1/* SPDX-License-Identifier: GPL-2.0 */ 2/* 3 * linux/arch/x86_64/entry.S 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * Copyright (C) 2000, 2001, 2002 Andi Kleen SuSE Labs 7 * Copyright (C) 2000 Pavel Machek <pavel@suse.cz> 8 * 9 * entry.S contains the system-call and fault low-level handling routines. 10 * 11 * Some of this is documented in Documentation/arch/x86/entry_64.rst 12 * 13 * A note on terminology: 14 * - iret frame: Architecture defined interrupt frame from SS to RIP 15 * at the top of the kernel process stack. 16 * 17 * Some macro usage: 18 * - SYM_FUNC_START/END:Define functions in the symbol table. 19 * - idtentry: Define exception entry points. 20 */ 21#include <linux/export.h> 22#include <linux/linkage.h> 23#include <asm/segment.h> 24#include <asm/cache.h> 25#include <asm/errno.h> 26#include <asm/asm-offsets.h> 27#include <asm/msr.h> 28#include <asm/unistd.h> 29#include <asm/thread_info.h> 30#include <asm/hw_irq.h> 31#include <asm/page_types.h> 32#include <asm/irqflags.h> 33#include <asm/paravirt.h> 34#include <asm/percpu.h> 35#include <asm/asm.h> 36#include <asm/smap.h> 37#include <asm/pgtable_types.h> 38#include <asm/frame.h> 39#include <asm/trapnr.h> 40#include <asm/nospec-branch.h> 41#include <asm/fsgsbase.h> 42#include <linux/err.h> 43 44#include "calling.h" 45 46.code64 47.section .entry.text, "ax" 48 49/* 50 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers. 51 * 52 * This is the only entry point used for 64-bit system calls. The 53 * hardware interface is reasonably well designed and the register to 54 * argument mapping Linux uses fits well with the registers that are 55 * available when SYSCALL is used. 56 * 57 * SYSCALL instructions can be found inlined in libc implementations as 58 * well as some other programs and libraries. There are also a handful 59 * of SYSCALL instructions in the vDSO used, for example, as a 60 * clock_gettimeofday fallback. 61 * 62 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11, 63 * then loads new ss, cs, and rip from previously programmed MSRs. 64 * rflags gets masked by a value from another MSR (so CLD and CLAC 65 * are not needed). SYSCALL does not save anything on the stack 66 * and does not change rsp. 67 * 68 * Registers on entry: 69 * rax system call number 70 * rcx return address 71 * r11 saved rflags (note: r11 is callee-clobbered register in C ABI) 72 * rdi arg0 73 * rsi arg1 74 * rdx arg2 75 * r10 arg3 (needs to be moved to rcx to conform to C ABI) 76 * r8 arg4 77 * r9 arg5 78 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI) 79 * 80 * Only called from user space. 81 * 82 * When user can change pt_regs->foo always force IRET. That is because 83 * it deals with uncanonical addresses better. SYSRET has trouble 84 * with them due to bugs in both AMD and Intel CPUs. 85 */ 86 87SYM_CODE_START(entry_SYSCALL_64) 88 UNWIND_HINT_ENTRY 89 ENDBR 90 91 swapgs 92 /* tss.sp2 is scratch space. */ 93 movq %rsp, PER_CPU_VAR(cpu_tss_rw + TSS_sp2) 94 SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp 95 movq PER_CPU_VAR(pcpu_hot + X86_top_of_stack), %rsp 96 97SYM_INNER_LABEL(entry_SYSCALL_64_safe_stack, SYM_L_GLOBAL) 98 ANNOTATE_NOENDBR 99 100 /* Construct struct pt_regs on stack */ 101 pushq $__USER_DS /* pt_regs->ss */ 102 pushq PER_CPU_VAR(cpu_tss_rw + TSS_sp2) /* pt_regs->sp */ 103 pushq %r11 /* pt_regs->flags */ 104 pushq $__USER_CS /* pt_regs->cs */ 105 pushq %rcx /* pt_regs->ip */ 106SYM_INNER_LABEL(entry_SYSCALL_64_after_hwframe, SYM_L_GLOBAL) 107 pushq %rax /* pt_regs->orig_ax */ 108 109 PUSH_AND_CLEAR_REGS rax=$-ENOSYS 110 111 /* IRQs are off. */ 112 movq %rsp, %rdi 113 /* Sign extend the lower 32bit as syscall numbers are treated as int */ 114 movslq %eax, %rsi 115 116 /* clobbers %rax, make sure it is after saving the syscall nr */ 117 IBRS_ENTER 118 UNTRAIN_RET 119 120 call do_syscall_64 /* returns with IRQs disabled */ 121 122 /* 123 * Try to use SYSRET instead of IRET if we're returning to 124 * a completely clean 64-bit userspace context. If we're not, 125 * go to the slow exit path. 126 * In the Xen PV case we must use iret anyway. 127 */ 128 129 ALTERNATIVE "testb %al, %al; jz swapgs_restore_regs_and_return_to_usermode", \ 130 "jmp swapgs_restore_regs_and_return_to_usermode", X86_FEATURE_XENPV 131 132 /* 133 * We win! This label is here just for ease of understanding 134 * perf profiles. Nothing jumps here. 135 */ 136syscall_return_via_sysret: 137 IBRS_EXIT 138 POP_REGS pop_rdi=0 139 140 /* 141 * Now all regs are restored except RSP and RDI. 142 * Save old stack pointer and switch to trampoline stack. 143 */ 144 movq %rsp, %rdi 145 movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp 146 UNWIND_HINT_END_OF_STACK 147 148 pushq RSP-RDI(%rdi) /* RSP */ 149 pushq (%rdi) /* RDI */ 150 151 /* 152 * We are on the trampoline stack. All regs except RDI are live. 153 * We can do future final exit work right here. 154 */ 155 STACKLEAK_ERASE_NOCLOBBER 156 157 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi 158 159 popq %rdi 160 popq %rsp 161SYM_INNER_LABEL(entry_SYSRETQ_unsafe_stack, SYM_L_GLOBAL) 162 ANNOTATE_NOENDBR 163 swapgs 164 sysretq 165SYM_INNER_LABEL(entry_SYSRETQ_end, SYM_L_GLOBAL) 166 ANNOTATE_NOENDBR 167 int3 168SYM_CODE_END(entry_SYSCALL_64) 169 170/* 171 * %rdi: prev task 172 * %rsi: next task 173 */ 174.pushsection .text, "ax" 175SYM_FUNC_START(__switch_to_asm) 176 /* 177 * Save callee-saved registers 178 * This must match the order in inactive_task_frame 179 */ 180 pushq %rbp 181 pushq %rbx 182 pushq %r12 183 pushq %r13 184 pushq %r14 185 pushq %r15 186 187 /* switch stack */ 188 movq %rsp, TASK_threadsp(%rdi) 189 movq TASK_threadsp(%rsi), %rsp 190 191#ifdef CONFIG_STACKPROTECTOR 192 movq TASK_stack_canary(%rsi), %rbx 193 movq %rbx, PER_CPU_VAR(fixed_percpu_data) + FIXED_stack_canary 194#endif 195 196 /* 197 * When switching from a shallower to a deeper call stack 198 * the RSB may either underflow or use entries populated 199 * with userspace addresses. On CPUs where those concerns 200 * exist, overwrite the RSB with entries which capture 201 * speculative execution to prevent attack. 