xref: /linux/arch/x86/crypto/camellia-aesni-avx-asm_64.S (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1/*
2 * x86_64/AVX/AES-NI assembler implementation of Camellia
3 *
4 * Copyright © 2012-2013 Jussi Kivilinna <jussi.kivilinna@iki.fi>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 */
12
13/*
14 * Version licensed under 2-clause BSD License is available at:
15 *	http://koti.mbnet.fi/axh/crypto/camellia-BSD-1.2.0-aesni1.tar.xz
16 */
17
18#include <linux/linkage.h>
19
20#define CAMELLIA_TABLE_BYTE_LEN 272
21
22/* struct camellia_ctx: */
23#define key_table 0
24#define key_length CAMELLIA_TABLE_BYTE_LEN
25
26/* register macros */
27#define CTX %rdi
28
29/**********************************************************************
30  16-way camellia
31 **********************************************************************/
32#define filter_8bit(x, lo_t, hi_t, mask4bit, tmp0) \
33	vpand x, mask4bit, tmp0; \
34	vpandn x, mask4bit, x; \
35	vpsrld $4, x, x; \
36	\
37	vpshufb tmp0, lo_t, tmp0; \
38	vpshufb x, hi_t, x; \
39	vpxor tmp0, x, x;
40
41/*
42 * IN:
43 *   x0..x7: byte-sliced AB state
44 *   mem_cd: register pointer storing CD state
45 *   key: index for key material
46 * OUT:
47 *   x0..x7: new byte-sliced CD state
48 */
49#define roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, t0, t1, t2, t3, t4, t5, t6, \
50		  t7, mem_cd, key) \
51	/* \
52	 * S-function with AES subbytes \
53	 */ \
54	vmovdqa .Linv_shift_row, t4; \
55	vbroadcastss .L0f0f0f0f, t7; \
56	vmovdqa .Lpre_tf_lo_s1, t0; \
57	vmovdqa .Lpre_tf_hi_s1, t1; \
58	\
59	/* AES inverse shift rows */ \
60	vpshufb t4, x0, x0; \
61	vpshufb t4, x7, x7; \
62	vpshufb t4, x1, x1; \
63	vpshufb t4, x4, x4; \
64	vpshufb t4, x2, x2; \
65	vpshufb t4, x5, x5; \
66	vpshufb t4, x3, x3; \
67	vpshufb t4, x6, x6; \
68	\
69	/* prefilter sboxes 1, 2 and 3 */ \
70	vmovdqa .Lpre_tf_lo_s4, t2; \
71	vmovdqa .Lpre_tf_hi_s4, t3; \
72	filter_8bit(x0, t0, t1, t7, t6); \
73	filter_8bit(x7, t0, t1, t7, t6); \
74	filter_8bit(x1, t0, t1, t7, t6); \
75	filter_8bit(x4, t0, t1, t7, t6); \
76	filter_8bit(x2, t0, t1, t7, t6); \
77	filter_8bit(x5, t0, t1, t7, t6); \
78	\
79	/* prefilter sbox 4 */ \
80	vpxor t4, t4, t4; \
81	filter_8bit(x3, t2, t3, t7, t6); \
82	filter_8bit(x6, t2, t3, t7, t6); \
83	\
84	/* AES subbytes + AES shift rows */ \
85	vmovdqa .Lpost_tf_lo_s1, t0; \
86	vmovdqa .Lpost_tf_hi_s1, t1; \
87	vaesenclast t4, x0, x0; \
88	vaesenclast t4, x7, x7; \
89	vaesenclast t4, x1, x1; \
90	vaesenclast t4, x4, x4; \
91	vaesenclast t4, x2, x2; \
92	vaesenclast t4, x5, x5; \
93	vaesenclast t4, x3, x3; \
94	vaesenclast t4, x6, x6; \
95	\
96	/* postfilter sboxes 1 and 4 */ \
97	vmovdqa .Lpost_tf_lo_s3, t2; \
98	vmovdqa .Lpost_tf_hi_s3, t3; \
99	filter_8bit(x0, t0, t1, t7, t6); \
100	filter_8bit(x7, t0, t1, t7, t6); \
101	filter_8bit(x3, t0, t1, t7, t6); \
102	filter_8bit(x6, t0, t1, t7, t6); \
103	\
104	/* postfilter sbox 3 */ \
105	vmovdqa .Lpost_tf_lo_s2, t4; \
106	vmovdqa .Lpost_tf_hi_s2, t5; \
107	filter_8bit(x2, t2, t3, t7, t6); \
108	filter_8bit(x5, t2, t3, t7, t6); \
109	\
110	vpxor t6, t6, t6; \
111	vmovq key, t0; \
112	\
113	/* postfilter sbox 2 */ \
114	filter_8bit(x1, t4, t5, t7, t2); \
115	filter_8bit(x4, t4, t5, t7, t2); \
116	\
117	vpsrldq $5, t0, t5; \
118	vpsrldq $1, t0, t1; \
119	vpsrldq $2, t0, t2; \
120	vpsrldq $3, t0, t3; \
121	vpsrldq $4, t0, t4; \
122	vpshufb t6, t0, t0; \
123	vpshufb t6, t1, t1; \
124	vpshufb t6, t2, t2; \
125	vpshufb t6, t3, t3; \
126	vpshufb t6, t4, t4; \
127	vpsrldq $2, t5, t7; \
128	vpshufb t6, t7, t7; \
129	\
130	/* \
131	 * P-function \
132	 */ \
133	vpxor x5, x0, x0; \
134	vpxor x6, x1, x1; \
135	vpxor x7, x2, x2; \
136	vpxor x4, x3, x3; \
137	\
138	vpxor x2, x4, x4; \
139	vpxor x3, x5, x5; \
140	vpxor x0, x6, x6; \
141	vpxor x1, x7, x7; \
142	\
143	vpxor x7, x0, x0; \
144	vpxor x4, x1, x1; \
145	vpxor x5, x2, x2; \
146	vpxor x6, x3, x3; \
147	\
148	vpxor x3, x4, x4; \
149	vpxor x0, x5, x5; \
150	vpxor x1, x6, x6; \
151	vpxor x2, x7, x7; /* note: high and low parts swapped */ \
152	\
153	/* \
154	 * Add key material and result to CD (x becomes new CD) \
155	 */ \
156	\
157	vpxor t3, x4, x4; \
158	vpxor 0 * 16(mem_cd), x4, x4; \
159	\
160	vpxor t2, x5, x5; \
161	vpxor 1 * 16(mem_cd), x5, x5; \
162	\
163	vpsrldq $1, t5, t3; \
164	vpshufb t6, t5, t5; \
165	vpshufb t6, t3, t6; \
166	\
167	vpxor t1, x6, x6; \
168	vpxor 2 * 16(mem_cd), x6, x6; \
169	\
170	vpxor t0, x7, x7; \
171	vpxor 3 * 16(mem_cd), x7, x7; \
172	\
173	vpxor t7, x0, x0; \
174	vpxor 4 * 16(mem_cd), x0, x0; \
175	\
176	vpxor t6, x1, x1; \
177	vpxor 5 * 16(mem_cd), x1, x1; \
178	\
179	vpxor t5, x2, x2; \
180	vpxor 6 * 16(mem_cd), x2, x2; \
181	\
182	vpxor t4, x3, x3; \
183	vpxor 7 * 16(mem_cd), x3, x3;
184
185/*
186 * Size optimization... with inlined roundsm16, binary would be over 5 times
187 * larger and would only be 0.5% faster (on sandy-bridge).
