1 /* 2 * Cryptographic API. 3 * 4 * Glue code for the SHA1 Secure Hash Algorithm assembler implementation using 5 * Supplemental SSE3 instructions. 6 * 7 * This file is based on sha1_generic.c 8 * 9 * Copyright (c) Alan Smithee. 10 * Copyright (c) Andrew McDonald <andrew@mcdonald.org.uk> 11 * Copyright (c) Jean-Francois Dive <jef@linuxbe.org> 12 * Copyright (c) Mathias Krause <minipli@googlemail.com> 13 * Copyright (c) Chandramouli Narayanan <mouli@linux.intel.com> 14 * 15 * This program is free software; you can redistribute it and/or modify it 16 * under the terms of the GNU General Public License as published by the Free 17 * Software Foundation; either version 2 of the License, or (at your option) 18 * any later version. 19 * 20 */ 21 22 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 23 24 #include <crypto/internal/hash.h> 25 #include <linux/init.h> 26 #include <linux/module.h> 27 #include <linux/mm.h> 28 #include <linux/cryptohash.h> 29 #include <linux/types.h> 30 #include <crypto/sha.h> 31 #include <crypto/sha1_base.h> 32 #include <asm/fpu/api.h> 33 34 typedef void (sha1_transform_fn)(u32 *digest, const char *data, 35 unsigned int rounds); 36 37 static int sha1_update(struct shash_desc *desc, const u8 *data, 38 unsigned int len, sha1_transform_fn *sha1_xform) 39 { 40 struct sha1_state *sctx = shash_desc_ctx(desc); 41 42 if (!irq_fpu_usable() || 43 (sctx->count % SHA1_BLOCK_SIZE) + len < SHA1_BLOCK_SIZE) 44 return crypto_sha1_update(desc, data, len); 45 46 /* make sure casting to sha1_block_fn() is safe */ 47 BUILD_BUG_ON(offsetof(struct sha1_state, state) != 0); 48 49 kernel_fpu_begin(); 50 sha1_base_do_update(desc, data, len, 51 (sha1_block_fn *)sha1_xform); 52 kernel_fpu_end(); 53 54 return 0; 55 } 56 57 static int sha1_finup(struct shash_desc *desc, const u8 *data, 58 unsigned int len, u8 *out, sha1_transform_fn *sha1_xform) 59 { 60 if (!irq_fpu_usable()) 61 return crypto_sha1_finup(desc, data, len, out); 62 63 kernel_fpu_begin(); 64 if (len) 65 sha1_base_do_update(desc, data, len, 66 (sha1_block_fn *)sha1_xform); 67 sha1_base_do_finalize(desc, (sha1_block_fn *)sha1_xform); 68 kernel_fpu_end(); 69 70 return sha1_base_finish(desc, out); 71 } 72 73 asmlinkage void sha1_transform_ssse3(u32 *digest, const char *data, 74 unsigned int rounds); 75 76 static int sha1_ssse3_update(struct shash_desc *desc, const u8 *data, 77 unsigned int len) 78 { 79 return sha1_update(desc, data, len, 80 (sha1_transform_fn *) sha1_transform_ssse3); 81 } 82 83 static int sha1_ssse3_finup(struct shash_desc *desc, const u8 *data, 84 unsigned int len, u8 *out) 85 { 86 return sha1_finup(desc, data, len, out, 87 (sha1_transform_fn *) sha1_transform_ssse3); 88 } 89 90 /* Add padding and return the message digest. */ 91 static int sha1_ssse3_final(struct shash_desc *desc, u8 *out) 92 { 93 return sha1_ssse3_finup(desc, NULL, 0, out); 94 } 95 96 static struct shash_alg sha1_ssse3_alg = { 97 .digestsize = SHA1_DIGEST_SIZE, 98 .init = sha1_base_init, 99 .update = sha1_ssse3_update, 100 .final = sha1_ssse3_final, 101 .finup = sha1_ssse3_finup, 102 .descsize = sizeof(struct sha1_state), 103 .base = { 104 .cra_name = "sha1", 105 .cra_driver_name = "sha1-ssse3", 106 .cra_priority = 150, 107 .cra_flags = CRYPTO_ALG_TYPE_SHASH, 108 .cra_blocksize = SHA1_BLOCK_SIZE, 109 .cra_module = THIS_MODULE, 110 } 111 }; 112 113 static int register_sha1_ssse3(void) 