1/* 2 * x86_64/AVX/AES-NI assembler implementation of Camellia 3 * 4 * Copyright © 2012-2013 Jussi Kivilinna <jussi.kivilinna@iki.fi> 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 */ 12 13/* 14 * Version licensed under 2-clause BSD License is available at: 15 * http://koti.mbnet.fi/axh/crypto/camellia-BSD-1.2.0-aesni1.tar.xz 16 */ 17 18#include <linux/linkage.h> 19#include <linux/cfi_types.h> 20#include <asm/frame.h> 21 22#define CAMELLIA_TABLE_BYTE_LEN 272 23 24/* struct camellia_ctx: */ 25#define key_table 0 26#define key_length CAMELLIA_TABLE_BYTE_LEN 27 28/* register macros */ 29#define CTX %rdi 30 31/********************************************************************** 32 16-way camellia 33 **********************************************************************/ 34#define filter_8bit(x, lo_t, hi_t, mask4bit, tmp0) \ 35 vpand x, mask4bit, tmp0; \ 36 vpandn x, mask4bit, x; \ 37 vpsrld $4, x, x; \ 38 \ 39 vpshufb tmp0, lo_t, tmp0; \ 40 vpshufb x, hi_t, x; \ 41 vpxor tmp0, x, x; 42 43/* 44 * IN: 45 * x0..x7: byte-sliced AB state 46 * mem_cd: register pointer storing CD state 47 * key: index for key material 48 * OUT: 49 * x0..x7: new byte-sliced CD state 50 */ 51#define roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, t0, t1, t2, t3, t4, t5, t6, \ 52 t7, mem_cd, key) \ 53 /* \ 54 * S-function with AES subbytes \ 55 */ \ 56 vmovdqa .Linv_shift_row(%rip), t4; \ 57 vbroadcastss .L0f0f0f0f(%rip), t7; \ 58 vmovdqa .Lpre_tf_lo_s1(%rip), t0; \ 59 vmovdqa .Lpre_tf_hi_s1(%rip), t1; \ 60 \ 61 /* AES inverse shift rows */ \ 62 vpshufb t4, x0, x0; \ 63 vpshufb t4, x7, x7; \ 64 vpshufb t4, x1, x1; \ 65 vpshufb t4, x4, x4; \ 66 vpshufb t4, x2, x2; \ 67 vpshufb t4, x5, x5; \ 68 vpshufb t4, x3, x3; \ 69 vpshufb t4, x6, x6; \ 70 \ 71 /* prefilter sboxes 1, 2 and 3 */ \ 72 vmovdqa .Lpre_tf_lo_s4(%rip), t2; \ 73 vmovdqa .Lpre_tf_hi_s4(%rip), t3; \ 74 filter_8bit(x0, t0, t1, t7, t6); \ 75 filter_8bit(x7, t0, t1, t7, t6); \ 76 filter_8bit(x1, t0, t1, t7, t6); \ 77 filter_8bit(x4, t0, t1, t7, t6); \ 78 filter_8bit(x2, t0, t1, t7, t6); \ 79 filter_8bit(x5, t0, t1, t7, t6); \ 80 \ 81 /* prefilter sbox 4 */ \ 82 vpxor t4, t4, t4; \ 83 filter_8bit(x3, t2, t3, t7, t6); \ 84 filter_8bit(x6, t2, t3, t7, t6); \ 85 \ 86 /* AES subbytes + AES shift rows */ \ 87 vmovdqa .Lpost_tf_lo_s1(%rip), t0; \ 88 vmovdqa .Lpost_tf_hi_s1(%rip), t1; \ 89 vaesenclast t4, x0, x0; \ 90 vaesenclast t4, x7, x7; \ 91 vaesenclast t4, x1, x1; \ 92 vaesenclast t4, x4, x4; \ 93 vaesenclast t4, x2, x2; \ 94 vaesenclast t4, x5, x5; \ 95 vaesenclast t4, x3, x3; \ 96 vaesenclast t4, x6, x6; \ 97 \ 98 /* postfilter sboxes 1 and 4 */ \ 99 vmovdqa .Lpost_tf_lo_s3(%rip), t2; \ 100 vmovdqa .Lpost_tf_hi_s3(%rip), t3; \ 101 filter_8bit(x0, t0, t1, t7, t6); \ 102 filter_8bit(x7, t0, t1, t7, t6); \ 103 filter_8bit(x3, t0, t1, t7, t6); \ 104 filter_8bit(x6, t0, t1, t7, t6); \ 105 \ 106 /* postfilter sbox 3 */ \ 107 vmovdqa .Lpost_tf_lo_s2(%rip), t4; \ 108 vmovdqa .Lpost_tf_hi_s2(%rip), t5; \ 109 filter_8bit(x2, t2, t3, t7, t6); \ 110 filter_8bit(x5, t2, t3, t7, t6); \ 111 \ 112 vpxor t6, t6, t6; \ 113 vmovq key, t0; \ 114 \ 115 /* postfilter sbox 2 */ \ 116 filter_8bit(x1, t4, t5, t7, t2); \ 117 filter_8bit(x4, t4, t5, t7, t2); \ 118 \ 119 vpsrldq $5, t0, t5; \ 120 vpsrldq $1, t0, t1; \ 121 vpsrldq $2, t0, t2; \ 122 vpsrldq $3, t0, t3; \ 123 vpsrldq $4, t0, t4; \ 124 vpshufb t6, t0, t0; \ 125 vpshufb t6, t1, t1; \ 126 vpshufb t6, t2, t2; \ 127 vpshufb t6, t3, t3; \ 128 vpshufb t6, t4, t4; \ 129 vpsrldq $2, t5, t7; \ 130 vpshufb t6, t7, t7; \ 