xref: /linux/arch/x86/entry/entry_64.S (revision 4b660dbd9ee2059850fd30e0df420ca7a38a1856)
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 *  linux/arch/x86_64/entry.S
4 *
5 *  Copyright (C) 1991, 1992  Linus Torvalds
6 *  Copyright (C) 2000, 2001, 2002  Andi Kleen SuSE Labs
7 *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
8 *
9 * entry.S contains the system-call and fault low-level handling routines.
10 *
11 * Some of this is documented in Documentation/arch/x86/entry_64.rst
12 *
13 * A note on terminology:
14 * - iret frame:	Architecture defined interrupt frame from SS to RIP
15 *			at the top of the kernel process stack.
16 *
17 * Some macro usage:
18 * - SYM_FUNC_START/END:Define functions in the symbol table.
19 * - idtentry:		Define exception entry points.
20 */
21#include <linux/export.h>
22#include <linux/linkage.h>
23#include <asm/segment.h>
24#include <asm/cache.h>
25#include <asm/errno.h>
26#include <asm/asm-offsets.h>
27#include <asm/msr.h>
28#include <asm/unistd.h>
29#include <asm/thread_info.h>
30#include <asm/hw_irq.h>
31#include <asm/page_types.h>
32#include <asm/irqflags.h>
33#include <asm/paravirt.h>
34#include <asm/percpu.h>
35#include <asm/asm.h>
36#include <asm/smap.h>
37#include <asm/pgtable_types.h>
38#include <asm/frame.h>
39#include <asm/trapnr.h>
40#include <asm/nospec-branch.h>
41#include <asm/fsgsbase.h>
42#include <linux/err.h>
43
44#include "calling.h"
45
46.code64
47.section .entry.text, "ax"
48
49/*
50 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
51 *
52 * This is the only entry point used for 64-bit system calls.  The
53 * hardware interface is reasonably well designed and the register to
54 * argument mapping Linux uses fits well with the registers that are
55 * available when SYSCALL is used.
56 *
57 * SYSCALL instructions can be found inlined in libc implementations as
58 * well as some other programs and libraries.  There are also a handful
59 * of SYSCALL instructions in the vDSO used, for example, as a
60 * clock_gettimeofday fallback.
61 *
62 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
63 * then loads new ss, cs, and rip from previously programmed MSRs.
64 * rflags gets masked by a value from another MSR (so CLD and CLAC
65 * are not needed). SYSCALL does not save anything on the stack
66 * and does not change rsp.
67 *
68 * Registers on entry:
69 * rax  system call number
70 * rcx  return address
71 * r11  saved rflags (note: r11 is callee-clobbered register in C ABI)
72 * rdi  arg0
73 * rsi  arg1
74 * rdx  arg2
75 * r10  arg3 (needs to be moved to rcx to conform to C ABI)
76 * r8   arg4
77 * r9   arg5
78 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
79 *
80 * Only called from user space.
81 *
82 * When user can change pt_regs->foo always force IRET. That is because
83 * it deals with uncanonical addresses better. SYSRET has trouble
84 * with them due to bugs in both AMD and Intel CPUs.
85 */
86
87SYM_CODE_START(entry_SYSCALL_64)
88	UNWIND_HINT_ENTRY
89	ENDBR
90
91	swapgs
92	/* tss.sp2 is scratch space. */
93	movq	%rsp, PER_CPU_VAR(cpu_tss_rw + TSS_sp2)
94	SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp
95	movq	PER_CPU_VAR(pcpu_hot + X86_top_of_stack), %rsp
96
97SYM_INNER_LABEL(entry_SYSCALL_64_safe_stack, SYM_L_GLOBAL)
98	ANNOTATE_NOENDBR
99
100	/* Construct struct pt_regs on stack */
101	pushq	$__USER_DS				/* pt_regs->ss */
102	pushq	PER_CPU_VAR(cpu_tss_rw + TSS_sp2)	/* pt_regs->sp */
103	pushq	%r11					/* pt_regs->flags */
104	pushq	$__USER_CS				/* pt_regs->cs */
105	pushq	%rcx					/* pt_regs->ip */
106SYM_INNER_LABEL(entry_SYSCALL_64_after_hwframe, SYM_L_GLOBAL)
107	pushq	%rax					/* pt_regs->orig_ax */
108
109	PUSH_AND_CLEAR_REGS rax=$-ENOSYS
110
111	/* IRQs are off. */
112	movq	%rsp, %rdi
113	/* Sign extend the lower 32bit as syscall numbers are treated as int */
114	movslq	%eax, %rsi
115
116	/* clobbers %rax, make sure it is after saving the syscall nr */
117	IBRS_ENTER
118	UNTRAIN_RET
119
120	call	do_syscall_64		/* returns with IRQs disabled */
121
122	/*
123	 * Try to use SYSRET instead of IRET if we're returning to
124	 * a completely clean 64-bit userspace context.  If we're not,
125	 * go to the slow exit path.
126	 * In the Xen PV case we must use iret anyway.
127	 */
128
129	ALTERNATIVE "testb %al, %al; jz swapgs_restore_regs_and_return_to_usermode", \
130		"jmp swapgs_restore_regs_and_return_to_usermode", X86_FEATURE_XENPV
131
132	/*
133	 * We win! This label is here just for ease of understanding
134	 * perf profiles. Nothing jumps here.
135	 */
136syscall_return_via_sysret:
137	IBRS_EXIT
138	POP_REGS pop_rdi=0
139
140	/*
141	 * Now all regs are restored except RSP and RDI.
142	 * Save old stack pointer and switch to trampoline stack.
143	 */
144	movq	%rsp, %rdi
145	movq	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
146	UNWIND_HINT_END_OF_STACK
147
148	pushq	RSP-RDI(%rdi)	/* RSP */
149	pushq	(%rdi)		/* RDI */
150
151	/*
152	 * We are on the trampoline stack.  All regs except RDI are live.
153	 * We can do future final exit work right here.
154	 */
155	STACKLEAK_ERASE_NOCLOBBER
156
157	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
158
159	popq	%rdi
160	popq	%rsp
161SYM_INNER_LABEL(entry_SYSRETQ_unsafe_stack, SYM_L_GLOBAL)
162	ANNOTATE_NOENDBR
163	swapgs
164	CLEAR_CPU_BUFFERS
165	sysretq
166SYM_INNER_LABEL(entry_SYSRETQ_end, SYM_L_GLOBAL)
167	ANNOTATE_NOENDBR
168	int3
169SYM_CODE_END(entry_SYSCALL_64)
170
171/*
172 * %rdi: prev task
173 * %rsi: next task
174 */
175.pushsection .text, "ax"
176SYM_FUNC_START(__switch_to_asm)
177	/*
178	 * Save callee-saved registers
179	 * This must match the order in inactive_task_frame
180	 */
181	pushq	%rbp
182	pushq	%rbx
183	pushq	%r12
184	pushq	%r13
185	pushq	%r14
186	pushq	%r15
187
188	/* switch stack */
189	movq	%rsp, TASK_threadsp(%rdi)
190	movq	TASK_threadsp(%rsi), %rsp
191
192#ifdef CONFIG_STACKPROTECTOR
193	movq	TASK_stack_canary(%rsi), %rbx
194	movq	%rbx, PER_CPU_VAR(fixed_percpu_data + FIXED_stack_canary)
195#endif
196
197	/*
198	 * When switching from a shallower to a deeper call stack
199	 * the RSB may either underflow or use entries populated
200	 * with userspace addresses. On CPUs where those concerns
201	 * exist, overwrite the RSB with entries which capture
202	 * speculative execution to prevent attack.