188 */
189.align 8
190roundsm16_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd:
191	roundsm16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
192		  %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, %xmm15,
193		  %rcx, (%r9));
194	ret;
195ENDPROC(roundsm16_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd)
196
197.align 8
198roundsm16_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab:
199	roundsm16(%xmm4, %xmm5, %xmm6, %xmm7, %xmm0, %xmm1, %xmm2, %xmm3,
200		  %xmm12, %xmm13, %xmm14, %xmm15, %xmm8, %xmm9, %xmm10, %xmm11,
201		  %rax, (%r9));
202	ret;
203ENDPROC(roundsm16_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab)
204
205/*
206 * IN/OUT:
207 *  x0..x7: byte-sliced AB state preloaded
208 *  mem_ab: byte-sliced AB state in memory
209 *  mem_cb: byte-sliced CD state in memory
210 */
211#define two_roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
212		      y6, y7, mem_ab, mem_cd, i, dir, store_ab) \
213	leaq (key_table + (i) * 8)(CTX), %r9; \
214	call roundsm16_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd; \
215	\
216	vmovdqu x4, 0 * 16(mem_cd); \
217	vmovdqu x5, 1 * 16(mem_cd); \
218	vmovdqu x6, 2 * 16(mem_cd); \
219	vmovdqu x7, 3 * 16(mem_cd); \
220	vmovdqu x0, 4 * 16(mem_cd); \
221	vmovdqu x1, 5 * 16(mem_cd); \
222	vmovdqu x2, 6 * 16(mem_cd); \
223	vmovdqu x3, 7 * 16(mem_cd); \
224	\
225	leaq (key_table + ((i) + (dir)) * 8)(CTX), %r9; \
226	call roundsm16_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab; \
227	\
228	store_ab(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab);
229
230#define dummy_store(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab) /* do nothing */
231
232#define store_ab_state(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab) \
233	/* Store new AB state */ \
234	vmovdqu x0, 0 * 16(mem_ab); \
235	vmovdqu x1, 1 * 16(mem_ab); \
236	vmovdqu x2, 2 * 16(mem_ab); \
237	vmovdqu x3, 3 * 16(mem_ab); \
238	vmovdqu x4, 4 * 16(mem_ab); \
239	vmovdqu x5, 5 * 16(mem_ab); \
240	vmovdqu x6, 6 * 16(mem_ab); \
241	vmovdqu x7, 7 * 16(mem_ab);
242
243#define enc_rounds16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
244		      y6, y7, mem_ab, mem_cd, i) \
245	two_roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
246		      y6, y7, mem_ab, mem_cd, (i) + 2, 1, store_ab_state); \
247	two_roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
248		      y6, y7, mem_ab, mem_cd, (i) + 4, 1, store_ab_state); \
249	two_roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
250		      y6, y7, mem_ab, mem_cd, (i) + 6, 1, dummy_store);
251
252#define dec_rounds16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
253		      y6, y7, mem_ab, mem_cd, i) \
254	two_roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
255		      y6, y7, mem_ab, mem_cd, (i) + 7, -1, store_ab_state); \
256	two_roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
257		      y6, y7, mem_ab, mem_cd, (i) + 5, -1, store_ab_state); \
258	two_roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
259		      y6, y7, mem_ab, mem_cd, (i) + 3, -1, dummy_store);
260
261/*
262 * IN:
263 *  v0..3: byte-sliced 32-bit integers
264 * OUT:
265 *  v0..3: (IN <<< 1)
266 */
267#define rol32_1_16(v0, v1, v2, v3, t0, t1, t2, zero) \
268	vpcmpgtb v0, zero, t0; \
269	vpaddb v0, v0, v0; \
270	vpabsb t0, t0; \
271	\
272	vpcmpgtb v1, zero, t1; \
273	vpaddb v1, v1, v1; \
274	vpabsb t1, t1; \
275	\
276	vpcmpgtb v2, zero, t2; \
277	vpaddb v2, v2, v2; \
278	vpabsb t2, t2; \
279	\
280	vpor t0, v1, v1; \
281	\
282	vpcmpgtb v3, zero, t0; \
283	vpaddb v3, v3, v3; \
284	vpabsb t0, t0; \
285	\
286	vpor t1, v2, v2; \
287	vpor t2, v3, v3; \
288	vpor t0, v0, v0;
289
290/*
291 * IN:
292 *   r: byte-sliced AB state in memory
293 *   l: byte-sliced CD state in memory
294 * OUT:
295 *   x0..x7: new byte-sliced CD state
296 */
297#define fls16(l, l0, l1, l2, l3, l4, l5, l6, l7, r, t0, t1, t2, t3, tt0, \
298	      tt1, tt2, tt3, kll, klr, krl, krr) \
299	/* \
300	 * t0 = kll; \
301	 * t0 &= ll; \
302	 * lr ^= rol32(t0, 1); \
303	 */ \
304	vpxor tt0, tt0, tt0; \
305	vmovd kll, t0; \
306	vpshufb tt0, t0, t3; \
307	vpsrldq $1, t0, t0; \
308	vpshufb tt0, t0, t2; \
309	vpsrldq $1, t0, t0; \
310	vpshufb tt0, t0, t1; \
311	vpsrldq $1, t0, t0; \
312	vpshufb tt0, t0, t0; \
313	\
314	vpand l0, t0, t0; \
315	vpand l1, t1, t1; \
316	vpand l2, t2, t2; \
317	vpand l3, t3, t3; \
318	\
319	rol32_1_16(t3, t2, t1, t0, tt1, tt2, tt3, tt0); \
320	\
321	vpxor l4, t0, l4; \
322	vmovdqu l4, 4 * 16(l); \
323	vpxor l5, t1, l5; \
324	vmovdqu l5, 5 * 16(l); \
325	vpxor l6, t2, l6; \
326	vmovdqu l6, 6 * 16(l); \
327	vpxor l7, t3, l7; \
328	vmovdqu l7, 7 * 16(l); \
329	\
330	/* \
331	 * t2 = krr; \
332	 * t2 |= rr; \
