1/* SPDX-License-Identifier: GPL-2.0-or-later */ 2/* 3 * SM4 Cipher Algorithm, AES-NI/AVX optimized. 4 * as specified in 5 * https://tools.ietf.org/id/draft-ribose-cfrg-sm4-10.html 6 * 7 * Copyright (C) 2018 Markku-Juhani O. Saarinen <mjos@iki.fi> 8 * Copyright (C) 2020 Jussi Kivilinna <jussi.kivilinna@iki.fi> 9 * Copyright (c) 2021 Tianjia Zhang <tianjia.zhang@linux.alibaba.com> 10 */ 11 12/* Based on SM4 AES-NI work by libgcrypt and Markku-Juhani O. Saarinen at: 13 * https://github.com/mjosaarinen/sm4ni 14 */ 15 16#include <linux/linkage.h> 17#include <linux/cfi_types.h> 18#include <asm/frame.h> 19 20#define rRIP (%rip) 21 22#define RX0 %xmm0 23#define RX1 %xmm1 24#define MASK_4BIT %xmm2 25#define RTMP0 %xmm3 26#define RTMP1 %xmm4 27#define RTMP2 %xmm5 28#define RTMP3 %xmm6 29#define RTMP4 %xmm7 30 31#define RA0 %xmm8 32#define RA1 %xmm9 33#define RA2 %xmm10 34#define RA3 %xmm11 35 36#define RB0 %xmm12 37#define RB1 %xmm13 38#define RB2 %xmm14 39#define RB3 %xmm15 40 41#define RNOT %xmm0 42#define RBSWAP %xmm1 43 44 45/* Transpose four 32-bit words between 128-bit vectors. */ 46#define transpose_4x4(x0, x1, x2, x3, t1, t2) \ 47 vpunpckhdq x1, x0, t2; \ 48 vpunpckldq x1, x0, x0; \ 49 \ 50 vpunpckldq x3, x2, t1; \ 51 vpunpckhdq x3, x2, x2; \ 52 \ 53 vpunpckhqdq t1, x0, x1; \ 54 vpunpcklqdq t1, x0, x0; \ 55 \ 56 vpunpckhqdq x2, t2, x3; \ 57 vpunpcklqdq x2, t2, x2; 58 59/* pre-SubByte transform. */ 60#define transform_pre(x, lo_t, hi_t, mask4bit, tmp0) \ 61 vpand x, mask4bit, tmp0; \ 62 vpandn x, mask4bit, x; \ 63 vpsrld $4, x, x; \ 64 \ 65 vpshufb tmp0, lo_t, tmp0; \ 66 vpshufb x, hi_t, x; \ 67 vpxor tmp0, x, x; 68 69/* post-SubByte transform. Note: x has been XOR'ed with mask4bit by 70 * 'vaeslastenc' instruction. 71 */ 72#define transform_post(x, lo_t, hi_t, mask4bit, tmp0) \ 73 vpandn mask4bit, x, tmp0; \ 74 vpsrld $4, x, x; \ 75 vpand x, mask4bit, x; \ 76 \ 77 vpshufb tmp0, lo_t, tmp0; \ 78 vpshufb x, hi_t, x; \ 79 vpxor tmp0, x, x; 80 81 82.section .rodata.cst16, "aM", @progbits, 16 83.align 16 84 85/* 86 * Following four affine transform look-up tables are from work by 87 * Markku-Juhani O. Saarinen, at https://github.com/mjosaarinen/sm4ni 88 * 89 * These allow exposing SM4 S-Box from AES SubByte. 