xref: /linux/arch/x86/crypto/crct10dif-pcl-asm_64.S (revision c8bfe3fad4f86a029da7157bae9699c816f0c309)
1########################################################################
2# Implement fast CRC-T10DIF computation with SSE and PCLMULQDQ instructions
3#
4# Copyright (c) 2013, Intel Corporation
5#
6# Authors:
7#     Erdinc Ozturk <erdinc.ozturk@intel.com>
8#     Vinodh Gopal <vinodh.gopal@intel.com>
9#     James Guilford <james.guilford@intel.com>
10#     Tim Chen <tim.c.chen@linux.intel.com>
11#
12# This software is available to you under a choice of one of two
13# licenses.  You may choose to be licensed under the terms of the GNU
14# General Public License (GPL) Version 2, available from the file
15# COPYING in the main directory of this source tree, or the
16# OpenIB.org BSD license below:
17#
18# Redistribution and use in source and binary forms, with or without
19# modification, are permitted provided that the following conditions are
20# met:
21#
22# * Redistributions of source code must retain the above copyright
23#   notice, this list of conditions and the following disclaimer.
24#
25# * Redistributions in binary form must reproduce the above copyright
26#   notice, this list of conditions and the following disclaimer in the
27#   documentation and/or other materials provided with the
28#   distribution.
29#
30# * Neither the name of the Intel Corporation nor the names of its
31#   contributors may be used to endorse or promote products derived from
32#   this software without specific prior written permission.
33#
34#
35# THIS SOFTWARE IS PROVIDED BY INTEL CORPORATION ""AS IS"" AND ANY
36# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
38# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL CORPORATION OR
39# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
40# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
41# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
42# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
43# LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
44# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
45# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
46#
47#       Reference paper titled "Fast CRC Computation for Generic
48#	Polynomials Using PCLMULQDQ Instruction"
49#       URL: http://www.intel.com/content/dam/www/public/us/en/documents
50#  /white-papers/fast-crc-computation-generic-polynomials-pclmulqdq-paper.pdf
51#
52
53#include <linux/linkage.h>
54
55.text
56
57#define		init_crc	%edi
58#define		buf		%rsi
59#define		len		%rdx
60
61#define		FOLD_CONSTS	%xmm10
62#define		BSWAP_MASK	%xmm11
63
64# Fold reg1, reg2 into the next 32 data bytes, storing the result back into
65# reg1, reg2.
66.macro	fold_32_bytes	offset, reg1, reg2
67	movdqu	\offset(buf), %xmm9
68	movdqu	\offset+16(buf), %xmm12
69	pshufb	BSWAP_MASK, %xmm9
70	pshufb	BSWAP_MASK, %xmm12
71	movdqa	\reg1, %xmm8
72	movdqa	\reg2, %xmm13
73	pclmulqdq	$0x00, FOLD_CONSTS, \reg1
74	pclmulqdq	$0x11, FOLD_CONSTS, %xmm8
75	pclmulqdq	$0x00, FOLD_CONSTS, \reg2
76	pclmulqdq	$0x11, FOLD_CONSTS, %xmm13
77	pxor	%xmm9 , \reg1
78	xorps	%xmm8 , \reg1
79	pxor	%xmm12, \reg2
80	xorps	%xmm13, \reg2
81.endm
82
83# Fold src_reg into dst_reg.
84.macro	fold_16_bytes	src_reg, dst_reg
85	movdqa	\src_reg, %xmm8
86	pclmulqdq	$0x11, FOLD_CONSTS, \src_reg
87	pclmulqdq	$0x00, FOLD_CONSTS, %xmm8
88	pxor	%xmm8, \dst_reg
89	xorps	\src_reg, \dst_reg
90.endm
91
92#
93# u16 crc_t10dif_pcl(u16 init_crc, const *u8 buf, size_t len);
94#
95# Assumes len >= 16.
96#
97SYM_FUNC_START(crc_t10dif_pcl)
98
99	movdqa	.Lbswap_mask(%rip), BSWAP_MASK
100
101	# For sizes less than 256 bytes, we can't fold 128 bytes at a time.
