xref: /linux/arch/x86/entry/entry_64.S (revision 4e73826089ce899357580bbf6e0afe4e6f9900b7)
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 *  linux/arch/x86_64/entry.S
4 *
5 *  Copyright (C) 1991, 1992  Linus Torvalds
6 *  Copyright (C) 2000, 2001, 2002  Andi Kleen SuSE Labs
7 *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
8 *
9 * entry.S contains the system-call and fault low-level handling routines.
10 *
11 * Some of this is documented in Documentation/arch/x86/entry_64.rst
12 *
13 * A note on terminology:
14 * - iret frame:	Architecture defined interrupt frame from SS to RIP
15 *			at the top of the kernel process stack.
16 *
17 * Some macro usage:
18 * - SYM_FUNC_START/END:Define functions in the symbol table.
19 * - idtentry:		Define exception entry points.
20 */
21#include <linux/export.h>
22#include <linux/linkage.h>
23#include <asm/segment.h>
24#include <asm/cache.h>
25#include <asm/errno.h>
26#include <asm/asm-offsets.h>
27#include <asm/msr.h>
28#include <asm/unistd.h>
29#include <asm/thread_info.h>
30#include <asm/hw_irq.h>
31#include <asm/page_types.h>
32#include <asm/irqflags.h>
33#include <asm/paravirt.h>
34#include <asm/percpu.h>
35#include <asm/asm.h>
36#include <asm/smap.h>
37#include <asm/pgtable_types.h>
38#include <asm/frame.h>
39#include <asm/trapnr.h>
40#include <asm/nospec-branch.h>
41#include <asm/fsgsbase.h>
42#include <linux/err.h>
43
44#include "calling.h"
45
46.code64
47.section .entry.text, "ax"
48
49/*
50 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
51 *
52 * This is the only entry point used for 64-bit system calls.  The
53 * hardware interface is reasonably well designed and the register to
54 * argument mapping Linux uses fits well with the registers that are
55 * available when SYSCALL is used.
56 *
57 * SYSCALL instructions can be found inlined in libc implementations as
58 * well as some other programs and libraries.  There are also a handful
59 * of SYSCALL instructions in the vDSO used, for example, as a
60 * clock_gettimeofday fallback.
61 *
62 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
63 * then loads new ss, cs, and rip from previously programmed MSRs.
64 * rflags gets masked by a value from another MSR (so CLD and CLAC
65 * are not needed). SYSCALL does not save anything on the stack
66 * and does not change rsp.
67 *
68 * Registers on entry:
69 * rax  system call number
70 * rcx  return address
71 * r11  saved rflags (note: r11 is callee-clobbered register in C ABI)
72 * rdi  arg0
73 * rsi  arg1
74 * rdx  arg2
75 * r10  arg3 (needs to be moved to rcx to conform to C ABI)
76 * r8   arg4
77 * r9   arg5
78 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
79 *
80 * Only called from user space.
81 *
82 * When user can change pt_regs->foo always force IRET. That is because
83 * it deals with uncanonical addresses better. SYSRET has trouble
84 * with them due to bugs in both AMD and Intel CPUs.
85 */
86
87SYM_CODE_START(entry_SYSCALL_64)
88	UNWIND_HINT_ENTRY
89	ENDBR
90
91	swapgs
92	/* tss.sp2 is scratch space. */
93	movq	%rsp, PER_CPU_VAR(cpu_tss_rw + TSS_sp2)
94	SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp
95	movq	PER_CPU_VAR(pcpu_hot + X86_top_of_stack), %rsp
96
97SYM_INNER_LABEL(entry_SYSCALL_64_safe_stack, SYM_L_GLOBAL)
98	ANNOTATE_NOENDBR
99
100	/* Construct struct pt_regs on stack */
101	pushq	$__USER_DS				/* pt_regs->ss */
102	pushq	PER_CPU_VAR(cpu_tss_rw + TSS_sp2)	/* pt_regs->sp */
103	pushq	%r11					/* pt_regs->flags */
104	pushq	$__USER_CS				/* pt_regs->cs */
105	pushq	%rcx					/* pt_regs->ip */
106SYM_INNER_LABEL(entry_SYSCALL_64_after_hwframe, SYM_L_GLOBAL)
107	pushq	%rax					/* pt_regs->orig_ax */
108
109	PUSH_AND_CLEAR_REGS rax=$-ENOSYS
110
111	/* IRQs are off. */
112	movq	%rsp, %rdi
113	/* Sign extend the lower 32bit as syscall numbers are treated as int */
114	movslq	%eax, %rsi
115
116	/* clobbers %rax, make sure it is after saving the syscall nr */
117	IBRS_ENTER
118	UNTRAIN_RET
119
120	call	do_syscall_64		/* returns with IRQs disabled */
121
122	/*
123	 * Try to use SYSRET instead of IRET if we're returning to
124	 * a completely clean 64-bit userspace context.  If we're not,
125	 * go to the slow exit path.
126	 * In the Xen PV case we must use iret anyway.
127	 */
128
129	ALTERNATIVE "testb %al, %al; jz swapgs_restore_regs_and_return_to_usermode", \
130		"jmp swapgs_restore_regs_and_return_to_usermode", X86_FEATURE_XENPV
131
132	/*
133	 * We win! This label is here just for ease of understanding
134	 * perf profiles. Nothing jumps here.
135	 */
136syscall_return_via_sysret:
137	IBRS_EXIT
138	POP_REGS pop_rdi=0
139
140	/*
141	 * Now all regs are restored except RSP and RDI.
142	 * Save old stack pointer and switch to trampoline stack.
143	 */
144	movq	%rsp, %rdi
145	movq	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
146	UNWIND_HINT_END_OF_STACK
147
148	pushq	RSP-RDI(%rdi)	/* RSP */
149	pushq	(%rdi)		/* RDI */
150
151	/*
152	 * We are on the trampoline stack.  All regs except RDI are live.
153	 * We can do future final exit work right here.
154	 */
155	STACKLEAK_ERASE_NOCLOBBER
156
157	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
158
159	popq	%rdi
160	popq	%rsp
161SYM_INNER_LABEL(entry_SYSRETQ_unsafe_stack, SYM_L_GLOBAL)
162	ANNOTATE_NOENDBR
163	swapgs
164	sysretq
165SYM_INNER_LABEL(entry_SYSRETQ_end, SYM_L_GLOBAL)
166	ANNOTATE_NOENDBR
167	int3
168SYM_CODE_END(entry_SYSCALL_64)
169
170/*
171 * %rdi: prev task
172 * %rsi: next task
173 */
174.pushsection .text, "ax"
175SYM_FUNC_START(__switch_to_asm)
176	/*
177	 * Save callee-saved registers
178	 * This must match the order in inactive_task_frame
179	 */
180	pushq	%rbp
181	pushq	%rbx
182	pushq	%r12
183	pushq	%r13
184	pushq	%r14
185	pushq	%r15
186
187	/* switch stack */
188	movq	%rsp, TASK_threadsp(%rdi)
189	movq	TASK_threadsp(%rsi), %rsp
190
191#ifdef CONFIG_STACKPROTECTOR
192	movq	TASK_stack_canary(%rsi), %rbx
193	movq	%rbx, PER_CPU_VAR(fixed_percpu_data) + FIXED_stack_canary
194#endif
195
196	/*
197	 * When switching from a shallower to a deeper call stack
198	 * the RSB may either underflow or use entries populated
199	 * with userspace addresses. On CPUs where those concerns
200	 * exist, overwrite the RSB with entries which capture
201	 * speculative execution to prevent attack.
