC_CTRL. Just like
936	 * CR3 above, keep the old value in a callee saved register.
937	 */
938	IBRS_ENTER save_reg=%r15
939	UNTRAIN_RET_FROM_CALL
940
941	RET
942SYM_CODE_END(paranoid_entry)
943
944/*
945 * "Paranoid" exit path from exception stack.  This is invoked
946 * only on return from non-NMI IST interrupts that came
947 * from kernel space.
948 *
949 * We may be returning to very strange contexts (e.g. very early
950 * in syscall entry), so checking for preemption here would
951 * be complicated.  Fortunately, there's no good reason to try
952 * to handle preemption here.
953 *
954 * R/EBX contains the GSBASE related information depending on the
955 * availability of the FSGSBASE instructions:
956 *
957 * FSGSBASE	R/EBX
958 *     N        0 -> SWAPGS on exit
959 *              1 -> no SWAPGS on exit
960 *
961 *     Y        User space GSBASE, must be restored unconditionally
962 *
963 * R14 - old CR3
964 * R15 - old SPEC_CTRL
965 */
966SYM_CODE_START_LOCAL(paranoid_exit)
967	UNWIND_HINT_REGS
968
969	/*
970	 * Must restore IBRS state before both CR3 and %GS since we need access
971	 * to the per-CPU x86_spec_ctrl_shadow variable.
972	 */
973	IBRS_EXIT save_reg=%r15
974
975	/*
976	 * The order of operations is important. PARANOID_RESTORE_CR3 requires
977	 * kernel GSBASE.
978	 *
979	 * NB to anyone to try to optimize this code: this code does
980	 * not execute at all for exceptions from user mode. Those
981	 * exceptions go through error_return instead.
982	 */
983	PARANOID_RESTORE_CR3 scratch_reg=%rax save_reg=%r14
984
985	/* Handle the three GSBASE cases */
986	ALTERNATIVE "jmp .Lparanoid_exit_checkgs", "", X86_FEATURE_FSGSBASE
987
988	/* With FSGSBASE enabled, unconditionally restore GSBASE */
989	wrgsbase	%rbx
990	jmp		restore_regs_and_return_to_kernel
991
992.Lparanoid_exit_checkgs:
993	/* On non-FSGSBASE systems, conditionally do SWAPGS */
994	testl		%ebx, %ebx
995	jnz		restore_regs_and_return_to_kernel
996
997	/* We are returning to a context with user GSBASE */
998	swapgs
999	jmp		restore_regs_and_return_to_kernel
1000SYM_CODE_END(paranoid_exit)
1001
1002/*
1003 * Switch GS and CR3 if needed.
1004 */
1005SYM_CODE_START(error_entry)
1006	ANNOTATE_NOENDBR
1007	UNWIND_HINT_FUNC
1008
1009	PUSH_AND_CLEAR_REGS save_ret=1
1010	ENCODE_FRAME_POINTER 8
1011
1012	testb	$3, CS+8(%rsp)
1013	jz	.Lerror_kernelspace
1014
1015	/*
1016	 * We entered from user mode or we're pretending to have entered
1017	 * from user mode due to an IRET fault.
1018	 */
1019	swapgs
1020	FENCE_SWAPGS_USER_ENTRY
1021	/* We have user CR3.  Change to kernel CR3. */
1022	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1023	IBRS_ENTER
1024	UNTRAIN_RET_FROM_CALL
1025
1026	leaq	8(%rsp), %rdi			/* arg0 = pt_regs pointer */
1027	/* Put us onto the real thread stack. */
1028	jmp	sync_regs
1029
1030	/*
1031	 * There are two places in the kernel that can potentially fault with
1032	 * usergs. Handle them here.  B stepping K8s sometimes report a
1033	 * truncated RIP for IRET exceptions returning to compat mode. Check
1034	 * for these here too.
1035	 */
1036.Lerror_kernelspace:
1037	leaq	native_irq_return_iret(%rip), %rcx
1038	cmpq	%rcx, RIP+8(%rsp)
1039	je	.Lerror_bad_iret
1040	movl	%ecx, %eax			/* zero extend */
1041	cmpq	%rax, RIP+8(%rsp)
1042	je	.Lbstep_iret
1043	cmpq	$.Lgs_change, RIP+8(%rsp)
1044	jne	.Lerror_entry_done_lfence
1045
1046	/*
1047	 * hack: .Lgs_change can fail with user gsbase.  If this happens, fix up
1048	 * gsbase and proceed.  We'll fix up the exception and land in
1049	 * .Lgs_change's error handler with kernel gsbase.
