xref: /linux/arch/x86/crypto/camellia-aesni-avx2-asm_64.S (revision e7e86d7697c6ed1dbbde18d7185c35b6967945ed)
1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/*
3 * x86_64/AVX2/AES-NI assembler implementation of Camellia
4 *
5 * Copyright © 2013 Jussi Kivilinna <jussi.kivilinna@iki.fi>
6 */
7
8#include <linux/linkage.h>
9#include <linux/cfi_types.h>
10#include <asm/frame.h>
11
12#define CAMELLIA_TABLE_BYTE_LEN 272
13
14/* struct camellia_ctx: */
15#define key_table 0
16#define key_length CAMELLIA_TABLE_BYTE_LEN
17
18/* register macros */
19#define CTX %rdi
20#define RIO %r8
21
22/**********************************************************************
23  helper macros
24 **********************************************************************/
25#define filter_8bit(x, lo_t, hi_t, mask4bit, tmp0) \
26	vpand x, mask4bit, tmp0; \
27	vpandn x, mask4bit, x; \
28	vpsrld $4, x, x; \
29	\
30	vpshufb tmp0, lo_t, tmp0; \
31	vpshufb x, hi_t, x; \
32	vpxor tmp0, x, x;
33
34#define ymm0_x xmm0
35#define ymm1_x xmm1
36#define ymm2_x xmm2
37#define ymm3_x xmm3
38#define ymm4_x xmm4
39#define ymm5_x xmm5
40#define ymm6_x xmm6
41#define ymm7_x xmm7
42#define ymm8_x xmm8
43#define ymm9_x xmm9
44#define ymm10_x xmm10
45#define ymm11_x xmm11
46#define ymm12_x xmm12
47#define ymm13_x xmm13
48#define ymm14_x xmm14
49#define ymm15_x xmm15
50
51/**********************************************************************
52  32-way camellia
53 **********************************************************************/
54
55/*
56 * IN:
57 *   x0..x7: byte-sliced AB state
58 *   mem_cd: register pointer storing CD state
59 *   key: index for key material
60 * OUT:
61 *   x0..x7: new byte-sliced CD state
62 */
63#define roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, t0, t1, t2, t3, t4, t5, t6, \
64		  t7, mem_cd, key) \
65	/* \
66	 * S-function with AES subbytes \
67	 */ \
68	vbroadcasti128 .Linv_shift_row(%rip), t4; \
69	vpbroadcastd .L0f0f0f0f(%rip), t7; \
70	vbroadcasti128 .Lpre_tf_lo_s1(%rip), t5; \
71	vbroadcasti128 .Lpre_tf_hi_s1(%rip), t6; \
72	vbroadcasti128 .Lpre_tf_lo_s4(%rip), t2; \
73	vbroadcasti128 .Lpre_tf_hi_s4(%rip), t3; \
74	\
75	/* AES inverse shift rows */ \
76	vpshufb t4, x0, x0; \
77	vpshufb t4, x7, x7; \
78	vpshufb t4, x3, x3; \
79	vpshufb t4, x6, x6; \
80	vpshufb t4, x2, x2; \
81	vpshufb t4, x5, x5; \
82	vpshufb t4, x1, x1; \
83	vpshufb t4, x4, x4; \
84	\
85	/* prefilter sboxes 1, 2 and 3 */ \
86	/* prefilter sbox 4 */ \
87	filter_8bit(x0, t5, t6, t7, t4); \
88	filter_8bit(x7, t5, t6, t7, t4); \
89	vextracti128 $1, x0, t0##_x; \
90	vextracti128 $1, x7, t1##_x; \
91	filter_8bit(x3, t2, t3, t7, t4); \
92	filter_8bit(x6, t2, t3, t7, t4); \
93	vextracti128 $1, x3, t3##_x; \
94	vextracti128 $1, x6, t2##_x; \
95	filter_8bit(x2, t5, t6, t7, t4); \
96	filter_8bit(x5, t5, t6, t7, t4); \
97	filter_8bit(x1, t5, t6, t7, t4); \
98	filter_8bit(x4, t5, t6, t7, t4); \
99	\
100	vpxor t4##_x, t4##_x, t4##_x; \
101	\
102	/* AES subbytes + AES shift rows */ \
103	vextracti128 $1, x2, t6##_x; \
104	vextracti128 $1, x5, t5##_x; \
105	vaesenclast t4##_x, x0##_x, x0##_x; \
106	vaesenclast t4##_x, t0##_x, t0##_x; \
107	vinserti128 $1, t0##_x, x0, x0; \
108	vaesenclast t4##_x, x7##_x, x7##_x; \
109	vaesenclast t4##_x, t1##_x, t1##_x; \