202 */ 203 FILL_RETURN_BUFFER %r12, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW 204 205 /* restore callee-saved registers */ 206 popq %r15 207 popq %r14 208 popq %r13 209 popq %r12 210 popq %rbx 211 popq %rbp 212 213 jmp __switch_to 214SYM_FUNC_END(__switch_to_asm) 215.popsection 216 217/* 218 * A newly forked process directly context switches into this address. 219 * 220 * rax: prev task we switched from 221 * rbx: kernel thread func (NULL for user thread) 222 * r12: kernel thread arg 223 */ 224.pushsection .text, "ax" 225SYM_CODE_START(ret_from_fork_asm) 226 /* 227 * This is the start of the kernel stack; even through there's a 228 * register set at the top, the regset isn't necessarily coherent 229 * (consider kthreads) and one cannot unwind further. 230 * 231 * This ensures stack unwinds of kernel threads terminate in a known 232 * good state. 233 */ 234 UNWIND_HINT_END_OF_STACK 235 ANNOTATE_NOENDBR // copy_thread 236 CALL_DEPTH_ACCOUNT 237 238 movq %rax, %rdi /* prev */ 239 movq %rsp, %rsi /* regs */ 240 movq %rbx, %rdx /* fn */ 241 movq %r12, %rcx /* fn_arg */ 242 call ret_from_fork 243 244 /* 245 * Set the stack state to what is expected for the target function 246 * -- at this point the register set should be a valid user set 247 * and unwind should work normally. 248 */ 249 UNWIND_HINT_REGS 250 jmp swapgs_restore_regs_and_return_to_usermode 251SYM_CODE_END(ret_from_fork_asm) 252.popsection 253 254.macro DEBUG_ENTRY_ASSERT_IRQS_OFF 255#ifdef CONFIG_DEBUG_ENTRY 256 pushq %rax 257 SAVE_FLAGS 258 testl $X86_EFLAGS_IF, %eax 259 jz .Lokay_\@ 260 ud2 261.Lokay_\@: 262 popq %rax 263#endif 264.endm 265 266SYM_CODE_START(xen_error_entry) 267 ANNOTATE_NOENDBR 268 UNWIND_HINT_FUNC 269 PUSH_AND_CLEAR_REGS save_ret=1 270 ENCODE_FRAME_POINTER 8 271 UNTRAIN_RET_FROM_CALL 272 RET 273SYM_CODE_END(xen_error_entry) 274 275/** 276 * idtentry_body - Macro to emit code calling the C function 277 * @cfunc: C function to be called 278 * @has_error_code: Hardware pushed error code on stack 279 */ 280.macro idtentry_body cfunc has_error_code:req 281 282 /* 283 * Call error_entry() and switch to the task stack if from userspace. 284 * 285 * When in XENPV, it is already in the task stack, and it can't fault 286 * for native_iret() nor native_load_gs_index() since XENPV uses its 287 * own pvops for IRET and load_gs_index(). And it doesn't need to 288 * switch the CR3. So it can skip invoking error_entry(). 289 */ 290 ALTERNATIVE "call error_entry; movq %rax, %rsp", \ 291 "call xen_error_entry", X86_FEATURE_XENPV 292 293 ENCODE_FRAME_POINTER 294 UNWIND_HINT_REGS 295 296 movq %rsp, %rdi /* pt_regs pointer into 1st argument*/ 297 298 .if \has_error_code == 1 299 movq ORIG_RAX(%rsp), %rsi /* get error code into 2nd argument*/ 300 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */ 301 .endif 302 303 call \cfunc 304 305 /* For some configurations \cfunc ends up being a noreturn. */ 306 REACHABLE 307 308 jmp error_return 309.endm 310 311/** 312 * idtentry - Macro to generate entry stubs for simple IDT entries 313 * @vector: Vector number 314 * @asmsym: ASM symbol for the entry point 315 * @cfunc: C function to be called 316 * @has_error_code: Hardware pushed error code on stack 317 * 318 * The macro emits code to set up the kernel context for straight forward 319 * and simple IDT entries. No IST stack, no paranoid entry checks. 320 */ 321.macro idtentry vector asmsym cfunc has_error_code:req 322SYM_CODE_START(\asmsym) 323 324 .if \vector == X86_TRAP_BP 325 /* #BP advances %rip to the next instruction */ 326 UNWIND_HINT_IRET_ENTRY offset=\has_error_code*8 signal=0 327 .else 328 UNWIND_HINT_IRET_ENTRY offset=\has_error_code*8 329 .endif 330 331 ENDBR 332 ASM_CLAC 333 cld 334 335 .if \has_error_code == 0 336 pushq $-1 /* ORIG_RAX: no syscall to restart */ 337 .endif 338 339 .if \vector == X86_TRAP_BP 340 /* 341 * If coming from kernel space, create a 6-word gap to allow the 342 * int3 handler to emulate a call instruction. 343 */ 344 testb $3, CS-ORIG_RAX(%rsp) 345 jnz .Lfrom_usermode_no_gap_\@ 346 .rept 6 347 pushq 5*8(%rsp) 348 .endr 349 UNWIND_HINT_IRET_REGS offset=8 350.Lfrom_usermode_no_gap_\@: 351 .endif 352 353 idtentry_body \cfunc \has_error_code 354 355_ASM_NOKPROBE(\asmsym) 356SYM_CODE_END(\asmsym) 357.endm 358 359/* 360 * Interrupt entry/exit. 361 * 362 + The interrupt stubs push (vector) onto the stack, which is the error_code 363 * position of idtentry exceptions, and jump to one of the two idtentry points 364 * (common/spurious). 365 * 366 * common_interrupt is a hotpath, align it to a cache line 367 */ 368.macro idtentry_irq vector cfunc 369 .p2align CONFIG_X86_L1_CACHE_SHIFT 370 idtentry \vector asm_\cfunc \cfunc has_error_code=1 371.endm 372 373/* 374 * System vectors which invoke their handlers directly and are not 375 * going through the regular common device interrupt handling code. 376 */ 377.macro idtentry_sysvec vector cfunc 378 idtentry \vector asm_\cfunc \cfunc has_error_code=0 379.endm 380 381/** 382 * idtentry_mce_db - Macro to generate entry stubs for #MC and #DB 383 * @vector: Vector number 384 * @asmsym: ASM symbol for the entry point 385 * @cfunc: C function to be called 386 * 387 * The macro emits code to set up the kernel context for #MC and #DB 388 * 389 * If the entry comes from user space it uses the normal entry path 390 * including the return to user space work and preemption checks on 391 * exit. 392 * 393 * If hits in kernel mode then it needs to go through the paranoid 394 * entry as the exception can hit any random state. No preemption 395 * check on exit to keep the paranoid path simple. 