xref: /linux/arch/x86/crypto/camellia-aesni-avx2-asm_64.S (revision 6015fb905d89063231ed33bc15be19ef0fc339b8)
1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/*
3 * x86_64/AVX2/AES-NI assembler implementation of Camellia
4 *
5 * Copyright © 2013 Jussi Kivilinna <jussi.kivilinna@iki.fi>
6 */
7
8#include <linux/linkage.h>
9#include <asm/frame.h>
10
11#define CAMELLIA_TABLE_BYTE_LEN 272
12
13/* struct camellia_ctx: */
14#define key_table 0
15#define key_length CAMELLIA_TABLE_BYTE_LEN
16
17/* register macros */
18#define CTX %rdi
19#define RIO %r8
20
21/**********************************************************************
22  helper macros
23 **********************************************************************/
24#define filter_8bit(x, lo_t, hi_t, mask4bit, tmp0) \
25	vpand x, mask4bit, tmp0; \
26	vpandn x, mask4bit, x; \
27	vpsrld $4, x, x; \
28	\
29	vpshufb tmp0, lo_t, tmp0; \
30	vpshufb x, hi_t, x; \
31	vpxor tmp0, x, x;
32
33#define ymm0_x xmm0
34#define ymm1_x xmm1
35#define ymm2_x xmm2
36#define ymm3_x xmm3
37#define ymm4_x xmm4
38#define ymm5_x xmm5
39#define ymm6_x xmm6
40#define ymm7_x xmm7
41#define ymm8_x xmm8
42#define ymm9_x xmm9
43#define ymm10_x xmm10
44#define ymm11_x xmm11
45#define ymm12_x xmm12
46#define ymm13_x xmm13
47#define ymm14_x xmm14
48#define ymm15_x xmm15
49
50/**********************************************************************
51  32-way camellia
52 **********************************************************************/
53
54/*
55 * IN:
56 *   x0..x7: byte-sliced AB state
57 *   mem_cd: register pointer storing CD state
58 *   key: index for key material
59 * OUT:
60 *   x0..x7: new byte-sliced CD state
61 */
62#define roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, t0, t1, t2, t3, t4, t5, t6, \
63		  t7, mem_cd, key) \
64	/* \
65	 * S-function with AES subbytes \
66	 */ \
67	vbroadcasti128 .Linv_shift_row, t4; \
68	vpbroadcastd .L0f0f0f0f, t7; \
69	vbroadcasti128 .Lpre_tf_lo_s1, t5; \
70	vbroadcasti128 .Lpre_tf_hi_s1, t6; \
71	vbroadcasti128 .Lpre_tf_lo_s4, t2; \
72	vbroadcasti128 .Lpre_tf_hi_s4, t3; \
73	\
74	/* AES inverse shift rows */ \
75	vpshufb t4, x0, x0; \
76	vpshufb t4, x7, x7; \
77	vpshufb t4, x3, x3; \
78	vpshufb t4, x6, x6; \
79	vpshufb t4, x2, x2; \
80	vpshufb t4, x5, x5; \
81	vpshufb t4, x1, x1; \
82	vpshufb t4, x4, x4; \
83	\
84	/* prefilter sboxes 1, 2 and 3 */ \
85	/* prefilter sbox 4 */ \
86	filter_8bit(x0, t5, t6, t7, t4); \
87	filter_8bit(x7, t5, t6, t7, t4); \
88	vextracti128 $1, x0, t0##_x; \
89	vextracti128 $1, x7, t1##_x; \
90	filter_8bit(x3, t2, t3, t7, t4); \
91	filter_8bit(x6, t2, t3, t7, t4); \
92	vextracti128 $1, x3, t3##_x; \
93	vextracti128 $1, x6, t2##_x; \
94	filter_8bit(x2, t5, t6, t7, t4); \
95	filter_8bit(x5, t5, t6, t7, t4); \
96	filter_8bit(x1, t5, t6, t7, t4); \
97	filter_8bit(x4, t5, t6, t7, t4); \
98	\
99	vpxor t4##_x, t4##_x, t4##_x; \
100	\
101	/* AES subbytes + AES shift rows */ \
102	vextracti128 $1, x2, t6##_x; \
103	vextracti128 $1, x5, t5##_x; \
104	vaesenclast t4##_x, x0##_x, x0##_x; \
105	vaesenclast t4##_x, t0##_x, t0##_x; \
106	vinserti128 $1, t0##_x, x0, x0; \
107	vaesenclast t4##_x, x7##_x, x7##_x; \
108	vaesenclast t4##_x, t1##_x, t1##_x; \