110	vinserti128 $1, t1##_x, x7, x7; \
111	vaesenclast t4##_x, x3##_x, x3##_x; \
112	vaesenclast t4##_x, t3##_x, t3##_x; \
113	vinserti128 $1, t3##_x, x3, x3; \
114	vaesenclast t4##_x, x6##_x, x6##_x; \
115	vaesenclast t4##_x, t2##_x, t2##_x; \
116	vinserti128 $1, t2##_x, x6, x6; \
117	vextracti128 $1, x1, t3##_x; \
118	vextracti128 $1, x4, t2##_x; \
119	vbroadcasti128 .Lpost_tf_lo_s1(%rip), t0; \
120	vbroadcasti128 .Lpost_tf_hi_s1(%rip), t1; \
121	vaesenclast t4##_x, x2##_x, x2##_x; \
122	vaesenclast t4##_x, t6##_x, t6##_x; \
123	vinserti128 $1, t6##_x, x2, x2; \
124	vaesenclast t4##_x, x5##_x, x5##_x; \
125	vaesenclast t4##_x, t5##_x, t5##_x; \
126	vinserti128 $1, t5##_x, x5, x5; \
127	vaesenclast t4##_x, x1##_x, x1##_x; \
128	vaesenclast t4##_x, t3##_x, t3##_x; \
129	vinserti128 $1, t3##_x, x1, x1; \
130	vaesenclast t4##_x, x4##_x, x4##_x; \
131	vaesenclast t4##_x, t2##_x, t2##_x; \
132	vinserti128 $1, t2##_x, x4, x4; \
133	\
134	/* postfilter sboxes 1 and 4 */ \
135	vbroadcasti128 .Lpost_tf_lo_s3(%rip), t2; \
136	vbroadcasti128 .Lpost_tf_hi_s3(%rip), t3; \
137	filter_8bit(x0, t0, t1, t7, t6); \
138	filter_8bit(x7, t0, t1, t7, t6); \
139	filter_8bit(x3, t0, t1, t7, t6); \
140	filter_8bit(x6, t0, t1, t7, t6); \
141	\
142	/* postfilter sbox 3 */ \
143	vbroadcasti128 .Lpost_tf_lo_s2(%rip), t4; \
144	vbroadcasti128 .Lpost_tf_hi_s2(%rip), t5; \
145	filter_8bit(x2, t2, t3, t7, t6); \
146	filter_8bit(x5, t2, t3, t7, t6); \
147	\
148	vpbroadcastq key, t0; /* higher 64-bit duplicate ignored */ \
149	\
150	/* postfilter sbox 2 */ \
151	filter_8bit(x1, t4, t5, t7, t2); \
152	filter_8bit(x4, t4, t5, t7, t2); \
153	vpxor t7, t7, t7; \
154	\
155	vpsrldq $1, t0, t1; \
156	vpsrldq $2, t0, t2; \
157	vpshufb t7, t1, t1; \
158	vpsrldq $3, t0, t3; \
159	\
160	/* P-function */ \
161	vpxor x5, x0, x0; \
162	vpxor x6, x1, x1; \
163	vpxor x7, x2, x2; \
164	vpxor x4, x3, x3; \
165	\
166	vpshufb t7, t2, t2; \
167	vpsrldq $4, t0, t4; \
168	vpshufb t7, t3, t3; \
169	vpsrldq $5, t0, t5; \
170	vpshufb t7, t4, t4; \
171	\
172	vpxor x2, x4, x4; \
173	vpxor x3, x5, x5; \
174	vpxor x0, x6, x6; \
175	vpxor x1, x7, x7; \
176	\
177	vpsrldq $6, t0, t6; \
178	vpshufb t7, t5, t5; \
179	vpshufb t7, t6, t6; \
180	\
181	vpxor x7, x0, x0; \
182	vpxor x4, x1, x1; \
183	vpxor x5, x2, x2; \
184	vpxor x6, x3, x3; \
185	\
186	vpxor x3, x4, x4; \
187	vpxor x0, x5, x5; \
188	vpxor x1, x6, x6; \
189	vpxor x2, x7, x7; /* note: high and low parts swapped */ \
190	\
191	/* Add key material and result to CD (x becomes new CD) */ \
192	\
193	vpxor t6, x1, x1; \
194	vpxor 5 * 32(mem_cd), x1, x1; \
195	\
196	vpsrldq $7, t0, t6; \
197	vpshufb t7, t0, t0; \
198	vpshufb t7, t6, t7; \
199	\
200	vpxor t7, x0, x0; \
201	vpxor 4 * 32(mem_cd), x0, x0; \
202	\
203	vpxor t5, x2, x2; \
204	vpxor 6 * 32(mem_cd), x2, x2; \
205	\
206	vpxor t4, x3, x3; \
207	vpxor 7 * 32(mem_cd), x3, x3; \
208	\
209	vpxor t3, x4, x4; \
210	vpxor 0 * 32(mem_cd), x4, x4; \
211	\
212	vpxor t2, x5, x5; \
213	vpxor 1 * 32(mem_cd), x5, x5; \
214	\
215	vpxor t1, x6, x6; \
216	vpxor 2 * 32(mem_cd), x6, x6; \
217	\
218	vpxor t0, x7, x7; \
219	vpxor 3 * 32(mem_cd), x7, x7;
220
221/*
222 * Size optimization... with inlined roundsm32 binary would be over 5 times
223 * larger and would only marginally faster.