131 \ 132 /* \ 133 * P-function \ 134 */ \ 135 vpxor x5, x0, x0; \ 136 vpxor x6, x1, x1; \ 137 vpxor x7, x2, x2; \ 138 vpxor x4, x3, x3; \ 139 \ 140 vpxor x2, x4, x4; \ 141 vpxor x3, x5, x5; \ 142 vpxor x0, x6, x6; \ 143 vpxor x1, x7, x7; \ 144 \ 145 vpxor x7, x0, x0; \ 146 vpxor x4, x1, x1; \ 147 vpxor x5, x2, x2; \ 148 vpxor x6, x3, x3; \ 149 \ 150 vpxor x3, x4, x4; \ 151 vpxor x0, x5, x5; \ 152 vpxor x1, x6, x6; \ 153 vpxor x2, x7, x7; /* note: high and low parts swapped */ \ 154 \ 155 /* \ 156 * Add key material and result to CD (x becomes new CD) \ 157 */ \ 158 \ 159 vpxor t3, x4, x4; \ 160 vpxor 0 * 16(mem_cd), x4, x4; \ 161 \ 162 vpxor t2, x5, x5; \ 163 vpxor 1 * 16(mem_cd), x5, x5; \ 164 \ 165 vpsrldq $1, t5, t3; \ 166 vpshufb t6, t5, t5; \ 167 vpshufb t6, t3, t6; \ 168 \ 169 vpxor t1, x6, x6; \ 170 vpxor 2 * 16(mem_cd), x6, x6; \ 171 \ 172 vpxor t0, x7, x7; \ 173 vpxor 3 * 16(mem_cd), x7, x7; \ 174 \ 175 vpxor t7, x0, x0; \ 176 vpxor 4 * 16(mem_cd), x0, x0; \ 177 \ 178 vpxor t6, x1, x1; \ 179 vpxor 5 * 16(mem_cd), x1, x1; \ 180 \ 181 vpxor t5, x2, x2; \ 182 vpxor 6 * 16(mem_cd), x2, x2; \ 183 \ 184 vpxor t4, x3, x3; \ 185 vpxor 7 * 16(mem_cd), x3, x3; 186 187/* 188 * Size optimization... with inlined roundsm16, binary would be over 5 times 189 * larger and would only be 0.5% faster (on sandy-bridge). 190 */ 191.align 8 192SYM_FUNC_START_LOCAL(roundsm16_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd) 193 roundsm16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, 194 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, %xmm15, 195 %rcx, (%r9)); 196 RET; 197SYM_FUNC_END(roundsm16_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd) 198 199.align 8 200SYM_FUNC_START_LOCAL(roundsm16_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab) 201 roundsm16(%xmm4, %xmm5, %xmm6, %xmm7, %xmm0, %xmm1, %xmm2, %xmm3, 202 %xmm12, %xmm13, %xmm14, %xmm15, %xmm8, %xmm9, %xmm10, %xmm11, 203 %rax, (%r9)); 204 RET; 205SYM_FUNC_END(roundsm16_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab) 206 207/* 208 * IN/OUT: 209 * x0..x7: byte-sliced AB state preloaded 210 * mem_ab: byte-sliced AB state in memory 211 * mem_cb: byte-sliced CD state in memory 212 */ 213#define two_roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \ 214 y6, y7, mem_ab, mem_cd, i, dir, store_ab) \ 215 leaq (key_table + (i) * 8)(CTX), %r9; \ 216 call roundsm16_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd; \ 217 \ 218 vmovdqu x4, 0 * 16(mem_cd); \ 219 vmovdqu x5, 1 * 16(mem_cd); \ 220 vmovdqu x6, 2 * 16(mem_cd); \ 221 vmovdqu x7, 3 * 16(mem_cd); \ 222 vmovdqu x0, 4 * 16(mem_cd); \ 223 vmovdqu x1, 5 * 16(mem_cd); \ 224 vmovdqu x2, 6 * 16(mem_cd); \ 225 vmovdqu x3, 7 * 16(mem_cd); \ 226 \ 227 leaq (key_table + ((i) + (dir)) * 8)(CTX), %r9; \ 228 call roundsm16_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab; \ 229 \ 230 store_ab(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab); 231 232#define dummy_store(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab) /* do nothing */ 233 234#define store_ab_state(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab) \ 235 /* Store new AB state */ \ 236 vmovdqu x0, 0 * 16(mem_ab); \ 237 vmovdqu x1, 1 * 16(mem_ab); \ 238 vmovdqu x2, 2 * 16(mem_ab); \ 239 vmovdqu x3, 3 * 16(mem_ab); \ 240 vmovdqu x4, 4 * 16(mem_ab); \ 241 vmovdqu x5, 5 * 16(mem_ab); \ 242 vmovdqu x6, 6 * 16(mem_ab); \ 243 vmovdqu x7, 7 * 16(mem_ab); 244 245#define enc_rounds16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \ 246 y6, y7, mem_ab, mem_cd, i) \ 