202	 */
203	FILL_RETURN_BUFFER %r12, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
204
205	/* restore callee-saved registers */
206	popq	%r15
207	popq	%r14
208	popq	%r13
209	popq	%r12
210	popq	%rbx
211	popq	%rbp
212
213	jmp	__switch_to
214SYM_FUNC_END(__switch_to_asm)
215.popsection
216
217/*
218 * A newly forked process directly context switches into this address.
219 *
220 * rax: prev task we switched from
221 * rbx: kernel thread func (NULL for user thread)
222 * r12: kernel thread arg
223 */
224.pushsection .text, "ax"
225SYM_CODE_START(ret_from_fork_asm)
226	/*
227	 * This is the start of the kernel stack; even through there's a
228	 * register set at the top, the regset isn't necessarily coherent
229	 * (consider kthreads) and one cannot unwind further.
230	 *
231	 * This ensures stack unwinds of kernel threads terminate in a known
232	 * good state.
233	 */
234	UNWIND_HINT_END_OF_STACK
235	ANNOTATE_NOENDBR // copy_thread
236	CALL_DEPTH_ACCOUNT
237
238	movq	%rax, %rdi		/* prev */
239	movq	%rsp, %rsi		/* regs */
240	movq	%rbx, %rdx		/* fn */
241	movq	%r12, %rcx		/* fn_arg */
242	call	ret_from_fork
243
244	/*
245	 * Set the stack state to what is expected for the target function
246	 * -- at this point the register set should be a valid user set
247	 * and unwind should work normally.
248	 */
249	UNWIND_HINT_REGS
250	jmp	swapgs_restore_regs_and_return_to_usermode
251SYM_CODE_END(ret_from_fork_asm)
252.popsection
253
254.macro DEBUG_ENTRY_ASSERT_IRQS_OFF
255#ifdef CONFIG_DEBUG_ENTRY
256	pushq %rax
257	SAVE_FLAGS
258	testl $X86_EFLAGS_IF, %eax
259	jz .Lokay_\@
260	ud2
261.Lokay_\@:
262	popq %rax
263#endif
264.endm
265
266SYM_CODE_START(xen_error_entry)
267	ANNOTATE_NOENDBR
268	UNWIND_HINT_FUNC
269	PUSH_AND_CLEAR_REGS save_ret=1
270	ENCODE_FRAME_POINTER 8
271	UNTRAIN_RET_FROM_CALL
272	RET
273SYM_CODE_END(xen_error_entry)
274
275/**
276 * idtentry_body - Macro to emit code calling the C function
277 * @cfunc:		C function to be called
278 * @has_error_code:	Hardware pushed error code on stack
279 */
280.macro idtentry_body cfunc has_error_code:req
281
282	/*
283	 * Call error_entry() and switch to the task stack if from userspace.
284	 *
285	 * When in XENPV, it is already in the task stack, and it can't fault
286	 * for native_iret() nor native_load_gs_index() since XENPV uses its
287	 * own pvops for IRET and load_gs_index().  And it doesn't need to
288	 * switch the CR3.  So it can skip invoking error_entry().
289	 */
290	ALTERNATIVE "call error_entry; movq %rax, %rsp", \
291		    "call xen_error_entry", X86_FEATURE_XENPV
292
293	ENCODE_FRAME_POINTER
294	UNWIND_HINT_REGS
295
296	movq	%rsp, %rdi			/* pt_regs pointer into 1st argument*/
297
298	.if \has_error_code == 1
299		movq	ORIG_RAX(%rsp), %rsi	/* get error code into 2nd argument*/
300		movq	$-1, ORIG_RAX(%rsp)	/* no syscall to restart */
301	.endif
302
303	call	\cfunc
304
305	/* For some configurations \cfunc ends up being a noreturn. */
306	REACHABLE
307
308	jmp	error_return
309.endm
310
311/**
312 * idtentry - Macro to generate entry stubs for simple IDT entries
313 * @vector:		Vector number
314 * @asmsym:		ASM symbol for the entry point
315 * @cfunc:		C function to be called
316 * @has_error_code:	Hardware pushed error code on stack
317 *
318 * The macro emits code to set up the kernel context for straight forward
319 * and simple IDT entries. No IST stack, no paranoid entry checks.
320 */
321.macro idtentry vector asmsym cfunc has_error_code:req
322SYM_CODE_START(\asmsym)
323
324	.if \vector == X86_TRAP_BP
325		/* #BP advances %rip to the next instruction */
326		UNWIND_HINT_IRET_ENTRY offset=\has_error_code*8 signal=0
327	.else
328		UNWIND_HINT_IRET_ENTRY offset=\has_error_code*8
329	.endif
330
331	ENDBR
332	ASM_CLAC
333	cld
334
335	.if \has_error_code == 0
336		pushq	$-1			/* ORIG_RAX: no syscall to restart */
337	.endif
338
339	.if \vector == X86_TRAP_BP
340		/*
341		 * If coming from kernel space, create a 6-word gap to allow the
342		 * int3 handler to emulate a call instruction.
343		 */
344		testb	$3, CS-ORIG_RAX(%rsp)
345		jnz	.Lfrom_usermode_no_gap_\@
346		.rept	6
347		pushq	5*8(%rsp)
348		.endr
349		UNWIND_HINT_IRET_REGS offset=8
350.Lfrom_usermode_no_gap_\@:
351	.endif
352
353	idtentry_body \cfunc \has_error_code
354
355_ASM_NOKPROBE(\asmsym)
356SYM_CODE_END(\asmsym)
357.endm
358
359/*
360 * Interrupt entry/exit.
361 *
362 + The interrupt stubs push (vector) onto the stack, which is the error_code
363 * position of idtentry exceptions, and jump to one of the two idtentry points
364 * (common/spurious).
365 *
366 * common_interrupt is a hotpath, align it to a cache line
367 */
368.macro idtentry_irq vector cfunc
369	.p2align CONFIG_X86_L1_CACHE_SHIFT
370	idtentry \vector asm_\cfunc \cfunc has_error_code=1
371.endm
372
373/*
374 * System vectors which invoke their handlers directly and are not
375 * going through the regular common device interrupt handling code.
376 */
377.macro idtentry_sysvec vector cfunc
378	idtentry \vector asm_\cfunc \cfunc has_error_code=0
379.endm
380
381/**
382 * idtentry_mce_db - Macro to generate entry stubs for #MC and #DB
383 * @vector:		Vector number
384 * @asmsym:		ASM symbol for the entry point
385 * @cfunc:		C function to be called
386 *
387 * The macro emits code to set up the kernel context for #MC and #DB
388 *
389 * If the entry comes from user space it uses the normal entry path
390 * including the return to user space work and preemption checks on
391 * exit.
392 *
393 * If hits in kernel mode then it needs to go through the paranoid
394 * entry as the exception can hit any random state. No preemption
395 * check on exit to keep the paranoid path simple.