333	 * rl ^= t2; \
334	 */ \
335	\
336	vmovd krr, t0; \
337	vpshufb tt0, t0, t3; \
338	vpsrldq $1, t0, t0; \
339	vpshufb tt0, t0, t2; \
340	vpsrldq $1, t0, t0; \
341	vpshufb tt0, t0, t1; \
342	vpsrldq $1, t0, t0; \
343	vpshufb tt0, t0, t0; \
344	\
345	vpor 4 * 16(r), t0, t0; \
346	vpor 5 * 16(r), t1, t1; \
347	vpor 6 * 16(r), t2, t2; \
348	vpor 7 * 16(r), t3, t3; \
349	\
350	vpxor 0 * 16(r), t0, t0; \
351	vpxor 1 * 16(r), t1, t1; \
352	vpxor 2 * 16(r), t2, t2; \
353	vpxor 3 * 16(r), t3, t3; \
354	vmovdqu t0, 0 * 16(r); \
355	vmovdqu t1, 1 * 16(r); \
356	vmovdqu t2, 2 * 16(r); \
357	vmovdqu t3, 3 * 16(r); \
358	\
359	/* \
360	 * t2 = krl; \
361	 * t2 &= rl; \
362	 * rr ^= rol32(t2, 1); \
363	 */ \
364	vmovd krl, t0; \
365	vpshufb tt0, t0, t3; \
366	vpsrldq $1, t0, t0; \
367	vpshufb tt0, t0, t2; \
368	vpsrldq $1, t0, t0; \
369	vpshufb tt0, t0, t1; \
370	vpsrldq $1, t0, t0; \
371	vpshufb tt0, t0, t0; \
372	\
373	vpand 0 * 16(r), t0, t0; \
374	vpand 1 * 16(r), t1, t1; \
375	vpand 2 * 16(r), t2, t2; \
376	vpand 3 * 16(r), t3, t3; \
377	\
378	rol32_1_16(t3, t2, t1, t0, tt1, tt2, tt3, tt0); \
379	\
380	vpxor 4 * 16(r), t0, t0; \
381	vpxor 5 * 16(r), t1, t1; \
382	vpxor 6 * 16(r), t2, t2; \
383	vpxor 7 * 16(r), t3, t3; \
384	vmovdqu t0, 4 * 16(r); \
385	vmovdqu t1, 5 * 16(r); \
386	vmovdqu t2, 6 * 16(r); \
387	vmovdqu t3, 7 * 16(r); \
388	\
389	/* \
390	 * t0 = klr; \
391	 * t0 |= lr; \
392	 * ll ^= t0; \
393	 */ \
394	\
395	vmovd klr, t0; \
396	vpshufb tt0, t0, t3; \
397	vpsrldq $1, t0, t0; \
398	vpshufb tt0, t0, t2; \
399	vpsrldq $1, t0, t0; \
400	vpshufb tt0, t0, t1; \
401	vpsrldq $1, t0, t0; \
402	vpshufb tt0, t0, t0; \
403	\
404	vpor l4, t0, t0; \
405	vpor l5, t1, t1; \
406	vpor l6, t2, t2; \
407	vpor l7, t3, t3; \
408	\
409	vpxor l0, t0, l0; \
410	vmovdqu l0, 0 * 16(l); \
411	vpxor l1, t1, l1; \
412	vmovdqu l1, 1 * 16(l); \
413	vpxor l2, t2, l2; \
414	vmovdqu l2, 2 * 16(l); \
415	vpxor l3, t3, l3; \
416	vmovdqu l3, 3 * 16(l);
417
418#define transpose_4x4(x0, x1, x2, x3, t1, t2) \
419	vpunpckhdq x1, x0, t2; \
420	vpunpckldq x1, x0, x0; \
421	\
422	vpunpckldq x3, x2, t1; \
423	vpunpckhdq x3, x2, x2; \
424	\
425	vpunpckhqdq t1, x0, x1; \
426	vpunpcklqdq t1, x0, x0; \
427	\
428	vpunpckhqdq x2, t2, x3; \
429	vpunpcklqdq x2, t2, x2;
430
431#define byteslice_16x16b(a0, b0, c0, d0, a1, b1, c1, d1, a2, b2, c2, d2, a3, \
432			 b3, c3, d3, st0, st1) \
433	vmovdqu d2, st0; \
434	vmovdqu d3, st1; \
435	transpose_4x4(a0, a1, a2, a3, d2, d3); \
436	transpose_4x4(b0, b1, b2, b3, d2, d3); \
437	vmovdqu st0, d2; \
438	vmovdqu st1, d3; \
439	\
440	vmovdqu a0, st0; \
441	vmovdqu a1, st1; \
442	transpose_4x4(c0, c1, c2, c3, a0, a1); \
443	transpose_4x4(d0, d1, d2, d3, a0, a1); \
444	\
445	vmovdqu .Lshufb_16x16b, a0; \
446	vmovdqu st1, a1; \
447	vpshufb a0, a2, a2; \
448	vpshufb a0, a3, a3; \
449	vpshufb a0, b0, b0; \
450	vpshufb a0, b1, b1; \
451	vpshufb a0, b2, b2; \
452	vpshufb a0, b3, b3; \
453	vpshufb a0, a1, a1; \
454	vpshufb a0, c0, c0; \
455	vpshufb a0, c1, c1; \
456	vpshufb a0, c2, c2; \
457	vpshufb a0, c3, c3; \
458	vpshufb a0, d0, d0; \
459	vpshufb a0, d1, d1; \
460	vpshufb a0, d2, d2; \
461	vpshufb a0, d3, d3; \
462	vmovdqu d3, st1; \
463	vmovdqu st0, d3; \
464	vpshufb a0, d3, a0; \
465	vmovdqu d2, st0; \
466	\
467	transpose_4x4(a0, b0, c0, d0, d2, d3); \
468	transpose_4x4(a1, b1, c1, d1, d2, d3); \
469	vmovdqu st0, d2; \
470	vmovdqu st1, d3; \
471	\
472	vmovdqu b0, st0; \
473	vmovdqu b1, st1; \
474	transpose_4x4(a2, b2, c2, d2, b0, b1); \
475	transpose_4x4(a3, b3, c3, d3, b0, b1); \
476	vmovdqu st0, b0; \
477	vmovdqu st1, b1; \
478	/* does not adjust output bytes inside vectors */
479
480/* load blocks to registers and apply pre-whitening */
481#define inpack16_pre(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
482		     y6, y7, rio, key) \
483	vmovq key, x0; \
484	vpshufb .Lpack_bswap, x0, x0; \
485	\
486	vpxor 0 * 16(rio), x0, y7; \
487	vpxor 1 * 16(rio), x0, y6; \
488	vpxor 2 * 16(rio), x0, y5; \
489	vpxor 3 * 16(rio), x0, y4; \
490	vpxor 4 * 16(rio), x0, y3; \
491	vpxor 5 * 16(rio), x0, y2; \
492	vpxor 6 * 16(rio), x0, y1; \
493	vpxor 7 * 16(rio), x0, y0; \
494	vpxor 8 * 16(rio), x0, x7; \
495	vpxor 9 * 16(rio), x0, x6; \
496	vpxor 10 * 16(rio), x0, x5; \
497	vpxor 11 * 16(rio), x0, x4; \
498	vpxor 12 * 16(rio), x0, x3; \
499	vpxor 13 * 16(rio), x0, x2; \
500	vpxor 14 * 16(rio), x0, x1; \
501	vpxor 15 * 16(rio), x0, x0;
502
503/* byteslice pre-whitened blocks and store to temporary memory */
504#define inpack16_post(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
505		      y6, y7, mem_ab, mem_cd) \
506	byteslice_16x16b(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, \
507			 y5, y6, y7, (mem_ab), (mem_cd)); \
