xref: /linux/arch/x86/entry/entry_64.S (revision 200323768787a0ee02e01c35c1aff13dc9d77dde)
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 *  linux/arch/x86_64/entry.S
4 *
5 *  Copyright (C) 1991, 1992  Linus Torvalds
6 *  Copyright (C) 2000, 2001, 2002  Andi Kleen SuSE Labs
7 *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
8 *
9 * entry.S contains the system-call and fault low-level handling routines.
10 *
11 * Some of this is documented in Documentation/arch/x86/entry_64.rst
12 *
13 * A note on terminology:
14 * - iret frame:	Architecture defined interrupt frame from SS to RIP
15 *			at the top of the kernel process stack.
16 *
17 * Some macro usage:
18 * - SYM_FUNC_START/END:Define functions in the symbol table.
19 * - idtentry:		Define exception entry points.
20 */
21#include <linux/linkage.h>
22#include <asm/segment.h>
23#include <asm/cache.h>
24#include <asm/errno.h>
25#include <asm/asm-offsets.h>
26#include <asm/msr.h>
27#include <asm/unistd.h>
28#include <asm/thread_info.h>
29#include <asm/hw_irq.h>
30#include <asm/page_types.h>
31#include <asm/irqflags.h>
32#include <asm/paravirt.h>
33#include <asm/percpu.h>
34#include <asm/asm.h>
35#include <asm/smap.h>
36#include <asm/pgtable_types.h>
37#include <asm/export.h>
38#include <asm/frame.h>
39#include <asm/trapnr.h>
40#include <asm/nospec-branch.h>
41#include <asm/fsgsbase.h>
42#include <linux/err.h>
43
44#include "calling.h"
45
46.code64
47.section .entry.text, "ax"
48
49/*
50 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
51 *
52 * This is the only entry point used for 64-bit system calls.  The
53 * hardware interface is reasonably well designed and the register to
54 * argument mapping Linux uses fits well with the registers that are
55 * available when SYSCALL is used.
56 *
57 * SYSCALL instructions can be found inlined in libc implementations as
58 * well as some other programs and libraries.  There are also a handful
59 * of SYSCALL instructions in the vDSO used, for example, as a
60 * clock_gettimeofday fallback.
61 *
62 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
63 * then loads new ss, cs, and rip from previously programmed MSRs.
64 * rflags gets masked by a value from another MSR (so CLD and CLAC
65 * are not needed). SYSCALL does not save anything on the stack
66 * and does not change rsp.
67 *
68 * Registers on entry:
69 * rax  system call number
70 * rcx  return address
71 * r11  saved rflags (note: r11 is callee-clobbered register in C ABI)
72 * rdi  arg0
73 * rsi  arg1
74 * rdx  arg2
75 * r10  arg3 (needs to be moved to rcx to conform to C ABI)
76 * r8   arg4
77 * r9   arg5
78 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
79 *
80 * Only called from user space.
81 *
82 * When user can change pt_regs->foo always force IRET. That is because
83 * it deals with uncanonical addresses better. SYSRET has trouble
84 * with them due to bugs in both AMD and Intel CPUs.
85 */
86
87SYM_CODE_START(entry_SYSCALL_64)
88	UNWIND_HINT_ENTRY
89	ENDBR
90
91	swapgs
92	/* tss.sp2 is scratch space. */
93	movq	%rsp, PER_CPU_VAR(cpu_tss_rw + TSS_sp2)
94	SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp
95	movq	PER_CPU_VAR(pcpu_hot + X86_top_of_stack), %rsp
96
97SYM_INNER_LABEL(entry_SYSCALL_64_safe_stack, SYM_L_GLOBAL)
98	ANNOTATE_NOENDBR
99
100	/* Construct struct pt_regs on stack */
101	pushq	$__USER_DS				/* pt_regs->ss */
102	pushq	PER_CPU_VAR(cpu_tss_rw + TSS_sp2)	/* pt_regs->sp */
103	pushq	%r11					/* pt_regs->flags */
104	pushq	$__USER_CS				/* pt_regs->cs */
105	pushq	%rcx					/* pt_regs->ip */
106SYM_INNER_LABEL(entry_SYSCALL_64_after_hwframe, SYM_L_GLOBAL)
107	pushq	%rax					/* pt_regs->orig_ax */
108
109	PUSH_AND_CLEAR_REGS rax=$-ENOSYS
110
111	/* IRQs are off. */
112	movq	%rsp, %rdi
113	/* Sign extend the lower 32bit as syscall numbers are treated as int */
114	movslq	%eax, %rsi
115
116	/* clobbers %rax, make sure it is after saving the syscall nr */
117	IBRS_ENTER
118	UNTRAIN_RET
119
120	call	do_syscall_64		/* returns with IRQs disabled */
121
122	/*
123	 * Try to use SYSRET instead of IRET if we're returning to
124	 * a completely clean 64-bit userspace context.  If we're not,
125	 * go to the slow exit path.
126	 * In the Xen PV case we must use iret anyway.
127	 */
128
129	ALTERNATIVE "", "jmp	swapgs_restore_regs_and_return_to_usermode", \
130		X86_FEATURE_XENPV
131
132	movq	RCX(%rsp), %rcx
133	movq	RIP(%rsp), %r11
134
135	cmpq	%rcx, %r11	/* SYSRET requires RCX == RIP */
136	jne	swapgs_restore_regs_and_return_to_usermode
137
138	/*
139	 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
140	 * in kernel space.  This essentially lets the user take over
141	 * the kernel, since userspace controls RSP.
142	 *
143	 * If width of "canonical tail" ever becomes variable, this will need
144	 * to be updated to remain correct on both old and new CPUs.
145	 *
146	 * Change top bits to match most significant bit (47th or 56th bit
147	 * depending on paging mode) in the address.
148	 */
149#ifdef CONFIG_X86_5LEVEL
150	ALTERNATIVE "shl $(64 - 48), %rcx; sar $(64 - 48), %rcx", \
151		"shl $(64 - 57), %rcx; sar $(64 - 57), %rcx", X86_FEATURE_LA57
152#else
153	shl	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
154	sar	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
155#endif
156
157	/* If this changed %rcx, it was not canonical */
158	cmpq	%rcx, %r11
159	jne	swapgs_restore_regs_and_return_to_usermode
160
161	cmpq	$__USER_CS, CS(%rsp)		/* CS must match SYSRET */
162	jne	swapgs_restore_regs_and_return_to_usermode
163
164	movq	R11(%rsp), %r11
165	cmpq	%r11, EFLAGS(%rsp)		/* R11 == RFLAGS */
166	jne	swapgs_restore_regs_and_return_to_usermode
167
168	/*
169	 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
170	 * restore RF properly. If the slowpath sets it for whatever reason, we
171	 * need to restore it correctly.
172	 *
173	 * SYSRET can restore TF, but unlike IRET, restoring TF results in a
174	 * trap from userspace immediately after SYSRET.  This would cause an
175	 * infinite loop whenever #DB happens with register state that satisfies
176	 * the opportunistic SYSRET conditions.  For example, single-stepping
177	 * this user code:
178	 *
179	 *           movq	$stuck_here, %rcx
180	 *           pushfq
181	 *           popq %r11
182	 *   stuck_here:
183	 *
184	 * would never get past 'stuck_here'.
