xref: /linux/arch/x86/entry/entry_32.S (revision a13f2ef168cb2a033a284eb841bcc481ffbc90cf)
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 *  Copyright (C) 1991,1992  Linus Torvalds
4 *
5 * entry_32.S contains the system-call and low-level fault and trap handling routines.
6 *
7 * Stack layout while running C code:
8 *	ptrace needs to have all registers on the stack.
9 *	If the order here is changed, it needs to be
10 *	updated in fork.c:copy_process(), signal.c:do_signal(),
11 *	ptrace.c and ptrace.h
12 *
13 *	 0(%esp) - %ebx
14 *	 4(%esp) - %ecx
15 *	 8(%esp) - %edx
16 *	 C(%esp) - %esi
17 *	10(%esp) - %edi
18 *	14(%esp) - %ebp
19 *	18(%esp) - %eax
20 *	1C(%esp) - %ds
21 *	20(%esp) - %es
22 *	24(%esp) - %fs
23 *	28(%esp) - %gs		saved iff !CONFIG_X86_32_LAZY_GS
24 *	2C(%esp) - orig_eax
25 *	30(%esp) - %eip
26 *	34(%esp) - %cs
27 *	38(%esp) - %eflags
28 *	3C(%esp) - %oldesp
29 *	40(%esp) - %oldss
30 */
31
32#include <linux/linkage.h>
33#include <linux/err.h>
34#include <asm/thread_info.h>
35#include <asm/irqflags.h>
36#include <asm/errno.h>
37#include <asm/segment.h>
38#include <asm/smp.h>
39#include <asm/percpu.h>
40#include <asm/processor-flags.h>
41#include <asm/irq_vectors.h>
42#include <asm/cpufeatures.h>
43#include <asm/alternative-asm.h>
44#include <asm/asm.h>
45#include <asm/smap.h>
46#include <asm/frame.h>
47#include <asm/trapnr.h>
48#include <asm/nospec-branch.h>
49
50#include "calling.h"
51
52	.section .entry.text, "ax"
53
54#define PTI_SWITCH_MASK         (1 << PAGE_SHIFT)
55
56/*
57 * User gs save/restore
58 *
59 * %gs is used for userland TLS and kernel only uses it for stack
60 * canary which is required to be at %gs:20 by gcc.  Read the comment
61 * at the top of stackprotector.h for more info.
62 *
63 * Local labels 98 and 99 are used.
64 */
65#ifdef CONFIG_X86_32_LAZY_GS
66
67 /* unfortunately push/pop can't be no-op */
68.macro PUSH_GS
69	pushl	$0
70.endm
71.macro POP_GS pop=0
72	addl	$(4 + \pop), %esp
73.endm
74.macro POP_GS_EX
75.endm
76
77 /* all the rest are no-op */
78.macro PTGS_TO_GS
79.endm
80.macro PTGS_TO_GS_EX
81.endm
82.macro GS_TO_REG reg
83.endm
84.macro REG_TO_PTGS reg
85.endm
86.macro SET_KERNEL_GS reg
87.endm
88
89#else	/* CONFIG_X86_32_LAZY_GS */
90
91.macro PUSH_GS
92	pushl	%gs
93.endm
94
95.macro POP_GS pop=0
9698:	popl	%gs
97  .if \pop <> 0
98	add	$\pop, %esp
99  .endif
100.endm
101.macro POP_GS_EX
102.pushsection .fixup, "ax"
10399:	movl	$0, (%esp)
104	jmp	98b
105.popsection
106	_ASM_EXTABLE(98b, 99b)
107.endm
108
109.macro PTGS_TO_GS
11098:	mov	PT_GS(%esp), %gs
111.endm
112.macro PTGS_TO_GS_EX
113.pushsection .fixup, "ax"
11499:	movl	$0, PT_GS(%esp)
115	jmp	98b
116.popsection
117	_ASM_EXTABLE(98b, 99b)
118.endm
119
120.macro GS_TO_REG reg
121	movl	%gs, \reg
122.endm
123.macro REG_TO_PTGS reg
124	movl	\reg, PT_GS(%esp)
125.endm
126.macro SET_KERNEL_GS reg
127	movl	$(__KERNEL_STACK_CANARY), \reg
128	movl	\reg, %gs
129.endm
130
131#endif /* CONFIG_X86_32_LAZY_GS */
132
133/* Unconditionally switch to user cr3 */
134.macro SWITCH_TO_USER_CR3 scratch_reg:req
135	ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI
136
137	movl	%cr3, \scratch_reg
138	orl	$PTI_SWITCH_MASK, \scratch_reg
139	movl	\scratch_reg, %cr3
140.Lend_\@:
141.endm
142
143.macro BUG_IF_WRONG_CR3 no_user_check=0
144#ifdef CONFIG_DEBUG_ENTRY
145	ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI
146	.if \no_user_check == 0
147	/* coming from usermode? */
148	testl	$USER_SEGMENT_RPL_MASK, PT_CS(%esp)
149	jz	.Lend_\@
150	.endif
151	/* On user-cr3? */
152	movl	%cr3, %eax
153	testl	$PTI_SWITCH_MASK, %eax
154	jnz	.Lend_\@
155	/* From userspace with kernel cr3 - BUG */
156	ud2
157.Lend_\@:
158#endif
159.endm
160
161/*
162 * Switch to kernel cr3 if not already loaded and return current cr3 in
163 * \scratch_reg
164 */
165.macro SWITCH_TO_KERNEL_CR3 scratch_reg:req
166	ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI
167	movl	%cr3, \scratch_reg
168	/* Test if we are already on kernel CR3 */
169	testl	$PTI_SWITCH_MASK, \scratch_reg
170	jz	.Lend_\@
171	andl	$(~PTI_SWITCH_MASK), \scratch_reg
172	movl	\scratch_reg, %cr3
173	/* Return original CR3 in \scratch_reg */
174	orl	$PTI_SWITCH_MASK, \scratch_reg
175.Lend_\@:
176.endm
177
178#define CS_FROM_ENTRY_STACK	(1 << 31)
179#define CS_FROM_USER_CR3	(1 << 30)
180#define CS_FROM_KERNEL		(1 << 29)
181#define CS_FROM_ESPFIX		(1 << 28)
182
183.macro FIXUP_FRAME
184	/*
185	 * The high bits of the CS dword (__csh) are used for CS_FROM_*.
186	 * Clear them in case hardware didn't do this for us.