508	\
509	vmovdqu x0, 0 * 16(mem_ab); \
510	vmovdqu x1, 1 * 16(mem_ab); \
511	vmovdqu x2, 2 * 16(mem_ab); \
512	vmovdqu x3, 3 * 16(mem_ab); \
513	vmovdqu x4, 4 * 16(mem_ab); \
514	vmovdqu x5, 5 * 16(mem_ab); \
515	vmovdqu x6, 6 * 16(mem_ab); \
516	vmovdqu x7, 7 * 16(mem_ab); \
517	vmovdqu y0, 0 * 16(mem_cd); \
518	vmovdqu y1, 1 * 16(mem_cd); \
519	vmovdqu y2, 2 * 16(mem_cd); \
520	vmovdqu y3, 3 * 16(mem_cd); \
521	vmovdqu y4, 4 * 16(mem_cd); \
522	vmovdqu y5, 5 * 16(mem_cd); \
523	vmovdqu y6, 6 * 16(mem_cd); \
524	vmovdqu y7, 7 * 16(mem_cd);
525
526/* de-byteslice, apply post-whitening and store blocks */
527#define outunpack16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, \
528		    y5, y6, y7, key, stack_tmp0, stack_tmp1) \
529	byteslice_16x16b(y0, y4, x0, x4, y1, y5, x1, x5, y2, y6, x2, x6, y3, \
530			 y7, x3, x7, stack_tmp0, stack_tmp1); \
531	\
532	vmovdqu x0, stack_tmp0; \
533	\
534	vmovq key, x0; \
535	vpshufb .Lpack_bswap, x0, x0; \
536	\
537	vpxor x0, y7, y7; \
538	vpxor x0, y6, y6; \
539	vpxor x0, y5, y5; \
540	vpxor x0, y4, y4; \
541	vpxor x0, y3, y3; \
542	vpxor x0, y2, y2; \
543	vpxor x0, y1, y1; \
544	vpxor x0, y0, y0; \
545	vpxor x0, x7, x7; \
546	vpxor x0, x6, x6; \
547	vpxor x0, x5, x5; \
548	vpxor x0, x4, x4; \
549	vpxor x0, x3, x3; \
550	vpxor x0, x2, x2; \
551	vpxor x0, x1, x1; \
552	vpxor stack_tmp0, x0, x0;
553
554#define write_output(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
555		     y6, y7, rio) \
556	vmovdqu x0, 0 * 16(rio); \
557	vmovdqu x1, 1 * 16(rio); \
558	vmovdqu x2, 2 * 16(rio); \
559	vmovdqu x3, 3 * 16(rio); \
560	vmovdqu x4, 4 * 16(rio); \
561	vmovdqu x5, 5 * 16(rio); \
562	vmovdqu x6, 6 * 16(rio); \
563	vmovdqu x7, 7 * 16(rio); \
564	vmovdqu y0, 8 * 16(rio); \
565	vmovdqu y1, 9 * 16(rio); \
566	vmovdqu y2, 10 * 16(rio); \
567	vmovdqu y3, 11 * 16(rio); \
568	vmovdqu y4, 12 * 16(rio); \
569	vmovdqu y5, 13 * 16(rio); \
570	vmovdqu y6, 14 * 16(rio); \
571	vmovdqu y7, 15 * 16(rio);
572
573.data
574.align 16
575
576#define SHUFB_BYTES(idx) \
577	0 + (idx), 4 + (idx), 8 + (idx), 12 + (idx)
578
579.Lshufb_16x16b:
580	.byte SHUFB_BYTES(0), SHUFB_BYTES(1), SHUFB_BYTES(2), SHUFB_BYTES(3);
581
582.Lpack_bswap:
583	.long 0x00010203
584	.long 0x04050607
585	.long 0x80808080
586	.long 0x80808080
587
588/* For CTR-mode IV byteswap */
589.Lbswap128_mask:
590	.byte 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0
591
592/* For XTS mode IV generation */
593.Lxts_gf128mul_and_shl1_mask:
594	.byte 0x87, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0
595
596/*
597 * pre-SubByte transform
598 *
599 * pre-lookup for sbox1, sbox2, sbox3:
600 *   swap_bitendianness(
601 *       isom_map_camellia_to_aes(
602 *           camellia_f(
603 *               swap_bitendianess(in)
604 *           )
605 *       )
606 *   )
607 *
608 * (note: '⊕ 0xc5' inside camellia_f())
609 */
610.Lpre_tf_lo_s1:
611	.byte 0x45, 0xe8, 0x40, 0xed, 0x2e, 0x83, 0x2b, 0x86
612	.byte 0x4b, 0xe6, 0x4e, 0xe3, 0x20, 0x8d, 0x25, 0x88
613.Lpre_tf_hi_s1:
614	.byte 0x00, 0x51, 0xf1, 0xa0, 0x8a, 0xdb, 0x7b, 0x2a
615	.byte 0x09, 0x58, 0xf8, 0xa9, 0x83, 0xd2, 0x72, 0x23
616
617/*
618 * pre-SubByte transform
619 *
620 * pre-lookup for sbox4:
621 *   swap_bitendianness(
622 *       isom_map_camellia_to_aes(
623 *           camellia_f(
624 *               swap_bitendianess(in <<< 1)
625 *           )
626 *       )
627 *   )
628 *
629 * (note: '⊕ 0xc5' inside camellia_f())
630 */
631.Lpre_tf_lo_s4:
632	.byte 0x45, 0x40, 0x2e, 0x2b, 0x4b, 0x4e, 0x20, 0x25
633	.byte 0x14, 0x11, 0x7f, 0x7a, 0x1a, 0x1f, 0x71, 0x74
634.Lpre_tf_hi_s4:
635	.byte 0x00, 0xf1, 0x8a, 0x7b, 0x09, 0xf8, 0x83, 0x72
636	.byte 0xad, 0x5c, 0x27, 0xd6, 0xa4, 0x55, 0x2e, 0xdf
637
638/*
639 * post-SubByte transform
640 *
641 * post-lookup for sbox1, sbox4:
642 *  swap_bitendianness(
643 *      camellia_h(
644 *          isom_map_aes_to_camellia(
645 *              swap_bitendianness(
646 *                  aes_inverse_affine_transform(in)
647 *              )
648 *          )
649 *      )
650 *  )
651 *
652 * (note: '⊕ 0x6e' inside camellia_h())
653 */
654.Lpost_tf_lo_s1:
655	.byte 0x3c, 0xcc, 0xcf, 0x3f, 0x32, 0xc2, 0xc1, 0x31
656	.byte 0xdc, 0x2c, 0x2f, 0xdf, 0xd2, 0x22, 0x21, 0xd1
657.Lpost_tf_hi_s1:
658	.byte 0x00, 0xf9, 0x86, 0x7f, 0xd7, 0x2e, 0x51, 0xa8
659	.byte 0xa4, 0x5d, 0x22, 0xdb, 0x73, 0x8a, 0xf5, 0x0c
660
661/*
662 * post-SubByte transform
663 *
664 * post-lookup for sbox2:
665 *  swap_bitendianness(
666 *      camellia_h(
667 *          isom_map_aes_to_camellia(
668 *              swap_bitendianness(
669 *                  aes_inverse_affine_transform(in)
670 *              )
671 *          )
672 *      )
673 *  ) <<< 1
674 *