185	 */
186	testq	$(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
187	jnz	swapgs_restore_regs_and_return_to_usermode
188
189	/* nothing to check for RSP */
190
191	cmpq	$__USER_DS, SS(%rsp)		/* SS must match SYSRET */
192	jne	swapgs_restore_regs_and_return_to_usermode
193
194	/*
195	 * We win! This label is here just for ease of understanding
196	 * perf profiles. Nothing jumps here.
197	 */
198syscall_return_via_sysret:
199	IBRS_EXIT
200	POP_REGS pop_rdi=0
201
202	/*
203	 * Now all regs are restored except RSP and RDI.
204	 * Save old stack pointer and switch to trampoline stack.
205	 */
206	movq	%rsp, %rdi
207	movq	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
208	UNWIND_HINT_END_OF_STACK
209
210	pushq	RSP-RDI(%rdi)	/* RSP */
211	pushq	(%rdi)		/* RDI */
212
213	/*
214	 * We are on the trampoline stack.  All regs except RDI are live.
215	 * We can do future final exit work right here.
216	 */
217	STACKLEAK_ERASE_NOCLOBBER
218
219	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
220
221	popq	%rdi
222	popq	%rsp
223SYM_INNER_LABEL(entry_SYSRETQ_unsafe_stack, SYM_L_GLOBAL)
224	ANNOTATE_NOENDBR
225	swapgs
226	sysretq
227SYM_INNER_LABEL(entry_SYSRETQ_end, SYM_L_GLOBAL)
228	ANNOTATE_NOENDBR
229	int3
230SYM_CODE_END(entry_SYSCALL_64)
231
232/*
233 * %rdi: prev task
234 * %rsi: next task
235 */
236.pushsection .text, "ax"
237SYM_FUNC_START(__switch_to_asm)
238	/*
239	 * Save callee-saved registers
240	 * This must match the order in inactive_task_frame
241	 */
242	pushq	%rbp
243	pushq	%rbx
244	pushq	%r12
245	pushq	%r13
246	pushq	%r14
247	pushq	%r15
248
249	/* switch stack */
250	movq	%rsp, TASK_threadsp(%rdi)
251	movq	TASK_threadsp(%rsi), %rsp
252
253#ifdef CONFIG_STACKPROTECTOR
254	movq	TASK_stack_canary(%rsi), %rbx
255	movq	%rbx, PER_CPU_VAR(fixed_percpu_data) + FIXED_stack_canary
256#endif
257
258	/*
259	 * When switching from a shallower to a deeper call stack
260	 * the RSB may either underflow or use entries populated
261	 * with userspace addresses. On CPUs where those concerns
262	 * exist, overwrite the RSB with entries which capture
263	 * speculative execution to prevent attack.
264	 */
265	FILL_RETURN_BUFFER %r12, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
266
267	/* restore callee-saved registers */
268	popq	%r15
269	popq	%r14
270	popq	%r13
271	popq	%r12
272	popq	%rbx
273	popq	%rbp
274
275	jmp	__switch_to
276SYM_FUNC_END(__switch_to_asm)
277.popsection
278
279/*
280 * A newly forked process directly context switches into this address.
281 *
282 * rax: prev task we switched from
283 * rbx: kernel thread func (NULL for user thread)
284 * r12: kernel thread arg
285 */
286.pushsection .text, "ax"
287	__FUNC_ALIGN
288SYM_CODE_START_NOALIGN(ret_from_fork)
289	UNWIND_HINT_END_OF_STACK
290	ANNOTATE_NOENDBR // copy_thread
291	CALL_DEPTH_ACCOUNT
292	movq	%rax, %rdi
293	call	schedule_tail			/* rdi: 'prev' task parameter */
294
295	testq	%rbx, %rbx			/* from kernel_thread? */
296	jnz	1f				/* kernel threads are uncommon */
297
2982:
299	UNWIND_HINT_REGS
300	movq	%rsp, %rdi
301	call	syscall_exit_to_user_mode	/* returns with IRQs disabled */
302	jmp	swapgs_restore_regs_and_return_to_usermode
303
3041:
305	/* kernel thread */
306	UNWIND_HINT_END_OF_STACK
307	movq	%r12, %rdi
308	CALL_NOSPEC rbx
309	/*
310	 * A kernel thread is allowed to return here after successfully
311	 * calling kernel_execve().  Exit to userspace to complete the execve()
312	 * syscall.
313	 */
314	movq	$0, RAX(%rsp)
315	jmp	2b
316SYM_CODE_END(ret_from_fork)
317.popsection
318
319.macro DEBUG_ENTRY_ASSERT_IRQS_OFF
320#ifdef CONFIG_DEBUG_ENTRY
321	pushq %rax
322	SAVE_FLAGS
323	testl $X86_EFLAGS_IF, %eax
324	jz .Lokay_\@
325	ud2
326.Lokay_\@:
327	popq %rax
328#endif
329.endm
330
331SYM_CODE_START(xen_error_entry)
332	ANNOTATE_NOENDBR
333	UNWIND_HINT_FUNC
334	PUSH_AND_CLEAR_REGS save_ret=1
335	ENCODE_FRAME_POINTER 8
336	UNTRAIN_RET_FROM_CALL
337	RET
338SYM_CODE_END(xen_error_entry)
339
340/**
341 * idtentry_body - Macro to emit code calling the C function
342 * @cfunc:		C function to be called
343 * @has_error_code:	Hardware pushed error code on stack
344 */
345.macro idtentry_body cfunc has_error_code:req
346
347	/*
348	 * Call error_entry() and switch to the task stack if from userspace.
349	 *
350	 * When in XENPV, it is already in the task stack, and it can't fault
351	 * for native_iret() nor native_load_gs_index() since XENPV uses its
352	 * own pvops for IRET and load_gs_index().  And it doesn't need to
353	 * switch the CR3.  So it can skip invoking error_entry().
354	 */
355	ALTERNATIVE "call error_entry; movq %rax, %rsp", \
356		    "call xen_error_entry", X86_FEATURE_XENPV
357
358	ENCODE_FRAME_POINTER
359	UNWIND_HINT_REGS
360
361	movq	%rsp, %rdi			/* pt_regs pointer into 1st argument*/
362
363	.if \has_error_code == 1
364		movq	ORIG_RAX(%rsp), %rsi	/* get error code into 2nd argument*/
365		movq	$-1, ORIG_RAX(%rsp)	/* no syscall to restart */
366	.endif
367
368	call	\cfunc
369
370	/* For some configurations \cfunc ends up being a noreturn. */
371	REACHABLE
372
373	jmp	error_return
374.endm
375
376/**
377 * idtentry - Macro to generate entry stubs for simple IDT entries
378 * @vector:		Vector number
379 * @asmsym:		ASM symbol for the entry point
380 * @cfunc:		C function to be called
381 * @has_error_code:	Hardware pushed error code on stack
382 *
383 * The macro emits code to set up the kernel context for straight forward
384 * and simple IDT entries. No IST stack, no paranoid entry checks.
385 */
386.macro idtentry vector asmsym cfunc has_error_code:req
387SYM_CODE_START(\asmsym)
388
389	.if \vector == X86_TRAP_BP
390		/* #BP advances %rip to the next instruction */
391		UNWIND_HINT_IRET_ENTRY offset=\has_error_code*8 signal=0
392	.else
393		UNWIND_HINT_IRET_ENTRY offset=\has_error_code*8
394	.endif
395
396	ENDBR
397	ASM_CLAC
398	cld
399
400	.if \has_error_code == 0
401		pushq	$-1			/* ORIG_RAX: no syscall to restart */
402	.endif
403
404	.if \vector == X86_TRAP_BP
405		/*
406		 * If coming from kernel space, create a 6-word gap to allow the
407		 * int3 handler to emulate a call instruction.