90 */ 91 92/* pre-SubByte affine transform, from SM4 field to AES field. */ 93.Lpre_tf_lo_s: 94 .quad 0x9197E2E474720701, 0xC7C1B4B222245157 95.Lpre_tf_hi_s: 96 .quad 0xE240AB09EB49A200, 0xF052B91BF95BB012 97 98/* post-SubByte affine transform, from AES field to SM4 field. */ 99.Lpost_tf_lo_s: 100 .quad 0x5B67F2CEA19D0834, 0xEDD14478172BBE82 101.Lpost_tf_hi_s: 102 .quad 0xAE7201DD73AFDC00, 0x11CDBE62CC1063BF 103 104/* For isolating SubBytes from AESENCLAST, inverse shift row */ 105.Linv_shift_row: 106 .byte 0x00, 0x0d, 0x0a, 0x07, 0x04, 0x01, 0x0e, 0x0b 107 .byte 0x08, 0x05, 0x02, 0x0f, 0x0c, 0x09, 0x06, 0x03 108 109/* Inverse shift row + Rotate left by 8 bits on 32-bit words with vpshufb */ 110.Linv_shift_row_rol_8: 111 .byte 0x07, 0x00, 0x0d, 0x0a, 0x0b, 0x04, 0x01, 0x0e 112 .byte 0x0f, 0x08, 0x05, 0x02, 0x03, 0x0c, 0x09, 0x06 113 114/* Inverse shift row + Rotate left by 16 bits on 32-bit words with vpshufb */ 115.Linv_shift_row_rol_16: 116 .byte 0x0a, 0x07, 0x00, 0x0d, 0x0e, 0x0b, 0x04, 0x01 117 .byte 0x02, 0x0f, 0x08, 0x05, 0x06, 0x03, 0x0c, 0x09 118 119/* Inverse shift row + Rotate left by 24 bits on 32-bit words with vpshufb */ 120.Linv_shift_row_rol_24: 121 .byte 0x0d, 0x0a, 0x07, 0x00, 0x01, 0x0e, 0x0b, 0x04 122 .byte 0x05, 0x02, 0x0f, 0x08, 0x09, 0x06, 0x03, 0x0c 123 124/* For CTR-mode IV byteswap */ 125.Lbswap128_mask: 126 .byte 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0 127 128/* For input word byte-swap */ 129.Lbswap32_mask: 130 .byte 3, 2, 1, 0, 7, 6, 5, 4, 11, 10, 9, 8, 15, 14, 13, 12 131 132.align 4 133/* 4-bit mask */ 134.L0f0f0f0f: 135 .long 0x0f0f0f0f 136 137/* 12 bytes, only for padding */ 138.Lpadding_deadbeef: 139 .long 0xdeadbeef, 0xdeadbeef, 0xdeadbeef 140 141 142.text 143 144/* 145 * void sm4_aesni_avx_crypt4(const u32 *rk, u8 *dst, 146 * const u8 *src, int nblocks) 147 */ 148SYM_FUNC_START(sm4_aesni_avx_crypt4) 149 /* input: 150 * %rdi: round key array, CTX 151 * %rsi: dst (1..4 blocks) 152 * %rdx: src (1..4 blocks) 153 * %rcx: num blocks (1..4) 154 */ 155 FRAME_BEGIN 156 157 vmovdqu 0*16(%rdx), RA0; 158 vmovdqa RA0, RA1; 159 vmovdqa RA0, RA2; 160 vmovdqa RA0, RA3; 161 cmpq $2, %rcx; 162 jb .Lblk4_load_input_done; 163 vmovdqu 1*16(%rdx), RA1; 164 je .Lblk4_load_input_done; 165 vmovdqu 2*16(%rdx), RA2; 166 cmpq $3, %rcx; 167 je .Lblk4_load_input_done; 168 vmovdqu 3*16(%rdx), RA3; 169 170.Lblk4_load_input_done: 171 172 vmovdqa .Lbswap32_mask rRIP, RTMP2; 173 vpshufb RTMP2, RA0, RA0; 174 vpshufb RTMP2, RA1, RA1; 175 vpshufb RTMP2, RA2, RA2; 176 vpshufb RTMP2, RA3, RA3; 177 178 vbroadcastss .L0f0f0f0f rRIP, MASK_4BIT; 179 vmovdqa .Lpre_tf_lo_s rRIP, RTMP4; 180 vmovdqa .Lpre_tf_hi_s rRIP, RB0; 181 vmovdqa .Lpost_tf_lo_s rRIP, RB1; 182 vmovdqa .Lpost_tf_hi_s rRIP, RB2; 183 vmovdqa .Linv_shift_row rRIP, RB3; 184 vmovdqa .Linv_shift_row_rol_8 rRIP, RTMP2; 185 vmovdqa .Linv_shift_row_rol_16 rRIP, RTMP3; 186 transpose_4x4(RA0, RA1, RA2, RA3, RTMP0, RTMP1); 187 188#define ROUND(round, s0, s1, s2, s3) \ 189 vbroadcastss (4*(round))(%rdi), RX0; \ 190 vpxor s1, RX0, RX0; \ 191 vpxor s2, RX0, RX0; \ 192 vpxor s3, RX0, RX0; /* s1 ^ s2 ^ s3 ^ rk */ \ 193 \ 194 /* sbox, non-linear part */ \ 195 transform_pre(RX0, RTMP4, RB0, MASK_4BIT, RTMP0); \ 196 vaesenclast MASK_4BIT, RX0, RX0; \ 197 transform_post(RX0, RB1, RB2, MASK_4BIT, RTMP0); \ 198 \ 199 /* linear part */ \ 200 vpshufb RB3, RX0, RTMP0; \ 201 vpxor RTMP0, s0, s0; /* s0 ^ x */ \ 202 vpshufb RTMP2, RX0, RTMP1; \ 203 vpxor RTMP1, RTMP0, RTMP0; /* x ^ rol(x,8) */ \ 204 vpshufb RTMP3, RX0, RTMP1; \ 205 vpxor RTMP1, RTMP0, RTMP0; /* x ^ rol(x,8) ^ rol(x,16) */ \ 206 vpshufb .Linv_shift_row_rol_24 rRIP, RX0, RTMP1; \ 207 vpxor RTMP1, s0, s0; /* s0 ^ x ^ rol(x,24) */ \ 208 vpslld $2, RTMP0, RTMP1; \ 209 vpsrld $30, RTMP0, RTMP0; \ 210 vpxor RTMP0, s0, s0; \ 211 /* s0 ^ x ^ rol(x,2) ^ rol(x,10) ^ rol(x,18) ^ rol(x,24) */ \ 212 vpxor RTMP1, s0, s0; 213 214 leaq (32*4)(%rdi), %rax; 215.align 16 216.Lroundloop_blk4: 217 ROUND(0, RA0, RA1, RA2, RA3); 218 ROUND(1, RA1, RA2, RA3, RA0); 219 ROUND(2, RA2, RA3, RA0, RA1); 220 ROUND(3, RA3, RA0, RA1, RA2); 221 leaq (4*4)(%rdi), %rdi; 222 cmpq %rax, %rdi; 223 jne .Lroundloop_blk4; 224 225#undef ROUND 226 227 vmovdqa .Lbswap128_mask rRIP, RTMP2; 228 229 transpose_4x4(RA0, RA1, RA2, RA3, RTMP0, RTMP1); 230 vpshufb RTMP2, RA0, RA0; 231 vpshufb RTMP2, RA1, RA1; 232 vpshufb RTMP2, RA2, RA2; 233 vpshufb