675 * (note: '⊕ 0x6e' inside camellia_h())
676 */
677.Lpost_tf_lo_s2:
678	.byte 0x78, 0x99, 0x9f, 0x7e, 0x64, 0x85, 0x83, 0x62
679	.byte 0xb9, 0x58, 0x5e, 0xbf, 0xa5, 0x44, 0x42, 0xa3
680.Lpost_tf_hi_s2:
681	.byte 0x00, 0xf3, 0x0d, 0xfe, 0xaf, 0x5c, 0xa2, 0x51
682	.byte 0x49, 0xba, 0x44, 0xb7, 0xe6, 0x15, 0xeb, 0x18
683
684/*
685 * post-SubByte transform
686 *
687 * post-lookup for sbox3:
688 *  swap_bitendianness(
689 *      camellia_h(
690 *          isom_map_aes_to_camellia(
691 *              swap_bitendianness(
692 *                  aes_inverse_affine_transform(in)
693 *              )
694 *          )
695 *      )
696 *  ) >>> 1
697 *
698 * (note: '⊕ 0x6e' inside camellia_h())
699 */
700.Lpost_tf_lo_s3:
701	.byte 0x1e, 0x66, 0xe7, 0x9f, 0x19, 0x61, 0xe0, 0x98
702	.byte 0x6e, 0x16, 0x97, 0xef, 0x69, 0x11, 0x90, 0xe8
703.Lpost_tf_hi_s3:
704	.byte 0x00, 0xfc, 0x43, 0xbf, 0xeb, 0x17, 0xa8, 0x54
705	.byte 0x52, 0xae, 0x11, 0xed, 0xb9, 0x45, 0xfa, 0x06
706
707/* For isolating SubBytes from AESENCLAST, inverse shift row */
708.Linv_shift_row:
709	.byte 0x00, 0x0d, 0x0a, 0x07, 0x04, 0x01, 0x0e, 0x0b
710	.byte 0x08, 0x05, 0x02, 0x0f, 0x0c, 0x09, 0x06, 0x03
711
712/* 4-bit mask */
713.align 4
714.L0f0f0f0f:
715	.long 0x0f0f0f0f
716
717.text
718
719.align 8
720__camellia_enc_blk16:
721	/* input:
722	 *	%rdi: ctx, CTX
723	 *	%rax: temporary storage, 256 bytes
724	 *	%xmm0..%xmm15: 16 plaintext blocks
725	 * output:
726	 *	%xmm0..%xmm15: 16 encrypted blocks, order swapped:
727	 *       7, 8, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8
728	 */
729
730	leaq 8 * 16(%rax), %rcx;
731
732	inpack16_post(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
733		      %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
734		      %xmm15, %rax, %rcx);
735
736	enc_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
737		     %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
738		     %xmm15, %rax, %rcx, 0);
739
740	fls16(%rax, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
741	      %rcx, %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
742	      %xmm15,
743	      ((key_table + (8) * 8) + 0)(CTX),
744	      ((key_table + (8) * 8) + 4)(CTX),
745	      ((key_table + (8) * 8) + 8)(CTX),
746	      ((key_table + (8) * 8) + 12)(CTX));
747
748	enc_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
749		     %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
750		     %xmm15, %rax, %rcx, 8);
751
752	fls16(%rax, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
753	      %rcx, %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
754	      %xmm15,
755	      ((key_table + (16) * 8) + 0)(CTX),
756	      ((key_table + (16) * 8) + 4)(CTX),
757	      ((key_table + (16) * 8) + 8)(CTX),
758	      ((key_table + (16) * 8) + 12)(CTX));
759
760	enc_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
761		     %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
762		     %xmm15, %rax, %rcx, 16);
763
764	movl $24, %r8d;
765	cmpl $16, key_length(CTX);
766	jne .Lenc_max32;
767
768.Lenc_done:
769	/* load CD for output */
770	vmovdqu 0 * 16(%rcx), %xmm8;
771	vmovdqu 1 * 16(%rcx), %xmm9;
772	vmovdqu 2 * 16(%rcx), %xmm10;
773	vmovdqu 3 * 16(%rcx), %xmm11;
774	vmovdqu 4 * 16(%rcx), %xmm12;
775	vmovdqu 5 * 16(%rcx), %xmm13;
776	vmovdqu 6 * 16(%rcx), %xmm14;
777	vmovdqu 7 * 16(%rcx), %xmm15;
778
779	outunpack16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
780		    %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
781		    %xmm15, (key_table)(CTX, %r8, 8), (%rax), 1 * 16(%rax));
782
783	ret;
784
785.align 8
786.Lenc_max32:
787	movl $32, %r8d;
788
789	fls16(%rax, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
790	      %rcx, %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
791	      %xmm15,
792	      ((key_table + (24) * 8) + 0)(CTX),
793	      ((key_table + (24) * 8) + 4)(CTX),
794	      ((key_table + (24) * 8) + 8)(CTX),
795	      ((key_table + (24) * 8) + 12)(CTX));
796
797	enc_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
798		     %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
799		     %xmm15, %rax, %rcx, 24);
800
801	jmp .Lenc_done;
802ENDPROC(__camellia_enc_blk16)
803
804.align 8
805__camellia_dec_blk16:
806	/* input:
807	 *	%rdi: ctx, CTX
808	 *	%rax: temporary storage, 256 bytes
809	 *	%r8d: 24 for 16 byte key, 32 for larger
810	 *	%xmm0..%xmm15: 16 encrypted blocks
811	 * output:
812	 *	%xmm0..%xmm15: 16 plaintext blocks, order swapped:
813	 *       7, 8, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8
814	 */
815
816	leaq 8 * 16(%rax), %rcx;
817
818	inpack16_post(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
819		      %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