408		 */
409		testb	$3, CS-ORIG_RAX(%rsp)
410		jnz	.Lfrom_usermode_no_gap_\@
411		.rept	6
412		pushq	5*8(%rsp)
413		.endr
414		UNWIND_HINT_IRET_REGS offset=8
415.Lfrom_usermode_no_gap_\@:
416	.endif
417
418	idtentry_body \cfunc \has_error_code
419
420_ASM_NOKPROBE(\asmsym)
421SYM_CODE_END(\asmsym)
422.endm
423
424/*
425 * Interrupt entry/exit.
426 *
427 + The interrupt stubs push (vector) onto the stack, which is the error_code
428 * position of idtentry exceptions, and jump to one of the two idtentry points
429 * (common/spurious).
430 *
431 * common_interrupt is a hotpath, align it to a cache line
432 */
433.macro idtentry_irq vector cfunc
434	.p2align CONFIG_X86_L1_CACHE_SHIFT
435	idtentry \vector asm_\cfunc \cfunc has_error_code=1
436.endm
437
438/*
439 * System vectors which invoke their handlers directly and are not
440 * going through the regular common device interrupt handling code.
441 */
442.macro idtentry_sysvec vector cfunc
443	idtentry \vector asm_\cfunc \cfunc has_error_code=0
444.endm
445
446/**
447 * idtentry_mce_db - Macro to generate entry stubs for #MC and #DB
448 * @vector:		Vector number
449 * @asmsym:		ASM symbol for the entry point
450 * @cfunc:		C function to be called
451 *
452 * The macro emits code to set up the kernel context for #MC and #DB
453 *
454 * If the entry comes from user space it uses the normal entry path
455 * including the return to user space work and preemption checks on
456 * exit.
457 *
458 * If hits in kernel mode then it needs to go through the paranoid
459 * entry as the exception can hit any random state. No preemption
460 * check on exit to keep the paranoid path simple.
461 */
462.macro idtentry_mce_db vector asmsym cfunc
463SYM_CODE_START(\asmsym)
464	UNWIND_HINT_IRET_ENTRY
465	ENDBR
466	ASM_CLAC
467	cld
468
469	pushq	$-1			/* ORIG_RAX: no syscall to restart */
470
471	/*
472	 * If the entry is from userspace, switch stacks and treat it as
473	 * a normal entry.
474	 */
475	testb	$3, CS-ORIG_RAX(%rsp)
476	jnz	.Lfrom_usermode_switch_stack_\@
477
478	/* paranoid_entry returns GS information for paranoid_exit in EBX. */
479	call	paranoid_entry
480
481	UNWIND_HINT_REGS
482
483	movq	%rsp, %rdi		/* pt_regs pointer */
484
485	call	\cfunc
486
487	jmp	paranoid_exit
488
489	/* Switch to the regular task stack and use the noist entry point */
490.Lfrom_usermode_switch_stack_\@:
491	idtentry_body noist_\cfunc, has_error_code=0
492
493_ASM_NOKPROBE(\asmsym)
494SYM_CODE_END(\asmsym)
495.endm
496
497#ifdef CONFIG_AMD_MEM_ENCRYPT
498/**
499 * idtentry_vc - Macro to generate entry stub for #VC
500 * @vector:		Vector number
501 * @asmsym:		ASM symbol for the entry point
502 * @cfunc:		C function to be called
503 *
504 * The macro emits code to set up the kernel context for #VC. The #VC handler
505 * runs on an IST stack and needs to be able to cause nested #VC exceptions.
506 *
507 * To make this work the #VC entry code tries its best to pretend it doesn't use
508 * an IST stack by switching to the task stack if coming from user-space (which
509 * includes early SYSCALL entry path) or back to the stack in the IRET frame if
510 * entered from kernel-mode.
511 *
512 * If entered from kernel-mode the return stack is validated first, and if it is
513 * not safe to use (e.g. because it points to the entry stack) the #VC handler
514 * will switch to a fall-back stack (VC2) and call a special handler function.
515 *
516 * The macro is only used for one vector, but it is planned to be extended in
517 * the future for the #HV exception.
518 */
519.macro idtentry_vc vector asmsym cfunc
520SYM_CODE_START(\asmsym)
521	UNWIND_HINT_IRET_ENTRY
522	ENDBR
523	ASM_CLAC
524	cld
525
526	/*
527	 * If the entry is from userspace, switch stacks and treat it as
528	 * a normal entry.
529	 */
530	testb	$3, CS-ORIG_RAX(%rsp)
531	jnz	.Lfrom_usermode_switch_stack_\@
532
533	/*
534	 * paranoid_entry returns SWAPGS flag for paranoid_exit in EBX.
535	 * EBX == 0 -> SWAPGS, EBX == 1 -> no SWAPGS
536	 */
537	call	paranoid_entry
538
539	UNWIND_HINT_REGS
540
541	/*
542	 * Switch off the IST stack to make it free for nested exceptions. The
543	 * vc_switch_off_ist() function will switch back to the interrupted
544	 * stack if it is safe to do so. If not it switches to the VC fall-back
545	 * stack.
546	 */
547	movq	%rsp, %rdi		/* pt_regs pointer */
548	call	vc_switch_off_ist
549	movq	%rax, %rsp		/* Switch to new stack */
550
551	ENCODE_FRAME_POINTER
552	UNWIND_HINT_REGS
553
554	/* Update pt_regs */
555	movq	ORIG_RAX(%rsp), %rsi	/* get error code into 2nd argument*/
556	movq	$-1, ORIG_RAX(%rsp)	/* no syscall to restart */
557
558	movq	%rsp, %rdi		/* pt_regs pointer */
559
560	call	kernel_\cfunc
561
562	/*
563	 * No need to switch back to the IST stack. The current stack is either
564	 * identical to the stack in the IRET frame or the VC fall-back stack,
565	 * so it is definitely mapped even with PTI enabled.
566	 */
567	jmp	paranoid_exit
568
569	/* Switch to the regular task stack */
570.Lfrom_usermode_switch_stack_\@:
571	idtentry_body user_\cfunc, has_error_code=1
572
573_ASM_NOKPROBE(\asmsym)
574SYM_CODE_END(\asmsym)
575.endm
576#endif
577
578/*
579 * Double fault entry. Straight paranoid. No checks from which context
580 * this comes because for the espfix induced #DF this would do the wrong
581 * thing.
582 */
583.macro idtentry_df vector asmsym cfunc
584SYM_CODE_START(\asmsym)
585	UNWIND_HINT_IRET_ENTRY offset=8
586	ENDBR
587	ASM_CLAC
588	cld
589
590	/* paranoid_entry returns GS information for paranoid_exit in EBX. */
591	call	paranoid_entry
592	UNWIND_HINT_REGS
593
594	movq	%rsp, %rdi		/* pt_regs pointer into first argument */
595	movq	ORIG_RAX(%rsp), %rsi	/* get error code into 2nd argument*/
596	movq	$-1, ORIG_RAX(%rsp)	/* no syscall to restart */
597	call	\cfunc
598
599	/* For some configurations \cfunc ends up being a noreturn. */
600	REACHABLE
601
602	jmp	paranoid_exit
603
604_ASM_NOKPROBE(\asmsym)
605SYM_CODE_END(\asmsym)
606.endm
607
608/*
609 * Include the defines which emit the idt entries which are shared
610 * shared between 32 and 64 bit and emit the __irqentry_text_* markers
611 * so the stacktrace boundary checks work.