RTMP2, RA3, RA3; 234 235 vmovdqu RA0, 0*16(%rsi); 236 cmpq $2, %rcx; 237 jb .Lblk4_store_output_done; 238 vmovdqu RA1, 1*16(%rsi); 239 je .Lblk4_store_output_done; 240 vmovdqu RA2, 2*16(%rsi); 241 cmpq $3, %rcx; 242 je .Lblk4_store_output_done; 243 vmovdqu RA3, 3*16(%rsi); 244 245.Lblk4_store_output_done: 246 vzeroall; 247 FRAME_END 248 RET; 249SYM_FUNC_END(sm4_aesni_avx_crypt4) 250 251SYM_FUNC_START_LOCAL(__sm4_crypt_blk8) 252 /* input: 253 * %rdi: round key array, CTX 254 * RA0, RA1, RA2, RA3, RB0, RB1, RB2, RB3: eight parallel 255 * plaintext blocks 256 * output: 257 * RA0, RA1, RA2, RA3, RB0, RB1, RB2, RB3: eight parallel 258 * ciphertext blocks 259 */ 260 FRAME_BEGIN 261 262 vmovdqa .Lbswap32_mask rRIP, RTMP2; 263 vpshufb RTMP2, RA0, RA0; 264 vpshufb RTMP2, RA1, RA1; 265 vpshufb RTMP2, RA2, RA2; 266 vpshufb RTMP2, RA3, RA3; 267 vpshufb RTMP2, RB0, RB0; 268 vpshufb RTMP2, RB1, RB1; 269 vpshufb RTMP2, RB2, RB2; 270 vpshufb RTMP2, RB3, RB3; 271 272 vbroadcastss .L0f0f0f0f rRIP, MASK_4BIT; 273 transpose_4x4(RA0, RA1, RA2, RA3, RTMP0, RTMP1); 274 transpose_4x4(RB0, RB1, RB2, RB3, RTMP0, RTMP1); 275 276#define ROUND(round, s0, s1, s2, s3, r0, r1, r2, r3) \ 277 vbroadcastss (4*(round))(%rdi), RX0; \ 278 vmovdqa .Lpre_tf_lo_s rRIP, RTMP4; \ 279 vmovdqa .Lpre_tf_hi_s rRIP, RTMP1; \ 280 vmovdqa RX0, RX1; \ 281 vpxor s1, RX0, RX0; \ 282 vpxor s2, RX0, RX0; \ 283 vpxor s3, RX0, RX0; /* s1 ^ s2 ^ s3 ^ rk */ \ 284 vmovdqa .Lpost_tf_lo_s rRIP, RTMP2; \ 285 vmovdqa .Lpost_tf_hi_s rRIP, RTMP3; \ 286 vpxor r1, RX1, RX1; \ 287 vpxor r2, RX1, RX1; \ 288 vpxor r3, RX1, RX1; /* r1 ^ r2 ^ r3 ^ rk */ \ 289 \ 290 /* sbox, non-linear part */ \ 291 transform_pre(RX0, RTMP4, RTMP1, MASK_4BIT, RTMP0); \ 292 transform_pre(RX1, RTMP4, RTMP1, MASK_4BIT, RTMP0); \ 293 vmovdqa .Linv_shift_row rRIP, RTMP4; \ 294 vaesenclast MASK_4BIT, RX0, RX0; \ 295 vaesenclast MASK_4BIT, RX1, RX1; \ 296 transform_post(RX0, RTMP2, RTMP3, MASK_4BIT, RTMP0); \ 297 transform_post(RX1, RTMP2, RTMP3, MASK_4BIT, RTMP0); \ 298 \ 299 /* linear part */ \ 300 vpshufb RTMP4, RX0, RTMP0; \ 301 vpxor RTMP0, s0, s0; /* s0 ^ x */ \ 302 vpshufb RTMP4, RX1, RTMP2; \ 303 vmovdqa .Linv_shift_row_rol_8 rRIP, RTMP4; \ 304 vpxor