1050	 */
1051	swapgs
1052
1053	/*
1054	 * Issue an LFENCE to prevent GS speculation, regardless of whether it is a
1055	 * kernel or user gsbase.
1056	 */
1057.Lerror_entry_done_lfence:
1058	FENCE_SWAPGS_KERNEL_ENTRY
1059	CALL_DEPTH_ACCOUNT
1060	leaq	8(%rsp), %rax			/* return pt_regs pointer */
1061	VALIDATE_UNRET_END
1062	RET
1063
1064.Lbstep_iret:
1065	/* Fix truncated RIP */
1066	movq	%rcx, RIP+8(%rsp)
1067	/* fall through */
1068
1069.Lerror_bad_iret:
1070	/*
1071	 * We came from an IRET to user mode, so we have user
1072	 * gsbase and CR3.  Switch to kernel gsbase and CR3:
1073	 */
1074	swapgs
1075	FENCE_SWAPGS_USER_ENTRY
1076	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1077	IBRS_ENTER
1078	UNTRAIN_RET_FROM_CALL
1079
1080	/*
1081	 * Pretend that the exception came from user mode: set up pt_regs
1082	 * as if we faulted immediately after IRET.
1083	 */
1084	leaq	8(%rsp), %rdi			/* arg0 = pt_regs pointer */
1085	call	fixup_bad_iret
1086	mov	%rax, %rdi
1087	jmp	sync_regs
1088SYM_CODE_END(error_entry)
1089
1090SYM_CODE_START_LOCAL(error_return)
1091	UNWIND_HINT_REGS
1092	DEBUG_ENTRY_ASSERT_IRQS_OFF
1093	testb	$3, CS(%rsp)
1094	jz	restore_regs_and_return_to_kernel
1095	jmp	swapgs_restore_regs_and_return_to_usermode
1096SYM_CODE_END(error_return)
1097
1098/*
1099 * Runs on exception stack.  Xen PV does not go through this path at all,
1100 * so we can use real assembly here.
1101 *
1102 * Registers:
1103 *	%r14: Used to save/restore the CR3 of the interrupted context
1104 *	      when MITIGATION_PAGE_TABLE_ISOLATION is in use.  Do not clobber.
1105 */
1106SYM_CODE_START(asm_exc_nmi)
1107	UNWIND_HINT_IRET_ENTRY
1108	ENDBR
1109
1110	/*
1111	 * We allow breakpoints in NMIs. If a breakpoint occurs, then
1112	 * the iretq it performs will take us out of NMI context.
1113	 * This means that we can have nested NMIs where the next
1114	 * NMI is using the top of the stack of the previous NMI. We
1115	 * can't let it execute because the nested NMI will corrupt the
1116	 * stack of the previous NMI. NMI handlers are not re-entrant
1117	 * anyway.
1118	 *
1119	 * To handle this case we do the following:
1120	 *  Check a special location on the stack that contains a
1121	 *  variable that is set when NMIs are executing.
1122	 *  The interrupted task's stack is also checked to see if it
1123	 *  is an NMI stack.
1124	 *  If the variable is not set and the stack is not the NMI
1125	 *  stack then:
1126	 *    o Set the special variable on the stack
1127	 *    o Copy the interrupt frame into an "outermost" location on the
1128	 *      stack
1129	 *    o Copy the interrupt frame into an "iret" location on the stack
1130	 *    o Continue processing the NMI
1131	 *  If the variable is set or the previous stack is the NMI stack:
1132	 *    o Modify the "iret" location to jump to the repeat_nmi
1133	 *    o return back to the first NMI
1134	 *
1135	 * Now on exit of the first NMI, we first clear the stack variable
1136	 * The NMI stack will tell any nested NMIs at that point that it is
1137	 * nested. Then we pop the stack normally with iret, and if there was
1138	 * a nested NMI that updated the copy interrupt stack frame, a
1139	 * jump will be made to the repeat_nmi code that will handle the second
1140	 * NMI.
1141	 *
1142	 * However, espfix prevents us from directly returning to userspace
1143	 * with a single IRET instruction.  Similarly, IRET to user mode
1144	 * can fault.  We therefore handle NMIs from user space like
1145	 * other IST entries.