396 */ 397.macro idtentry_mce_db vector asmsym cfunc 398SYM_CODE_START(\asmsym) 399 UNWIND_HINT_IRET_ENTRY 400 ENDBR 401 ASM_CLAC 402 cld 403 404 pushq $-1 /* ORIG_RAX: no syscall to restart */ 405 406 /* 407 * If the entry is from userspace, switch stacks and treat it as 408 * a normal entry. 409 */ 410 testb $3, CS-ORIG_RAX(%rsp) 411 jnz .Lfrom_usermode_switch_stack_\@ 412 413 /* paranoid_entry returns GS information for paranoid_exit in EBX. */ 414 call paranoid_entry 415 416 UNWIND_HINT_REGS 417 418 movq %rsp, %rdi /* pt_regs pointer */ 419 420 call \cfunc 421 422 jmp paranoid_exit 423 424 /* Switch to the regular task stack and use the noist entry point */ 425.Lfrom_usermode_switch_stack_\@: 426 idtentry_body noist_\cfunc, has_error_code=0 427 428_ASM_NOKPROBE(\asmsym) 429SYM_CODE_END(\asmsym) 430.endm 431 432#ifdef CONFIG_AMD_MEM_ENCRYPT 433/** 434 * idtentry_vc - Macro to generate entry stub for #VC 435 * @vector: Vector number 436 * @asmsym: ASM symbol for the entry point 437 * @cfunc: C function to be called 438 * 439 * The macro emits code to set up the kernel context for #VC. The #VC handler 440 * runs on an IST stack and needs to be able to cause nested #VC exceptions. 441 * 442 * To make this work the #VC entry code tries its best to pretend it doesn't use 443 * an IST stack by switching to the task stack if coming from user-space (which 444 * includes early SYSCALL entry path) or back to the stack in the IRET frame if 445 * entered from kernel-mode. 446 * 447 * If entered from kernel-mode the return stack is validated first, and if it is 448 * not safe to use (e.g. because it points to the entry stack) the #VC handler 449 * will switch to a fall-back stack (VC2) and call a special handler function. 450 * 451 * The macro is only used for one vector, but it is planned to be extended in 452 * the future for the #HV exception. 453 */ 454.macro idtentry_vc vector asmsym cfunc 455SYM_CODE_START(\asmsym) 456 UNWIND_HINT_IRET_ENTRY 457 ENDBR 458 ASM_CLAC 459 cld 460 461 /* 462 * If the entry is from userspace, switch stacks and treat it as 463 * a normal entry. 464 */ 465 testb $3, CS-ORIG_RAX(%rsp) 466 jnz .Lfrom_usermode_switch_stack_\@ 467 468 /* 469 * paranoid_entry returns SWAPGS flag for paranoid_exit in EBX. 470 * EBX == 0 -> SWAPGS, EBX == 1 -> no SWAPGS 471 */ 472 call paranoid_entry 473 474 UNWIND_HINT_REGS 475 476 /* 477 * Switch off the IST stack to make it free for nested exceptions. The 478 * vc_switch_off_ist() function will switch back to the interrupted 479 * stack if it is safe to do so. If not it switches to the VC fall-back 480 * stack. 481 */ 482 movq %rsp, %rdi /* pt_regs pointer */ 483 call vc_switch_off_ist 484 movq %rax, %rsp /* Switch to new stack */ 485 486 ENCODE_FRAME_POINTER 487 UNWIND_HINT_REGS 488 489 /* Update pt_regs */ 490 movq ORIG_RAX(%rsp), %rsi /* get error code into 2nd argument*/ 491 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */ 492 493 movq %rsp, %rdi /* pt_regs pointer */ 494 495 call kernel_\cfunc 496 497 /* 498 * No need to switch back to the IST stack. The current stack is either 499 * identical to the stack in the IRET frame or the VC fall-back stack, 500 * so it is definitely mapped even with PTI enabled. 501 */ 502 jmp paranoid_exit 503 504 /* Switch to the regular task stack */ 505.Lfrom_usermode_switch_stack_\@: 506 idtentry_body user_\cfunc, has_error_code=1 507 508_ASM_NOKPROBE(\asmsym) 509SYM_CODE_END(\asmsym) 510.endm 511#endif 512 513/* 514 * Double fault entry. Straight paranoid. No checks from which context 515 * this comes because for the espfix induced #DF this would do the wrong 516 * thing. 517 */ 518.macro idtentry_df vector asmsym cfunc 519SYM_CODE_START(\asmsym) 520 UNWIND_HINT_IRET_ENTRY offset=8 521 ENDBR 522 ASM_CLAC 523 cld 524 525 /* paranoid_entry returns GS information for paranoid_exit in EBX. */ 526 call paranoid_entry 527 UNWIND_HINT_REGS 528 529 movq %rsp, %rdi /* pt_regs pointer into first argument */ 530 movq ORIG_RAX(%rsp), %rsi /* get error code into 2nd argument*/ 531 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */ 532 call \cfunc 533 534 /* For some configurations \cfunc ends up being a noreturn. */ 535 REACHABLE 536 537 jmp paranoid_exit 538 539_ASM_NOKPROBE(\asmsym) 540SYM_CODE_END(\asmsym) 541.endm 542 543/* 544 * Include the defines which emit the idt entries which are shared 545 * shared between 32 and 64 bit and emit the __irqentry_text_* markers 546 * so the stacktrace boundary checks work. 547 */ 548 __ALIGN 549 .globl __irqentry_text_start 550__irqentry_text_start: 551 552#include <asm/idtentry.h> 553 554 __ALIGN 555 .globl __irqentry_text_end 556__irqentry_text_end: 557 ANNOTATE_NOENDBR 558 559SYM_CODE_START_LOCAL(common_interrupt_return) 560SYM_INNER_LABEL(swapgs_restore_regs_and_return_to_usermode, SYM_L_GLOBAL) 561 IBRS_EXIT 562#ifdef CONFIG_XEN_PV 563 ALTERNATIVE "", "jmp xenpv_restore_regs_and_return_to_usermode", X86_FEATURE_XENPV 564#endif 565#ifdef CONFIG_PAGE_TABLE_ISOLATION 566 ALTERNATIVE "", "jmp .Lpti_restore_regs_and_return_to_usermode", X86_FEATURE_PTI 567#endif 568 569 STACKLEAK_ERASE 570 POP_REGS 571 add $8, %rsp /* orig_ax */ 572 UNWIND_HINT_IRET_REGS 573 574.Lswapgs_and_iret: 575 swapgs 576 /* Assert that the IRET frame indicates user mode. */ 577 testb $3, 8(%rsp) 578 jnz .Lnative_iret 579 ud2 580 581#ifdef CONFIG_PAGE_TABLE_ISOLATION 582.Lpti_restore_regs_and_return_to_usermode: 583 POP_REGS pop_rdi=0 584 585 /* 586 * The stack is now user RDI, orig_ax, RIP, CS, EFLAGS, RSP, SS. 587 * Save old stack pointer and switch to trampoline stack. 