247 two_roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \ 248 y6, y7, mem_ab, mem_cd, (i) + 2, 1, store_ab_state); \ 249 two_roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \ 250 y6, y7, mem_ab, mem_cd, (i) + 4, 1, store_ab_state); \ 251 two_roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \ 252 y6, y7, mem_ab, mem_cd, (i) + 6, 1, dummy_store); 253 254#define dec_rounds16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \ 255 y6, y7, mem_ab, mem_cd, i) \ 256 two_roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \ 257 y6, y7, mem_ab, mem_cd, (i) + 7, -1, store_ab_state); \ 258 two_roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \ 259 y6, y7, mem_ab, mem_cd, (i) + 5, -1, store_ab_state); \ 260 two_roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \ 261 y6, y7, mem_ab, mem_cd, (i) + 3, -1, dummy_store); 262 263/* 264 * IN: 265 * v0..3: byte-sliced 32-bit integers 266 * OUT: 267 * v0..3: (IN <<< 1) 268 */ 269#define rol32_1_16(v0, v1, v2, v3, t0, t1, t2, zero) \ 270 vpcmpgtb v0, zero, t0; \ 271 vpaddb v0, v0, v0; \ 272 vpabsb t0, t0; \ 273 \ 274 vpcmpgtb v1, zero, t1; \ 275 vpaddb v1, v1, v1; \ 276 vpabsb t1, t1; \ 277 \ 278 vpcmpgtb v2, zero, t2; \ 279 vpaddb v2, v2, v2; \ 280 vpabsb t2, t2; \ 281 \ 282 vpor t0, v1, v1; \ 283 \ 284 vpcmpgtb v3, zero, t0; \ 285 vpaddb v3, v3, v3; \ 286 vpabsb t0, t0; \ 287 \ 288 vpor t1, v2, v2; \ 289 vpor t2, v3, v3; \ 290 vpor t0, v0, v0; 291 292/* 293 * IN: 294 * r: byte-sliced AB state in memory 295 * l: byte-sliced CD state in memory 296 * OUT: 297 * x0..x7: new byte-sliced CD state 298 */ 299#define fls16(l, l0, l1, l2, l3, l4, l5, l6, l7, r, t0, t1, t2, t3, tt0, \ 300 tt1, tt2, tt3, kll, klr, krl, krr) \ 301 /* \ 302 * t0 = kll; \ 303 * t0 &= ll; \ 304 * lr ^= rol32(t0, 1); \ 305 */ \ 306 vpxor tt0, tt0, tt0; \ 307 vmovd kll, t0; \ 308 vpshufb tt0, t0, t3; \ 309 vpsrldq $1, t0, t0; \ 310 vpshufb tt0, t0, t2; \ 311 vpsrldq $1, t0, t0; \ 312 vpshufb tt0, t0, t1; \ 313 vpsrldq $1, t0, t0; \ 314 vpshufb tt0, t0, t0; \ 315 \ 316 vpand l0, t0, t0; \ 317 vpand l1, t1, t1; \ 318 vpand l2, t2, t2; \ 319 vpand l3, t3, t3; \ 320 \ 321 rol32_1_16(t3, t2, t1, t0, tt1, tt2, tt3, tt0); \ 322 \ 323 vpxor l4, t0, l4; \ 324 vmovdqu l4, 4 * 16(l); \ 325 vpxor l5, t1, l5; \ 326 vmovdqu l5, 5 * 16(l); \ 327 vpxor l6, t2, l6; \ 328 vmovdqu l6, 6 * 16(l); \ 329 vpxor l7, t3, l7; \ 330 vmovdqu l7, 7 * 16(l); \ 331 \ 332 /* \ 333 * t2 = krr; \ 334 * t2 |= rr; \ 335 * rl ^= t2; \ 336 */ \ 337 \ 338 vmovd krr, t0; \ 339 vpshufb tt0, t0, t3; \ 340 vpsrldq $1, t0, t0; \ 341 vpshufb tt0, t0, t2; \ 342 vpsrldq $1, t0, t0; \ 343 vpshufb tt0, t0, t1; \ 344 vpsrldq $1, t0, t0; \ 345 vpshufb tt0, t0, t0; \ 346 \ 347 vpor 4 * 16(r), t0, t0; \ 348 vpor 5 * 16(r), t1, t1; \ 349 vpor 6 * 16(r), t2, t2; \ 350 vpor 7 * 16(r), t3, t3; \ 351 \ 352 vpxor 0 * 16(r), t0, t0; \ 353 vpxor 1 * 16(r), t1, t1; \ 354 vpxor 2 * 16(r), t2, t2; \ 355 vpxor 3 * 16(r), t3, t3; \ 356 vmovdqu t0, 0 * 16(r); \ 357 vmovdqu t1, 1 * 16(r); \ 358 vmovdqu t2, 2 * 16(r); \ 359 vmovdqu t3, 3 * 16(r); \ 360 \ 361 /* \ 362 * t2 = krl; \ 363 * t2 &= rl; \ 364 * rr ^= rol32(t2, 1); \ 365 */ \ 366 vmovd krl, t0; \ 367 vpshufb tt0, t0, t3; \ 368 vpsrldq $1, t0, t0; \ 369 vpshufb tt0, t0, t2; \ 370 vpsrldq $1, t0, t0; \ 371 vpshufb tt0, t0, t1; \ 372 vpsrldq $1, t0, t0; \ 373 vpshufb tt0, t0, t0; \ 374 \ 375 vpand 0 * 16(r), t0, t0; \ 376 vpand 1 * 16(r), t1, t1; \ 377 vpand 2 * 16(r), t2, t2; \ 378 vpand 3 * 16(r), t3, t3; \ 379 \ 380 rol32_1_16(t3, t2, t1, t0, tt1, tt2, tt3, tt0); \ 