109	vinserti128 $1, t1##_x, x7, x7; \
110	vaesenclast t4##_x, x3##_x, x3##_x; \
111	vaesenclast t4##_x, t3##_x, t3##_x; \
112	vinserti128 $1, t3##_x, x3, x3; \
113	vaesenclast t4##_x, x6##_x, x6##_x; \
114	vaesenclast t4##_x, t2##_x, t2##_x; \
115	vinserti128 $1, t2##_x, x6, x6; \
116	vextracti128 $1, x1, t3##_x; \
117	vextracti128 $1, x4, t2##_x; \
118	vbroadcasti128 .Lpost_tf_lo_s1, t0; \
119	vbroadcasti128 .Lpost_tf_hi_s1, t1; \
120	vaesenclast t4##_x, x2##_x, x2##_x; \
121	vaesenclast t4##_x, t6##_x, t6##_x; \
122	vinserti128 $1, t6##_x, x2, x2; \
123	vaesenclast t4##_x, x5##_x, x5##_x; \
124	vaesenclast t4##_x, t5##_x, t5##_x; \
125	vinserti128 $1, t5##_x, x5, x5; \
126	vaesenclast t4##_x, x1##_x, x1##_x; \
127	vaesenclast t4##_x, t3##_x, t3##_x; \
128	vinserti128 $1, t3##_x, x1, x1; \
129	vaesenclast t4##_x, x4##_x, x4##_x; \
130	vaesenclast t4##_x, t2##_x, t2##_x; \
131	vinserti128 $1, t2##_x, x4, x4; \
132	\
133	/* postfilter sboxes 1 and 4 */ \
134	vbroadcasti128 .Lpost_tf_lo_s3, t2; \
135	vbroadcasti128 .Lpost_tf_hi_s3, t3; \
136	filter_8bit(x0, t0, t1, t7, t6); \
137	filter_8bit(x7, t0, t1, t7, t6); \
138	filter_8bit(x3, t0, t1, t7, t6); \
139	filter_8bit(x6, t0, t1, t7, t6); \
140	\
141	/* postfilter sbox 3 */ \
142	vbroadcasti128 .Lpost_tf_lo_s2, t4; \
143	vbroadcasti128 .Lpost_tf_hi_s2, t5; \
144	filter_8bit(x2, t2, t3, t7, t6); \
145	filter_8bit(x5, t2, t3, t7, t6); \
146	\
147	vpbroadcastq key, t0; /* higher 64-bit duplicate ignored */ \
148	\
149	/* postfilter sbox 2 */ \
150	filter_8bit(x1, t4, t5, t7, t2); \
151	filter_8bit(x4, t4, t5, t7, t2); \
152	vpxor t7, t7, t7; \
153	\
154	vpsrldq $1, t0, t1; \
155	vpsrldq $2, t0, t2; \
156	vpshufb t7, t1, t1; \
157	vpsrldq $3, t0, t3; \
158	\
159	/* P-function */ \
160	vpxor x5, x0, x0; \
161	vpxor x6, x1, x1; \
162	vpxor x7, x2, x2; \
163	vpxor x4, x3, x3; \
164	\
165	vpshufb t7, t2, t2; \
166	vpsrldq $4, t0, t4; \
167	vpshufb t7, t3, t3; \
168	vpsrldq $5, t0, t5; \
169	vpshufb t7, t4, t4; \
170	\
171	vpxor x2, x4, x4; \
172	vpxor x3, x5, x5; \
173	vpxor x0, x6, x6; \
174	vpxor x1, x7, x7; \
175	\
176	vpsrldq $6, t0, t6; \
177	vpshufb t7, t5, t5; \
178	vpshufb t7, t6, t6; \
179	\
180	vpxor x7, x0, x0; \
181	vpxor x4, x1, x1; \
182	vpxor x5, x2, x2; \
183	vpxor x6, x3, x3; \
184	\
185	vpxor x3, x4, x4; \
186	vpxor x0, x5, x5; \
187	vpxor x1, x6, x6; \
188	vpxor x2, x7, x7; /* note: high and low parts swapped */ \
189	\
190	/* Add key material and result to CD (x becomes new CD) */ \
191	\
192	vpxor t6, x1, x1; \
193	vpxor 5 * 32(mem_cd), x1, x1; \
194	\
195	vpsrldq $7, t0, t6; \
196	vpshufb t7, t0, t0; \
197	vpshufb t7, t6, t7; \
198	\
199	vpxor t7, x0, x0; \
200	vpxor 4 * 32(mem_cd), x0, x0; \
201	\
202	vpxor t5, x2, x2; \
203	vpxor 6 * 32(mem_cd), x2, x2; \
204	\
205	vpxor t4, x3, x3; \
206	vpxor 7 * 32(mem_cd), x3, x3; \
207	\
208	vpxor t3, x4, x4; \
209	vpxor 0 * 32(mem_cd), x4, x4; \
210	\
211	vpxor t2, x5, x5; \
212	vpxor 1 * 32(mem_cd), x5, x5; \
213	\
214	vpxor t1, x6, x6; \
215	vpxor 2 * 32(mem_cd), x6, x6; \
216	\
217	vpxor t0, x7, x7; \
218	vpxor 3 * 32(mem_cd), x7, x7;
219
220/*
221 * Size optimization... with inlined roundsm32 binary would be over 5 times
222 * larger and would only marginally faster.