224 */
225SYM_FUNC_START_LOCAL(roundsm32_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd)
226	roundsm32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
227		  %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14, %ymm15,
228		  %rcx, (%r9));
229	RET;
230SYM_FUNC_END(roundsm32_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd)
231
232SYM_FUNC_START_LOCAL(roundsm32_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab)
233	roundsm32(%ymm4, %ymm5, %ymm6, %ymm7, %ymm0, %ymm1, %ymm2, %ymm3,
234		  %ymm12, %ymm13, %ymm14, %ymm15, %ymm8, %ymm9, %ymm10, %ymm11,
235		  %rax, (%r9));
236	RET;
237SYM_FUNC_END(roundsm32_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab)
238
239/*
240 * IN/OUT:
241 *  x0..x7: byte-sliced AB state preloaded
242 *  mem_ab: byte-sliced AB state in memory
243 *  mem_cb: byte-sliced CD state in memory
244 */
245#define two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
246		      y6, y7, mem_ab, mem_cd, i, dir, store_ab) \
247	leaq (key_table + (i) * 8)(CTX), %r9; \
248	call roundsm32_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd; \
249	\
250	vmovdqu x0, 4 * 32(mem_cd); \
251	vmovdqu x1, 5 * 32(mem_cd); \
252	vmovdqu x2, 6 * 32(mem_cd); \
253	vmovdqu x3, 7 * 32(mem_cd); \
254	vmovdqu x4, 0 * 32(mem_cd); \
255	vmovdqu x5, 1 * 32(mem_cd); \
256	vmovdqu x6, 2 * 32(mem_cd); \
257	vmovdqu x7, 3 * 32(mem_cd); \
258	\
259	leaq (key_table + ((i) + (dir)) * 8)(CTX), %r9; \
260	call roundsm32_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab; \
261	\
262	store_ab(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab);
263
264#define dummy_store(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab) /* do nothing */
265
266#define store_ab_state(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab) \
267	/* Store new AB state */ \
268	vmovdqu x4, 4 * 32(mem_ab); \
269	vmovdqu x5, 5 * 32(mem_ab); \
270	vmovdqu x6, 6 * 32(mem_ab); \
271	vmovdqu x7, 7 * 32(mem_ab); \
272	vmovdqu x0, 0 * 32(mem_ab); \
273	vmovdqu x1, 1 * 32(mem_ab); \
274	vmovdqu x2, 2 * 32(mem_ab); \
275	vmovdqu x3, 3 * 32(mem_ab);
276
277#define enc_rounds32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
278		      y6, y7, mem_ab, mem_cd, i) \
279	two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
280		      y6, y7, mem_ab, mem_cd, (i) + 2, 1, store_ab_state); \
281	two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
282		      y6, y7, mem_ab, mem_cd, (i) + 4, 1, store_ab_state); \
283	two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
284		      y6, y7, mem_ab, mem_cd, (i) + 6, 1, dummy_store);
285
286#define dec_rounds32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
287		      y6, y7, mem_ab, mem_cd, i) \
288	two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
289		      y6, y7, mem_ab, mem_cd, (i) + 7, -1, store_ab_state); \
290	two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
291		      y6, y7, mem_ab, mem_cd, (i) + 5, -1, store_ab_state); \
292	two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
293		      y6, y7, mem_ab, mem_cd, (i) + 3, -1, dummy_store);
294
295/*
296 * IN:
297 *  v0..3: byte-sliced 32-bit integers
298 * OUT:
299 *  v0..3: (IN <<< 1)
300 */
301#define rol32_1_32(v0, v1, v2, v3, t0, t1, t2, zero) \
302	vpcmpgtb v0, zero, t0; \
303	vpaddb v0, v0, v0; \
304	vpabsb t0, t0; \
305	\
306	vpcmpgtb v1, zero, t1; \
307	vpaddb v1, v1, v1; \
308	vpabsb t1, t1; \
309	\
310	vpcmpgtb v2, zero, t2; \
311	vpaddb v2, v2, v2; \
312	vpabsb t2, t2; \
313	\
314	vpor t0, v1, v1; \
315	\
316	vpcmpgtb v3, zero, t0; \
317	vpaddb v3, v3, v3; \
318	vpabsb t0, t0; \
319	\
320	vpor t1, v2, v2; \
321	vpor t2, v3, v3; \
322	vpor t0, v0, v0;
323
324/*
325 * IN:
326 *   r: byte-sliced AB state in memory
327 *   l: byte-sliced CD state in memory
328 * OUT:
329 *   x0..x7: new byte-sliced CD state
330 */
331#define fls32(l, l0, l1, l2, l3, l4, l5, l6, l7, r, t0, t1, t2, t3, tt0, \
332	      tt1, tt2, tt3, kll, klr, krl, krr) \
333	/* \
334	 * t0 = kll; \
335	 * t0 &= ll; \
336	 * lr ^= rol32(t0, 1); \
337	 */ \
338	vpbroadcastd kll, t0; /* only lowest 32-bit used */ \
339	vpxor tt0, tt0, tt0; \
340	vpshufb tt0, t0, t3; \
341	vpsrldq $1, t0, t0; \
342	vpshufb tt0, t0, t2; \