114 { 115 if (boot_cpu_has(X86_FEATURE_SSSE3)) 116 return crypto_register_shash(&sha1_ssse3_alg); 117 return 0; 118 } 119 120 static void unregister_sha1_ssse3(void) 121 { 122 if (boot_cpu_has(X86_FEATURE_SSSE3)) 123 crypto_unregister_shash(&sha1_ssse3_alg); 124 } 125 126 #ifdef CONFIG_AS_AVX 127 asmlinkage void sha1_transform_avx(u32 *digest, const char *data, 128 unsigned int rounds); 129 130 static int sha1_avx_update(struct shash_desc *desc, const u8 *data, 131 unsigned int len) 132 { 133 return sha1_update(desc, data, len, 134 (sha1_transform_fn *) sha1_transform_avx); 135 } 136 137 static int sha1_avx_finup(struct shash_desc *desc, const u8 *data, 138 unsigned int len, u8 *out) 139 { 140 return sha1_finup(desc, data, len, out, 141 (sha1_transform_fn *) sha1_transform_avx); 142 } 143 144 static int sha1_avx_final(struct shash_desc *desc, u8 *out) 145 { 146 return sha1_avx_finup(desc, NULL, 0, out); 147 } 148 149 static struct shash_alg sha1_avx_alg = { 150 .digestsize = SHA1_DIGEST_SIZE, 151 .init = sha1_base_init, 152 .update = sha1_avx_update, 153 .final = sha1_avx_final, 154 .finup = sha1_avx_finup, 155 .descsize = sizeof(struct sha1_state), 156 .base = { 157 .cra_name = "sha1", 158 .cra_driver_name = "sha1-avx", 159 .cra_priority = 160, 160 .cra_flags = CRYPTO_ALG_TYPE_SHASH, 161 .cra_blocksize = SHA1_BLOCK_SIZE, 162 .cra_module = THIS_MODULE, 163 } 164 }; 165 166 static bool avx_usable(void) 167 { 168 if (!cpu_has_xfeatures(XFEATURE_MASK_SSE | XFEATURE_MASK_YMM, NULL)) { 169 if (boot_cpu_has(X86_FEATURE_AVX)) 170 pr_info("AVX detected but unusable.\n"); 171 return false; 172 } 173 174 return true; 175 } 176 177 static int register_sha1_avx(void) 178 { 179 if (avx_usable()) 180 return crypto_register_shash(&sha1_avx_alg); 181 return 0; 182 } 183 184 static void unregister_sha1_avx(void) 185 { 186 if (avx_usable()) 187 crypto_unregister_shash(&sha1_avx_alg); 188 } 189 190 #else /* CONFIG_AS_AVX */ 191 static inline int register_sha1_avx(void) { return 0; } 192 static inline void unregister_sha1_avx(void) { } 193 #endif /* CONFIG_AS_AVX */ 194 195 196 #if defined(CONFIG_AS_AVX2) && (CONFIG_AS_AVX) 197 #define SHA1_AVX2_BLOCK_OPTSIZE 4 /* optimal 4*64 bytes of SHA1 blocks */ 198 199 asmlinkage void sha1_transform_avx2(u32 *digest, const char *data, 200 unsigned int rounds); 201 202 static bool avx2_usable(void) 203 { 204 if (avx_usable() && boot_cpu_has(X86_FEATURE_AVX2) 205 && boot_cpu_has(X86_FEATURE_BMI1) 206 && boot_cpu_has(X86_FEATURE_BMI2)) 207 return true; 208 209 return false; 210 } 211 212 static void sha1_apply_transform_avx2(u32 *digest, const char *data, 213 unsigned int rounds) 214 { 215 /* Select the optimal transform based on data block size */ 216 if (rounds >= SHA1_AVX2_BLOCK_OPTSIZE) 217 sha1_transform_avx2(digest, data, rounds); 218 else 219 sha1_transform_avx(digest, data, rounds); 220 } 221 222 static int sha1_avx2_update(struct shash_desc *desc, const u8 *data, 223 unsigned int len) 224 { 225 return sha1_update(desc, data, len, 226 (sha1_transform_fn *) sha1_apply_transform_avx2); 227 } 228 229 static int sha1_avx2_finup(struct shash_desc *desc, const u8 *data, 230 unsigned int len, u8 *out) 231 { 232 return sha1_finup(desc, data, len, out, 233 (sha1_transform_fn *) sha1_apply_transform_avx2); 234 } 235 236 static int sha1_avx2_final(struct shash_desc *desc, u8 *out) 237 { 238 return