1/* 2 * Twofish Cipher 8-way parallel algorithm (AVX/x86_64) 3 * 4 * Copyright (C) 2012 Johannes Goetzfried 5 * <Johannes.Goetzfried@informatik.stud.uni-erlangen.de> 6 * 7 * Copyright © 2012-2013 Jussi Kivilinna <jussi.kivilinna@iki.fi> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or 12 * (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this program; if not, write to the Free Software 21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 22 * USA 23 * 24 */ 25 26#include <linux/linkage.h> 27#include "glue_helper-asm-avx.S" 28 29.file "twofish-avx-x86_64-asm_64.S" 30 31.data 32.align 16 33 34.Lbswap128_mask: 35 .byte 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0 36.Lxts_gf128mul_and_shl1_mask: 37 .byte 0x87, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0 38 39.text 40 41/* structure of crypto context */ 42#define s0 0 43#define s1 1024 44#define s2 2048 45#define s3 3072 46#define w 4096 47#define k 4128 48 49/********************************************************************** 50 8-way AVX twofish 51 **********************************************************************/ 52#define CTX %rdi 53 54#define RA1 %xmm0 55#define RB1 %xmm1 56#define RC1 %xmm2 57#define RD1 %xmm3 58 59#define RA2 %xmm4 60#define RB2 %xmm5 61#define RC2 %xmm6 62#define RD2 %xmm7 63 64#define RX0 %xmm8 65#define RY0 %xmm9 66 67#define RX1 %xmm10 68#define RY1 %xmm11 69 70#define RK1 %xmm12 71#define RK2 %xmm13 72 73#define RT %xmm14 74#define RR %xmm15 75 76#define RID1 %rbp 77#define RID1d %ebp 78#define RID2 %rsi 79#define RID2d %esi 80 81#define RGI1 %rdx 82#define RGI1bl %dl 83#define RGI1bh %dh 84#define RGI2 %rcx 85#define RGI2bl %cl 86#define RGI2bh %ch 87 88#define RGI3 %rax 89#define RGI3bl %al 90#define RGI3bh %ah 91#define RGI4 %rbx 92#define RGI4bl %bl 93#define RGI4bh %bh 94 95#define RGS1 %r8 96#define RGS1d %r8d 97#define RGS2 %r9 98#define RGS2d %r9d 99#define RGS3 %r10 100#define RGS3d %r10d 101 102 103#define lookup_32bit(t0, t1, t2, t3, src, dst, interleave_op, il_reg) \ 104 movzbl src ## bl, RID1d; \ 105 movzbl src ## bh, RID2d; \ 106 shrq $16, src; \ 107 movl t0(CTX, RID1, 4), dst ## d; \ 108 movl t1(CTX, RID2, 4), RID2d; \ 109 movzbl src ## bl, RID1d; \ 110 xorl RID2d, dst ## d; \ 111 movzbl src ## bh, RID2d; \ 112 interleave_op(il_reg); \ 113 xorl t2(CTX, RID1, 4), dst ## d; \ 114 xorl t3(CTX, RID2, 4), dst ## d; 115 116#define dummy(d) /* do nothing */ 117 118#define shr_next(reg) \ 119 shrq $16, reg; 120 121#define G(gi1, gi2, x, t0, t1, t2, t3) \ 122 lookup_32bit(t0, t1, t2, t3, ##gi1, RGS1, shr_next, ##gi1); \ 123 lookup_32bit(t0, t1, t2, t3, ##gi2, RGS3, shr_next, ##gi2); \ 124 \ 125 lookup_32bit(t0, t1, t2, t3, ##gi1, RGS2, dummy, none); \ 126 shlq $32, RGS2; \ 127 orq RGS1, RGS2; \ 128 lookup_32bit(t0, t1, t2, t3, ##gi2, RGS1, dummy, none); \ 129 shlq $32, RGS1; \ 130 orq RGS1, RGS3; 131 132#define round_head_2(a, b, x1, y1, x2, y2) \ 133 vmovq b ## 1, RGI3; \ 134 vpextrq $1, b ## 1, RGI4; \ 135 \ 136 G(RGI1, RGI2, x1, s0, s1, s2, s3); \ 137 vmovq a ## 2, RGI1; \ 138 vpextrq $1, a ## 2, RGI2; \ 139 vmovq RGS2, x1; \ 140 vpinsrq $1, RGS3, x1, x1; \ 141 \ 142 G(RGI3, RGI4, y1, s1, s2, s3, s0); \ 143 vmovq b ## 2, RGI3; \ 144 vpextrq $1, b ## 2, RGI4; \ 145 vmovq RGS2, y1; \ 146 vpinsrq $1, RGS3, y1, y1; \ 147 \ 148 G(RGI1, RGI2, x2, s0, s1, s2, s3); \ 149 vmovq RGS2, x2; \ 150 vpinsrq $1, RGS3, x2, x2; \ 151 \ 152 G(RGI3, RGI4, y2, s1, s2, s3, s0); \ 153 vmovq RGS2, y2; \ 154 vpinsrq $1, RGS3, y2, y2; 155 156#define encround_tail(a, b, c, d, x, y, prerotate) \ 157 vpaddd x, y, x; \ 158 vpaddd x, RK1, RT;\ 159 prerotate(b); \ 160 vpxor RT, c, c; \ 161 vpaddd y, x, y; \ 162 vpaddd y, RK2, y; \ 163 vpsrld $1, c, RT; \ 164 vpslld $(32 - 1), c, c; \ 165 vpor c, RT, c; \ 166 vpxor d, y, d; \ 167 168#define decround_tail(a, b, c, d, x, y, prerotate) \ 169 vpaddd x, y, x; \ 170 vpaddd x, RK1, RT;\ 171 prerotate(a); \ 172 vpxor RT, c, c; \ 173 vpaddd y, x, y; \ 174 vpaddd y, RK2, y; \ 175 vpxor d, y, d; \ 176 vpsrld $1, d, y; \ 177 vpslld $(32 - 1), d, d; \ 178 vpor d, y, d; \ 179 180#define rotate_1l(x) \ 181 vpslld $1, x, RR; \ 182 vpsrld $(32 - 1), x, x; \ 183 vpor x, RR, x; 184 185#define preload_rgi(c) \ 186 vmovq c, RGI1; \ 187 vpextrq $1, c, RGI2; 188 189#define encrypt_round(n, a, b, c, d, preload, prerotate) \ 190 vbroadcastss (k+4*(2*(n)))(CTX), RK1; \ 191 vbroadcastss (k+4*(2*(n)+1))(CTX), RK2; \ 192 round_head_2(a, b, RX0, RY0, RX1, RY1); \ 193 encround_tail(a ## 1, b ## 1, c ## 1, d ## 1, RX0, RY0, prerotate); \ 194 preload(c ## 1); \ 195 encround_tail(a ## 2, b ## 2, c ## 2, d ## 2, RX1, RY1, prerotate); 196 197#define decrypt_round(n, a, b, c, d, preload, prerotate) \ 198 vbroadcastss (k+4*(2*(n)))(CTX), RK1; \ 199 vbroadcastss (k+4*(2*(n)+1))(CTX), RK2; \ 200 round_head_2(a, b, RX0, RY0, RX1, RY1); \ 201 decround_tail(a ## 1, b ## 1, c ## 1, d ## 1, RX0, RY0, prerotate); \ 202 preload(c ## 1); \ 203 decround_tail(a ## 2, b ## 2, c ## 2, d ## 2, RX1, RY1, prerotate); 204 205#define encrypt_cycle(n) \ 206 encrypt_round((2*n), RA, RB, RC, RD, preload_rgi, rotate_1l); \ 207 encrypt_round(((2*n) + 1), RC, RD, RA, RB, preload_rgi, rotate_1l); 208 209#define encrypt_cycle_last(n) \ 210 encrypt_round((2*n), RA, RB, RC, RD, preload_rgi, rotate_1l); \ 211 encrypt_round(((2*n) + 1), RC, RD, RA, RB, dummy, dummy); 212 213#define decrypt_cycle(n) \ 214 decrypt_round(((2*n) + 1), RC, RD, RA, RB, preload_rgi, rotate_1l); \ 215 