343	vpsrldq $1, t0, t0; \
344	vpshufb tt0, t0, t1; \
345	vpsrldq $1, t0, t0; \
346	vpshufb tt0, t0, t0; \
347	\
348	vpand l0, t0, t0; \
349	vpand l1, t1, t1; \
350	vpand l2, t2, t2; \
351	vpand l3, t3, t3; \
352	\
353	rol32_1_32(t3, t2, t1, t0, tt1, tt2, tt3, tt0); \
354	\
355	vpxor l4, t0, l4; \
356	vpbroadcastd krr, t0; /* only lowest 32-bit used */ \
357	vmovdqu l4, 4 * 32(l); \
358	vpxor l5, t1, l5; \
359	vmovdqu l5, 5 * 32(l); \
360	vpxor l6, t2, l6; \
361	vmovdqu l6, 6 * 32(l); \
362	vpxor l7, t3, l7; \
363	vmovdqu l7, 7 * 32(l); \
364	\
365	/* \
366	 * t2 = krr; \
367	 * t2 |= rr; \
368	 * rl ^= t2; \
369	 */ \
370	\
371	vpshufb tt0, t0, t3; \
372	vpsrldq $1, t0, t0; \
373	vpshufb tt0, t0, t2; \
374	vpsrldq $1, t0, t0; \
375	vpshufb tt0, t0, t1; \
376	vpsrldq $1, t0, t0; \
377	vpshufb tt0, t0, t0; \
378	\
379	vpor 4 * 32(r), t0, t0; \
380	vpor 5 * 32(r), t1, t1; \
381	vpor 6 * 32(r), t2, t2; \
382	vpor 7 * 32(r), t3, t3; \
383	\
384	vpxor 0 * 32(r), t0, t0; \
385	vpxor 1 * 32(r), t1, t1; \
386	vpxor 2 * 32(r), t2, t2; \
387	vpxor 3 * 32(r), t3, t3; \
388	vmovdqu t0, 0 * 32(r); \
389	vpbroadcastd krl, t0; /* only lowest 32-bit used */ \
390	vmovdqu t1, 1 * 32(r); \
391	vmovdqu t2, 2 * 32(r); \
392	vmovdqu t3, 3 * 32(r); \
393	\
394	/* \
395	 * t2 = krl; \
396	 * t2 &= rl; \
397	 * rr ^= rol32(t2, 1); \
398	 */ \
399	vpshufb tt0, t0, t3; \
400	vpsrldq $1, t0, t0; \
401	vpshufb tt0, t0, t2; \
402	vpsrldq $1, t0, t0; \
403	vpshufb tt0, t0, t1; \
404	vpsrldq $1, t0, t0; \
405	vpshufb tt0, t0, t0; \
406	\
407	vpand 0 * 32(r), t0, t0; \
408	vpand 1 * 32(r), t1, t1; \
409	vpand 2 * 32(r), t2, t2; \
410	vpand 3 * 32(r), t3, t3; \
411	\
412	rol32_1_32(t3, t2, t1, t0, tt1, tt2, tt3, tt0); \
413	\
414	vpxor 4 * 32(r), t0, t0; \
415	vpxor 5 * 32(r), t1, t1; \
416	vpxor 6 * 32(r), t2, t2; \
417	vpxor 7 * 32(r), t3, t3; \
418	vmovdqu t0, 4 * 32(r); \
419	vpbroadcastd klr, t0; /* only lowest 32-bit used */ \
420	vmovdqu t1, 5 * 32(r); \
421	vmovdqu t2, 6 * 32(r); \
422	vmovdqu t3, 7 * 32(r); \
423	\
424	/* \
425	 * t0 = klr; \
426	 * t0 |= lr; \
427	 * ll ^= t0; \
428	 */ \
429	\
430	vpshufb tt0, t0, t3; \
431	vpsrldq $1, t0, t0; \
432	vpshufb tt0, t0, t2; \
433	vpsrldq $1, t0, t0; \
434	vpshufb tt0, t0, t1; \
435	vpsrldq $1, t0, t0; \
436	vpshufb tt0, t0, t0; \
437	\
438	vpor l4, t0, t0; \
439	vpor l5, t1, t1; \
440	vpor l6, t2, t2; \
441	vpor l7, t3, t3; \
442	\
443	vpxor l0, t0, l0; \
444	vmovdqu l0, 0 * 32(l); \
445	vpxor l1, t1, l1; \
446	vmovdqu l1, 1 * 32(l); \
447	vpxor l2, t2, l2; \
448	vmovdqu l2, 2 * 32(l); \
449	vpxor l3, t3, l3; \
450	vmovdqu l3, 3 * 32(l);
451
452#define transpose_4x4(x0, x1, x2, x3, t1, t2) \
453	vpunpckhdq x1, x0, t2; \
454	vpunpckldq x1, x0, x0; \
455	\
456	vpunpckldq x3, x2, t1; \
457	vpunpckhdq x3, x2, x2; \
458	\
459	vpunpckhqdq t1, x0, x1; \
460	vpunpcklqdq t1, x0, x0; \
461	\
462	vpunpckhqdq x2, t2, x3; \
463	vpunpcklqdq x2, t2, x2;
464
465#define byteslice_16x16b_fast(a0, b0, c0, d0, a1, b1, c1, d1, a2, b2, c2, d2, \
466			      a3, b3, c3, d3, st0, st1) \
467	vmovdqu d2, st0; \
468	vmovdqu d3, st1; \
469	transpose_4x4(a0, a1, a2, a3, d2, d3); \
470	transpose_4x4(b0, b1, b2, b3, d2, d3); \
471	vmovdqu st0, d2; \
472	vmovdqu st1, d3; \
473	\
474	vmovdqu a0, st0; \
475	vmovdqu a1, st1; \
476	transpose_4x4(c0, c1, c2, c3, a0, a1); \
477	transpose_4x4(d0, d1, d2, d3, a0, a1); \
478	\
479	vbroadcasti128 .Lshufb_16x16b(%rip), a0; \
480	vmovdqu st1, a1; \
481	vpshufb a0, a2, a2; \
482	vpshufb a0, a3, a3; \
483	vpshufb a0, b0, b0; \
484	vpshufb a0, b1, b1; \
485	vpshufb a0, b2, b2; \
486	vpshufb a0, b3, b3; \
487	vpshufb a0, a1, a1; \
488	vpshufb a0, c0, c0; \
489	vpshufb a0, c1, c1; \
490	vpshufb a0, c2, c2; \
491	vpshufb a0, c3, c3; \
492	vpshufb a0, d0, d0; \
493	vpshufb a0, d1, d1; \
494	vpshufb a0, d2, d2; \
495	vpshufb a0, d3, d3; \
496	vmovdqu d3, st1; \
497	vmovdqu st0, d3; \
498	vpshufb a0, d3, a0; \
499	vmovdqu d2, st0; \
500	\
501	transpose_4x4(a0, b0, c0, d0, d2, d3); \
502	transpose_4x4(a1, b1, c1, d1, d2, d3); \
503	vmovdqu st0, d2; \
504	vmovdqu st1, d3; \
505	\
506	vmovdqu b0, st0; \
507	vmovdqu b1, st1; \
508	transpose_4x4(a2, b2, c2, d2, b0, b1); \
509	transpose_4x4(a3, b3, c3, d3, b0, b1); \