396 */
397.macro idtentry_mce_db vector asmsym cfunc
398SYM_CODE_START(\asmsym)
399	UNWIND_HINT_IRET_ENTRY
400	ENDBR
401	ASM_CLAC
402	cld
403
404	pushq	$-1			/* ORIG_RAX: no syscall to restart */
405
406	/*
407	 * If the entry is from userspace, switch stacks and treat it as
408	 * a normal entry.
409	 */
410	testb	$3, CS-ORIG_RAX(%rsp)
411	jnz	.Lfrom_usermode_switch_stack_\@
412
413	/* paranoid_entry returns GS information for paranoid_exit in EBX. */
414	call	paranoid_entry
415
416	UNWIND_HINT_REGS
417
418	movq	%rsp, %rdi		/* pt_regs pointer */
419
420	call	\cfunc
421
422	jmp	paranoid_exit
423
424	/* Switch to the regular task stack and use the noist entry point */
425.Lfrom_usermode_switch_stack_\@:
426	idtentry_body noist_\cfunc, has_error_code=0
427
428_ASM_NOKPROBE(\asmsym)
429SYM_CODE_END(\asmsym)
430.endm
431
432#ifdef CONFIG_AMD_MEM_ENCRYPT
433/**
434 * idtentry_vc - Macro to generate entry stub for #VC
435 * @vector:		Vector number
436 * @asmsym:		ASM symbol for the entry point
437 * @cfunc:		C function to be called
438 *
439 * The macro emits code to set up the kernel context for #VC. The #VC handler
440 * runs on an IST stack and needs to be able to cause nested #VC exceptions.
441 *
442 * To make this work the #VC entry code tries its best to pretend it doesn't use
443 * an IST stack by switching to the task stack if coming from user-space (which
444 * includes early SYSCALL entry path) or back to the stack in the IRET frame if
445 * entered from kernel-mode.
446 *
447 * If entered from kernel-mode the return stack is validated first, and if it is
448 * not safe to use (e.g. because it points to the entry stack) the #VC handler
449 * will switch to a fall-back stack (VC2) and call a special handler function.
450 *
451 * The macro is only used for one vector, but it is planned to be extended in
452 * the future for the #HV exception.
453 */
454.macro idtentry_vc vector asmsym cfunc
455SYM_CODE_START(\asmsym)
456	UNWIND_HINT_IRET_ENTRY
457	ENDBR
458	ASM_CLAC
459	cld
460
461	/*
462	 * If the entry is from userspace, switch stacks and treat it as
463	 * a normal entry.
464	 */
465	testb	$3, CS-ORIG_RAX(%rsp)
466	jnz	.Lfrom_usermode_switch_stack_\@
467
468	/*
469	 * paranoid_entry returns SWAPGS flag for paranoid_exit in EBX.
470	 * EBX == 0 -> SWAPGS, EBX == 1 -> no SWAPGS
471	 */
472	call	paranoid_entry
473
474	UNWIND_HINT_REGS
475
476	/*
477	 * Switch off the IST stack to make it free for nested exceptions. The
478	 * vc_switch_off_ist() function will switch back to the interrupted
479	 * stack if it is safe to do so. If not it switches to the VC fall-back
480	 * stack.
481	 */
482	movq	%rsp, %rdi		/* pt_regs pointer */
483	call	vc_switch_off_ist
484	movq	%rax, %rsp		/* Switch to new stack */
485
486	ENCODE_FRAME_POINTER
487	UNWIND_HINT_REGS
488
489	/* Update pt_regs */
490	movq	ORIG_RAX(%rsp), %rsi	/* get error code into 2nd argument*/
491	movq	$-1, ORIG_RAX(%rsp)	/* no syscall to restart */
492
493	movq	%rsp, %rdi		/* pt_regs pointer */
494
495	call	kernel_\cfunc
496
497	/*
498	 * No need to switch back to the IST stack. The current stack is either
499	 * identical to the stack in the IRET frame or the VC fall-back stack,
500	 * so it is definitely mapped even with PTI enabled.
501	 */
502	jmp	paranoid_exit
503
504	/* Switch to the regular task stack */
505.Lfrom_usermode_switch_stack_\@:
506	idtentry_body user_\cfunc, has_error_code=1
507
508_ASM_NOKPROBE(\asmsym)
509SYM_CODE_END(\asmsym)
510.endm
511#endif
512
513/*
514 * Double fault entry. Straight paranoid. No checks from which context
515 * this comes because for the espfix induced #DF this would do the wrong
516 * thing.
517 */
518.macro idtentry_df vector asmsym cfunc
519SYM_CODE_START(\asmsym)
520	UNWIND_HINT_IRET_ENTRY offset=8
521	ENDBR
522	ASM_CLAC
523	cld
524
525	/* paranoid_entry returns GS information for paranoid_exit in EBX. */
526	call	paranoid_entry
527	UNWIND_HINT_REGS
528
529	movq	%rsp, %rdi		/* pt_regs pointer into first argument */
530	movq	ORIG_RAX(%rsp), %rsi	/* get error code into 2nd argument*/
531	movq	$-1, ORIG_RAX(%rsp)	/* no syscall to restart */
532	call	\cfunc
533
534	/* For some configurations \cfunc ends up being a noreturn. */
535	REACHABLE
536
537	jmp	paranoid_exit
538
539_ASM_NOKPROBE(\asmsym)
540SYM_CODE_END(\asmsym)
541.endm
542
543/*
544 * Include the defines which emit the idt entries which are shared
545 * shared between 32 and 64 bit and emit the __irqentry_text_* markers
546 * so the stacktrace boundary checks work.
547 */
548	__ALIGN
549	.globl __irqentry_text_start
550__irqentry_text_start:
551
552#include <asm/idtentry.h>
553
554	__ALIGN
555	.globl __irqentry_text_end
556__irqentry_text_end:
557	ANNOTATE_NOENDBR
558
559SYM_CODE_START_LOCAL(common_interrupt_return)
560SYM_INNER_LABEL(swapgs_restore_regs_and_return_to_usermode, SYM_L_GLOBAL)
561	IBRS_EXIT
562#ifdef CONFIG_XEN_PV
563	ALTERNATIVE "", "jmp xenpv_restore_regs_and_return_to_usermode", X86_FEATURE_XENPV
564#endif
565#ifdef CONFIG_PAGE_TABLE_ISOLATION
566	ALTERNATIVE "", "jmp .Lpti_restore_regs_and_return_to_usermode", X86_FEATURE_PTI
567#endif
568
569	STACKLEAK_ERASE
570	POP_REGS
571	add	$8, %rsp	/* orig_ax */
572	UNWIND_HINT_IRET_REGS
573
574.Lswapgs_and_iret:
575	swapgs
576	/* Assert that the IRET frame indicates user mode. */
577	testb	$3, 8(%rsp)
578	jnz	.Lnative_iret
579	ud2
580
581#ifdef CONFIG_PAGE_TABLE_ISOLATION
582.Lpti_restore_regs_and_return_to_usermode:
583	POP_REGS pop_rdi=0
584
585	/*
586	 * The stack is now user RDI, orig_ax, RIP, CS, EFLAGS, RSP, SS.
587	 * Save old stack pointer and switch to trampoline stack.
