xref: /linux/arch/x86/crypto/aesni-intel_glue.c (revision a619fe35ab41fded440d3762d4fbad84ff86a4d4)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Support for AES-NI and VAES instructions.  This file contains glue code.
4  * The real AES implementations are in aesni-intel_asm.S and other .S files.
5  *
6  * Copyright (C) 2008, Intel Corp.
7  *    Author: Huang Ying <ying.huang@intel.com>
8  *
9  * Added RFC4106 AES-GCM support for 128-bit keys under the AEAD
10  * interface for 64-bit kernels.
11  *    Authors: Adrian Hoban <adrian.hoban@intel.com>
12  *             Gabriele Paoloni <gabriele.paoloni@intel.com>
13  *             Tadeusz Struk (tadeusz.struk@intel.com)
14  *             Aidan O'Mahony (aidan.o.mahony@intel.com)
15  *    Copyright (c) 2010, Intel Corporation.
16  *
17  * Copyright 2024 Google LLC
18  */
19 
20 #include <linux/hardirq.h>
21 #include <linux/types.h>
22 #include <linux/module.h>
23 #include <linux/err.h>
24 #include <crypto/algapi.h>
25 #include <crypto/aes.h>
26 #include <crypto/b128ops.h>
27 #include <crypto/gcm.h>
28 #include <crypto/xts.h>
29 #include <asm/cpu_device_id.h>
30 #include <asm/simd.h>
31 #include <crypto/scatterwalk.h>
32 #include <crypto/internal/aead.h>
33 #include <crypto/internal/simd.h>
34 #include <crypto/internal/skcipher.h>
35 #include <linux/jump_label.h>
36 #include <linux/workqueue.h>
37 #include <linux/spinlock.h>
38 #include <linux/static_call.h>
39 
40 
41 #define AESNI_ALIGN	16
42 #define AESNI_ALIGN_ATTR __attribute__ ((__aligned__(AESNI_ALIGN)))
43 #define AES_BLOCK_MASK	(~(AES_BLOCK_SIZE - 1))
44 #define AESNI_ALIGN_EXTRA ((AESNI_ALIGN - 1) & ~(CRYPTO_MINALIGN - 1))
45 #define CRYPTO_AES_CTX_SIZE (sizeof(struct crypto_aes_ctx) + AESNI_ALIGN_EXTRA)
46 #define XTS_AES_CTX_SIZE (sizeof(struct aesni_xts_ctx) + AESNI_ALIGN_EXTRA)
47 
48 struct aesni_xts_ctx {
49 	struct crypto_aes_ctx tweak_ctx AESNI_ALIGN_ATTR;
50 	struct crypto_aes_ctx crypt_ctx AESNI_ALIGN_ATTR;
51 };
52 
aes_align_addr(void * addr)53 static inline void *aes_align_addr(void *addr)
54 {
55 	if (crypto_tfm_ctx_alignment() >= AESNI_ALIGN)
56 		return addr;
57 	return PTR_ALIGN(addr, AESNI_ALIGN);
58 }
59 
60 asmlinkage void aesni_set_key(struct crypto_aes_ctx *ctx, const u8 *in_key,
61 			      unsigned int key_len);
62 asmlinkage void aesni_enc(const void *ctx, u8 *out, const u8 *in);
63 asmlinkage void aesni_dec(const void *ctx, u8 *out, const u8 *in);
64 asmlinkage void aesni_ecb_enc(struct crypto_aes_ctx *ctx, u8 *out,
65 			      const u8 *in, unsigned int len);
66 asmlinkage void aesni_ecb_dec(struct crypto_aes_ctx *ctx, u8 *out,
67 			      const u8 *in, unsigned int len);
68 asmlinkage void aesni_cbc_enc(struct crypto_aes_ctx *ctx, u8 *out,
69 			      const u8 *in, unsigned int len, u8 *iv);
70 asmlinkage void aesni_cbc_dec(struct crypto_aes_ctx *ctx, u8 *out,
71 			      const u8 *in, unsigned int len, u8 *iv);
72 asmlinkage void aesni_cts_cbc_enc(struct crypto_aes_ctx *ctx, u8 *out,
73 				  const u8 *in, unsigned int len, u8 *iv);
74 asmlinkage void aesni_cts_cbc_dec(struct crypto_aes_ctx *ctx, u8 *out,
75 				  const u8 *in, unsigned int len, u8 *iv);
76 
77 asmlinkage void aesni_xts_enc(const struct crypto_aes_ctx *ctx, u8 *out,
78 			      const u8 *in, unsigned int len, u8 *iv);
79 
80 asmlinkage void aesni_xts_dec(const struct crypto_aes_ctx *ctx, u8 *out,
81 			      const u8 *in, unsigned int len, u8 *iv);
82 
83 #ifdef CONFIG_X86_64
84 asmlinkage void aesni_ctr_enc(struct crypto_aes_ctx *ctx, u8 *out,
85 			      const u8 *in, unsigned int len, u8 *iv);
86 #endif
87 
aes_ctx(void * raw_ctx)88 static inline struct crypto_aes_ctx *aes_ctx(void *raw_ctx)
89 {
90 	return aes_align_addr(raw_ctx);
91 }
92 
aes_xts_ctx(struct crypto_skcipher * tfm)93 static inline struct aesni_xts_ctx *aes_xts_ctx(struct crypto_skcipher *tfm)
94 {
95 	return aes_align_addr(crypto_skcipher_ctx(tfm));
96 }
97 
aes_set_key_common(struct crypto_aes_ctx * ctx,const u8 * in_key,unsigned int key_len)98 static int aes_set_key_common(struct crypto_aes_ctx *ctx,
99 			      const u8 *in_key, unsigned int key_len)
100 {
101 	int err;
102 
103 	if (!crypto_simd_usable())
104 		return aes_expandkey(ctx, in_key, key_len);
105 
106 	err = aes_check_keylen(key_len);
107 	if (err)
108 		return err;
109 
110 	kernel_fpu_begin();
111 	aesni_set_key(ctx, in_key, key_len);
112 	kernel_fpu_end();
113 	return 0;
114 }
115 
aes_set_key(struct crypto_tfm * tfm,const u8 * in_key,unsigned int key_len)116 static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
117 		       unsigned int key_len)
118 {
119 	return aes_set_key_common(aes_ctx(crypto_tfm_ctx(tfm)), in_key,
120 				  key_len);
121 }
122 
aesni_encrypt(struct crypto_tfm * tfm,u8 * dst,const u8 * src)123 static void aesni_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
124 {
125 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));
126 
127 	if (!crypto_simd_usable()) {
128 		aes_encrypt(ctx, dst, src);
129 	} else {
130 		kernel_fpu_begin();
131 		aesni_enc(ctx, dst, src);
132 		kernel_fpu_end();
133 	}
134 }
135 
aesni_decrypt(struct crypto_tfm * tfm,u8 * dst,const u8 * src)136 static void aesni_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
137 {
138 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));
139 
140 	if (!crypto_simd_usable()) {
141 		aes_decrypt(ctx, dst, src);
142 	} else {
143 		kernel_fpu_begin();
144 		aesni_dec(ctx, dst, src);
145 		kernel_fpu_end();
146 	}
147 }
148 
aesni_skcipher_setkey(struct crypto_skcipher * tfm,const u8 * key,unsigned int len)149 static int aesni_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
150 			         unsigned int len)
151 {
152 	return aes_set_key_common(aes_ctx(crypto_skcipher_ctx(tfm)), key, len);
153 }
154 
ecb_encrypt(struct skcipher_request * req)155 static int ecb_encrypt(struct skcipher_request *req)
156 {
157 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
158 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
159 	struct skcipher_walk walk;
160 	unsigned int nbytes;
161 	int err;
162 
163 	err = skcipher_walk_virt(&walk, req, false);
164 
165 	while ((nbytes = walk.nbytes)) {
166 		kernel_fpu_begin();
167 		aesni_ecb_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr,
168 			      nbytes & AES_BLOCK_MASK);
169 		kernel_fpu_end();
170 		nbytes &= AES_BLOCK_SIZE - 1;
171 		err = skcipher_walk_done(&walk, nbytes);
172 	}
173 
174 	return err;
175 }
176 
ecb_decrypt(struct skcipher_request * req)177 static int ecb_decrypt(struct skcipher_request *req)
178 {
179 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
180 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
181 	struct skcipher_walk walk;
182 	unsigned int nbytes;
183 	int err;
184 
185 	err = skcipher_walk_virt(&walk, req, false);
186 
187 	while ((nbytes = walk.nbytes)) {
188 		kernel_fpu_begin();
189 		aesni_ecb_dec(ctx, walk.dst.virt.addr, walk.src.virt.addr,
190 			      nbytes & AES_BLOCK_MASK);
191 		kernel_fpu_end();
192 		nbytes &= AES_BLOCK_SIZE - 1;
193 		err = skcipher_walk_done(&walk, nbytes);
194 	}
195 
196 	return err;
197 }
198 
cbc_encrypt(struct skcipher_request * req)199 static int cbc_encrypt(struct skcipher_request *req)
200 {
201 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
202 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
203 	struct skcipher_walk walk;
204 	unsigned int nbytes;
205 	int err;
206 
207 	err = skcipher_walk_virt(&walk, req, false);
208 