588 */ 589 movq %rsp, %rdi 590 movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp 591 UNWIND_HINT_END_OF_STACK 592 593 /* Copy the IRET frame to the trampoline stack. */ 594 pushq 6*8(%rdi) /* SS */ 595 pushq 5*8(%rdi) /* RSP */ 596 pushq 4*8(%rdi) /* EFLAGS */ 597 pushq 3*8(%rdi) /* CS */ 598 pushq 2*8(%rdi) /* RIP */ 599 600 /* Push user RDI on the trampoline stack. */ 601 pushq (%rdi) 602 603 /* 604 * We are on the trampoline stack. All regs except RDI are live. 605 * We can do future final exit work right here. 606 */ 607 STACKLEAK_ERASE_NOCLOBBER 608 609 push %rax 610 SWITCH_TO_USER_CR3 scratch_reg=%rdi scratch_reg2=%rax 611 pop %rax 612 613 /* Restore RDI. */ 614 popq %rdi 615 jmp .Lswapgs_and_iret 616#endif 617 618SYM_INNER_LABEL(restore_regs_and_return_to_kernel, SYM_L_GLOBAL) 619#ifdef CONFIG_DEBUG_ENTRY 620 /* Assert that pt_regs indicates kernel mode. */ 621 testb $3, CS(%rsp) 622 jz 1f 623 ud2 6241: 625#endif 626 POP_REGS 627 addq $8, %rsp /* skip regs->orig_ax */ 628 /* 629 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization 630 * when returning from IPI handler. 631 */ 632#ifdef CONFIG_XEN_PV 633SYM_INNER_LABEL(early_xen_iret_patch, SYM_L_GLOBAL) 634 ANNOTATE_NOENDBR 635 .byte 0xe9 636 .long .Lnative_iret - (. + 4) 637#endif 638 639.Lnative_iret: 640 UNWIND_HINT_IRET_REGS 641 /* 642 * Are we returning to a stack segment from the LDT? Note: in 643 * 64-bit mode SS:RSP on the exception stack is always valid. 644 */ 645#ifdef CONFIG_X86_ESPFIX64 646 testb $4, (SS-RIP)(%rsp) 647 jnz native_irq_return_ldt 648#endif 649 650SYM_INNER_LABEL(native_irq_return_iret, SYM_L_GLOBAL) 651 ANNOTATE_NOENDBR // exc_double_fault 652 /* 653 * This may fault. Non-paranoid faults on return to userspace are 654 * handled by fixup_bad_iret. These include #SS, #GP, and #NP. 655 * Double-faults due to espfix64 are handled in exc_double_fault. 656 * Other faults here are fatal. 657 */ 658 iretq 659 660#ifdef CONFIG_X86_ESPFIX64 661native_irq_return_ldt: 662 /* 663 * We are running with user GSBASE. All GPRs contain their user 664 * values. We have a percpu ESPFIX stack that is eight slots 665 * long (see ESPFIX_STACK_SIZE). espfix_waddr points to the bottom 666 * of the ESPFIX stack. 667 * 668 * We clobber RAX and RDI in this code. We stash RDI on the 669 * normal stack and RAX on the ESPFIX stack. 670 * 671 * The ESPFIX stack layout we set up looks like this: 672 * 673 * --- top of ESPFIX stack --- 674 * SS 675 * RSP 676 * RFLAGS 677 * CS 678 * RIP <-- RSP points here when we're done 679 * RAX <-- espfix_waddr points here 680 * --- bottom of ESPFIX stack --- 681 */ 682 683 pushq %rdi /* Stash user RDI */ 684 swapgs /* to kernel GS */ 685 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi /* to kernel CR3 */ 686 687 movq PER_CPU_VAR(espfix_waddr), %rdi 688 movq %rax, (0*8)(%rdi) /* user RAX */ 689 movq (1*8)(%rsp), %rax /* user RIP */ 690 movq %rax, (1*8)(%rdi) 691 movq (2*8)(%rsp), %rax /* user CS */ 692 movq %rax, (2*8)(%rdi) 693 movq (3*8)(%rsp), %rax /* user RFLAGS */ 694 movq %rax, (3*8)(%rdi) 695 movq (5*8)(%rsp), %rax /* user SS */ 696 movq %rax, (5*8)(%rdi) 697 movq (4*8)(%rsp), %rax /* user RSP */ 698 movq %rax, (4*8)(%rdi) 699 /* Now RAX == RSP. */ 700 701 andl $0xffff0000, %eax /* RAX = (RSP & 0xffff0000) */ 702 703 /* 704 * espfix_stack[31:16] == 0. The page tables are set up such that 705 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of 706 * espfix_waddr for any X. That is, there are 65536 RO aliases of 707 * the same page. Set up RSP so that RSP[31:16] contains the 708 * respective 16 bits of the /userspace/ RSP and RSP nonetheless 709 * still points to an RO alias of the ESPFIX stack. 710 */ 711 orq PER_CPU_VAR(espfix_stack), %rax 712 713 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi 714 swapgs /* to user GS */ 715 popq %rdi /* Restore user RDI */ 716 717 movq %rax, %rsp 718 UNWIND_HINT_IRET_REGS offset=8 719 720 /* 721 * At this point, we cannot write to the stack any more, but we can 722 * still read. 723 */ 724 popq %rax /* Restore user RAX */ 725 726 /* 727 * RSP now points to an ordinary IRET frame, except that the page 728 * is read-only and RSP[31:16] are preloaded with the userspace 729 * values. We can now IRET back to userspace. 730 */ 731 jmp native_irq_return_iret 732#endif 733SYM_CODE_END(common_interrupt_return) 734_ASM_NOKPROBE(common_interrupt_return) 735 736/* 737 * Reload gs selector with exception handling 738 * di: new selector 739 * 740 * Is in entry.text as it shouldn't be instrumented. 741 */ 742SYM_FUNC_START(asm_load_gs_index) 743 FRAME_BEGIN 744 swapgs 745.Lgs_change: 746 ANNOTATE_NOENDBR // error_entry 747 movl %edi, %gs 7482: ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE 749 swapgs 750 FRAME_END 751 RET 752 753 /* running with kernelgs */ 754.Lbad_gs: 755 swapgs /* switch back to user gs */ 756.macro ZAP_GS 757 /* This can't be a string because the preprocessor needs to see it. */ 758 movl $__USER_DS, %eax 759 movl %eax, %gs 760.endm 761 ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG 762 xorl %eax, %eax 763 movl %eax, %gs 764 jmp 2b 765 766 _ASM_EXTABLE(.Lgs_change, .Lbad_gs) 767 768SYM_FUNC_END(asm_load_gs_index) 769EXPORT_SYMBOL(asm_load_gs_index) 770 771#ifdef CONFIG_XEN_PV 772/* 773 * A note on the "critical region" in our callback handler. 774 * We want to avoid stacking callback handlers due to events occurring 775 * during handling of the last event. To do this, we keep events disabled 776 * until we've done all processing. HOWEVER, we must enable events before 777 * popping the stack frame (can't be done atomically) and so it would still 778 * be possible to get enough handler activations to overflow the stack. 