xref: /linux/arch/x86/crypto/sha256-avx-asm.S (revision 24bce201d79807b668bf9d9e0aca801c5c0d5f78)
1########################################################################
2# Implement fast SHA-256 with AVX1 instructions. (x86_64)
3#
4# Copyright (C) 2013 Intel Corporation.
5#
6# Authors:
7#     James Guilford <james.guilford@intel.com>
8#     Kirk Yap <kirk.s.yap@intel.com>
9#     Tim Chen <tim.c.chen@linux.intel.com>
10#
11# This software is available to you under a choice of one of two
12# licenses.  You may choose to be licensed under the terms of the GNU
13# General Public License (GPL) Version 2, available from the file
14# COPYING in the main directory of this source tree, or the
15# OpenIB.org BSD license below:
16#
17#     Redistribution and use in source and binary forms, with or
18#     without modification, are permitted provided that the following
19#     conditions are met:
20#
21#      - Redistributions of source code must retain the above
22#        copyright notice, this list of conditions and the following
23#        disclaimer.
24#
25#      - Redistributions in binary form must reproduce the above
26#        copyright notice, this list of conditions and the following
27#        disclaimer in the documentation and/or other materials
28#        provided with the distribution.
29#
30# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
31# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
32# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
33# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
34# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
35# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
36# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
37# SOFTWARE.
38########################################################################
39#
40# This code is described in an Intel White-Paper:
41# "Fast SHA-256 Implementations on Intel Architecture Processors"
42#
43# To find it, surf to http://www.intel.com/p/en_US/embedded
44# and search for that title.
45#
46########################################################################
47# This code schedules 1 block at a time, with 4 lanes per block
48########################################################################
49
50#include <linux/linkage.h>
51
52## assume buffers not aligned
53#define    VMOVDQ vmovdqu
54
55################################ Define Macros
56
57# addm [mem], reg
58# Add reg to mem using reg-mem add and store
59.macro addm p1 p2
60	add     \p1, \p2
61	mov     \p2, \p1
62.endm
63
64
65.macro MY_ROR p1 p2
66	shld    $(32-(\p1)), \p2, \p2
67.endm
68
69################################
70
71# COPY_XMM_AND_BSWAP xmm, [mem], byte_flip_mask
72# Load xmm with mem and byte swap each dword
73.macro COPY_XMM_AND_BSWAP p1 p2 p3
74	VMOVDQ \p2, \p1
75	vpshufb \p3, \p1, \p1
76.endm
77
78################################
79
80X0 = %xmm4
81X1 = %xmm5
82X2 = %xmm6
83X3 = %xmm7
84
85XTMP0 = %xmm0
86XTMP1 = %xmm1
87XTMP2 = %xmm2
88XTMP3 = %xmm3
89XTMP4 = %xmm8
90XFER = %xmm9
91XTMP5 = %xmm11
92
93SHUF_00BA = %xmm10      # shuffle xBxA -> 00BA
94SHUF_DC00 = %xmm12      # shuffle xDxC -> DC00
95BYTE_FLIP_MASK = %xmm13
96