1146	 */
1147
1148	ASM_CLAC
1149	cld
1150
1151	/* Use %rdx as our temp variable throughout */
1152	pushq	%rdx
1153
1154	testb	$3, CS-RIP+8(%rsp)
1155	jz	.Lnmi_from_kernel
1156
1157	/*
1158	 * NMI from user mode.  We need to run on the thread stack, but we
1159	 * can't go through the normal entry paths: NMIs are masked, and
1160	 * we don't want to enable interrupts, because then we'll end
1161	 * up in an awkward situation in which IRQs are on but NMIs
1162	 * are off.
1163	 *
1164	 * We also must not push anything to the stack before switching
1165	 * stacks lest we corrupt the "NMI executing" variable.
1166	 */
1167
1168	swapgs
1169	FENCE_SWAPGS_USER_ENTRY
1170	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdx
1171	movq	%rsp, %rdx
1172	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
1173	UNWIND_HINT_IRET_REGS base=%rdx offset=8
1174	pushq	5*8(%rdx)	/* pt_regs->ss */
1175	pushq	4*8(%rdx)	/* pt_regs->rsp */
1176	pushq	3*8(%rdx)	/* pt_regs->flags */
1177	pushq	2*8(%rdx)	/* pt_regs->cs */
1178	pushq	1*8(%rdx)	/* pt_regs->rip */
1179	UNWIND_HINT_IRET_REGS
1180	pushq   $-1		/* pt_regs->orig_ax */
1181	PUSH_AND_CLEAR_REGS rdx=(%rdx)
1182	ENCODE_FRAME_POINTER
1183
1184	IBRS_ENTER
1185	UNTRAIN_RET
1186
1187	/*
1188	 * At this point we no longer need to worry about stack damage
1189	 * due to nesting -- we're on the normal thread stack and we're
1190	 * done with the NMI stack.
1191	 */
1192
1193	movq	%rsp, %rdi
1194	call	exc_nmi
1195
1196	/*
1197	 * Return back to user mode.  We must *not* do the normal exit
1198	 * work, because we don't want to enable interrupts.
1199	 */
1200	jmp	swapgs_restore_regs_and_return_to_usermode
1201
1202.Lnmi_from_kernel:
1203	/*
1204	 * Here's what our stack frame will look like:
1205	 * +---------------------------------------------------------+
1206	 * | original SS                                             |
1207	 * | original Return RSP                                     |
1208	 * | original RFLAGS                                         |
1209	 * | original CS                                             |
1210	 * | original RIP                                            |
1211	 * +---------------------------------------------------------+
1212	 * | temp storage for rdx                                    |
1213	 * +---------------------------------------------------------+
1214	 * | "NMI executing" variable                                |
1215	 * +---------------------------------------------------------+
1216	 * | iret SS          } Copied from "outermost" frame        |
1217	 * | iret Return RSP  } on each loop iteration; overwritten  |
1218	 * | iret RFLAGS      } by a nested NMI to force another     |
1219	 * | iret CS          } iteration if needed.                 |
1220	 * | iret RIP         }                                      |
1221	 * +---------------------------------------------------------+
1222	 * | outermost SS          } initialized in first_nmi;       |
1223	 * | outermost Return RSP  } will not be changed before      |
1224	 * | outermost RFLAGS      } NMI processing is done.         |
1225	 * | outermost CS          } Copied to "iret" frame on each  |
1226	 * | outermost RIP         } iteration.                      |
1227	 * +---------------------------------------------------------+
1228	 * | pt_regs                                                 |
1229	 * +---------------------------------------------------------+
1230	 *
1231	 * The "original" frame is used by hardware.  Before re-enabling
1232	 * NMIs, we need to be done with it, and we need to leave enough
1233	 * space for the asm code here.
1234	 *
1235	 * We return by executing IRET while RSP points to the "iret" frame.
1236	 * That will either return for real or it will loop back into NMI
1237	 * processing.
1238	 *
1239	 * The "outermost" frame is copied to the "iret" frame on each
1240	 * iteration of the loop, so each iteration starts with the "iret"
1241	 * frame pointing to the final return target.
1242	 */
1243
1244	/*
1245	 * Determine whether we're a nested NMI.