612 */
613	__ALIGN
614	.globl __irqentry_text_start
615__irqentry_text_start:
616
617#include <asm/idtentry.h>
618
619	__ALIGN
620	.globl __irqentry_text_end
621__irqentry_text_end:
622	ANNOTATE_NOENDBR
623
624SYM_CODE_START_LOCAL(common_interrupt_return)
625SYM_INNER_LABEL(swapgs_restore_regs_and_return_to_usermode, SYM_L_GLOBAL)
626	IBRS_EXIT
627#ifdef CONFIG_DEBUG_ENTRY
628	/* Assert that pt_regs indicates user mode. */
629	testb	$3, CS(%rsp)
630	jnz	1f
631	ud2
6321:
633#endif
634#ifdef CONFIG_XEN_PV
635	ALTERNATIVE "", "jmp xenpv_restore_regs_and_return_to_usermode", X86_FEATURE_XENPV
636#endif
637
638	POP_REGS pop_rdi=0
639
640	/*
641	 * The stack is now user RDI, orig_ax, RIP, CS, EFLAGS, RSP, SS.
642	 * Save old stack pointer and switch to trampoline stack.
643	 */
644	movq	%rsp, %rdi
645	movq	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
646	UNWIND_HINT_END_OF_STACK
647
648	/* Copy the IRET frame to the trampoline stack. */
649	pushq	6*8(%rdi)	/* SS */
650	pushq	5*8(%rdi)	/* RSP */
651	pushq	4*8(%rdi)	/* EFLAGS */
652	pushq	3*8(%rdi)	/* CS */
653	pushq	2*8(%rdi)	/* RIP */
654
655	/* Push user RDI on the trampoline stack. */
656	pushq	(%rdi)
657
658	/*
659	 * We are on the trampoline stack.  All regs except RDI are live.
660	 * We can do future final exit work right here.
661	 */
662	STACKLEAK_ERASE_NOCLOBBER
663
664	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
665
666	/* Restore RDI. */
667	popq	%rdi
668	swapgs
669	jmp	.Lnative_iret
670
671
672SYM_INNER_LABEL(restore_regs_and_return_to_kernel, SYM_L_GLOBAL)
673#ifdef CONFIG_DEBUG_ENTRY
674	/* Assert that pt_regs indicates kernel mode. */
675	testb	$3, CS(%rsp)
676	jz	1f
677	ud2
6781:
679#endif
680	POP_REGS
681	addq	$8, %rsp	/* skip regs->orig_ax */
682	/*
683	 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization
684	 * when returning from IPI handler.
685	 */
686#ifdef CONFIG_XEN_PV
687SYM_INNER_LABEL(early_xen_iret_patch, SYM_L_GLOBAL)
688	ANNOTATE_NOENDBR
689	.byte 0xe9
690	.long .Lnative_iret - (. + 4)
691#endif
692
693.Lnative_iret:
694	UNWIND_HINT_IRET_REGS
695	/*
696	 * Are we returning to a stack segment from the LDT?  Note: in
697	 * 64-bit mode SS:RSP on the exception stack is always valid.
698	 */
699#ifdef CONFIG_X86_ESPFIX64
700	testb	$4, (SS-RIP)(%rsp)
701	jnz	native_irq_return_ldt
702#endif
703
704SYM_INNER_LABEL(native_irq_return_iret, SYM_L_GLOBAL)
705	ANNOTATE_NOENDBR // exc_double_fault
706	/*
707	 * This may fault.  Non-paranoid faults on return to userspace are
708	 * handled by fixup_bad_iret.  These include #SS, #GP, and #NP.
709	 * Double-faults due to espfix64 are handled in exc_double_fault.
710	 * Other faults here are fatal.
711	 */
712	iretq
713
714#ifdef CONFIG_X86_ESPFIX64
715native_irq_return_ldt:
716	/*
717	 * We are running with user GSBASE.  All GPRs contain their user
718	 * values.  We have a percpu ESPFIX stack that is eight slots
719	 * long (see ESPFIX_STACK_SIZE).  espfix_waddr points to the bottom
720	 * of the ESPFIX stack.
721	 *
722	 * We clobber RAX and RDI in this code.  We stash RDI on the
723	 * normal stack and RAX on the ESPFIX stack.
724	 *
725	 * The ESPFIX stack layout we set up looks like this:
726	 *
727	 * --- top of ESPFIX stack ---
728	 * SS
729	 * RSP
730	 * RFLAGS
731	 * CS
732	 * RIP  <-- RSP points here when we're done
733	 * RAX  <-- espfix_waddr points here
734	 * --- bottom of ESPFIX stack ---
735	 */
736
737	pushq	%rdi				/* Stash user RDI */
738	swapgs					/* to kernel GS */
739	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi	/* to kernel CR3 */
740
741	movq	PER_CPU_VAR(espfix_waddr), %rdi
742	movq	%rax, (0*8)(%rdi)		/* user RAX */
743	movq	(1*8)(%rsp), %rax		/* user RIP */
744	movq	%rax, (1*8)(%rdi)
745	movq	(2*8)(%rsp), %rax		/* user CS */
746	movq	%rax, (2*8)(%rdi)
747	movq	(3*8)(%rsp), %rax		/* user RFLAGS */
748	movq	%rax, (3*8)(%rdi)
749	movq	(5*8)(%rsp), %rax		/* user SS */
750	movq	%rax, (5*8)(%rdi)
751	movq	(4*8)(%rsp), %rax		/* user RSP */
752	movq	%rax, (4*8)(%rdi)
753	/* Now RAX == RSP. */
754
755	andl	$0xffff0000, %eax		/* RAX = (RSP & 0xffff0000) */
756
757	/*
758	 * espfix_stack[31:16] == 0.  The page tables are set up such that
759	 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
760	 * espfix_waddr for any X.  That is, there are 65536 RO aliases of
761	 * the same page.  Set up RSP so that RSP[31:16] contains the
762	 * respective 16 bits of the /userspace/ RSP and RSP nonetheless
763	 * still points to an RO alias of the ESPFIX stack.
764	 */
765	orq	PER_CPU_VAR(espfix_stack), %rax
766
767	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
768	swapgs					/* to user GS */
769	popq	%rdi				/* Restore user RDI */
770
771	movq	%rax, %rsp
772	UNWIND_HINT_IRET_REGS offset=8
773
774	/*
775	 * At this point, we cannot write to the stack any more, but we can
776	 * still read.
777	 */
778	popq	%rax				/* Restore user RAX */
779
780	/*
781	 * RSP now points to an ordinary IRET frame, except that the page
782	 * is read-only and RSP[31:16] are preloaded with the userspace
783	 * values.  We can now IRET back to userspace.
784	 */
785	jmp	native_irq_return_iret
786#endif
787SYM_CODE_END(common_interrupt_return)
788_ASM_NOKPROBE(common_interrupt_return)
789
790/*
791 * Reload gs selector with exception handling
792 *  di:  new selector
793 *
794 * Is in entry.text as it shouldn't be instrumented.