588	 */
589	movq	%rsp, %rdi
590	movq	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
591	UNWIND_HINT_END_OF_STACK
592
593	/* Copy the IRET frame to the trampoline stack. */
594	pushq	6*8(%rdi)	/* SS */
595	pushq	5*8(%rdi)	/* RSP */
596	pushq	4*8(%rdi)	/* EFLAGS */
597	pushq	3*8(%rdi)	/* CS */
598	pushq	2*8(%rdi)	/* RIP */
599
600	/* Push user RDI on the trampoline stack. */
601	pushq	(%rdi)
602
603	/*
604	 * We are on the trampoline stack.  All regs except RDI are live.
605	 * We can do future final exit work right here.
606	 */
607	STACKLEAK_ERASE_NOCLOBBER
608
609	push	%rax
610	SWITCH_TO_USER_CR3 scratch_reg=%rdi scratch_reg2=%rax
611	pop	%rax
612
613	/* Restore RDI. */
614	popq	%rdi
615	jmp	.Lswapgs_and_iret
616#endif
617
618SYM_INNER_LABEL(restore_regs_and_return_to_kernel, SYM_L_GLOBAL)
619#ifdef CONFIG_DEBUG_ENTRY
620	/* Assert that pt_regs indicates kernel mode. */
621	testb	$3, CS(%rsp)
622	jz	1f
623	ud2
6241:
625#endif
626	POP_REGS
627	addq	$8, %rsp	/* skip regs->orig_ax */
628	/*
629	 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization
630	 * when returning from IPI handler.
631	 */
632#ifdef CONFIG_XEN_PV
633SYM_INNER_LABEL(early_xen_iret_patch, SYM_L_GLOBAL)
634	ANNOTATE_NOENDBR
635	.byte 0xe9
636	.long .Lnative_iret - (. + 4)
637#endif
638
639.Lnative_iret:
640	UNWIND_HINT_IRET_REGS
641	/*
642	 * Are we returning to a stack segment from the LDT?  Note: in
643	 * 64-bit mode SS:RSP on the exception stack is always valid.
644	 */
645#ifdef CONFIG_X86_ESPFIX64
646	testb	$4, (SS-RIP)(%rsp)
647	jnz	native_irq_return_ldt
648#endif
649
650SYM_INNER_LABEL(native_irq_return_iret, SYM_L_GLOBAL)
651	ANNOTATE_NOENDBR // exc_double_fault
652	/*
653	 * This may fault.  Non-paranoid faults on return to userspace are
654	 * handled by fixup_bad_iret.  These include #SS, #GP, and #NP.
655	 * Double-faults due to espfix64 are handled in exc_double_fault.
656	 * Other faults here are fatal.
657	 */
658	iretq
659
660#ifdef CONFIG_X86_ESPFIX64
661native_irq_return_ldt:
662	/*
663	 * We are running with user GSBASE.  All GPRs contain their user
664	 * values.  We have a percpu ESPFIX stack that is eight slots
665	 * long (see ESPFIX_STACK_SIZE).  espfix_waddr points to the bottom
666	 * of the ESPFIX stack.
667	 *
668	 * We clobber RAX and RDI in this code.  We stash RDI on the
669	 * normal stack and RAX on the ESPFIX stack.
670	 *
671	 * The ESPFIX stack layout we set up looks like this:
672	 *
673	 * --- top of ESPFIX stack ---
674	 * SS
675	 * RSP
676	 * RFLAGS
677	 * CS
678	 * RIP  <-- RSP points here when we're done
679	 * RAX  <-- espfix_waddr points here
680	 * --- bottom of ESPFIX stack ---
681	 */
682
683	pushq	%rdi				/* Stash user RDI */
684	swapgs					/* to kernel GS */
685	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi	/* to kernel CR3 */
686
687	movq	PER_CPU_VAR(espfix_waddr), %rdi
688	movq	%rax, (0*8)(%rdi)		/* user RAX */
689	movq	(1*8)(%rsp), %rax		/* user RIP */
690	movq	%rax, (1*8)(%rdi)
691	movq	(2*8)(%rsp), %rax		/* user CS */
692	movq	%rax, (2*8)(%rdi)
693	movq	(3*8)(%rsp), %rax		/* user RFLAGS */
694	movq	%rax, (3*8)(%rdi)
695	movq	(5*8)(%rsp), %rax		/* user SS */
696	movq	%rax, (5*8)(%rdi)
697	movq	(4*8)(%rsp), %rax		/* user RSP */
698	movq	%rax, (4*8)(%rdi)
699	/* Now RAX == RSP. */
700
701	andl	$0xffff0000, %eax		/* RAX = (RSP & 0xffff0000) */
702
703	/*
704	 * espfix_stack[31:16] == 0.  The page tables are set up such that
705	 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
706	 * espfix_waddr for any X.  That is, there are 65536 RO aliases of
707	 * the same page.  Set up RSP so that RSP[31:16] contains the
708	 * respective 16 bits of the /userspace/ RSP and RSP nonetheless
709	 * still points to an RO alias of the ESPFIX stack.
710	 */
711	orq	PER_CPU_VAR(espfix_stack), %rax
712
713	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
714	swapgs					/* to user GS */
715	popq	%rdi				/* Restore user RDI */
716
717	movq	%rax, %rsp
718	UNWIND_HINT_IRET_REGS offset=8
719
720	/*
721	 * At this point, we cannot write to the stack any more, but we can
722	 * still read.
723	 */
724	popq	%rax				/* Restore user RAX */
725
726	/*
727	 * RSP now points to an ordinary IRET frame, except that the page
728	 * is read-only and RSP[31:16] are preloaded with the userspace
729	 * values.  We can now IRET back to userspace.
730	 */
731	jmp	native_irq_return_iret
732#endif
733SYM_CODE_END(common_interrupt_return)
734_ASM_NOKPROBE(common_interrupt_return)
735
736/*
737 * Reload gs selector with exception handling
738 *  di:  new selector
739 *
740 * Is in entry.text as it shouldn't be instrumented.
741 */
742SYM_FUNC_START(asm_load_gs_index)
743	FRAME_BEGIN
744	swapgs
745.Lgs_change:
746	ANNOTATE_NOENDBR // error_entry
747	movl	%edi, %gs
7482:	ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
749	swapgs
750	FRAME_END
751	RET
752
753	/* running with kernelgs */
754.Lbad_gs:
755	swapgs					/* switch back to user gs */
756.macro ZAP_GS
757	/* This can't be a string because the preprocessor needs to see it. */
758	movl $__USER_DS, %eax
759	movl %eax, %gs
760.endm
761	ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
762	xorl	%eax, %eax
763	movl	%eax, %gs
764	jmp	2b
765
766	_ASM_EXTABLE(.Lgs_change, .Lbad_gs)
767
768SYM_FUNC_END(asm_load_gs_index)
769EXPORT_SYMBOL(asm_load_gs_index)
770
771#ifdef CONFIG_XEN_PV
772/*
773 * A note on the "critical region" in our callback handler.
774 * We want to avoid stacking callback handlers due to events occurring
775 * during handling of the last event. To do this, we keep events disabled
776 * until we've done all processing. HOWEVER, we must enable events before
777 * popping the stack frame (can't be done atomically) and so it would still
778 * be possible to get enough handler activations to overflow the stack.