187	 */
188	andl	$0x0000ffff, 4*4(%esp)
189
190#ifdef CONFIG_VM86
191	testl	$X86_EFLAGS_VM, 5*4(%esp)
192	jnz	.Lfrom_usermode_no_fixup_\@
193#endif
194	testl	$USER_SEGMENT_RPL_MASK, 4*4(%esp)
195	jnz	.Lfrom_usermode_no_fixup_\@
196
197	orl	$CS_FROM_KERNEL, 4*4(%esp)
198
199	/*
200	 * When we're here from kernel mode; the (exception) stack looks like:
201	 *
202	 *  6*4(%esp) - <previous context>
203	 *  5*4(%esp) - flags
204	 *  4*4(%esp) - cs
205	 *  3*4(%esp) - ip
206	 *  2*4(%esp) - orig_eax
207	 *  1*4(%esp) - gs / function
208	 *  0*4(%esp) - fs
209	 *
210	 * Lets build a 5 entry IRET frame after that, such that struct pt_regs
211	 * is complete and in particular regs->sp is correct. This gives us
212	 * the original 6 enties as gap:
213	 *
214	 * 14*4(%esp) - <previous context>
215	 * 13*4(%esp) - gap / flags
216	 * 12*4(%esp) - gap / cs
217	 * 11*4(%esp) - gap / ip
218	 * 10*4(%esp) - gap / orig_eax
219	 *  9*4(%esp) - gap / gs / function
220	 *  8*4(%esp) - gap / fs
221	 *  7*4(%esp) - ss
222	 *  6*4(%esp) - sp
223	 *  5*4(%esp) - flags
224	 *  4*4(%esp) - cs
225	 *  3*4(%esp) - ip
226	 *  2*4(%esp) - orig_eax
227	 *  1*4(%esp) - gs / function
228	 *  0*4(%esp) - fs
229	 */
230
231	pushl	%ss		# ss
232	pushl	%esp		# sp (points at ss)
233	addl	$7*4, (%esp)	# point sp back at the previous context
234	pushl	7*4(%esp)	# flags
235	pushl	7*4(%esp)	# cs
236	pushl	7*4(%esp)	# ip
237	pushl	7*4(%esp)	# orig_eax
238	pushl	7*4(%esp)	# gs / function
239	pushl	7*4(%esp)	# fs
240.Lfrom_usermode_no_fixup_\@:
241.endm
242
243.macro IRET_FRAME
244	/*
245	 * We're called with %ds, %es, %fs, and %gs from the interrupted
246	 * frame, so we shouldn't use them.  Also, we may be in ESPFIX
247	 * mode and therefore have a nonzero SS base and an offset ESP,
248	 * so any attempt to access the stack needs to use SS.  (except for
249	 * accesses through %esp, which automatically use SS.)
250	 */
251	testl $CS_FROM_KERNEL, 1*4(%esp)
252	jz .Lfinished_frame_\@
253
254	/*
255	 * Reconstruct the 3 entry IRET frame right after the (modified)
256	 * regs->sp without lowering %esp in between, such that an NMI in the
257	 * middle doesn't scribble our stack.
258	 */
259	pushl	%eax
260	pushl	%ecx
261	movl	5*4(%esp), %eax		# (modified) regs->sp
262
263	movl	4*4(%esp), %ecx		# flags
264	movl	%ecx, %ss:-1*4(%eax)
265
266	movl	3*4(%esp), %ecx		# cs
267	andl	$0x0000ffff, %ecx
268	movl	%ecx, %ss:-2*4(%eax)
269
270	movl	2*4(%esp), %ecx		# ip
271	movl	%ecx, %ss:-3*4(%eax)
272
273	movl	1*4(%esp), %ecx		# eax
274	movl	%ecx, %ss:-4*4(%eax)
275
276	popl	%ecx
277	lea	-4*4(%eax), %esp
278	popl	%eax
279.Lfinished_frame_\@:
280.endm
281
282.macro SAVE_ALL pt_regs_ax=%eax switch_stacks=0 skip_gs=0 unwind_espfix=0
283	cld
284.if \skip_gs == 0
285	PUSH_GS
286.endif
287	pushl	%fs
288
289	pushl	%eax
290	movl	$(__KERNEL_PERCPU), %eax
291	movl	%eax, %fs
292.if \unwind_espfix > 0
293	UNWIND_ESPFIX_STACK
294.endif
295	popl	%eax
296
297	FIXUP_FRAME
298	pushl	%es
299	pushl	%ds
300	pushl	\pt_regs_ax
301	pushl	%ebp
302	pushl	%edi
303	pushl	%esi
304	pushl	%edx
305	pushl	%ecx
306	pushl	%ebx
307	movl	$(__USER_DS), %edx
308	movl	%edx, %ds
309	movl	%edx, %es
310.if \skip_gs == 0
311	SET_KERNEL_GS %edx
312.endif
313	/* Switch to kernel stack if necessary */
314.if \switch_stacks > 0
315	SWITCH_TO_KERNEL_STACK
316.endif
317.endm
318
319.macro SAVE_ALL_NMI cr3_reg:req unwind_espfix=0
320	SAVE_ALL unwind_espfix=\unwind_espfix
321
322	BUG_IF_WRONG_CR3
323
324	/*
325	 * Now switch the CR3 when PTI is enabled.
326	 *
327	 * We can enter with either user or kernel cr3, the code will
328	 * store the old cr3 in \cr3_reg and switches to the kernel cr3
329	 * if necessary.
330	 */
331	SWITCH_TO_KERNEL_CR3 scratch_reg=\cr3_reg
332
333.Lend_\@:
334.endm
335
336.macro RESTORE_INT_REGS
337	popl	%ebx
338	popl	%ecx
339	popl	%edx
340	popl	%esi
341	popl	%edi
342	popl	%ebp
343	popl	%eax
344.endm
345
346.macro RESTORE_REGS pop=0
347	RESTORE_INT_REGS
3481:	popl	%ds
3492:	popl	%es
3503:	popl	%fs
351	POP_GS \pop
352	IRET_FRAME
353.pushsection .fixup, "ax"
3544:	movl	$0, (%esp)
355	jmp	1b
3565:	movl	$0, (%esp)
357	jmp	2b
3586:	movl	$0, (%esp)
359	jmp	3b
360.popsection
361	_ASM_EXTABLE(1b, 4b)
362	_ASM_EXTABLE(2b, 5b)
363	_ASM_EXTABLE(3b, 6b)
364	POP_GS_EX
365.endm
366
367.macro RESTORE_ALL_NMI cr3_reg:req pop=0
368	/*
369	 * Now switch the CR3 when PTI is enabled.