97NUM_BLKS = %rdx   # 3rd arg
98INP = %rsi        # 2nd arg
99CTX = %rdi        # 1st arg
100
101SRND = %rsi       # clobbers INP
102c = %ecx
103d = %r8d
104e = %edx
105TBL = %r12
106a = %eax
107b = %ebx
108
109f = %r9d
110g = %r10d
111h = %r11d
112
113y0 = %r13d
114y1 = %r14d
115y2 = %r15d
116
117
118_INP_END_SIZE = 8
119_INP_SIZE = 8
120_XFER_SIZE = 16
121_XMM_SAVE_SIZE = 0
122
123_INP_END = 0
124_INP            = _INP_END  + _INP_END_SIZE
125_XFER           = _INP      + _INP_SIZE
126_XMM_SAVE       = _XFER     + _XFER_SIZE
127STACK_SIZE      = _XMM_SAVE + _XMM_SAVE_SIZE
128
129# rotate_Xs
130# Rotate values of symbols X0...X3
131.macro rotate_Xs
132X_ = X0
133X0 = X1
134X1 = X2
135X2 = X3
136X3 = X_
137.endm
138
139# ROTATE_ARGS
140# Rotate values of symbols a...h
141.macro ROTATE_ARGS
142TMP_ = h
143h = g
144g = f
145f = e
146e = d
147d = c
148c = b
149b = a
150a = TMP_
151.endm
152
153.macro FOUR_ROUNDS_AND_SCHED
154	## compute s0 four at a time and s1 two at a time
155	## compute W[-16] + W[-7] 4 at a time
156
157	mov     e, y0			# y0 = e
158	MY_ROR  (25-11), y0             # y0 = e >> (25-11)
159	mov     a, y1                   # y1 = a
160	vpalignr $4, X2, X3, XTMP0      # XTMP0 = W[-7]
161	MY_ROR  (22-13), y1             # y1 = a >> (22-13)
162	xor     e, y0                   # y0 = e ^ (e >> (25-11))
163	mov     f, y2                   # y2 = f
164	MY_ROR  (11-6), y0              # y0 = (e >> (11-6)) ^ (e >> (25-6))
165	xor     a, y1                   # y1 = a ^ (a >> (22-13)
166	xor     g, y2                   # y2 = f^g
167	vpaddd  X0, XTMP0, XTMP0        # XTMP0 = W[-7] + W[-16]
168	xor     e, y0                   # y0 = e ^ (e >> (11-6)) ^ (e >> (25-6))
169	and     e, y2                   # y2 = (f^g)&e
170	MY_ROR  (13-2), y1              # y1 = (a >> (13-2)) ^ (a >> (22-2))
171	## compute s0
172	vpalignr $4, X0, X1, XTMP1      # XTMP1 = W[-15]
173	xor     a, y1                   # y1 = a ^ (a >> (13-2)) ^ (a >> (22-2))
174	MY_ROR  6, y0                   # y0 = S1 = (e>>6) & (e>>11) ^ (e>>25)
175	xor     g, y2                   # y2 = CH = ((f^g)&e)^g
176	MY_ROR  2, y1                   # y1 = S0 = (a>>2) ^ (a>>13) ^ (a>>22)
177	add     y0, y2                  # y2 = S1 + CH
178	add     _XFER(%rsp), y2         # y2 = k + w + S1 + CH
179	mov     a, y0                   # y0 = a
180	add     y2, h                   # h = h + S1 + CH + k + w
181	mov     a, y2                   # y2 = a
182	vpsrld  $7, XTMP1, XTMP2
183	or      c, y0                   # y0 = a|c
184	add     h, d                    # d = d + h + S1 + CH + k + w
185	and     c, y2                   # y2 = a&c
186	vpslld  $(32-7), XTMP1, XTMP3
187	and     b, y0                   # y0 = (a|c)&b
188	add     y1, h                   # h = h + S1 + CH + k + w + S0
189	vpor    XTMP2, XTMP3, XTMP3     # XTMP1 = W[-15] MY_ROR 7
190	or      y2, y0                  # y0 = MAJ = (a|c)&b)|(a&c)
191	add     y0, h                   # h = h + S1 + CH + k + w + S0 + MAJ
192	ROTATE_ARGS
193	mov     e, y0                   # y0 = e
194	mov     a, y1                   # y1 = a
195	MY_ROR  (25-11), y0             # y0 = e >> (25-11)
196	xor     e, y0                   # y0 = e ^ (e >> (25-11))