1246	 *
1247	 * If we interrupted kernel code between repeat_nmi and
1248	 * end_repeat_nmi, then we are a nested NMI.  We must not
1249	 * modify the "iret" frame because it's being written by
1250	 * the outer NMI.  That's okay; the outer NMI handler is
1251	 * about to call exc_nmi() anyway, so we can just resume
1252	 * the outer NMI.
1253	 */
1254
1255	movq	$repeat_nmi, %rdx
1256	cmpq	8(%rsp), %rdx
1257	ja	1f
1258	movq	$end_repeat_nmi, %rdx
1259	cmpq	8(%rsp), %rdx
1260	ja	nested_nmi_out
12611:
1262
1263	/*
1264	 * Now check "NMI executing".  If it's set, then we're nested.
1265	 * This will not detect if we interrupted an outer NMI just
1266	 * before IRET.
1267	 */
1268	cmpl	$1, -8(%rsp)
1269	je	nested_nmi
1270
1271	/*
1272	 * Now test if the previous stack was an NMI stack.  This covers
1273	 * the case where we interrupt an outer NMI after it clears
1274	 * "NMI executing" but before IRET.  We need to be careful, though:
1275	 * there is one case in which RSP could point to the NMI stack
1276	 * despite there being no NMI active: naughty userspace controls
1277	 * RSP at the very beginning of the SYSCALL targets.  We can
1278	 * pull a fast one on naughty userspace, though: we program
1279	 * SYSCALL to mask DF, so userspace cannot cause DF to be set
1280	 * if it controls the kernel's RSP.  We set DF before we clear
1281	 * "NMI executing".
1282	 */
1283	lea	6*8(%rsp), %rdx
1284	/* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
1285	cmpq	%rdx, 4*8(%rsp)
1286	/* If the stack pointer is above the NMI stack, this is a normal NMI */
1287	ja	first_nmi
1288
1289	subq	$EXCEPTION_STKSZ, %rdx
1290	cmpq	%rdx, 4*8(%rsp)
1291	/* If it is below the NMI stack, it is a normal NMI */
1292	jb	first_nmi
1293
1294	/* Ah, it is within the NMI stack. */
1295
1296	testb	$(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
1297	jz	first_nmi	/* RSP was user controlled. */
1298
1299	/* This is a nested NMI. */
1300
1301nested_nmi:
1302	/*
1303	 * Modify the "iret" frame to point to repeat_nmi, forcing another
1304	 * iteration of NMI handling.
1305	 */
1306	subq	$8, %rsp
1307	leaq	-10*8(%rsp), %rdx
1308	pushq	$__KERNEL_DS
1309	pushq	%rdx
1310	pushfq
1311	pushq	$__KERNEL_CS
1312	pushq	$repeat_nmi
1313
1314	/* Put stack back */
1315	addq	$(6*8), %rsp
1316
1317nested_nmi_out:
1318	popq	%rdx
1319
1320	/* We are returning to kernel mode, so this cannot result in a fault. */
1321	iretq
1322
1323first_nmi:
1324	/* Restore rdx. */
1325	movq	(%rsp), %rdx
1326
1327	/* Make room for "NMI executing". */
1328	pushq	$0
1329
1330	/* Leave room for the "iret" frame */
1331	subq	$(5*8), %rsp
1332
1333	/* Copy the "original" frame to the "outermost" frame */
1334	.rept 5
1335	pushq	11*8(%rsp)
1336	.endr
1337	UNWIND_HINT_IRET_REGS
1338
1339	/* Everything up to here is safe from nested NMIs */
1340
1341#ifdef CONFIG_DEBUG_ENTRY
1342	/*
1343	 * For ease of testing, unmask NMIs right away.  Disabled by
1344	 * default because IRET is very expensive.
1345	 */
1346	pushq	$0		/* SS */
1347	pushq	%rsp		/* RSP (minus 8 because of the previous push) */
1348	addq	$8, (%rsp)	/* Fix up RSP */
1349	pushfq			/* RFLAGS */
1350	pushq	$__KERNEL_CS	/* CS */
1351	pushq	$1f		/* RIP */
1352	iretq			/* continues at repeat_nmi below */
1353	UNWIND_HINT_IRET_REGS
13541:
1355#endif
1356
1357repeat_nmi:
1358	ANNOTATE_NOENDBR // this code
1359	/*
1360	 * If there was a nested NMI, the first NMI's iret will return
1361	 * here. But NMIs are still enabled and we can take another
1362	 * nested NMI. The nested NMI checks the interrupted RIP to see
1363	 * if it is between repeat_nmi and end_repeat_nmi, and if so
1364	 * it will just return, as we are about to repeat an NMI anyway.
