xref: /linux/arch/x86/crypto/twofish-avx-x86_64-asm_64.S (revision 0d456bad36d42d16022be045c8a53ddbb59ee478)
1/*
2 * Twofish Cipher 8-way parallel algorithm (AVX/x86_64)
3 *
4 * Copyright (C) 2012 Johannes Goetzfried
5 *     <Johannes.Goetzfried@informatik.stud.uni-erlangen.de>
6 *
7 * Copyright © 2012 Jussi Kivilinna <jussi.kivilinna@mbnet.fi>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307
22 * USA
23 *
24 */
25
26#include "glue_helper-asm-avx.S"
27
28.file "twofish-avx-x86_64-asm_64.S"
29
30.data
31.align 16
32
33.Lbswap128_mask:
34	.byte 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0
35
36.text
37
38/* structure of crypto context */
39#define s0	0
40#define s1	1024
41#define s2	2048
42#define s3	3072
43#define w	4096
44#define k	4128
45
46/**********************************************************************
47  8-way AVX twofish
48 **********************************************************************/
49#define CTX %rdi
50
51#define RA1 %xmm0
52#define RB1 %xmm1
53#define RC1 %xmm2
54#define RD1 %xmm3
55
56#define RA2 %xmm4
57#define RB2 %xmm5
58#define RC2 %xmm6
59#define RD2 %xmm7
60
61#define RX0 %xmm8
62#define RY0 %xmm9
63
64#define RX1 %xmm10
65#define RY1 %xmm11
66
67#define RK1 %xmm12
68#define RK2 %xmm13
69
70#define RT %xmm14
71#define RR %xmm15
72
73#define RID1  %rbp
74#define RID1d %ebp
75#define RID2  %rsi
76#define RID2d %esi
77
78#define RGI1   %rdx
79#define RGI1bl %dl
80#define RGI1bh %dh
81#define RGI2   %rcx
82#define RGI2bl %cl
83#define RGI2bh %ch
84
85#define RGI3   %rax
86#define RGI3bl %al
87#define RGI3bh %ah
88#define RGI4   %rbx
89#define RGI4bl %bl
90#define RGI4bh %bh
91
92#define RGS1  %r8
93#define RGS1d %r8d
94#define RGS2  %r9
95#define RGS2d %r9d
96#define RGS3  %r10
97#define RGS3d %r10d
98
99
100#define lookup_32bit(t0, t1, t2, t3, src, dst, interleave_op, il_reg) \
101	movzbl		src ## bl,        RID1d;     \
102	movzbl		src ## bh,        RID2d;     \
103	shrq $16,	src;                         \
104	movl		t0(CTX, RID1, 4), dst ## d;  \
105	movl		t1(CTX, RID2, 4), RID2d;     \
106	movzbl		src ## bl,        RID1d;     \
107	xorl		RID2d,            dst ## d;  \
108	movzbl		src ## bh,        RID2d;     \
109	interleave_op(il_reg);			     \
110	xorl		t2(CTX, RID1, 4), dst ## d;  \
111	xorl		t3(CTX, RID2, 4), dst ## d;
112
113#define dummy(d) /* do nothing */
114
115#define shr_next(reg) \
116	shrq $16,	reg;
117
118#define G(gi1, gi2, x, t0, t1, t2, t3) \
119	lookup_32bit(t0, t1, t2, t3, ##gi1, RGS1, shr_next, ##gi1);  \
120	lookup_32bit(t0, t1, t2, t3, ##gi2, RGS3, shr_next, ##gi2);  \
121	\
122	lookup_32bit(t0, t1, t2, t3, ##gi1, RGS2, dummy, none);      \