209 	while ((nbytes = walk.nbytes)) {
210 		kernel_fpu_begin();
211 		aesni_cbc_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr,
212 			      nbytes & AES_BLOCK_MASK, walk.iv);
213 		kernel_fpu_end();
214 		nbytes &= AES_BLOCK_SIZE - 1;
215 		err = skcipher_walk_done(&walk, nbytes);
216 	}
217 
218 	return err;
219 }
220 
cbc_decrypt(struct skcipher_request * req)221 static int cbc_decrypt(struct skcipher_request *req)
222 {
223 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
224 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
225 	struct skcipher_walk walk;
226 	unsigned int nbytes;
227 	int err;
228 
229 	err = skcipher_walk_virt(&walk, req, false);
230 
231 	while ((nbytes = walk.nbytes)) {
232 		kernel_fpu_begin();
233 		aesni_cbc_dec(ctx, walk.dst.virt.addr, walk.src.virt.addr,
234 			      nbytes & AES_BLOCK_MASK, walk.iv);
235 		kernel_fpu_end();
236 		nbytes &= AES_BLOCK_SIZE - 1;
237 		err = skcipher_walk_done(&walk, nbytes);
238 	}
239 
240 	return err;
241 }
242 
cts_cbc_encrypt(struct skcipher_request * req)243 static int cts_cbc_encrypt(struct skcipher_request *req)
244 {
245 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
246 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
247 	int cbc_blocks = DIV_ROUND_UP(req->cryptlen, AES_BLOCK_SIZE) - 2;
248 	struct scatterlist *src = req->src, *dst = req->dst;
249 	struct scatterlist sg_src[2], sg_dst[2];
250 	struct skcipher_request subreq;
251 	struct skcipher_walk walk;
252 	int err;
253 
254 	skcipher_request_set_tfm(&subreq, tfm);
255 	skcipher_request_set_callback(&subreq, skcipher_request_flags(req),
256 				      NULL, NULL);
257 
258 	if (req->cryptlen <= AES_BLOCK_SIZE) {
259 		if (req->cryptlen < AES_BLOCK_SIZE)
260 			return -EINVAL;
261 		cbc_blocks = 1;
262 	}
263 
264 	if (cbc_blocks > 0) {
265 		skcipher_request_set_crypt(&subreq, req->src, req->dst,
266 					   cbc_blocks * AES_BLOCK_SIZE,
267 					   req->iv);
268 
269 		err = cbc_encrypt(&subreq);
270 		if (err)
271 			return err;
272 
273 		if (req->cryptlen == AES_BLOCK_SIZE)
274 			return 0;
275 
276 		dst = src = scatterwalk_ffwd(sg_src, req->src, subreq.cryptlen);
277 		if (req->dst != req->src)
278 			dst = scatterwalk_ffwd(sg_dst, req->dst,
279 					       subreq.cryptlen);
280 	}
281 
282 	/* handle ciphertext stealing */
283 	skcipher_request_set_crypt(&subreq, src, dst,
284 				   req->cryptlen - cbc_blocks * AES_BLOCK_SIZE,
285 				   req->iv);
286 
287 	err = skcipher_walk_virt(&walk, &subreq, false);
288 	if (err)
289 		return err;
290 
291 	kernel_fpu_begin();
292 	aesni_cts_cbc_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr,
293 			  walk.nbytes, walk.iv);
294 	kernel_fpu_end();
295 
296 	return skcipher_walk_done(&walk, 0);
297 }
298 
cts_cbc_decrypt(struct skcipher_request * req)299 static int cts_cbc_decrypt(struct skcipher_request *req)
300 {
301 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
302 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
303 	int cbc_blocks = DIV_ROUND_UP(req->cryptlen, AES_BLOCK_SIZE) - 2;
304 	struct scatterlist *src = req->src, *dst = req->dst;
305 	struct scatterlist sg_src[2], sg_dst[2];
306 	struct skcipher_request subreq;
307 	struct skcipher_walk walk;
308 	int err;
309 
310 	skcipher_request_set_tfm(&subreq, tfm);
311 	skcipher_request_set_callback(&subreq, skcipher_request_flags(req),
312 				      NULL, NULL);
313 
314 	if (req->cryptlen <= AES_BLOCK_SIZE) {
315 		if (req->cryptlen < AES_BLOCK_SIZE)
316 			return -EINVAL;
317 		cbc_blocks = 1;
318 	}
319 
320 	if (cbc_blocks > 0) {
321 		skcipher_request_set_crypt(&subreq, req->src, req->dst,
322 					   cbc_blocks * AES_BLOCK_SIZE,
323 					   req->iv);
324 
325 		err = cbc_decrypt(&subreq);
326 		if (err)
327 			return err;
328 
329 		if (req->cryptlen == AES_BLOCK_SIZE)
330 			return 0;
331 
332 		dst = src = scatterwalk_ffwd(sg_src, req->src, subreq.cryptlen);
333 		if (req->dst != req->src)
334 			dst = scatterwalk_ffwd(sg_dst, req->dst,
335 					       subreq.cryptlen);
336 	}
337 
338 	/* handle ciphertext stealing */
339 	skcipher_request_set_crypt(&subreq, src, dst,
340 				   req->cryptlen - cbc_blocks * AES_BLOCK_SIZE,
341 				   req->iv);
342 
343 	err = skcipher_walk_virt(&walk, &subreq, false);
344 	if (err)
345 		return err;
346 
347 	kernel_fpu_begin();
348 	aesni_cts_cbc_dec(ctx, walk.dst.virt.addr, walk.src.virt.addr,
349 			  walk.nbytes, walk.iv);
350 	kernel_fpu_end();
351 
352 	return skcipher_walk_done(&walk, 0);
353 }
354 
355 #ifdef CONFIG_X86_64
356 /* This is the non-AVX version. */
ctr_crypt_aesni(struct skcipher_request * req)357 static int ctr_crypt_aesni(struct skcipher_request *req)
358 {
359 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
360 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
361 	u8 keystream[AES_BLOCK_SIZE];
362 	struct skcipher_walk walk;
363 	unsigned int nbytes;
364 	int err;
365 
366 	err = skcipher_walk_virt(&walk, req, false);
367 
368 	while ((nbytes = walk.nbytes) > 0) {
369 		kernel_fpu_begin();
370 		if (nbytes & AES_BLOCK_MASK)
371 			aesni_ctr_enc(ctx, walk.dst.virt.addr,
372 				      walk.src.virt.addr,
373 				      nbytes & AES_BLOCK_MASK, walk.iv);
374 		nbytes &= ~AES_BLOCK_MASK;
375 
376 		if (walk.nbytes == walk.total && nbytes > 0) {
377 			aesni_enc(ctx, keystream, walk.iv);
378 			crypto_xor_cpy(walk.dst.virt.addr + walk.nbytes - nbytes,
379 				       walk.src.virt.addr + walk.nbytes - nbytes,
380 				       keystream, nbytes);
381 			crypto_inc(walk.iv, AES_BLOCK_SIZE);
382 			nbytes = 0;
383 		}
384 		kernel_fpu_end();
385 		err = skcipher_walk_done(&walk, nbytes);
386 	}
387 	return err;
388 }
389 #endif
390 
xts_setkey_aesni(struct crypto_skcipher * tfm,const u8 * key,unsigned int keylen)391 static int xts_setkey_aesni(struct crypto_skcipher *tfm, const u8 *key,
392 			    unsigned int keylen)
393 {
394 	struct aesni_xts_ctx *ctx = aes_xts_ctx(tfm);
395 	int err;
396 
397 	err = xts_verify_key(tfm, key, keylen);
398 	if (err)
399 		return err;
400 
401 	keylen /= 2;
402 
403 	/* first half of xts-key is for crypt */
404 	err = aes_set_key_common(&ctx->crypt_ctx, key, keylen);
405 	if (err)
406 		return err;
407 
408 	/* second half of xts-key is for tweak */
409 	return aes_set_key_common(&ctx->tweak_ctx, key + keylen, keylen);
410 }
411 
412 typedef void (*xts_encrypt_iv_func)(const struct crypto_aes_ctx *tweak_key,
413 				    u8 iv[AES_BLOCK_SIZE]);
414 typedef void (*xts_crypt_func)(const struct crypto_aes_ctx *key,
415 			       const u8 *src, u8 *dst, int len,
416 			       u8 tweak[AES_BLOCK_SIZE]);
417 
418 /* This handles cases where the source and/or destination span pages. */
419 static noinline int
xts_crypt_slowpath(struct skcipher_request * req,xts_crypt_func crypt_func)420 xts_crypt_slowpath(struct skcipher_request *req, xts_crypt_func crypt_func)
421 {
422 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
423 	const struct aesni_xts_ctx *ctx = aes_xts_ctx(tfm);
424 	int tail = req->cryptlen % AES_BLOCK_SIZE;
425 	struct scatterlist sg_src[2], sg_dst[2];
426 	struct skcipher_request subreq;
427 	struct skcipher_walk walk;
428 	struct scatterlist *src, *dst;
429 	int err;
430 
431 	/*
432 	 * If the message length isn't divisible by the AES block size, then
433 	 * separate off the last full block and the partial block.  This ensures
434 	 * that they are processed in the same call to the assembly function,
435 	 * which is required for ciphertext stealing.