381 \ 382 vpxor 4 * 16(r), t0, t0; \ 383 vpxor 5 * 16(r), t1, t1; \ 384 vpxor 6 * 16(r), t2, t2; \ 385 vpxor 7 * 16(r), t3, t3; \ 386 vmovdqu t0, 4 * 16(r); \ 387 vmovdqu t1, 5 * 16(r); \ 388 vmovdqu t2, 6 * 16(r); \ 389 vmovdqu t3, 7 * 16(r); \ 390 \ 391 /* \ 392 * t0 = klr; \ 393 * t0 |= lr; \ 394 * ll ^= t0; \ 395 */ \ 396 \ 397 vmovd klr, t0; \ 398 vpshufb tt0, t0, t3; \ 399 vpsrldq $1, t0, t0; \ 400 vpshufb tt0, t0, t2; \ 401 vpsrldq $1, t0, t0; \ 402 vpshufb tt0, t0, t1; \ 403 vpsrldq $1, t0, t0; \ 404 vpshufb tt0, t0, t0; \ 405 \ 406 vpor l4, t0, t0; \ 407 vpor l5, t1, t1; \ 408 vpor l6, t2, t2; \ 409 vpor l7, t3, t3; \ 410 \ 411 vpxor l0, t0, l0; \ 412 vmovdqu l0, 0 * 16(l); \ 413 vpxor l1, t1, l1; \ 414 vmovdqu l1, 1 * 16(l); \ 415 vpxor l2, t2, l2; \ 416 vmovdqu l2, 2 * 16(l); \ 417 vpxor l3, t3, l3; \ 418 vmovdqu l3, 3 * 16(l); 419 420#define transpose_4x4(x0, x1, x2, x3, t1, t2) \ 421 vpunpckhdq x1, x0, t2; \ 422 vpunpckldq x1, x0, x0; \ 423 \ 424 vpunpckldq x3, x2, t1; \ 425 vpunpckhdq x3, x2, x2; \ 426 \ 427 vpunpckhqdq t1, x0, x1; \ 428 vpunpcklqdq t1, x0, x0; \ 429 \ 430 vpunpckhqdq x2, t2, x3; \ 431 vpunpcklqdq x2, t2, x2; 432 433#define byteslice_16x16b(a0, b0, c0, d0, a1, b1, c1, d1, a2, b2, c2, d2, a3, \ 434 b3, c3, d3, st0, st1) \ 435 vmovdqu d2, st0; \ 436 vmovdqu d3, st1; \ 437 transpose_4x4(a0, a1, a2, a3, d2, d3); \ 438 transpose_4x4(b0, b1, b2, b3, d2, d3); \ 439 vmovdqu st0, d2; \ 440 vmovdqu st1, d3; \ 441 \ 442 vmovdqu a0, st0; \ 443 vmovdqu a1, st1; \ 444 transpose_4x4(c0, c1, c2, c3, a0, a1); \ 445 transpose_4x4(d0, d1, d2, d3, a0, a1); \ 446 \ 447 vmovdqu .Lshufb_16x16b(%rip), a0; \ 448 vmovdqu st1, a1; \ 449 vpshufb a0, a2, a2; \ 450 vpshufb a0, a3, a3; \ 451 vpshufb a0, b0, b0; \ 452 vpshufb a0, b1, b1; \ 453 vpshufb a0, b2, b2; \ 454 vpshufb a0, b3, b3; \ 455 vpshufb a0, a1, a1; \ 456 vpshufb a0, c0, c0; \ 457 vpshufb a0, c1, c1; \ 458 vpshufb a0, c2, c2; \ 459 vpshufb a0, c3, c3; \ 460 vpshufb a0, d0, d0; \ 461 vpshufb a0, d1, d1; \ 462 vpshufb a0, d2, d2; \ 463 vpshufb a0, d3, d3; \ 464 vmovdqu d3, st1; \ 465 vmovdqu st0, d3; \ 466 vpshufb a0, d3, a0; \ 467 vmovdqu d2, st0; \ 468 \ 469 transpose_4x4(a0, b0, c0, d0, d2, d3); \ 470 transpose_4x4(a1, b1, c1, d1, d2, d3); \ 471 vmovdqu st0, d2; \ 472 vmovdqu st1, d3; \ 473 \ 474 vmovdqu b0, st0; \ 475 vmovdqu b1, st1; \ 476 transpose_4x4(a2, b2, c2, d2, b0, b1); \ 477 transpose_4x4(a3, b3, c3, d3, b0, b1); \ 478 vmovdqu st0, b0; \ 479 vmovdqu st1, b1; \ 480 /* does not adjust output bytes inside vectors */ 481 482/* load blocks to registers and apply pre-whitening */ 483#define inpack16_pre(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \ 484 y6, y7, rio, key) \ 485 vmovq key, x0; \ 486 vpshufb .Lpack_bswap(%rip), x0, x0; \ 487 \ 488 vpxor 0 * 16(rio), x0, y7; \ 489 vpxor 1 * 16(rio), x0, y6; \ 490 vpxor 2 * 16(rio), x0, y5; \ 491 vpxor 3 * 16(rio), x0, y4; \ 492 vpxor 4 * 16(rio), x0, y3; \ 493 vpxor 5 * 16(rio), x0, y2; \ 494 vpxor 6 * 16(rio), x0, y1; \ 495 vpxor 7 * 16(rio), x0, y0; \ 496 vpxor 8 * 16(rio), x0, x7; \ 497 vpxor 9 * 16(rio), x0, x6; \ 498 vpxor 10 * 16(rio), x0, x5; \ 499 vpxor 11 * 16(rio), x0, x4; \ 500 vpxor 12 * 16(rio), x0, x3; \ 501 vpxor 13 * 16(rio), x0, x2; \ 502 vpxor 14 * 16(rio), x0, x1; \ 503 vpxor 15 * 16(rio), x0, x0; 504 505/* byteslice pre-whitened blocks and store to temporary memory */ 506#define inpack16_post(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \ 507 y6, y7, mem_ab, mem_cd) \ 508 byteslice_16x16b(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, \ 