370	 *
371	 * We enter with kernel cr3 and switch the cr3 to the value
372	 * stored on \cr3_reg, which is either a user or a kernel cr3.
373	 */
374	ALTERNATIVE "jmp .Lswitched_\@", "", X86_FEATURE_PTI
375
376	testl	$PTI_SWITCH_MASK, \cr3_reg
377	jz	.Lswitched_\@
378
379	/* User cr3 in \cr3_reg - write it to hardware cr3 */
380	movl	\cr3_reg, %cr3
381
382.Lswitched_\@:
383
384	BUG_IF_WRONG_CR3
385
386	RESTORE_REGS pop=\pop
387.endm
388
389.macro CHECK_AND_APPLY_ESPFIX
390#ifdef CONFIG_X86_ESPFIX32
391#define GDT_ESPFIX_OFFSET (GDT_ENTRY_ESPFIX_SS * 8)
392#define GDT_ESPFIX_SS PER_CPU_VAR(gdt_page) + GDT_ESPFIX_OFFSET
393
394	ALTERNATIVE	"jmp .Lend_\@", "", X86_BUG_ESPFIX
395
396	movl	PT_EFLAGS(%esp), %eax		# mix EFLAGS, SS and CS
397	/*
398	 * Warning: PT_OLDSS(%esp) contains the wrong/random values if we
399	 * are returning to the kernel.
400	 * See comments in process.c:copy_thread() for details.
401	 */
402	movb	PT_OLDSS(%esp), %ah
403	movb	PT_CS(%esp), %al
404	andl	$(X86_EFLAGS_VM | (SEGMENT_TI_MASK << 8) | SEGMENT_RPL_MASK), %eax
405	cmpl	$((SEGMENT_LDT << 8) | USER_RPL), %eax
406	jne	.Lend_\@	# returning to user-space with LDT SS
407
408	/*
409	 * Setup and switch to ESPFIX stack
410	 *
411	 * We're returning to userspace with a 16 bit stack. The CPU will not
412	 * restore the high word of ESP for us on executing iret... This is an
413	 * "official" bug of all the x86-compatible CPUs, which we can work
414	 * around to make dosemu and wine happy. We do this by preloading the
415	 * high word of ESP with the high word of the userspace ESP while
416	 * compensating for the offset by changing to the ESPFIX segment with
417	 * a base address that matches for the difference.
418	 */
419	mov	%esp, %edx			/* load kernel esp */
420	mov	PT_OLDESP(%esp), %eax		/* load userspace esp */
421	mov	%dx, %ax			/* eax: new kernel esp */
422	sub	%eax, %edx			/* offset (low word is 0) */
423	shr	$16, %edx
424	mov	%dl, GDT_ESPFIX_SS + 4		/* bits 16..23 */
425	mov	%dh, GDT_ESPFIX_SS + 7		/* bits 24..31 */
426	pushl	$__ESPFIX_SS
427	pushl	%eax				/* new kernel esp */
428	/*
429	 * Disable interrupts, but do not irqtrace this section: we
430	 * will soon execute iret and the tracer was already set to
431	 * the irqstate after the IRET:
432	 */
433	DISABLE_INTERRUPTS(CLBR_ANY)
434	lss	(%esp), %esp			/* switch to espfix segment */
435.Lend_\@:
436#endif /* CONFIG_X86_ESPFIX32 */
437.endm
438
439/*
440 * Called with pt_regs fully populated and kernel segments loaded,
441 * so we can access PER_CPU and use the integer registers.
442 *
443 * We need to be very careful here with the %esp switch, because an NMI
444 * can happen everywhere. If the NMI handler finds itself on the
445 * entry-stack, it will overwrite the task-stack and everything we
446 * copied there. So allocate the stack-frame on the task-stack and
447 * switch to it before we do any copying.
448 */
449
450.macro SWITCH_TO_KERNEL_STACK
451
452	BUG_IF_WRONG_CR3
453
454	SWITCH_TO_KERNEL_CR3 scratch_reg=%eax
455
456	/*
457	 * %eax now contains the entry cr3 and we carry it forward in
458	 * that register for the time this macro runs
459	 */
460
461	/* Are we on the entry stack? Bail out if not! */
462	movl	PER_CPU_VAR(cpu_entry_area), %ecx
463	addl	$CPU_ENTRY_AREA_entry_stack + SIZEOF_entry_stack, %ecx
464	subl	%esp, %ecx	/* ecx = (end of entry_stack) - esp */
465	cmpl	$SIZEOF_entry_stack, %ecx
466	jae	.Lend_\@
467
468	/* Load stack pointer into %esi and %edi */
469	movl	%esp, %esi
470	movl	%esi, %edi
471
472	/* Move %edi to the top of the entry stack */
473	andl	$(MASK_entry_stack), %edi
474	addl	$(SIZEOF_entry_stack), %edi
475
476	/* Load top of task-stack into %edi */
477	movl	TSS_entry2task_stack(%edi), %edi
478
479	/* Special case - entry from kernel mode via entry stack */
480#ifdef CONFIG_VM86
481	movl	PT_EFLAGS(%esp), %ecx		# mix EFLAGS and CS
482	movb	PT_CS(%esp), %cl
483	andl	$(X86_EFLAGS_VM | SEGMENT_RPL_MASK), %ecx
484#else
485	movl	PT_CS(%esp), %ecx
486	andl	$SEGMENT_RPL_MASK, %ecx
487#endif
488	cmpl	$USER_RPL, %ecx
489	jb	.Lentry_from_kernel_\@
490
491	/* Bytes to copy */
492	movl	$PTREGS_SIZE, %ecx
493
494#ifdef CONFIG_VM86
495	testl	$X86_EFLAGS_VM, PT_EFLAGS(%esi)
496	jz	.Lcopy_pt_regs_\@
497
498	/*
499	 * Stack-frame contains 4 additional segment registers when
500	 * coming from VM86 mode
501	 */
502	addl	$(4 * 4), %ecx
503
504#endif
505.Lcopy_pt_regs_\@:
506
507	/* Allocate frame on task-stack */
508	subl	%ecx, %edi
509
510	/* Switch to task-stack */
511	movl	%edi, %esp
512
513	/*
514	 * We are now on the task-stack and can safely copy over the
515	 * stack-frame
516	 */
517	shrl	$2, %ecx
518	cld
519	rep movsl
520
521	jmp .Lend_\@
522
523.Lentry_from_kernel_\@:
524
525	/*
526	 * This handles the case when we enter the kernel from
527	 * kernel-mode and %esp points to the entry-stack. When this
528	 * happens we need to switch to the task-stack to run C code,
529	 * but switch back to the entry-stack again when we approach
530	 * iret and return to the interrupted code-path. This usually
531	 * happens when we hit an exception while restoring user-space
532	 * segment registers on the way back to user-space or when the
533	 * sysenter handler runs with eflags.tf set.