123	shlq $32,	RGS2;                                        \
124	orq		RGS1, RGS2;                                  \
125	lookup_32bit(t0, t1, t2, t3, ##gi2, RGS1, dummy, none);      \
126	shlq $32,	RGS1;                                        \
127	orq		RGS1, RGS3;
128
129#define round_head_2(a, b, x1, y1, x2, y2) \
130	vmovq		b ## 1, RGI3;           \
131	vpextrq $1,	b ## 1, RGI4;           \
132	\
133	G(RGI1, RGI2, x1, s0, s1, s2, s3);      \
134	vmovq		a ## 2, RGI1;           \
135	vpextrq $1,	a ## 2, RGI2;           \
136	vmovq		RGS2, x1;               \
137	vpinsrq $1,	RGS3, x1, x1;           \
138	\
139	G(RGI3, RGI4, y1, s1, s2, s3, s0);      \
140	vmovq		b ## 2, RGI3;           \
141	vpextrq $1,	b ## 2, RGI4;           \
142	vmovq		RGS2, y1;               \
143	vpinsrq $1,	RGS3, y1, y1;           \
144	\
145	G(RGI1, RGI2, x2, s0, s1, s2, s3);      \
146	vmovq		RGS2, x2;               \
147	vpinsrq $1,	RGS3, x2, x2;           \
148	\
149	G(RGI3, RGI4, y2, s1, s2, s3, s0);      \
150	vmovq		RGS2, y2;               \
151	vpinsrq $1,	RGS3, y2, y2;
152
153#define encround_tail(a, b, c, d, x, y, prerotate) \
154	vpaddd			x, y,   x; \
155	vpaddd			x, RK1, RT;\
156	prerotate(b);			   \
157	vpxor			RT, c,  c; \
158	vpaddd			y, x,   y; \
159	vpaddd			y, RK2, y; \
160	vpsrld $1,		c, RT;     \
161	vpslld $(32 - 1),	c, c;      \
162	vpor			c, RT,  c; \
163	vpxor			d, y,   d; \
164
165#define decround_tail(a, b, c, d, x, y, prerotate) \
166	vpaddd			x, y,   x; \
167	vpaddd			x, RK1, RT;\
168	prerotate(a);			   \
169	vpxor			RT, c,  c; \
170	vpaddd			y, x,   y; \
171	vpaddd			y, RK2, y; \
172	vpxor			d, y,   d; \
173	vpsrld $1,		d, y;      \
174	vpslld $(32 - 1),	d, d;      \
175	vpor			d, y,   d; \
176
177#define rotate_1l(x) \
178	vpslld $1,		x, RR;     \
179	vpsrld $(32 - 1),	x, x;      \
180	vpor			x, RR,  x;
181
182#define preload_rgi(c) \
183	vmovq			c, RGI1; \
184	vpextrq $1,		c, RGI2;
185
186#define encrypt_round(n, a, b, c, d, preload, prerotate) \
187	vbroadcastss (k+4*(2*(n)))(CTX),   RK1;                  \
188	vbroadcastss (k+4*(2*(n)+1))(CTX), RK2;                  \
189	round_head_2(a, b, RX0, RY0, RX1, RY1);                  \
190	encround_tail(a ## 1, b ## 1, c ## 1, d ## 1, RX0, RY0, prerotate); \
191	preload(c ## 1);                                         \
192	encround_tail(a ## 2, b ## 2, c ## 2, d ## 2, RX1, RY1, prerotate);
193
194#define decrypt_round(n, a, b, c, d, preload, prerotate) \
195	vbroadcastss (k+4*(2*(n)))(CTX),   RK1;                  \
196	vbroadcastss (k+4*(2*(n)+1))(CTX), RK2;                  \
197	round_head_2(a, b, RX0, RY0, RX1, RY1);                  \