436 	 */
437 	if (tail) {
438 		skcipher_request_set_tfm(&subreq, tfm);
439 		skcipher_request_set_callback(&subreq,
440 					      skcipher_request_flags(req),
441 					      NULL, NULL);
442 		skcipher_request_set_crypt(&subreq, req->src, req->dst,
443 					   req->cryptlen - tail - AES_BLOCK_SIZE,
444 					   req->iv);
445 		req = &subreq;
446 	}
447 
448 	err = skcipher_walk_virt(&walk, req, false);
449 
450 	while (walk.nbytes) {
451 		kernel_fpu_begin();
452 		(*crypt_func)(&ctx->crypt_ctx,
453 			      walk.src.virt.addr, walk.dst.virt.addr,
454 			      walk.nbytes & ~(AES_BLOCK_SIZE - 1), req->iv);
455 		kernel_fpu_end();
456 		err = skcipher_walk_done(&walk,
457 					 walk.nbytes & (AES_BLOCK_SIZE - 1));
458 	}
459 
460 	if (err || !tail)
461 		return err;
462 
463 	/* Do ciphertext stealing with the last full block and partial block. */
464 
465 	dst = src = scatterwalk_ffwd(sg_src, req->src, req->cryptlen);
466 	if (req->dst != req->src)
467 		dst = scatterwalk_ffwd(sg_dst, req->dst, req->cryptlen);
468 
469 	skcipher_request_set_crypt(req, src, dst, AES_BLOCK_SIZE + tail,
470 				   req->iv);
471 
472 	err = skcipher_walk_virt(&walk, req, false);
473 	if (err)
474 		return err;
475 
476 	kernel_fpu_begin();
477 	(*crypt_func)(&ctx->crypt_ctx, walk.src.virt.addr, walk.dst.virt.addr,
478 		      walk.nbytes, req->iv);
479 	kernel_fpu_end();
480 
481 	return skcipher_walk_done(&walk, 0);
482 }
483 
484 /* __always_inline to avoid indirect call in fastpath */
485 static __always_inline int
xts_crypt(struct skcipher_request * req,xts_encrypt_iv_func encrypt_iv,xts_crypt_func crypt_func)486 xts_crypt(struct skcipher_request *req, xts_encrypt_iv_func encrypt_iv,
487 	  xts_crypt_func crypt_func)
488 {
489 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
490 	const struct aesni_xts_ctx *ctx = aes_xts_ctx(tfm);
491 
492 	if (unlikely(req->cryptlen < AES_BLOCK_SIZE))
493 		return -EINVAL;
494 
495 	kernel_fpu_begin();
496 	(*encrypt_iv)(&ctx->tweak_ctx, req->iv);
497 
498 	/*
499 	 * In practice, virtually all XTS plaintexts and ciphertexts are either
500 	 * 512 or 4096 bytes and do not use multiple scatterlist elements.  To
501 	 * optimize the performance of these cases, the below fast-path handles
502 	 * single-scatterlist-element messages as efficiently as possible.  The
503 	 * code is 64-bit specific, as it assumes no page mapping is needed.
504 	 */
505 	if (IS_ENABLED(CONFIG_X86_64) &&
506 	    likely(req->src->length >= req->cryptlen &&
507 		   req->dst->length >= req->cryptlen)) {
508 		(*crypt_func)(&ctx->crypt_ctx, sg_virt(req->src),
509 			      sg_virt(req->dst), req->cryptlen, req->iv);
510 		kernel_fpu_end();
511 		return 0;
512 	}
513 	kernel_fpu_end();
514 	return xts_crypt_slowpath(req, crypt_func);
515 }
516 
aesni_xts_encrypt_iv(const struct crypto_aes_ctx * tweak_key,u8 iv[AES_BLOCK_SIZE])517 static void aesni_xts_encrypt_iv(const struct crypto_aes_ctx *tweak_key,
518 				 u8 iv[AES_BLOCK_SIZE])
519 {
520 	aesni_enc(tweak_key, iv, iv);
521 }
522 
aesni_xts_encrypt(const struct crypto_aes_ctx * key,const u8 * src,u8 * dst,int len,u8 tweak[AES_BLOCK_SIZE])523 static void aesni_xts_encrypt(const struct crypto_aes_ctx *key,
524 			      const u8 *src, u8 *dst, int len,
525 			      u8 tweak[AES_BLOCK_SIZE])
526 {
527 	aesni_xts_enc(key, dst, src, len, tweak);
528 }
529 
aesni_xts_decrypt(const struct crypto_aes_ctx * key,const u8 * src,u8 * dst,int len,u8 tweak[AES_BLOCK_SIZE])530 static void aesni_xts_decrypt(const struct crypto_aes_ctx *key,
531 			      const u8 *src, u8 *dst, int len,
532 			      u8 tweak[AES_BLOCK_SIZE])
533 {
534 	aesni_xts_dec(key, dst, src, len, tweak);
535 }
536 
xts_encrypt_aesni(struct skcipher_request * req)537 static int xts_encrypt_aesni(struct skcipher_request *req)
538 {
539 	return xts_crypt(req, aesni_xts_encrypt_iv, aesni_xts_encrypt);
540 }
541 
xts_decrypt_aesni(struct skcipher_request * req)542 static int xts_decrypt_aesni(struct skcipher_request *req)
543 {
544 	return xts_crypt(req, aesni_xts_encrypt_iv, aesni_xts_decrypt);
545 }
546 
547 static struct crypto_alg aesni_cipher_alg = {
548 	.cra_name		= "aes",
549 	.cra_driver_name	= "aes-aesni",
550 	.cra_priority		= 300,
551 	.cra_flags		= CRYPTO_ALG_TYPE_CIPHER,
552 	.cra_blocksize		= AES_BLOCK_SIZE,
553 	.cra_ctxsize		= CRYPTO_AES_CTX_SIZE,
554 	.cra_module		= THIS_MODULE,
555 	.cra_u	= {
556 		.cipher	= {
557 			.cia_min_keysize	= AES_MIN_KEY_SIZE,
558 			.cia_max_keysize	= AES_MAX_KEY_SIZE,
559 			.cia_setkey		= aes_set_key,
560 			.cia_encrypt		= aesni_encrypt,
561 			.cia_decrypt		= aesni_decrypt
562 		}
563 	}
564 };
565 
566 static struct skcipher_alg aesni_skciphers[] = {
567 	{
568 		.base = {
569 			.cra_name		= "ecb(aes)",
570 			.cra_driver_name	= "ecb-aes-aesni",
571 			.cra_priority		= 400,
572 			.cra_blocksize		= AES_BLOCK_SIZE,
573 			.cra_ctxsize		= CRYPTO_AES_CTX_SIZE,
574 			.cra_module		= THIS_MODULE,
575 		},
576 		.min_keysize	= AES_MIN_KEY_SIZE,
577 		.max_keysize	= AES_MAX_KEY_SIZE,
578 		.setkey		= aesni_skcipher_setkey,
579 		.encrypt	= ecb_encrypt,
580 		.decrypt	= ecb_decrypt,
581 	}, {
582 		.base = {
583 			.cra_name		= "cbc(aes)",
584 			.cra_driver_name	= "cbc-aes-aesni",
585 			.cra_priority		= 400,
586 			.cra_blocksize		= AES_BLOCK_SIZE,
587 			.cra_ctxsize		= CRYPTO_AES_CTX_SIZE,
588 			.cra_module		= THIS_MODULE,
589 		},
590 		.min_keysize	= AES_MIN_KEY_SIZE,
591 		.max_keysize	= AES_MAX_KEY_SIZE,
592 		.ivsize		= AES_BLOCK_SIZE,
593 		.setkey		= aesni_skcipher_setkey,
594 		.encrypt	= cbc_encrypt,
595 		.decrypt	= cbc_decrypt,
596 	}, {
597 		.base = {
598 			.cra_name		= "cts(cbc(aes))",
599 			.cra_driver_name	= "cts-cbc-aes-aesni",
600 			.cra_priority		= 400,
601 			.cra_blocksize		= AES_BLOCK_SIZE,
602 			.cra_ctxsize		= CRYPTO_AES_CTX_SIZE,
603 			.cra_module		= THIS_MODULE,
604 		},
605 		.min_keysize	= AES_MIN_KEY_SIZE,
606 		.max_keysize	= AES_MAX_KEY_SIZE,
607 		.ivsize		= AES_BLOCK_SIZE,
608 		.walksize	= 2 * AES_BLOCK_SIZE,
609 		.setkey		= aesni_skcipher_setkey,
610 		.encrypt	= cts_cbc_encrypt,
611 		.decrypt	= cts_cbc_decrypt,
612 #ifdef CONFIG_X86_64
613 	}, {
614 		.base = {
615 			.cra_name		= "ctr(aes)",
616 			.cra_driver_name	= "ctr-aes-aesni",
617 			.cra_priority		= 400,
618 			.cra_blocksize		= 1,
619 			.cra_ctxsize		= CRYPTO_AES_CTX_SIZE,
620 			.cra_module		= THIS_MODULE,
621 		},
622 		.min_keysize	= AES_MIN_KEY_SIZE,
623 		.max_keysize	= AES_MAX_KEY_SIZE,
624 		.ivsize		= AES_BLOCK_SIZE,
625 		.chunksize	= AES_BLOCK_SIZE,
626 		.setkey		= aesni_skcipher_setkey,
627 		.encrypt	= ctr_crypt_aesni,
628 		.decrypt	= ctr_crypt_aesni,
629 #endif
630 	}, {
631 		.base = {
632 			.cra_name		= "xts(aes)",
633 			.cra_driver_name	= "xts-aes-aesni",
634 			.cra_priority		= 401,
635 			.cra_blocksize		= AES_BLOCK_SIZE,
636 			.cra_ctxsize		= XTS_AES_CTX_SIZE,
637 			.cra_module		= THIS_MODULE,
638 		},
639 		.min_keysize	= 2 * AES_MIN_KEY_SIZE,
640 		.max_keysize	= 2 * AES_MAX_KEY_SIZE,
641 		.ivsize		= AES_BLOCK_SIZE,
642 		.walksize	= 2 * AES_BLOCK_SIZE,
643 		.setkey		= xts_setkey_aesni,
644 		.encrypt	= xts_encrypt_aesni,
645 		.decrypt	= xts_decrypt_aesni,
646 	}
647 };
648 
649 #ifdef CONFIG_X86_64
650 asmlinkage void aes_xts_encrypt_iv(const struct crypto_aes_ctx *tweak_key,
651 				   u8 iv[AES_BLOCK_SIZE]);
652 
653 /* __always_inline to avoid indirect call */
654 static __always_inline int
ctr_crypt(struct skcipher_request * req,void (* ctr64_func)(const struct crypto_aes_ctx * key,const u8 * src,u8 * dst,int len,const u64 le_ctr[2]))655 ctr_crypt(struct skcipher_request *req,
656 	  void (*ctr64_func)(const struct crypto_aes_ctx *key,
657 			     const u8 *src, u8 *dst, int len,
658 			     const u64 le_ctr[2]))
659 {
660 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
661 	const struct crypto_aes_ctx *key = aes_ctx(crypto_skcipher_ctx(tfm));
662 	unsigned int nbytes, p1_nbytes, nblocks;
663 	struct skcipher_walk walk;
664 	u64 le_ctr[2];
665 	u64 ctr64;
666 	int err;
667 
668 	ctr64 = le_ctr[0] = get_unaligned_be64(&req->iv[8]);
669 	le_ctr[1] = get_unaligned_be64(&req->iv[0]);
670 
671 	err = skcipher_walk_virt(&walk, req, false);
672 
673 	while ((nbytes = walk.nbytes) != 0) {
674 		if (nbytes < walk.total) {
675 			/* Not the end yet, so keep the length block-aligned. */
676 			nbytes = round_down(nbytes, AES_BLOCK_SIZE);
677 			nblocks = nbytes / AES_BLOCK_SIZE;
678 		} else {
679 			/* It's the end, so include any final partial block. */
680 			nblocks = DIV_ROUND_UP(nbytes, AES_BLOCK_SIZE);
681 		}
682 		ctr64 += nblocks;
683 
684 		kernel_fpu_begin();
685 		if (likely(ctr64 >= nblocks)) {
686 			/* The low 64 bits of the counter won't overflow. */
687 			(*ctr64_func)(key, walk.src.virt.addr,
688 				      walk.dst.virt.addr, nbytes, le_ctr);
689 		} else {
690 			/*
691 			 * The low 64 bits of the counter will overflow.  The
692 			 * assembly doesn't handle this case, so split the
693 			 * operation into two at the point where the overflow
694 			 * will occur.  After the first part, add the carry bit.