820		      %xmm15, %rax, %rcx);
821
822	cmpl $32, %r8d;
823	je .Ldec_max32;
824
825.Ldec_max24:
826	dec_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
827		     %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
828		     %xmm15, %rax, %rcx, 16);
829
830	fls16(%rax, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
831	      %rcx, %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
832	      %xmm15,
833	      ((key_table + (16) * 8) + 8)(CTX),
834	      ((key_table + (16) * 8) + 12)(CTX),
835	      ((key_table + (16) * 8) + 0)(CTX),
836	      ((key_table + (16) * 8) + 4)(CTX));
837
838	dec_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
839		     %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
840		     %xmm15, %rax, %rcx, 8);
841
842	fls16(%rax, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
843	      %rcx, %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
844	      %xmm15,
845	      ((key_table + (8) * 8) + 8)(CTX),
846	      ((key_table + (8) * 8) + 12)(CTX),
847	      ((key_table + (8) * 8) + 0)(CTX),
848	      ((key_table + (8) * 8) + 4)(CTX));
849
850	dec_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
851		     %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
852		     %xmm15, %rax, %rcx, 0);
853
854	/* load CD for output */
855	vmovdqu 0 * 16(%rcx), %xmm8;
856	vmovdqu 1 * 16(%rcx), %xmm9;
857	vmovdqu 2 * 16(%rcx), %xmm10;
858	vmovdqu 3 * 16(%rcx), %xmm11;
859	vmovdqu 4 * 16(%rcx), %xmm12;
860	vmovdqu 5 * 16(%rcx), %xmm13;
861	vmovdqu 6 * 16(%rcx), %xmm14;
862	vmovdqu 7 * 16(%rcx), %xmm15;
863
864	outunpack16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
865		    %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
866		    %xmm15, (key_table)(CTX), (%rax), 1 * 16(%rax));
867
868	ret;
869
870.align 8
871.Ldec_max32:
872	dec_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
873		     %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
874		     %xmm15, %rax, %rcx, 24);
875
876	fls16(%rax, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
877	      %rcx, %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
878	      %xmm15,
879	      ((key_table + (24) * 8) + 8)(CTX),
880	      ((key_table + (24) * 8) + 12)(CTX),
881	      ((key_table + (24) * 8) + 0)(CTX),
882	      ((key_table + (24) * 8) + 4)(CTX));
883
884	jmp .Ldec_max24;
885ENDPROC(__camellia_dec_blk16)
886
887ENTRY(camellia_ecb_enc_16way)
888	/* input:
889	 *	%rdi: ctx, CTX
890	 *	%rsi: dst (16 blocks)
891	 *	%rdx: src (16 blocks)
892	 */
893
894	inpack16_pre(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
895		     %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
896		     %xmm15, %rdx, (key_table)(CTX));
897
898	/* now dst can be used as temporary buffer (even in src == dst case) */
899	movq	%rsi, %rax;
900
901	call __camellia_enc_blk16;
902
903	write_output(%xmm7, %xmm6, %xmm5, %xmm4, %xmm3, %xmm2, %xmm1, %xmm0,
904		     %xmm15, %xmm14, %xmm13, %xmm12, %xmm11, %xmm10, %xmm9,
905		     %xmm8, %rsi);
906
907	ret;
908ENDPROC(camellia_ecb_enc_16way)
909
910ENTRY(camellia_ecb_dec_16way)
911	/* input:
912	 *	%rdi: ctx, CTX
913	 *	%rsi: dst (16 blocks)
914	 *	%rdx: src (16 blocks)
915	 */
916
917	cmpl $16, key_length(CTX);
918	movl $32, %r8d;
919	movl $24, %eax;
920	cmovel %eax, %r8d; /* max */
921
922	inpack16_pre(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
923		     %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
924		     %xmm15, %rdx, (key_table)(CTX, %r8, 8));
925
926	/* now dst can be used as temporary buffer (even in src == dst case) */
927	movq	%rsi, %rax;
928
929	call __camellia_dec_blk16;
930
931	write_output(%xmm7, %xmm6, %xmm5, %xmm4, %xmm3, %xmm2, %xmm1, %xmm0,
932		     %xmm15, %xmm14, %xmm13, %xmm12, %xmm11, %xmm10, %xmm9,
933		     %xmm8, %rsi);
934
935	ret;
936ENDPROC(camellia_ecb_dec_16way)
937
938ENTRY(camellia_cbc_dec_16way)
939	/* input:
940	 *	%rdi: ctx, CTX
941	 *	%rsi: dst (16 blocks)
942	 *	%rdx: src (16 blocks)
943	 */
944
945	cmpl $16, key_length(CTX);
946	movl $32, %r8d;
947	movl $24, %eax;
948	cmovel %eax, %r8d; /* max */
949
950	inpack16_pre(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
951		     %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
952		     %xmm15, %rdx, (key_table)(CTX, %r8, 8));
953
954	/*
955	 * dst might still be in-use (in case dst == src), so use stack for
956	 * temporary storage.
957	 */
958	subq $(16 * 16), %rsp;
959	movq %rsp, %rax;
960
961	call __camellia_dec_blk16;
962
963	addq $(16 * 16), %rsp;
964
965	vpxor (0 * 16)(%rdx), %xmm6, %xmm6;
966	vpxor (1 * 16)(%rdx), %xmm5, %xmm5;
967	vpxor (2 * 16)(%rdx), %xmm4, %xmm4;
968	vpxor (3 * 16)(%rdx), %xmm3, %xmm3;
969	vpxor (4 * 16)(%rdx), %xmm2, %xmm2;