779 * Although unlikely, bugs of that kind are hard to track down, so we'd 780 * like to avoid the possibility. 781 * So, on entry to the handler we detect whether we interrupted an 782 * existing activation in its critical region -- if so, we pop the current 783 * activation and restart the handler using the previous one. 784 * 785 * C calling convention: exc_xen_hypervisor_callback(struct *pt_regs) 786 */ 787 __FUNC_ALIGN 788SYM_CODE_START_LOCAL_NOALIGN(exc_xen_hypervisor_callback) 789 790/* 791 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will 792 * see the correct pointer to the pt_regs 793 */ 794 UNWIND_HINT_FUNC 795 movq %rdi, %rsp /* we don't return, adjust the stack frame */ 796 UNWIND_HINT_REGS 797 798 call xen_pv_evtchn_do_upcall 799 800 jmp error_return 801SYM_CODE_END(exc_xen_hypervisor_callback) 802 803/* 804 * Hypervisor uses this for application faults while it executes. 805 * We get here for two reasons: 806 * 1. Fault while reloading DS, ES, FS or GS 807 * 2. Fault while executing IRET 808 * Category 1 we do not need to fix up as Xen has already reloaded all segment 809 * registers that could be reloaded and zeroed the others. 810 * Category 2 we fix up by killing the current process. We cannot use the 811 * normal Linux return path in this case because if we use the IRET hypercall 812 * to pop the stack frame we end up in an infinite loop of failsafe callbacks. 813 * We distinguish between categories by comparing each saved segment register 814 * with its current contents: any discrepancy means we in category 1. 815 */ 816 __FUNC_ALIGN 817SYM_CODE_START_NOALIGN(xen_failsafe_callback) 818 UNWIND_HINT_UNDEFINED 819 ENDBR 820 movl %ds, %ecx 821 cmpw %cx, 0x10(%rsp) 822 jne 1f 823 movl %es, %ecx 824 cmpw %cx, 0x18(%rsp) 825 jne 1f 826 movl %fs, %ecx 827 cmpw %cx, 0x20(%rsp) 828 jne 1f 829 movl %gs, %ecx 830 cmpw %cx, 0x28(%rsp) 831 jne 1f 832 /* All segments match their saved values => Category 2 (Bad IRET). */ 833 movq (%rsp), %rcx 834 movq 8(%rsp), %r11 835 addq $0x30, %rsp 836 pushq $0 /* RIP */ 837 UNWIND_HINT_IRET_REGS offset=8 838 jmp asm_exc_general_protection 8391: /* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */ 840 movq (%rsp), %rcx 841 movq 8(%rsp), %r11 842 addq $0x30, %rsp 843 UNWIND_HINT_IRET_REGS 844 pushq $-1 /* orig_ax = -1 => not a system call */ 845 PUSH_AND_CLEAR_REGS 846 ENCODE_FRAME_POINTER 847 jmp error_return 848SYM_CODE_END(xen_failsafe_callback) 849#endif /* CONFIG_XEN_PV */ 850 851/* 852 * Save all registers in pt_regs. Return GSBASE related information 853 * in EBX depending on the availability of the FSGSBASE instructions: 854 * 855 * FSGSBASE R/EBX 856 * N 0 -> SWAPGS on exit 857 * 1 -> no SWAPGS on exit 858 * 859 * Y GSBASE value at entry, must be restored in paranoid_exit 860 * 861 * R14 - old CR3 862 * R15 - old SPEC_CTRL 863 */ 864SYM_CODE_START(paranoid_entry) 865 ANNOTATE_NOENDBR 866 UNWIND_HINT_FUNC 867 PUSH_AND_CLEAR_REGS save_ret=1 868 ENCODE_FRAME_POINTER 8 869 870 /* 871 * Always stash CR3 in %r14. This value will be restored, 872 * verbatim, at exit. Needed if paranoid_entry interrupted 873 * another entry that already switched to the user CR3 value 874 * but has not yet returned to userspace. 875 * 876 * This is also why CS (stashed in the "iret frame" by the 877 * hardware at entry) can not be used: this may be a return 878 * to kernel code, but with a user CR3 value. 879 * 880 * Switching CR3 does not depend on kernel GSBASE so it can 881 * be done before switching to the kernel GSBASE. This is 882 * required for FSGSBASE because the kernel GSBASE has to 883 * be retrieved from a kernel internal table. 884 */ 885 SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg=%rax save_reg=%r14 886 887 /* 888 * Handling GSBASE depends on the availability of FSGSBASE. 889 * 890 * Without FSGSBASE the kernel enforces that negative GSBASE 891 * values indicate kernel GSBASE. With FSGSBASE no assumptions 892 * can be made about the GSBASE value when entering from user 893 * space. 894 */ 895 ALTERNATIVE "jmp .Lparanoid_entry_checkgs", "", X86_FEATURE_FSGSBASE 896 897 /* 898 * Read the current GSBASE and store it in %rbx unconditionally, 899 * retrieve and set the current CPUs kernel GSBASE. The stored value 900 * has to be restored in paranoid_exit unconditionally. 901 * 902 * The unconditional write to GS base below ensures that no subsequent 903 * loads based on a mispredicted GS base can happen, therefore no LFENCE 904 * is needed here. 905 */ 906 SAVE_AND_SET_GSBASE scratch_reg=%rax save_reg=%rbx 907 jmp .Lparanoid_gsbase_done 908 909.Lparanoid_entry_checkgs: 910 /* EBX = 1 -> kernel GSBASE active, no restore required */ 911 movl $1, %ebx 912 913 /* 914 * The kernel-enforced convention is a negative GSBASE indicates 915 * a kernel value. No SWAPGS needed on entry and exit. 916 */ 917 movl $MSR_GS_BASE, %ecx 918 rdmsr 919 testl %edx, %edx 920 js .Lparanoid_kernel_gsbase 921 922 /* EBX = 0 -> SWAPGS required on exit */ 923 xorl %ebx, %ebx 924 swapgs 925.Lparanoid_kernel_gsbase: 926 FENCE_SWAPGS_KERNEL_ENTRY 927.Lparanoid_gsbase_done: 928 929 /* 930 * Once we have CR3 and %GS setup save and set SPEC_CTRL. Just like 931 * CR3 above, keep the old value in a callee saved register. 932 */ 933 IBRS_ENTER save_reg=%r15 934 UNTRAIN_RET_FROM_CALL 935 936 RET 937SYM_CODE_END(paranoid_entry) 938 939/* 940 * "Paranoid" exit path from exception stack. This is invoked 941 * only on return from non-NMI IST interrupts that came 942 * from kernel space. 