695 			 */
696 			p1_nbytes = min(nbytes, (nblocks - ctr64) * AES_BLOCK_SIZE);
697 			(*ctr64_func)(key, walk.src.virt.addr,
698 				      walk.dst.virt.addr, p1_nbytes, le_ctr);
699 			le_ctr[0] = 0;
700 			le_ctr[1]++;
701 			(*ctr64_func)(key, walk.src.virt.addr + p1_nbytes,
702 				      walk.dst.virt.addr + p1_nbytes,
703 				      nbytes - p1_nbytes, le_ctr);
704 		}
705 		kernel_fpu_end();
706 		le_ctr[0] = ctr64;
707 
708 		err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
709 	}
710 
711 	put_unaligned_be64(ctr64, &req->iv[8]);
712 	put_unaligned_be64(le_ctr[1], &req->iv[0]);
713 
714 	return err;
715 }
716 
717 /* __always_inline to avoid indirect call */
718 static __always_inline int
xctr_crypt(struct skcipher_request * req,void (* xctr_func)(const struct crypto_aes_ctx * key,const u8 * src,u8 * dst,int len,const u8 iv[AES_BLOCK_SIZE],u64 ctr))719 xctr_crypt(struct skcipher_request *req,
720 	   void (*xctr_func)(const struct crypto_aes_ctx *key,
721 			     const u8 *src, u8 *dst, int len,
722 			     const u8 iv[AES_BLOCK_SIZE], u64 ctr))
723 {
724 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
725 	const struct crypto_aes_ctx *key = aes_ctx(crypto_skcipher_ctx(tfm));
726 	struct skcipher_walk walk;
727 	unsigned int nbytes;
728 	u64 ctr = 1;
729 	int err;
730 
731 	err = skcipher_walk_virt(&walk, req, false);
732 	while ((nbytes = walk.nbytes) != 0) {
733 		if (nbytes < walk.total)
734 			nbytes = round_down(nbytes, AES_BLOCK_SIZE);
735 
736 		kernel_fpu_begin();
737 		(*xctr_func)(key, walk.src.virt.addr, walk.dst.virt.addr,
738 			     nbytes, req->iv, ctr);
739 		kernel_fpu_end();
740 
741 		ctr += DIV_ROUND_UP(nbytes, AES_BLOCK_SIZE);
742 		err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
743 	}
744 	return err;
745 }
746 
747 #define DEFINE_AVX_SKCIPHER_ALGS(suffix, driver_name_suffix, priority)	       \
748 									       \
749 asmlinkage void								       \
750 aes_xts_encrypt_##suffix(const struct crypto_aes_ctx *key, const u8 *src,      \
751 			 u8 *dst, int len, u8 tweak[AES_BLOCK_SIZE]);	       \
752 asmlinkage void								       \
753 aes_xts_decrypt_##suffix(const struct crypto_aes_ctx *key, const u8 *src,      \
754 			 u8 *dst, int len, u8 tweak[AES_BLOCK_SIZE]);	       \
755 									       \
756 static int xts_encrypt_##suffix(struct skcipher_request *req)		       \
757 {									       \
758 	return xts_crypt(req, aes_xts_encrypt_iv, aes_xts_encrypt_##suffix);   \
759 }									       \
760 									       \
761 static int xts_decrypt_##suffix(struct skcipher_request *req)		       \
762 {									       \
763 	return xts_crypt(req, aes_xts_encrypt_iv, aes_xts_decrypt_##suffix);   \
764 }									       \
765 									       \
766 asmlinkage void								       \
767 aes_ctr64_crypt_##suffix(const struct crypto_aes_ctx *key,		       \
768 			 const u8 *src, u8 *dst, int len, const u64 le_ctr[2]);\
769 									       \
770 static int ctr_crypt_##suffix(struct skcipher_request *req)		       \
771 {									       \
772 	return ctr_crypt(req, aes_ctr64_crypt_##suffix);		       \
773 }									       \
774 									       \
775 asmlinkage void								       \
776 aes_xctr_crypt_##suffix(const struct crypto_aes_ctx *key,		       \
777 			const u8 *src, u8 *dst, int len,		       \
778 			const u8 iv[AES_BLOCK_SIZE], u64 ctr);		       \
779 									       \
780 static int xctr_crypt_##suffix(struct skcipher_request *req)		       \
781 {									       \
782 	return xctr_crypt(req, aes_xctr_crypt_##suffix);		       \
783 }									       \
784 									       \
785 static struct skcipher_alg skcipher_algs_##suffix[] = {{		       \
786 	.base.cra_name		= "xts(aes)",				       \
787 	.base.cra_driver_name	= "xts-aes-" driver_name_suffix,	       \
788 	.base.cra_priority	= priority,				       \
789 	.base.cra_blocksize	= AES_BLOCK_SIZE,			       \
790 	.base.cra_ctxsize	= XTS_AES_CTX_SIZE,			       \
791 	.base.cra_module	= THIS_MODULE,				       \
792 	.min_keysize		= 2 * AES_MIN_KEY_SIZE,			       \
793 	.max_keysize		= 2 * AES_MAX_KEY_SIZE,			       \
794 	.ivsize			= AES_BLOCK_SIZE,			       \
795 	.walksize		= 2 * AES_BLOCK_SIZE,			       \
796 	.setkey			= xts_setkey_aesni,			       \
797 	.encrypt		= xts_encrypt_##suffix,			       \
798 	.decrypt		= xts_decrypt_##suffix,			       \
799 }, {									       \
800 	.base.cra_name		= "ctr(aes)",				       \
801 	.base.cra_driver_name	= "ctr-aes-" driver_name_suffix,	       \
802 	.base.cra_priority	= priority,				       \
803 	.base.cra_blocksize	= 1,					       \
804 	.base.cra_ctxsize	= CRYPTO_AES_CTX_SIZE,			       \
805 	.base.cra_module	= THIS_MODULE,				       \
806 	.min_keysize		= AES_MIN_KEY_SIZE,			       \
807 	.max_keysize		= AES_MAX_KEY_SIZE,			       \
808 	.ivsize			= AES_BLOCK_SIZE,			       \
809 	.chunksize		= AES_BLOCK_SIZE,			       \
810 	.setkey			= aesni_skcipher_setkey,		       \
811 	.encrypt		= ctr_crypt_##suffix,			       \
812 	.decrypt		= ctr_crypt_##suffix,			       \
813 }, {									       \
814 	.base.cra_name		= "xctr(aes)",				       \
815 	.base.cra_driver_name	= "xctr-aes-" driver_name_suffix,	       \
816 	.base.cra_priority	= priority,				       \
817 	.base.cra_blocksize	= 1,					       \
818 	.base.cra_ctxsize	= CRYPTO_AES_CTX_SIZE,			       \
819 	.base.cra_module	= THIS_MODULE,				       \
820 	.min_keysize		= AES_MIN_KEY_SIZE,			       \
821 	.max_keysize		= AES_MAX_KEY_SIZE,			       \
822 	.ivsize			= AES_BLOCK_SIZE,			       \
823 	.chunksize		= AES_BLOCK_SIZE,			       \
824 	.setkey			= aesni_skcipher_setkey,		       \
825 	.encrypt		= xctr_crypt_##suffix,			       \
826 	.decrypt		= xctr_crypt_##suffix,			       \
827 }}
828 
829 DEFINE_AVX_SKCIPHER_ALGS(aesni_avx, "aesni-avx", 500);
830 DEFINE_AVX_SKCIPHER_ALGS(vaes_avx2, "vaes-avx2", 600);
831 DEFINE_AVX_SKCIPHER_ALGS(vaes_avx512, "vaes-avx512", 800);
832 
833 /* The common part of the x86_64 AES-GCM key struct */
834 struct aes_gcm_key {
835 	/* Expanded AES key and the AES key length in bytes */
836 	struct crypto_aes_ctx aes_key;
837 
838 	/* RFC4106 nonce (used only by the rfc4106 algorithms) */
839 	u32 rfc4106_nonce;
840 };
841 
842 /* Key struct used by the AES-NI implementations of AES-GCM */
843 struct aes_gcm_key_aesni {
844 	/*
845 	 * Common part of the key.  The assembly code requires 16-byte alignment
846 	 * for the round keys; we get this by them being located at the start of
847 	 * the struct and the whole struct being 16-byte aligned.