534	 *
535	 * When we switch to the task-stack here, we can't trust the
536	 * contents of the entry-stack anymore, as the exception handler
537	 * might be scheduled out or moved to another CPU. Therefore we
538	 * copy the complete entry-stack to the task-stack and set a
539	 * marker in the iret-frame (bit 31 of the CS dword) to detect
540	 * what we've done on the iret path.
541	 *
542	 * On the iret path we copy everything back and switch to the
543	 * entry-stack, so that the interrupted kernel code-path
544	 * continues on the same stack it was interrupted with.
545	 *
546	 * Be aware that an NMI can happen anytime in this code.
547	 *
548	 * %esi: Entry-Stack pointer (same as %esp)
549	 * %edi: Top of the task stack
550	 * %eax: CR3 on kernel entry
551	 */
552
553	/* Calculate number of bytes on the entry stack in %ecx */
554	movl	%esi, %ecx
555
556	/* %ecx to the top of entry-stack */
557	andl	$(MASK_entry_stack), %ecx
558	addl	$(SIZEOF_entry_stack), %ecx
559
560	/* Number of bytes on the entry stack to %ecx */
561	sub	%esi, %ecx
562
563	/* Mark stackframe as coming from entry stack */
564	orl	$CS_FROM_ENTRY_STACK, PT_CS(%esp)
565
566	/*
567	 * Test the cr3 used to enter the kernel and add a marker
568	 * so that we can switch back to it before iret.
569	 */
570	testl	$PTI_SWITCH_MASK, %eax
571	jz	.Lcopy_pt_regs_\@
572	orl	$CS_FROM_USER_CR3, PT_CS(%esp)
573
574	/*
575	 * %esi and %edi are unchanged, %ecx contains the number of
576	 * bytes to copy. The code at .Lcopy_pt_regs_\@ will allocate
577	 * the stack-frame on task-stack and copy everything over
578	 */
579	jmp .Lcopy_pt_regs_\@
580
581.Lend_\@:
582.endm
583
584/*
585 * Switch back from the kernel stack to the entry stack.
586 *
587 * The %esp register must point to pt_regs on the task stack. It will
588 * first calculate the size of the stack-frame to copy, depending on
589 * whether we return to VM86 mode or not. With that it uses 'rep movsl'
590 * to copy the contents of the stack over to the entry stack.
591 *
592 * We must be very careful here, as we can't trust the contents of the
593 * task-stack once we switched to the entry-stack. When an NMI happens
594 * while on the entry-stack, the NMI handler will switch back to the top
595 * of the task stack, overwriting our stack-frame we are about to copy.
596 * Therefore we switch the stack only after everything is copied over.
597 */
598.macro SWITCH_TO_ENTRY_STACK
599
600	/* Bytes to copy */
601	movl	$PTREGS_SIZE, %ecx
602
603#ifdef CONFIG_VM86
604	testl	$(X86_EFLAGS_VM), PT_EFLAGS(%esp)
605	jz	.Lcopy_pt_regs_\@
606
607	/* Additional 4 registers to copy when returning to VM86 mode */
608	addl    $(4 * 4), %ecx
609
610.Lcopy_pt_regs_\@:
611#endif
612
613	/* Initialize source and destination for movsl */
614	movl	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %edi
615	subl	%ecx, %edi
616	movl	%esp, %esi
617
618	/* Save future stack pointer in %ebx */
619	movl	%edi, %ebx
620
621	/* Copy over the stack-frame */
622	shrl	$2, %ecx
623	cld
624	rep movsl
625
626	/*
627	 * Switch to entry-stack - needs to happen after everything is
628	 * copied because the NMI handler will overwrite the task-stack
629	 * when on entry-stack
630	 */
631	movl	%ebx, %esp
632
633.Lend_\@:
634.endm
635
636/*
637 * This macro handles the case when we return to kernel-mode on the iret
638 * path and have to switch back to the entry stack and/or user-cr3
639 *
640 * See the comments below the .Lentry_from_kernel_\@ label in the
641 * SWITCH_TO_KERNEL_STACK macro for more details.
642 */
643.macro PARANOID_EXIT_TO_KERNEL_MODE
644
645	/*
646	 * Test if we entered the kernel with the entry-stack. Most
647	 * likely we did not, because this code only runs on the
648	 * return-to-kernel path.
649	 */
650	testl	$CS_FROM_ENTRY_STACK, PT_CS(%esp)
651	jz	.Lend_\@
652
653	/* Unlikely slow-path */
654
655	/* Clear marker from stack-frame */
656	andl	$(~CS_FROM_ENTRY_STACK), PT_CS(%esp)
657
658	/* Copy the remaining task-stack contents to entry-stack */
659	movl	%esp, %esi
660	movl	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %edi
661
662	/* Bytes on the task-stack to ecx */
663	movl	PER_CPU_VAR(cpu_tss_rw + TSS_sp1), %ecx
664	subl	%esi, %ecx
665
666	/* Allocate stack-frame on entry-stack */
667	subl	%ecx, %edi
668
669	/*
670	 * Save future stack-pointer, we must not switch until the
671	 * copy is done, otherwise the NMI handler could destroy the
672	 * contents of the task-stack we are about to copy.
673	 */
674	movl	%edi, %ebx
675
676	/* Do the copy */
677	shrl	$2, %ecx
678	cld
679	rep movsl
680
681	/* Safe to switch to entry-stack now */
682	movl	%ebx, %esp
683
684	/*
685	 * We came from entry-stack and need to check if we also need to
686	 * switch back to user cr3.
