1/* 2 * Twofish Cipher 8-way parallel algorithm (AVX/x86_64) 3 * 4 * Copyright (C) 2012 Johannes Goetzfried 5 * <Johannes.Goetzfried@informatik.stud.uni-erlangen.de> 6 * 7 * Copyright © 2012-2013 Jussi Kivilinna <jussi.kivilinna@iki.fi> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or 12 * (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this program; if not, write to the Free Software 21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 22 * USA 23 * 24 */ 25 26#include <linux/linkage.h> 27#include <asm/frame.h> 28#include "glue_helper-asm-avx.S" 29 30.file "twofish-avx-x86_64-asm_64.S" 31 32.data 33.align 16 34 35.Lbswap128_mask: 36 .byte 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0 37.Lxts_gf128mul_and_shl1_mask: 38 .byte 0x87, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0 39 40.text 41 42/* structure of crypto context */ 43#define s0 0 44#define s1 1024 45#define s2 2048 46#define s3 3072 47#define w 4096 48#define k 4128 49 50/********************************************************************** 51 8-way AVX twofish 52 **********************************************************************/ 53#define CTX %rdi 54 55#define RA1 %xmm0 56#define RB1 %xmm1 57#define RC1 %xmm2 58#define RD1 %xmm3 59 60#define RA2 %xmm4 61#define RB2 %xmm5 62#define RC2 %xmm6 63#define RD2 %xmm7 64 65#define RX0 %xmm8 66#define RY0 %xmm9 67 68#define RX1 %xmm10 69#define RY1 %xmm11 70 71#define RK1 %xmm12 72#define RK2 %xmm13 73 74#define RT %xmm14 75#define RR %xmm15 76 77#define RID1 %rbp 78#define RID1d %ebp 79#define RID2 %rsi 80#define RID2d %esi 81 82#define RGI1 %rdx 83#define RGI1bl %dl 84#define RGI1bh %dh 85#define RGI2 %rcx 86#define RGI2bl %cl 87#define RGI2bh %ch 88 89#define RGI3 %rax 90#define RGI3bl %al 91#define RGI3bh %ah 92#define RGI4 %rbx 93#define RGI4bl %bl 94#define RGI4bh %bh 95 96#define RGS1 %r8 97#define RGS1d %r8d 98#define RGS2 %r9 99#define RGS2d %r9d 100#define RGS3 %r10 101#define RGS3d %r10d 102 103 104#define lookup_32bit(t0, t1, t2, t3, src, dst, interleave_op, il_reg) \ 105 movzbl src ## bl, RID1d; \ 106 movzbl src ## bh, RID2d; \ 107 shrq $16, src; \ 108 movl t0(CTX, RID1, 4), dst ## d; \ 109 movl t1(CTX, RID2, 4), RID2d; \ 110 movzbl src ## bl, RID1d; \ 111 xorl RID2d, dst ## d; \ 112 movzbl src ## bh, RID2d; \ 113 interleave_op(il_reg); \ 114 xorl t2(CTX, RID1, 4), dst ## d; \ 115 xorl t3(CTX, RID2, 4), dst ## d; 116 117#define dummy(d) /* do nothing */ 118 119#define shr_next(reg) \ 120 shrq $16, reg; 121 122#define G(gi1, gi2, x, t0, t1, t2, t3) \ 123 lookup_32bit(t0, t1, t2, t3, ##gi1, RGS1, shr_next, ##gi1); \ 124 lookup_32bit(t0, t1, t2, t3, ##gi2, RGS3, shr_next, ##gi2); \ 125 \ 126 lookup_32bit(t0, t1, t2, t3, ##gi1, RGS2, dummy, none); \ 127 shlq $32, RGS2; \ 128 orq