223 */
224.align 8
225SYM_FUNC_START_LOCAL(roundsm32_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd)
226	roundsm32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
227		  %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14, %ymm15,
228		  %rcx, (%r9));
229	RET;
230SYM_FUNC_END(roundsm32_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd)
231
232.align 8
233SYM_FUNC_START_LOCAL(roundsm32_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab)
234	roundsm32(%ymm4, %ymm5, %ymm6, %ymm7, %ymm0, %ymm1, %ymm2, %ymm3,
235		  %ymm12, %ymm13, %ymm14, %ymm15, %ymm8, %ymm9, %ymm10, %ymm11,
236		  %rax, (%r9));
237	RET;
238SYM_FUNC_END(roundsm32_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab)
239
240/*
241 * IN/OUT:
242 *  x0..x7: byte-sliced AB state preloaded
243 *  mem_ab: byte-sliced AB state in memory
244 *  mem_cb: byte-sliced CD state in memory
245 */
246#define two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
247		      y6, y7, mem_ab, mem_cd, i, dir, store_ab) \
248	leaq (key_table + (i) * 8)(CTX), %r9; \
249	call roundsm32_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd; \
250	\
251	vmovdqu x0, 4 * 32(mem_cd); \
252	vmovdqu x1, 5 * 32(mem_cd); \
253	vmovdqu x2, 6 * 32(mem_cd); \
254	vmovdqu x3, 7 * 32(mem_cd); \
255	vmovdqu x4, 0 * 32(mem_cd); \
256	vmovdqu x5, 1 * 32(mem_cd); \
257	vmovdqu x6, 2 * 32(mem_cd); \
258	vmovdqu x7, 3 * 32(mem_cd); \
259	\
260	leaq (key_table + ((i) + (dir)) * 8)(CTX), %r9; \
261	call roundsm32_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab; \
262	\
263	store_ab(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab);
264
265#define dummy_store(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab) /* do nothing */
266
267#define store_ab_state(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab) \
268	/* Store new AB state */ \
269	vmovdqu x4, 4 * 32(mem_ab); \
270	vmovdqu x5, 5 * 32(mem_ab); \
271	vmovdqu x6, 6 * 32(mem_ab); \
272	vmovdqu x7, 7 * 32(mem_ab); \
273	vmovdqu x0, 0 * 32(mem_ab); \
274	vmovdqu x1, 1 * 32(mem_ab); \
275	vmovdqu x2, 2 * 32(mem_ab); \
276	vmovdqu x3, 3 * 32(mem_ab);
277
278#define enc_rounds32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
279		      y6, y7, mem_ab, mem_cd, i) \
280	two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
281		      y6, y7, mem_ab, mem_cd, (i) + 2, 1, store_ab_state); \
282	two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
283		      y6, y7, mem_ab, mem_cd, (i) + 4, 1, store_ab_state); \
284	two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
285		      y6, y7, mem_ab, mem_cd, (i) + 6, 1, dummy_store);
286
287#define dec_rounds32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
288		      y6, y7, mem_ab, mem_cd, i) \
289	two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
290		      y6, y7, mem_ab, mem_cd, (i) + 7, -1, store_ab_state); \
291	two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
292		      y6, y7, mem_ab, mem_cd, (i) + 5, -1, store_ab_state); \
293	two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
294		      y6, y7, mem_ab, mem_cd, (i) + 3, -1, dummy_store);
295
296/*
297 * IN:
298 *  v0..3: byte-sliced 32-bit integers
299 * OUT:
300 *  v0..3: (IN <<< 1)
301 */
302#define rol32_1_32(v0, v1, v2, v3, t0, t1, t2, zero) \
303	vpcmpgtb v0, zero, t0; \
304	vpaddb v0, v0, v0; \
305	vpabsb t0, t0; \
306	\
307	vpcmpgtb v1, zero, t1; \
308	vpaddb v1, v1, v1; \
309	vpabsb t1, t1; \
310	\
311	vpcmpgtb v2, zero, t2; \
312	vpaddb v2, v2, v2; \
313	vpabsb t2, t2; \
314	\
315	vpor t0, v1, v1; \
316	\
317	vpcmpgtb v3, zero, t0; \
318	vpaddb v3, v3, v3; \
319	vpabsb t0, t0; \
320	\
321	vpor t1, v2, v2; \
322	vpor t2, v3, v3; \
323	vpor t0, v0, v0;
324
325/*
326 * IN:
327 *   r: byte-sliced AB state in memory
328 *   l: byte-sliced CD state in memory
329 * OUT:
330 *   x0..x7: new byte-sliced CD state
331 */
332#define fls32(l, l0, l1, l2, l3, l4, l5, l6, l7, r, t0, t1, t2, t3, tt0, \
333	      tt1, tt2, tt3, kll, klr, krl, krr) \
334	/* \
335	 * t0 = kll; \
336	 * t0 &= ll; \
337	 * lr ^= rol32(t0, 1); \
338	 */ \
339	vpbroadcastd kll, t0; /* only lowest 32-bit used */ \
340	vpxor tt0, tt0, tt0; \
341	vpshufb tt0, t0, t3; \
342	vpsrldq $1, t0, t0; \