203	 */
204	FILL_RETURN_BUFFER %r12, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
205
206	/* restore callee-saved registers */
207	popq	%r15
208	popq	%r14
209	popq	%r13
210	popq	%r12
211	popq	%rbx
212	popq	%rbp
213
214	jmp	__switch_to
215SYM_FUNC_END(__switch_to_asm)
216.popsection
217
218/*
219 * A newly forked process directly context switches into this address.
220 *
221 * rax: prev task we switched from
222 * rbx: kernel thread func (NULL for user thread)
223 * r12: kernel thread arg
224 */
225.pushsection .text, "ax"
226SYM_CODE_START(ret_from_fork_asm)
227	/*
228	 * This is the start of the kernel stack; even through there's a
229	 * register set at the top, the regset isn't necessarily coherent
230	 * (consider kthreads) and one cannot unwind further.
231	 *
232	 * This ensures stack unwinds of kernel threads terminate in a known
233	 * good state.
234	 */
235	UNWIND_HINT_END_OF_STACK
236	ANNOTATE_NOENDBR // copy_thread
237	CALL_DEPTH_ACCOUNT
238
239	movq	%rax, %rdi		/* prev */
240	movq	%rsp, %rsi		/* regs */
241	movq	%rbx, %rdx		/* fn */
242	movq	%r12, %rcx		/* fn_arg */
243	call	ret_from_fork
244
245	/*
246	 * Set the stack state to what is expected for the target function
247	 * -- at this point the register set should be a valid user set
248	 * and unwind should work normally.
249	 */
250	UNWIND_HINT_REGS
251
252#ifdef CONFIG_X86_FRED
253	ALTERNATIVE "jmp swapgs_restore_regs_and_return_to_usermode", \
254		    "jmp asm_fred_exit_user", X86_FEATURE_FRED
255#else
256	jmp	swapgs_restore_regs_and_return_to_usermode
257#endif
258SYM_CODE_END(ret_from_fork_asm)
259.popsection
260
261.macro DEBUG_ENTRY_ASSERT_IRQS_OFF
262#ifdef CONFIG_DEBUG_ENTRY
263	pushq %rax
264	SAVE_FLAGS
265	testl $X86_EFLAGS_IF, %eax
266	jz .Lokay_\@
267	ud2
268.Lokay_\@:
269	popq %rax
270#endif
271.endm
272
273SYM_CODE_START(xen_error_entry)
274	ANNOTATE_NOENDBR
275	UNWIND_HINT_FUNC
276	PUSH_AND_CLEAR_REGS save_ret=1
277	ENCODE_FRAME_POINTER 8
278	UNTRAIN_RET_FROM_CALL
279	RET
280SYM_CODE_END(xen_error_entry)
281
282/**
283 * idtentry_body - Macro to emit code calling the C function
284 * @cfunc:		C function to be called
285 * @has_error_code:	Hardware pushed error code on stack
286 */
287.macro idtentry_body cfunc has_error_code:req
288
289	/*
290	 * Call error_entry() and switch to the task stack if from userspace.
291	 *
292	 * When in XENPV, it is already in the task stack, and it can't fault
293	 * for native_iret() nor native_load_gs_index() since XENPV uses its
294	 * own pvops for IRET and load_gs_index().  And it doesn't need to
295	 * switch the CR3.  So it can skip invoking error_entry().
296	 */
297	ALTERNATIVE "call error_entry; movq %rax, %rsp", \
298		    "call xen_error_entry", X86_FEATURE_XENPV
299
300	ENCODE_FRAME_POINTER
301	UNWIND_HINT_REGS
302
303	movq	%rsp, %rdi			/* pt_regs pointer into 1st argument*/
304
305	.if \has_error_code == 1
306		movq	ORIG_RAX(%rsp), %rsi	/* get error code into 2nd argument*/
307		movq	$-1, ORIG_RAX(%rsp)	/* no syscall to restart */
308	.endif
309
310	call	\cfunc
311
312	/* For some configurations \cfunc ends up being a noreturn. */
313	REACHABLE
314
315	jmp	error_return
316.endm
317
318/**
319 * idtentry - Macro to generate entry stubs for simple IDT entries
320 * @vector:		Vector number
321 * @asmsym:		ASM symbol for the entry point
322 * @cfunc:		C function to be called
323 * @has_error_code:	Hardware pushed error code on stack
324 *
325 * The macro emits code to set up the kernel context for straight forward
326 * and simple IDT entries. No IST stack, no paranoid entry checks.
327 */
328.macro idtentry vector asmsym cfunc has_error_code:req
329SYM_CODE_START(\asmsym)
330
331	.if \vector == X86_TRAP_BP
332		/* #BP advances %rip to the next instruction */
333		UNWIND_HINT_IRET_ENTRY offset=\has_error_code*8 signal=0
334	.else
335		UNWIND_HINT_IRET_ENTRY offset=\has_error_code*8
336	.endif
337
338	ENDBR
339	ASM_CLAC
340	cld
341
342	.if \has_error_code == 0
343		pushq	$-1			/* ORIG_RAX: no syscall to restart */
344	.endif
345
346	.if \vector == X86_TRAP_BP
347		/*
348		 * If coming from kernel space, create a 6-word gap to allow the
349		 * int3 handler to emulate a call instruction.
350		 */
351		testb	$3, CS-ORIG_RAX(%rsp)
352		jnz	.Lfrom_usermode_no_gap_\@
353		.rept	6
354		pushq	5*8(%rsp)
355		.endr
356		UNWIND_HINT_IRET_REGS offset=8
357.Lfrom_usermode_no_gap_\@:
358	.endif
359
360	idtentry_body \cfunc \has_error_code
361
362_ASM_NOKPROBE(\asmsym)
363SYM_CODE_END(\asmsym)
364.endm
365
366/*
367 * Interrupt entry/exit.
368 *
369 + The interrupt stubs push (vector) onto the stack, which is the error_code
370 * position of idtentry exceptions, and jump to one of the two idtentry points
371 * (common/spurious).
372 *
373 * common_interrupt is a hotpath, align it to a cache line
374 */
375.macro idtentry_irq vector cfunc
376	.p2align CONFIG_X86_L1_CACHE_SHIFT
377	idtentry \vector asm_\cfunc \cfunc has_error_code=1
378.endm
379
380/**
381 * idtentry_mce_db - Macro to generate entry stubs for #MC and #DB
382 * @vector:		Vector number
383 * @asmsym:		ASM symbol for the entry point
384 * @cfunc:		C function to be called
385 *
386 * The macro emits code to set up the kernel context for #MC and #DB
387 *
388 * If the entry comes from user space it uses the normal entry path
389 * including the return to user space work and preemption checks on
390 * exit.
391 *
392 * If hits in kernel mode then it needs to go through the paranoid
393 * entry as the exception can hit any random state. No preemption
394 * check on exit to keep the paranoid path simple.
