xref: /linux/arch/x86/crypto/sha1_ssse3_glue.c (revision 4949009eb8d40a441dcddcd96e101e77d31cf1b2)
1 /*
2  * Cryptographic API.
3  *
4  * Glue code for the SHA1 Secure Hash Algorithm assembler implementation using
5  * Supplemental SSE3 instructions.
6  *
7  * This file is based on sha1_generic.c
8  *
9  * Copyright (c) Alan Smithee.
10  * Copyright (c) Andrew McDonald <andrew@mcdonald.org.uk>
11  * Copyright (c) Jean-Francois Dive <jef@linuxbe.org>
12  * Copyright (c) Mathias Krause <minipli@googlemail.com>
13  * Copyright (c) Chandramouli Narayanan <mouli@linux.intel.com>
14  *
15  * This program is free software; you can redistribute it and/or modify it
16  * under the terms of the GNU General Public License as published by the Free
17  * Software Foundation; either version 2 of the License, or (at your option)
18  * any later version.
19  *
20  */
21 
22 #define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt
23 
24 #include <crypto/internal/hash.h>
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/mm.h>
28 #include <linux/cryptohash.h>
29 #include <linux/types.h>
30 #include <crypto/sha.h>
31 #include <asm/byteorder.h>
32 #include <asm/i387.h>
33 #include <asm/xcr.h>
34 #include <asm/xsave.h>
35 
36 
37 asmlinkage void sha1_transform_ssse3(u32 *digest, const char *data,
38 				     unsigned int rounds);
39 #ifdef CONFIG_AS_AVX
40 asmlinkage void sha1_transform_avx(u32 *digest, const char *data,
41 				   unsigned int rounds);
42 #endif
43 #ifdef CONFIG_AS_AVX2
44 #define SHA1_AVX2_BLOCK_OPTSIZE	4	/* optimal 4*64 bytes of SHA1 blocks */
45 
46 asmlinkage void sha1_transform_avx2(u32 *digest, const char *data,
47 				unsigned int rounds);
48 #endif
49 
50 static asmlinkage void (*sha1_transform_asm)(u32 *, const char *, unsigned int);
51 
52 
53 static int sha1_ssse3_init(struct shash_desc *desc)
54 {
55 	struct sha1_state *sctx = shash_desc_ctx(desc);
56 
57 	*sctx = (struct sha1_state){
58 		.state = { SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4 },
59 	};
60 
61 	return 0;
62 }
63 
64 static int __sha1_ssse3_update(struct shash_desc *desc, const u8 *data,
65 			       unsigned int len, unsigned int partial)
66 {
67 	struct sha1_state *sctx = shash_desc_ctx(desc);
68 	unsigned int done = 0;
69 
70 	sctx->count += len;
71 
72 	if (partial) {
73 		done = SHA1_BLOCK_SIZE - partial;
74 		memcpy(sctx->buffer + partial, data, done);
75 		sha1_transform_asm(sctx->state, sctx->buffer, 1);
76 	}
77 
78 	if (len - done >= SHA1_BLOCK_SIZE) {
79 		const unsigned int rounds = (len - done) / SHA1_BLOCK_SIZE;
80 
81 		sha1_transform_asm(sctx->state, data + done, rounds);
82 		done += rounds * SHA1_BLOCK_SIZE;
83 	}
84 
85 	memcpy(sctx->buffer, data + done, len - done);
86 
87 	return 0;
88 }
89 
90 static int sha1_ssse3_update(struct shash_desc *desc, const u8 *data,
91 			     unsigned int len)
92 {
93 	struct sha1_state *sctx = shash_desc_ctx(desc);
94 	unsigned int partial = sctx->count % SHA1_BLOCK_SIZE;
95 	int res;
96 
97 	/* Handle the fast case right here */
98 	if (partial + len < SHA1_BLOCK_SIZE) {
99 		sctx->count += len;
100 		memcpy(sctx->buffer + partial, data, len);
101 
102 		return 0;
103 	}
104 
105 	if (!irq_fpu_usable()) {
106 		res = crypto_sha1_update(desc, data, len);
107 	} else {
108 		kernel_fpu_begin();
109 		res = __sha1_ssse3_update(desc, data, len, partial);
110 		kernel_fpu_end();
111 	}
112 
113 	return res;
114 }
115 
116 
117 /* Add padding and return the message digest. */
118 static int sha1_ssse3_final(struct shash_desc *desc, u8 *out)
119 {
120 	struct sha1_state *sctx = shash_desc_ctx(desc);
121 	unsigned int i, index, padlen;
122 	__be32 *dst = (__be32 *)out;
123 	__be64 bits;
124 	static const u8 padding[SHA1_BLOCK_SIZE] = { 0x80, };
125 
126 	bits = cpu_to_be64(sctx->count << 3);
127 
128 	/* Pad out to 56 mod 64 and append length */
129 	index = sctx->count % SHA1_BLOCK_SIZE;
130 	padlen = (index < 56) ? (56 - index) : ((SHA1_BLOCK_SIZE+56) - index);
131 	if (!irq_fpu_usable()) {