RGS1, RGS2; \ 129 lookup_32bit(t0, t1, t2, t3, ##gi2, RGS1, dummy, none); \ 130 shlq $32, RGS1; \ 131 orq RGS1, RGS3; 132 133#define round_head_2(a, b, x1, y1, x2, y2) \ 134 vmovq b ## 1, RGI3; \ 135 vpextrq $1, b ## 1, RGI4; \ 136 \ 137 G(RGI1, RGI2, x1, s0, s1, s2, s3); \ 138 vmovq a ## 2, RGI1; \ 139 vpextrq $1, a ## 2, RGI2; \ 140 vmovq RGS2, x1; \ 141 vpinsrq $1, RGS3, x1, x1; \ 142 \ 143 G(RGI3, RGI4, y1, s1, s2, s3, s0); \ 144 vmovq b ## 2, RGI3; \ 145 vpextrq $1, b ## 2, RGI4; \ 146 vmovq RGS2, y1; \ 147 vpinsrq $1, RGS3, y1, y1; \ 148 \ 149 G(RGI1, RGI2, x2, s0, s1, s2, s3); \ 150 vmovq RGS2, x2; \ 151 vpinsrq $1, RGS3, x2, x2; \ 152 \ 153 G(RGI3, RGI4, y2, s1, s2, s3, s0); \ 154 vmovq RGS2, y2; \ 155 vpinsrq $1, RGS3, y2, y2; 156 157#define encround_tail(a, b, c, d, x, y, prerotate) \ 158 vpaddd x, y, x; \ 159 vpaddd x, RK1, RT;\ 160 prerotate(b); \ 161 vpxor RT, c, c; \ 162 vpaddd y, x, y; \ 163 vpaddd y, RK2, y; \ 164 vpsrld $1, c, RT; \ 165 vpslld $(32 - 1), c, c; \ 166 vpor c, RT, c; \ 167 vpxor d, y, d; \ 168 169#define decround_tail(a, b, c, d, x, y, prerotate) \ 170 vpaddd x, y, x; \ 171 vpaddd x, RK1, RT;\ 172 prerotate(a); \ 173 vpxor RT, c, c; \ 174 vpaddd y, x, y; \ 175 vpaddd y, RK2, y; \ 176 vpxor d, y, d; \ 177 vpsrld $1, d, y; \ 178 vpslld $(32 - 1), d, d; \ 179 vpor d, y, d; \ 180 181#define rotate_1l(x) \ 182 vpslld $1, x, RR; \ 183 vpsrld $(32 - 1), x, x; \ 184 vpor x, RR, x; 185 186#define preload_rgi(c) \ 187 vmovq c, RGI1; \ 188 vpextrq $1, c, RGI2; 189 190#define encrypt_round(n, a, b, c, d, preload, prerotate) \ 191 vbroadcastss (k+4*(2*(n)))(CTX), RK1; \ 192 vbroadcastss (k+4*(2*(n)+1))(CTX), RK2; \ 193 round_head_2(a, b, RX0, RY0, RX1, RY1); \ 194 encround_tail(a ## 1, b ## 1, c ## 1, d ## 1, RX0, RY0, prerotate); \ 195 preload(c ## 1); \ 196 encround_tail(a ## 2, b ## 2, c ## 2, d ## 2, RX1, RY1, prerotate); 197 198#define decrypt_round(n, a, b, c, d, preload, prerotate) \ 199 vbroadcastss (k+4*(2*(n)))(CTX), RK1; \ 200 vbroadcastss (k+4*(2*(n)+1))(CTX), RK2; \ 201 round_head_2(a, b, RX0, RY0, RX1, RY1); \ 202 decround_tail(a ## 1, b ## 1, c ## 1, d ## 1, RX0, RY0, prerotate); \ 203 preload(c ## 1); \ 204 decround_tail(a ## 2, b ## 2, c ## 2, d ## 2, RX1, RY1, prerotate); 205 206#define encrypt_cycle(n) \ 207 encrypt_round((2*n), RA, RB, RC, RD, preload_rgi, rotate_1l); \ 208 encrypt_round(((2*n) + 1), RC, RD, RA, RB, preload_rgi, rotate_1l); 209 210#define encrypt_cycle_last(n) \ 211 encrypt_round((2*n), RA, RB, RC, RD, preload_rgi, rotate_1l); \ 212 encrypt_round(((2*n) + 1), RC, RD, RA, RB, dummy, dummy); 213 214#define decrypt_cycle(n) \ 215 decrypt_round(((2*n) + 1), RC, RD, RA, RB, preload_rgi, rotate_1l); \ 216 decrypt_round((2*n), RA, RB, RC, RD, preload_rgi, rotate_1l); 217 218#define