395 */
396.macro idtentry_mce_db vector asmsym cfunc
397SYM_CODE_START(\asmsym)
398	UNWIND_HINT_IRET_ENTRY
399	ENDBR
400	ASM_CLAC
401	cld
402
403	pushq	$-1			/* ORIG_RAX: no syscall to restart */
404
405	/*
406	 * If the entry is from userspace, switch stacks and treat it as
407	 * a normal entry.
408	 */
409	testb	$3, CS-ORIG_RAX(%rsp)
410	jnz	.Lfrom_usermode_switch_stack_\@
411
412	/* paranoid_entry returns GS information for paranoid_exit in EBX. */
413	call	paranoid_entry
414
415	UNWIND_HINT_REGS
416
417	movq	%rsp, %rdi		/* pt_regs pointer */
418
419	call	\cfunc
420
421	jmp	paranoid_exit
422
423	/* Switch to the regular task stack and use the noist entry point */
424.Lfrom_usermode_switch_stack_\@:
425	idtentry_body noist_\cfunc, has_error_code=0
426
427_ASM_NOKPROBE(\asmsym)
428SYM_CODE_END(\asmsym)
429.endm
430
431#ifdef CONFIG_AMD_MEM_ENCRYPT
432/**
433 * idtentry_vc - Macro to generate entry stub for #VC
434 * @vector:		Vector number
435 * @asmsym:		ASM symbol for the entry point
436 * @cfunc:		C function to be called
437 *
438 * The macro emits code to set up the kernel context for #VC. The #VC handler
439 * runs on an IST stack and needs to be able to cause nested #VC exceptions.
440 *
441 * To make this work the #VC entry code tries its best to pretend it doesn't use
442 * an IST stack by switching to the task stack if coming from user-space (which
443 * includes early SYSCALL entry path) or back to the stack in the IRET frame if
444 * entered from kernel-mode.
445 *
446 * If entered from kernel-mode the return stack is validated first, and if it is
447 * not safe to use (e.g. because it points to the entry stack) the #VC handler
448 * will switch to a fall-back stack (VC2) and call a special handler function.
449 *
450 * The macro is only used for one vector, but it is planned to be extended in
451 * the future for the #HV exception.
452 */
453.macro idtentry_vc vector asmsym cfunc
454SYM_CODE_START(\asmsym)
455	UNWIND_HINT_IRET_ENTRY
456	ENDBR
457	ASM_CLAC
458	cld
459
460	/*
461	 * If the entry is from userspace, switch stacks and treat it as
462	 * a normal entry.
463	 */
464	testb	$3, CS-ORIG_RAX(%rsp)
465	jnz	.Lfrom_usermode_switch_stack_\@
466
467	/*
468	 * paranoid_entry returns SWAPGS flag for paranoid_exit in EBX.
469	 * EBX == 0 -> SWAPGS, EBX == 1 -> no SWAPGS
470	 */
471	call	paranoid_entry
472
473	UNWIND_HINT_REGS
474
475	/*
476	 * Switch off the IST stack to make it free for nested exceptions. The
477	 * vc_switch_off_ist() function will switch back to the interrupted
478	 * stack if it is safe to do so. If not it switches to the VC fall-back
479	 * stack.
480	 */
481	movq	%rsp, %rdi		/* pt_regs pointer */
482	call	vc_switch_off_ist
483	movq	%rax, %rsp		/* Switch to new stack */
484
485	ENCODE_FRAME_POINTER
486	UNWIND_HINT_REGS
487
488	/* Update pt_regs */
489	movq	ORIG_RAX(%rsp), %rsi	/* get error code into 2nd argument*/
490	movq	$-1, ORIG_RAX(%rsp)	/* no syscall to restart */
491
492	movq	%rsp, %rdi		/* pt_regs pointer */
493
494	call	kernel_\cfunc
495
496	/*
497	 * No need to switch back to the IST stack. The current stack is either
498	 * identical to the stack in the IRET frame or the VC fall-back stack,
499	 * so it is definitely mapped even with PTI enabled.
500	 */
501	jmp	paranoid_exit
502
503	/* Switch to the regular task stack */
504.Lfrom_usermode_switch_stack_\@:
505	idtentry_body user_\cfunc, has_error_code=1
506
507_ASM_NOKPROBE(\asmsym)
508SYM_CODE_END(\asmsym)
509.endm
510#endif
511
512/*
513 * Double fault entry. Straight paranoid. No checks from which context
514 * this comes because for the espfix induced #DF this would do the wrong
515 * thing.
516 */
517.macro idtentry_df vector asmsym cfunc
518SYM_CODE_START(\asmsym)
519	UNWIND_HINT_IRET_ENTRY offset=8
520	ENDBR
521	ASM_CLAC
522	cld
523
524	/* paranoid_entry returns GS information for paranoid_exit in EBX. */
525	call	paranoid_entry
526	UNWIND_HINT_REGS
527
528	movq	%rsp, %rdi		/* pt_regs pointer into first argument */
529	movq	ORIG_RAX(%rsp), %rsi	/* get error code into 2nd argument*/
530	movq	$-1, ORIG_RAX(%rsp)	/* no syscall to restart */
531	call	\cfunc
532
533	/* For some configurations \cfunc ends up being a noreturn. */
534	REACHABLE
535
536	jmp	paranoid_exit
537
538_ASM_NOKPROBE(\asmsym)
539SYM_CODE_END(\asmsym)
540.endm
541
542/*
543 * Include the defines which emit the idt entries which are shared
544 * shared between 32 and 64 bit and emit the __irqentry_text_* markers
545 * so the stacktrace boundary checks work.
546 */
547	__ALIGN
548	.globl __irqentry_text_start
549__irqentry_text_start:
550
551#include <asm/idtentry.h>
552
553	__ALIGN
554	.globl __irqentry_text_end
555__irqentry_text_end:
556	ANNOTATE_NOENDBR
557
558SYM_CODE_START_LOCAL(common_interrupt_return)
559SYM_INNER_LABEL(swapgs_restore_regs_and_return_to_usermode, SYM_L_GLOBAL)
560	IBRS_EXIT
561#ifdef CONFIG_XEN_PV
562	ALTERNATIVE "", "jmp xenpv_restore_regs_and_return_to_usermode", X86_FEATURE_XENPV
563#endif
564#ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION
565	ALTERNATIVE "", "jmp .Lpti_restore_regs_and_return_to_usermode", X86_FEATURE_PTI
566#endif
567
568	STACKLEAK_ERASE
569	POP_REGS
570	add	$8, %rsp	/* orig_ax */
571	UNWIND_HINT_IRET_REGS
572
573.Lswapgs_and_iret:
574	swapgs
575	CLEAR_CPU_BUFFERS
576	/* Assert that the IRET frame indicates user mode. */
577	testb	$3, 8(%rsp)
578	jnz	.Lnative_iret
579	ud2
580
581#ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION
582.Lpti_restore_regs_and_return_to_usermode:
583	POP_REGS pop_rdi=0
584
585	/*
586	 * The stack is now user RDI, orig_ax, RIP, CS, EFLAGS, RSP, SS.
587	 * Save old stack pointer and switch to trampoline stack.
