xref: /linux/arch/x86/crypto/crc32c-intel_glue.c (revision e58e871becec2d3b04ed91c0c16fe8deac9c9dfa)
1 /*
2  * Using hardware provided CRC32 instruction to accelerate the CRC32 disposal.
3  * CRC32C polynomial:0x1EDC6F41(BE)/0x82F63B78(LE)
4  * CRC32 is a new instruction in Intel SSE4.2, the reference can be found at:
5  * http://www.intel.com/products/processor/manuals/
6  * Intel(R) 64 and IA-32 Architectures Software Developer's Manual
7  * Volume 2A: Instruction Set Reference, A-M
8  *
9  * Copyright (C) 2008 Intel Corporation
10  * Authors: Austin Zhang <austin_zhang@linux.intel.com>
11  *          Kent Liu <kent.liu@intel.com>
12  *
13  * This program is free software; you can redistribute it and/or modify it
14  * under the terms and conditions of the GNU General Public License,
15  * version 2, as published by the Free Software Foundation.
16  *
17  * This program is distributed in the hope it will be useful, but WITHOUT
18  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
19  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
20  * more details.
21  *
22  * You should have received a copy of the GNU General Public License along with
23  * this program; if not, write to the Free Software Foundation, Inc.,
24  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
25  *
26  */
27 #include <linux/init.h>
28 #include <linux/module.h>
29 #include <linux/string.h>
30 #include <linux/kernel.h>
31 #include <crypto/internal/hash.h>
32 
33 #include <asm/cpufeatures.h>
34 #include <asm/cpu_device_id.h>
35 #include <asm/fpu/internal.h>
36 
37 #define CHKSUM_BLOCK_SIZE	1
38 #define CHKSUM_DIGEST_SIZE	4
39 
40 #define SCALE_F	sizeof(unsigned long)
41 
42 #ifdef CONFIG_X86_64
43 #define REX_PRE "0x48, "
44 #else
45 #define REX_PRE
46 #endif
47 
48 #ifdef CONFIG_X86_64
49 /*
50  * use carryless multiply version of crc32c when buffer
51  * size is >= 512 to account
52  * for fpu state save/restore overhead.
53  */
54 #define CRC32C_PCL_BREAKEVEN	512
55 
56 asmlinkage unsigned int crc_pcl(const u8 *buffer, int len,
57 				unsigned int crc_init);
58 #endif /* CONFIG_X86_64 */
59 
60 static u32 crc32c_intel_le_hw_byte(u32 crc, unsigned char const *data, size_t length)
61 {
62 	while (length--) {
63 		__asm__ __volatile__(
64 			".byte 0xf2, 0xf, 0x38, 0xf0, 0xf1"
65 			:"=S"(crc)
66 			:"0"(crc), "c"(*data)
67 		);
68 		data++;
69 	}
70 
71 	return crc;
72 }
73 
74 static u32 __pure crc32c_intel_le_hw(u32 crc, unsigned char const *p, size_t len)
75 {
76 	unsigned int iquotient = len / SCALE_F;
77 	unsigned int iremainder = len % SCALE_F;
78 	unsigned long *ptmp = (unsigned long *)p;
79 
80 	while (iquotient--) {
81 		__asm__ __volatile__(
82 			".byte 0xf2, " REX_PRE "0xf, 0x38, 0xf1, 0xf1;"
83 			:"=S"(crc)
84 			:"0"(crc), "c"(*ptmp)
85 		);
86 		ptmp++;
87 	}
88 
89 	if (iremainder)
90 		crc = crc32c_intel_le_hw_byte(crc, (unsigned char *)ptmp,
91 				 iremainder);
92 
93 	return crc;
94 }
95 
96 /*
97  * Setting the seed allows arbitrary accumulators and flexible XOR policy
98  * If your algorithm starts with ~0, then XOR with ~0 before you set
99  * the seed.