848 	 */
849 	struct aes_gcm_key base;
850 
851 	/*
852 	 * Powers of the hash key H^8 through H^1.  These are 128-bit values.
853 	 * They all have an extra factor of x^-1 and are byte-reversed.  16-byte
854 	 * alignment is required by the assembly code.
855 	 */
856 	u64 h_powers[8][2] __aligned(16);
857 
858 	/*
859 	 * h_powers_xored[i] contains the two 64-bit halves of h_powers[i] XOR'd
860 	 * together.  It's used for Karatsuba multiplication.  16-byte alignment
861 	 * is required by the assembly code.
862 	 */
863 	u64 h_powers_xored[8] __aligned(16);
864 
865 	/*
866 	 * H^1 times x^64 (and also the usual extra factor of x^-1).  16-byte
867 	 * alignment is required by the assembly code.
868 	 */
869 	u64 h_times_x64[2] __aligned(16);
870 };
871 #define AES_GCM_KEY_AESNI(key)	\
872 	container_of((key), struct aes_gcm_key_aesni, base)
873 #define AES_GCM_KEY_AESNI_SIZE	\
874 	(sizeof(struct aes_gcm_key_aesni) + (15 & ~(CRYPTO_MINALIGN - 1)))
875 
876 /* Key struct used by the VAES + AVX2 implementation of AES-GCM */
877 struct aes_gcm_key_vaes_avx2 {
878 	/*
879 	 * Common part of the key.  The assembly code prefers 16-byte alignment
880 	 * for the round keys; we get this by them being located at the start of
881 	 * the struct and the whole struct being 32-byte aligned.
882 	 */
883 	struct aes_gcm_key base;
884 
885 	/*
886 	 * Powers of the hash key H^8 through H^1.  These are 128-bit values.
887 	 * They all have an extra factor of x^-1 and are byte-reversed.
888 	 * The assembly code prefers 32-byte alignment for this.
889 	 */
890 	u64 h_powers[8][2] __aligned(32);
891 
892 	/*
893 	 * Each entry in this array contains the two halves of an entry of
894 	 * h_powers XOR'd together, in the following order:
895 	 * H^8,H^6,H^7,H^5,H^4,H^2,H^3,H^1 i.e. indices 0,2,1,3,4,6,5,7.
896 	 * This is used for Karatsuba multiplication.
897 	 */
898 	u64 h_powers_xored[8];
899 };
900 
901 #define AES_GCM_KEY_VAES_AVX2(key) \
902 	container_of((key), struct aes_gcm_key_vaes_avx2, base)
903 #define AES_GCM_KEY_VAES_AVX2_SIZE \
904 	(sizeof(struct aes_gcm_key_vaes_avx2) + (31 & ~(CRYPTO_MINALIGN - 1)))
905 
906 /* Key struct used by the VAES + AVX512 implementation of AES-GCM */
907 struct aes_gcm_key_vaes_avx512 {
908 	/*
909 	 * Common part of the key.  The assembly code prefers 16-byte alignment
910 	 * for the round keys; we get this by them being located at the start of
911 	 * the struct and the whole struct being 64-byte aligned.
912 	 */
913 	struct aes_gcm_key base;
914 
915 	/*
916 	 * Powers of the hash key H^16 through H^1.  These are 128-bit values.
917 	 * They all have an extra factor of x^-1 and are byte-reversed.  This
918 	 * array is aligned to a 64-byte boundary to make it naturally aligned
919 	 * for 512-bit loads, which can improve performance.  (The assembly code
920 	 * doesn't *need* the alignment; this is just an optimization.)
921 	 */
922 	u64 h_powers[16][2] __aligned(64);
923 
924 	/* Three padding blocks required by the assembly code */
925 	u64 padding[3][2];
926 };
927 #define AES_GCM_KEY_VAES_AVX512(key) \
928 	container_of((key), struct aes_gcm_key_vaes_avx512, base)
929 #define AES_GCM_KEY_VAES_AVX512_SIZE \
930 	(sizeof(struct aes_gcm_key_vaes_avx512) + (63 & ~(CRYPTO_MINALIGN - 1)))
931 
932 /*
933  * These flags are passed to the AES-GCM helper functions to specify the
934  * specific version of AES-GCM (RFC4106 or not), whether it's encryption or
935  * decryption, and which assembly functions should be called.  Assembly
936  * functions are selected using flags instead of function pointers to avoid
937  * indirect calls (which are very expensive on x86) regardless of inlining.
938  */
939 #define FLAG_RFC4106	BIT(0)
940 #define FLAG_ENC	BIT(1)
941 #define FLAG_AVX	BIT(2)
942 #define FLAG_VAES_AVX2	BIT(3)
943 #define FLAG_VAES_AVX512 BIT(4)
944 
945 static inline struct aes_gcm_key *
aes_gcm_key_get(struct crypto_aead * tfm,int flags)946 aes_gcm_key_get(struct crypto_aead *tfm, int flags)
947 {
948 	if (flags & FLAG_VAES_AVX512)
949 		return PTR_ALIGN(crypto_aead_ctx(tfm), 64);
950 	else if (flags & FLAG_VAES_AVX2)
951 		return PTR_ALIGN(crypto_aead_ctx(tfm), 32);
952 	else
953 		return PTR_ALIGN(crypto_aead_ctx(tfm), 16);
954 }
955 
956 asmlinkage void
957 aes_gcm_precompute_aesni(struct aes_gcm_key_aesni *key);
958 asmlinkage void
959 aes_gcm_precompute_aesni_avx(struct aes_gcm_key_aesni *key);
960 asmlinkage void
961 aes_gcm_precompute_vaes_avx2(struct aes_gcm_key_vaes_avx2 *key);
962 asmlinkage void
963 aes_gcm_precompute_vaes_avx512(struct aes_gcm_key_vaes_avx512 *key);
964 
aes_gcm_precompute(struct aes_gcm_key * key,int flags)965 static void aes_gcm_precompute(struct aes_gcm_key *key, int flags)
966 {
967 	if (flags & FLAG_VAES_AVX512)
968 		aes_gcm_precompute_vaes_avx512(AES_GCM_KEY_VAES_AVX512(key));
969 	else if (flags & FLAG_VAES_AVX2)
970 		aes_gcm_precompute_vaes_avx2(AES_GCM_KEY_VAES_AVX2(key));
971 	else if (flags & FLAG_AVX)
972 		aes_gcm_precompute_aesni_avx(AES_GCM_KEY_AESNI(key));
973 	else
974 		aes_gcm_precompute_aesni(AES_GCM_KEY_AESNI(key));
975 }
976 
977 asmlinkage void
978 aes_gcm_aad_update_aesni(const struct aes_gcm_key_aesni *key,
979 			 u8 ghash_acc[16], const u8 *aad, int aadlen);
980 asmlinkage void
981 aes_gcm_aad_update_aesni_avx(const struct aes_gcm_key_aesni *key,
982 			     u8 ghash_acc[16], const u8 *aad, int aadlen);
983 asmlinkage void
984 aes_gcm_aad_update_vaes_avx2(const struct aes_gcm_key_vaes_avx2 *key,
985 			     u8 ghash_acc[16], const u8 *aad, int aadlen);
986 asmlinkage void
987 aes_gcm_aad_update_vaes_avx512(const struct aes_gcm_key_vaes_avx512 *key,
988 			       u8 ghash_acc[16], const u8 *aad, int aadlen);
989 
aes_gcm_aad_update(const struct aes_gcm_key * key,u8 ghash_acc[16],const u8 * aad,int aadlen,int flags)990 static void aes_gcm_aad_update(const struct aes_gcm_key *key, u8 ghash_acc[16],
991 			       const u8 *aad, int aadlen, int flags)
992 {
993 	if (flags & FLAG_VAES_AVX512)
994 		aes_gcm_aad_update_vaes_avx512(AES_GCM_KEY_VAES_AVX512(key),
995 					       ghash_acc, aad, aadlen);
996 	else if (flags & FLAG_VAES_AVX2)
997 		aes_gcm_aad_update_vaes_avx2(AES_GCM_KEY_VAES_AVX2(key),
998 					     ghash_acc, aad, aadlen);
999 	else if (flags & FLAG_AVX)
1000 		aes_gcm_aad_update_aesni_avx(AES_GCM_KEY_AESNI(key), ghash_acc,
1001 					     aad, aadlen);
1002 	else
1003 		aes_gcm_aad_update_aesni(AES_GCM_KEY_AESNI(key), ghash_acc,
1004 					 aad, aadlen);
1005 }
1006 
1007 asmlinkage void
1008 aes_gcm_enc_update_aesni(const struct aes_gcm_key_aesni *key,
1009 			 const u32 le_ctr[4], u8 ghash_acc[16],
1010 			 const u8 *src, u8 *dst, int datalen);
1011 asmlinkage void
1012 aes_gcm_enc_update_aesni_avx(const struct aes_gcm_key_aesni *key,
1013 			     const u32 le_ctr[4], u8 ghash_acc[16],
1014 			     const u8 *src, u8 *dst, int datalen);
1015 asmlinkage void
1016 aes_gcm_enc_update_vaes_avx2(const struct aes_gcm_key_vaes_avx2 *key,
1017 			     const u32 le_ctr[4], u8 ghash_acc[16],
1018 			     const u8 *src, u8 *dst, int datalen);