sha1_avx2_finup(desc, NULL, 0, out); 239 } 240 241 static struct shash_alg sha1_avx2_alg = { 242 .digestsize = SHA1_DIGEST_SIZE, 243 .init = sha1_base_init, 244 .update = sha1_avx2_update, 245 .final = sha1_avx2_final, 246 .finup = sha1_avx2_finup, 247 .descsize = sizeof(struct sha1_state), 248 .base = { 249 .cra_name = "sha1", 250 .cra_driver_name = "sha1-avx2", 251 .cra_priority = 170, 252 .cra_flags = CRYPTO_ALG_TYPE_SHASH, 253 .cra_blocksize = SHA1_BLOCK_SIZE, 254 .cra_module = THIS_MODULE, 255 } 256 }; 257 258 static int register_sha1_avx2(void) 259 { 260 if (avx2_usable()) 261 return crypto_register_shash(&sha1_avx2_alg); 262 return 0; 263 } 264 265 static void unregister_sha1_avx2(void) 266 { 267 if (avx2_usable()) 268 crypto_unregister_shash(&sha1_avx2_alg); 269 } 270 271 #else 272 static inline int register_sha1_avx2(void) { return 0; } 273 static inline void unregister_sha1_avx2(void) { } 274 #endif 275 276 #ifdef CONFIG_AS_SHA1_NI 277 asmlinkage void sha1_ni_transform(u32 *digest, const char *data, 278 unsigned int rounds); 279 280 static int sha1_ni_update(struct shash_desc *desc, const u8 *data, 281 unsigned int len) 282 { 283 return sha1_update(desc, data, len, 284 (sha1_transform_fn *) sha1_ni_transform); 285 } 286 287 static int sha1_ni_finup(struct shash_desc *desc, const u8 *data, 288 unsigned int len, u8 *out) 289 { 290 return sha1_finup(desc, data, len, out, 291 (sha1_transform_fn *) sha1_ni_transform); 292 } 293 294 static int sha1_ni_final(struct shash_desc *desc, u8 *out) 295 { 296 return sha1_ni_finup(desc, NULL, 0, out); 297 } 298 299 static struct shash_alg sha1_ni_alg = { 300 .digestsize = SHA1_DIGEST_SIZE, 301 .init = sha1_base_init, 302 .update = sha1_ni_update, 303 .final = sha1_ni_final, 304 .finup = sha1_ni_finup, 305 .descsize = sizeof(struct sha1_state), 306 .base = { 307 .cra_name = "sha1", 308 .cra_driver_name = "sha1-ni", 309 .cra_priority = 250, 310 .cra_flags = CRYPTO_ALG_TYPE_SHASH, 311 .cra_blocksize = SHA1_BLOCK_SIZE, 312 .cra_module = THIS_MODULE, 313 } 314 }; 315 316 static int register_sha1_ni(void) 317 { 318 if (boot_cpu_has(X86_FEATURE_SHA_NI)) 319 return crypto_register_shash(&sha1_ni_alg); 320 return 0; 321 } 322 323 static void unregister_sha1_ni(void) 324 { 325 if (boot_cpu_has(X86_FEATURE_SHA_NI)) 326 crypto_unregister_shash(&sha1_ni_alg); 327 } 328 329 #else 330 static inline int register_sha1_ni(void) { return 0; } 331 static inline void unregister_sha1_ni(void) { } 332 #endif 333 334 static int __init sha1_ssse3_mod_init(void) 335 { 336 if (register_sha1_ssse3()) 337 goto fail; 338 339 if (register_sha1_avx()) { 340 unregister_sha1_ssse3(); 341 goto fail; 342 } 343 344 if (register_sha1_avx2()) { 345 unregister_sha1_avx(); 346 unregister_sha1_ssse3(); 347 goto fail; 348 } 349 350 if (register_sha1_ni()) { 351 unregister_sha1_avx2(); 352 unregister_sha1_avx(); 353 unregister_sha1_ssse3(); 354 goto fail; 355 } 356 357 return 0; 358 fail: 359 return -ENODEV; 360 } 361 362 static void __exit sha1_ssse3_mod_fini(void) 363 { 364 unregister_sha1_ni(); 365 unregister_sha1_avx2(); 366 unregister_sha1_avx(); 367 unregister_sha1_ssse3(); 368 } 369 370 module_init(sha1_ssse3_mod_init); 371 module_exit(sha1_ssse3_mod_fini); 372 373 MODULE_LICENSE("GPL"); 374 MODULE_DESCRIPTION("SHA1 Secure Hash Algorithm, Supplemental SSE3 accelerated"); 375 376 MODULE_ALIAS_CRYPTO("sha1"); 377