100  */
101 static int crc32c_intel_setkey(struct crypto_shash *hash, const u8 *key,
102 			unsigned int keylen)
103 {
104 	u32 *mctx = crypto_shash_ctx(hash);
105 
106 	if (keylen != sizeof(u32)) {
107 		crypto_shash_set_flags(hash, CRYPTO_TFM_RES_BAD_KEY_LEN);
108 		return -EINVAL;
109 	}
110 	*mctx = le32_to_cpup((__le32 *)key);
111 	return 0;
112 }
113 
114 static int crc32c_intel_init(struct shash_desc *desc)
115 {
116 	u32 *mctx = crypto_shash_ctx(desc->tfm);
117 	u32 *crcp = shash_desc_ctx(desc);
118 
119 	*crcp = *mctx;
120 
121 	return 0;
122 }
123 
124 static int crc32c_intel_update(struct shash_desc *desc, const u8 *data,
125 			       unsigned int len)
126 {
127 	u32 *crcp = shash_desc_ctx(desc);
128 
129 	*crcp = crc32c_intel_le_hw(*crcp, data, len);
130 	return 0;
131 }
132 
133 static int __crc32c_intel_finup(u32 *crcp, const u8 *data, unsigned int len,
134 				u8 *out)
135 {
136 	*(__le32 *)out = ~cpu_to_le32(crc32c_intel_le_hw(*crcp, data, len));
137 	return 0;
138 }
139 
140 static int crc32c_intel_finup(struct shash_desc *desc, const u8 *data,
141 			      unsigned int len, u8 *out)
142 {
143 	return __crc32c_intel_finup(shash_desc_ctx(desc), data, len, out);
144 }
145 
146 static int crc32c_intel_final(struct shash_desc *desc, u8 *out)
147 {
148 	u32 *crcp = shash_desc_ctx(desc);
149 
150 	*(__le32 *)out = ~cpu_to_le32p(crcp);
151 	return 0;
152 }
153 
154 static int crc32c_intel_digest(struct shash_desc *desc, const u8 *data,
155 			       unsigned int len, u8 *out)
156 {
157 	return __crc32c_intel_finup(crypto_shash_ctx(desc->tfm), data, len,
158 				    out);
159 }
160 
161 static int crc32c_intel_cra_init(struct crypto_tfm *tfm)
162 {
163 	u32 *key = crypto_tfm_ctx(tfm);
164 
165 	*key = ~0;
166 
167 	return 0;
168 }
169 
170 #ifdef CONFIG_X86_64
171 static int crc32c_pcl_intel_update(struct shash_desc *desc, const u8 *data,
172 			       unsigned int len)
173 {
174 	u32 *crcp = shash_desc_ctx(desc);
175 
176 	/*
177 	 * use faster PCL version if datasize is large enough to
178 	 * overcome kernel fpu state save/restore overhead
179 	 */
180 	if (len >= CRC32C_PCL_BREAKEVEN && irq_fpu_usable()) {
181 		kernel_fpu_begin();
182 		*crcp = crc_pcl(data, len, *crcp);
183 		kernel_fpu_end();
184 	} else
185 		*crcp = crc32c_intel_le_hw(*crcp, data, len);
186 	return 0;
187 }
188 
189 static int __crc32c_pcl_intel_finup(u32 *crcp, const u8 *data, unsigned int len,
190 				u8 *out)
191 {
192 	if (len >= CRC32C_PCL_BREAKEVEN && irq_fpu_usable()) {
193 		kernel_fpu_begin();
194 		*(__le32 *)out = ~cpu_to_le32(crc_pcl(data, len, *crcp));
195 		kernel_fpu_end();
196 	} else
197 		*(__le32 *)out =
198 			~cpu_to_le32(crc32c_intel_le_hw(*crcp, data, len));
199 	return 0;
200 }
201 
202 static int crc32c_pcl_intel_finup(struct shash_desc *desc, const u8 *data,
203 			      unsigned int len, u8 *out)
204 {
205 	return __crc32c_pcl_intel_finup(shash_desc_ctx(desc), data, len, out);
206 }
207 
208 static int crc32c_pcl_intel_digest(struct shash_desc *desc, const u8 *data,
209 			       unsigned int len, u8 *out)
210 {
211 	return __crc32c_pcl_intel_finup(crypto_shash_ctx(desc->tfm), data, len,
212 				    out);
213 }
214 #endif /* CONFIG_X86_64 */
215 
216 static struct shash_alg alg = {
217 	.setkey			=	crc32c_intel_setkey,
218 	.init			=	crc32c_intel_init,
219 	.update			=	crc32c_intel_update,
220 	.final			=	crc32c_intel_final,
221 	.finup			=	crc32c_intel_finup,
222 	.digest			=	crc32c_intel_digest,
223 	.descsize		=	sizeof(u32),
224 	.digestsize		=	CHKSUM_DIGEST_SIZE,
225 	.base			=	{
226 		.cra_name		=	"crc32c",
227 		.cra_driver_name	=	"crc32c-intel",
228 		.cra_priority		=	200,
229 		.cra_blocksize		=	CHKSUM_BLOCK_SIZE,
230 		.cra_ctxsize		=	sizeof(u32),
231 		.cra_module		=	THIS_MODULE,
232 		.cra_init		=	crc32c_intel_cra_init,
233 	}
234 };
235 
236 static const struct x86_cpu_id crc32c_cpu_id[] = {
237 	X86_FEATURE_MATCH(X86_FEATURE_XMM4_2),
238 	{}
239 };
240 MODULE_DEVICE_TABLE(x86cpu, crc32c_cpu_id);
241 
242 static int __init crc32c_intel_mod_init(void)
243 {
244 	if (!x86_match_cpu(crc32c_cpu_id))
245 		return -ENODEV;
246 #ifdef CONFIG_X86_64
247 	if (boot_cpu_has(X86_FEATURE_PCLMULQDQ)) {
248 		alg.update = crc32c_pcl_intel_update;
249 		alg.finup = crc32c_pcl_intel_finup;
250 		alg.digest = crc32c_pcl_intel_digest;
251 	}
252 #endif
253 	return crypto_register_shash(&alg);
254 }
255 
256 static void __exit crc32c_intel_mod_fini(void)
257 {
258 	crypto_unregister_shash(&alg);
259 }
260 
261 module_init(crc32c_intel_mod_init);
262 module_exit(crc32c_intel_mod_fini);
263 
264 MODULE_AUTHOR("Austin Zhang <austin.zhang@intel.com>, Kent Liu <kent.liu@intel.com>");
265 MODULE_DESCRIPTION("CRC32c (Castagnoli) optimization using Intel Hardware.");
266 MODULE_LICENSE("GPL");
267 
268 MODULE_ALIAS_CRYPTO("crc32c");
269 MODULE_ALIAS_CRYPTO("crc32c-intel");
270