343	vpshufb tt0, t0, t2; \
344	vpsrldq $1, t0, t0; \
345	vpshufb tt0, t0, t1; \
346	vpsrldq $1, t0, t0; \
347	vpshufb tt0, t0, t0; \
348	\
349	vpand l0, t0, t0; \
350	vpand l1, t1, t1; \
351	vpand l2, t2, t2; \
352	vpand l3, t3, t3; \
353	\
354	rol32_1_32(t3, t2, t1, t0, tt1, tt2, tt3, tt0); \
355	\
356	vpxor l4, t0, l4; \
357	vpbroadcastd krr, t0; /* only lowest 32-bit used */ \
358	vmovdqu l4, 4 * 32(l); \
359	vpxor l5, t1, l5; \
360	vmovdqu l5, 5 * 32(l); \
361	vpxor l6, t2, l6; \
362	vmovdqu l6, 6 * 32(l); \
363	vpxor l7, t3, l7; \
364	vmovdqu l7, 7 * 32(l); \
365	\
366	/* \
367	 * t2 = krr; \
368	 * t2 |= rr; \
369	 * rl ^= t2; \
370	 */ \
371	\
372	vpshufb tt0, t0, t3; \
373	vpsrldq $1, t0, t0; \
374	vpshufb tt0, t0, t2; \
375	vpsrldq $1, t0, t0; \
376	vpshufb tt0, t0, t1; \
377	vpsrldq $1, t0, t0; \
378	vpshufb tt0, t0, t0; \
379	\
380	vpor 4 * 32(r), t0, t0; \
381	vpor 5 * 32(r), t1, t1; \
382	vpor 6 * 32(r), t2, t2; \
383	vpor 7 * 32(r), t3, t3; \
384	\
385	vpxor 0 * 32(r), t0, t0; \
386	vpxor 1 * 32(r), t1, t1; \
387	vpxor 2 * 32(r), t2, t2; \
388	vpxor 3 * 32(r), t3, t3; \
389	vmovdqu t0, 0 * 32(r); \
390	vpbroadcastd krl, t0; /* only lowest 32-bit used */ \
391	vmovdqu t1, 1 * 32(r); \
392	vmovdqu t2, 2 * 32(r); \
393	vmovdqu t3, 3 * 32(r); \
394	\
395	/* \
396	 * t2 = krl; \
397	 * t2 &= rl; \
398	 * rr ^= rol32(t2, 1); \
399	 */ \
400	vpshufb tt0, t0, t3; \
401	vpsrldq $1, t0, t0; \
402	vpshufb tt0, t0, t2; \
403	vpsrldq $1, t0, t0; \
404	vpshufb tt0, t0, t1; \
405	vpsrldq $1, t0, t0; \
406	vpshufb tt0, t0, t0; \
407	\
408	vpand 0 * 32(r), t0, t0; \
409	vpand 1 * 32(r), t1, t1; \
410	vpand 2 * 32(r), t2, t2; \
411	vpand 3 * 32(r), t3, t3; \
412	\
413	rol32_1_32(t3, t2, t1, t0, tt1, tt2, tt3, tt0); \
414	\
415	vpxor 4 * 32(r), t0, t0; \
416	vpxor 5 * 32(r), t1, t1; \
417	vpxor 6 * 32(r), t2, t2; \
418	vpxor 7 * 32(r), t3, t3; \
419	vmovdqu t0, 4 * 32(r); \
420	vpbroadcastd klr, t0; /* only lowest 32-bit used */ \
421	vmovdqu t1, 5 * 32(r); \
422	vmovdqu t2, 6 * 32(r); \
423	vmovdqu t3, 7 * 32(r); \
424	\
425	/* \
426	 * t0 = klr; \
427	 * t0 |= lr; \
428	 * ll ^= t0; \
429	 */ \
430	\
431	vpshufb tt0, t0, t3; \
432	vpsrldq $1, t0, t0; \
433	vpshufb tt0, t0, t2; \
434	vpsrldq $1, t0, t0; \
435	vpshufb tt0, t0, t1; \
436	vpsrldq $1, t0, t0; \
437	vpshufb tt0, t0, t0; \
438	\
439	vpor l4, t0, t0; \
440	vpor l5, t1, t1; \
441	vpor l6, t2, t2; \
442	vpor l7, t3, t3; \
443	\
444	vpxor l0, t0, l0; \
445	vmovdqu l0, 0 * 32(l); \
446	vpxor l1, t1, l1; \
447	vmovdqu l1, 1 * 32(l); \
448	vpxor l2, t2, l2; \
449	vmovdqu l2, 2 * 32(l); \
450	vpxor l3, t3, l3; \
451	vmovdqu l3, 3 * 32(l);
452
453#define transpose_4x4(x0, x1, x2, x3, t1, t2) \
454	vpunpckhdq x1, x0, t2; \
455	vpunpckldq x1, x0, x0; \
456	\
457	vpunpckldq x3, x2, t1; \
458	vpunpckhdq x3, x2, x2; \
459	\
460	vpunpckhqdq t1, x0, x1; \
461	vpunpcklqdq t1, x0, x0; \
462	\
463	vpunpckhqdq x2, t2, x3; \
464	vpunpcklqdq x2, t2, x2;
465
466#define byteslice_16x16b_fast(a0, b0, c0, d0, a1, b1, c1, d1, a2, b2, c2, d2, \
467			      a3, b3, c3, d3, st0, st1) \
468	vmovdqu d2, st0; \
469	vmovdqu d3, st1; \
470	transpose_4x4(a0, a1, a2, a3, d2, d3); \
471	transpose_4x4(b0, b1, b2, b3, d2, d3); \
472	vmovdqu st0, d2; \
473	vmovdqu st1, d3; \
474	\
475	vmovdqu a0, st0; \
476	vmovdqu a1, st1; \
477	transpose_4x4(c0, c1, c2, c3, a0, a1); \
478	transpose_4x4(d0, d1, d2, d3, a0, a1); \
479	\
480	vbroadcasti128 .Lshufb_16x16b, a0; \
481	vmovdqu st1, a1; \
482	vpshufb a0, a2, a2; \
483	vpshufb a0, a3, a3; \
484	vpshufb a0, b0, b0; \
485	vpshufb a0, b1, b1; \
486	vpshufb a0, b2, b2; \
487	vpshufb a0, b3, b3; \
488	vpshufb a0, a1, a1; \
489	vpshufb a0, c0, c0; \
490	vpshufb a0, c1, c1; \
491	vpshufb a0, c2, c2; \
492	vpshufb a0, c3, c3; \
493	vpshufb a0, d0, d0; \
494	vpshufb a0, d1, d1; \
495	vpshufb a0, d2, d2; \
496	vpshufb a0, d3, d3; \
497	vmovdqu d3, st1; \
498	vmovdqu st0, d3; \
499	vpshufb a0, d3, a0; \
500	vmovdqu d2, st0; \
501	\
502	transpose_4x4(a0, b0, c0, d0, d2, d3); \
503	transpose_4x4(a1, b1, c1, d1, d2, d3); \
504	vmovdqu st0, d2; \
505	vmovdqu st1, d3; \
506	\
507	vmovdqu b0, st0; \
508	vmovdqu b1, st1; \
509	transpose_4x4(a2, b2, c2, d2, b0, b1); \
510	transpose_4x4(a3, b3, c3, d3, b0, b1); \