795 */
796SYM_FUNC_START(asm_load_gs_index)
797	FRAME_BEGIN
798	swapgs
799.Lgs_change:
800	ANNOTATE_NOENDBR // error_entry
801	movl	%edi, %gs
8022:	ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
803	swapgs
804	FRAME_END
805	RET
806
807	/* running with kernelgs */
808.Lbad_gs:
809	swapgs					/* switch back to user gs */
810.macro ZAP_GS
811	/* This can't be a string because the preprocessor needs to see it. */
812	movl $__USER_DS, %eax
813	movl %eax, %gs
814.endm
815	ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
816	xorl	%eax, %eax
817	movl	%eax, %gs
818	jmp	2b
819
820	_ASM_EXTABLE(.Lgs_change, .Lbad_gs)
821
822SYM_FUNC_END(asm_load_gs_index)
823EXPORT_SYMBOL(asm_load_gs_index)
824
825#ifdef CONFIG_XEN_PV
826/*
827 * A note on the "critical region" in our callback handler.
828 * We want to avoid stacking callback handlers due to events occurring
829 * during handling of the last event. To do this, we keep events disabled
830 * until we've done all processing. HOWEVER, we must enable events before
831 * popping the stack frame (can't be done atomically) and so it would still
832 * be possible to get enough handler activations to overflow the stack.
833 * Although unlikely, bugs of that kind are hard to track down, so we'd
834 * like to avoid the possibility.
835 * So, on entry to the handler we detect whether we interrupted an
836 * existing activation in its critical region -- if so, we pop the current
837 * activation and restart the handler using the previous one.
838 *
839 * C calling convention: exc_xen_hypervisor_callback(struct *pt_regs)
840 */
841	__FUNC_ALIGN
842SYM_CODE_START_LOCAL_NOALIGN(exc_xen_hypervisor_callback)
843
844/*
845 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
846 * see the correct pointer to the pt_regs
847 */
848	UNWIND_HINT_FUNC
849	movq	%rdi, %rsp			/* we don't return, adjust the stack frame */
850	UNWIND_HINT_REGS
851
852	call	xen_pv_evtchn_do_upcall
853
854	jmp	error_return
855SYM_CODE_END(exc_xen_hypervisor_callback)
856
857/*
858 * Hypervisor uses this for application faults while it executes.
859 * We get here for two reasons:
860 *  1. Fault while reloading DS, ES, FS or GS
861 *  2. Fault while executing IRET
862 * Category 1 we do not need to fix up as Xen has already reloaded all segment
863 * registers that could be reloaded and zeroed the others.
864 * Category 2 we fix up by killing the current process. We cannot use the
865 * normal Linux return path in this case because if we use the IRET hypercall
866 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
867 * We distinguish between categories by comparing each saved segment register
868 * with its current contents: any discrepancy means we in category 1.
869 */
870	__FUNC_ALIGN
871SYM_CODE_START_NOALIGN(xen_failsafe_callback)
872	UNWIND_HINT_UNDEFINED
873	ENDBR
874	movl	%ds, %ecx
875	cmpw	%cx, 0x10(%rsp)
876	jne	1f
877	movl	%es, %ecx
878	cmpw	%cx, 0x18(%rsp)
879	jne	1f
880	movl	%fs, %ecx
881	cmpw	%cx, 0x20(%rsp)
882	jne	1f
883	movl	%gs, %ecx
884	cmpw	%cx, 0x28(%rsp)
885	jne	1f
886	/* All segments match their saved values => Category 2 (Bad IRET). */
887	movq	(%rsp), %rcx
888	movq	8(%rsp), %r11
889	addq	$0x30, %rsp
890	pushq	$0				/* RIP */
891	UNWIND_HINT_IRET_REGS offset=8
892	jmp	asm_exc_general_protection
8931:	/* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
894	movq	(%rsp), %rcx
895	movq	8(%rsp), %r11
896	addq	$0x30, %rsp
897	UNWIND_HINT_IRET_REGS
898	pushq	$-1 /* orig_ax = -1 => not a system call */
899	PUSH_AND_CLEAR_REGS
900	ENCODE_FRAME_POINTER
901	jmp	error_return
902SYM_CODE_END(xen_failsafe_callback)
903#endif /* CONFIG_XEN_PV */
904
905/*
906 * Save all registers in pt_regs. Return GSBASE related information
907 * in EBX depending on the availability of the FSGSBASE instructions:
908 *
909 * FSGSBASE	R/EBX
910 *     N        0 -> SWAPGS on exit
911 *              1 -> no SWAPGS on exit
912 *
913 *     Y        GSBASE value at entry, must be restored in paranoid_exit
914 *
915 * R14 - old CR3
916 * R15 - old SPEC_CTRL
917 */
918SYM_CODE_START(paranoid_entry)
919	ANNOTATE_NOENDBR
920	UNWIND_HINT_FUNC
921	PUSH_AND_CLEAR_REGS save_ret=1
922	ENCODE_FRAME_POINTER 8
923
924	/*
925	 * Always stash CR3 in %r14.  This value will be restored,
926	 * verbatim, at exit.  Needed if paranoid_entry interrupted
927	 * another entry that already switched to the user CR3 value
928	 * but has not yet returned to userspace.
929	 *
930	 * This is also why CS (stashed in the "iret frame" by the
931	 * hardware at entry) can not be used: this may be a return
932	 * to kernel code, but with a user CR3 value.
933	 *
934	 * Switching CR3 does not depend on kernel GSBASE so it can
935	 * be done before switching to the kernel GSBASE. This is
936	 * required for FSGSBASE because the kernel GSBASE has to
937	 * be retrieved from a kernel internal table.
938	 */
939	SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg=%rax save_reg=%r14
940
941	/*
942	 * Handling GSBASE depends on the availability of FSGSBASE.
943	 *
944	 * Without FSGSBASE the kernel enforces that negative GSBASE
945	 * values indicate kernel GSBASE. With FSGSBASE no assumptions
946	 * can be made about the GSBASE value when entering from user
947	 * space.
948	 */
949	ALTERNATIVE "jmp .Lparanoid_entry_checkgs", "", X86_FEATURE_FSGSBASE
950
951	/*
952	 * Read the current GSBASE and store it in %rbx unconditionally,
953	 * retrieve and set the current CPUs kernel GSBASE. The stored value
954	 * has to be restored in paranoid_exit unconditionally.
955	 *
956	 * The unconditional write to GS base below ensures that no subsequent
957	 * loads based on a mispredicted GS base can happen, therefore no LFENCE
958	 * is needed here.
959	 */
960	SAVE_AND_SET_GSBASE scratch_reg=%rax save_reg=%rbx
961	jmp .Lparanoid_gsbase_done
962
963.Lparanoid_entry_checkgs:
964	/* EBX = 1 -> kernel GSBASE active, no restore required */
965	movl	$1, %ebx
966
967	/*
968	 * The kernel-enforced convention is a negative GSBASE indicates
969	 * a kernel value. No SWAPGS needed on entry and exit.
970	 */
971	movl	$MSR_GS_BASE, %ecx
972	rdmsr
973	testl	%edx, %edx
974	js	.Lparanoid_kernel_gsbase
975
976	/* EBX = 0 -> SWAPGS required on exit */
977	xorl	%ebx, %ebx
978	swapgs
979.Lparanoid_kernel_gsbase:
980	FENCE_SWAPGS_KERNEL_ENTRY
981.Lparanoid_gsbase_done:
982
983	/*
984	 * Once we have CR3 and %GS setup save and set SPEC_CTRL. Just like
985	 * CR3 above, keep the old value in a callee saved register.
986	 */
987	IBRS_ENTER save_reg=%r15
988	UNTRAIN_RET_FROM_CALL
989
990	RET
991SYM_CODE_END(paranoid_entry)
992
993/*
994 * "Paranoid" exit path from exception stack.  This is invoked
995 * only on return from non-NMI IST interrupts that came
996 * from kernel space.