decrypt_cycle_last(n) \ 219 decrypt_round(((2*n) + 1), RC, RD, RA, RB, preload_rgi, rotate_1l); \ 220 decrypt_round((2*n), RA, RB, RC, RD, dummy, dummy); 221 222#define transpose_4x4(x0, x1, x2, x3, t0, t1, t2) \ 223 vpunpckldq x1, x0, t0; \ 224 vpunpckhdq x1, x0, t2; \ 225 vpunpckldq x3, x2, t1; \ 226 vpunpckhdq x3, x2, x3; \ 227 \ 228 vpunpcklqdq t1, t0, x0; \ 229 vpunpckhqdq t1, t0, x1; \ 230 vpunpcklqdq x3, t2, x2; \ 231 vpunpckhqdq x3, t2, x3; 232 233#define inpack_blocks(x0, x1, x2, x3, wkey, t0, t1, t2) \ 234 vpxor x0, wkey, x0; \ 235 vpxor x1, wkey, x1; \ 236 vpxor x2, wkey, x2; \ 237 vpxor x3, wkey, x3; \ 238 \ 239 transpose_4x4(x0, x1, x2, x3, t0, t1, t2) 240 241#define outunpack_blocks(x0, x1, x2, x3, wkey, t0, t1, t2) \ 242 transpose_4x4(x0, x1, x2, x3, t0, t1, t2) \ 243 \ 244 vpxor x0, wkey, x0; \ 245 vpxor x1, wkey, x1; \ 246 vpxor x2, wkey, x2; \ 247 vpxor x3, wkey, x3; 248 249.align 8 250__twofish_enc_blk8: 251 /* input: 252 * %rdi: ctx, CTX 253 * RA1, RB1, RC1, RD1, RA2, RB2, RC2, RD2: blocks 254 * output: 255 * RC1, RD1, RA1, RB1, RC2, RD2, RA2, RB2: encrypted blocks 256 */ 257 258 vmovdqu w(CTX), RK1; 259 260 pushq %rbp; 261 pushq %rbx; 262 pushq %rcx; 263 264 inpack_blocks(RA1, RB1, RC1, RD1, RK1, RX0, RY0, RK2); 265 preload_rgi(RA1); 266 rotate_1l(RD1); 267 inpack_blocks(RA2, RB2, RC2, RD2, RK1, RX0, RY0, RK2); 268 rotate_1l(RD2); 269 270 encrypt_cycle(0); 271 encrypt_cycle(1); 272 encrypt_cycle(2); 273 encrypt_cycle(3); 274 encrypt_cycle(4); 275 encrypt_cycle(5); 276 encrypt_cycle(6); 277 encrypt_cycle_last(7); 278 279 vmovdqu (w+4*4)(CTX), RK1; 280 281 popq %rcx; 282 popq %rbx; 283 popq %rbp; 284 285 outunpack_blocks(RC1, RD1, RA1, RB1, RK1, RX0, RY0, RK2); 286 outunpack_blocks(RC2, RD2, RA2, RB2, RK1, RX0, RY0, RK2); 287 288 ret; 289ENDPROC(__twofish_enc_blk8) 290 291.align 8 292__twofish_dec_blk8: 293 /* input: 294 * %rdi: ctx, CTX 295 * RC1, RD1, RA1, RB1, RC2, RD2, RA2, RB2: encrypted blocks 296 * output: 297 * RA1, RB1, RC1, RD1, RA2, RB2, RC2, RD2: decrypted blocks 298 */ 299 300 vmovdqu (w+4*4)(CTX), RK1; 301 302 pushq %rbp; 303 pushq %rbx; 304 305 inpack_blocks(RC1, RD1, RA1, RB1, RK1, RX0, RY0, RK2); 306 preload_rgi(RC1); 307 rotate_1l(RA1); 308 inpack_blocks(RC2, RD2, RA2, RB2, RK1, RX0, RY0, RK2); 309 rotate_1l(RA2); 310 311 decrypt_cycle(7); 312 decrypt_cycle(6); 313 decrypt_cycle(5); 314 decrypt_cycle(4); 315 decrypt_cycle(3); 316 decrypt_cycle(2); 317 decrypt_cycle(1); 318 decrypt_cycle_last(0); 319 320 vmovdqu (w)(CTX), RK1; 321 322 popq %rbx; 323 popq %rbp; 324 325 outunpack_blocks(RA1, RB1, RC1, RD1, RK1, RX0, RY0, RK2); 326 outunpack_blocks(RA2, RB2, RC2, RD2, RK1, RX0, RY0, RK2); 327 328 ret; 329ENDPROC(__twofish_dec_blk8) 330 331ENTRY(twofish_ecb_enc_8way) 332 /* input: 333 * %rdi: ctx, CTX 334 * %rsi: dst 335 * %rdx: src 336 */ 337 FRAME_BEGIN 338 339 movq %rsi, %r11; 340 341 load_8way(%rdx, RA1, RB1, RC1, RD1, RA2, RB2, RC2, RD2); 342 343 call __twofish_enc_blk8; 344 345 store_8way(%r11, RC1, RD1, RA1, RB1, RC2, RD2, RA2, RB2); 346 347 FRAME_END 348 ret; 349ENDPROC(twofish_ecb_enc_8way) 350 351ENTRY(twofish_ecb_dec_8way) 352 /* input: 353 * %rdi: ctx, CTX 354 * %rsi: dst 355 * %rdx: src 356 */ 357 FRAME_BEGIN 358 359 movq %rsi, %r11; 360 361 load_8way(%rdx, RC1, RD1, RA1, RB1, RC2, RD2, RA2, RB2); 362 363 call __twofish_dec_blk8; 364 365 store_8way(%r11, RA1, RB1, RC1, RD1, RA2, RB2, RC2, RD2); 366 367 FRAME_END 368 ret; 369ENDPROC(twofish_ecb_dec_8way) 370 371ENTRY(twofish_cbc_dec_8way) 372 /* input: 373 * %rdi: ctx, CTX 374 * %rsi: dst 375 * %rdx: src 376 */ 377 FRAME_BEGIN 378 379 pushq %r12; 380 381 movq %rsi, %r11; 382 movq %rdx, %r12; 383 384 load_8way(%rdx, RC1, RD1, RA1, RB1, RC2, RD2, RA2, RB2); 385 386 call __twofish_dec_blk8; 387 388 store_cbc_8way(%r12, %r11, RA1, RB1, RC1, RD1, RA2, RB2, RC2, RD2); 389 390 popq %r12; 391 392 FRAME_END 393 ret; 394ENDPROC(twofish_cbc_dec_8way) 395 396ENTRY(twofish_ctr_8way) 397 /* input: 398 * %rdi: ctx, CTX 399 * %rsi: dst 400 * %rdx: src 401 * %rcx: iv (little endian, 128bit) 402 */ 403 FRAME_BEGIN 404 405 pushq %r12; 406 407 movq %rsi, %r11; 408 movq %rdx, %r12; 409 410 load_ctr_8way(%rcx, .Lbswap128_mask, RA1, RB1, RC1, RD1, RA2, RB2, RC2, 411 RD2, RX0, RX1, RY0); 412 413 call __twofish_enc_blk8; 414 415 store_ctr_8way(%r12, %r11, RC1, RD1, RA1, RB1, RC2, RD2, RA2, RB2); 416 417 popq %r12; 418 419 FRAME_END 420 ret; 421ENDPROC(twofish_ctr_8way) 422 423ENTRY(twofish_xts_enc_8way) 424 /* input: 425 * %rdi: ctx, CTX 426 * %rsi: dst 427 * %rdx: src 428 * %rcx: iv (t ⊕ αⁿ ∈ GF(2¹²⁸)) 429 */ 430 FRAME_BEGIN 431 432 movq %rsi, %r11; 433 434 /* regs <= src, dst <= IVs, regs <= regs xor IVs */ 435 load_xts_8way(%rcx, %rdx, %rsi, RA1, RB1, RC1, RD1, RA2, RB2, RC2, RD2, 436 RX0, RX1, RY0, .Lxts_gf128mul_and_shl1_mask); 437 438 call __twofish_enc_blk8; 439 440 /* dst <= regs xor IVs(in dst) */ 441 store_xts_8way(%r11, RC1, RD1, RA1, RB1, RC2, RD2, RA2, RB2); 442 443 FRAME_END 444 ret; 445ENDPROC(twofish_xts_enc_8way) 446 447ENTRY(twofish_xts_dec_8way) 448 /* input: 449 * %rdi: ctx, CTX 450 * %rsi: dst 451 * %rdx: src 452 * %rcx: iv (t ⊕ αⁿ ∈ GF(2¹²⁸)) 453 */ 454 FRAME_BEGIN 455 456 movq %rsi, %r11; 457 458 /* regs <= src, dst <= IVs, regs <= regs xor IVs */ 459 load_xts_8way(%rcx, %rdx, %rsi, RC1, RD1, RA1, RB1, RC2, RD2, RA2, RB2, 460 RX0, RX1, RY0, .Lxts_gf128mul_and_shl1_mask); 461 462 call __twofish_dec_blk8; 463 464 /* dst <= regs xor IVs(in dst) */ 465 store_xts_8way(%r11, RA1, RB1, RC1, RD1, RA2, RB2, RC2, RD2); 466 467 FRAME_END 468 ret; 469ENDPROC(twofish_xts_dec_8way) 470