RTMP2, r0, r0; /* r0 ^ x */ \ 305 vpshufb RTMP4, RX0, RTMP1; \ 306 vpxor RTMP1, RTMP0, RTMP0; /* x ^ rol(x,8) */ \ 307 vpshufb RTMP4, RX1, RTMP3; \ 308 vmovdqa .Linv_shift_row_rol_16 rRIP, RTMP4; \ 309 vpxor RTMP3, RTMP2, RTMP2; /* x ^ rol(x,8) */ \ 310 vpshufb RTMP4, RX0, RTMP1; \ 311 vpxor RTMP1, RTMP0, RTMP0; /* x ^ rol(x,8) ^ rol(x,16) */ \ 312 vpshufb RTMP4, RX1, RTMP3; \ 313 vmovdqa .Linv_shift_row_rol_24 rRIP, RTMP4; \ 314 vpxor RTMP3, RTMP2, RTMP2; /* x ^ rol(x,8) ^ rol(x,16) */ \ 315 vpshufb RTMP4, RX0, RTMP1; \ 316 vpxor RTMP1, s0, s0; /* s0 ^ x ^ rol(x,24) */ \ 317 /* s0 ^ x ^ rol(x,2) ^ rol(x,10) ^ rol(x,18) ^ rol(x,24) */ \ 318 vpslld $2, RTMP0, RTMP1; \ 319 vpsrld $30, RTMP0, RTMP0; \ 320 vpxor RTMP0, s0, s0; \ 321 vpxor RTMP1, s0, s0; \ 322 vpshufb RTMP4, RX1, RTMP3; \ 323 vpxor RTMP3, r0, r0; /* r0 ^ x ^ rol(x,24) */ \ 324 /* r0 ^ x ^ rol(x,2) ^ rol(x,10) ^ rol(x,18) ^ rol(x,24) */ \ 325 vpslld $2, RTMP2, RTMP3; \ 326 vpsrld $30, RTMP2, RTMP2; \ 327 vpxor RTMP2, r0, r0; \ 328 vpxor RTMP3, r0, r0; 329 330 leaq (32*4)(%rdi), %rax; 331.align 16 332.Lroundloop_blk8: 333 ROUND(0, RA0, RA1, RA2, RA3, RB0, RB1, RB2, RB3); 334 ROUND(1, RA1, RA2, RA3, RA0, RB1, RB2, RB3, RB0); 335 ROUND(2, RA2, RA3, RA0, RA1, RB2, RB3, RB0, RB1); 336 ROUND(3, RA3, RA0, RA1, RA2, RB3, RB0, RB1, RB2); 337 leaq (4*4)(%rdi), %rdi; 338 cmpq %rax, %rdi; 339 jne .Lroundloop_blk8; 340 341#undef ROUND 342 343 vmovdqa .Lbswap128_mask rRIP, RTMP2; 344 345 transpose_4x4(RA0, RA1, RA2, RA3, RTMP0, RTMP1); 346 transpose_4x4(RB0, RB1, RB2, RB3, RTMP0, RTMP1); 347 vpshufb RTMP2, RA0, RA0; 348 vpshufb RTMP2, RA1, RA1; 349 vpshufb RTMP2, RA2, RA2; 350 vpshufb RTMP2, RA3, RA3; 351 vpshufb RTMP2, RB0, RB0; 352 vpshufb RTMP2, RB1, RB1; 353 vpshufb RTMP2, RB2, RB2; 354 vpshufb RTMP2, RB3, RB3; 355 356 FRAME_END 357 RET; 358SYM_FUNC_END(__sm4_crypt_blk8) 359 360/* 361 * void sm4_aesni_avx_crypt8(const u32 *rk, u8 *dst, 362 * const u8 *src, int nblocks) 363 */ 364SYM_FUNC_START(sm4_aesni_avx_crypt8) 365 /* input: 366 * %rdi: round key array, CTX 367 * %rsi: dst (1..8 blocks) 368 * %rdx: src (1..8 blocks) 369 * %rcx: num blocks (1..8) 370 */ 371 cmpq $5, %rcx; 372 jb sm4_aesni_avx_crypt4; 373 374 FRAME_BEGIN 375 