997 *
998 * We may be returning to very strange contexts (e.g. very early
999 * in syscall entry), so checking for preemption here would
1000 * be complicated.  Fortunately, there's no good reason to try
1001 * to handle preemption here.
1002 *
1003 * R/EBX contains the GSBASE related information depending on the
1004 * availability of the FSGSBASE instructions:
1005 *
1006 * FSGSBASE	R/EBX
1007 *     N        0 -> SWAPGS on exit
1008 *              1 -> no SWAPGS on exit
1009 *
1010 *     Y        User space GSBASE, must be restored unconditionally
1011 *
1012 * R14 - old CR3
1013 * R15 - old SPEC_CTRL
1014 */
1015SYM_CODE_START_LOCAL(paranoid_exit)
1016	UNWIND_HINT_REGS
1017
1018	/*
1019	 * Must restore IBRS state before both CR3 and %GS since we need access
1020	 * to the per-CPU x86_spec_ctrl_shadow variable.
1021	 */
1022	IBRS_EXIT save_reg=%r15
1023
1024	/*
1025	 * The order of operations is important. RESTORE_CR3 requires
1026	 * kernel GSBASE.
1027	 *
1028	 * NB to anyone to try to optimize this code: this code does
1029	 * not execute at all for exceptions from user mode. Those
1030	 * exceptions go through error_return instead.
1031	 */
1032	RESTORE_CR3	scratch_reg=%rax save_reg=%r14
1033
1034	/* Handle the three GSBASE cases */
1035	ALTERNATIVE "jmp .Lparanoid_exit_checkgs", "", X86_FEATURE_FSGSBASE
1036
1037	/* With FSGSBASE enabled, unconditionally restore GSBASE */
1038	wrgsbase	%rbx
1039	jmp		restore_regs_and_return_to_kernel
1040
1041.Lparanoid_exit_checkgs:
1042	/* On non-FSGSBASE systems, conditionally do SWAPGS */
1043	testl		%ebx, %ebx
1044	jnz		restore_regs_and_return_to_kernel
1045
1046	/* We are returning to a context with user GSBASE */
1047	swapgs
1048	jmp		restore_regs_and_return_to_kernel
1049SYM_CODE_END(paranoid_exit)
1050
1051/*
1052 * Switch GS and CR3 if needed.
1053 */
1054SYM_CODE_START(error_entry)
1055	ANNOTATE_NOENDBR
1056	UNWIND_HINT_FUNC
1057
1058	PUSH_AND_CLEAR_REGS save_ret=1
1059	ENCODE_FRAME_POINTER 8
1060
1061	testb	$3, CS+8(%rsp)
1062	jz	.Lerror_kernelspace
1063
1064	/*
1065	 * We entered from user mode or we're pretending to have entered
1066	 * from user mode due to an IRET fault.
1067	 */
1068	swapgs
1069	FENCE_SWAPGS_USER_ENTRY
1070	/* We have user CR3.  Change to kernel CR3. */
1071	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1072	IBRS_ENTER
1073	UNTRAIN_RET_FROM_CALL
1074
1075	leaq	8(%rsp), %rdi			/* arg0 = pt_regs pointer */
1076	/* Put us onto the real thread stack. */
1077	jmp	sync_regs
1078
1079	/*
1080	 * There are two places in the kernel that can potentially fault with
1081	 * usergs. Handle them here.  B stepping K8s sometimes report a
1082	 * truncated RIP for IRET exceptions returning to compat mode. Check
1083	 * for these here too.
1084	 */
1085.Lerror_kernelspace:
1086	leaq	native_irq_return_iret(%rip), %rcx
1087	cmpq	%rcx, RIP+8(%rsp)
1088	je	.Lerror_bad_iret
1089	movl	%ecx, %eax			/* zero extend */
1090	cmpq	%rax, RIP+8(%rsp)
1091	je	.Lbstep_iret
1092	cmpq	$.Lgs_change, RIP+8(%rsp)
1093	jne	.Lerror_entry_done_lfence
1094
1095	/*
1096	 * hack: .Lgs_change can fail with user gsbase.  If this happens, fix up
1097	 * gsbase and proceed.  We'll fix up the exception and land in
1098	 * .Lgs_change's error handler with kernel gsbase.
1099	 */
1100	swapgs
1101
1102	/*
1103	 * Issue an LFENCE to prevent GS speculation, regardless of whether it is a
1104	 * kernel or user gsbase.
1105	 */
1106.Lerror_entry_done_lfence:
1107	FENCE_SWAPGS_KERNEL_ENTRY
1108	CALL_DEPTH_ACCOUNT
1109	leaq	8(%rsp), %rax			/* return pt_regs pointer */
1110	VALIDATE_UNRET_END
1111	RET
1112
1113.Lbstep_iret:
1114	/* Fix truncated RIP */
1115	movq	%rcx, RIP+8(%rsp)
1116	/* fall through */
1117
1118.Lerror_bad_iret:
1119	/*
1120	 * We came from an IRET to user mode, so we have user
1121	 * gsbase and CR3.  Switch to kernel gsbase and CR3:
1122	 */
1123	swapgs
1124	FENCE_SWAPGS_USER_ENTRY
1125	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1126	IBRS_ENTER
1127	UNTRAIN_RET_FROM_CALL
1128
1129	/*
1130	 * Pretend that the exception came from user mode: set up pt_regs
1131	 * as if we faulted immediately after IRET.
1132	 */
1133	leaq	8(%rsp), %rdi			/* arg0 = pt_regs pointer */
1134	call	fixup_bad_iret
1135	mov	%rax, %rdi
1136	jmp	sync_regs
1137SYM_CODE_END(error_entry)
1138
1139SYM_CODE_START_LOCAL(error_return)
1140	UNWIND_HINT_REGS
1141	DEBUG_ENTRY_ASSERT_IRQS_OFF
1142	testb	$3, CS(%rsp)
1143	jz	restore_regs_and_return_to_kernel
1144	jmp	swapgs_restore_regs_and_return_to_usermode
1145SYM_CODE_END(error_return)
1146
1147/*
1148 * Runs on exception stack.  Xen PV does not go through this path at all,
1149 * so we can use real assembly here.
1150 *
1151 * Registers:
1152 *	%r14: Used to save/restore the CR3 of the interrupted context
1153 *	      when PAGE_TABLE_ISOLATION is in use.  Do not clobber.
1154 */
1155SYM_CODE_START(asm_exc_nmi)
1156	UNWIND_HINT_IRET_ENTRY
1157	ENDBR
1158
1159	/*
1160	 * We allow breakpoints in NMIs. If a breakpoint occurs, then
1161	 * the iretq it performs will take us out of NMI context.
1162	 * This means that we can have nested NMIs where the next
1163	 * NMI is using the top of the stack of the previous NMI. We
1164	 * can't let it execute because the nested NMI will corrupt the
1165	 * stack of the previous NMI. NMI handlers are not re-entrant
1166	 * anyway.
1167	 *
1168	 * To handle this case we do the following:
1169	 *  Check the a special location on the stack that contains
1170	 *  a variable that is set when NMIs are executing.
1171	 *  The interrupted task's stack is also checked to see if it
1172	 *  is an NMI stack.