197	mov     f, y2                   # y2 = f
198	MY_ROR  (22-13), y1             # y1 = a >> (22-13)
199	vpsrld  $18, XTMP1, XTMP2       #
200	xor     a, y1                   # y1 = a ^ (a >> (22-13)
201	MY_ROR  (11-6), y0              # y0 = (e >> (11-6)) ^ (e >> (25-6))
202	xor     g, y2                   # y2 = f^g
203	vpsrld  $3, XTMP1, XTMP4        # XTMP4 = W[-15] >> 3
204	MY_ROR  (13-2), y1              # y1 = (a >> (13-2)) ^ (a >> (22-2))
205	xor     e, y0                   # y0 = e ^ (e >> (11-6)) ^ (e >> (25-6))
206	and     e, y2                   # y2 = (f^g)&e
207	MY_ROR  6, y0                   # y0 = S1 = (e>>6) & (e>>11) ^ (e>>25)
208	vpslld  $(32-18), XTMP1, XTMP1
209	xor     a, y1                   # y1 = a ^ (a >> (13-2)) ^ (a >> (22-2))
210	xor     g, y2                   # y2 = CH = ((f^g)&e)^g
211	vpxor   XTMP1, XTMP3, XTMP3     #
212	add     y0, y2                  # y2 = S1 + CH
213	add     (1*4 + _XFER)(%rsp), y2 # y2 = k + w + S1 + CH
214	MY_ROR  2, y1                   # y1 = S0 = (a>>2) ^ (a>>13) ^ (a>>22)
215	vpxor   XTMP2, XTMP3, XTMP3     # XTMP1 = W[-15] MY_ROR 7 ^ W[-15] MY_ROR
216	mov     a, y0                   # y0 = a
217	add     y2, h                   # h = h + S1 + CH + k + w
218	mov     a, y2                   # y2 = a
219	vpxor   XTMP4, XTMP3, XTMP1     # XTMP1 = s0
220	or      c, y0                   # y0 = a|c
221	add     h, d                    # d = d + h + S1 + CH + k + w
222	and     c, y2                   # y2 = a&c
223	## compute low s1
224	vpshufd $0b11111010, X3, XTMP2  # XTMP2 = W[-2] {BBAA}
225	and     b, y0                   # y0 = (a|c)&b
226	add     y1, h                   # h = h + S1 + CH + k + w + S0
227	vpaddd  XTMP1, XTMP0, XTMP0     # XTMP0 = W[-16] + W[-7] + s0
228	or      y2, y0                  # y0 = MAJ = (a|c)&b)|(a&c)
229	add     y0, h                   # h = h + S1 + CH + k + w + S0 + MAJ
230	ROTATE_ARGS
231	mov     e, y0                   # y0 = e
232	mov     a, y1                   # y1 = a
233	MY_ROR  (25-11), y0             # y0 = e >> (25-11)
234	xor     e, y0                   # y0 = e ^ (e >> (25-11))
235	MY_ROR  (22-13), y1             # y1 = a >> (22-13)
236	mov     f, y2                   # y2 = f
237	xor     a, y1                   # y1 = a ^ (a >> (22-13)
238	MY_ROR  (11-6), y0              # y0 = (e >> (11-6)) ^ (e >> (25-6))
239	vpsrld  $10, XTMP2, XTMP4       # XTMP4 = W[-2] >> 10 {BBAA}
240	xor     g, y2                   # y2 = f^g
241	vpsrlq  $19, XTMP2, XTMP3       # XTMP3 = W[-2] MY_ROR 19 {xBxA}
242	xor     e, y0                   # y0 = e ^ (e >> (11-6)) ^ (e >> (25-6))
243	and     e, y2                   # y2 = (f^g)&e
244	vpsrlq  $17, XTMP2, XTMP2       # XTMP2 = W[-2] MY_ROR 17 {xBxA}
245	MY_ROR  (13-2), y1              # y1 = (a >> (13-2)) ^ (a >> (22-2))
246	xor     a, y1                   # y1 = a ^ (a >> (13-2)) ^ (a >> (22-2))
247	xor     g, y2                   # y2 = CH = ((f^g)&e)^g
248	MY_ROR  6, y0                   # y0 = S1 = (e>>6) & (e>>11) ^ (e>>25)
249	vpxor   XTMP3, XTMP2, XTMP2     #
250	add     y0, y2                  # y2 = S1 + CH
251	MY_ROR  2, y1                   # y1 = S0 = (a>>2) ^ (a>>13) ^ (a>>22)