decrypt_round((2*n), RA, RB, RC, RD, preload_rgi, rotate_1l); 216 217#define decrypt_cycle_last(n) \ 218 decrypt_round(((2*n) + 1), RC, RD, RA, RB, preload_rgi, rotate_1l); \ 219 decrypt_round((2*n), RA, RB, RC, RD, dummy, dummy); 220 221#define transpose_4x4(x0, x1, x2, x3, t0, t1, t2) \ 222 vpunpckldq x1, x0, t0; \ 223 vpunpckhdq x1, x0, t2; \ 224 vpunpckldq x3, x2, t1; \ 225 vpunpckhdq x3, x2, x3; \ 226 \ 227 vpunpcklqdq t1, t0, x0; \ 228 vpunpckhqdq t1, t0, x1; \ 229 vpunpcklqdq x3, t2, x2; \ 230 vpunpckhqdq x3, t2, x3; 231 232#define inpack_blocks(x0, x1, x2, x3, wkey, t0, t1, t2) \ 233 vpxor x0, wkey, x0; \ 234 vpxor x1, wkey, x1; \ 235 vpxor x2, wkey, x2; \ 236 vpxor x3, wkey, x3; \ 237 \ 238 transpose_4x4(x0, x1, x2, x3, t0, t1, t2) 239 240#define outunpack_blocks(x0, x1, x2, x3, wkey, t0, t1, t2) \ 241 transpose_4x4(x0, x1, x2, x3, t0, t1, t2) \ 242 \ 243 vpxor x0, wkey, x0; \ 244 vpxor x1, wkey, x1; \ 245 vpxor x2, wkey, x2; \ 246 vpxor x3, wkey, x3; 247 248.align 8 249__twofish_enc_blk8: 250 /* input: 251 * %rdi: ctx, CTX 252 * RA1, RB1, RC1, RD1, RA2, RB2, RC2, RD2: blocks 253 * output: 254 * RC1, RD1, RA1, RB1, RC2, RD2, RA2, RB2: encrypted blocks 255 */ 256 257 vmovdqu w(CTX), RK1; 258 259 pushq %rbp; 260 pushq %rbx; 261 pushq %rcx; 262 263 inpack_blocks(RA1, RB1, RC1, RD1, RK1, RX0, RY0, RK2); 264 preload_rgi(RA1); 265 rotate_1l(RD1); 266 inpack_blocks(RA2, RB2, RC2, RD2, RK1, RX0, RY0, RK2); 267 rotate_1l(RD2); 268 269 encrypt_cycle(0); 270 encrypt_cycle(1); 271 encrypt_cycle(2); 272 encrypt_cycle(3); 273 encrypt_cycle(4); 274 encrypt_cycle(5); 275 encrypt_cycle(6); 276 encrypt_cycle_last(7); 277 278 vmovdqu (w+4*4)(CTX), RK1; 279 280 popq %rcx; 281 popq %rbx; 282 popq %rbp; 283 284 outunpack_blocks(RC1, RD1, RA1, RB1, RK1, RX0, RY0, RK2); 285 outunpack_blocks(RC2, RD2, RA2, RB2, RK1, RX0, RY0, RK2); 286 287 ret; 288ENDPROC(__twofish_enc_blk8) 289 290.align 8 291__twofish_dec_blk8: 292 /* input: 293 * %rdi: ctx, CTX 294 * RC1, RD1, RA1, RB1, RC2, RD2, RA2, RB2: encrypted blocks 295 * output: 296 * RA1, RB1, RC1, RD1, RA2, RB2, RC2, RD2: decrypted blocks 297 */ 298 299 vmovdqu (w+4*4)(CTX), RK1; 300 301 pushq %rbp; 302 pushq %rbx; 303 304 inpack_blocks(RC1, RD1, RA1, RB1, RK1, RX0, RY0, RK2); 305 preload_rgi(RC1); 306 rotate_1l(RA1); 307 inpack_blocks(RC2, RD2, RA2, RB2, RK1, RX0, RY0, RK2); 308 rotate_1l(RA2); 309 310 decrypt_cycle(7); 311 decrypt_cycle(6); 312 decrypt_cycle(5); 313 decrypt_cycle(4); 314 decrypt_cycle(3); 315 decrypt_cycle(2); 316 decrypt_cycle(1); 317 decrypt_cycle_last(0); 318 319 vmovdqu (w)(CTX), RK1; 320 321 popq %rbx; 322 popq %rbp; 323 324 outunpack_blocks(RA1, RB1, RC1, RD1, RK1, RX0, RY0, RK2); 325 outunpack_blocks(RA2, RB2, RC2, RD2, RK1, RX0, RY0, RK2); 