376 vmovdqu (0 * 16)(%rdx), RA0; 377 vmovdqu (1 * 16)(%rdx), RA1; 378 vmovdqu (2 * 16)(%rdx), RA2; 379 vmovdqu (3 * 16)(%rdx), RA3; 380 vmovdqu (4 * 16)(%rdx), RB0; 381 vmovdqa RB0, RB1; 382 vmovdqa RB0, RB2; 383 vmovdqa RB0, RB3; 384 je .Lblk8_load_input_done; 385 vmovdqu (5 * 16)(%rdx), RB1; 386 cmpq $7, %rcx; 387 jb .Lblk8_load_input_done; 388 vmovdqu (6 * 16)(%rdx), RB2; 389 je .Lblk8_load_input_done; 390 vmovdqu (7 * 16)(%rdx), RB3; 391 392.Lblk8_load_input_done: 393 call __sm4_crypt_blk8; 394 395 cmpq $6, %rcx; 396 vmovdqu RA0, (0 * 16)(%rsi); 397 vmovdqu RA1, (1 * 16)(%rsi); 398 vmovdqu RA2, (2 * 16)(%rsi); 399 vmovdqu RA3, (3 * 16)(%rsi); 400 vmovdqu RB0, (4 * 16)(%rsi); 401 jb .Lblk8_store_output_done; 402 vmovdqu RB1, (5 * 16)(%rsi); 403 je .Lblk8_store_output_done; 404 vmovdqu RB2, (6 * 16)(%rsi); 405 cmpq $7, %rcx; 406 je .Lblk8_store_output_done; 407 vmovdqu RB3, (7 * 16)(%rsi); 408 409.Lblk8_store_output_done: 410 vzeroall; 411 FRAME_END 412 RET; 413SYM_FUNC_END(sm4_aesni_avx_crypt8) 414 415/* 416 * void sm4_aesni_avx_ctr_enc_blk8(const u32 *rk, u8 *dst, 417 * const u8 *src, u8 *iv) 418 */ 419SYM_TYPED_FUNC_START(sm4_aesni_avx_ctr_enc_blk8) 420 /* input: 421 * %rdi: round key array, CTX 422 * %rsi: dst (8 blocks) 423 * %rdx: src (8 blocks) 424 * %rcx: iv (big endian, 128bit) 425 */ 426 FRAME_BEGIN 427 428 /* load IV and byteswap */ 429 vmovdqu (%rcx), RA0; 430 431 vmovdqa .Lbswap128_mask rRIP, RBSWAP; 432 vpshufb RBSWAP, RA0, RTMP0; /* be => le */ 433 434 vpcmpeqd RNOT, RNOT, RNOT; 435 vpsrldq $8, RNOT, RNOT; /* low: -1, high: 0 */ 436 437#define inc_le128(x, minus_one, tmp) \ 438 vpcmpeqq minus_one, x, tmp; \ 439 vpsubq minus_one, x, x; \ 440 vpslldq $8, tmp, tmp; \ 441 vpsubq tmp, x, x; 442 443 /* construct IVs */ 444 inc_le128(RTMP0, RNOT, RTMP2); /* +1 */ 445 vpshufb RBSWAP, RTMP0, RA1; 446 inc_le128(RTMP0, RNOT, RTMP2); /* +2 */ 447 vpshufb RBSWAP, RTMP0, RA2; 448 inc_le128(RTMP0, RNOT, RTMP2); /* +3 */ 449 vpshufb RBSWAP, RTMP0, RA3; 450 inc_le128(RTMP0, RNOT, RTMP2); /* +4 */ 451 vpshufb RBSWAP, RTMP0, RB0; 452 inc_le128(RTMP0, RNOT, RTMP2); /* +5 */ 453 vpshufb RBSWAP, RTMP0, RB1; 454 inc_le128(RTMP0, RNOT, RTMP2); /* +6 */ 455 vpshufb RBSWAP, RTMP0, RB2; 