509 y5, y6, y7, (mem_ab), (mem_cd)); \ 510 \ 511 vmovdqu x0, 0 * 16(mem_ab); \ 512 vmovdqu x1, 1 * 16(mem_ab); \ 513 vmovdqu x2, 2 * 16(mem_ab); \ 514 vmovdqu x3, 3 * 16(mem_ab); \ 515 vmovdqu x4, 4 * 16(mem_ab); \ 516 vmovdqu x5, 5 * 16(mem_ab); \ 517 vmovdqu x6, 6 * 16(mem_ab); \ 518 vmovdqu x7, 7 * 16(mem_ab); \ 519 vmovdqu y0, 0 * 16(mem_cd); \ 520 vmovdqu y1, 1 * 16(mem_cd); \ 521 vmovdqu y2, 2 * 16(mem_cd); \ 522 vmovdqu y3, 3 * 16(mem_cd); \ 523 vmovdqu y4, 4 * 16(mem_cd); \ 524 vmovdqu y5, 5 * 16(mem_cd); \ 525 vmovdqu y6, 6 * 16(mem_cd); \ 526 vmovdqu y7, 7 * 16(mem_cd); 527 528/* de-byteslice, apply post-whitening and store blocks */ 529#define outunpack16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, \ 530 y5, y6, y7, key, stack_tmp0, stack_tmp1) \ 531 byteslice_16x16b(y0, y4, x0, x4, y1, y5, x1, x5, y2, y6, x2, x6, y3, \ 532 y7, x3, x7, stack_tmp0, stack_tmp1); \ 533 \ 534 vmovdqu x0, stack_tmp0; \ 535 \ 536 vmovq key, x0; \ 537 vpshufb .Lpack_bswap(%rip), x0, x0; \ 538 \ 539 vpxor x0, y7, y7; \ 540 vpxor x0, y6, y6; \ 541 vpxor x0, y5, y5; \ 542 vpxor x0, y4, y4; \ 543 vpxor x0, y3, y3; \ 544 vpxor x0, y2, y2; \ 545 vpxor x0, y1, y1; \ 546 vpxor x0, y0, y0; \ 547 vpxor x0, x7, x7; \ 548 vpxor x0, x6, x6; \ 549 vpxor x0, x5, x5; \ 550 vpxor x0, x4, x4; \ 551 vpxor x0, x3, x3; \ 552 vpxor x0, x2, x2; \ 553 vpxor x0, x1, x1; \ 554 vpxor stack_tmp0, x0, x0; 555 556#define write_output(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \ 557 y6, y7, rio) \ 558 vmovdqu x0, 0 * 16(rio); \ 559 vmovdqu x1, 1 * 16(rio); \ 560 vmovdqu x2, 2 * 16(rio); \ 561 vmovdqu x3, 3 * 16(rio); \ 562 vmovdqu x4, 4 * 16(rio); \ 563 vmovdqu x5, 5 * 16(rio); \ 564 vmovdqu x6, 6 * 16(rio); \ 565 vmovdqu x7, 7 * 16(rio); \ 566 vmovdqu y0, 8 * 16(rio); \ 567 vmovdqu y1, 9 * 16(rio); \ 568 vmovdqu y2, 10 * 16(rio); \ 569 vmovdqu y3, 11 * 16(rio); \ 570 vmovdqu y4, 12 * 16(rio); \ 571 vmovdqu y5, 13 * 16(rio); \ 572 vmovdqu y6, 14 * 16(rio); \ 573 vmovdqu y7, 15 * 16(rio); 574 575 576/* NB: section is mergeable, all elements must be aligned 16-byte blocks */ 577.section .rodata.cst16, "aM", @progbits, 16 578.align 16 579 580#define SHUFB_BYTES(idx) \ 581 0 + (idx), 4 + (idx), 8 + (idx), 12 + (idx) 582 583.Lshufb_16x16b: 584 .byte SHUFB_BYTES(0), SHUFB_BYTES(1), SHUFB_BYTES(2), SHUFB_BYTES(3); 585 586.Lpack_bswap: 587 .long 0x00010203 588 .long 0x04050607 589 .long 0x80808080 590 .long 0x80808080 591 592/* 593 * pre-SubByte transform 594 * 595 * pre-lookup for sbox1, sbox2, sbox3: 596 * swap_bitendianness( 597 * isom_map_camellia_to_aes( 598 * camellia_f( 599 * swap_bitendianess(in) 600 * ) 601 * ) 602 * ) 603 * 604 * (note: '⊕ 0xc5' inside camellia_f()) 605 */ 606.Lpre_tf_lo_s1: 607 .byte 0x45, 0xe8, 0x40, 0xed, 0x2e, 0x83, 0x2b, 0x86 608 .byte 0x4b, 0xe6, 0x4e, 0xe3, 0x20, 0x8d, 0x25, 0x88 609.Lpre_tf_hi_s1: 610 .byte 0x00, 0x51, 0xf1, 0xa0, 0x8a, 0xdb, 0x7b, 0x2a 611 .byte 0x09, 0x58, 0xf8, 0xa9, 0x83, 0xd2, 0x72, 0x23 612 613/* 614 * pre-SubByte transform 615 * 616 * pre-lookup for sbox4: 617 * swap_bitendianness( 618 * isom_map_camellia_to_aes( 619 * camellia_f( 620 * swap_bitendianess(in <<< 1) 621 * ) 622 * ) 623 * ) 624 * 625 * (note: '⊕ 0xc5' inside camellia_f()) 626 */ 627.Lpre_tf_lo_s4: 628 .byte 0x45, 0x40, 0x2e, 0x2b, 0x4b, 0x4e, 0x20, 0x25 629 .byte 0x14, 0x11, 0x7f, 0x7a, 0x1a, 0x1f, 0x71, 0x74 630.Lpre_tf_hi_s4: 631 .byte 0x00, 0xf1, 0x8a, 0x7b, 0x09, 0xf8, 0x83, 0x72 632 .byte 0xad, 0x5c, 0x27, 0xd6, 0xa4, 0x55, 0x2e, 0xdf 633 634/* 635 * post-SubByte transform 