326 327 ret; 328ENDPROC(__twofish_dec_blk8) 329 330ENTRY(twofish_ecb_enc_8way) 331 /* input: 332 * %rdi: ctx, CTX 333 * %rsi: dst 334 * %rdx: src 335 */ 336 337 movq %rsi, %r11; 338 339 load_8way(%rdx, RA1, RB1, RC1, RD1, RA2, RB2, RC2, RD2); 340 341 call __twofish_enc_blk8; 342 343 store_8way(%r11, RC1, RD1, RA1, RB1, RC2, RD2, RA2, RB2); 344 345 ret; 346ENDPROC(twofish_ecb_enc_8way) 347 348ENTRY(twofish_ecb_dec_8way) 349 /* input: 350 * %rdi: ctx, CTX 351 * %rsi: dst 352 * %rdx: src 353 */ 354 355 movq %rsi, %r11; 356 357 load_8way(%rdx, RC1, RD1, RA1, RB1, RC2, RD2, RA2, RB2); 358 359 call __twofish_dec_blk8; 360 361 store_8way(%r11, RA1, RB1, RC1, RD1, RA2, RB2, RC2, RD2); 362 363 ret; 364ENDPROC(twofish_ecb_dec_8way) 365 366ENTRY(twofish_cbc_dec_8way) 367 /* input: 368 * %rdi: ctx, CTX 369 * %rsi: dst 370 * %rdx: src 371 */ 372 373 pushq %r12; 374 375 movq %rsi, %r11; 376 movq %rdx, %r12; 377 378 load_8way(%rdx, RC1, RD1, RA1, RB1, RC2, RD2, RA2, RB2); 379 380 call __twofish_dec_blk8; 381 382 store_cbc_8way(%r12, %r11, RA1, RB1, RC1, RD1, RA2, RB2, RC2, RD2); 383 384 popq %r12; 385 386 ret; 387ENDPROC(twofish_cbc_dec_8way) 388 389ENTRY(twofish_ctr_8way) 390 /* input: 391 * %rdi: ctx, CTX 392 * %rsi: dst 393 * %rdx: src 394 * %rcx: iv (little endian, 128bit) 395 */ 396 397 pushq %r12; 398 399 movq %rsi, %r11; 400 movq %rdx, %r12; 401 402 load_ctr_8way(%rcx, .Lbswap128_mask, RA1, RB1, RC1, RD1, RA2, RB2, RC2, 403 RD2, RX0, RX1, RY0); 404 405 call __twofish_enc_blk8; 406 407 store_ctr_8way(%r12, %r11, RC1, RD1, RA1, RB1, RC2, RD2, RA2, RB2); 408 409 popq %r12; 410 411 ret; 412ENDPROC(twofish_ctr_8way) 413 414ENTRY(twofish_xts_enc_8way) 415 /* input: 416 * %rdi: ctx, CTX 417 * %rsi: dst 418 * %rdx: src 419 * %rcx: iv (t ⊕ αⁿ ∈ GF(2¹²⁸)) 420 */ 421 422 movq %rsi, %r11; 423 424 /* regs <= src, dst <= IVs, regs <= regs xor IVs */ 425 load_xts_8way(%rcx, %rdx, %rsi, RA1, RB1, RC1, RD1, RA2, RB2, RC2, RD2, 426 RX0, RX1, RY0, .Lxts_gf128mul_and_shl1_mask); 427 428 call __twofish_enc_blk8; 429 430 /* dst <= regs xor IVs(in dst) */ 431 store_xts_8way(%r11, RC1, RD1, RA1, RB1, RC2, RD2, RA2, RB2); 432 433 ret; 434ENDPROC(twofish_xts_enc_8way) 435 436ENTRY(twofish_xts_dec_8way) 437 /* input: 438 * %rdi: ctx, CTX 439 * %rsi: dst 440 * %rdx: src 441 * %rcx: iv (t ⊕ αⁿ ∈ GF(2¹²⁸)) 442 */ 443 444 movq %rsi, %r11; 445 446 /* regs <= src, dst <= IVs, regs <= regs xor IVs */ 447 load_xts_8way(%rcx, %rdx, %rsi, RC1, RD1, RA1, RB1, RC2, RD2, RA2, RB2, 448 RX0, RX1, RY0, .Lxts_gf128mul_and_shl1_mask); 449 450 call __twofish_dec_blk8; 451 452 /* dst <= regs xor IVs(in dst) */ 453 store_xts_8way(%r11, RA1, RB1, RC1, RD1, RA2, RB2, RC2, RD2); 454 455 ret; 456ENDPROC(twofish_xts_dec_8way) 457