132 		crypto_sha1_update(desc, padding, padlen);
133 		crypto_sha1_update(desc, (const u8 *)&bits, sizeof(bits));
134 	} else {
135 		kernel_fpu_begin();
136 		/* We need to fill a whole block for __sha1_ssse3_update() */
137 		if (padlen <= 56) {
138 			sctx->count += padlen;
139 			memcpy(sctx->buffer + index, padding, padlen);
140 		} else {
141 			__sha1_ssse3_update(desc, padding, padlen, index);
142 		}
143 		__sha1_ssse3_update(desc, (const u8 *)&bits, sizeof(bits), 56);
144 		kernel_fpu_end();
145 	}
146 
147 	/* Store state in digest */
148 	for (i = 0; i < 5; i++)
149 		dst[i] = cpu_to_be32(sctx->state[i]);
150 
151 	/* Wipe context */
152 	memset(sctx, 0, sizeof(*sctx));
153 
154 	return 0;
155 }
156 
157 static int sha1_ssse3_export(struct shash_desc *desc, void *out)
158 {
159 	struct sha1_state *sctx = shash_desc_ctx(desc);
160 
161 	memcpy(out, sctx, sizeof(*sctx));
162 
163 	return 0;
164 }
165 
166 static int sha1_ssse3_import(struct shash_desc *desc, const void *in)
167 {
168 	struct sha1_state *sctx = shash_desc_ctx(desc);
169 
170 	memcpy(sctx, in, sizeof(*sctx));
171 
172 	return 0;
173 }
174 
175 #ifdef CONFIG_AS_AVX2
176 static void sha1_apply_transform_avx2(u32 *digest, const char *data,
177 				unsigned int rounds)
178 {
179 	/* Select the optimal transform based on data block size */
180 	if (rounds >= SHA1_AVX2_BLOCK_OPTSIZE)
181 		sha1_transform_avx2(digest, data, rounds);
182 	else
183 		sha1_transform_avx(digest, data, rounds);
184 }
185 #endif
186 
187 static struct shash_alg alg = {
188 	.digestsize	=	SHA1_DIGEST_SIZE,
189 	.init		=	sha1_ssse3_init,
190 	.update		=	sha1_ssse3_update,
191 	.final		=	sha1_ssse3_final,
192 	.export		=	sha1_ssse3_export,
193 	.import		=	sha1_ssse3_import,
194 	.descsize	=	sizeof(struct sha1_state),
195 	.statesize	=	sizeof(struct sha1_state),
196 	.base		=	{
197 		.cra_name	=	"sha1",
198 		.cra_driver_name=	"sha1-ssse3",
199 		.cra_priority	=	150,
200 		.cra_flags	=	CRYPTO_ALG_TYPE_SHASH,
201 		.cra_blocksize	=	SHA1_BLOCK_SIZE,
202 		.cra_module	=	THIS_MODULE,
203 	}
204 };
205 
206 #ifdef CONFIG_AS_AVX
207 static bool __init avx_usable(void)
208 {
209 	u64 xcr0;
210 
211 	if (!cpu_has_avx || !cpu_has_osxsave)
212 		return false;
213 
214 	xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
215 	if ((xcr0 & (XSTATE_SSE | XSTATE_YMM)) != (XSTATE_SSE | XSTATE_YMM)) {
216 		pr_info("AVX detected but unusable.\n");
217 
218 		return false;
219 	}
220 
221 	return true;
222 }
223 
224 #ifdef CONFIG_AS_AVX2
225 static bool __init avx2_usable(void)
226 {
227 	if (avx_usable() && cpu_has_avx2 && boot_cpu_has(X86_FEATURE_BMI1) &&
228 	    boot_cpu_has(X86_FEATURE_BMI2))
229 		return true;
230 
231 	return false;
232 }
233 #endif
234 #endif
235 
236 static int __init sha1_ssse3_mod_init(void)
237 {
238 	char *algo_name;
239 
240 	/* test for SSSE3 first */
241 	if (cpu_has_ssse3) {
242 		sha1_transform_asm = sha1_transform_ssse3;
243 		algo_name = "SSSE3";
244 	}
245 
246 #ifdef CONFIG_AS_AVX
247 	/* allow AVX to override SSSE3, it's a little faster */
248 	if (avx_usable()) {
249 		sha1_transform_asm = sha1_transform_avx;
250 		algo_name = "AVX";
251 #ifdef CONFIG_AS_AVX2
252 		/* allow AVX2 to override AVX, it's a little faster */
253 		if (avx2_usable()) {
254 			sha1_transform_asm = sha1_apply_transform_avx2;
255 			algo_name = "AVX2";
256 		}
257 #endif
258 	}
259 #endif
260 
261 	if (sha1_transform_asm) {
262 		pr_info("Using %s optimized SHA-1 implementation\n", algo_name);
263 		return crypto_register_shash(&alg);
264 	}
265 	pr_info("Neither AVX nor AVX2 nor SSSE3 is available/usable.\n");
266 
267 	return -ENODEV;
268 }
269 
270 static void __exit sha1_ssse3_mod_fini(void)
271 {
272 	crypto_unregister_shash(&alg);
273 }
274 
275 module_init(sha1_ssse3_mod_init);
276 module_exit(sha1_ssse3_mod_fini);
277 
278 MODULE_LICENSE("GPL");
279 MODULE_DESCRIPTION("SHA1 Secure Hash Algorithm, Supplemental SSE3 accelerated");
280 
281 MODULE_ALIAS_CRYPTO("sha1");
282