943 * 944 * We may be returning to very strange contexts (e.g. very early 945 * in syscall entry), so checking for preemption here would 946 * be complicated. Fortunately, there's no good reason to try 947 * to handle preemption here. 948 * 949 * R/EBX contains the GSBASE related information depending on the 950 * availability of the FSGSBASE instructions: 951 * 952 * FSGSBASE R/EBX 953 * N 0 -> SWAPGS on exit 954 * 1 -> no SWAPGS on exit 955 * 956 * Y User space GSBASE, must be restored unconditionally 957 * 958 * R14 - old CR3 959 * R15 - old SPEC_CTRL 960 */ 961SYM_CODE_START_LOCAL(paranoid_exit) 962 UNWIND_HINT_REGS 963 964 /* 965 * Must restore IBRS state before both CR3 and %GS since we need access 966 * to the per-CPU x86_spec_ctrl_shadow variable. 967 */ 968 IBRS_EXIT save_reg=%r15 969 970 /* 971 * The order of operations is important. RESTORE_CR3 requires 972 * kernel GSBASE. 973 * 974 * NB to anyone to try to optimize this code: this code does 975 * not execute at all for exceptions from user mode. Those 976 * exceptions go through error_return instead. 977 */ 978 RESTORE_CR3 scratch_reg=%rax save_reg=%r14 979 980 /* Handle the three GSBASE cases */ 981 ALTERNATIVE "jmp .Lparanoid_exit_checkgs", "", X86_FEATURE_FSGSBASE 982 983 /* With FSGSBASE enabled, unconditionally restore GSBASE */ 984 wrgsbase %rbx 985 jmp restore_regs_and_return_to_kernel 986 987.Lparanoid_exit_checkgs: 988 /* On non-FSGSBASE systems, conditionally do SWAPGS */ 989 testl %ebx, %ebx 990 jnz restore_regs_and_return_to_kernel 991 992 /* We are returning to a context with user GSBASE */ 993 swapgs 994 jmp restore_regs_and_return_to_kernel 995SYM_CODE_END(paranoid_exit) 996 997/* 998 * Switch GS and CR3 if needed. 999 */ 1000SYM_CODE_START(error_entry) 1001 ANNOTATE_NOENDBR 1002 UNWIND_HINT_FUNC 1003 1004 PUSH_AND_CLEAR_REGS save_ret=1 1005 ENCODE_FRAME_POINTER 8 1006 1007 testb $3, CS+8(%rsp) 1008 jz .Lerror_kernelspace 1009 1010 /* 1011 * We entered from user mode or we're pretending to have entered 1012 * from user mode due to an IRET fault. 1013 */ 1014 swapgs 1015 FENCE_SWAPGS_USER_ENTRY 1016 /* We have user CR3. Change to kernel CR3. */ 1017 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax 1018 IBRS_ENTER 1019 UNTRAIN_RET_FROM_CALL 1020 1021 leaq 8(%rsp), %rdi /* arg0 = pt_regs pointer */ 1022 /* Put us onto the real thread stack. */ 1023 jmp sync_regs 1024 1025 /* 1026 * There are two places in the kernel that can potentially fault with 1027 * usergs. Handle them here. B stepping K8s sometimes report a 1028 * truncated RIP for IRET exceptions returning to compat mode. Check 1029 * for these here too. 1030 */ 1031.Lerror_kernelspace: 1032 leaq native_irq_return_iret(%rip), %rcx 1033 cmpq %rcx, RIP+8(%rsp) 1034 je .Lerror_bad_iret 1035 movl %ecx, %eax /* zero extend */ 1036 cmpq %rax, RIP+8(%rsp) 1037 je .Lbstep_iret 1038 cmpq $.Lgs_change, RIP+8(%rsp) 1039 jne .Lerror_entry_done_lfence 1040 1041 /* 1042 * hack: .Lgs_change can fail with user gsbase. If this happens, fix up 1043 * gsbase and proceed. We'll fix up the exception and land in 1044 * .Lgs_change's error handler with kernel gsbase. 1045 */ 1046 swapgs 1047 1048 /* 1049 * Issue an LFENCE to prevent GS speculation, regardless of whether it is a 1050 * kernel or user gsbase. 1051 */ 1052.Lerror_entry_done_lfence: 1053 FENCE_SWAPGS_KERNEL_ENTRY 1054 CALL_DEPTH_ACCOUNT 1055 leaq 8(%rsp), %rax /* return pt_regs pointer */ 1056 VALIDATE_UNRET_END 1057 RET 1058 1059.Lbstep_iret: 1060 /* Fix truncated RIP */ 1061 movq %rcx, RIP+8(%rsp) 1062 /* fall through */ 1063 1064.Lerror_bad_iret: 1065 /* 1066 * We came from an IRET to user mode, so we have user 1067 * gsbase and CR3. Switch to kernel gsbase and CR3: 1068 */ 1069 swapgs 1070 FENCE_SWAPGS_USER_ENTRY 1071 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax 1072 IBRS_ENTER 1073 UNTRAIN_RET_FROM_CALL 1074 1075 /* 1076 * Pretend that the exception came from user mode: set up pt_regs 1077 * as if we faulted immediately after IRET. 1078 */ 1079 leaq 8(%rsp), %rdi /* arg0 = pt_regs pointer */ 1080 call fixup_bad_iret 1081 mov %rax, %rdi 1082 jmp sync_regs 1083SYM_CODE_END(error_entry) 1084 1085SYM_CODE_START_LOCAL(error_return) 1086 UNWIND_HINT_REGS 1087 DEBUG_ENTRY_ASSERT_IRQS_OFF 1088 testb $3, CS(%rsp) 1089 jz restore_regs_and_return_to_kernel 1090 jmp swapgs_restore_regs_and_return_to_usermode 1091SYM_CODE_END(error_return) 1092 1093/* 1094 * Runs on exception stack. Xen PV does not go through this path at all, 1095 * so we can use real assembly here. 1096 * 1097 * Registers: 1098 * %r14: Used to save/restore the CR3 of the interrupted context 1099 * when PAGE_TABLE_ISOLATION is in use. Do not clobber. 1100 */ 1101SYM_CODE_START(asm_exc_nmi) 1102 UNWIND_HINT_IRET_ENTRY 1103 ENDBR 1104 1105 /* 1106 * We allow breakpoints in NMIs. If a breakpoint occurs, then 1107 * the iretq it performs will take us out of NMI context. 1108 * This means that we can have nested NMIs where the next 1109 * NMI is using the top of the stack of the previous NMI. We 1110 * can't let it execute because the nested NMI will corrupt the 1111 * stack of the previous NMI. NMI handlers are not re-entrant 1112 * anyway. 1113 * 1114 * To handle this case we do the following: 1115 * Check a special location on the stack that contains a 1116 * variable that is set when NMIs are executing. 1117 * The interrupted task's stack is also checked to see if it 1118 * is an NMI stack. 1119 * If the variable is not set and the stack is not the NMI 1120 * stack then: 1121 * o Set the special variable on the stack 1122 * o Copy the interrupt frame into an "outermost" location on the 1123 * stack 1124 * o Copy the interrupt frame into an "iret" location on the stack 1125 * o Continue processing the NMI 1126 * If the variable is set or the previous stack is the NMI stack: 1127 * o Modify the "iret" location to jump to the repeat_nmi 1128 * o return back to the first NMI 1129 * 1130 * Now on exit of the first NMI, we first clear the stack variable 1131 * The NMI stack will tell any nested NMIs at that point that it is 1132 * nested. Then we pop the stack normally with iret, and if there was 1133 * a nested NMI that updated the copy interrupt stack frame, a 1134 * jump will be made to the repeat_nmi code that will handle the second 1135 * NMI. 1136 * 1137 * However, espfix prevents us from directly returning to userspace 1138 * with a single IRET instruction. Similarly, IRET to user mode 1139 * can fault. We therefore handle NMIs from user space like 1140 * other IST entries. 