511	vmovdqu st0, b0; \
512	vmovdqu st1, b1; \
513	/* does not adjust output bytes inside vectors */
514
515/* load blocks to registers and apply pre-whitening */
516#define inpack32_pre(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
517		     y6, y7, rio, key) \
518	vpbroadcastq key, x0; \
519	vpshufb .Lpack_bswap, x0, x0; \
520	\
521	vpxor 0 * 32(rio), x0, y7; \
522	vpxor 1 * 32(rio), x0, y6; \
523	vpxor 2 * 32(rio), x0, y5; \
524	vpxor 3 * 32(rio), x0, y4; \
525	vpxor 4 * 32(rio), x0, y3; \
526	vpxor 5 * 32(rio), x0, y2; \
527	vpxor 6 * 32(rio), x0, y1; \
528	vpxor 7 * 32(rio), x0, y0; \
529	vpxor 8 * 32(rio), x0, x7; \
530	vpxor 9 * 32(rio), x0, x6; \
531	vpxor 10 * 32(rio), x0, x5; \
532	vpxor 11 * 32(rio), x0, x4; \
533	vpxor 12 * 32(rio), x0, x3; \
534	vpxor 13 * 32(rio), x0, x2; \
535	vpxor 14 * 32(rio), x0, x1; \
536	vpxor 15 * 32(rio), x0, x0;
537
538/* byteslice pre-whitened blocks and store to temporary memory */
539#define inpack32_post(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
540		      y6, y7, mem_ab, mem_cd) \
541	byteslice_16x16b_fast(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, \
542			      y4, y5, y6, y7, (mem_ab), (mem_cd)); \
543	\
544	vmovdqu x0, 0 * 32(mem_ab); \
545	vmovdqu x1, 1 * 32(mem_ab); \
546	vmovdqu x2, 2 * 32(mem_ab); \
547	vmovdqu x3, 3 * 32(mem_ab); \
548	vmovdqu x4, 4 * 32(mem_ab); \
549	vmovdqu x5, 5 * 32(mem_ab); \
550	vmovdqu x6, 6 * 32(mem_ab); \
551	vmovdqu x7, 7 * 32(mem_ab); \
552	vmovdqu y0, 0 * 32(mem_cd); \
553	vmovdqu y1, 1 * 32(mem_cd); \
554	vmovdqu y2, 2 * 32(mem_cd); \
555	vmovdqu y3, 3 * 32(mem_cd); \
556	vmovdqu y4, 4 * 32(mem_cd); \
557	vmovdqu y5, 5 * 32(mem_cd); \
558	vmovdqu y6, 6 * 32(mem_cd); \
559	vmovdqu y7, 7 * 32(mem_cd);
560
561/* de-byteslice, apply post-whitening and store blocks */
562#define outunpack32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, \
563		    y5, y6, y7, key, stack_tmp0, stack_tmp1) \
564	byteslice_16x16b_fast(y0, y4, x0, x4, y1, y5, x1, x5, y2, y6, x2, x6, \
565			      y3, y7, x3, x7, stack_tmp0, stack_tmp1); \
566	\
567	vmovdqu x0, stack_tmp0; \
568	\
569	vpbroadcastq key, x0; \
570	vpshufb .Lpack_bswap, x0, x0; \
571	\
572	vpxor x0, y7, y7; \
573	vpxor x0, y6, y6; \
574	vpxor x0, y5, y5; \
575	vpxor x0, y4, y4; \
576	vpxor x0, y3, y3; \
577	vpxor x0, y2, y2; \
578	vpxor x0, y1, y1; \
579	vpxor x0, y0, y0; \
580	vpxor x0, x7, x7; \
581	vpxor x0, x6, x6; \
582	vpxor x0, x5, x5; \
583	vpxor x0, x4, x4; \
584	vpxor x0, x3, x3; \
585	vpxor x0, x2, x2; \
586	vpxor x0, x1, x1; \
587	vpxor stack_tmp0, x0, x0;
588
589#define write_output(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
590		     y6, y7, rio) \
591	vmovdqu x0, 0 * 32(rio); \
592	vmovdqu x1, 1 * 32(rio); \
593	vmovdqu x2, 2 * 32(rio); \
594	vmovdqu x3, 3 * 32(rio); \
595	vmovdqu x4, 4 * 32(rio); \
596	vmovdqu x5, 5 * 32(rio); \
597	vmovdqu x6, 6 * 32(rio); \
598	vmovdqu x7, 7 * 32(rio); \
599	vmovdqu y0, 8 * 32(rio); \
600	vmovdqu y1, 9 * 32(rio); \
601	vmovdqu y2, 10 * 32(rio); \
602	vmovdqu y3, 11 * 32(rio); \
603	vmovdqu y4, 12 * 32(rio); \
604	vmovdqu y5, 13 * 32(rio); \
605	vmovdqu y6, 14 * 32(rio); \
606	vmovdqu y7, 15 * 32(rio);
607
608
609.section	.rodata.cst32.shufb_16x16b, "aM", @progbits, 32
610.align 32
611#define SHUFB_BYTES(idx) \
612	0 + (idx), 4 + (idx), 8 + (idx), 12 + (idx)
613.Lshufb_16x16b:
614	.byte SHUFB_BYTES(0), SHUFB_BYTES(1), SHUFB_BYTES(2), SHUFB_BYTES(3)
615	.byte SHUFB_BYTES(0), SHUFB_BYTES(1), SHUFB_BYTES(2), SHUFB_BYTES(3)
616
617.section	.rodata.cst32.pack_bswap, "aM", @progbits, 32
618.align 32
619.Lpack_bswap:
620	.long 0x00010203, 0x04050607, 0x80808080, 0x80808080
621	.long 0x00010203, 0x04050607, 0x80808080, 0x80808080
622
623/* NB: section is mergeable, all elements must be aligned 16-byte blocks */
624.section	.rodata.cst16, "aM", @progbits, 16
625.align 16
626
627/*
628 * pre-SubByte transform
629 *
630 * pre-lookup for sbox1, sbox2, sbox3:
631 *   swap_bitendianness(
632 *       isom_map_camellia_to_aes(
633 *           camellia_f(
634 *               swap_bitendianess(in)
635 *           )
636 *       )
637 *   )
638 *
639 * (note: '⊕ 0xc5' inside camellia_f())
640 */
641.Lpre_tf_lo_s1:
642	.byte 0x45, 0xe8, 0x40, 0xed, 0x2e, 0x83, 0x2b, 0x86
643	.byte 0x4b, 0xe6, 0x4e, 0xe3, 0x20, 0x8d, 0x25, 0x88
644.Lpre_tf_hi_s1:
645	.byte 0x00, 0x51, 0xf1, 0xa0, 0x8a, 0xdb, 0x7b, 0x2a
646	.byte 0x09, 0x58, 0xf8, 0xa9, 0x83, 0xd2, 0x72, 0x23
647
648/*
649 * pre-SubByte transform
650 *
651 * pre-lookup for sbox4:
652 *   swap_bitendianness(
653 *       isom_map_camellia_to_aes(
654 *           camellia_f(
655 *               swap_bitendianess(in <<< 1)
656 *           )
657 *       )
658 *   )
659 *
660 * (note: '⊕ 0xc5' inside camellia_f())
661 */
662.Lpre_tf_lo_s4:
663	.byte 0x45, 0x40, 0x2e, 0x2b, 0x4b, 0x4e, 0x20, 0x25
664	.byte 0x14, 0x11, 0x7f, 0x7a, 0x1a, 0x1f, 0x71, 0x74
665.Lpre_tf_hi_s4:
666	.byte 0x00, 0xf1, 0x8a, 0x7b, 0x09, 0xf8, 0x83, 0x72
667	.byte 0xad, 0x5c, 0x27, 0xd6, 0xa4, 0x55, 0x2e, 0xdf
668
669/*
670 * post-SubByte transform
671 *
672 * post-lookup for sbox1, sbox4:
673 *  swap_bitendianness(
674 *      camellia_h(
675 *          isom_map_aes_to_camellia(
676 *              swap_bitendianness(
677 *                  aes_inverse_affine_transform(in)
678 *              )
679 *          )
680 *      )
681 *  )
682 *
683 * (note: '⊕ 0x6e' inside camellia_h())
684 */
685.Lpost_tf_lo_s1:
686	.byte 0x3c, 0xcc, 0xcf, 0x3f, 0x32, 0xc2, 0xc1, 0x31
687	.byte 0xdc, 0x2c, 0x2f, 0xdf, 0xd2, 0x22, 0x21, 0xd1
688.Lpost_tf_hi_s1:
689	.byte 0x00, 0xf9, 0x86, 0x7f, 0xd7, 0x2e, 0x51, 0xa8
690	.byte 0xa4, 0x5d, 0x22, 0xdb, 0x73, 0x8a, 0xf5, 0x0c
691
692/*
693 * post-SubByte transform
694 *
695 * post-lookup for sbox2:
696 *  swap_bitendianness(
697 *      camellia_h(
698 *          isom_map_aes_to_camellia(
699 *              swap_bitendianness(
700 *                  aes_inverse_affine_transform(in)
701 *              )
702 *          )
703 *      )
704 *  ) <<< 1
705 *
706 * (note: '⊕ 0x6e' inside camellia_h())
707 */
708.Lpost_tf_lo_s2:
709	.byte 0x78, 0x99, 0x9f, 0x7e, 0x64, 0x85, 0x83, 0x62
710	.byte 0xb9, 0x58, 0x5e, 0xbf, 0xa5, 0x44, 0x42, 0xa3
711.Lpost_tf_hi_s2:
712	.byte 0x00, 0xf3, 0x0d, 0xfe, 0xaf, 0x5c, 0xa2, 0x51
713	.byte 0x49, 0xba, 0x44, 0xb7, 0xe6, 0x15, 0xeb, 0x18
714
715/*
716 * post-SubByte transform
717 *
718 * post-lookup for sbox3:
719 *  swap_bitendianness(
720 *      camellia_h(
721 *          isom_map_aes_to_camellia(
722 *              swap_bitendianness(
723 *                  aes_inverse_affine_transform(in)
724 *              )
725 *          )
726 *      )
727 *  ) >>> 1
728 *
729 * (note: '⊕ 0x6e' inside camellia_h())
730 */
731.Lpost_tf_lo_s3:
732	.byte 0x1e, 0x66, 0xe7, 0x9f, 0x19, 0x61, 0xe0, 0x98
733	.byte 0x6e, 0x16, 0x97, 0xef, 0x69, 0x11, 0x90, 0xe8
734.Lpost_tf_hi_s3:
735	.byte 0x00, 0xfc, 0x43, 0xbf, 0xeb, 0x17, 0xa8, 0x54
736	.byte 0x52, 0xae, 0x11, 0xed, 0xb9, 0x45, 0xfa, 0x06
737
738/* For isolating SubBytes from AESENCLAST, inverse shift row */
739.Linv_shift_row:
740	.byte 0x00, 0x0d, 0x0a, 0x07, 0x04, 0x01, 0x0e, 0x0b
741	.byte 0x08, 0x05, 0x02, 0x0f, 0x0c, 0x09, 0x06, 0x03
742
743.section	.rodata.cst4.L0f0f0f0f, "aM", @progbits, 4
744.align 4
745/* 4-bit mask */
746.L0f0f0f0f:
747	.long 0x0f0f0f0f
748
749.text
750
751.align 8
752SYM_FUNC_START_LOCAL(__camellia_enc_blk32)
753	/* input:
754	 *	%rdi: ctx, CTX
755	 *	%rax: temporary storage, 512 bytes
756	 *	%ymm0..%ymm15: 32 plaintext blocks
757	 * output:
758	 *	%ymm0..%ymm15: 32 encrypted blocks, order swapped:
759	 *       7, 8, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8
760	 */
761	FRAME_BEGIN
762
763	leaq 8 * 32(%rax), %rcx;
764
765	inpack32_post(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
766		      %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
767		      %ymm15, %rax, %rcx);
768
769	enc_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
770		     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
771		     %ymm15, %rax, %rcx, 0);
772
773	fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
774	      %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
775	      %ymm15,
776	      ((key_table + (8) * 8) + 0)(CTX),
777	      ((key_table + (8) * 8) + 4)(CTX),
778	      ((key_table + (8) * 8) + 8)(CTX),
779	      ((key_table + (8) * 8) + 12)(CTX));
780
781	enc_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