1365	 * This makes it safe to copy to the stack frame that a nested
1366	 * NMI will update.
1367	 *
1368	 * RSP is pointing to "outermost RIP".  gsbase is unknown, but, if
1369	 * we're repeating an NMI, gsbase has the same value that it had on
1370	 * the first iteration.  paranoid_entry will load the kernel
1371	 * gsbase if needed before we call exc_nmi().  "NMI executing"
1372	 * is zero.
1373	 */
1374	movq	$1, 10*8(%rsp)		/* Set "NMI executing". */
1375
1376	/*
1377	 * Copy the "outermost" frame to the "iret" frame.  NMIs that nest
1378	 * here must not modify the "iret" frame while we're writing to
1379	 * it or it will end up containing garbage.
1380	 */
1381	addq	$(10*8), %rsp
1382	.rept 5
1383	pushq	-6*8(%rsp)
1384	.endr
1385	subq	$(5*8), %rsp
1386end_repeat_nmi:
1387	ANNOTATE_NOENDBR // this code
1388
1389	/*
1390	 * Everything below this point can be preempted by a nested NMI.
1391	 * If this happens, then the inner NMI will change the "iret"
1392	 * frame to point back to repeat_nmi.
1393	 */
1394	pushq	$-1				/* ORIG_RAX: no syscall to restart */
1395
1396	/*
1397	 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1398	 * as we should not be calling schedule in NMI context.
1399	 * Even with normal interrupts enabled. An NMI should not be
1400	 * setting NEED_RESCHED or anything that normal interrupts and
1401	 * exceptions might do.
1402	 */
1403	call	paranoid_entry
1404	UNWIND_HINT_REGS
1405
1406	movq	%rsp, %rdi
1407	call	exc_nmi
1408
1409	/* Always restore stashed SPEC_CTRL value (see paranoid_entry) */
1410	IBRS_EXIT save_reg=%r15
1411
1412	PARANOID_RESTORE_CR3 scratch_reg=%r15 save_reg=%r14
1413
1414	/*
1415	 * The above invocation of paranoid_entry stored the GSBASE
1416	 * related information in R/EBX depending on the availability
1417	 * of FSGSBASE.
1418	 *
1419	 * If FSGSBASE is enabled, restore the saved GSBASE value
1420	 * unconditionally, otherwise take the conditional SWAPGS path.
1421	 */
1422	ALTERNATIVE "jmp nmi_no_fsgsbase", "", X86_FEATURE_FSGSBASE
1423
1424	wrgsbase	%rbx
1425	jmp	nmi_restore
1426
1427nmi_no_fsgsbase:
1428	/* EBX == 0 -> invoke SWAPGS */
1429	testl	%ebx, %ebx
1430	jnz	nmi_restore
1431
1432nmi_swapgs:
1433	swapgs
1434
1435nmi_restore:
1436	POP_REGS
1437
1438	/*
1439	 * Skip orig_ax and the "outermost" frame to point RSP at the "iret"
1440	 * at the "iret" frame.
1441	 */
1442	addq	$6*8, %rsp
1443
1444	/*
1445	 * Clear "NMI executing".  Set DF first so that we can easily
1446	 * distinguish the remaining code between here and IRET from
1447	 * the SYSCALL entry and exit paths.
1448	 *
1449	 * We arguably should just inspect RIP instead, but I (Andy) wrote
1450	 * this code when I had the misapprehension that Xen PV supported
1451	 * NMIs, and Xen PV would break that approach.
1452	 */
1453	std
1454	movq	$0, 5*8(%rsp)		/* clear "NMI executing" */
1455
1456	/*
1457	 * Skip CLEAR_CPU_BUFFERS here, since it only helps in rare cases like
1458	 * NMI in kernel after user state is restored. For an unprivileged user
1459	 * these conditions are hard to meet.
1460	 */
1461
1462	/*
1463	 * iretq reads the "iret" frame and exits the NMI stack in a
1464	 * single instruction.  We are returning to kernel mode, so this
1465	 * cannot result in a fault.  Similarly, we don't need to worry
1466	 * about espfix64 on the way back to kernel mode.