1141 */ 1142 1143 ASM_CLAC 1144 cld 1145 1146 /* Use %rdx as our temp variable throughout */ 1147 pushq %rdx 1148 1149 testb $3, CS-RIP+8(%rsp) 1150 jz .Lnmi_from_kernel 1151 1152 /* 1153 * NMI from user mode. We need to run on the thread stack, but we 1154 * can't go through the normal entry paths: NMIs are masked, and 1155 * we don't want to enable interrupts, because then we'll end 1156 * up in an awkward situation in which IRQs are on but NMIs 1157 * are off. 1158 * 1159 * We also must not push anything to the stack before switching 1160 * stacks lest we corrupt the "NMI executing" variable. 1161 */ 1162 1163 swapgs 1164 FENCE_SWAPGS_USER_ENTRY 1165 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdx 1166 movq %rsp, %rdx 1167 movq PER_CPU_VAR(pcpu_hot + X86_top_of_stack), %rsp 1168 UNWIND_HINT_IRET_REGS base=%rdx offset=8 1169 pushq 5*8(%rdx) /* pt_regs->ss */ 1170 pushq 4*8(%rdx) /* pt_regs->rsp */ 1171 pushq 3*8(%rdx) /* pt_regs->flags */ 1172 pushq 2*8(%rdx) /* pt_regs->cs */ 1173 pushq 1*8(%rdx) /* pt_regs->rip */ 1174 UNWIND_HINT_IRET_REGS 1175 pushq $-1 /* pt_regs->orig_ax */ 1176 PUSH_AND_CLEAR_REGS rdx=(%rdx) 1177 ENCODE_FRAME_POINTER 1178 1179 IBRS_ENTER 1180 UNTRAIN_RET 1181 1182 /* 1183 * At this point we no longer need to worry about stack damage 1184 * due to nesting -- we're on the normal thread stack and we're 1185 * done with the NMI stack. 1186 */ 1187 1188 movq %rsp, %rdi 1189 call exc_nmi 1190 1191 /* 1192 * Return back to user mode. We must *not* do the normal exit 1193 * work, because we don't want to enable interrupts. 1194 */ 1195 jmp swapgs_restore_regs_and_return_to_usermode 1196 1197.Lnmi_from_kernel: 1198 /* 1199 * Here's what our stack frame will look like: 1200 * +---------------------------------------------------------+ 1201 * | original SS | 1202 * | original Return RSP | 1203 * | original RFLAGS | 1204 * | original CS | 1205 * | original RIP | 1206 * +---------------------------------------------------------+ 1207 * | temp storage for rdx | 1208 * +---------------------------------------------------------+ 1209 * | "NMI executing" variable | 1210 * +---------------------------------------------------------+ 1211 * | iret SS } Copied from "outermost" frame | 1212 * | iret Return RSP } on each loop iteration; overwritten | 1213 * | iret RFLAGS } by a nested NMI to force another | 1214 * | iret CS } iteration if needed. | 1215 * | iret RIP } | 1216 * +---------------------------------------------------------+ 1217 * | outermost SS } initialized in first_nmi; | 1218 * | outermost Return RSP } will not be changed before | 1219 * | outermost RFLAGS } NMI processing is done. | 1220 * | outermost CS } Copied to "iret" frame on each | 1221 * | outermost RIP } iteration. | 1222 * +---------------------------------------------------------+ 1223 * | pt_regs | 1224 * +---------------------------------------------------------+ 1225 * 1226 * The "original" frame is used by hardware. Before re-enabling 1227 * NMIs, we need to be done with it, and we need to leave enough 1228 * space for the asm code here. 1229 * 1230 * We return by executing IRET while RSP points to the "iret" frame. 1231 * That will either return for real or it will loop back into NMI 1232 * processing. 1233 * 1234 * The "outermost" frame is copied to the "iret" frame on each 1235 * iteration of the loop, so each iteration starts with the "iret" 1236 * frame pointing to the final return target. 1237 */ 1238 1239 /* 1240 * Determine whether we're a nested NMI. 1241 * 1242 * If we interrupted kernel code between repeat_nmi and 1243 * end_repeat_nmi, then we are a nested NMI. We must not 1244 * modify the "iret" frame because it's being written by 1245 * the outer NMI. That's okay; the outer NMI handler is 1246 * about to call exc_nmi() anyway, so we can just resume 1247 * the outer NMI. 1248 */ 1249 1250 movq $repeat_nmi, %rdx 1251 cmpq 8(%rsp), %rdx 1252 ja 1f 1253 movq $end_repeat_nmi, %rdx 1254 cmpq 8(%rsp), %rdx 1255 ja nested_nmi_out 12561: 1257 1258 /* 1259 * Now check "NMI executing". If it's set, then we're nested. 1260 * This will not detect if we interrupted an outer NMI just 1261 * before IRET. 1262 */ 1263 cmpl $1, -8(%rsp) 1264 je nested_nmi 1265 1266 /* 1267 * Now test if the previous stack was an NMI stack. This covers 1268 * the case where we interrupt an outer NMI after it clears 1269 * "NMI executing" but before IRET. We need to be careful, though: 1270 * there is one case in which RSP could point to the NMI stack 1271 * despite there being no NMI active: naughty userspace controls 1272 * RSP at the very beginning of the SYSCALL targets. We can 1273 * pull a fast one on naughty userspace, though: we program 1274 * SYSCALL to mask DF, so userspace cannot cause DF to be set 1275 * if it controls the kernel's RSP. We set DF before we clear 1276 * "NMI executing". 1277 */ 1278 lea 6*8(%rsp), %rdx 1279 /* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */ 1280 cmpq %rdx, 4*8(%rsp) 1281 /* If the stack pointer is above the NMI stack, this is a normal NMI */ 1282 ja first_nmi 1283 1284 subq $EXCEPTION_STKSZ, %rdx 1285 cmpq %rdx, 4*8(%rsp) 1286 /* If it is below the NMI stack, it is a normal NMI */ 1287 jb first_nmi 1288 1289 /* Ah, it is within the NMI stack. */ 1290 1291 testb $(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp) 1292 jz first_nmi /* RSP was user controlled. */ 1293 1294 /* This is a nested NMI. */ 1295 1296nested_nmi: 1297 /* 1298 * Modify the "iret" frame to point to repeat_nmi, forcing another 1299 * iteration of NMI handling. 