1019 asmlinkage void
1020 aes_gcm_enc_update_vaes_avx512(const struct aes_gcm_key_vaes_avx512 *key,
1021 			       const u32 le_ctr[4], u8 ghash_acc[16],
1022 			       const u8 *src, u8 *dst, int datalen);
1023 
1024 asmlinkage void
1025 aes_gcm_dec_update_aesni(const struct aes_gcm_key_aesni *key,
1026 			 const u32 le_ctr[4], u8 ghash_acc[16],
1027 			 const u8 *src, u8 *dst, int datalen);
1028 asmlinkage void
1029 aes_gcm_dec_update_aesni_avx(const struct aes_gcm_key_aesni *key,
1030 			     const u32 le_ctr[4], u8 ghash_acc[16],
1031 			     const u8 *src, u8 *dst, int datalen);
1032 asmlinkage void
1033 aes_gcm_dec_update_vaes_avx2(const struct aes_gcm_key_vaes_avx2 *key,
1034 			     const u32 le_ctr[4], u8 ghash_acc[16],
1035 			     const u8 *src, u8 *dst, int datalen);
1036 asmlinkage void
1037 aes_gcm_dec_update_vaes_avx512(const struct aes_gcm_key_vaes_avx512 *key,
1038 			       const u32 le_ctr[4], u8 ghash_acc[16],
1039 			       const u8 *src, u8 *dst, int datalen);
1040 
1041 /* __always_inline to optimize out the branches based on @flags */
1042 static __always_inline void
aes_gcm_update(const struct aes_gcm_key * key,const u32 le_ctr[4],u8 ghash_acc[16],const u8 * src,u8 * dst,int datalen,int flags)1043 aes_gcm_update(const struct aes_gcm_key *key,
1044 	       const u32 le_ctr[4], u8 ghash_acc[16],
1045 	       const u8 *src, u8 *dst, int datalen, int flags)
1046 {
1047 	if (flags & FLAG_ENC) {
1048 		if (flags & FLAG_VAES_AVX512)
1049 			aes_gcm_enc_update_vaes_avx512(AES_GCM_KEY_VAES_AVX512(key),
1050 						       le_ctr, ghash_acc,
1051 						       src, dst, datalen);
1052 		else if (flags & FLAG_VAES_AVX2)
1053 			aes_gcm_enc_update_vaes_avx2(AES_GCM_KEY_VAES_AVX2(key),
1054 						     le_ctr, ghash_acc,
1055 						     src, dst, datalen);
1056 		else if (flags & FLAG_AVX)
1057 			aes_gcm_enc_update_aesni_avx(AES_GCM_KEY_AESNI(key),
1058 						     le_ctr, ghash_acc,
1059 						     src, dst, datalen);
1060 		else
1061 			aes_gcm_enc_update_aesni(AES_GCM_KEY_AESNI(key), le_ctr,
1062 						 ghash_acc, src, dst, datalen);
1063 	} else {
1064 		if (flags & FLAG_VAES_AVX512)
1065 			aes_gcm_dec_update_vaes_avx512(AES_GCM_KEY_VAES_AVX512(key),
1066 						       le_ctr, ghash_acc,
1067 						       src, dst, datalen);
1068 		else if (flags & FLAG_VAES_AVX2)
1069 			aes_gcm_dec_update_vaes_avx2(AES_GCM_KEY_VAES_AVX2(key),
1070 						     le_ctr, ghash_acc,
1071 						     src, dst, datalen);
1072 		else if (flags & FLAG_AVX)
1073 			aes_gcm_dec_update_aesni_avx(AES_GCM_KEY_AESNI(key),
1074 						     le_ctr, ghash_acc,
1075 						     src, dst, datalen);
1076 		else
1077 			aes_gcm_dec_update_aesni(AES_GCM_KEY_AESNI(key),
1078 						 le_ctr, ghash_acc,
1079 						 src, dst, datalen);
1080 	}
1081 }
1082 
1083 asmlinkage void
1084 aes_gcm_enc_final_aesni(const struct aes_gcm_key_aesni *key,
1085 			const u32 le_ctr[4], u8 ghash_acc[16],
1086 			u64 total_aadlen, u64 total_datalen);
1087 asmlinkage void
1088 aes_gcm_enc_final_aesni_avx(const struct aes_gcm_key_aesni *key,
1089 			    const u32 le_ctr[4], u8 ghash_acc[16],
1090 			    u64 total_aadlen, u64 total_datalen);
1091 asmlinkage void
1092 aes_gcm_enc_final_vaes_avx2(const struct aes_gcm_key_vaes_avx2 *key,
1093 			    const u32 le_ctr[4], u8 ghash_acc[16],
1094 			    u64 total_aadlen, u64 total_datalen);
1095 asmlinkage void
1096 aes_gcm_enc_final_vaes_avx512(const struct aes_gcm_key_vaes_avx512 *key,
1097 			      const u32 le_ctr[4], u8 ghash_acc[16],
1098 			      u64 total_aadlen, u64 total_datalen);
1099 
1100 /* __always_inline to optimize out the branches based on @flags */
1101 static __always_inline void
aes_gcm_enc_final(const struct aes_gcm_key * key,const u32 le_ctr[4],u8 ghash_acc[16],u64 total_aadlen,u64 total_datalen,int flags)1102 aes_gcm_enc_final(const struct aes_gcm_key *key,
1103 		  const u32 le_ctr[4], u8 ghash_acc[16],
1104 		  u64 total_aadlen, u64 total_datalen, int flags)
1105 {
1106 	if (flags & FLAG_VAES_AVX512)
1107 		aes_gcm_enc_final_vaes_avx512(AES_GCM_KEY_VAES_AVX512(key),
1108 					      le_ctr, ghash_acc,
1109 					      total_aadlen, total_datalen);
1110 	else if (flags & FLAG_VAES_AVX2)
1111 		aes_gcm_enc_final_vaes_avx2(AES_GCM_KEY_VAES_AVX2(key),
1112 					    le_ctr, ghash_acc,
1113 					    total_aadlen, total_datalen);
1114 	else if (flags & FLAG_AVX)
1115 		aes_gcm_enc_final_aesni_avx(AES_GCM_KEY_AESNI(key),
1116 					    le_ctr, ghash_acc,
1117 					    total_aadlen, total_datalen);
1118 	else
1119 		aes_gcm_enc_final_aesni(AES_GCM_KEY_AESNI(key),
1120 					le_ctr, ghash_acc,
1121 					total_aadlen, total_datalen);
1122 }
1123 
1124 asmlinkage bool __must_check
1125 aes_gcm_dec_final_aesni(const struct aes_gcm_key_aesni *key,
1126 			const u32 le_ctr[4], const u8 ghash_acc[16],
1127 			u64 total_aadlen, u64 total_datalen,
1128 			const u8 tag[16], int taglen);
1129 asmlinkage bool __must_check
1130 aes_gcm_dec_final_aesni_avx(const struct aes_gcm_key_aesni *key,
1131 			    const u32 le_ctr[4], const u8 ghash_acc[16],
1132 			    u64 total_aadlen, u64 total_datalen,
1133 			    const u8 tag[16], int taglen);
1134 asmlinkage bool __must_check
1135 aes_gcm_dec_final_vaes_avx2(const struct aes_gcm_key_vaes_avx2 *key,
1136 			    const u32 le_ctr[4], const u8 ghash_acc[16],
1137 			    u64 total_aadlen, u64 total_datalen,
1138 			    const u8 tag[16], int taglen);
1139 asmlinkage bool __must_check
1140 aes_gcm_dec_final_vaes_avx512(const struct aes_gcm_key_vaes_avx512 *key,
1141 			      const u32 le_ctr[4], const u8 ghash_acc[16],
1142 			      u64 total_aadlen, u64 total_datalen,
1143 			      const u8 tag[16], int taglen);
1144 
1145 /* __always_inline to optimize out the branches based on @flags */
1146 static __always_inline bool __must_check
aes_gcm_dec_final(const struct aes_gcm_key * key,const u32 le_ctr[4],u8 ghash_acc[16],u64 total_aadlen,u64 total_datalen,u8 tag[16],int taglen,int flags)1147 aes_gcm_dec_final(const struct aes_gcm_key *key, const u32 le_ctr[4],
1148 		  u8 ghash_acc[16], u64 total_aadlen, u64 total_datalen,
1149 		  u8 tag[16], int taglen, int flags)
1150 {
1151 	if (flags & FLAG_VAES_AVX512)
1152 		return aes_gcm_dec_final_vaes_avx512(AES_GCM_KEY_VAES_AVX512(key),
1153 						     le_ctr, ghash_acc,
1154 						     total_aadlen, total_datalen,
1155 						     tag, taglen);
1156 	else if (flags & FLAG_VAES_AVX2)
1157 		return aes_gcm_dec_final_vaes_avx2(AES_GCM_KEY_VAES_AVX2(key),
1158 						   le_ctr, ghash_acc,
1159 						   total_aadlen, total_datalen,
1160 						   tag, taglen);
1161 	else if (flags & FLAG_AVX)
1162 		return aes_gcm_dec_final_aesni_avx(AES_GCM_KEY_AESNI(key),
1163 						   le_ctr, ghash_acc,
1164 						   total_aadlen, total_datalen,
1165 						   tag, taglen);
1166 	else
1167 		return aes_gcm_dec_final_aesni(AES_GCM_KEY_AESNI(key),
1168 					       le_ctr, ghash_acc,
1169 					       total_aadlen, total_datalen,
1170 					       tag, taglen);
1171 }
1172 
1173 /*
1174  * This is the Integrity Check Value (aka the authentication tag) length and can
1175  * be 8, 12 or 16 bytes long.