102	cmp	$256, len
103	jl	.Lless_than_256_bytes
104
105	# Load the first 128 data bytes.  Byte swapping is necessary to make the
106	# bit order match the polynomial coefficient order.
107	movdqu	16*0(buf), %xmm0
108	movdqu	16*1(buf), %xmm1
109	movdqu	16*2(buf), %xmm2
110	movdqu	16*3(buf), %xmm3
111	movdqu	16*4(buf), %xmm4
112	movdqu	16*5(buf), %xmm5
113	movdqu	16*6(buf), %xmm6
114	movdqu	16*7(buf), %xmm7
115	add	$128, buf
116	pshufb	BSWAP_MASK, %xmm0
117	pshufb	BSWAP_MASK, %xmm1
118	pshufb	BSWAP_MASK, %xmm2
119	pshufb	BSWAP_MASK, %xmm3
120	pshufb	BSWAP_MASK, %xmm4
121	pshufb	BSWAP_MASK, %xmm5
122	pshufb	BSWAP_MASK, %xmm6
123	pshufb	BSWAP_MASK, %xmm7
124
125	# XOR the first 16 data *bits* with the initial CRC value.
126	pxor	%xmm8, %xmm8
127	pinsrw	$7, init_crc, %xmm8
128	pxor	%xmm8, %xmm0
129
130	movdqa	.Lfold_across_128_bytes_consts(%rip), FOLD_CONSTS
131
132	# Subtract 128 for the 128 data bytes just consumed.  Subtract another
133	# 128 to simplify the termination condition of the following loop.
134	sub	$256, len
135
136	# While >= 128 data bytes remain (not counting xmm0-7), fold the 128
137	# bytes xmm0-7 into them, storing the result back into xmm0-7.
138.Lfold_128_bytes_loop:
139	fold_32_bytes	0, %xmm0, %xmm1
140	fold_32_bytes	32, %xmm2, %xmm3
141	fold_32_bytes	64, %xmm4, %xmm5
142	fold_32_bytes	96, %xmm6, %xmm7
143	add	$128, buf
144	sub	$128, len
145	jge	.Lfold_128_bytes_loop
146
147	# Now fold the 112 bytes in xmm0-xmm6 into the 16 bytes in xmm7.
148
149	# Fold across 64 bytes.
150	movdqa	.Lfold_across_64_bytes_consts(%rip), FOLD_CONSTS
151	fold_16_bytes	%xmm0, %xmm4
152	fold_16_bytes	%xmm1, %xmm5
153	fold_16_bytes	%xmm2, %xmm6
154	fold_16_bytes	%xmm3, %xmm7
155	# Fold across 32 bytes.
156	movdqa	.Lfold_across_32_bytes_consts(%rip), FOLD_CONSTS
157	fold_16_bytes	%xmm4, %xmm6
158	fold_16_bytes	%xmm5, %xmm7
159	# Fold across 16 bytes.
160	movdqa	.Lfold_across_16_bytes_consts(%rip), FOLD_CONSTS
161	fold_16_bytes	%xmm6, %xmm7
162
163	# Add 128 to get the correct number of data bytes remaining in 0...127
164	# (not counting xmm7), following the previous extra subtraction by 128.
165	# Then subtract 16 to simplify the termination condition of the
166	# following loop.
167	add	$128-16, len
168
169	# While >= 16 data bytes remain (not counting xmm7), fold the 16 bytes
170	# xmm7 into them, storing the result back into xmm7.
171	jl	.Lfold_16_bytes_loop_done
172.Lfold_16_bytes_loop:
173	movdqa	%xmm7, %xmm8
174	pclmulqdq	$0x11, FOLD_CONSTS, %xmm7
175	pclmulqdq	$0x00, FOLD_CONSTS, %xmm8
176	pxor	%xmm8, %xmm7
177	movdqu	(buf), %xmm0
178	pshufb	BSWAP_MASK, %xmm0
179	pxor	%xmm0 , %xmm7
180	add	$16, buf
181	sub	$16, len
182	jge	.Lfold_16_bytes_loop
183
184.Lfold_16_bytes_loop_done:
185	# Add 16 to get the correct number of data bytes remaining in 0...15
186	# (not counting xmm7), following the previous extra subtraction by 16.