1300 */ 1301 subq $8, %rsp 1302 leaq -10*8(%rsp), %rdx 1303 pushq $__KERNEL_DS 1304 pushq %rdx 1305 pushfq 1306 pushq $__KERNEL_CS 1307 pushq $repeat_nmi 1308 1309 /* Put stack back */ 1310 addq $(6*8), %rsp 1311 1312nested_nmi_out: 1313 popq %rdx 1314 1315 /* We are returning to kernel mode, so this cannot result in a fault. */ 1316 iretq 1317 1318first_nmi: 1319 /* Restore rdx. */ 1320 movq (%rsp), %rdx 1321 1322 /* Make room for "NMI executing". */ 1323 pushq $0 1324 1325 /* Leave room for the "iret" frame */ 1326 subq $(5*8), %rsp 1327 1328 /* Copy the "original" frame to the "outermost" frame */ 1329 .rept 5 1330 pushq 11*8(%rsp) 1331 .endr 1332 UNWIND_HINT_IRET_REGS 1333 1334 /* Everything up to here is safe from nested NMIs */ 1335 1336#ifdef CONFIG_DEBUG_ENTRY 1337 /* 1338 * For ease of testing, unmask NMIs right away. Disabled by 1339 * default because IRET is very expensive. 1340 */ 1341 pushq $0 /* SS */ 1342 pushq %rsp /* RSP (minus 8 because of the previous push) */ 1343 addq $8, (%rsp) /* Fix up RSP */ 1344 pushfq /* RFLAGS */ 1345 pushq $__KERNEL_CS /* CS */ 1346 pushq $1f /* RIP */ 1347 iretq /* continues at repeat_nmi below */ 1348 UNWIND_HINT_IRET_REGS 13491: 1350#endif 1351 1352repeat_nmi: 1353 ANNOTATE_NOENDBR // this code 1354 /* 1355 * If there was a nested NMI, the first NMI's iret will return 1356 * here. But NMIs are still enabled and we can take another 1357 * nested NMI. The nested NMI checks the interrupted RIP to see 1358 * if it is between repeat_nmi and end_repeat_nmi, and if so 1359 * it will just return, as we are about to repeat an NMI anyway. 1360 * This makes it safe to copy to the stack frame that a nested 1361 * NMI will update. 1362 * 1363 * RSP is pointing to "outermost RIP". gsbase is unknown, but, if 1364 * we're repeating an NMI, gsbase has the same value that it had on 1365 * the first iteration. paranoid_entry will load the kernel 1366 * gsbase if needed before we call exc_nmi(). "NMI executing" 1367 * is zero. 1368 */ 1369 movq $1, 10*8(%rsp) /* Set "NMI executing". */ 1370 1371 /* 1372 * Copy the "outermost" frame to the "iret" frame. NMIs that nest 1373 * here must not modify the "iret" frame while we're writing to 1374 * it or it will end up containing garbage. 1375 */ 1376 addq $(10*8), %rsp 1377 .rept 5 1378 pushq -6*8(%rsp) 1379 .endr 1380 subq $(5*8), %rsp 1381end_repeat_nmi: 1382 ANNOTATE_NOENDBR // this code 1383 1384 /* 1385 * Everything below this point can be preempted by a nested NMI. 1386 * If this happens, then the inner NMI will change the "iret" 1387 * frame to point back to repeat_nmi. 1388 */ 1389 pushq $-1 /* ORIG_RAX: no syscall to restart */ 1390 1391 /* 1392 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit 1393 * as we should not be calling schedule in NMI context. 1394 * Even with normal interrupts enabled. An NMI should not be 1395 * setting NEED_RESCHED or anything that normal interrupts and 1396 * exceptions might do. 1397 */ 1398 call paranoid_entry 1399 UNWIND_HINT_REGS 1400 1401 movq %rsp, %rdi 1402 call exc_nmi 1403 1404 /* Always restore stashed SPEC_CTRL value (see paranoid_entry) */ 1405 IBRS_EXIT save_reg=%r15 1406 1407 /* Always restore stashed CR3 value (see paranoid_entry) */ 1408 RESTORE_CR3 scratch_reg=%r15 save_reg=%r14 1409 1410 /* 1411 * The above invocation of paranoid_entry stored the GSBASE 1412 * related information in R/EBX depending on the availability 1413 * of FSGSBASE. 1414 * 1415 * If FSGSBASE is enabled, restore the saved GSBASE value 1416 * unconditionally, otherwise take the conditional SWAPGS path. 1417 */ 1418 ALTERNATIVE "jmp nmi_no_fsgsbase", "", X86_FEATURE_FSGSBASE 1419 1420 wrgsbase %rbx 1421 jmp nmi_restore 1422 1423nmi_no_fsgsbase: 1424 /* EBX == 0 -> invoke SWAPGS */ 1425 testl %ebx, %ebx 1426 jnz nmi_restore 1427 1428nmi_swapgs: 1429 swapgs 1430 1431nmi_restore: 1432 POP_REGS 1433 1434 /* 1435 * Skip orig_ax and the "outermost" frame to point RSP at the "iret" 1436 * at the "iret" frame. 1437 */ 1438 addq $6*8, %rsp 1439 1440 /* 1441 * Clear "NMI executing". Set DF first so that we can easily 1442 * distinguish the remaining code between here and IRET from 1443 * the SYSCALL entry and exit paths. 1444 * 1445 * We arguably should just inspect RIP instead, but I (Andy) wrote 1446 * this code when I had the misapprehension that Xen PV supported 1447 * NMIs, and Xen PV would break that approach. 1448 */ 1449 std 1450 movq $0, 5*8(%rsp) /* clear "NMI executing" */ 1451 1452 /* 1453 * iretq reads the "iret" frame and exits the NMI stack in a 1454 * single instruction. We are returning to kernel mode, so this 1455 * cannot result in a fault. Similarly, we don't need to worry 1456 * about espfix64 on the way back to kernel mode. 1457 */ 1458 iretq 1459SYM_CODE_END(asm_exc_nmi) 1460 1461/* 1462 * This handles SYSCALL from 32-bit code. There is no way to program 1463 * MSRs to fully disable 32-bit SYSCALL. 1464 */ 1465SYM_CODE_START(entry_SYSCALL32_ignore) 1466 UNWIND_HINT_END_OF_STACK 1467 ENDBR 1468 mov $-ENOSYS, %eax 1469 sysretl 1470SYM_CODE_END(entry_SYSCALL32_ignore) 1471 1472.pushsection .text, "ax" 1473 __FUNC_ALIGN 1474SYM_CODE_START_NOALIGN(rewind_stack_and_make_dead) 1475 UNWIND_HINT_FUNC 1476 /* Prevent any naive code from trying to unwind to our caller. */ 1477 xorl %ebp, %ebp 1478 1479 movq PER_CPU_VAR(pcpu_hot + X86_top_of_stack), %rax 1480 leaq -PTREGS_SIZE(%rax), %rsp 1481 UNWIND_HINT_REGS 1482 1483 call make_task_dead 1484SYM_CODE_END(rewind_stack_and_make_dead) 1485.popsection 1486