1176  */
common_rfc4106_set_authsize(struct crypto_aead * aead,unsigned int authsize)1177 static int common_rfc4106_set_authsize(struct crypto_aead *aead,
1178 				       unsigned int authsize)
1179 {
1180 	switch (authsize) {
1181 	case 8:
1182 	case 12:
1183 	case 16:
1184 		break;
1185 	default:
1186 		return -EINVAL;
1187 	}
1188 
1189 	return 0;
1190 }
1191 
generic_gcmaes_set_authsize(struct crypto_aead * tfm,unsigned int authsize)1192 static int generic_gcmaes_set_authsize(struct crypto_aead *tfm,
1193 				       unsigned int authsize)
1194 {
1195 	switch (authsize) {
1196 	case 4:
1197 	case 8:
1198 	case 12:
1199 	case 13:
1200 	case 14:
1201 	case 15:
1202 	case 16:
1203 		break;
1204 	default:
1205 		return -EINVAL;
1206 	}
1207 
1208 	return 0;
1209 }
1210 
1211 /*
1212  * This is the setkey function for the x86_64 implementations of AES-GCM.  It
1213  * saves the RFC4106 nonce if applicable, expands the AES key, and precomputes
1214  * powers of the hash key.
1215  *
1216  * To comply with the crypto_aead API, this has to be usable in no-SIMD context.
1217  * For that reason, this function includes a portable C implementation of the
1218  * needed logic.  However, the portable C implementation is very slow, taking
1219  * about the same time as encrypting 37 KB of data.  To be ready for users that
1220  * may set a key even somewhat frequently, we therefore also include a SIMD
1221  * assembly implementation, expanding the AES key using AES-NI and precomputing
1222  * the hash key powers using PCLMULQDQ or VPCLMULQDQ.
1223  */
gcm_setkey(struct crypto_aead * tfm,const u8 * raw_key,unsigned int keylen,int flags)1224 static int gcm_setkey(struct crypto_aead *tfm, const u8 *raw_key,
1225 		      unsigned int keylen, int flags)
1226 {
1227 	struct aes_gcm_key *key = aes_gcm_key_get(tfm, flags);
1228 	int err;
1229 
1230 	if (flags & FLAG_RFC4106) {
1231 		if (keylen < 4)
1232 			return -EINVAL;
1233 		keylen -= 4;
1234 		key->rfc4106_nonce = get_unaligned_be32(raw_key + keylen);
1235 	}
1236 
1237 	/* The assembly code assumes the following offsets. */
1238 	BUILD_BUG_ON(offsetof(struct aes_gcm_key_aesni, base.aes_key.key_enc) != 0);
1239 	BUILD_BUG_ON(offsetof(struct aes_gcm_key_aesni, base.aes_key.key_length) != 480);
1240 	BUILD_BUG_ON(offsetof(struct aes_gcm_key_aesni, h_powers) != 496);
1241 	BUILD_BUG_ON(offsetof(struct aes_gcm_key_aesni, h_powers_xored) != 624);
1242 	BUILD_BUG_ON(offsetof(struct aes_gcm_key_aesni, h_times_x64) != 688);
1243 	BUILD_BUG_ON(offsetof(struct aes_gcm_key_vaes_avx2, base.aes_key.key_enc) != 0);
1244 	BUILD_BUG_ON(offsetof(struct aes_gcm_key_vaes_avx2, base.aes_key.key_length) != 480);
1245 	BUILD_BUG_ON(offsetof(struct aes_gcm_key_vaes_avx2, h_powers) != 512);
1246 	BUILD_BUG_ON(offsetof(struct aes_gcm_key_vaes_avx2, h_powers_xored) != 640);
1247 	BUILD_BUG_ON(offsetof(struct aes_gcm_key_vaes_avx512, base.aes_key.key_enc) != 0);
1248 	BUILD_BUG_ON(offsetof(struct aes_gcm_key_vaes_avx512, base.aes_key.key_length) != 480);
1249 	BUILD_BUG_ON(offsetof(struct aes_gcm_key_vaes_avx512, h_powers) != 512);
1250 	BUILD_BUG_ON(offsetof(struct aes_gcm_key_vaes_avx512, padding) != 768);
1251 
1252 	if (likely(crypto_simd_usable())) {
1253 		err = aes_check_keylen(keylen);
1254 		if (err)
1255 			return err;
1256 		kernel_fpu_begin();
1257 		aesni_set_key(&key->aes_key, raw_key, keylen);
1258 		aes_gcm_precompute(key, flags);
1259 		kernel_fpu_end();
1260 	} else {
1261 		static const u8 x_to_the_minus1[16] __aligned(__alignof__(be128)) = {
1262 			[0] = 0xc2, [15] = 1
1263 		};
1264 		static const u8 x_to_the_63[16] __aligned(__alignof__(be128)) = {
1265 			[7] = 1,
1266 		};
1267 		be128 h1 = {};
1268 		be128 h;
1269 		int i;
1270 
1271 		err = aes_expandkey(&key->aes_key, raw_key, keylen);
1272 		if (err)
1273 			return err;
1274 
1275 		/* Encrypt the all-zeroes block to get the hash key H^1 */
1276 		aes_encrypt(&key->aes_key, (u8 *)&h1, (u8 *)&h1);
1277 
1278 		/* Compute H^1 * x^-1 */
1279 		h = h1;
1280 		gf128mul_lle(&h, (const be128 *)x_to_the_minus1);
1281 
1282 		/* Compute the needed key powers */
1283 		if (flags & FLAG_VAES_AVX512) {
1284 			struct aes_gcm_key_vaes_avx512 *k =
1285 				AES_GCM_KEY_VAES_AVX512(key);
1286 
1287 			for (i = ARRAY_SIZE(k->h_powers) - 1; i >= 0; i--) {
1288 				k->h_powers[i][0] = be64_to_cpu(h.b);
1289 				k->h_powers[i][1] = be64_to_cpu(h.a);
1290 				gf128mul_lle(&h, &h1);
1291 			}
1292 			memset(k->padding, 0, sizeof(k->padding));
1293 		} else if (flags & FLAG_VAES_AVX2) {
1294 			struct aes_gcm_key_vaes_avx2 *k =
1295 				AES_GCM_KEY_VAES_AVX2(key);
1296 			static const u8 indices[8] = { 0, 2, 1, 3, 4, 6, 5, 7 };
1297 
1298 			for (i = ARRAY_SIZE(k->h_powers) - 1; i >= 0; i--) {
1299 				k->h_powers[i][0] = be64_to_cpu(h.b);
1300 				k->h_powers[i][1] = be64_to_cpu(h.a);
1301 				gf128mul_lle(&h, &h1);
1302 			}
1303 			for (i = 0; i < ARRAY_SIZE(k->h_powers_xored); i++) {
1304 				int j = indices[i];
1305 
1306 				k->h_powers_xored[i] = k->h_powers[j][0] ^
1307 						       k->h_powers[j][1];
1308 			}
1309 		} else {
1310 			struct aes_gcm_key_aesni *k = AES_GCM_KEY_AESNI(key);
1311 
1312 			for (i = ARRAY_SIZE(k->h_powers) - 1; i >= 0; i--) {
1313 				k->h_powers[i][0] = be64_to_cpu(h.b);
1314 				k->h_powers[i][1] = be64_to_cpu(h.a);
1315 				k->h_powers_xored[i] = k->h_powers[i][0] ^
1316 						       k->h_powers[i][1];
1317 				gf128mul_lle(&h, &h1);
1318 			}
1319 			gf128mul_lle(&h1, (const be128 *)x_to_the_63);
1320 			k->h_times_x64[0] = be64_to_cpu(h1.b);
1321 			k->h_times_x64[1] = be64_to_cpu(h1.a);
1322 		}
1323 	}
1324 	return 0;
1325 }
1326 
1327 /*
1328  * Initialize @ghash_acc, then pass all @assoclen bytes of associated data
1329  * (a.k.a. additional authenticated data) from @sg_src through the GHASH update
1330  * assembly function.  kernel_fpu_begin() must have already been called.
1331  */
gcm_process_assoc(const struct aes_gcm_key * key,u8 ghash_acc[16],struct scatterlist * sg_src,unsigned int assoclen,int flags)1332 static void gcm_process_assoc(const struct aes_gcm_key *key, u8 ghash_acc[16],
1333 			      struct scatterlist *sg_src, unsigned int assoclen,
1334 			      int flags)
1335 {
1336 	struct scatter_walk walk;
1337 	/*
1338 	 * The assembly function requires that the length of any non-last
1339 	 * segment of associated data be a multiple of 16 bytes, so this
1340 	 * function does the buffering needed to achieve that.