588	 */
589	movq	%rsp, %rdi
590	movq	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
591	UNWIND_HINT_END_OF_STACK
592
593	/* Copy the IRET frame to the trampoline stack. */
594	pushq	6*8(%rdi)	/* SS */
595	pushq	5*8(%rdi)	/* RSP */
596	pushq	4*8(%rdi)	/* EFLAGS */
597	pushq	3*8(%rdi)	/* CS */
598	pushq	2*8(%rdi)	/* RIP */
599
600	/* Push user RDI on the trampoline stack. */
601	pushq	(%rdi)
602
603	/*
604	 * We are on the trampoline stack.  All regs except RDI are live.
605	 * We can do future final exit work right here.
606	 */
607	STACKLEAK_ERASE_NOCLOBBER
608
609	push	%rax
610	SWITCH_TO_USER_CR3 scratch_reg=%rdi scratch_reg2=%rax
611	pop	%rax
612
613	/* Restore RDI. */
614	popq	%rdi
615	jmp	.Lswapgs_and_iret
616#endif
617
618SYM_INNER_LABEL(restore_regs_and_return_to_kernel, SYM_L_GLOBAL)
619#ifdef CONFIG_DEBUG_ENTRY
620	/* Assert that pt_regs indicates kernel mode. */
621	testb	$3, CS(%rsp)
622	jz	1f
623	ud2
6241:
625#endif
626	POP_REGS
627	addq	$8, %rsp	/* skip regs->orig_ax */
628	/*
629	 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization
630	 * when returning from IPI handler.
631	 */
632#ifdef CONFIG_XEN_PV
633SYM_INNER_LABEL(early_xen_iret_patch, SYM_L_GLOBAL)
634	ANNOTATE_NOENDBR
635	.byte 0xe9
636	.long .Lnative_iret - (. + 4)
637#endif
638
639.Lnative_iret:
640	UNWIND_HINT_IRET_REGS
641	/*
642	 * Are we returning to a stack segment from the LDT?  Note: in
643	 * 64-bit mode SS:RSP on the exception stack is always valid.
644	 */
645#ifdef CONFIG_X86_ESPFIX64
646	testb	$4, (SS-RIP)(%rsp)
647	jnz	native_irq_return_ldt
648#endif
649
650SYM_INNER_LABEL(native_irq_return_iret, SYM_L_GLOBAL)
651	ANNOTATE_NOENDBR // exc_double_fault
652	/*
653	 * This may fault.  Non-paranoid faults on return to userspace are
654	 * handled by fixup_bad_iret.  These include #SS, #GP, and #NP.
655	 * Double-faults due to espfix64 are handled in exc_double_fault.
656	 * Other faults here are fatal.
657	 */
658	iretq
659
660#ifdef CONFIG_X86_ESPFIX64
661native_irq_return_ldt:
662	/*
663	 * We are running with user GSBASE.  All GPRs contain their user
664	 * values.  We have a percpu ESPFIX stack that is eight slots
665	 * long (see ESPFIX_STACK_SIZE).  espfix_waddr points to the bottom
666	 * of the ESPFIX stack.
667	 *
668	 * We clobber RAX and RDI in this code.  We stash RDI on the
669	 * normal stack and RAX on the ESPFIX stack.
670	 *
671	 * The ESPFIX stack layout we set up looks like this:
672	 *
673	 * --- top of ESPFIX stack ---
674	 * SS
675	 * RSP
676	 * RFLAGS
677	 * CS
678	 * RIP  <-- RSP points here when we're done
679	 * RAX  <-- espfix_waddr points here
680	 * --- bottom of ESPFIX stack ---
681	 */
682
683	pushq	%rdi				/* Stash user RDI */
684	swapgs					/* to kernel GS */
685	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi	/* to kernel CR3 */
686
687	movq	PER_CPU_VAR(espfix_waddr), %rdi
688	movq	%rax, (0*8)(%rdi)		/* user RAX */
689	movq	(1*8)(%rsp), %rax		/* user RIP */
690	movq	%rax, (1*8)(%rdi)
691	movq	(2*8)(%rsp), %rax		/* user CS */
692	movq	%rax, (2*8)(%rdi)
693	movq	(3*8)(%rsp), %rax		/* user RFLAGS */
694	movq	%rax, (3*8)(%rdi)
695	movq	(5*8)(%rsp), %rax		/* user SS */
696	movq	%rax, (5*8)(%rdi)
697	movq	(4*8)(%rsp), %rax		/* user RSP */
698	movq	%rax, (4*8)(%rdi)
699	/* Now RAX == RSP. */
700
701	andl	$0xffff0000, %eax		/* RAX = (RSP & 0xffff0000) */
702
703	/*
704	 * espfix_stack[31:16] == 0.  The page tables are set up such that
705	 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
706	 * espfix_waddr for any X.  That is, there are 65536 RO aliases of
707	 * the same page.  Set up RSP so that RSP[31:16] contains the
708	 * respective 16 bits of the /userspace/ RSP and RSP nonetheless
709	 * still points to an RO alias of the ESPFIX stack.
710	 */
711	orq	PER_CPU_VAR(espfix_stack), %rax
712
713	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
714	swapgs					/* to user GS */
715	popq	%rdi				/* Restore user RDI */
716
717	movq	%rax, %rsp
718	UNWIND_HINT_IRET_REGS offset=8
719
720	/*
721	 * At this point, we cannot write to the stack any more, but we can
722	 * still read.
723	 */
724	popq	%rax				/* Restore user RAX */
725
726	CLEAR_CPU_BUFFERS
727
728	/*
729	 * RSP now points to an ordinary IRET frame, except that the page
730	 * is read-only and RSP[31:16] are preloaded with the userspace
731	 * values.  We can now IRET back to userspace.
732	 */
733	jmp	native_irq_return_iret
734#endif
735SYM_CODE_END(common_interrupt_return)
736_ASM_NOKPROBE(common_interrupt_return)
737
738/*
739 * Reload gs selector with exception handling
740 *  di:  new selector
741 *
742 * Is in entry.text as it shouldn't be instrumented.
743 */
744SYM_FUNC_START(asm_load_gs_index)
745	FRAME_BEGIN
746	swapgs
747.Lgs_change:
748	ANNOTATE_NOENDBR // error_entry
749	movl	%edi, %gs
7502:	ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
751	swapgs
752	FRAME_END
753	RET
754
755	/* running with kernelgs */
756.Lbad_gs:
757	swapgs					/* switch back to user gs */
758.macro ZAP_GS
759	/* This can't be a string because the preprocessor needs to see it. */
760	movl $__USER_DS, %eax
761	movl %eax, %gs
762.endm
763	ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
764	xorl	%eax, %eax
765	movl	%eax, %gs
766	jmp	2b
767
768	_ASM_EXTABLE(.Lgs_change, .Lbad_gs)
769
770SYM_FUNC_END(asm_load_gs_index)
771EXPORT_SYMBOL(asm_load_gs_index)
772
773#ifdef CONFIG_XEN_PV
774/*
775 * A note on the "critical region" in our callback handler.
776 * We want to avoid stacking callback handlers due to events occurring
777 * during handling of the last event. To do this, we keep events disabled
778 * until we've done all processing. HOWEVER, we must enable events before
779 * popping the stack frame (can't be done atomically) and so it would still
780 * be possible to get enough handler activations to overflow the stack.