687	 */
688	testl	$CS_FROM_USER_CR3, PT_CS(%esp)
689	jz	.Lend_\@
690
691	/* Clear marker from stack-frame */
692	andl	$(~CS_FROM_USER_CR3), PT_CS(%esp)
693
694	SWITCH_TO_USER_CR3 scratch_reg=%eax
695
696.Lend_\@:
697.endm
698
699/**
700 * idtentry - Macro to generate entry stubs for simple IDT entries
701 * @vector:		Vector number
702 * @asmsym:		ASM symbol for the entry point
703 * @cfunc:		C function to be called
704 * @has_error_code:	Hardware pushed error code on stack
705 */
706.macro idtentry vector asmsym cfunc has_error_code:req
707SYM_CODE_START(\asmsym)
708	ASM_CLAC
709	cld
710
711	.if \has_error_code == 0
712		pushl	$0		/* Clear the error code */
713	.endif
714
715	/* Push the C-function address into the GS slot */
716	pushl	$\cfunc
717	/* Invoke the common exception entry */
718	jmp	handle_exception
719SYM_CODE_END(\asmsym)
720.endm
721
722.macro idtentry_irq vector cfunc
723	.p2align CONFIG_X86_L1_CACHE_SHIFT
724SYM_CODE_START_LOCAL(asm_\cfunc)
725	ASM_CLAC
726	SAVE_ALL switch_stacks=1
727	ENCODE_FRAME_POINTER
728	movl	%esp, %eax
729	movl	PT_ORIG_EAX(%esp), %edx		/* get the vector from stack */
730	movl	$-1, PT_ORIG_EAX(%esp)		/* no syscall to restart */
731	call	\cfunc
732	jmp	handle_exception_return
733SYM_CODE_END(asm_\cfunc)
734.endm
735
736.macro idtentry_sysvec vector cfunc
737	idtentry \vector asm_\cfunc \cfunc has_error_code=0
738.endm
739
740/*
741 * Include the defines which emit the idt entries which are shared
742 * shared between 32 and 64 bit and emit the __irqentry_text_* markers
743 * so the stacktrace boundary checks work.
744 */
745	.align 16
746	.globl __irqentry_text_start
747__irqentry_text_start:
748
749#include <asm/idtentry.h>
750
751	.align 16
752	.globl __irqentry_text_end
753__irqentry_text_end:
754
755/*
756 * %eax: prev task
757 * %edx: next task
758 */
759.pushsection .text, "ax"
760SYM_CODE_START(__switch_to_asm)
761	/*
762	 * Save callee-saved registers
763	 * This must match the order in struct inactive_task_frame
764	 */
765	pushl	%ebp
766	pushl	%ebx
767	pushl	%edi
768	pushl	%esi
769	/*
770	 * Flags are saved to prevent AC leakage. This could go
771	 * away if objtool would have 32bit support to verify
772	 * the STAC/CLAC correctness.
773	 */
774	pushfl
775
776	/* switch stack */
777	movl	%esp, TASK_threadsp(%eax)
778	movl	TASK_threadsp(%edx), %esp
779
780#ifdef CONFIG_STACKPROTECTOR
781	movl	TASK_stack_canary(%edx), %ebx
782	movl	%ebx, PER_CPU_VAR(stack_canary)+stack_canary_offset
783#endif
784
785#ifdef CONFIG_RETPOLINE
786	/*
787	 * When switching from a shallower to a deeper call stack
788	 * the RSB may either underflow or use entries populated
789	 * with userspace addresses. On CPUs where those concerns
790	 * exist, overwrite the RSB with entries which capture
791	 * speculative execution to prevent attack.
792	 */
793	FILL_RETURN_BUFFER %ebx, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
794#endif
795
796	/* Restore flags or the incoming task to restore AC state. */
797	popfl
798	/* restore callee-saved registers */
799	popl	%esi
800	popl	%edi
801	popl	%ebx
802	popl	%ebp
803
804	jmp	__switch_to
805SYM_CODE_END(__switch_to_asm)
806.popsection
807
808/*
809 * The unwinder expects the last frame on the stack to always be at the same
810 * offset from the end of the page, which allows it to validate the stack.
811 * Calling schedule_tail() directly would break that convention because its an
812 * asmlinkage function so its argument has to be pushed on the stack.  This
813 * wrapper creates a proper "end of stack" frame header before the call.
814 */
815.pushsection .text, "ax"
816SYM_FUNC_START(schedule_tail_wrapper)
817	FRAME_BEGIN
818
819	pushl	%eax
820	call	schedule_tail
821	popl	%eax
822
823	FRAME_END
824	ret
825SYM_FUNC_END(schedule_tail_wrapper)
826.popsection
827
828/*
829 * A newly forked process directly context switches into this address.
830 *
831 * eax: prev task we switched from
832 * ebx: kernel thread func (NULL for user thread)
833 * edi: kernel thread arg
834 */
835.pushsection .text, "ax"
836SYM_CODE_START(ret_from_fork)
837	call	schedule_tail_wrapper
838
839	testl	%ebx, %ebx
840	jnz	1f		/* kernel threads are uncommon */
841
8422:
843	/* When we fork, we trace the syscall return in the child, too. */
844	movl    %esp, %eax
845	call    syscall_return_slowpath
846	jmp     .Lsyscall_32_done
847
848	/* kernel thread */
8491:	movl	%edi, %eax
850	CALL_NOSPEC ebx
851	/*
852	 * A kernel thread is allowed to return here after successfully
853	 * calling do_execve().  Exit to userspace to complete the execve()
854	 * syscall.
855	 */
856	movl	$0, PT_EAX(%esp)
857	jmp	2b
858SYM_CODE_END(ret_from_fork)
859.popsection
860
861SYM_ENTRY(__begin_SYSENTER_singlestep_region, SYM_L_GLOBAL, SYM_A_NONE)
862/*
863 * All code from here through __end_SYSENTER_singlestep_region is subject
864 * to being single-stepped if a user program sets TF and executes SYSENTER.
865 * There is absolutely nothing that we can do to prevent this from happening
866 * (thanks Intel!).  To keep our handling of this situation as simple as
867 * possible, we handle TF just like AC and NT, except that our #DB handler
868 * will ignore all of the single-step traps generated in this range.
869 */
870
871/*
872 * 32-bit SYSENTER entry.
873 *
874 * 32-bit system calls through the vDSO's __kernel_vsyscall enter here
875 * if X86_FEATURE_SEP is available.  This is the preferred system call
876 * entry on 32-bit systems.
877 *
878 * The SYSENTER instruction, in principle, should *only* occur in the
879 * vDSO.  In practice, a small number of Android devices were shipped
880 * with a copy of Bionic that inlined a SYSENTER instruction.  This
881 * never happened in any of Google's Bionic versions -- it only happened
882 * in a narrow range of Intel-provided versions.
883 *
884 * SYSENTER loads SS, ESP, CS, and EIP from previously programmed MSRs.
885 * IF and VM in RFLAGS are cleared (IOW: interrupts are off).