1467	 */
1468	iretq
1469SYM_CODE_END(asm_exc_nmi)
1470
1471/*
1472 * This handles SYSCALL from 32-bit code.  There is no way to program
1473 * MSRs to fully disable 32-bit SYSCALL.
1474 */
1475SYM_CODE_START(entry_SYSCALL32_ignore)
1476	UNWIND_HINT_END_OF_STACK
1477	ENDBR
1478	mov	$-ENOSYS, %eax
1479	CLEAR_CPU_BUFFERS
1480	sysretl
1481SYM_CODE_END(entry_SYSCALL32_ignore)
1482
1483.pushsection .text, "ax"
1484	__FUNC_ALIGN
1485SYM_CODE_START_NOALIGN(rewind_stack_and_make_dead)
1486	UNWIND_HINT_FUNC
1487	/* Prevent any naive code from trying to unwind to our caller. */
1488	xorl	%ebp, %ebp
1489
1490	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rax
1491	leaq	-PTREGS_SIZE(%rax), %rsp
1492	UNWIND_HINT_REGS
1493
1494	call	make_task_dead
1495SYM_CODE_END(rewind_stack_and_make_dead)
1496.popsection
1497
1498/*
1499 * This sequence executes branches in order to remove user branch information
1500 * from the branch history tracker in the Branch Predictor, therefore removing
1501 * user influence on subsequent BTB lookups.
1502 *
1503 * It should be used on parts prior to Alder Lake. Newer parts should use the
1504 * BHI_DIS_S hardware control instead. If a pre-Alder Lake part is being
1505 * virtualized on newer hardware the VMM should protect against BHI attacks by
1506 * setting BHI_DIS_S for the guests.
1507 *
1508 * CALLs/RETs are necessary to prevent Loop Stream Detector(LSD) from engaging
1509 * and not clearing the branch history. The call tree looks like:
1510 *
1511 * call 1
1512 *    call 2
1513 *      call 2
1514 *        call 2
1515 *          call 2
1516 * 	      call 2
1517 * 	      ret
1518 * 	    ret
1519 *        ret
1520 *      ret
1521 *    ret
1522 * ret
1523 *
1524 * This means that the stack is non-constant and ORC can't unwind it with %rsp
1525 * alone.  Therefore we unconditionally set up the frame pointer, which allows
1526 * ORC to unwind properly.
1527 *
1528 * The alignment is for performance and not for safety, and may be safely
1529 * refactored in the future if needed. The .skips are for safety, to ensure
1530 * that all RETs are in the second half of a cacheline to mitigate Indirect
1531 * Target Selection, rather than taking the slowpath via its_return_thunk.
1532 */
1533SYM_FUNC_START(clear_bhb_loop)
1534	ANNOTATE_NOENDBR
1535	push	%rbp
1536	mov	%rsp, %rbp
1537	movl	$5, %ecx
1538	ANNOTATE_INTRA_FUNCTION_CALL
1539	call	1f
1540	jmp	5f
1541	.align 64, 0xcc
1542	/*
1543	 * Shift instructions so that the RET is in the upper half of the
1544	 * cacheline and don't take the slowpath to its_return_thunk.
1545	 */
1546	.skip 32 - (.Lret1 - 1f), 0xcc
1547	ANNOTATE_INTRA_FUNCTION_CALL
15481:	call	2f
1549.Lret1:	RET
1550	.align 64, 0xcc
1551	/*
1552	 * As above shift instructions for RET at .Lret2 as well.
1553	 *
1554	 * This should be ideally be: .skip 32 - (.Lret2 - 2f), 0xcc
1555	 * but some Clang versions (e.g. 18) don't like this.
1556	 */
1557	.skip 32 - 18, 0xcc
15582:	movl	$5, %eax
15593:	jmp	4f
1560	nop
15614:	sub	$1, %eax
1562	jnz	3b
1563	sub	$1, %ecx
1564	jnz	1b
1565.Lret2:	RET
15665:	lfence
1567	pop	%rbp
1568	RET
1569SYM_FUNC_END(clear_bhb_loop)
1570EXPORT_SYMBOL_FOR_KVM(clear_bhb_loop)
1571STACK_FRAME_NON_STANDARD(clear_bhb_loop)
1572