198	decround_tail(a ## 1, b ## 1, c ## 1, d ## 1, RX0, RY0, prerotate); \
199	preload(c ## 1);                                         \
200	decround_tail(a ## 2, b ## 2, c ## 2, d ## 2, RX1, RY1, prerotate);
201
202#define encrypt_cycle(n) \
203	encrypt_round((2*n), RA, RB, RC, RD, preload_rgi, rotate_1l); \
204	encrypt_round(((2*n) + 1), RC, RD, RA, RB, preload_rgi, rotate_1l);
205
206#define encrypt_cycle_last(n) \
207	encrypt_round((2*n), RA, RB, RC, RD, preload_rgi, rotate_1l); \
208	encrypt_round(((2*n) + 1), RC, RD, RA, RB, dummy, dummy);
209
210#define decrypt_cycle(n) \
211	decrypt_round(((2*n) + 1), RC, RD, RA, RB, preload_rgi, rotate_1l); \
212	decrypt_round((2*n), RA, RB, RC, RD, preload_rgi, rotate_1l);
213
214#define decrypt_cycle_last(n) \
215	decrypt_round(((2*n) + 1), RC, RD, RA, RB, preload_rgi, rotate_1l); \
216	decrypt_round((2*n), RA, RB, RC, RD, dummy, dummy);
217
218#define transpose_4x4(x0, x1, x2, x3, t0, t1, t2) \
219	vpunpckldq		x1, x0, t0; \
220	vpunpckhdq		x1, x0, t2; \
221	vpunpckldq		x3, x2, t1; \
222	vpunpckhdq		x3, x2, x3; \
223	\
224	vpunpcklqdq		t1, t0, x0; \
225	vpunpckhqdq		t1, t0, x1; \
226	vpunpcklqdq		x3, t2, x2; \
227	vpunpckhqdq		x3, t2, x3;
228
229#define inpack_blocks(x0, x1, x2, x3, wkey, t0, t1, t2) \
230	vpxor		x0, wkey, x0; \
231	vpxor		x1, wkey, x1; \
232	vpxor		x2, wkey, x2; \
233	vpxor		x3, wkey, x3; \
234	\
235	transpose_4x4(x0, x1, x2, x3, t0, t1, t2)
236
237#define outunpack_blocks(x0, x1, x2, x3, wkey, t0, t1, t2) \
238	transpose_4x4(x0, x1, x2, x3, t0, t1, t2) \
239	\
240	vpxor		x0, wkey, x0; \
241	vpxor		x1, wkey, x1; \
242	vpxor		x2, wkey, x2; \
243	vpxor		x3, wkey, x3;
244
245.align 8
246.type	__twofish_enc_blk8,@function;
247
248__twofish_enc_blk8:
249	/* input:
250	 *	%rdi: ctx, CTX
251	 *	RA1, RB1, RC1, RD1, RA2, RB2, RC2, RD2: blocks
252	 * output:
253	 *	RC1, RD1, RA1, RB1, RC2, RD2, RA2, RB2: encrypted blocks
254	 */
255
256	vmovdqu w(CTX), RK1;
257
258	pushq %rbp;
259	pushq %rbx;
260	pushq %rcx;
261
262	inpack_blocks(RA1, RB1, RC1, RD1, RK1, RX0, RY0, RK2);
263	preload_rgi(RA1);
264	rotate_1l(RD1);
265	inpack_blocks(RA2, RB2, RC2, RD2, RK1, RX0, RY0, RK2);
266	rotate_1l(RD2);
267
268	encrypt_cycle(0);
269	encrypt_cycle(1);
270	encrypt_cycle(2);
271	encrypt_cycle(3);
272	encrypt_cycle(4);
273	encrypt_cycle(5);
274	encrypt_cycle(6);
275	encrypt_cycle_last(7);
276
277	vmovdqu (w+4*4)(CTX), RK1;
278
279	popq %rcx;
280	popq %rbx;
281	popq %rbp;
282
283	outunpack_blocks(RC1, RD1, RA1, RB1, RK1, RX0, RY0, RK2);
284	outunpack_blocks(RC2, RD2, RA2, RB2, RK1, RX0, RY0, RK2);
285
286	ret;
287
288.align 8
289.type	__twofish_dec_blk8,@function;
290
291__twofish_dec_blk8:
292	/* input:
293	 *	%rdi: ctx, CTX
294	 *	RC1, RD1, RA1, RB1, RC2, RD2, RA2, RB2: encrypted blocks
295	 * output:
296	 *	RA1, RB1, RC1, RD1, RA2, RB2, RC2, RD2: decrypted blocks
297	 */
298
299	vmovdqu (w+4*4)(CTX), RK1;
300
301	pushq %rbp;
302	pushq %rbx;
303
304	inpack_blocks(RC1, RD1, RA1, RB1, RK1, RX0, RY0, RK2);
305	preload_rgi(RC1);
306	rotate_1l(RA1);
307	inpack_blocks(RC2, RD2, RA2, RB2, RK1, RX0, RY0, RK2);
308	rotate_1l(RA2);
309
310	decrypt_cycle(7);
311	decrypt_cycle(6);
312	decrypt_cycle(5);
313	decrypt_cycle(4);
314	decrypt_cycle(3);
315	decrypt_cycle(2);
316	decrypt_cycle(1);
317	decrypt_cycle_last(0);
318
319	vmovdqu (w)(CTX), RK1;
320
321	popq %rbx;
322	popq %rbp;
323
324	outunpack_blocks(RA1, RB1, RC1, RD1, RK1, RX0, RY0, RK2);
325	outunpack_blocks(RA2, RB2, RC2, RD2, RK1, RX0, RY0, RK2);
326
327	ret;
328
329.align 8
330.global twofish_ecb_enc_8way
331.type   twofish_ecb_enc_8way,@function;
332
333twofish_ecb_enc_8way:
334	/* input:
335	 *	%rdi: ctx, CTX
336	 *	%rsi: dst
337	 *	%rdx: src
338	 */
339
340	movq %rsi, %r11;
341
342	load_8way(%rdx, RA1, RB1, RC1, RD1, RA2, RB2, RC2, RD2);
343
344	call __twofish_enc_blk8;
345
346	store_8way(%r11, RC1, RD1, RA1, RB1, RC2, RD2, RA2, RB2);
347
348	ret;
349
350.align 8
351.global twofish_ecb_dec_8way
352.type   twofish_ecb_dec_8way,@function;
353
354twofish_ecb_dec_8way:
355	/* input:
356	 *	%rdi: ctx, CTX
357	 *	%rsi: dst
358	 *	%rdx: src
359	 */
360
361	movq %rsi, %r11;
362
363	load_8way(%rdx, RC1, RD1, RA1, RB1, RC2, RD2, RA2, RB2);
364
365	call __twofish_dec_blk8;
366
367	store_8way(%r11, RA1, RB1, RC1, RD1, RA2, RB2, RC2, RD2);
368
369	ret;
370
371.align 8
372.global twofish_cbc_dec_8way
373.type   twofish_cbc_dec_8way,@function;
374
375twofish_cbc_dec_8way:
376	/* input:
377	 *	%rdi: ctx, CTX
378	 *	%rsi: dst
379	 *	%rdx: src
380	 */
381
382	pushq %r12;
383
384	movq %rsi, %r11;
385	movq %rdx, %r12;
386
387	load_8way(%rdx, RC1, RD1, RA1, RB1, RC2, RD2, RA2, RB2);
388
389	call __twofish_dec_blk8;
390
391	store_cbc_8way(%r12, %r11, RA1, RB1, RC1, RD1, RA2, RB2, RC2, RD2);
392
393	popq %r12;
394
395	ret;
396
397.align 8
398.global twofish_ctr_8way
399.type   twofish_ctr_8way,@function;
400
401twofish_ctr_8way:
402	/* input:
403	 *	%rdi: ctx, CTX
404	 *	%rsi: dst
405	 *	%rdx: src
406	 *	%rcx: iv (little endian, 128bit)
407	 */
408
409	pushq %r12;
410
411	movq %rsi, %r11;
412	movq %rdx, %r12;
413
414	load_ctr_8way(%rcx, .Lbswap128_mask, RA1, RB1, RC1, RD1, RA2, RB2, RC2,
415		      RD2, RX0, RX1, RY0);
416
417	call __twofish_enc_blk8;
418
419	store_ctr_8way(%r12, %r11, RC1, RD1, RA1, RB1, RC2, RD2, RA2, RB2);
420
421	popq %r12;
422
423	ret;
424