510	vmovdqu st0, b0; \
511	vmovdqu st1, b1; \
512	/* does not adjust output bytes inside vectors */
513
514/* load blocks to registers and apply pre-whitening */
515#define inpack32_pre(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
516		     y6, y7, rio, key) \
517	vpbroadcastq key, x0; \
518	vpshufb .Lpack_bswap(%rip), x0, x0; \
519	\
520	vpxor 0 * 32(rio), x0, y7; \
521	vpxor 1 * 32(rio), x0, y6; \
522	vpxor 2 * 32(rio), x0, y5; \
523	vpxor 3 * 32(rio), x0, y4; \
524	vpxor 4 * 32(rio), x0, y3; \
525	vpxor 5 * 32(rio), x0, y2; \
526	vpxor 6 * 32(rio), x0, y1; \
527	vpxor 7 * 32(rio), x0, y0; \
528	vpxor 8 * 32(rio), x0, x7; \
529	vpxor 9 * 32(rio), x0, x6; \
530	vpxor 10 * 32(rio), x0, x5; \
531	vpxor 11 * 32(rio), x0, x4; \
532	vpxor 12 * 32(rio), x0, x3; \
533	vpxor 13 * 32(rio), x0, x2; \
534	vpxor 14 * 32(rio), x0, x1; \
535	vpxor 15 * 32(rio), x0, x0;
536
537/* byteslice pre-whitened blocks and store to temporary memory */
538#define inpack32_post(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
539		      y6, y7, mem_ab, mem_cd) \
540	byteslice_16x16b_fast(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, \
541			      y4, y5, y6, y7, (mem_ab), (mem_cd)); \
542	\
543	vmovdqu x0, 0 * 32(mem_ab); \
544	vmovdqu x1, 1 * 32(mem_ab); \
545	vmovdqu x2, 2 * 32(mem_ab); \
546	vmovdqu x3, 3 * 32(mem_ab); \
547	vmovdqu x4, 4 * 32(mem_ab); \
548	vmovdqu x5, 5 * 32(mem_ab); \
549	vmovdqu x6, 6 * 32(mem_ab); \
550	vmovdqu x7, 7 * 32(mem_ab); \
551	vmovdqu y0, 0 * 32(mem_cd); \
552	vmovdqu y1, 1 * 32(mem_cd); \
553	vmovdqu y2, 2 * 32(mem_cd); \
554	vmovdqu y3, 3 * 32(mem_cd); \
555	vmovdqu y4, 4 * 32(mem_cd); \
556	vmovdqu y5, 5 * 32(mem_cd); \
557	vmovdqu y6, 6 * 32(mem_cd); \
558	vmovdqu y7, 7 * 32(mem_cd);
559
560/* de-byteslice, apply post-whitening and store blocks */
561#define outunpack32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, \
562		    y5, y6, y7, key, stack_tmp0, stack_tmp1) \
563	byteslice_16x16b_fast(y0, y4, x0, x4, y1, y5, x1, x5, y2, y6, x2, x6, \
564			      y3, y7, x3, x7, stack_tmp0, stack_tmp1); \
565	\
566	vmovdqu x0, stack_tmp0; \
567	\
568	vpbroadcastq key, x0; \
569	vpshufb .Lpack_bswap(%rip), x0, x0; \
570	\
571	vpxor x0, y7, y7; \
572	vpxor x0, y6, y6; \
573	vpxor x0, y5, y5; \
574	vpxor x0, y4, y4; \
575	vpxor x0, y3, y3; \
576	vpxor x0, y2, y2; \
577	vpxor x0, y1, y1; \
578	vpxor x0, y0, y0; \
579	vpxor x0, x7, x7; \
580	vpxor x0, x6, x6; \
581	vpxor x0, x5, x5; \
582	vpxor x0, x4, x4; \
583	vpxor x0, x3, x3; \
584	vpxor x0, x2, x2; \
585	vpxor x0, x1, x1; \
586	vpxor stack_tmp0, x0, x0;
587
588#define write_output(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
589		     y6, y7, rio) \
590	vmovdqu x0, 0 * 32(rio); \
591	vmovdqu x1, 1 * 32(rio); \
592	vmovdqu x2, 2 * 32(rio); \
593	vmovdqu x3, 3 * 32(rio); \
594	vmovdqu x4, 4 * 32(rio); \
595	vmovdqu x5, 5 * 32(rio); \
596	vmovdqu x6, 6 * 32(rio); \
597	vmovdqu x7, 7 * 32(rio); \
598	vmovdqu y0, 8 * 32(rio); \
599	vmovdqu y1, 9 * 32(rio); \
600	vmovdqu y2, 10 * 32(rio); \
601	vmovdqu y3, 11 * 32(rio); \
602	vmovdqu y4, 12 * 32(rio); \
603	vmovdqu y5, 13 * 32(rio); \
604	vmovdqu y6, 14 * 32(rio); \
605	vmovdqu y7, 15 * 32(rio);
606
607
608.section	.rodata.cst32.shufb_16x16b, "aM", @progbits, 32
609.align 32
610#define SHUFB_BYTES(idx) \
611	0 + (idx), 4 + (idx), 8 + (idx), 12 + (idx)
612.Lshufb_16x16b:
613	.byte SHUFB_BYTES(0), SHUFB_BYTES(1), SHUFB_BYTES(2), SHUFB_BYTES(3)
614	.byte SHUFB_BYTES(0), SHUFB_BYTES(1), SHUFB_BYTES(2), SHUFB_BYTES(3)
615
616.section	.rodata.cst32.pack_bswap, "aM", @progbits, 32
617.align 32
618.Lpack_bswap:
619	.long 0x00010203, 0x04050607, 0x80808080, 0x80808080
620	.long 0x00010203, 0x04050607, 0x80808080, 0x80808080
621
622/* NB: section is mergeable, all elements must be aligned 16-byte blocks */
623.section	.rodata.cst16, "aM", @progbits, 16
624.align 16
625
626/*
627 * pre-SubByte transform
628 *
629 * pre-lookup for sbox1, sbox2, sbox3:
630 *   swap_bitendianness(
631 *       isom_map_camellia_to_aes(
632 *           camellia_f(
633 *               swap_bitendianess(in)
634 *           )
635 *       )
636 *   )
637 *
638 * (note: '⊕ 0xc5' inside camellia_f())
639 */
640.Lpre_tf_lo_s1:
641	.byte 0x45, 0xe8, 0x40, 0xed, 0x2e, 0x83, 0x2b, 0x86
642	.byte 0x4b, 0xe6, 0x4e, 0xe3, 0x20, 0x8d, 0x25, 0x88
643.Lpre_tf_hi_s1:
644	.byte 0x00, 0x51, 0xf1, 0xa0, 0x8a, 0xdb, 0x7b, 0x2a
645	.byte 0x09, 0x58, 0xf8, 0xa9, 0x83, 0xd2, 0x72, 0x23
646
647/*
648 * pre-SubByte transform
649 *
650 * pre-lookup for sbox4:
651 *   swap_bitendianness(
652 *       isom_map_camellia_to_aes(
653 *           camellia_f(
654 *               swap_bitendianess(in <<< 1)
655 *           )
656 *       )
657 *   )
658 *
659 * (note: '⊕ 0xc5' inside camellia_f())
660 */
661.Lpre_tf_lo_s4:
662	.byte 0x45, 0x40, 0x2e, 0x2b, 0x4b, 0x4e, 0x20, 0x25
663	.byte 0x14, 0x11, 0x7f, 0x7a, 0x1a, 0x1f, 0x71, 0x74
664.Lpre_tf_hi_s4:
665	.byte 0x00, 0xf1, 0x8a, 0x7b, 0x09, 0xf8, 0x83, 0x72
666	.byte 0xad, 0x5c, 0x27, 0xd6, 0xa4, 0x55, 0x2e, 0xdf
667
668/*
669 * post-SubByte transform
670 *
671 * post-lookup for sbox1, sbox4:
672 *  swap_bitendianness(
673 *      camellia_h(
674 *          isom_map_aes_to_camellia(
675 *              swap_bitendianness(
676 *                  aes_inverse_affine_transform(in)
677 *              )
678 *          )
679 *      )
680 *  )
681 *
682 * (note: '⊕ 0x6e' inside camellia_h())
683 */
684.Lpost_tf_lo_s1:
685	.byte 0x3c, 0xcc, 0xcf, 0x3f, 0x32, 0xc2, 0xc1, 0x31
686	.byte 0xdc, 0x2c, 0x2f, 0xdf, 0xd2, 0x22, 0x21, 0xd1
687.Lpost_tf_hi_s1:
688	.byte 0x00, 0xf9, 0x86, 0x7f, 0xd7, 0x2e, 0x51, 0xa8
689	.byte 0xa4, 0x5d, 0x22, 0xdb, 0x73, 0x8a, 0xf5, 0x0c
690
691/*
692 * post-SubByte transform
693 *
694 * post-lookup for sbox2:
695 *  swap_bitendianness(
696 *      camellia_h(
697 *          isom_map_aes_to_camellia(
698 *              swap_bitendianness(
699 *                  aes_inverse_affine_transform(in)
700 *              )
701 *          )
702 *      )
703 *  ) <<< 1
704 *
705 * (note: '⊕ 0x6e' inside camellia_h())
706 */
707.Lpost_tf_lo_s2:
708	.byte 0x78, 0x99, 0x9f, 0x7e, 0x64, 0x85, 0x83, 0x62
709	.byte 0xb9, 0x58, 0x5e, 0xbf, 0xa5, 0x44, 0x42, 0xa3
710.Lpost_tf_hi_s2:
711	.byte 0x00, 0xf3, 0x0d, 0xfe, 0xaf, 0x5c, 0xa2, 0x51
712	.byte 0x49, 0xba, 0x44, 0xb7, 0xe6, 0x15, 0xeb, 0x18
713
714/*
715 * post-SubByte transform
716 *
717 * post-lookup for sbox3:
718 *  swap_bitendianness(
719 *      camellia_h(
720 *          isom_map_aes_to_camellia(
721 *              swap_bitendianness(
722 *                  aes_inverse_affine_transform(in)
723 *              )
724 *          )
725 *      )
726 *  ) >>> 1
727 *
728 * (note: '⊕ 0x6e' inside camellia_h())
729 */
730.Lpost_tf_lo_s3:
731	.byte 0x1e, 0x66, 0xe7, 0x9f, 0x19, 0x61, 0xe0, 0x98
732	.byte 0x6e, 0x16, 0x97, 0xef, 0x69, 0x11, 0x90, 0xe8
733.Lpost_tf_hi_s3:
734	.byte 0x00, 0xfc, 0x43, 0xbf, 0xeb, 0x17, 0xa8, 0x54
735	.byte 0x52, 0xae, 0x11, 0xed, 0xb9, 0x45, 0xfa, 0x06
736
737/* For isolating SubBytes from AESENCLAST, inverse shift row */
738.Linv_shift_row:
739	.byte 0x00, 0x0d, 0x0a, 0x07, 0x04, 0x01, 0x0e, 0x0b
740	.byte 0x08, 0x05, 0x02, 0x0f, 0x0c, 0x09, 0x06, 0x03
741
742.section	.rodata.cst4.L0f0f0f0f, "aM", @progbits, 4
743.align 4
744/* 4-bit mask */
745.L0f0f0f0f:
746	.long 0x0f0f0f0f
747
748.text
749
750SYM_FUNC_START_LOCAL(__camellia_enc_blk32)
751	/* input:
752	 *	%rdi: ctx, CTX
753	 *	%rax: temporary storage, 512 bytes
754	 *	%ymm0..%ymm15: 32 plaintext blocks
755	 * output:
756	 *	%ymm0..%ymm15: 32 encrypted blocks, order swapped:
757	 *       7, 8, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8
758	 */
759	FRAME_BEGIN
760
761	leaq 8 * 32(%rax), %rcx;
762
763	inpack32_post(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
764		      %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
765		      %ymm15, %rax, %rcx);
766
767	enc_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
768		     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
769		     %ymm15, %rax, %rcx, 0);
770
771	fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
772	      %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
773	      %ymm15,
774	      ((key_table + (8) * 8) + 0)(CTX),
775	      ((key_table + (8) * 8) + 4)(CTX),
776	      ((key_table + (8) * 8) + 8)(CTX),
777	      ((key_table + (8) * 8) + 12)(CTX));
778
779	enc_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