636 * 637 * post-lookup for sbox1, sbox4: 638 * swap_bitendianness( 639 * camellia_h( 640 * isom_map_aes_to_camellia( 641 * swap_bitendianness( 642 * aes_inverse_affine_transform(in) 643 * ) 644 * ) 645 * ) 646 * ) 647 * 648 * (note: '⊕ 0x6e' inside camellia_h()) 649 */ 650.Lpost_tf_lo_s1: 651 .byte 0x3c, 0xcc, 0xcf, 0x3f, 0x32, 0xc2, 0xc1, 0x31 652 .byte 0xdc, 0x2c, 0x2f, 0xdf, 0xd2, 0x22, 0x21, 0xd1 653.Lpost_tf_hi_s1: 654 .byte 0x00, 0xf9, 0x86, 0x7f, 0xd7, 0x2e, 0x51, 0xa8 655 .byte 0xa4, 0x5d, 0x22, 0xdb, 0x73, 0x8a, 0xf5, 0x0c 656 657/* 658 * post-SubByte transform 659 * 660 * post-lookup for sbox2: 661 * swap_bitendianness( 662 * camellia_h( 663 * isom_map_aes_to_camellia( 664 * swap_bitendianness( 665 * aes_inverse_affine_transform(in) 666 * ) 667 * ) 668 * ) 669 * ) <<< 1 670 * 671 * (note: '⊕ 0x6e' inside camellia_h()) 672 */ 673.Lpost_tf_lo_s2: 674 .byte 0x78, 0x99, 0x9f, 0x7e, 0x64, 0x85, 0x83, 0x62 675 .byte 0xb9, 0x58, 0x5e, 0xbf, 0xa5, 0x44, 0x42, 0xa3 676.Lpost_tf_hi_s2: 677 .byte 0x00, 0xf3, 0x0d, 0xfe, 0xaf, 0x5c, 0xa2, 0x51 678 .byte 0x49, 0xba, 0x44, 0xb7, 0xe6, 0x15, 0xeb, 0x18 679 680/* 681 * post-SubByte transform 682 * 683 * post-lookup for sbox3: 684 * swap_bitendianness( 685 * camellia_h( 686 * isom_map_aes_to_camellia( 687 * swap_bitendianness( 688 * aes_inverse_affine_transform(in) 689 * ) 690 * ) 691 * ) 692 * ) >>> 1 693 * 694 * (note: '⊕ 0x6e' inside camellia_h()) 695 */ 696.Lpost_tf_lo_s3: 697 .byte 0x1e, 0x66, 0xe7, 0x9f, 0x19, 0x61, 0xe0, 0x98 698 .byte 0x6e, 0x16, 0x97, 0xef, 0x69, 0x11, 0x90, 0xe8 699.Lpost_tf_hi_s3: 700 .byte 0x00, 0xfc, 0x43, 0xbf, 0xeb, 0x17, 0xa8, 0x54 701 .byte 0x52, 0xae, 0x11, 0xed, 0xb9, 0x45, 0xfa, 0x06 702 703/* For isolating SubBytes from AESENCLAST, inverse shift row */ 704.Linv_shift_row: 705 .byte 0x00, 0x0d, 0x0a, 0x07, 0x04, 0x01, 0x0e, 0x0b 706 .byte 0x08, 0x05, 0x02, 0x0f, 0x0c, 0x09, 0x06, 0x03 707 708/* 4-bit mask */ 709.section .rodata.cst4.L0f0f0f0f, "aM", @progbits, 4 710.align 4 711.L0f0f0f0f: 712 .long 0x0f0f0f0f 713 714.text 715 716SYM_FUNC_START_LOCAL(__camellia_enc_blk16) 717 /* input: 718 * %rdi: ctx, CTX 719 * %rax: temporary storage, 256 bytes 720 * %xmm0..%xmm15: 16 plaintext blocks 721 * output: 722 * %xmm0..%xmm15: 16 encrypted blocks, order swapped: 723 * 7, 8, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8 724 */ 725 FRAME_BEGIN 726 727 leaq 8 * 16(%rax), %rcx; 728 729 inpack16_post(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, 730 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, 731 %xmm15, %rax, %rcx); 732 733 enc_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, 734 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, 735 %xmm15, %rax, %rcx, 0); 736 737 fls16(%rax, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, 738 %rcx, %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, 739 %xmm15, 740 ((key_table + (8) * 8) + 0)(CTX), 741 ((key_table + (8) * 8) + 4)(CTX), 742 ((key_table + (8) * 8) + 8)(CTX), 743 ((key_table + (8) * 8) + 12)(CTX)); 744 745 enc_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, 746 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, 747 %xmm15, %rax, %rcx, 8); 748 749 fls16(%rax, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, 750 %rcx, %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, 751 %xmm15, 752 ((key_table + (16) * 8) + 0)(CTX), 753 ((key_table + (16) * 8) + 4)(CTX), 754 ((key_table + (16) * 8) + 8)(CTX), 755 ((key_table + (16) * 8) + 12)(CTX)); 756 757 enc_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, 