252	add     (2*4 + _XFER)(%rsp), y2 # y2 = k + w + S1 + CH
253	vpxor   XTMP2, XTMP4, XTMP4     # XTMP4 = s1 {xBxA}
254	mov     a, y0                   # y0 = a
255	add     y2, h                   # h = h + S1 + CH + k + w
256	mov     a, y2                   # y2 = a
257	vpshufb SHUF_00BA, XTMP4, XTMP4 # XTMP4 = s1 {00BA}
258	or      c, y0                   # y0 = a|c
259	add     h, d                    # d = d + h + S1 + CH + k + w
260	and     c, y2                   # y2 = a&c
261	vpaddd  XTMP4, XTMP0, XTMP0     # XTMP0 = {..., ..., W[1], W[0]}
262	and     b, y0                   # y0 = (a|c)&b
263	add     y1, h                   # h = h + S1 + CH + k + w + S0
264	## compute high s1
265	vpshufd $0b01010000, XTMP0, XTMP2 # XTMP2 = W[-2] {DDCC}
266	or      y2, y0                  # y0 = MAJ = (a|c)&b)|(a&c)
267	add     y0, h                   # h = h + S1 + CH + k + w + S0 + MAJ
268	ROTATE_ARGS
269	mov     e, y0                   # y0 = e
270	MY_ROR  (25-11), y0             # y0 = e >> (25-11)
271	mov     a, y1                   # y1 = a
272	MY_ROR  (22-13), y1             # y1 = a >> (22-13)
273	xor     e, y0                   # y0 = e ^ (e >> (25-11))
274	mov     f, y2                   # y2 = f
275	MY_ROR  (11-6), y0              # y0 = (e >> (11-6)) ^ (e >> (25-6))
276	vpsrld  $10, XTMP2, XTMP5       # XTMP5 = W[-2] >> 10 {DDCC}
277	xor     a, y1                   # y1 = a ^ (a >> (22-13)
278	xor     g, y2                   # y2 = f^g
279	vpsrlq  $19, XTMP2, XTMP3       # XTMP3 = W[-2] MY_ROR 19 {xDxC}
280	xor     e, y0                   # y0 = e ^ (e >> (11-6)) ^ (e >> (25-6))
281	and     e, y2                   # y2 = (f^g)&e
282	MY_ROR  (13-2), y1              # y1 = (a >> (13-2)) ^ (a >> (22-2))
283	vpsrlq  $17, XTMP2, XTMP2       # XTMP2 = W[-2] MY_ROR 17 {xDxC}
284	xor     a, y1                   # y1 = a ^ (a >> (13-2)) ^ (a >> (22-2))
285	MY_ROR  6, y0                   # y0 = S1 = (e>>6) & (e>>11) ^ (e>>25)
286	xor     g, y2                   # y2 = CH = ((f^g)&e)^g
287	vpxor   XTMP3, XTMP2, XTMP2
288	MY_ROR  2, y1                   # y1 = S0 = (a>>2) ^ (a>>13) ^ (a>>22)
289	add     y0, y2                  # y2 = S1 + CH
290	add     (3*4 + _XFER)(%rsp), y2 # y2 = k + w + S1 + CH
291	vpxor   XTMP2, XTMP5, XTMP5     # XTMP5 = s1 {xDxC}
292	mov     a, y0                   # y0 = a
293	add     y2, h                   # h = h + S1 + CH + k + w
294	mov     a, y2                   # y2 = a
295	vpshufb SHUF_DC00, XTMP5, XTMP5 # XTMP5 = s1 {DC00}
296	or      c, y0                   # y0 = a|c
297	add     h, d                    # d = d + h + S1 + CH + k + w
298	and     c, y2                   # y2 = a&c
299	vpaddd  XTMP0, XTMP5, X0        # X0 = {W[3], W[2], W[1], W[0]}
300	and     b, y0                   # y0 = (a|c)&b
301	add     y1, h                   # h = h + S1 + CH + k + w + S0
302	or      y2, y0                  # y0 = MAJ = (a|c)&b)|(a&c)
303	add     y0, h                   # h = h + S1 + CH + k + w + S0 + MAJ
304	ROTATE_ARGS
305	rotate_Xs
306.endm
307
308## input is [rsp + _XFER + %1 * 4]
309.macro DO_ROUND round
310	mov	e, y0			# y0 = e
311        MY_ROR  (25-11), y0             # y0 = e >> (25-11)