970	vpxor (5 * 16)(%rdx), %xmm1, %xmm1;
971	vpxor (6 * 16)(%rdx), %xmm0, %xmm0;
972	vpxor (7 * 16)(%rdx), %xmm15, %xmm15;
973	vpxor (8 * 16)(%rdx), %xmm14, %xmm14;
974	vpxor (9 * 16)(%rdx), %xmm13, %xmm13;
975	vpxor (10 * 16)(%rdx), %xmm12, %xmm12;
976	vpxor (11 * 16)(%rdx), %xmm11, %xmm11;
977	vpxor (12 * 16)(%rdx), %xmm10, %xmm10;
978	vpxor (13 * 16)(%rdx), %xmm9, %xmm9;
979	vpxor (14 * 16)(%rdx), %xmm8, %xmm8;
980	write_output(%xmm7, %xmm6, %xmm5, %xmm4, %xmm3, %xmm2, %xmm1, %xmm0,
981		     %xmm15, %xmm14, %xmm13, %xmm12, %xmm11, %xmm10, %xmm9,
982		     %xmm8, %rsi);
983
984	ret;
985ENDPROC(camellia_cbc_dec_16way)
986
987#define inc_le128(x, minus_one, tmp) \
988	vpcmpeqq minus_one, x, tmp; \
989	vpsubq minus_one, x, x; \
990	vpslldq $8, tmp, tmp; \
991	vpsubq tmp, x, x;
992
993ENTRY(camellia_ctr_16way)
994	/* input:
995	 *	%rdi: ctx, CTX
996	 *	%rsi: dst (16 blocks)
997	 *	%rdx: src (16 blocks)
998	 *	%rcx: iv (little endian, 128bit)
999	 */
1000
1001	subq $(16 * 16), %rsp;
1002	movq %rsp, %rax;
1003
1004	vmovdqa .Lbswap128_mask, %xmm14;
1005
1006	/* load IV and byteswap */
1007	vmovdqu (%rcx), %xmm0;
1008	vpshufb %xmm14, %xmm0, %xmm15;
1009	vmovdqu %xmm15, 15 * 16(%rax);
1010
1011	vpcmpeqd %xmm15, %xmm15, %xmm15;
1012	vpsrldq $8, %xmm15, %xmm15; /* low: -1, high: 0 */
1013
1014	/* construct IVs */
1015	inc_le128(%xmm0, %xmm15, %xmm13);
1016	vpshufb %xmm14, %xmm0, %xmm13;
1017	vmovdqu %xmm13, 14 * 16(%rax);
1018	inc_le128(%xmm0, %xmm15, %xmm13);
1019	vpshufb %xmm14, %xmm0, %xmm13;
1020	vmovdqu %xmm13, 13 * 16(%rax);
1021	inc_le128(%xmm0, %xmm15, %xmm13);
1022	vpshufb %xmm14, %xmm0, %xmm12;
1023	inc_le128(%xmm0, %xmm15, %xmm13);
1024	vpshufb %xmm14, %xmm0, %xmm11;
1025	inc_le128(%xmm0, %xmm15, %xmm13);
1026	vpshufb %xmm14, %xmm0, %xmm10;
1027	inc_le128(%xmm0, %xmm15, %xmm13);
1028	vpshufb %xmm14, %xmm0, %xmm9;
1029	inc_le128(%xmm0, %xmm15, %xmm13);
1030	vpshufb %xmm14, %xmm0, %xmm8;
1031	inc_le128(%xmm0, %xmm15, %xmm13);
1032	vpshufb %xmm14, %xmm0, %xmm7;
1033	inc_le128(%xmm0, %xmm15, %xmm13);
1034	vpshufb %xmm14, %xmm0, %xmm6;
1035	inc_le128(%xmm0, %xmm15, %xmm13);
1036	vpshufb %xmm14, %xmm0, %xmm5;
1037	inc_le128(%xmm0, %xmm15, %xmm13);
1038	vpshufb %xmm14, %xmm0, %xmm4;
1039	inc_le128(%xmm0, %xmm15, %xmm13);
1040	vpshufb %xmm14, %xmm0, %xmm3;
1041	inc_le128(%xmm0, %xmm15, %xmm13);
1042	vpshufb %xmm14, %xmm0, %xmm2;
1043	inc_le128(%xmm0, %xmm15, %xmm13);
1044	vpshufb %xmm14, %xmm0, %xmm1;
1045	inc_le128(%xmm0, %xmm15, %xmm13);
1046	vmovdqa %xmm0, %xmm13;
1047	vpshufb %xmm14, %xmm0, %xmm0;
1048	inc_le128(%xmm13, %xmm15, %xmm14);
1049	vmovdqu %xmm13, (%rcx);
1050
1051	/* inpack16_pre: */
1052	vmovq (key_table)(CTX), %xmm15;
1053	vpshufb .Lpack_bswap, %xmm15, %xmm15;
1054	vpxor %xmm0, %xmm15, %xmm0;
1055	vpxor %xmm1, %xmm15, %xmm1;
1056	vpxor %xmm2, %xmm15, %xmm2;
1057	vpxor %xmm3, %xmm15, %xmm3;
1058	vpxor %xmm4, %xmm15, %xmm4;
1059	vpxor %xmm5, %xmm15, %xmm5;
1060	vpxor %xmm6, %xmm15, %xmm6;
1061	vpxor %xmm7, %xmm15, %xmm7;
1062	vpxor %xmm8, %xmm15, %xmm8;
1063	vpxor %xmm9, %xmm15, %xmm9;
1064	vpxor %xmm10, %xmm15, %xmm10;
1065	vpxor %xmm11, %xmm15, %xmm11;
1066	vpxor %xmm12, %xmm15, %xmm12;
1067	vpxor 13 * 16(%rax), %xmm15, %xmm13;
1068	vpxor 14 * 16(%rax), %xmm15, %xmm14;
1069	vpxor 15 * 16(%rax), %xmm15, %xmm15;
1070
1071	call __camellia_enc_blk16;
1072
1073	addq $(16 * 16), %rsp;
1074
1075	vpxor 0 * 16(%rdx), %xmm7, %xmm7;
1076	vpxor 1 * 16(%rdx), %xmm6, %xmm6;
1077	vpxor 2 * 16(%rdx), %xmm5, %xmm5;
1078	vpxor 3 * 16(%rdx), %xmm4, %xmm4;
1079	vpxor 4 * 16(%rdx), %xmm3, %xmm3;
1080	vpxor 5 * 16(%rdx), %xmm2, %xmm2;
1081	vpxor 6 * 16(%rdx), %xmm1, %xmm1;
1082	vpxor 7 * 16(%rdx), %xmm0, %xmm0;
1083	vpxor 8 * 16(%rdx), %xmm15, %xmm15;
1084	vpxor 9 * 16(%rdx), %xmm14, %xmm14;
1085	vpxor 10 * 16(%rdx), %xmm13, %xmm13;
1086	vpxor 11 * 16(%rdx), %xmm12, %xmm12;
1087	vpxor 12 * 16(%rdx), %xmm11, %xmm11;
1088	vpxor 13 * 16(%rdx), %xmm10, %xmm10;
1089	vpxor 14 * 16(%rdx), %xmm9, %xmm9;
1090	vpxor 15 * 16(%rdx), %xmm8, %xmm8;
1091	write_output(%xmm7, %xmm6, %xmm5, %xmm4, %xmm3, %xmm2, %xmm1, %xmm0,
1092		     %xmm15, %xmm14, %xmm13, %xmm12, %xmm11, %xmm10, %xmm9,
1093		     %xmm8, %rsi);
1094
1095	ret;
1096ENDPROC(camellia_ctr_16way)
1097
1098#define gf128mul_x_ble(iv, mask, tmp) \
1099	vpsrad $31, iv, tmp; \
1100	vpaddq iv, iv, iv; \
1101	vpshufd $0x13, tmp, tmp; \
1102	vpand mask, tmp, tmp; \
1103	vpxor tmp, iv, iv;
1104
1105.align 8
1106camellia_xts_crypt_16way:
1107	/* input:
1108	 *	%rdi: ctx, CTX
1109	 *	%rsi: dst (16 blocks)
1110	 *	%rdx: src (16 blocks)
1111	 *	%rcx: iv (t ⊕ αⁿ ∈ GF(2¹²⁸))
1112	 *	%r8: index for input whitening key
1113	 *	%r9: pointer to  __camellia_enc_blk16 or __camellia_dec_blk16