781 * Although unlikely, bugs of that kind are hard to track down, so we'd
782 * like to avoid the possibility.
783 * So, on entry to the handler we detect whether we interrupted an
784 * existing activation in its critical region -- if so, we pop the current
785 * activation and restart the handler using the previous one.
786 *
787 * C calling convention: exc_xen_hypervisor_callback(struct *pt_regs)
788 */
789	__FUNC_ALIGN
790SYM_CODE_START_LOCAL_NOALIGN(exc_xen_hypervisor_callback)
791
792/*
793 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
794 * see the correct pointer to the pt_regs
795 */
796	UNWIND_HINT_FUNC
797	movq	%rdi, %rsp			/* we don't return, adjust the stack frame */
798	UNWIND_HINT_REGS
799
800	call	xen_pv_evtchn_do_upcall
801
802	jmp	error_return
803SYM_CODE_END(exc_xen_hypervisor_callback)
804
805/*
806 * Hypervisor uses this for application faults while it executes.
807 * We get here for two reasons:
808 *  1. Fault while reloading DS, ES, FS or GS
809 *  2. Fault while executing IRET
810 * Category 1 we do not need to fix up as Xen has already reloaded all segment
811 * registers that could be reloaded and zeroed the others.
812 * Category 2 we fix up by killing the current process. We cannot use the
813 * normal Linux return path in this case because if we use the IRET hypercall
814 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
815 * We distinguish between categories by comparing each saved segment register
816 * with its current contents: any discrepancy means we in category 1.
817 */
818	__FUNC_ALIGN
819SYM_CODE_START_NOALIGN(xen_failsafe_callback)
820	UNWIND_HINT_UNDEFINED
821	ENDBR
822	movl	%ds, %ecx
823	cmpw	%cx, 0x10(%rsp)
824	jne	1f
825	movl	%es, %ecx
826	cmpw	%cx, 0x18(%rsp)
827	jne	1f
828	movl	%fs, %ecx
829	cmpw	%cx, 0x20(%rsp)
830	jne	1f
831	movl	%gs, %ecx
832	cmpw	%cx, 0x28(%rsp)
833	jne	1f
834	/* All segments match their saved values => Category 2 (Bad IRET). */
835	movq	(%rsp), %rcx
836	movq	8(%rsp), %r11
837	addq	$0x30, %rsp
838	pushq	$0				/* RIP */
839	UNWIND_HINT_IRET_REGS offset=8
840	jmp	asm_exc_general_protection
8411:	/* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
842	movq	(%rsp), %rcx
843	movq	8(%rsp), %r11
844	addq	$0x30, %rsp
845	UNWIND_HINT_IRET_REGS
846	pushq	$-1 /* orig_ax = -1 => not a system call */
847	PUSH_AND_CLEAR_REGS
848	ENCODE_FRAME_POINTER
849	jmp	error_return
850SYM_CODE_END(xen_failsafe_callback)
851#endif /* CONFIG_XEN_PV */
852
853/*
854 * Save all registers in pt_regs. Return GSBASE related information
855 * in EBX depending on the availability of the FSGSBASE instructions:
856 *
857 * FSGSBASE	R/EBX
858 *     N        0 -> SWAPGS on exit
859 *              1 -> no SWAPGS on exit
860 *
861 *     Y        GSBASE value at entry, must be restored in paranoid_exit
862 *
863 * R14 - old CR3
864 * R15 - old SPEC_CTRL
865 */
866SYM_CODE_START(paranoid_entry)
867	ANNOTATE_NOENDBR
868	UNWIND_HINT_FUNC
869	PUSH_AND_CLEAR_REGS save_ret=1
870	ENCODE_FRAME_POINTER 8
871
872	/*
873	 * Always stash CR3 in %r14.  This value will be restored,
874	 * verbatim, at exit.  Needed if paranoid_entry interrupted
875	 * another entry that already switched to the user CR3 value
876	 * but has not yet returned to userspace.
877	 *
878	 * This is also why CS (stashed in the "iret frame" by the
879	 * hardware at entry) can not be used: this may be a return
880	 * to kernel code, but with a user CR3 value.
881	 *
882	 * Switching CR3 does not depend on kernel GSBASE so it can
883	 * be done before switching to the kernel GSBASE. This is
884	 * required for FSGSBASE because the kernel GSBASE has to
885	 * be retrieved from a kernel internal table.
886	 */
887	SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg=%rax save_reg=%r14
888
889	/*
890	 * Handling GSBASE depends on the availability of FSGSBASE.
891	 *
892	 * Without FSGSBASE the kernel enforces that negative GSBASE
893	 * values indicate kernel GSBASE. With FSGSBASE no assumptions
894	 * can be made about the GSBASE value when entering from user
895	 * space.
896	 */
897	ALTERNATIVE "jmp .Lparanoid_entry_checkgs", "", X86_FEATURE_FSGSBASE
898
899	/*
900	 * Read the current GSBASE and store it in %rbx unconditionally,
901	 * retrieve and set the current CPUs kernel GSBASE. The stored value
902	 * has to be restored in paranoid_exit unconditionally.
903	 *
904	 * The unconditional write to GS base below ensures that no subsequent
905	 * loads based on a mispredicted GS base can happen, therefore no LFENCE
906	 * is needed here.
907	 */
908	SAVE_AND_SET_GSBASE scratch_reg=%rax save_reg=%rbx
909	jmp .Lparanoid_gsbase_done
910
911.Lparanoid_entry_checkgs:
912	/* EBX = 1 -> kernel GSBASE active, no restore required */
913	movl	$1, %ebx
914
915	/*
916	 * The kernel-enforced convention is a negative GSBASE indicates
917	 * a kernel value. No SWAPGS needed on entry and exit.
918	 */
919	movl	$MSR_GS_BASE, %ecx
920	rdmsr
921	testl	%edx, %edx
922	js	.Lparanoid_kernel_gsbase
923
924	/* EBX = 0 -> SWAPGS required on exit */
925	xorl	%ebx, %ebx
926	swapgs
927.Lparanoid_kernel_gsbase:
928	FENCE_SWAPGS_KERNEL_ENTRY
929.Lparanoid_gsbase_done:
930
931	/*
932	 * Once we have CR3 and %GS setup save and set SPEC_CTRL. Just like
933	 * CR3 above, keep the old value in a callee saved register.
934	 */
935	IBRS_ENTER save_reg=%r15
936	UNTRAIN_RET_FROM_CALL
937
938	RET
939SYM_CODE_END(paranoid_entry)
940
941/*
942 * "Paranoid" exit path from exception stack.  This is invoked
943 * only on return from non-NMI IST interrupts that came
944 * from kernel space.
945 *
946 * We may be returning to very strange contexts (e.g. very early
947 * in syscall entry), so checking for preemption here would
948 * be complicated.  Fortunately, there's no good reason to try
949 * to handle preemption here.
950 *
951 * R/EBX contains the GSBASE related information depending on the
952 * availability of the FSGSBASE instructions:
953 *
954 * FSGSBASE	R/EBX
955 *     N        0 -> SWAPGS on exit
956 *              1 -> no SWAPGS on exit
957 *
958 *     Y        User space GSBASE, must be restored unconditionally
959 *
960 * R14 - old CR3
961 * R15 - old SPEC_CTRL
962 */
963SYM_CODE_START_LOCAL(paranoid_exit)
964	UNWIND_HINT_REGS
965
966	/*
967	 * Must restore IBRS state before both CR3 and %GS since we need access
968	 * to the per-CPU x86_spec_ctrl_shadow variable.