312        mov     a, y1                   # y1 = a
313        xor     e, y0                   # y0 = e ^ (e >> (25-11))
314        MY_ROR  (22-13), y1             # y1 = a >> (22-13)
315        mov     f, y2                   # y2 = f
316        xor     a, y1                   # y1 = a ^ (a >> (22-13)
317        MY_ROR  (11-6), y0              # y0 = (e >> (11-6)) ^ (e >> (25-6))
318        xor     g, y2                   # y2 = f^g
319        xor     e, y0                   # y0 = e ^ (e >> (11-6)) ^ (e >> (25-6))
320        MY_ROR  (13-2), y1              # y1 = (a >> (13-2)) ^ (a >> (22-2))
321        and     e, y2                   # y2 = (f^g)&e
322        xor     a, y1                   # y1 = a ^ (a >> (13-2)) ^ (a >> (22-2))
323        MY_ROR  6, y0                   # y0 = S1 = (e>>6) & (e>>11) ^ (e>>25)
324        xor     g, y2                   # y2 = CH = ((f^g)&e)^g
325        add     y0, y2                  # y2 = S1 + CH
326        MY_ROR  2, y1                   # y1 = S0 = (a>>2) ^ (a>>13) ^ (a>>22)
327        offset = \round * 4 + _XFER     #
328        add     offset(%rsp), y2	# y2 = k + w + S1 + CH
329        mov     a, y0			# y0 = a
330        add     y2, h                   # h = h + S1 + CH + k + w
331        mov     a, y2                   # y2 = a
332        or      c, y0                   # y0 = a|c
333        add     h, d                    # d = d + h + S1 + CH + k + w
334        and     c, y2                   # y2 = a&c
335        and     b, y0                   # y0 = (a|c)&b
336        add     y1, h                   # h = h + S1 + CH + k + w + S0
337        or      y2, y0                  # y0 = MAJ = (a|c)&b)|(a&c)
338        add     y0, h                   # h = h + S1 + CH + k + w + S0 + MAJ
339        ROTATE_ARGS
340.endm
341
342########################################################################
343## void sha256_transform_avx(state sha256_state *state, const u8 *data, int blocks)
344## arg 1 : pointer to state
345## arg 2 : pointer to input data
346## arg 3 : Num blocks
347########################################################################
348.text
349SYM_FUNC_START(sha256_transform_avx)
350.align 32
351	pushq   %rbx
352	pushq   %r12
353	pushq   %r13
354	pushq   %r14
355	pushq   %r15
356	pushq	%rbp
357	movq	%rsp, %rbp
358
359	subq    $STACK_SIZE, %rsp	# allocate stack space
360	and	$~15, %rsp		# align stack pointer
361
362	shl     $6, NUM_BLKS		# convert to bytes
363	jz      done_hash
364	add     INP, NUM_BLKS		# pointer to end of data
365	mov     NUM_BLKS, _INP_END(%rsp)
366
367	## load initial digest
368	mov     4*0(CTX), a
369	mov     4*1(CTX), b
370	mov     4*2(CTX), c
371	mov     4*3(CTX), d
372	mov     4*4(CTX), e
373	mov     4*5(CTX), f
374	mov     4*6(CTX), g
375	mov     4*7(CTX), h
376
377	vmovdqa  PSHUFFLE_BYTE_FLIP_MASK(%rip), BYTE_FLIP_MASK
378	vmovdqa  _SHUF_00BA(%rip), SHUF_00BA
379	vmovdqa  _SHUF_DC00(%rip), SHUF_DC00
380loop0:
381	lea     K256(%rip), TBL
382
383	## byte swap first 16 dwords
384	COPY_XMM_AND_BSWAP      X0, 0*16(INP), BYTE_FLIP_MASK
385	COPY_XMM_AND_BSWAP      X1, 1*16(INP), BYTE_FLIP_MASK
386	COPY_XMM_AND_BSWAP      X2, 2*16(INP), BYTE_FLIP_MASK