1114	 */
1115
1116	subq $(16 * 16), %rsp;
1117	movq %rsp, %rax;
1118
1119	vmovdqa .Lxts_gf128mul_and_shl1_mask, %xmm14;
1120
1121	/* load IV */
1122	vmovdqu (%rcx), %xmm0;
1123	vpxor 0 * 16(%rdx), %xmm0, %xmm15;
1124	vmovdqu %xmm15, 15 * 16(%rax);
1125	vmovdqu %xmm0, 0 * 16(%rsi);
1126
1127	/* construct IVs */
1128	gf128mul_x_ble(%xmm0, %xmm14, %xmm15);
1129	vpxor 1 * 16(%rdx), %xmm0, %xmm15;
1130	vmovdqu %xmm15, 14 * 16(%rax);
1131	vmovdqu %xmm0, 1 * 16(%rsi);
1132
1133	gf128mul_x_ble(%xmm0, %xmm14, %xmm15);
1134	vpxor 2 * 16(%rdx), %xmm0, %xmm13;
1135	vmovdqu %xmm0, 2 * 16(%rsi);
1136
1137	gf128mul_x_ble(%xmm0, %xmm14, %xmm15);
1138	vpxor 3 * 16(%rdx), %xmm0, %xmm12;
1139	vmovdqu %xmm0, 3 * 16(%rsi);
1140
1141	gf128mul_x_ble(%xmm0, %xmm14, %xmm15);
1142	vpxor 4 * 16(%rdx), %xmm0, %xmm11;
1143	vmovdqu %xmm0, 4 * 16(%rsi);
1144
1145	gf128mul_x_ble(%xmm0, %xmm14, %xmm15);
1146	vpxor 5 * 16(%rdx), %xmm0, %xmm10;
1147	vmovdqu %xmm0, 5 * 16(%rsi);
1148
1149	gf128mul_x_ble(%xmm0, %xmm14, %xmm15);
1150	vpxor 6 * 16(%rdx), %xmm0, %xmm9;
1151	vmovdqu %xmm0, 6 * 16(%rsi);
1152
1153	gf128mul_x_ble(%xmm0, %xmm14, %xmm15);
1154	vpxor 7 * 16(%rdx), %xmm0, %xmm8;
1155	vmovdqu %xmm0, 7 * 16(%rsi);
1156
1157	gf128mul_x_ble(%xmm0, %xmm14, %xmm15);
1158	vpxor 8 * 16(%rdx), %xmm0, %xmm7;
1159	vmovdqu %xmm0, 8 * 16(%rsi);
1160
1161	gf128mul_x_ble(%xmm0, %xmm14, %xmm15);
1162	vpxor 9 * 16(%rdx), %xmm0, %xmm6;
1163	vmovdqu %xmm0, 9 * 16(%rsi);
1164
1165	gf128mul_x_ble(%xmm0, %xmm14, %xmm15);
1166	vpxor 10 * 16(%rdx), %xmm0, %xmm5;
1167	vmovdqu %xmm0, 10 * 16(%rsi);
1168
1169	gf128mul_x_ble(%xmm0, %xmm14, %xmm15);
1170	vpxor 11 * 16(%rdx), %xmm0, %xmm4;
1171	vmovdqu %xmm0, 11 * 16(%rsi);
1172
1173	gf128mul_x_ble(%xmm0, %xmm14, %xmm15);
1174	vpxor 12 * 16(%rdx), %xmm0, %xmm3;
1175	vmovdqu %xmm0, 12 * 16(%rsi);
1176
1177	gf128mul_x_ble(%xmm0, %xmm14, %xmm15);
1178	vpxor 13 * 16(%rdx), %xmm0, %xmm2;
1179	vmovdqu %xmm0, 13 * 16(%rsi);
1180
1181	gf128mul_x_ble(%xmm0, %xmm14, %xmm15);
1182	vpxor 14 * 16(%rdx), %xmm0, %xmm1;
1183	vmovdqu %xmm0, 14 * 16(%rsi);
1184
1185	gf128mul_x_ble(%xmm0, %xmm14, %xmm15);
1186	vpxor 15 * 16(%rdx), %xmm0, %xmm15;
1187	vmovdqu %xmm15, 0 * 16(%rax);
1188	vmovdqu %xmm0, 15 * 16(%rsi);
1189
1190	gf128mul_x_ble(%xmm0, %xmm14, %xmm15);
1191	vmovdqu %xmm0, (%rcx);
1192
1193	/* inpack16_pre: */
1194	vmovq (key_table)(CTX, %r8, 8), %xmm15;
1195	vpshufb .Lpack_bswap, %xmm15, %xmm15;
1196	vpxor 0 * 16(%rax), %xmm15, %xmm0;
1197	vpxor %xmm1, %xmm15, %xmm1;
1198	vpxor %xmm2, %xmm15, %xmm2;
1199	vpxor %xmm3, %xmm15, %xmm3;
1200	vpxor %xmm4, %xmm15, %xmm4;
1201	vpxor %xmm5, %xmm15, %xmm5;
1202	vpxor %xmm6, %xmm15, %xmm6;
1203	vpxor %xmm7, %xmm15, %xmm7;
1204	vpxor %xmm8, %xmm15, %xmm8;
1205	vpxor %xmm9, %xmm15, %xmm9;
1206	vpxor %xmm10, %xmm15, %xmm10;
1207	vpxor %xmm11, %xmm15, %xmm11;
1208	vpxor %xmm12, %xmm15, %xmm12;
1209	vpxor %xmm13, %xmm15, %xmm13;
1210	vpxor 14 * 16(%rax), %xmm15, %xmm14;
1211	vpxor 15 * 16(%rax), %xmm15, %xmm15;
1212
1213	call *%r9;
1214
1215	addq $(16 * 16), %rsp;
1216
1217	vpxor 0 * 16(%rsi), %xmm7, %xmm7;
1218	vpxor 1 * 16(%rsi), %xmm6, %xmm6;
1219	vpxor 2 * 16(%rsi), %xmm5, %xmm5;
1220	vpxor 3 * 16(%rsi), %xmm4, %xmm4;
1221	vpxor 4 * 16(%rsi), %xmm3, %xmm3;
1222	vpxor 5 * 16(%rsi), %xmm2, %xmm2;
1223	vpxor 6 * 16(%rsi), %xmm1, %xmm1;
1224	vpxor 7 * 16(%rsi), %xmm0, %xmm0;
1225	vpxor 8 * 16(%rsi), %xmm15, %xmm15;
1226	vpxor 9 * 16(%rsi), %xmm14, %xmm14;
1227	vpxor 10 * 16(%rsi), %xmm13, %xmm13;
1228	vpxor 11 * 16(%rsi), %xmm12, %xmm12;
1229	vpxor 12 * 16(%rsi), %xmm11, %xmm11;
1230	vpxor 13 * 16(%rsi), %xmm10, %xmm10;
1231	vpxor 14 * 16(%rsi), %xmm9, %xmm9;
1232	vpxor 15 * 16(%rsi), %xmm8, %xmm8;
1233	write_output(%xmm7, %xmm6, %xmm5, %xmm4, %xmm3, %xmm2, %xmm1, %xmm0,
1234		     %xmm15, %xmm14, %xmm13, %xmm12, %xmm11, %xmm10, %xmm9,
1235		     %xmm8, %rsi);
1236
1237	ret;
1238ENDPROC(camellia_xts_crypt_16way)
1239
1240ENTRY(camellia_xts_enc_16way)
1241	/* input:
1242	 *	%rdi: ctx, CTX
1243	 *	%rsi: dst (16 blocks)
1244	 *	%rdx: src (16 blocks)
1245	 *	%rcx: iv (t ⊕ αⁿ ∈ GF(2¹²⁸))
1246	 */
1247	xorl %r8d, %r8d; /* input whitening key, 0 for enc */
1248
1249	leaq __camellia_enc_blk16, %r9;
1250
1251	jmp camellia_xts_crypt_16way;
1252ENDPROC(camellia_xts_enc_16way)
1253
1254ENTRY(camellia_xts_dec_16way)
1255	/* input:
1256	 *	%rdi: ctx, CTX
1257	 *	%rsi: dst (16 blocks)
1258	 *	%rdx: src (16 blocks)
1259	 *	%rcx: iv (t ⊕ αⁿ ∈ GF(2¹²⁸))
1260	 */
1261
1262	cmpl $16, key_length(CTX);
1263	movl $32, %r8d;
1264	movl $24, %eax;
1265	cmovel %eax, %r8d;  /* input whitening key, last for dec */
1266
1267	leaq __camellia_dec_blk16, %r9;
1268
1269	jmp camellia_xts_crypt_16way;
1270ENDPROC(camellia_xts_dec_16way)
1271