779 * Although unlikely, bugs of that kind are hard to track down, so we'd
780 * like to avoid the possibility.
781 * So, on entry to the handler we detect whether we interrupted an
782 * existing activation in its critical region -- if so, we pop the current
783 * activation and restart the handler using the previous one.
784 *
785 * C calling convention: exc_xen_hypervisor_callback(struct *pt_regs)
786 */
787	__FUNC_ALIGN
788SYM_CODE_START_LOCAL_NOALIGN(exc_xen_hypervisor_callback)
789
790/*
791 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
792 * see the correct pointer to the pt_regs
793 */
794	UNWIND_HINT_FUNC
795	movq	%rdi, %rsp			/* we don't return, adjust the stack frame */
796	UNWIND_HINT_REGS
797
798	call	xen_pv_evtchn_do_upcall
799
800	jmp	error_return
801SYM_CODE_END(exc_xen_hypervisor_callback)
802
803/*
804 * Hypervisor uses this for application faults while it executes.
805 * We get here for two reasons:
806 *  1. Fault while reloading DS, ES, FS or GS
807 *  2. Fault while executing IRET
808 * Category 1 we do not need to fix up as Xen has already reloaded all segment
809 * registers that could be reloaded and zeroed the others.
810 * Category 2 we fix up by killing the current process. We cannot use the
811 * normal Linux return path in this case because if we use the IRET hypercall
812 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
813 * We distinguish between categories by comparing each saved segment register
814 * with its current contents: any discrepancy means we in category 1.
815 */
816	__FUNC_ALIGN
817SYM_CODE_START_NOALIGN(xen_failsafe_callback)
818	UNWIND_HINT_UNDEFINED
819	ENDBR
820	movl	%ds, %ecx
821	cmpw	%cx, 0x10(%rsp)
822	jne	1f
823	movl	%es, %ecx
824	cmpw	%cx, 0x18(%rsp)
825	jne	1f
826	movl	%fs, %ecx
827	cmpw	%cx, 0x20(%rsp)
828	jne	1f
829	movl	%gs, %ecx
830	cmpw	%cx, 0x28(%rsp)
831	jne	1f
832	/* All segments match their saved values => Category 2 (Bad IRET). */
833	movq	(%rsp), %rcx
834	movq	8(%rsp), %r11
835	addq	$0x30, %rsp
836	pushq	$0				/* RIP */
837	UNWIND_HINT_IRET_REGS offset=8
838	jmp	asm_exc_general_protection
8391:	/* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
840	movq	(%rsp), %rcx
841	movq	8(%rsp), %r11
842	addq	$0x30, %rsp
843	UNWIND_HINT_IRET_REGS
844	pushq	$-1 /* orig_ax = -1 => not a system call */
845	PUSH_AND_CLEAR_REGS
846	ENCODE_FRAME_POINTER
847	jmp	error_return
848SYM_CODE_END(xen_failsafe_callback)
849#endif /* CONFIG_XEN_PV */
850
851/*
852 * Save all registers in pt_regs. Return GSBASE related information
853 * in EBX depending on the availability of the FSGSBASE instructions:
854 *
855 * FSGSBASE	R/EBX
856 *     N        0 -> SWAPGS on exit
857 *              1 -> no SWAPGS on exit
858 *
859 *     Y        GSBASE value at entry, must be restored in paranoid_exit
860 *
861 * R14 - old CR3
862 * R15 - old SPEC_CTRL
863 */
864SYM_CODE_START(paranoid_entry)
865	ANNOTATE_NOENDBR
866	UNWIND_HINT_FUNC
867	PUSH_AND_CLEAR_REGS save_ret=1
868	ENCODE_FRAME_POINTER 8
869
870	/*
871	 * Always stash CR3 in %r14.  This value will be restored,
872	 * verbatim, at exit.  Needed if paranoid_entry interrupted
873	 * another entry that already switched to the user CR3 value
874	 * but has not yet returned to userspace.
875	 *
876	 * This is also why CS (stashed in the "iret frame" by the
877	 * hardware at entry) can not be used: this may be a return
878	 * to kernel code, but with a user CR3 value.
879	 *
880	 * Switching CR3 does not depend on kernel GSBASE so it can
881	 * be done before switching to the kernel GSBASE. This is
882	 * required for FSGSBASE because the kernel GSBASE has to
883	 * be retrieved from a kernel internal table.
884	 */
885	SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg=%rax save_reg=%r14
886
887	/*
888	 * Handling GSBASE depends on the availability of FSGSBASE.
889	 *
890	 * Without FSGSBASE the kernel enforces that negative GSBASE
891	 * values indicate kernel GSBASE. With FSGSBASE no assumptions
892	 * can be made about the GSBASE value when entering from user
893	 * space.
894	 */
895	ALTERNATIVE "jmp .Lparanoid_entry_checkgs", "", X86_FEATURE_FSGSBASE
896
897	/*
898	 * Read the current GSBASE and store it in %rbx unconditionally,
899	 * retrieve and set the current CPUs kernel GSBASE. The stored value
900	 * has to be restored in paranoid_exit unconditionally.
901	 *
902	 * The unconditional write to GS base below ensures that no subsequent
903	 * loads based on a mispredicted GS base can happen, therefore no LFENCE
904	 * is needed here.
905	 */
906	SAVE_AND_SET_GSBASE scratch_reg=%rax save_reg=%rbx
907	jmp .Lparanoid_gsbase_done
908
909.Lparanoid_entry_checkgs:
910	/* EBX = 1 -> kernel GSBASE active, no restore required */
911	movl	$1, %ebx
912
913	/*
914	 * The kernel-enforced convention is a negative GSBASE indicates
915	 * a kernel value. No SWAPGS needed on entry and exit.
916	 */
917	movl	$MSR_GS_BASE, %ecx
918	rdmsr
919	testl	%edx, %edx
920	js	.Lparanoid_kernel_gsbase
921
922	/* EBX = 0 -> SWAPGS required on exit */
923	xorl	%ebx, %ebx
924	swapgs
925.Lparanoid_kernel_gsbase:
926	FENCE_SWAPGS_KERNEL_ENTRY
927.Lparanoid_gsbase_done:
928
929	/*
930	 * Once we have CR3 and %GS setup save and set SPEC_CTRL. Just like
931	 * CR3 above, keep the old value in a callee saved register.
932	 */
933	IBRS_ENTER save_reg=%r15
934	UNTRAIN_RET_FROM_CALL
935
936	RET
937SYM_CODE_END(paranoid_entry)
938
939/*
940 * "Paranoid" exit path from exception stack.  This is invoked
941 * only on return from non-NMI IST interrupts that came
942 * from kernel space.
943 *
944 * We may be returning to very strange contexts (e.g. very early
945 * in syscall entry), so checking for preemption here would
946 * be complicated.  Fortunately, there's no good reason to try
947 * to handle preemption here.