782		     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
783		     %ymm15, %rax, %rcx, 8);
784
785	fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
786	      %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
787	      %ymm15,
788	      ((key_table + (16) * 8) + 0)(CTX),
789	      ((key_table + (16) * 8) + 4)(CTX),
790	      ((key_table + (16) * 8) + 8)(CTX),
791	      ((key_table + (16) * 8) + 12)(CTX));
792
793	enc_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
794		     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
795		     %ymm15, %rax, %rcx, 16);
796
797	movl $24, %r8d;
798	cmpl $16, key_length(CTX);
799	jne .Lenc_max32;
800
801.Lenc_done:
802	/* load CD for output */
803	vmovdqu 0 * 32(%rcx), %ymm8;
804	vmovdqu 1 * 32(%rcx), %ymm9;
805	vmovdqu 2 * 32(%rcx), %ymm10;
806	vmovdqu 3 * 32(%rcx), %ymm11;
807	vmovdqu 4 * 32(%rcx), %ymm12;
808	vmovdqu 5 * 32(%rcx), %ymm13;
809	vmovdqu 6 * 32(%rcx), %ymm14;
810	vmovdqu 7 * 32(%rcx), %ymm15;
811
812	outunpack32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
813		    %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
814		    %ymm15, (key_table)(CTX, %r8, 8), (%rax), 1 * 32(%rax));
815
816	FRAME_END
817	RET;
818
819.align 8
820.Lenc_max32:
821	movl $32, %r8d;
822
823	fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
824	      %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
825	      %ymm15,
826	      ((key_table + (24) * 8) + 0)(CTX),
827	      ((key_table + (24) * 8) + 4)(CTX),
828	      ((key_table + (24) * 8) + 8)(CTX),
829	      ((key_table + (24) * 8) + 12)(CTX));
830
831	enc_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
832		     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
833		     %ymm15, %rax, %rcx, 24);
834
835	jmp .Lenc_done;
836SYM_FUNC_END(__camellia_enc_blk32)
837
838.align 8
839SYM_FUNC_START_LOCAL(__camellia_dec_blk32)
840	/* input:
841	 *	%rdi: ctx, CTX
842	 *	%rax: temporary storage, 512 bytes
843	 *	%r8d: 24 for 16 byte key, 32 for larger
844	 *	%ymm0..%ymm15: 16 encrypted blocks
845	 * output:
846	 *	%ymm0..%ymm15: 16 plaintext blocks, order swapped:
847	 *       7, 8, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8
848	 */
849	FRAME_BEGIN
850
851	leaq 8 * 32(%rax), %rcx;
852
853	inpack32_post(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
854		      %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
855		      %ymm15, %rax, %rcx);
856
857	cmpl $32, %r8d;
858	je .Ldec_max32;
859
860.Ldec_max24:
861	dec_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
862		     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
863		     %ymm15, %rax, %rcx, 16);
864
865	fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
866	      %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
867	      %ymm15,
868	      ((key_table + (16) * 8) + 8)(CTX),
869	      ((key_table + (16) * 8) + 12)(CTX),
870	      ((key_table + (16) * 8) + 0)(CTX),
871	      ((key_table + (16) * 8) + 4)(CTX));
872
873	dec_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
874		     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
875		     %ymm15, %rax, %rcx, 8);
876
877	fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
878	      %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
879	      %ymm15,
880	      ((key_table + (8) * 8) + 8)(CTX),
881	      ((key_table + (8) * 8) + 12)(CTX),
882	      ((key_table + (8) * 8) + 0)(CTX),
883	      ((key_table + (8) * 8) + 4)(CTX));
884
885	dec_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
886		     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
887		     %ymm15, %rax, %rcx, 0);
888
889	/* load CD for output */
890	vmovdqu 0 * 32(%rcx), %ymm8;
891	vmovdqu 1 * 32(%rcx), %ymm9;
892	vmovdqu 2 * 32(%rcx), %ymm10;
893	vmovdqu 3 * 32(%rcx), %ymm11;
894	vmovdqu 4 * 32(%rcx), %ymm12;
895	vmovdqu 5 * 32(%rcx), %ymm13;
896	vmovdqu 6 * 32(%rcx), %ymm14;
897	vmovdqu 7 * 32(%rcx), %ymm15;
898
899	outunpack32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
900		    %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
901		    %ymm15, (key_table)(CTX), (%rax), 1 * 32(%rax));
902
903	FRAME_END
904	RET;
905
906.align 8
907.Ldec_max32:
908	dec_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
909		     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
910		     %ymm15, %rax, %rcx, 24);
911
912	fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
913	      %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
914	      %ymm15,
915	      ((key_table + (24) * 8) + 8)(CTX),
916	      ((key_table + (24) * 8) + 12)(CTX),
917	      ((key_table + (24) * 8) + 0)(CTX),
918	      ((key_table + (24) * 8) + 4)(CTX));
919
920	jmp .Ldec_max24;
921SYM_FUNC_END(__camellia_dec_blk32)
922
923SYM_FUNC_START(camellia_ecb_enc_32way)
924	/* input:
925	 *	%rdi: ctx, CTX
926	 *	%rsi: dst (32 blocks)
927	 *	%rdx: src (32 blocks)
928	 */
929	FRAME_BEGIN
930
931	vzeroupper;
932
933	inpack32_pre(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
934		     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
935		     %ymm15, %rdx, (key_table)(CTX));
936
937	/* now dst can be used as temporary buffer (even in src == dst case) */
938	movq	%rsi, %rax;
939
940	call __camellia_enc_blk32;
941
942	write_output(%ymm7, %ymm6, %ymm5, %ymm4, %ymm3, %ymm2, %ymm1, %ymm0,
943		     %ymm15, %ymm14, %ymm13, %ymm12, %ymm11, %ymm10, %ymm9,
944		     %ymm8, %rsi);
945
946	vzeroupper;
947
948	FRAME_END
949	RET;
950SYM_FUNC_END(camellia_ecb_enc_32way)
951
952SYM_FUNC_START(camellia_ecb_dec_32way)
953	/* input:
954	 *	%rdi: ctx, CTX
955	 *	%rsi: dst (32 blocks)
956	 *	%rdx: src (32 blocks)
957	 */
958	FRAME_BEGIN
959
960	vzeroupper;
961
962	cmpl $16, key_length(CTX);
963	movl $32, %r8d;
964	movl $24, %eax;
965	cmovel %eax, %r8d; /* max */
966
967	inpack32_pre(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
968		     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
969		     %ymm15, %rdx, (key_table)(CTX, %r8, 8));
970
971	/* now dst can be used as temporary buffer (even in src == dst case) */
972	movq	%rsi, %rax;
973
974	call __camellia_dec_blk32;
975
976	write_output(%ymm7, %ymm6, %ymm5, %ymm4, %ymm3, %ymm2, %ymm1, %ymm0,
977		     %ymm15, %ymm14, %ymm13, %ymm12, %ymm11, %ymm10, %ymm9,
978		     %ymm8, %rsi);
979
980	vzeroupper;
981
982	FRAME_END
983	RET;
984SYM_FUNC_END(camellia_ecb_dec_32way)
985
986SYM_FUNC_START(camellia_cbc_dec_32way)
987	/* input:
988	 *	%rdi: ctx, CTX
989	 *	%rsi: dst (32 blocks)
990	 *	%rdx: src (32 blocks)
991	 */
992	FRAME_BEGIN
993	subq $(16 * 32), %rsp;
994
995	vzeroupper;
996
997	cmpl $16, key_length(CTX);
998	movl $32, %r8d;
999	movl $24, %eax;
1000	cmovel %eax, %r8d; /* max */
1001
1002	inpack32_pre(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
1003		     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
1004		     %ymm15, %rdx, (key_table)(CTX, %r8, 8));
1005
1006	cmpq %rsi, %rdx;
1007	je .Lcbc_dec_use_stack;
1008
1009	/* dst can be used as temporary storage, src is not overwritten. */
1010	movq %rsi, %rax;
1011	jmp .Lcbc_dec_continue;
1012
1013.Lcbc_dec_use_stack:
1014	/*
1015	 * dst still in-use (because dst == src), so use stack for temporary
1016	 * storage.
1017	 */
1018	movq %rsp, %rax;
1019
1020.Lcbc_dec_continue:
1021	call __camellia_dec_blk32;
1022
1023	vmovdqu %ymm7, (%rax);
1024	vpxor %ymm7, %ymm7, %ymm7;
1025	vinserti128 $1, (%rdx), %ymm7, %ymm7;
1026	vpxor (%rax), %ymm7, %ymm7;
1027	vpxor (0 * 32 + 16)(%rdx), %ymm6, %ymm6;
1028	vpxor (1 * 32 + 16)(%rdx), %ymm5, %ymm5;
1029	vpxor (2 * 32 + 16)(%rdx), %ymm4, %ymm4;
1030	vpxor (3 * 32 + 16)(%rdx), %ymm3, %ymm3;
1031	vpxor (4 * 32 + 16)(%rdx), %ymm2, %ymm2;
1032	vpxor (5 * 32 + 16)(%rdx), %ymm1, %ymm1;
1033	vpxor (6 * 32 + 16)(%rdx), %ymm0, %ymm0;
1034	vpxor (7 * 32 + 16)(%rdx), %ymm15, %ymm15;
1035	vpxor (8 * 32 + 16)(%rdx), %ymm14, %ymm14;
1036	vpxor (9 * 32 + 16)(%rdx), %ymm13, %ymm13;
1037	vpxor (10 * 32 + 16)(%rdx), %ymm12, %ymm12;
1038	vpxor (11 * 32 + 16)(%rdx), %ymm11, %ymm11;
1039	vpxor (12 * 32 + 16)(%rdx), %ymm10, %ymm10;
1040	vpxor (13 * 32 + 16)(%rdx), %ymm9, %ymm9;
1041	vpxor (14 * 32 + 16)(%rdx), %ymm8, %ymm8;
1042	write_output(%ymm7, %ymm6, %ymm5, %ymm4, %ymm3, %ymm2, %ymm1, %ymm0,
1043		     %ymm15, %ymm14, %ymm13, %ymm12, %ymm11, %ymm10, %ymm9,
1044		     %ymm8, %rsi);
1045
1046	vzeroupper;
1047
1048	addq $(16 * 32), %rsp;
1049	FRAME_END
1050	RET;
1051SYM_FUNC_END(camellia_cbc_dec_32way)
1052