758 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, 759 %xmm15, %rax, %rcx, 16); 760 761 movl $24, %r8d; 762 cmpl $16, key_length(CTX); 763 jne .Lenc_max32; 764 765.Lenc_done: 766 /* load CD for output */ 767 vmovdqu 0 * 16(%rcx), %xmm8; 768 vmovdqu 1 * 16(%rcx), %xmm9; 769 vmovdqu 2 * 16(%rcx), %xmm10; 770 vmovdqu 3 * 16(%rcx), %xmm11; 771 vmovdqu 4 * 16(%rcx), %xmm12; 772 vmovdqu 5 * 16(%rcx), %xmm13; 773 vmovdqu 6 * 16(%rcx), %xmm14; 774 vmovdqu 7 * 16(%rcx), %xmm15; 775 776 outunpack16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, 777 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, 778 %xmm15, (key_table)(CTX, %r8, 8), (%rax), 1 * 16(%rax)); 779 780 FRAME_END 781 RET; 782 783.align 8 784.Lenc_max32: 785 movl $32, %r8d; 786 787 fls16(%rax, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, 788 %rcx, %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, 789 %xmm15, 790 ((key_table + (24) * 8) + 0)(CTX), 791 ((key_table + (24) * 8) + 4)(CTX), 792 ((key_table + (24) * 8) + 8)(CTX), 793 ((key_table + (24) * 8) + 12)(CTX)); 794 795 enc_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, 796 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, 797 %xmm15, %rax, %rcx, 24); 798 799 jmp .Lenc_done; 800SYM_FUNC_END(__camellia_enc_blk16) 801 802SYM_FUNC_START_LOCAL(__camellia_dec_blk16) 803 /* input: 804 * %rdi: ctx, CTX 805 * %rax: temporary storage, 256 bytes 806 * %r8d: 24 for 16 byte key, 32 for larger 807 * %xmm0..%xmm15: 16 encrypted blocks 808 * output: 809 * %xmm0..%xmm15: 16 plaintext blocks, order swapped: 810 * 7, 8, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8 811 */ 812 FRAME_BEGIN 813 814 leaq 8 * 16(%rax), %rcx; 815 816 inpack16_post(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, 817 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, 818 %xmm15, %rax, %rcx); 819 820 cmpl $32, %r8d; 821 je .Ldec_max32; 822 823.Ldec_max24: 824 dec_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, 825 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, 826 %xmm15, %rax, %rcx, 16); 827 828 fls16(%rax, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, 829 %rcx, %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, 830 %xmm15, 831 ((key_table + (16) * 8) + 8)(CTX), 832 ((key_table + (16) * 8) + 12)(CTX), 833 ((key_table + (16) * 8) + 0)(CTX), 834 ((key_table + (16) * 8) + 4)(CTX)); 835 836 dec_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, 837 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, 838 %xmm15, %rax, %rcx, 8); 839 840 fls16(%rax, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, 841 %rcx, %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, 842 %xmm15, 843 ((key_table + (8) * 8) + 8)(CTX), 844 ((key_table + (8) * 8) + 12)(CTX), 845 ((key_table + (8) * 8) + 0)(CTX), 846 ((key_table + (8) * 8) + 4)(CTX)); 847 848 dec_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, 849 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, 850 %xmm15, %rax, %rcx, 0); 851 852 /* load CD for output */ 853 vmovdqu 0 * 16(%rcx), %xmm8; 854 vmovdqu 1 * 16(%rcx), %xmm9; 855 vmovdqu 2 * 16(%rcx), %xmm10; 856 vmovdqu 3 * 16(%rcx), %xmm11; 857 vmovdqu 4 * 16(%rcx), %xmm12; 858 vmovdqu 5 * 16(%rcx), %xmm13; 859 vmovdqu 6 * 16(%rcx), %xmm14; 860 vmovdqu 7 * 16(%rcx), %xmm15; 861 862 outunpack16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, 863 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, 864 %xmm15, (key_table)(CTX), (%rax), 1 * 16(%rax)); 865 866 FRAME_END 867 RET; 868 869.align 8 870.Ldec_max32: 871 