780		     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
781		     %ymm15, %rax, %rcx, 8);
782
783	fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
784	      %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
785	      %ymm15,
786	      ((key_table + (16) * 8) + 0)(CTX),
787	      ((key_table + (16) * 8) + 4)(CTX),
788	      ((key_table + (16) * 8) + 8)(CTX),
789	      ((key_table + (16) * 8) + 12)(CTX));
790
791	enc_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
792		     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
793		     %ymm15, %rax, %rcx, 16);
794
795	movl $24, %r8d;
796	cmpl $16, key_length(CTX);
797	jne .Lenc_max32;
798
799.Lenc_done:
800	/* load CD for output */
801	vmovdqu 0 * 32(%rcx), %ymm8;
802	vmovdqu 1 * 32(%rcx), %ymm9;
803	vmovdqu 2 * 32(%rcx), %ymm10;
804	vmovdqu 3 * 32(%rcx), %ymm11;
805	vmovdqu 4 * 32(%rcx), %ymm12;
806	vmovdqu 5 * 32(%rcx), %ymm13;
807	vmovdqu 6 * 32(%rcx), %ymm14;
808	vmovdqu 7 * 32(%rcx), %ymm15;
809
810	outunpack32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
811		    %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
812		    %ymm15, (key_table)(CTX, %r8, 8), (%rax), 1 * 32(%rax));
813
814	FRAME_END
815	RET;
816
817.align 8
818.Lenc_max32:
819	movl $32, %r8d;
820
821	fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
822	      %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
823	      %ymm15,
824	      ((key_table + (24) * 8) + 0)(CTX),
825	      ((key_table + (24) * 8) + 4)(CTX),
826	      ((key_table + (24) * 8) + 8)(CTX),
827	      ((key_table + (24) * 8) + 12)(CTX));
828
829	enc_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
830		     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
831		     %ymm15, %rax, %rcx, 24);
832
833	jmp .Lenc_done;
834SYM_FUNC_END(__camellia_enc_blk32)
835
836SYM_FUNC_START_LOCAL(__camellia_dec_blk32)
837	/* input:
838	 *	%rdi: ctx, CTX
839	 *	%rax: temporary storage, 512 bytes
840	 *	%r8d: 24 for 16 byte key, 32 for larger
841	 *	%ymm0..%ymm15: 16 encrypted blocks
842	 * output:
843	 *	%ymm0..%ymm15: 16 plaintext blocks, order swapped:
844	 *       7, 8, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8
845	 */
846	FRAME_BEGIN
847
848	leaq 8 * 32(%rax), %rcx;
849
850	inpack32_post(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
851		      %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
852		      %ymm15, %rax, %rcx);
853
854	cmpl $32, %r8d;
855	je .Ldec_max32;
856
857.Ldec_max24:
858	dec_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
859		     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
860		     %ymm15, %rax, %rcx, 16);
861
862	fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
863	      %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
864	      %ymm15,
865	      ((key_table + (16) * 8) + 8)(CTX),
866	      ((key_table + (16) * 8) + 12)(CTX),
867	      ((key_table + (16) * 8) + 0)(CTX),
868	      ((key_table + (16) * 8) + 4)(CTX));
869
870	dec_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
871		     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
872		     %ymm15, %rax, %rcx, 8);
873
874	fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
875	      %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
876	      %ymm15,
877	      ((key_table + (8) * 8) + 8)(CTX),
878	      ((key_table + (8) * 8) + 12)(CTX),
879	      ((key_table + (8) * 8) + 0)(CTX),
880	      ((key_table + (8) * 8) + 4)(CTX));
881
882	dec_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
883		     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
884		     %ymm15, %rax, %rcx, 0);
885
886	/* load CD for output */
887	vmovdqu 0 * 32(%rcx), %ymm8;
888	vmovdqu 1 * 32(%rcx), %ymm9;
889	vmovdqu 2 * 32(%rcx), %ymm10;
890	vmovdqu 3 * 32(%rcx), %ymm11;
891	vmovdqu 4 * 32(%rcx), %ymm12;
892	vmovdqu 5 * 32(%rcx), %ymm13;
893	vmovdqu 6 * 32(%rcx), %ymm14;
894	vmovdqu 7 * 32(%rcx), %ymm15;
895
896	outunpack32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
897		    %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
898		    %ymm15, (key_table)(CTX), (%rax), 1 * 32(%rax));
899
900	FRAME_END
901	RET;
902
903.align 8
904.Ldec_max32:
905	dec_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
906		     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
907		     %ymm15, %rax, %rcx, 24);
908
909	fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
910	      %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
911	      %ymm15,
912	      ((key_table + (24) * 8) + 8)(CTX),
913	      ((key_table + (24) * 8) + 12)(CTX),
914	      ((key_table + (24) * 8) + 0)(CTX),
915	      ((key_table + (24) * 8) + 4)(CTX));
916
917	jmp .Ldec_max24;
918SYM_FUNC_END(__camellia_dec_blk32)
919
920SYM_FUNC_START(camellia_ecb_enc_32way)
921	/* input:
922	 *	%rdi: ctx, CTX
923	 *	%rsi: dst (32 blocks)
924	 *	%rdx: src (32 blocks)
925	 */
926	FRAME_BEGIN
927
928	vzeroupper;
929
930	inpack32_pre(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
931		     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
932		     %ymm15, %rdx, (key_table)(CTX));
933
934	/* now dst can be used as temporary buffer (even in src == dst case) */
935	movq	%rsi, %rax;
936
937	call __camellia_enc_blk32;
938
939	write_output(%ymm7, %ymm6, %ymm5, %ymm4, %ymm3, %ymm2, %ymm1, %ymm0,
940		     %ymm15, %ymm14, %ymm13, %ymm12, %ymm11, %ymm10, %ymm9,
941		     %ymm8, %rsi);
942
943	vzeroupper;
944
945	FRAME_END
946	RET;
947SYM_FUNC_END(camellia_ecb_enc_32way)
948
949SYM_FUNC_START(camellia_ecb_dec_32way)
950	/* input:
951	 *	%rdi: ctx, CTX
952	 *	%rsi: dst (32 blocks)
953	 *	%rdx: src (32 blocks)
954	 */
955	FRAME_BEGIN
956
957	vzeroupper;
958
959	cmpl $16, key_length(CTX);
960	movl $32, %r8d;
961	movl $24, %eax;
962	cmovel %eax, %r8d; /* max */
963
964	inpack32_pre(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
965		     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
966		     %ymm15, %rdx, (key_table)(CTX, %r8, 8));
967
968	/* now dst can be used as temporary buffer (even in src == dst case) */
969	movq	%rsi, %rax;
970
971	call __camellia_dec_blk32;
972
973	write_output(%ymm7, %ymm6, %ymm5, %ymm4, %ymm3, %ymm2, %ymm1, %ymm0,
974		     %ymm15, %ymm14, %ymm13, %ymm12, %ymm11, %ymm10, %ymm9,
975		     %ymm8, %rsi);
976
977	vzeroupper;
978
979	FRAME_END
980	RET;
981SYM_FUNC_END(camellia_ecb_dec_32way)
982
983SYM_FUNC_START(camellia_cbc_dec_32way)
984	/* input:
985	 *	%rdi: ctx, CTX
986	 *	%rsi: dst (32 blocks)
987	 *	%rdx: src (32 blocks)
988	 */
989	FRAME_BEGIN
990	subq $(16 * 32), %rsp;
991
992	vzeroupper;
993
994	cmpl $16, key_length(CTX);
995	movl $32, %r8d;
996	movl $24, %eax;
997	cmovel %eax, %r8d; /* max */
998
999	inpack32_pre(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
1000		     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
1001		     %ymm15, %rdx, (key_table)(CTX, %r8, 8));
1002
1003	cmpq %rsi, %rdx;
1004	je .Lcbc_dec_use_stack;
1005
1006	/* dst can be used as temporary storage, src is not overwritten. */
1007	movq %rsi, %rax;
1008	jmp .Lcbc_dec_continue;
1009
1010.Lcbc_dec_use_stack:
1011	/*
1012	 * dst still in-use (because dst == src), so use stack for temporary
1013	 * storage.
1014	 */
1015	movq %rsp, %rax;
1016
1017.Lcbc_dec_continue:
1018	call __camellia_dec_blk32;
1019
1020	vmovdqu %ymm7, (%rax);
1021	vpxor %ymm7, %ymm7, %ymm7;
1022	vinserti128 $1, (%rdx), %ymm7, %ymm7;
1023	vpxor (%rax), %ymm7, %ymm7;
1024	vpxor (0 * 32 + 16)(%rdx), %ymm6, %ymm6;
1025	vpxor (1 * 32 + 16)(%rdx), %ymm5, %ymm5;
1026	vpxor (2 * 32 + 16)(%rdx), %ymm4, %ymm4;
1027	vpxor (3 * 32 + 16)(%rdx), %ymm3, %ymm3;
1028	vpxor (4 * 32 + 16)(%rdx), %ymm2, %ymm2;
1029	vpxor (5 * 32 + 16)(%rdx), %ymm1, %ymm1;
1030	vpxor (6 * 32 + 16)(%rdx), %ymm0, %ymm0;
1031	vpxor (7 * 32 + 16)(%rdx), %ymm15, %ymm15;
1032	vpxor (8 * 32 + 16)(%rdx), %ymm14, %ymm14;
1033	vpxor (9 * 32 + 16)(%rdx), %ymm13, %ymm13;
1034	vpxor (10 * 32 + 16)(%rdx), %ymm12, %ymm12;
1035	vpxor (11 * 32 + 16)(%rdx), %ymm11, %ymm11;
1036	vpxor (12 * 32 + 16)(%rdx), %ymm10, %ymm10;
1037	vpxor (13 * 32 + 16)(%rdx), %ymm9, %ymm9;
1038	vpxor (14 * 32 + 16)(%rdx), %ymm8, %ymm8;
1039	write_output(%ymm7, %ymm6, %ymm5, %ymm4, %ymm3, %ymm2, %ymm1, %ymm0,
1040		     %ymm15, %ymm14, %ymm13, %ymm12, %ymm11, %ymm10, %ymm9,
1041		     %ymm8, %rsi);
1042
1043	vzeroupper;
1044
1045	addq $(16 * 32), %rsp;
1046	FRAME_END
1047	RET;
1048SYM_FUNC_END(camellia_cbc_dec_32way)
1049