969	 */
970	IBRS_EXIT save_reg=%r15
971
972	/*
973	 * The order of operations is important. PARANOID_RESTORE_CR3 requires
974	 * kernel GSBASE.
975	 *
976	 * NB to anyone to try to optimize this code: this code does
977	 * not execute at all for exceptions from user mode. Those
978	 * exceptions go through error_return instead.
979	 */
980	PARANOID_RESTORE_CR3 scratch_reg=%rax save_reg=%r14
981
982	/* Handle the three GSBASE cases */
983	ALTERNATIVE "jmp .Lparanoid_exit_checkgs", "", X86_FEATURE_FSGSBASE
984
985	/* With FSGSBASE enabled, unconditionally restore GSBASE */
986	wrgsbase	%rbx
987	jmp		restore_regs_and_return_to_kernel
988
989.Lparanoid_exit_checkgs:
990	/* On non-FSGSBASE systems, conditionally do SWAPGS */
991	testl		%ebx, %ebx
992	jnz		restore_regs_and_return_to_kernel
993
994	/* We are returning to a context with user GSBASE */
995	swapgs
996	jmp		restore_regs_and_return_to_kernel
997SYM_CODE_END(paranoid_exit)
998
999/*
1000 * Switch GS and CR3 if needed.
1001 */
1002SYM_CODE_START(error_entry)
1003	ANNOTATE_NOENDBR
1004	UNWIND_HINT_FUNC
1005
1006	PUSH_AND_CLEAR_REGS save_ret=1
1007	ENCODE_FRAME_POINTER 8
1008
1009	testb	$3, CS+8(%rsp)
1010	jz	.Lerror_kernelspace
1011
1012	/*
1013	 * We entered from user mode or we're pretending to have entered
1014	 * from user mode due to an IRET fault.
1015	 */
1016	swapgs
1017	FENCE_SWAPGS_USER_ENTRY
1018	/* We have user CR3.  Change to kernel CR3. */
1019	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1020	IBRS_ENTER
1021	UNTRAIN_RET_FROM_CALL
1022
1023	leaq	8(%rsp), %rdi			/* arg0 = pt_regs pointer */
1024	/* Put us onto the real thread stack. */
1025	jmp	sync_regs
1026
1027	/*
1028	 * There are two places in the kernel that can potentially fault with
1029	 * usergs. Handle them here.  B stepping K8s sometimes report a
1030	 * truncated RIP for IRET exceptions returning to compat mode. Check
1031	 * for these here too.
1032	 */
1033.Lerror_kernelspace:
1034	leaq	native_irq_return_iret(%rip), %rcx
1035	cmpq	%rcx, RIP+8(%rsp)
1036	je	.Lerror_bad_iret
1037	movl	%ecx, %eax			/* zero extend */
1038	cmpq	%rax, RIP+8(%rsp)
1039	je	.Lbstep_iret
1040	cmpq	$.Lgs_change, RIP+8(%rsp)
1041	jne	.Lerror_entry_done_lfence
1042
1043	/*
1044	 * hack: .Lgs_change can fail with user gsbase.  If this happens, fix up
1045	 * gsbase and proceed.  We'll fix up the exception and land in
1046	 * .Lgs_change's error handler with kernel gsbase.
1047	 */
1048	swapgs
1049
1050	/*
1051	 * Issue an LFENCE to prevent GS speculation, regardless of whether it is a
1052	 * kernel or user gsbase.
1053	 */
1054.Lerror_entry_done_lfence:
1055	FENCE_SWAPGS_KERNEL_ENTRY
1056	CALL_DEPTH_ACCOUNT
1057	leaq	8(%rsp), %rax			/* return pt_regs pointer */
1058	VALIDATE_UNRET_END
1059	RET
1060
1061.Lbstep_iret:
1062	/* Fix truncated RIP */
1063	movq	%rcx, RIP+8(%rsp)
1064	/* fall through */
1065
1066.Lerror_bad_iret:
1067	/*
1068	 * We came from an IRET to user mode, so we have user
1069	 * gsbase and CR3.  Switch to kernel gsbase and CR3:
1070	 */
1071	swapgs
1072	FENCE_SWAPGS_USER_ENTRY
1073	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1074	IBRS_ENTER
1075	UNTRAIN_RET_FROM_CALL
1076
1077	/*
1078	 * Pretend that the exception came from user mode: set up pt_regs
1079	 * as if we faulted immediately after IRET.
1080	 */
1081	leaq	8(%rsp), %rdi			/* arg0 = pt_regs pointer */
1082	call	fixup_bad_iret
1083	mov	%rax, %rdi
1084	jmp	sync_regs
1085SYM_CODE_END(error_entry)
1086
1087SYM_CODE_START_LOCAL(error_return)
1088	UNWIND_HINT_REGS
1089	DEBUG_ENTRY_ASSERT_IRQS_OFF
1090	testb	$3, CS(%rsp)
1091	jz	restore_regs_and_return_to_kernel
1092	jmp	swapgs_restore_regs_and_return_to_usermode
1093SYM_CODE_END(error_return)
1094
1095/*
1096 * Runs on exception stack.  Xen PV does not go through this path at all,
1097 * so we can use real assembly here.
1098 *
1099 * Registers:
1100 *	%r14: Used to save/restore the CR3 of the interrupted context
1101 *	      when MITIGATION_PAGE_TABLE_ISOLATION is in use.  Do not clobber.
1102 */
1103SYM_CODE_START(asm_exc_nmi)
1104	UNWIND_HINT_IRET_ENTRY
1105	ENDBR
1106
1107	/*
1108	 * We allow breakpoints in NMIs. If a breakpoint occurs, then
1109	 * the iretq it performs will take us out of NMI context.
1110	 * This means that we can have nested NMIs where the next
1111	 * NMI is using the top of the stack of the previous NMI. We
1112	 * can't let it execute because the nested NMI will corrupt the
1113	 * stack of the previous NMI. NMI handlers are not re-entrant
1114	 * anyway.
1115	 *
1116	 * To handle this case we do the following:
1117	 *  Check a special location on the stack that contains a
1118	 *  variable that is set when NMIs are executing.
1119	 *  The interrupted task's stack is also checked to see if it
1120	 *  is an NMI stack.
1121	 *  If the variable is not set and the stack is not the NMI
1122	 *  stack then:
1123	 *    o Set the special variable on the stack
1124	 *    o Copy the interrupt frame into an "outermost" location on the
1125	 *      stack
1126	 *    o Copy the interrupt frame into an "iret" location on the stack
1127	 *    o Continue processing the NMI
1128	 *  If the variable is set or the previous stack is the NMI stack:
1129	 *    o Modify the "iret" location to jump to the repeat_nmi
1130	 *    o return back to the first NMI
1131	 *
1132	 * Now on exit of the first NMI, we first clear the stack variable
1133	 * The NMI stack will tell any nested NMIs at that point that it is
1134	 * nested. Then we pop the stack normally with iret, and if there was
1135	 * a nested NMI that updated the copy interrupt stack frame, a
1136	 * jump will be made to the repeat_nmi code that will handle the second
1137	 * NMI.