948 *
949 * R/EBX contains the GSBASE related information depending on the
950 * availability of the FSGSBASE instructions:
951 *
952 * FSGSBASE	R/EBX
953 *     N        0 -> SWAPGS on exit
954 *              1 -> no SWAPGS on exit
955 *
956 *     Y        User space GSBASE, must be restored unconditionally
957 *
958 * R14 - old CR3
959 * R15 - old SPEC_CTRL
960 */
961SYM_CODE_START_LOCAL(paranoid_exit)
962	UNWIND_HINT_REGS
963
964	/*
965	 * Must restore IBRS state before both CR3 and %GS since we need access
966	 * to the per-CPU x86_spec_ctrl_shadow variable.
967	 */
968	IBRS_EXIT save_reg=%r15
969
970	/*
971	 * The order of operations is important. RESTORE_CR3 requires
972	 * kernel GSBASE.
973	 *
974	 * NB to anyone to try to optimize this code: this code does
975	 * not execute at all for exceptions from user mode. Those
976	 * exceptions go through error_return instead.
977	 */
978	RESTORE_CR3	scratch_reg=%rax save_reg=%r14
979
980	/* Handle the three GSBASE cases */
981	ALTERNATIVE "jmp .Lparanoid_exit_checkgs", "", X86_FEATURE_FSGSBASE
982
983	/* With FSGSBASE enabled, unconditionally restore GSBASE */
984	wrgsbase	%rbx
985	jmp		restore_regs_and_return_to_kernel
986
987.Lparanoid_exit_checkgs:
988	/* On non-FSGSBASE systems, conditionally do SWAPGS */
989	testl		%ebx, %ebx
990	jnz		restore_regs_and_return_to_kernel
991
992	/* We are returning to a context with user GSBASE */
993	swapgs
994	jmp		restore_regs_and_return_to_kernel
995SYM_CODE_END(paranoid_exit)
996
997/*
998 * Switch GS and CR3 if needed.
999 */
1000SYM_CODE_START(error_entry)
1001	ANNOTATE_NOENDBR
1002	UNWIND_HINT_FUNC
1003
1004	PUSH_AND_CLEAR_REGS save_ret=1
1005	ENCODE_FRAME_POINTER 8
1006
1007	testb	$3, CS+8(%rsp)
1008	jz	.Lerror_kernelspace
1009
1010	/*
1011	 * We entered from user mode or we're pretending to have entered
1012	 * from user mode due to an IRET fault.
1013	 */
1014	swapgs
1015	FENCE_SWAPGS_USER_ENTRY
1016	/* We have user CR3.  Change to kernel CR3. */
1017	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1018	IBRS_ENTER
1019	UNTRAIN_RET_FROM_CALL
1020
1021	leaq	8(%rsp), %rdi			/* arg0 = pt_regs pointer */
1022	/* Put us onto the real thread stack. */
1023	jmp	sync_regs
1024
1025	/*
1026	 * There are two places in the kernel that can potentially fault with
1027	 * usergs. Handle them here.  B stepping K8s sometimes report a
1028	 * truncated RIP for IRET exceptions returning to compat mode. Check
1029	 * for these here too.
1030	 */
1031.Lerror_kernelspace:
1032	leaq	native_irq_return_iret(%rip), %rcx
1033	cmpq	%rcx, RIP+8(%rsp)
1034	je	.Lerror_bad_iret
1035	movl	%ecx, %eax			/* zero extend */
1036	cmpq	%rax, RIP+8(%rsp)
1037	je	.Lbstep_iret
1038	cmpq	$.Lgs_change, RIP+8(%rsp)
1039	jne	.Lerror_entry_done_lfence
1040
1041	/*
1042	 * hack: .Lgs_change can fail with user gsbase.  If this happens, fix up
1043	 * gsbase and proceed.  We'll fix up the exception and land in
1044	 * .Lgs_change's error handler with kernel gsbase.
1045	 */
1046	swapgs
1047
1048	/*
1049	 * Issue an LFENCE to prevent GS speculation, regardless of whether it is a
1050	 * kernel or user gsbase.
1051	 */
1052.Lerror_entry_done_lfence:
1053	FENCE_SWAPGS_KERNEL_ENTRY
1054	CALL_DEPTH_ACCOUNT
1055	leaq	8(%rsp), %rax			/* return pt_regs pointer */
1056	VALIDATE_UNRET_END
1057	RET
1058
1059.Lbstep_iret:
1060	/* Fix truncated RIP */
1061	movq	%rcx, RIP+8(%rsp)
1062	/* fall through */
1063
1064.Lerror_bad_iret:
1065	/*
1066	 * We came from an IRET to user mode, so we have user
1067	 * gsbase and CR3.  Switch to kernel gsbase and CR3:
1068	 */
1069	swapgs
1070	FENCE_SWAPGS_USER_ENTRY
1071	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1072	IBRS_ENTER
1073	UNTRAIN_RET_FROM_CALL
1074
1075	/*
1076	 * Pretend that the exception came from user mode: set up pt_regs
1077	 * as if we faulted immediately after IRET.
1078	 */
1079	leaq	8(%rsp), %rdi			/* arg0 = pt_regs pointer */
1080	call	fixup_bad_iret
1081	mov	%rax, %rdi
1082	jmp	sync_regs
1083SYM_CODE_END(error_entry)
1084
1085SYM_CODE_START_LOCAL(error_return)
1086	UNWIND_HINT_REGS
1087	DEBUG_ENTRY_ASSERT_IRQS_OFF
1088	testb	$3, CS(%rsp)
1089	jz	restore_regs_and_return_to_kernel
1090	jmp	swapgs_restore_regs_and_return_to_usermode
1091SYM_CODE_END(error_return)
1092
1093/*
1094 * Runs on exception stack.  Xen PV does not go through this path at all,
1095 * so we can use real assembly here.
1096 *
1097 * Registers:
1098 *	%r14: Used to save/restore the CR3 of the interrupted context
1099 *	      when PAGE_TABLE_ISOLATION is in use.  Do not clobber.
1100 */
1101SYM_CODE_START(asm_exc_nmi)
1102	UNWIND_HINT_IRET_ENTRY
1103	ENDBR
1104
1105	/*
1106	 * We allow breakpoints in NMIs. If a breakpoint occurs, then
1107	 * the iretq it performs will take us out of NMI context.
1108	 * This means that we can have nested NMIs where the next
1109	 * NMI is using the top of the stack of the previous NMI. We
1110	 * can't let it execute because the nested NMI will corrupt the
1111	 * stack of the previous NMI. NMI handlers are not re-entrant
1112	 * anyway.
1113	 *
1114	 * To handle this case we do the following:
1115	 *  Check a special location on the stack that contains a
1116	 *  variable that is set when NMIs are executing.
1117	 *  The interrupted task's stack is also checked to see if it
1118	 *  is an NMI stack.
1119	 *  If the variable is not set and the stack is not the NMI
1120	 *  stack then:
1121	 *    o Set the special variable on the stack
1122	 *    o Copy the interrupt frame into an "outermost" location on the
1123	 *      stack
1124	 *    o Copy the interrupt frame into an "iret" location on the stack
1125	 *    o Continue processing the NMI
1126	 *  If the variable is set or the previous stack is the NMI stack:
1127	 *    o Modify the "iret" location to jump to the repeat_nmi
1128	 *    o return back to the first NMI
1129	 *
1130	 * Now on exit of the first NMI, we first clear the stack variable
1131	 * The NMI stack will tell any nested NMIs at that point that it is
1132	 * nested. Then we pop the stack normally with iret, and if there was
1133	 * a nested NMI that updated the copy interrupt stack frame, a
1134	 * jump will be made to the repeat_nmi code that will handle the second
1135	 * NMI.