1173	 *  If the variable is not set and the stack is not the NMI
1174	 *  stack then:
1175	 *    o Set the special variable on the stack
1176	 *    o Copy the interrupt frame into an "outermost" location on the
1177	 *      stack
1178	 *    o Copy the interrupt frame into an "iret" location on the stack
1179	 *    o Continue processing the NMI
1180	 *  If the variable is set or the previous stack is the NMI stack:
1181	 *    o Modify the "iret" location to jump to the repeat_nmi
1182	 *    o return back to the first NMI
1183	 *
1184	 * Now on exit of the first NMI, we first clear the stack variable
1185	 * The NMI stack will tell any nested NMIs at that point that it is
1186	 * nested. Then we pop the stack normally with iret, and if there was
1187	 * a nested NMI that updated the copy interrupt stack frame, a
1188	 * jump will be made to the repeat_nmi code that will handle the second
1189	 * NMI.
1190	 *
1191	 * However, espfix prevents us from directly returning to userspace
1192	 * with a single IRET instruction.  Similarly, IRET to user mode
1193	 * can fault.  We therefore handle NMIs from user space like
1194	 * other IST entries.
1195	 */
1196
1197	ASM_CLAC
1198	cld
1199
1200	/* Use %rdx as our temp variable throughout */
1201	pushq	%rdx
1202
1203	testb	$3, CS-RIP+8(%rsp)
1204	jz	.Lnmi_from_kernel
1205
1206	/*
1207	 * NMI from user mode.  We need to run on the thread stack, but we
1208	 * can't go through the normal entry paths: NMIs are masked, and
1209	 * we don't want to enable interrupts, because then we'll end
1210	 * up in an awkward situation in which IRQs are on but NMIs
1211	 * are off.
1212	 *
1213	 * We also must not push anything to the stack before switching
1214	 * stacks lest we corrupt the "NMI executing" variable.
1215	 */
1216
1217	swapgs
1218	FENCE_SWAPGS_USER_ENTRY
1219	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdx
1220	movq	%rsp, %rdx
1221	movq	PER_CPU_VAR(pcpu_hot + X86_top_of_stack), %rsp
1222	UNWIND_HINT_IRET_REGS base=%rdx offset=8
1223	pushq	5*8(%rdx)	/* pt_regs->ss */
1224	pushq	4*8(%rdx)	/* pt_regs->rsp */
1225	pushq	3*8(%rdx)	/* pt_regs->flags */
1226	pushq	2*8(%rdx)	/* pt_regs->cs */
1227	pushq	1*8(%rdx)	/* pt_regs->rip */
1228	UNWIND_HINT_IRET_REGS
1229	pushq   $-1		/* pt_regs->orig_ax */
1230	PUSH_AND_CLEAR_REGS rdx=(%rdx)
1231	ENCODE_FRAME_POINTER
1232
1233	IBRS_ENTER
1234	UNTRAIN_RET
1235
1236	/*
1237	 * At this point we no longer need to worry about stack damage
1238	 * due to nesting -- we're on the normal thread stack and we're
1239	 * done with the NMI stack.
1240	 */
1241
1242	movq	%rsp, %rdi
1243	movq	$-1, %rsi
1244	call	exc_nmi
1245
1246	/*
1247	 * Return back to user mode.  We must *not* do the normal exit
1248	 * work, because we don't want to enable interrupts.
1249	 */
1250	jmp	swapgs_restore_regs_and_return_to_usermode
1251
1252.Lnmi_from_kernel:
1253	/*
1254	 * Here's what our stack frame will look like:
1255	 * +---------------------------------------------------------+
1256	 * | original SS                                             |
1257	 * | original Return RSP                                     |
1258	 * | original RFLAGS                                         |
1259	 * | original CS                                             |
1260	 * | original RIP                                            |
1261	 * +---------------------------------------------------------+
1262	 * | temp storage for rdx                                    |
1263	 * +---------------------------------------------------------+
1264	 * | "NMI executing" variable                                |
1265	 * +---------------------------------------------------------+
1266	 * | iret SS          } Copied from "outermost" frame        |
1267	 * | iret Return RSP  } on each loop iteration; overwritten  |
1268	 * | iret RFLAGS      } by a nested NMI to force another     |
1269	 * | iret CS          } iteration if needed.                 |
1270	 * | iret RIP         }                                      |
1271	 * +---------------------------------------------------------+
1272	 * | outermost SS          } initialized in first_nmi;       |
1273	 * | outermost Return RSP  } will not be changed before      |
1274	 * | outermost RFLAGS      } NMI processing is done.         |
1275	 * | outermost CS          } Copied to "iret" frame on each  |
1276	 * | outermost RIP         } iteration.                      |
1277	 * +---------------------------------------------------------+
1278	 * | pt_regs                                                 |
1279	 * +---------------------------------------------------------+
1280	 *
1281	 * The "original" frame is used by hardware.  Before re-enabling
1282	 * NMIs, we need to be done with it, and we need to leave enough
1283	 * space for the asm code here.
1284	 *
1285	 * We return by executing IRET while RSP points to the "iret" frame.
1286	 * That will either return for real or it will loop back into NMI
1287	 * processing.
1288	 *
1289	 * The "outermost" frame is copied to the "iret" frame on each
1290	 * iteration of the loop, so each iteration starts with the "iret"
1291	 * frame pointing to the final return target.
1292	 */
1293
1294	/*
1295	 * Determine whether we're a nested NMI.
1296	 *
1297	 * If we interrupted kernel code between repeat_nmi and
1298	 * end_repeat_nmi, then we are a nested NMI.  We must not
1299	 * modify the "iret" frame because it's being written by
1300	 * the outer NMI.  That's okay; the outer NMI handler is
1301	 * about to about to call exc_nmi() anyway, so we can just
1302	 * resume the outer NMI.
1303	 */
1304
1305	movq	$repeat_nmi, %rdx
1306	cmpq	8(%rsp), %rdx
1307	ja	1f
1308	movq	$end_repeat_nmi, %rdx
1309	cmpq	8(%rsp), %rdx
1310	ja	nested_nmi_out
13111:
1312
1313	/*
1314	 * Now check "NMI executing".  If it's set, then we're nested.
1315	 * This will not detect if we interrupted an outer NMI just
1316	 * before IRET.
1317	 */
1318	cmpl	$1, -8(%rsp)
1319	je	nested_nmi
1320
1321	/*
1322	 * Now test if the previous stack was an NMI stack.  This covers
1323	 * the case where we interrupt an outer NMI after it clears
1324	 * "NMI executing" but before IRET.  We need to be careful, though:
1325	 * there is one case in which RSP could point to the NMI stack
1326	 * despite there being no NMI active: naughty userspace controls
1327	 * RSP at the very beginning of the SYSCALL targets.  We can
1328	 * pull a fast one on naughty userspace, though: we program
1329	 * SYSCALL to mask DF, so userspace cannot cause DF to be set
1330	 * if it controls the kernel's RSP.  We set DF before we clear
1331	 * "NMI executing".
1332	 */
1333	lea	6*8(%rsp), %rdx
1334	/* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
1335	cmpq	%rdx, 4*8(%rsp)
1336	/* If the stack pointer is above the NMI stack, this is a normal NMI */
1337	ja	first_nmi
1338
1339	subq	$EXCEPTION_STKSZ, %rdx
1340	cmpq	%rdx, 4*8(%rsp)
1341	/* If it is below the NMI stack, it is a normal NMI */
1342	jb	first_nmi
1343
1344	/* Ah, it is within the NMI stack. */
1345
1346	testb	$(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
1347	jz	first_nmi	/* RSP was user controlled. */
1348
1349	/* This is a nested NMI. */
1350
1351nested_nmi:
1352	/*
1353	 * Modify the "iret" frame to point to repeat_nmi, forcing another
1354	 * iteration of NMI handling.