1138	 *
1139	 * However, espfix prevents us from directly returning to userspace
1140	 * with a single IRET instruction.  Similarly, IRET to user mode
1141	 * can fault.  We therefore handle NMIs from user space like
1142	 * other IST entries.
1143	 */
1144
1145	ASM_CLAC
1146	cld
1147
1148	/* Use %rdx as our temp variable throughout */
1149	pushq	%rdx
1150
1151	testb	$3, CS-RIP+8(%rsp)
1152	jz	.Lnmi_from_kernel
1153
1154	/*
1155	 * NMI from user mode.  We need to run on the thread stack, but we
1156	 * can't go through the normal entry paths: NMIs are masked, and
1157	 * we don't want to enable interrupts, because then we'll end
1158	 * up in an awkward situation in which IRQs are on but NMIs
1159	 * are off.
1160	 *
1161	 * We also must not push anything to the stack before switching
1162	 * stacks lest we corrupt the "NMI executing" variable.
1163	 */
1164
1165	swapgs
1166	FENCE_SWAPGS_USER_ENTRY
1167	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdx
1168	movq	%rsp, %rdx
1169	movq	PER_CPU_VAR(pcpu_hot + X86_top_of_stack), %rsp
1170	UNWIND_HINT_IRET_REGS base=%rdx offset=8
1171	pushq	5*8(%rdx)	/* pt_regs->ss */
1172	pushq	4*8(%rdx)	/* pt_regs->rsp */
1173	pushq	3*8(%rdx)	/* pt_regs->flags */
1174	pushq	2*8(%rdx)	/* pt_regs->cs */
1175	pushq	1*8(%rdx)	/* pt_regs->rip */
1176	UNWIND_HINT_IRET_REGS
1177	pushq   $-1		/* pt_regs->orig_ax */
1178	PUSH_AND_CLEAR_REGS rdx=(%rdx)
1179	ENCODE_FRAME_POINTER
1180
1181	IBRS_ENTER
1182	UNTRAIN_RET
1183
1184	/*
1185	 * At this point we no longer need to worry about stack damage
1186	 * due to nesting -- we're on the normal thread stack and we're
1187	 * done with the NMI stack.
1188	 */
1189
1190	movq	%rsp, %rdi
1191	call	exc_nmi
1192
1193	/*
1194	 * Return back to user mode.  We must *not* do the normal exit
1195	 * work, because we don't want to enable interrupts.
1196	 */
1197	jmp	swapgs_restore_regs_and_return_to_usermode
1198
1199.Lnmi_from_kernel:
1200	/*
1201	 * Here's what our stack frame will look like:
1202	 * +---------------------------------------------------------+
1203	 * | original SS                                             |
1204	 * | original Return RSP                                     |
1205	 * | original RFLAGS                                         |
1206	 * | original CS                                             |
1207	 * | original RIP                                            |
1208	 * +---------------------------------------------------------+
1209	 * | temp storage for rdx                                    |
1210	 * +---------------------------------------------------------+
1211	 * | "NMI executing" variable                                |
1212	 * +---------------------------------------------------------+
1213	 * | iret SS          } Copied from "outermost" frame        |
1214	 * | iret Return RSP  } on each loop iteration; overwritten  |
1215	 * | iret RFLAGS      } by a nested NMI to force another     |
1216	 * | iret CS          } iteration if needed.                 |
1217	 * | iret RIP         }                                      |
1218	 * +---------------------------------------------------------+
1219	 * | outermost SS          } initialized in first_nmi;       |
1220	 * | outermost Return RSP  } will not be changed before      |
1221	 * | outermost RFLAGS      } NMI processing is done.         |
1222	 * | outermost CS          } Copied to "iret" frame on each  |
1223	 * | outermost RIP         } iteration.                      |
1224	 * +---------------------------------------------------------+
1225	 * | pt_regs                                                 |
1226	 * +---------------------------------------------------------+
1227	 *
1228	 * The "original" frame is used by hardware.  Before re-enabling
1229	 * NMIs, we need to be done with it, and we need to leave enough
1230	 * space for the asm code here.
1231	 *
1232	 * We return by executing IRET while RSP points to the "iret" frame.
1233	 * That will either return for real or it will loop back into NMI
1234	 * processing.
1235	 *
1236	 * The "outermost" frame is copied to the "iret" frame on each
1237	 * iteration of the loop, so each iteration starts with the "iret"
1238	 * frame pointing to the final return target.
1239	 */
1240
1241	/*
1242	 * Determine whether we're a nested NMI.
1243	 *
1244	 * If we interrupted kernel code between repeat_nmi and
1245	 * end_repeat_nmi, then we are a nested NMI.  We must not
1246	 * modify the "iret" frame because it's being written by
1247	 * the outer NMI.  That's okay; the outer NMI handler is
1248	 * about to call exc_nmi() anyway, so we can just resume
1249	 * the outer NMI.
1250	 */
1251
1252	movq	$repeat_nmi, %rdx
1253	cmpq	8(%rsp), %rdx
1254	ja	1f
1255	movq	$end_repeat_nmi, %rdx
1256	cmpq	8(%rsp), %rdx
1257	ja	nested_nmi_out
12581:
1259
1260	/*
1261	 * Now check "NMI executing".  If it's set, then we're nested.
1262	 * This will not detect if we interrupted an outer NMI just
1263	 * before IRET.
1264	 */
1265	cmpl	$1, -8(%rsp)
1266	je	nested_nmi
1267
1268	/*
1269	 * Now test if the previous stack was an NMI stack.  This covers
1270	 * the case where we interrupt an outer NMI after it clears
1271	 * "NMI executing" but before IRET.  We need to be careful, though:
1272	 * there is one case in which RSP could point to the NMI stack
1273	 * despite there being no NMI active: naughty userspace controls
1274	 * RSP at the very beginning of the SYSCALL targets.  We can
1275	 * pull a fast one on naughty userspace, though: we program
1276	 * SYSCALL to mask DF, so userspace cannot cause DF to be set
1277	 * if it controls the kernel's RSP.  We set DF before we clear
1278	 * "NMI executing".
1279	 */
1280	lea	6*8(%rsp), %rdx
1281	/* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
1282	cmpq	%rdx, 4*8(%rsp)
1283	/* If the stack pointer is above the NMI stack, this is a normal NMI */
1284	ja	first_nmi
1285
1286	subq	$EXCEPTION_STKSZ, %rdx
1287	cmpq	%rdx, 4*8(%rsp)
1288	/* If it is below the NMI stack, it is a normal NMI */
1289	jb	first_nmi
1290
1291	/* Ah, it is within the NMI stack. */
1292
1293	testb	$(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
1294	jz	first_nmi	/* RSP was user controlled. */
1295
1296	/* This is a nested NMI. */
1297
1298nested_nmi:
1299	/*
1300	 * Modify the "iret" frame to point to repeat_nmi, forcing another
1301	 * iteration of NMI handling.