1136	 *
1137	 * However, espfix prevents us from directly returning to userspace
1138	 * with a single IRET instruction.  Similarly, IRET to user mode
1139	 * can fault.  We therefore handle NMIs from user space like
1140	 * other IST entries.
1141	 */
1142
1143	ASM_CLAC
1144	cld
1145
1146	/* Use %rdx as our temp variable throughout */
1147	pushq	%rdx
1148
1149	testb	$3, CS-RIP+8(%rsp)
1150	jz	.Lnmi_from_kernel
1151
1152	/*
1153	 * NMI from user mode.  We need to run on the thread stack, but we
1154	 * can't go through the normal entry paths: NMIs are masked, and
1155	 * we don't want to enable interrupts, because then we'll end
1156	 * up in an awkward situation in which IRQs are on but NMIs
1157	 * are off.
1158	 *
1159	 * We also must not push anything to the stack before switching
1160	 * stacks lest we corrupt the "NMI executing" variable.
1161	 */
1162
1163	swapgs
1164	FENCE_SWAPGS_USER_ENTRY
1165	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdx
1166	movq	%rsp, %rdx
1167	movq	PER_CPU_VAR(pcpu_hot + X86_top_of_stack), %rsp
1168	UNWIND_HINT_IRET_REGS base=%rdx offset=8
1169	pushq	5*8(%rdx)	/* pt_regs->ss */
1170	pushq	4*8(%rdx)	/* pt_regs->rsp */
1171	pushq	3*8(%rdx)	/* pt_regs->flags */
1172	pushq	2*8(%rdx)	/* pt_regs->cs */
1173	pushq	1*8(%rdx)	/* pt_regs->rip */
1174	UNWIND_HINT_IRET_REGS
1175	pushq   $-1		/* pt_regs->orig_ax */
1176	PUSH_AND_CLEAR_REGS rdx=(%rdx)
1177	ENCODE_FRAME_POINTER
1178
1179	IBRS_ENTER
1180	UNTRAIN_RET
1181
1182	/*
1183	 * At this point we no longer need to worry about stack damage
1184	 * due to nesting -- we're on the normal thread stack and we're
1185	 * done with the NMI stack.
1186	 */
1187
1188	movq	%rsp, %rdi
1189	call	exc_nmi
1190
1191	/*
1192	 * Return back to user mode.  We must *not* do the normal exit
1193	 * work, because we don't want to enable interrupts.
1194	 */
1195	jmp	swapgs_restore_regs_and_return_to_usermode
1196
1197.Lnmi_from_kernel:
1198	/*
1199	 * Here's what our stack frame will look like:
1200	 * +---------------------------------------------------------+
1201	 * | original SS                                             |
1202	 * | original Return RSP                                     |
1203	 * | original RFLAGS                                         |
1204	 * | original CS                                             |
1205	 * | original RIP                                            |
1206	 * +---------------------------------------------------------+
1207	 * | temp storage for rdx                                    |
1208	 * +---------------------------------------------------------+
1209	 * | "NMI executing" variable                                |
1210	 * +---------------------------------------------------------+
1211	 * | iret SS          } Copied from "outermost" frame        |
1212	 * | iret Return RSP  } on each loop iteration; overwritten  |
1213	 * | iret RFLAGS      } by a nested NMI to force another     |
1214	 * | iret CS          } iteration if needed.                 |
1215	 * | iret RIP         }                                      |
1216	 * +---------------------------------------------------------+
1217	 * | outermost SS          } initialized in first_nmi;       |
1218	 * | outermost Return RSP  } will not be changed before      |
1219	 * | outermost RFLAGS      } NMI processing is done.         |
1220	 * | outermost CS          } Copied to "iret" frame on each  |
1221	 * | outermost RIP         } iteration.                      |
1222	 * +---------------------------------------------------------+
1223	 * | pt_regs                                                 |
1224	 * +---------------------------------------------------------+
1225	 *
1226	 * The "original" frame is used by hardware.  Before re-enabling
1227	 * NMIs, we need to be done with it, and we need to leave enough
1228	 * space for the asm code here.
1229	 *
1230	 * We return by executing IRET while RSP points to the "iret" frame.
1231	 * That will either return for real or it will loop back into NMI
1232	 * processing.
1233	 *
1234	 * The "outermost" frame is copied to the "iret" frame on each
1235	 * iteration of the loop, so each iteration starts with the "iret"
1236	 * frame pointing to the final return target.
1237	 */
1238
1239	/*
1240	 * Determine whether we're a nested NMI.
1241	 *
1242	 * If we interrupted kernel code between repeat_nmi and
1243	 * end_repeat_nmi, then we are a nested NMI.  We must not
1244	 * modify the "iret" frame because it's being written by
1245	 * the outer NMI.  That's okay; the outer NMI handler is
1246	 * about to call exc_nmi() anyway, so we can just resume
1247	 * the outer NMI.
1248	 */
1249
1250	movq	$repeat_nmi, %rdx
1251	cmpq	8(%rsp), %rdx
1252	ja	1f
1253	movq	$end_repeat_nmi, %rdx
1254	cmpq	8(%rsp), %rdx
1255	ja	nested_nmi_out
12561:
1257
1258	/*
1259	 * Now check "NMI executing".  If it's set, then we're nested.
1260	 * This will not detect if we interrupted an outer NMI just
1261	 * before IRET.
1262	 */
1263	cmpl	$1, -8(%rsp)
1264	je	nested_nmi
1265
1266	/*
1267	 * Now test if the previous stack was an NMI stack.  This covers
1268	 * the case where we interrupt an outer NMI after it clears
1269	 * "NMI executing" but before IRET.  We need to be careful, though:
1270	 * there is one case in which RSP could point to the NMI stack
1271	 * despite there being no NMI active: naughty userspace controls
1272	 * RSP at the very beginning of the SYSCALL targets.  We can
1273	 * pull a fast one on naughty userspace, though: we program
1274	 * SYSCALL to mask DF, so userspace cannot cause DF to be set
1275	 * if it controls the kernel's RSP.  We set DF before we clear
1276	 * "NMI executing".
1277	 */
1278	lea	6*8(%rsp), %rdx
1279	/* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
1280	cmpq	%rdx, 4*8(%rsp)
1281	/* If the stack pointer is above the NMI stack, this is a normal NMI */
1282	ja	first_nmi
1283
1284	subq	$EXCEPTION_STKSZ, %rdx
1285	cmpq	%rdx, 4*8(%rsp)
1286	/* If it is below the NMI stack, it is a normal NMI */
1287	jb	first_nmi
1288
1289	/* Ah, it is within the NMI stack. */
1290
1291	testb	$(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
1292	jz	first_nmi	/* RSP was user controlled. */
1293
1294	/* This is a nested NMI. */
1295
1296nested_nmi:
1297	/*
1298	 * Modify the "iret" frame to point to repeat_nmi, forcing another
1299	 * iteration of NMI handling.