886 * SYSENTER does not save anything on the stack,
887 * and does not save old EIP (!!!), ESP, or EFLAGS.
888 *
889 * To avoid losing track of EFLAGS.VM (and thus potentially corrupting
890 * user and/or vm86 state), we explicitly disable the SYSENTER
891 * instruction in vm86 mode by reprogramming the MSRs.
892 *
893 * Arguments:
894 * eax  system call number
895 * ebx  arg1
896 * ecx  arg2
897 * edx  arg3
898 * esi  arg4
899 * edi  arg5
900 * ebp  user stack
901 * 0(%ebp) arg6
902 */
903SYM_FUNC_START(entry_SYSENTER_32)
904	/*
905	 * On entry-stack with all userspace-regs live - save and
906	 * restore eflags and %eax to use it as scratch-reg for the cr3
907	 * switch.
908	 */
909	pushfl
910	pushl	%eax
911	BUG_IF_WRONG_CR3 no_user_check=1
912	SWITCH_TO_KERNEL_CR3 scratch_reg=%eax
913	popl	%eax
914	popfl
915
916	/* Stack empty again, switch to task stack */
917	movl	TSS_entry2task_stack(%esp), %esp
918
919.Lsysenter_past_esp:
920	pushl	$__USER_DS		/* pt_regs->ss */
921	pushl	$0			/* pt_regs->sp (placeholder) */
922	pushfl				/* pt_regs->flags (except IF = 0) */
923	pushl	$__USER_CS		/* pt_regs->cs */
924	pushl	$0			/* pt_regs->ip = 0 (placeholder) */
925	pushl	%eax			/* pt_regs->orig_ax */
926	SAVE_ALL pt_regs_ax=$-ENOSYS	/* save rest, stack already switched */
927
928	/*
929	 * SYSENTER doesn't filter flags, so we need to clear NT, AC
930	 * and TF ourselves.  To save a few cycles, we can check whether
931	 * either was set instead of doing an unconditional popfq.
932	 * This needs to happen before enabling interrupts so that
933	 * we don't get preempted with NT set.
934	 *
935	 * If TF is set, we will single-step all the way to here -- do_debug
936	 * will ignore all the traps.  (Yes, this is slow, but so is
937	 * single-stepping in general.  This allows us to avoid having
938	 * a more complicated code to handle the case where a user program
939	 * forces us to single-step through the SYSENTER entry code.)
940	 *
941	 * NB.: .Lsysenter_fix_flags is a label with the code under it moved
942	 * out-of-line as an optimization: NT is unlikely to be set in the
943	 * majority of the cases and instead of polluting the I$ unnecessarily,
944	 * we're keeping that code behind a branch which will predict as
945	 * not-taken and therefore its instructions won't be fetched.
946	 */
947	testl	$X86_EFLAGS_NT|X86_EFLAGS_AC|X86_EFLAGS_TF, PT_EFLAGS(%esp)
948	jnz	.Lsysenter_fix_flags
949.Lsysenter_flags_fixed:
950
951	movl	%esp, %eax
952	call	do_SYSENTER_32
953	testl	%eax, %eax
954	jz	.Lsyscall_32_done
955
956	STACKLEAK_ERASE
957
958	/* Opportunistic SYSEXIT */
959
960	/*
961	 * Setup entry stack - we keep the pointer in %eax and do the
962	 * switch after almost all user-state is restored.
963	 */
964
965	/* Load entry stack pointer and allocate frame for eflags/eax */
966	movl	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %eax
967	subl	$(2*4), %eax
968
969	/* Copy eflags and eax to entry stack */
970	movl	PT_EFLAGS(%esp), %edi
971	movl	PT_EAX(%esp), %esi
972	movl	%edi, (%eax)
973	movl	%esi, 4(%eax)
974
975	/* Restore user registers and segments */
976	movl	PT_EIP(%esp), %edx	/* pt_regs->ip */
977	movl	PT_OLDESP(%esp), %ecx	/* pt_regs->sp */
9781:	mov	PT_FS(%esp), %fs
979	PTGS_TO_GS
980
981	popl	%ebx			/* pt_regs->bx */
982	addl	$2*4, %esp		/* skip pt_regs->cx and pt_regs->dx */
983	popl	%esi			/* pt_regs->si */
984	popl	%edi			/* pt_regs->di */
985	popl	%ebp			/* pt_regs->bp */
986
987	/* Switch to entry stack */
988	movl	%eax, %esp
989
990	/* Now ready to switch the cr3 */
991	SWITCH_TO_USER_CR3 scratch_reg=%eax
992
993	/*
994	 * Restore all flags except IF. (We restore IF separately because
995	 * STI gives a one-instruction window in which we won't be interrupted,
996	 * whereas POPF does not.)
997	 */
998	btrl	$X86_EFLAGS_IF_BIT, (%esp)
999	BUG_IF_WRONG_CR3 no_user_check=1
1000	popfl
1001	popl	%eax
1002
1003	/*
1004	 * Return back to the vDSO, which will pop ecx and edx.
1005	 * Don't bother with DS and ES (they already contain __USER_DS).
1006	 */
1007	sti
1008	sysexit
1009
1010.pushsection .fixup, "ax"
10112:	movl	$0, PT_FS(%esp)
1012	jmp	1b
1013.popsection
1014	_ASM_EXTABLE(1b, 2b)
1015	PTGS_TO_GS_EX
1016
1017.Lsysenter_fix_flags:
1018	pushl	$X86_EFLAGS_FIXED
1019	popfl
1020	jmp	.Lsysenter_flags_fixed
1021SYM_ENTRY(__end_SYSENTER_singlestep_region, SYM_L_GLOBAL, SYM_A_NONE)
1022SYM_FUNC_END(entry_SYSENTER_32)
1023
1024/*
1025 * 32-bit legacy system call entry.
1026 *
1027 * 32-bit x86 Linux system calls traditionally used the INT $0x80
1028 * instruction.  INT $0x80 lands here.
1029 *
1030 * This entry point can be used by any 32-bit perform system calls.
1031 * Instances of INT $0x80 can be found inline in various programs and
1032 * libraries.  It is also used by the vDSO's __kernel_vsyscall
1033 * fallback for hardware that doesn't support a faster entry method.
1034 * Restarted 32-bit system calls also fall back to INT $0x80
1035 * regardless of what instruction was originally used to do the system
1036 * call.  (64-bit programs can use INT $0x80 as well, but they can
1037 * only run on 64-bit kernels and therefore land in
1038 * entry_INT80_compat.)