1302	 */
1303	subq	$8, %rsp
1304	leaq	-10*8(%rsp), %rdx
1305	pushq	$__KERNEL_DS
1306	pushq	%rdx
1307	pushfq
1308	pushq	$__KERNEL_CS
1309	pushq	$repeat_nmi
1310
1311	/* Put stack back */
1312	addq	$(6*8), %rsp
1313
1314nested_nmi_out:
1315	popq	%rdx
1316
1317	/* We are returning to kernel mode, so this cannot result in a fault. */
1318	iretq
1319
1320first_nmi:
1321	/* Restore rdx. */
1322	movq	(%rsp), %rdx
1323
1324	/* Make room for "NMI executing". */
1325	pushq	$0
1326
1327	/* Leave room for the "iret" frame */
1328	subq	$(5*8), %rsp
1329
1330	/* Copy the "original" frame to the "outermost" frame */
1331	.rept 5
1332	pushq	11*8(%rsp)
1333	.endr
1334	UNWIND_HINT_IRET_REGS
1335
1336	/* Everything up to here is safe from nested NMIs */
1337
1338#ifdef CONFIG_DEBUG_ENTRY
1339	/*
1340	 * For ease of testing, unmask NMIs right away.  Disabled by
1341	 * default because IRET is very expensive.
1342	 */
1343	pushq	$0		/* SS */
1344	pushq	%rsp		/* RSP (minus 8 because of the previous push) */
1345	addq	$8, (%rsp)	/* Fix up RSP */
1346	pushfq			/* RFLAGS */
1347	pushq	$__KERNEL_CS	/* CS */
1348	pushq	$1f		/* RIP */
1349	iretq			/* continues at repeat_nmi below */
1350	UNWIND_HINT_IRET_REGS
13511:
1352#endif
1353
1354repeat_nmi:
1355	ANNOTATE_NOENDBR // this code
1356	/*
1357	 * If there was a nested NMI, the first NMI's iret will return
1358	 * here. But NMIs are still enabled and we can take another
1359	 * nested NMI. The nested NMI checks the interrupted RIP to see
1360	 * if it is between repeat_nmi and end_repeat_nmi, and if so
1361	 * it will just return, as we are about to repeat an NMI anyway.
1362	 * This makes it safe to copy to the stack frame that a nested
1363	 * NMI will update.
1364	 *
1365	 * RSP is pointing to "outermost RIP".  gsbase is unknown, but, if
1366	 * we're repeating an NMI, gsbase has the same value that it had on
1367	 * the first iteration.  paranoid_entry will load the kernel
1368	 * gsbase if needed before we call exc_nmi().  "NMI executing"
1369	 * is zero.
1370	 */
1371	movq	$1, 10*8(%rsp)		/* Set "NMI executing". */
1372
1373	/*
1374	 * Copy the "outermost" frame to the "iret" frame.  NMIs that nest
1375	 * here must not modify the "iret" frame while we're writing to
1376	 * it or it will end up containing garbage.
1377	 */
1378	addq	$(10*8), %rsp
1379	.rept 5
1380	pushq	-6*8(%rsp)
1381	.endr
1382	subq	$(5*8), %rsp
1383end_repeat_nmi:
1384	ANNOTATE_NOENDBR // this code
1385
1386	/*
1387	 * Everything below this point can be preempted by a nested NMI.
1388	 * If this happens, then the inner NMI will change the "iret"
1389	 * frame to point back to repeat_nmi.
1390	 */
1391	pushq	$-1				/* ORIG_RAX: no syscall to restart */
1392
1393	/*
1394	 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1395	 * as we should not be calling schedule in NMI context.
1396	 * Even with normal interrupts enabled. An NMI should not be
1397	 * setting NEED_RESCHED or anything that normal interrupts and
1398	 * exceptions might do.
1399	 */
1400	call	paranoid_entry
1401	UNWIND_HINT_REGS
1402
1403	movq	%rsp, %rdi
1404	call	exc_nmi
1405
1406	/* Always restore stashed SPEC_CTRL value (see paranoid_entry) */
1407	IBRS_EXIT save_reg=%r15
1408
1409	PARANOID_RESTORE_CR3 scratch_reg=%r15 save_reg=%r14
1410
1411	/*
1412	 * The above invocation of paranoid_entry stored the GSBASE
1413	 * related information in R/EBX depending on the availability
1414	 * of FSGSBASE.
1415	 *
1416	 * If FSGSBASE is enabled, restore the saved GSBASE value
1417	 * unconditionally, otherwise take the conditional SWAPGS path.
1418	 */
1419	ALTERNATIVE "jmp nmi_no_fsgsbase", "", X86_FEATURE_FSGSBASE
1420
1421	wrgsbase	%rbx
1422	jmp	nmi_restore
1423
1424nmi_no_fsgsbase:
1425	/* EBX == 0 -> invoke SWAPGS */
1426	testl	%ebx, %ebx
1427	jnz	nmi_restore
1428
1429nmi_swapgs:
1430	swapgs
1431
1432nmi_restore:
1433	POP_REGS
1434
1435	/*
1436	 * Skip orig_ax and the "outermost" frame to point RSP at the "iret"
1437	 * at the "iret" frame.
1438	 */
1439	addq	$6*8, %rsp
1440
1441	/*
1442	 * Clear "NMI executing".  Set DF first so that we can easily
1443	 * distinguish the remaining code between here and IRET from
1444	 * the SYSCALL entry and exit paths.
1445	 *
1446	 * We arguably should just inspect RIP instead, but I (Andy) wrote
1447	 * this code when I had the misapprehension that Xen PV supported
1448	 * NMIs, and Xen PV would break that approach.
1449	 */
1450	std
1451	movq	$0, 5*8(%rsp)		/* clear "NMI executing" */
1452
1453	/*
1454	 * Skip CLEAR_CPU_BUFFERS here, since it only helps in rare cases like
1455	 * NMI in kernel after user state is restored. For an unprivileged user
1456	 * these conditions are hard to meet.
1457	 */
1458
1459	/*
1460	 * iretq reads the "iret" frame and exits the NMI stack in a
1461	 * single instruction.  We are returning to kernel mode, so this
1462	 * cannot result in a fault.  Similarly, we don't need to worry
1463	 * about espfix64 on the way back to kernel mode.
1464	 */
1465	iretq
1466SYM_CODE_END(asm_exc_nmi)
1467
1468/*
1469 * This handles SYSCALL from 32-bit code.  There is no way to program
1470 * MSRs to fully disable 32-bit SYSCALL.
1471 */
1472SYM_CODE_START(entry_SYSCALL32_ignore)
1473	UNWIND_HINT_END_OF_STACK
1474	ENDBR
1475	mov	$-ENOSYS, %eax
1476	CLEAR_CPU_BUFFERS
1477	sysretl
1478SYM_CODE_END(entry_SYSCALL32_ignore)
1479
1480.pushsection .text, "ax"
1481	__FUNC_ALIGN
1482SYM_CODE_START_NOALIGN(rewind_stack_and_make_dead)
1483	UNWIND_HINT_FUNC
1484	/* Prevent any naive code from trying to unwind to our caller. */
1485	xorl	%ebp, %ebp
1486
1487	movq	PER_CPU_VAR(pcpu_hot + X86_top_of_stack), %rax
1488	leaq	-PTREGS_SIZE(%rax), %rsp
1489	UNWIND_HINT_REGS
1490
1491	call	make_task_dead
1492SYM_CODE_END(rewind_stack_and_make_dead)
1493.popsection
1494