1355	 */
1356	subq	$8, %rsp
1357	leaq	-10*8(%rsp), %rdx
1358	pushq	$__KERNEL_DS
1359	pushq	%rdx
1360	pushfq
1361	pushq	$__KERNEL_CS
1362	pushq	$repeat_nmi
1363
1364	/* Put stack back */
1365	addq	$(6*8), %rsp
1366
1367nested_nmi_out:
1368	popq	%rdx
1369
1370	/* We are returning to kernel mode, so this cannot result in a fault. */
1371	iretq
1372
1373first_nmi:
1374	/* Restore rdx. */
1375	movq	(%rsp), %rdx
1376
1377	/* Make room for "NMI executing". */
1378	pushq	$0
1379
1380	/* Leave room for the "iret" frame */
1381	subq	$(5*8), %rsp
1382
1383	/* Copy the "original" frame to the "outermost" frame */
1384	.rept 5
1385	pushq	11*8(%rsp)
1386	.endr
1387	UNWIND_HINT_IRET_REGS
1388
1389	/* Everything up to here is safe from nested NMIs */
1390
1391#ifdef CONFIG_DEBUG_ENTRY
1392	/*
1393	 * For ease of testing, unmask NMIs right away.  Disabled by
1394	 * default because IRET is very expensive.
1395	 */
1396	pushq	$0		/* SS */
1397	pushq	%rsp		/* RSP (minus 8 because of the previous push) */
1398	addq	$8, (%rsp)	/* Fix up RSP */
1399	pushfq			/* RFLAGS */
1400	pushq	$__KERNEL_CS	/* CS */
1401	pushq	$1f		/* RIP */
1402	iretq			/* continues at repeat_nmi below */
1403	UNWIND_HINT_IRET_REGS
14041:
1405#endif
1406
1407repeat_nmi:
1408	ANNOTATE_NOENDBR // this code
1409	/*
1410	 * If there was a nested NMI, the first NMI's iret will return
1411	 * here. But NMIs are still enabled and we can take another
1412	 * nested NMI. The nested NMI checks the interrupted RIP to see
1413	 * if it is between repeat_nmi and end_repeat_nmi, and if so
1414	 * it will just return, as we are about to repeat an NMI anyway.
1415	 * This makes it safe to copy to the stack frame that a nested
1416	 * NMI will update.
1417	 *
1418	 * RSP is pointing to "outermost RIP".  gsbase is unknown, but, if
1419	 * we're repeating an NMI, gsbase has the same value that it had on
1420	 * the first iteration.  paranoid_entry will load the kernel
1421	 * gsbase if needed before we call exc_nmi().  "NMI executing"
1422	 * is zero.
1423	 */
1424	movq	$1, 10*8(%rsp)		/* Set "NMI executing". */
1425
1426	/*
1427	 * Copy the "outermost" frame to the "iret" frame.  NMIs that nest
1428	 * here must not modify the "iret" frame while we're writing to
1429	 * it or it will end up containing garbage.
1430	 */
1431	addq	$(10*8), %rsp
1432	.rept 5
1433	pushq	-6*8(%rsp)
1434	.endr
1435	subq	$(5*8), %rsp
1436end_repeat_nmi:
1437	ANNOTATE_NOENDBR // this code
1438
1439	/*
1440	 * Everything below this point can be preempted by a nested NMI.
1441	 * If this happens, then the inner NMI will change the "iret"
1442	 * frame to point back to repeat_nmi.
1443	 */
1444	pushq	$-1				/* ORIG_RAX: no syscall to restart */
1445
1446	/*
1447	 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1448	 * as we should not be calling schedule in NMI context.
1449	 * Even with normal interrupts enabled. An NMI should not be
1450	 * setting NEED_RESCHED or anything that normal interrupts and
1451	 * exceptions might do.
1452	 */
1453	call	paranoid_entry
1454	UNWIND_HINT_REGS
1455
1456	movq	%rsp, %rdi
1457	movq	$-1, %rsi
1458	call	exc_nmi
1459
1460	/* Always restore stashed SPEC_CTRL value (see paranoid_entry) */
1461	IBRS_EXIT save_reg=%r15
1462
1463	/* Always restore stashed CR3 value (see paranoid_entry) */
1464	RESTORE_CR3 scratch_reg=%r15 save_reg=%r14
1465
1466	/*
1467	 * The above invocation of paranoid_entry stored the GSBASE
1468	 * related information in R/EBX depending on the availability
1469	 * of FSGSBASE.
1470	 *
1471	 * If FSGSBASE is enabled, restore the saved GSBASE value
1472	 * unconditionally, otherwise take the conditional SWAPGS path.
1473	 */
1474	ALTERNATIVE "jmp nmi_no_fsgsbase", "", X86_FEATURE_FSGSBASE
1475
1476	wrgsbase	%rbx
1477	jmp	nmi_restore
1478
1479nmi_no_fsgsbase:
1480	/* EBX == 0 -> invoke SWAPGS */
1481	testl	%ebx, %ebx
1482	jnz	nmi_restore
1483
1484nmi_swapgs:
1485	swapgs
1486
1487nmi_restore:
1488	POP_REGS
1489
1490	/*
1491	 * Skip orig_ax and the "outermost" frame to point RSP at the "iret"
1492	 * at the "iret" frame.
1493	 */
1494	addq	$6*8, %rsp
1495
1496	/*
1497	 * Clear "NMI executing".  Set DF first so that we can easily
1498	 * distinguish the remaining code between here and IRET from
1499	 * the SYSCALL entry and exit paths.
1500	 *
1501	 * We arguably should just inspect RIP instead, but I (Andy) wrote
1502	 * this code when I had the misapprehension that Xen PV supported
1503	 * NMIs, and Xen PV would break that approach.
1504	 */
1505	std
1506	movq	$0, 5*8(%rsp)		/* clear "NMI executing" */
1507
1508	/*
1509	 * iretq reads the "iret" frame and exits the NMI stack in a
1510	 * single instruction.  We are returning to kernel mode, so this
1511	 * cannot result in a fault.  Similarly, we don't need to worry
1512	 * about espfix64 on the way back to kernel mode.
1513	 */
1514	iretq
1515SYM_CODE_END(asm_exc_nmi)
1516
1517#ifndef CONFIG_IA32_EMULATION
1518/*
1519 * This handles SYSCALL from 32-bit code.  There is no way to program
1520 * MSRs to fully disable 32-bit SYSCALL.
1521 */
1522SYM_CODE_START(ignore_sysret)
1523	UNWIND_HINT_END_OF_STACK
1524	ENDBR
1525	mov	$-ENOSYS, %eax
1526	sysretl
1527SYM_CODE_END(ignore_sysret)
1528#endif
1529
1530.pushsection .text, "ax"
1531	__FUNC_ALIGN
1532SYM_CODE_START_NOALIGN(rewind_stack_and_make_dead)
1533	UNWIND_HINT_FUNC
1534	/* Prevent any naive code from trying to unwind to our caller. */
1535	xorl	%ebp, %ebp
1536
1537	movq	PER_CPU_VAR(pcpu_hot + X86_top_of_stack), %rax
1538	leaq	-PTREGS_SIZE(%rax), %rsp
1539	UNWIND_HINT_REGS
1540
1541	call	make_task_dead
1542SYM_CODE_END(rewind_stack_and_make_dead)
1543.popsection
1544