1039 *
1040 * This is considered a slow path.  It is not used by most libc
1041 * implementations on modern hardware except during process startup.
1042 *
1043 * Arguments:
1044 * eax  system call number
1045 * ebx  arg1
1046 * ecx  arg2
1047 * edx  arg3
1048 * esi  arg4
1049 * edi  arg5
1050 * ebp  arg6
1051 */
1052SYM_FUNC_START(entry_INT80_32)
1053	ASM_CLAC
1054	pushl	%eax			/* pt_regs->orig_ax */
1055
1056	SAVE_ALL pt_regs_ax=$-ENOSYS switch_stacks=1	/* save rest */
1057
1058	movl	%esp, %eax
1059	call	do_int80_syscall_32
1060.Lsyscall_32_done:
1061	STACKLEAK_ERASE
1062
1063restore_all_switch_stack:
1064	SWITCH_TO_ENTRY_STACK
1065	CHECK_AND_APPLY_ESPFIX
1066
1067	/* Switch back to user CR3 */
1068	SWITCH_TO_USER_CR3 scratch_reg=%eax
1069
1070	BUG_IF_WRONG_CR3
1071
1072	/* Restore user state */
1073	RESTORE_REGS pop=4			# skip orig_eax/error_code
1074.Lirq_return:
1075	/*
1076	 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization
1077	 * when returning from IPI handler and when returning from
1078	 * scheduler to user-space.
1079	 */
1080	INTERRUPT_RETURN
1081
1082.section .fixup, "ax"
1083SYM_CODE_START(asm_iret_error)
1084	pushl	$0				# no error code
1085	pushl	$iret_error
1086
1087#ifdef CONFIG_DEBUG_ENTRY
1088	/*
1089	 * The stack-frame here is the one that iret faulted on, so its a
1090	 * return-to-user frame. We are on kernel-cr3 because we come here from
1091	 * the fixup code. This confuses the CR3 checker, so switch to user-cr3
1092	 * as the checker expects it.
1093	 */
1094	pushl	%eax
1095	SWITCH_TO_USER_CR3 scratch_reg=%eax
1096	popl	%eax
1097#endif
1098
1099	jmp	handle_exception
1100SYM_CODE_END(asm_iret_error)
1101.previous
1102	_ASM_EXTABLE(.Lirq_return, asm_iret_error)
1103SYM_FUNC_END(entry_INT80_32)
1104
1105.macro FIXUP_ESPFIX_STACK
1106/*
1107 * Switch back for ESPFIX stack to the normal zerobased stack
1108 *
1109 * We can't call C functions using the ESPFIX stack. This code reads
1110 * the high word of the segment base from the GDT and swiches to the
1111 * normal stack and adjusts ESP with the matching offset.
1112 *
1113 * We might be on user CR3 here, so percpu data is not mapped and we can't
1114 * access the GDT through the percpu segment.  Instead, use SGDT to find
1115 * the cpu_entry_area alias of the GDT.
1116 */
1117#ifdef CONFIG_X86_ESPFIX32
1118	/* fixup the stack */
1119	pushl	%ecx
1120	subl	$2*4, %esp
1121	sgdt	(%esp)
1122	movl	2(%esp), %ecx				/* GDT address */
1123	/*
1124	 * Careful: ECX is a linear pointer, so we need to force base
1125	 * zero.  %cs is the only known-linear segment we have right now.
1126	 */
1127	mov	%cs:GDT_ESPFIX_OFFSET + 4(%ecx), %al	/* bits 16..23 */
1128	mov	%cs:GDT_ESPFIX_OFFSET + 7(%ecx), %ah	/* bits 24..31 */
1129	shl	$16, %eax
1130	addl	$2*4, %esp
1131	popl	%ecx
1132	addl	%esp, %eax			/* the adjusted stack pointer */
1133	pushl	$__KERNEL_DS
1134	pushl	%eax
1135	lss	(%esp), %esp			/* switch to the normal stack segment */
1136#endif
1137.endm
1138
1139.macro UNWIND_ESPFIX_STACK
1140	/* It's safe to clobber %eax, all other regs need to be preserved */
1141#ifdef CONFIG_X86_ESPFIX32
1142	movl	%ss, %eax
1143	/* see if on espfix stack */
1144	cmpw	$__ESPFIX_SS, %ax
1145	jne	.Lno_fixup_\@
1146	/* switch to normal stack */
1147	FIXUP_ESPFIX_STACK
1148.Lno_fixup_\@:
1149#endif
1150.endm
1151
1152SYM_CODE_START_LOCAL_NOALIGN(handle_exception)
1153	/* the function address is in %gs's slot on the stack */
1154	SAVE_ALL switch_stacks=1 skip_gs=1 unwind_espfix=1
1155	ENCODE_FRAME_POINTER
1156
1157	/* fixup %gs */
1158	GS_TO_REG %ecx
1159	movl	PT_GS(%esp), %edi		# get the function address
1160	REG_TO_PTGS %ecx
1161	SET_KERNEL_GS %ecx
1162
1163	/* fixup orig %eax */
1164	movl	PT_ORIG_EAX(%esp), %edx		# get the error code
1165	movl	$-1, PT_ORIG_EAX(%esp)		# no syscall to restart
1166
1167	movl	%esp, %eax			# pt_regs pointer
1168	CALL_NOSPEC edi
1169
1170handle_exception_return:
1171#ifdef CONFIG_VM86
1172	movl	PT_EFLAGS(%esp), %eax		# mix EFLAGS and CS
1173	movb	PT_CS(%esp), %al
1174	andl	$(X86_EFLAGS_VM | SEGMENT_RPL_MASK), %eax
1175#else
1176	/*
1177	 * We can be coming here from child spawned by kernel_thread().
1178	 */
1179	movl	PT_CS(%esp), %eax
1180	andl	$SEGMENT_RPL_MASK, %eax
1181#endif
1182	cmpl	$USER_RPL, %eax			# returning to v8086 or userspace ?
1183	jnb	ret_to_user
1184
1185	PARANOID_EXIT_TO_KERNEL_MODE
1186	BUG_IF_WRONG_CR3
1187	RESTORE_REGS 4
1188	jmp	.Lirq_return
1189
1190ret_to_user:
1191	movl	%esp, %eax
1192	jmp	restore_all_switch_stack
1193SYM_CODE_END(handle_exception)
1194
1195SYM_CODE_START(asm_exc_double_fault)
11961:
1197	/*
1198	 * This is a task gate handler, not an interrupt gate handler.