187	add	$16, len
188	je	.Lreduce_final_16_bytes
189
190.Lhandle_partial_segment:
191	# Reduce the last '16 + len' bytes where 1 <= len <= 15 and the first 16
192	# bytes are in xmm7 and the rest are the remaining data in 'buf'.  To do
193	# this without needing a fold constant for each possible 'len', redivide
194	# the bytes into a first chunk of 'len' bytes and a second chunk of 16
195	# bytes, then fold the first chunk into the second.
196
197	movdqa	%xmm7, %xmm2
198
199	# xmm1 = last 16 original data bytes
200	movdqu	-16(buf, len), %xmm1
201	pshufb	BSWAP_MASK, %xmm1
202
203	# xmm2 = high order part of second chunk: xmm7 left-shifted by 'len' bytes.
204	lea	.Lbyteshift_table+16(%rip), %rax
205	sub	len, %rax
206	movdqu	(%rax), %xmm0
207	pshufb	%xmm0, %xmm2
208
209	# xmm7 = first chunk: xmm7 right-shifted by '16-len' bytes.
210	pxor	.Lmask1(%rip), %xmm0
211	pshufb	%xmm0, %xmm7
212
213	# xmm1 = second chunk: 'len' bytes from xmm1 (low-order bytes),
214	# then '16-len' bytes from xmm2 (high-order bytes).
215	pblendvb	%xmm2, %xmm1	#xmm0 is implicit
216
217	# Fold the first chunk into the second chunk, storing the result in xmm7.
218	movdqa	%xmm7, %xmm8
219	pclmulqdq	$0x11, FOLD_CONSTS, %xmm7
220	pclmulqdq	$0x00, FOLD_CONSTS, %xmm8
221	pxor	%xmm8, %xmm7
222	pxor	%xmm1, %xmm7
223
224.Lreduce_final_16_bytes:
225	# Reduce the 128-bit value M(x), stored in xmm7, to the final 16-bit CRC
226
227	# Load 'x^48 * (x^48 mod G(x))' and 'x^48 * (x^80 mod G(x))'.
228	movdqa	.Lfinal_fold_consts(%rip), FOLD_CONSTS
229
230	# Fold the high 64 bits into the low 64 bits, while also multiplying by
231	# x^64.  This produces a 128-bit value congruent to x^64 * M(x) and
232	# whose low 48 bits are 0.
233	movdqa	%xmm7, %xmm0
234	pclmulqdq	$0x11, FOLD_CONSTS, %xmm7 # high bits * x^48 * (x^80 mod G(x))
235	pslldq	$8, %xmm0
236	pxor	%xmm0, %xmm7			  # + low bits * x^64
237
238	# Fold the high 32 bits into the low 96 bits.  This produces a 96-bit
239	# value congruent to x^64 * M(x) and whose low 48 bits are 0.
240	movdqa	%xmm7, %xmm0
241	pand	.Lmask2(%rip), %xmm0		  # zero high 32 bits
242	psrldq	$12, %xmm7			  # extract high 32 bits
243	pclmulqdq	$0x00, FOLD_CONSTS, %xmm7 # high 32 bits * x^48 * (x^48 mod G(x))
244	pxor	%xmm0, %xmm7			  # + low bits
245
246	# Load G(x) and floor(x^48 / G(x)).
247	movdqa	.Lbarrett_reduction_consts(%rip), FOLD_CONSTS
248
249	# Use Barrett reduction to compute the final CRC value.
250	movdqa	%xmm7, %xmm0
251	pclmulqdq	$0x11, FOLD_CONSTS, %xmm7 # high 32 bits * floor(x^48 / G(x))
252	psrlq	$32, %xmm7			  # /= x^32
253	pclmulqdq	$0x00, FOLD_CONSTS, %xmm7 # *= G(x)
254	psrlq	$48, %xmm0
255	pxor	%xmm7, %xmm0		     # + low 16 nonzero bits
256	# Final CRC value (x^16 * M(x)) mod G(x) is in low 16 bits of xmm0.