387	COPY_XMM_AND_BSWAP      X3, 3*16(INP), BYTE_FLIP_MASK
388
389	mov     INP, _INP(%rsp)
390
391	## schedule 48 input dwords, by doing 3 rounds of 16 each
392	mov     $3, SRND
393.align 16
394loop1:
395	vpaddd  (TBL), X0, XFER
396	vmovdqa XFER, _XFER(%rsp)
397	FOUR_ROUNDS_AND_SCHED
398
399	vpaddd  1*16(TBL), X0, XFER
400	vmovdqa XFER, _XFER(%rsp)
401	FOUR_ROUNDS_AND_SCHED
402
403	vpaddd  2*16(TBL), X0, XFER
404	vmovdqa XFER, _XFER(%rsp)
405	FOUR_ROUNDS_AND_SCHED
406
407	vpaddd  3*16(TBL), X0, XFER
408	vmovdqa XFER, _XFER(%rsp)
409	add	$4*16, TBL
410	FOUR_ROUNDS_AND_SCHED
411
412	sub     $1, SRND
413	jne     loop1
414
415	mov     $2, SRND
416loop2:
417	vpaddd  (TBL), X0, XFER
418	vmovdqa XFER, _XFER(%rsp)
419	DO_ROUND        0
420	DO_ROUND        1
421	DO_ROUND        2
422	DO_ROUND        3
423
424	vpaddd  1*16(TBL), X1, XFER
425	vmovdqa XFER, _XFER(%rsp)
426	add     $2*16, TBL
427	DO_ROUND        0
428	DO_ROUND        1
429	DO_ROUND        2
430	DO_ROUND        3
431
432	vmovdqa X2, X0
433	vmovdqa X3, X1
434
435	sub     $1, SRND
436	jne     loop2
437
438	addm    (4*0)(CTX),a
439	addm    (4*1)(CTX),b
440	addm    (4*2)(CTX),c
441	addm    (4*3)(CTX),d
442	addm    (4*4)(CTX),e
443	addm    (4*5)(CTX),f
444	addm    (4*6)(CTX),g
445	addm    (4*7)(CTX),h
446
447	mov     _INP(%rsp), INP
448	add     $64, INP
449	cmp     _INP_END(%rsp), INP
450	jne     loop0
451
452done_hash:
453
454	mov	%rbp, %rsp
455	popq	%rbp
456	popq    %r15
457	popq    %r14
458	popq    %r13
459	popq	%r12
460	popq    %rbx
461	RET
462SYM_FUNC_END(sha256_transform_avx)
463
464.section	.rodata.cst256.K256, "aM", @progbits, 256
465.align 64
466K256:
467	.long 0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5
468	.long 0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5
469	.long 0xd807aa98,0x12835b01,0x243185be,0x550c7dc3
470	.long 0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174
471	.long 0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc
472	.long 0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da
473	.long 0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7
474	.long 0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967
475	.long 0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13
476	.long 0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85
477	.long 0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3
478	.long 0xd192e819,0xd6990624,0xf40e3585,0x106aa070
479	.long 0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5
480	.long 0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3
481	.long 0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208
482	.long 0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2
483
484.section	.rodata.cst16.PSHUFFLE_BYTE_FLIP_MASK, "aM", @progbits, 16
485.align 16
486PSHUFFLE_BYTE_FLIP_MASK:
487	.octa 0x0c0d0e0f08090a0b0405060700010203
488
489.section	.rodata.cst16._SHUF_00BA, "aM", @progbits, 16
490.align 16
491# shuffle xBxA -> 00BA
492_SHUF_00BA:
493	.octa 0xFFFFFFFFFFFFFFFF0b0a090803020100
494
495.section	.rodata.cst16._SHUF_DC00, "aM", @progbits, 16
496.align 16
497# shuffle xDxC -> DC00
498_SHUF_DC00:
499	.octa 0x0b0a090803020100FFFFFFFFFFFFFFFF
500