1300	 */
1301	subq	$8, %rsp
1302	leaq	-10*8(%rsp), %rdx
1303	pushq	$__KERNEL_DS
1304	pushq	%rdx
1305	pushfq
1306	pushq	$__KERNEL_CS
1307	pushq	$repeat_nmi
1308
1309	/* Put stack back */
1310	addq	$(6*8), %rsp
1311
1312nested_nmi_out:
1313	popq	%rdx
1314
1315	/* We are returning to kernel mode, so this cannot result in a fault. */
1316	iretq
1317
1318first_nmi:
1319	/* Restore rdx. */
1320	movq	(%rsp), %rdx
1321
1322	/* Make room for "NMI executing". */
1323	pushq	$0
1324
1325	/* Leave room for the "iret" frame */
1326	subq	$(5*8), %rsp
1327
1328	/* Copy the "original" frame to the "outermost" frame */
1329	.rept 5
1330	pushq	11*8(%rsp)
1331	.endr
1332	UNWIND_HINT_IRET_REGS
1333
1334	/* Everything up to here is safe from nested NMIs */
1335
1336#ifdef CONFIG_DEBUG_ENTRY
1337	/*
1338	 * For ease of testing, unmask NMIs right away.  Disabled by
1339	 * default because IRET is very expensive.
1340	 */
1341	pushq	$0		/* SS */
1342	pushq	%rsp		/* RSP (minus 8 because of the previous push) */
1343	addq	$8, (%rsp)	/* Fix up RSP */
1344	pushfq			/* RFLAGS */
1345	pushq	$__KERNEL_CS	/* CS */
1346	pushq	$1f		/* RIP */
1347	iretq			/* continues at repeat_nmi below */
1348	UNWIND_HINT_IRET_REGS
13491:
1350#endif
1351
1352repeat_nmi:
1353	ANNOTATE_NOENDBR // this code
1354	/*
1355	 * If there was a nested NMI, the first NMI's iret will return
1356	 * here. But NMIs are still enabled and we can take another
1357	 * nested NMI. The nested NMI checks the interrupted RIP to see
1358	 * if it is between repeat_nmi and end_repeat_nmi, and if so
1359	 * it will just return, as we are about to repeat an NMI anyway.
1360	 * This makes it safe to copy to the stack frame that a nested
1361	 * NMI will update.
1362	 *
1363	 * RSP is pointing to "outermost RIP".  gsbase is unknown, but, if
1364	 * we're repeating an NMI, gsbase has the same value that it had on
1365	 * the first iteration.  paranoid_entry will load the kernel
1366	 * gsbase if needed before we call exc_nmi().  "NMI executing"
1367	 * is zero.
1368	 */
1369	movq	$1, 10*8(%rsp)		/* Set "NMI executing". */
1370
1371	/*
1372	 * Copy the "outermost" frame to the "iret" frame.  NMIs that nest
1373	 * here must not modify the "iret" frame while we're writing to
1374	 * it or it will end up containing garbage.
1375	 */
1376	addq	$(10*8), %rsp
1377	.rept 5
1378	pushq	-6*8(%rsp)
1379	.endr
1380	subq	$(5*8), %rsp
1381end_repeat_nmi:
1382	ANNOTATE_NOENDBR // this code
1383
1384	/*
1385	 * Everything below this point can be preempted by a nested NMI.
1386	 * If this happens, then the inner NMI will change the "iret"
1387	 * frame to point back to repeat_nmi.
1388	 */
1389	pushq	$-1				/* ORIG_RAX: no syscall to restart */
1390
1391	/*
1392	 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1393	 * as we should not be calling schedule in NMI context.
1394	 * Even with normal interrupts enabled. An NMI should not be
1395	 * setting NEED_RESCHED or anything that normal interrupts and
1396	 * exceptions might do.
1397	 */
1398	call	paranoid_entry
1399	UNWIND_HINT_REGS
1400
1401	movq	%rsp, %rdi
1402	call	exc_nmi
1403
1404	/* Always restore stashed SPEC_CTRL value (see paranoid_entry) */
1405	IBRS_EXIT save_reg=%r15
1406
1407	/* Always restore stashed CR3 value (see paranoid_entry) */
1408	RESTORE_CR3 scratch_reg=%r15 save_reg=%r14
1409
1410	/*
1411	 * The above invocation of paranoid_entry stored the GSBASE
1412	 * related information in R/EBX depending on the availability
1413	 * of FSGSBASE.
1414	 *
1415	 * If FSGSBASE is enabled, restore the saved GSBASE value
1416	 * unconditionally, otherwise take the conditional SWAPGS path.
1417	 */
1418	ALTERNATIVE "jmp nmi_no_fsgsbase", "", X86_FEATURE_FSGSBASE
1419
1420	wrgsbase	%rbx
1421	jmp	nmi_restore
1422
1423nmi_no_fsgsbase:
1424	/* EBX == 0 -> invoke SWAPGS */
1425	testl	%ebx, %ebx
1426	jnz	nmi_restore
1427
1428nmi_swapgs:
1429	swapgs
1430
1431nmi_restore:
1432	POP_REGS
1433
1434	/*
1435	 * Skip orig_ax and the "outermost" frame to point RSP at the "iret"
1436	 * at the "iret" frame.
1437	 */
1438	addq	$6*8, %rsp
1439
1440	/*
1441	 * Clear "NMI executing".  Set DF first so that we can easily
1442	 * distinguish the remaining code between here and IRET from
1443	 * the SYSCALL entry and exit paths.
1444	 *
1445	 * We arguably should just inspect RIP instead, but I (Andy) wrote
1446	 * this code when I had the misapprehension that Xen PV supported
1447	 * NMIs, and Xen PV would break that approach.
1448	 */
1449	std
1450	movq	$0, 5*8(%rsp)		/* clear "NMI executing" */
1451
1452	/*
1453	 * iretq reads the "iret" frame and exits the NMI stack in a
1454	 * single instruction.  We are returning to kernel mode, so this
1455	 * cannot result in a fault.  Similarly, we don't need to worry
1456	 * about espfix64 on the way back to kernel mode.
1457	 */
1458	iretq
1459SYM_CODE_END(asm_exc_nmi)
1460
1461/*
1462 * This handles SYSCALL from 32-bit code.  There is no way to program
1463 * MSRs to fully disable 32-bit SYSCALL.
1464 */
1465SYM_CODE_START(entry_SYSCALL32_ignore)
1466	UNWIND_HINT_END_OF_STACK
1467	ENDBR
1468	mov	$-ENOSYS, %eax
1469	sysretl
1470SYM_CODE_END(entry_SYSCALL32_ignore)
1471
1472.pushsection .text, "ax"
1473	__FUNC_ALIGN
1474SYM_CODE_START_NOALIGN(rewind_stack_and_make_dead)
1475	UNWIND_HINT_FUNC
1476	/* Prevent any naive code from trying to unwind to our caller. */
1477	xorl	%ebp, %ebp
1478
1479	movq	PER_CPU_VAR(pcpu_hot + X86_top_of_stack), %rax
1480	leaq	-PTREGS_SIZE(%rax), %rsp
1481	UNWIND_HINT_REGS
1482
1483	call	make_task_dead
1484SYM_CODE_END(rewind_stack_and_make_dead)
1485.popsection
1486