257
258	pextrw	$0, %xmm0, %eax
259	RET
260
261.align 16
262.Lless_than_256_bytes:
263	# Checksumming a buffer of length 16...255 bytes
264
265	# Load the first 16 data bytes.
266	movdqu	(buf), %xmm7
267	pshufb	BSWAP_MASK, %xmm7
268	add	$16, buf
269
270	# XOR the first 16 data *bits* with the initial CRC value.
271	pxor	%xmm0, %xmm0
272	pinsrw	$7, init_crc, %xmm0
273	pxor	%xmm0, %xmm7
274
275	movdqa	.Lfold_across_16_bytes_consts(%rip), FOLD_CONSTS
276	cmp	$16, len
277	je	.Lreduce_final_16_bytes		# len == 16
278	sub	$32, len
279	jge	.Lfold_16_bytes_loop		# 32 <= len <= 255
280	add	$16, len
281	jmp	.Lhandle_partial_segment	# 17 <= len <= 31
282SYM_FUNC_END(crc_t10dif_pcl)
283
284.section	.rodata, "a", @progbits
285.align 16
286
287# Fold constants precomputed from the polynomial 0x18bb7
288# G(x) = x^16 + x^15 + x^11 + x^9 + x^8 + x^7 + x^5 + x^4 + x^2 + x^1 + x^0
289.Lfold_across_128_bytes_consts:
290	.quad		0x0000000000006123	# x^(8*128)	mod G(x)
291	.quad		0x0000000000002295	# x^(8*128+64)	mod G(x)
292.Lfold_across_64_bytes_consts:
293	.quad		0x0000000000001069	# x^(4*128)	mod G(x)
294	.quad		0x000000000000dd31	# x^(4*128+64)	mod G(x)
295.Lfold_across_32_bytes_consts:
296	.quad		0x000000000000857d	# x^(2*128)	mod G(x)
297	.quad		0x0000000000007acc	# x^(2*128+64)	mod G(x)
298.Lfold_across_16_bytes_consts:
299	.quad		0x000000000000a010	# x^(1*128)	mod G(x)
300	.quad		0x0000000000001faa	# x^(1*128+64)	mod G(x)
301.Lfinal_fold_consts:
302	.quad		0x1368000000000000	# x^48 * (x^48 mod G(x))
303	.quad		0x2d56000000000000	# x^48 * (x^80 mod G(x))
304.Lbarrett_reduction_consts:
305	.quad		0x0000000000018bb7	# G(x)
306	.quad		0x00000001f65a57f8	# floor(x^48 / G(x))
307
308.section	.rodata.cst16.mask1, "aM", @progbits, 16
309.align 16
310.Lmask1:
311	.octa	0x80808080808080808080808080808080
312
313.section	.rodata.cst16.mask2, "aM", @progbits, 16
314.align 16
315.Lmask2:
316	.octa	0x00000000FFFFFFFFFFFFFFFFFFFFFFFF
317
318.section	.rodata.cst16.bswap_mask, "aM", @progbits, 16
319.align 16
320.Lbswap_mask:
321	.octa	0x000102030405060708090A0B0C0D0E0F
322
323.section	.rodata.cst32.byteshift_table, "aM", @progbits, 32
324.align 16
325# For 1 <= len <= 15, the 16-byte vector beginning at &byteshift_table[16 - len]
326# is the index vector to shift left by 'len' bytes, and is also {0x80, ...,
327# 0x80} XOR the index vector to shift right by '16 - len' bytes.
328.Lbyteshift_table:
329	.byte		 0x0, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87
330	.byte		0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f
331	.byte		 0x0,  0x1,  0x2,  0x3,  0x4,  0x5,  0x6,  0x7
332	.byte		 0x8,  0x9,  0xa,  0xb,  0xc,  0xd,  0xe , 0x0
333