1199	 * The error code is on the stack, but the stack is otherwise
1200	 * empty.  Interrupts are off.  Our state is sane with the following
1201	 * exceptions:
1202	 *
1203	 *  - CR0.TS is set.  "TS" literally means "task switched".
1204	 *  - EFLAGS.NT is set because we're a "nested task".
1205	 *  - The doublefault TSS has back_link set and has been marked busy.
1206	 *  - TR points to the doublefault TSS and the normal TSS is busy.
1207	 *  - CR3 is the normal kernel PGD.  This would be delightful, except
1208	 *    that the CPU didn't bother to save the old CR3 anywhere.  This
1209	 *    would make it very awkward to return back to the context we came
1210	 *    from.
1211	 *
1212	 * The rest of EFLAGS is sanitized for us, so we don't need to
1213	 * worry about AC or DF.
1214	 *
1215	 * Don't even bother popping the error code.  It's always zero,
1216	 * and ignoring it makes us a bit more robust against buggy
1217	 * hypervisor task gate implementations.
1218	 *
1219	 * We will manually undo the task switch instead of doing a
1220	 * task-switching IRET.
1221	 */
1222
1223	clts				/* clear CR0.TS */
1224	pushl	$X86_EFLAGS_FIXED
1225	popfl				/* clear EFLAGS.NT */
1226
1227	call	doublefault_shim
1228
1229	/* We don't support returning, so we have no IRET here. */
12301:
1231	hlt
1232	jmp 1b
1233SYM_CODE_END(asm_exc_double_fault)
1234
1235/*
1236 * NMI is doubly nasty.  It can happen on the first instruction of
1237 * entry_SYSENTER_32 (just like #DB), but it can also interrupt the beginning
1238 * of the #DB handler even if that #DB in turn hit before entry_SYSENTER_32
1239 * switched stacks.  We handle both conditions by simply checking whether we
1240 * interrupted kernel code running on the SYSENTER stack.
1241 */
1242SYM_CODE_START(asm_exc_nmi)
1243	ASM_CLAC
1244
1245#ifdef CONFIG_X86_ESPFIX32
1246	/*
1247	 * ESPFIX_SS is only ever set on the return to user path
1248	 * after we've switched to the entry stack.
1249	 */
1250	pushl	%eax
1251	movl	%ss, %eax
1252	cmpw	$__ESPFIX_SS, %ax
1253	popl	%eax
1254	je	.Lnmi_espfix_stack
1255#endif
1256
1257	pushl	%eax				# pt_regs->orig_ax
1258	SAVE_ALL_NMI cr3_reg=%edi
1259	ENCODE_FRAME_POINTER
1260	xorl	%edx, %edx			# zero error code
1261	movl	%esp, %eax			# pt_regs pointer
1262
1263	/* Are we currently on the SYSENTER stack? */
1264	movl	PER_CPU_VAR(cpu_entry_area), %ecx
1265	addl	$CPU_ENTRY_AREA_entry_stack + SIZEOF_entry_stack, %ecx
1266	subl	%eax, %ecx	/* ecx = (end of entry_stack) - esp */
1267	cmpl	$SIZEOF_entry_stack, %ecx
1268	jb	.Lnmi_from_sysenter_stack
1269
1270	/* Not on SYSENTER stack. */
1271	call	exc_nmi
1272	jmp	.Lnmi_return
1273
1274.Lnmi_from_sysenter_stack:
1275	/*
1276	 * We're on the SYSENTER stack.  Switch off.  No one (not even debug)
1277	 * is using the thread stack right now, so it's safe for us to use it.
1278	 */
1279	movl	%esp, %ebx
1280	movl	PER_CPU_VAR(cpu_current_top_of_stack), %esp
1281	call	exc_nmi
1282	movl	%ebx, %esp
1283
1284.Lnmi_return:
1285#ifdef CONFIG_X86_ESPFIX32
1286	testl	$CS_FROM_ESPFIX, PT_CS(%esp)
1287	jnz	.Lnmi_from_espfix
1288#endif
1289
1290	CHECK_AND_APPLY_ESPFIX
1291	RESTORE_ALL_NMI cr3_reg=%edi pop=4
1292	jmp	.Lirq_return
1293
1294#ifdef CONFIG_X86_ESPFIX32
1295.Lnmi_espfix_stack:
1296	/*
1297	 * Create the pointer to LSS back
1298	 */
1299	pushl	%ss
1300	pushl	%esp
1301	addl	$4, (%esp)
1302
1303	/* Copy the (short) IRET frame */
1304	pushl	4*4(%esp)	# flags
1305	pushl	4*4(%esp)	# cs
1306	pushl	4*4(%esp)	# ip
1307
1308	pushl	%eax		# orig_ax
1309
1310	SAVE_ALL_NMI cr3_reg=%edi unwind_espfix=1
1311	ENCODE_FRAME_POINTER
1312
1313	/* clear CS_FROM_KERNEL, set CS_FROM_ESPFIX */
1314	xorl	$(CS_FROM_ESPFIX | CS_FROM_KERNEL), PT_CS(%esp)
1315
1316	xorl	%edx, %edx			# zero error code
1317	movl	%esp, %eax			# pt_regs pointer
1318	jmp	.Lnmi_from_sysenter_stack
1319
1320.Lnmi_from_espfix:
1321	RESTORE_ALL_NMI cr3_reg=%edi
1322	/*
1323	 * Because we cleared CS_FROM_KERNEL, IRET_FRAME 'forgot' to
1324	 * fix up the gap and long frame:
1325	 *
1326	 *  3 - original frame	(exception)
1327	 *  2 - ESPFIX block	(above)
1328	 *  6 - gap		(FIXUP_FRAME)
1329	 *  5 - long frame	(FIXUP_FRAME)
1330	 *  1 - orig_ax
1331	 */
1332	lss	(1+5+6)*4(%esp), %esp			# back to espfix stack
1333	jmp	.Lirq_return
1334#endif
1335SYM_CODE_END(asm_exc_nmi)
1336
1337.pushsection .text, "ax"
1338SYM_CODE_START(rewind_stack_do_exit)
1339	/* Prevent any naive code from trying to unwind to our caller. */
1340	xorl	%ebp, %ebp
1341
1342	movl	PER_CPU_VAR(cpu_current_top_of_stack), %esi
1343	leal	-TOP_OF_KERNEL_STACK_PADDING-PTREGS_SIZE(%esi), %esp
1344
1345	call	do_exit
13461:	jmp 1b
1347SYM_CODE_END(rewind_stack_do_exit)
1348.popsection
1349