dec_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, 872 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, 873 %xmm15, %rax, %rcx, 24); 874 875 fls16(%rax, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, 876 %rcx, %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, 877 %xmm15, 878 ((key_table + (24) * 8) + 8)(CTX), 879 ((key_table + (24) * 8) + 12)(CTX), 880 ((key_table + (24) * 8) + 0)(CTX), 881 ((key_table + (24) * 8) + 4)(CTX)); 882 883 jmp .Ldec_max24; 884SYM_FUNC_END(__camellia_dec_blk16) 885 886SYM_TYPED_FUNC_START(camellia_ecb_enc_16way) 887 /* input: 888 * %rdi: ctx, CTX 889 * %rsi: dst (16 blocks) 890 * %rdx: src (16 blocks) 891 */ 892 FRAME_BEGIN 893 894 inpack16_pre(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, 895 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, 896 %xmm15, %rdx, (key_table)(CTX)); 897 898 /* now dst can be used as temporary buffer (even in src == dst case) */ 899 movq %rsi, %rax; 900 901 call __camellia_enc_blk16; 902 903 write_output(%xmm7, %xmm6, %xmm5, %xmm4, %xmm3, %xmm2, %xmm1, %xmm0, 904 %xmm15, %xmm14, %xmm13, %xmm12, %xmm11, %xmm10, %xmm9, 905 %xmm8, %rsi); 906 907 FRAME_END 908 RET; 909SYM_FUNC_END(camellia_ecb_enc_16way) 910 911SYM_TYPED_FUNC_START(camellia_ecb_dec_16way) 912 /* input: 913 * %rdi: ctx, CTX 914 * %rsi: dst (16 blocks) 915 * %rdx: src (16 blocks) 916 */ 917 FRAME_BEGIN 918 919 cmpl $16, key_length(CTX); 920 movl $32, %r8d; 921 movl $24, %eax; 922 cmovel %eax, %r8d; /* max */ 923 924 inpack16_pre(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, 925 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, 926 %xmm15, %rdx, (key_table)(CTX, %r8, 8)); 927 928 /* now dst can be used as temporary buffer (even in src == dst case) */ 929 movq %rsi, %rax; 930 931 call __camellia_dec_blk16; 932 933 write_output(%xmm7, %xmm6, %xmm5, %xmm4, %xmm3, %xmm2, %xmm1, %xmm0, 934 %xmm15, %xmm14, %xmm13, %xmm12, %xmm11, %xmm10, %xmm9, 935 %xmm8, %rsi); 936 937 FRAME_END 938 RET; 939SYM_FUNC_END(camellia_ecb_dec_16way) 940 941SYM_TYPED_FUNC_START(camellia_cbc_dec_16way) 942 /* input: 943 * %rdi: ctx, CTX 944 * %rsi: dst (16 blocks) 945 * %rdx: src (16 blocks) 946 */ 947 FRAME_BEGIN 948 949 cmpl $16, key_length(CTX); 950 movl $32, %r8d; 951 movl $24, %eax; 952 cmovel %eax, %r8d; /* max */ 953 954 inpack16_pre(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, 955 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, 956 %xmm15, %rdx, (key_table)(CTX, %r8, 8)); 957 958 /* 959 * dst might still be in-use (in case dst == src), so use stack for 960 * temporary storage. 961 */ 962 subq $(16 * 16), %rsp; 963 movq %rsp, %rax; 964 965 call __camellia_dec_blk16; 966 967 addq $(16 * 16), %rsp; 968 969 vpxor (0 * 16)(%rdx), %xmm6, %xmm6; 970 vpxor (1 * 16)(%rdx), %xmm5, %xmm5; 971 vpxor (2 * 16)(%rdx), %xmm4, %xmm4; 972 vpxor (3 * 16)(%rdx), %xmm3, %xmm3; 973 vpxor (4 * 16)(%rdx), %xmm2, %xmm2; 974 vpxor (5 * 16)(%rdx), %xmm1, %xmm1; 975 vpxor (6 * 16)(%rdx), %xmm0, %xmm0; 976 vpxor (7 * 16)(%rdx), %xmm15, %xmm15; 977 vpxor (8 * 16)(%rdx), %xmm14, %xmm14; 978 vpxor (9 * 16)(%rdx), %xmm13, %xmm13; 979 vpxor (10 * 16)(%rdx), %xmm12, %xmm12; 980 vpxor (11 * 16)(%rdx), %xmm11, %xmm11; 981 vpxor (12 * 16)(%rdx), %xmm10, %xmm10; 982 vpxor (13 * 16)(%rdx), %xmm9, %xmm9; 983 vpxor (14 * 16)(%rdx), %xmm8, %xmm8; 984 write_output(%xmm7, %xmm6, %xmm5, %xmm4, %xmm3, %xmm2, %xmm1, %xmm0, 985 %xmm15, %xmm14, %xmm13, %xmm12, %xmm11, %xmm10, %xmm9, 986 %xmm8, %rsi); 987 988 FRAME_END 989 RET; 990SYM_FUNC_END(camellia_cbc_dec_16way) 991