456 inc_le128(RTMP0, RNOT, RTMP2); /* +7 */ 457 vpshufb RBSWAP, RTMP0, RB3; 458 inc_le128(RTMP0, RNOT, RTMP2); /* +8 */ 459 vpshufb RBSWAP, RTMP0, RTMP1; 460 461 /* store new IV */ 462 vmovdqu RTMP1, (%rcx); 463 464 call __sm4_crypt_blk8; 465 466 vpxor (0 * 16)(%rdx), RA0, RA0; 467 vpxor (1 * 16)(%rdx), RA1, RA1; 468 vpxor (2 * 16)(%rdx), RA2, RA2; 469 vpxor (3 * 16)(%rdx), RA3, RA3; 470 vpxor (4 * 16)(%rdx), RB0, RB0; 471 vpxor (5 * 16)(%rdx), RB1, RB1; 472 vpxor (6 * 16)(%rdx), RB2, RB2; 473 vpxor (7 * 16)(%rdx), RB3, RB3; 474 475 vmovdqu RA0, (0 * 16)(%rsi); 476 vmovdqu RA1, (1 * 16)(%rsi); 477 vmovdqu RA2, (2 * 16)(%rsi); 478 vmovdqu RA3, (3 * 16)(%rsi); 479 vmovdqu RB0, (4 * 16)(%rsi); 480 vmovdqu RB1, (5 * 16)(%rsi); 481 vmovdqu RB2, (6 * 16)(%rsi); 482 vmovdqu RB3, (7 * 16)(%rsi); 483 484 vzeroall; 485 FRAME_END 486 RET; 487SYM_FUNC_END(sm4_aesni_avx_ctr_enc_blk8) 488 489/* 490 * void sm4_aesni_avx_cbc_dec_blk8(const u32 *rk, u8 *dst, 491 * const u8 *src, u8 *iv) 492 */ 493SYM_TYPED_FUNC_START(sm4_aesni_avx_cbc_dec_blk8) 494 /* input: 495 * %rdi: round key array, CTX 496 * %rsi: dst (8 blocks) 497 * %rdx: src (8 blocks) 498 * %rcx: iv 499 */ 500 FRAME_BEGIN 501 502 vmovdqu (0 * 16)(%rdx), RA0; 503 vmovdqu (1 * 16)(%rdx), RA1; 504 vmovdqu (2 * 16)(%rdx), RA2; 505 vmovdqu (3 * 16)(%rdx), RA3; 506 vmovdqu (4 * 16)(%rdx), RB0; 507 vmovdqu (5 * 16)(%rdx), RB1; 508 vmovdqu (6 * 16)(%rdx), RB2; 509 vmovdqu (7 * 16)(%rdx), RB3; 510 511 call __sm4_crypt_blk8; 512 513 vmovdqu (7 * 16)(%rdx), RNOT; 514 vpxor (%rcx), RA0, RA0; 515 vpxor (0 * 16)(%rdx), RA1, RA1; 516 vpxor (1 * 16)(%rdx), RA2, RA2; 517 vpxor (2 * 16)(%rdx), RA3, RA3; 518 vpxor (3 * 16)(%rdx), RB0, RB0; 519 vpxor (4 * 16)(%rdx), RB1, RB1; 520 vpxor (5 * 16)(%rdx), RB2, RB2; 521 vpxor (6 * 16)(%rdx), RB3, RB3; 522 vmovdqu RNOT, (%rcx); /* store new IV */ 523 524 vmovdqu RA0, (0 * 16)(%rsi); 525 vmovdqu RA1, (1 * 16)(%rsi); 526 vmovdqu RA2, (2 * 16)(%rsi); 527 vmovdqu RA3, (3 * 16)(%rsi); 528 vmovdqu RB0, (4 * 16)(%rsi); 529 vmovdqu RB1, (5 * 16)(%rsi); 530 vmovdqu RB2, (6 * 16)(%rsi); 531 vmovdqu RB3, (7 * 16)(%rsi); 532 533 vzeroall; 534 FRAME_END 535 RET; 536SYM_FUNC_END(sm4_aesni_avx_cbc_dec_blk8) 537