1341 	 */
1342 	unsigned int pos = 0;
1343 	u8 buf[16];
1344 
1345 	memset(ghash_acc, 0, 16);
1346 	scatterwalk_start(&walk, sg_src);
1347 
1348 	while (assoclen) {
1349 		unsigned int orig_len_this_step = scatterwalk_next(
1350 			&walk, assoclen);
1351 		unsigned int len_this_step = orig_len_this_step;
1352 		unsigned int len;
1353 		const u8 *src = walk.addr;
1354 
1355 		if (unlikely(pos)) {
1356 			len = min(len_this_step, 16 - pos);
1357 			memcpy(&buf[pos], src, len);
1358 			pos += len;
1359 			src += len;
1360 			len_this_step -= len;
1361 			if (pos < 16)
1362 				goto next;
1363 			aes_gcm_aad_update(key, ghash_acc, buf, 16, flags);
1364 			pos = 0;
1365 		}
1366 		len = len_this_step;
1367 		if (unlikely(assoclen)) /* Not the last segment yet? */
1368 			len = round_down(len, 16);
1369 		aes_gcm_aad_update(key, ghash_acc, src, len, flags);
1370 		src += len;
1371 		len_this_step -= len;
1372 		if (unlikely(len_this_step)) {
1373 			memcpy(buf, src, len_this_step);
1374 			pos = len_this_step;
1375 		}
1376 next:
1377 		scatterwalk_done_src(&walk, orig_len_this_step);
1378 		if (need_resched()) {
1379 			kernel_fpu_end();
1380 			kernel_fpu_begin();
1381 		}
1382 		assoclen -= orig_len_this_step;
1383 	}
1384 	if (unlikely(pos))
1385 		aes_gcm_aad_update(key, ghash_acc, buf, pos, flags);
1386 }
1387 
1388 
1389 /* __always_inline to optimize out the branches based on @flags */
1390 static __always_inline int
gcm_crypt(struct aead_request * req,int flags)1391 gcm_crypt(struct aead_request *req, int flags)
1392 {
1393 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1394 	const struct aes_gcm_key *key = aes_gcm_key_get(tfm, flags);
1395 	unsigned int assoclen = req->assoclen;
1396 	struct skcipher_walk walk;
1397 	unsigned int nbytes;
1398 	u8 ghash_acc[16]; /* GHASH accumulator */
1399 	u32 le_ctr[4]; /* Counter in little-endian format */
1400 	int taglen;
1401 	int err;
1402 
1403 	/* Initialize the counter and determine the associated data length. */
1404 	le_ctr[0] = 2;
1405 	if (flags & FLAG_RFC4106) {
1406 		if (unlikely(assoclen != 16 && assoclen != 20))
1407 			return -EINVAL;
1408 		assoclen -= 8;
1409 		le_ctr[1] = get_unaligned_be32(req->iv + 4);
1410 		le_ctr[2] = get_unaligned_be32(req->iv + 0);
1411 		le_ctr[3] = key->rfc4106_nonce; /* already byte-swapped */
1412 	} else {
1413 		le_ctr[1] = get_unaligned_be32(req->iv + 8);
1414 		le_ctr[2] = get_unaligned_be32(req->iv + 4);
1415 		le_ctr[3] = get_unaligned_be32(req->iv + 0);
1416 	}
1417 
1418 	/* Begin walking through the plaintext or ciphertext. */
1419 	if (flags & FLAG_ENC)
1420 		err = skcipher_walk_aead_encrypt(&walk, req, false);
1421 	else
1422 		err = skcipher_walk_aead_decrypt(&walk, req, false);
1423 	if (err)
1424 		return err;
1425 
1426 	/*
1427 	 * Since the AES-GCM assembly code requires that at least three assembly
1428 	 * functions be called to process any message (this is needed to support
1429 	 * incremental updates cleanly), to reduce overhead we try to do all
1430 	 * three calls in the same kernel FPU section if possible.  We close the
1431 	 * section and start a new one if there are multiple data segments or if
1432 	 * rescheduling is needed while processing the associated data.
1433 	 */
1434 	kernel_fpu_begin();
1435 
1436 	/* Pass the associated data through GHASH. */
1437 	gcm_process_assoc(key, ghash_acc, req->src, assoclen, flags);
1438 
1439 	/* En/decrypt the data and pass the ciphertext through GHASH. */
1440 	while (unlikely((nbytes = walk.nbytes) < walk.total)) {
1441 		/*
1442 		 * Non-last segment.  In this case, the assembly function
1443 		 * requires that the length be a multiple of 16 (AES_BLOCK_SIZE)
1444 		 * bytes.  The needed buffering of up to 16 bytes is handled by
1445 		 * the skcipher_walk.  Here we just need to round down to a
1446 		 * multiple of 16.
1447 		 */
1448 		nbytes = round_down(nbytes, AES_BLOCK_SIZE);
1449 		aes_gcm_update(key, le_ctr, ghash_acc, walk.src.virt.addr,
1450 			       walk.dst.virt.addr, nbytes, flags);
1451 		le_ctr[0] += nbytes / AES_BLOCK_SIZE;
1452 		kernel_fpu_end();
1453 		err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
1454 		if (err)
1455 			return err;
1456 		kernel_fpu_begin();
1457 	}
1458 	/* Last segment: process all remaining data. */
1459 	aes_gcm_update(key, le_ctr, ghash_acc, walk.src.virt.addr,
1460 		       walk.dst.virt.addr, nbytes, flags);
1461 	/*
1462 	 * The low word of the counter isn't used by the finalize, so there's no
1463 	 * need to increment it here.
1464 	 */
1465 
1466 	/* Finalize */
1467 	taglen = crypto_aead_authsize(tfm);
1468 	if (flags & FLAG_ENC) {
1469 		/* Finish computing the auth tag. */
1470 		aes_gcm_enc_final(key, le_ctr, ghash_acc, assoclen,
1471 				  req->cryptlen, flags);
1472 
1473 		/* Store the computed auth tag in the dst scatterlist. */
1474 		scatterwalk_map_and_copy(ghash_acc, req->dst, req->assoclen +
1475 					 req->cryptlen, taglen, 1);
1476 	} else {
1477 		unsigned int datalen = req->cryptlen - taglen;
1478 		u8 tag[16];
1479 
1480 		/* Get the transmitted auth tag from the src scatterlist. */
1481 		scatterwalk_map_and_copy(tag, req->src, req->assoclen + datalen,
1482 					 taglen, 0);
1483 		/*
1484 		 * Finish computing the auth tag and compare it to the
1485 		 * transmitted one.  The assembly function does the actual tag
1486 		 * comparison.  Here, just check the boolean result.
1487 		 */
1488 		if (!aes_gcm_dec_final(key, le_ctr, ghash_acc, assoclen,
1489 				       datalen, tag, taglen, flags))
1490 			err = -EBADMSG;
1491 	}
1492 	kernel_fpu_end();
1493 	if (nbytes)
1494 		skcipher_walk_done(&walk, 0);
1495 	return err;
1496 }
1497 
1498 #define DEFINE_GCM_ALGS(suffix, flags, generic_driver_name, rfc_driver_name,   \
1499 			ctxsize, priority)				       \
1500 									       \
1501 static int gcm_setkey_##suffix(struct crypto_aead *tfm, const u8 *raw_key,     \
1502 			       unsigned int keylen)			       \
1503 {									       \
1504 	return gcm_setkey(tfm, raw_key, keylen, (flags));		       \
1505 }									       \
1506 									       \
1507 static int gcm_encrypt_##suffix(struct aead_request *req)		       \
1508 {									       \
1509 	return gcm_crypt(req, (flags) | FLAG_ENC);			       \
1510 }									       \
1511 									       \
1512 static int gcm_decrypt_##suffix(struct aead_request *req)		       \
1513 {									       \
1514 	return gcm_crypt(req, (flags));					       \
1515 }									       \
1516 									       \
1517 static int rfc4106_setkey_##suffix(struct crypto_aead *tfm, const u8 *raw_key, \
1518 				   unsigned int keylen)			       \
1519 {									       \
1520 	return gcm_setkey(tfm, raw_key, keylen, (flags) | FLAG_RFC4106);       \
1521 }									       \
1522 									       \
1523 static int rfc4106_encrypt_##suffix(struct aead_request *req)		       \
1524 {									       \
1525 	return gcm_crypt(req, (flags) | FLAG_RFC4106 | FLAG_ENC);	       \
1526 }									       \
1527 									       \
1528 static int rfc4106_decrypt_##suffix(struct aead_request *req)		       \
1529 {									       \
1530 	return gcm_crypt(req, (flags) | FLAG_RFC4106);			       \
1531 }									       \
1532 									       \
1533 static struct aead_alg aes_gcm_algs_##suffix[] = { {			       \
1534 	.setkey			= gcm_setkey_##suffix,			       \
1535 	.setauthsize		= generic_gcmaes_set_authsize,		       \
1536 	.encrypt		= gcm_encrypt_##suffix,			       \
1537 	.decrypt		= gcm_decrypt_##suffix,			       \
1538 	.ivsize			= GCM_AES_IV_SIZE,			       \
1539 	.chunksize		= AES_BLOCK_SIZE,			       \
1540 	.maxauthsize		= 16,					       \
1541 	.base = {							       \
1542 		.cra_name		= "gcm(aes)",			       \
1543 		.cra_driver_name	= generic_driver_name,		       \
1544 		.cra_priority		= (priority),			       \
1545 		.cra_blocksize		= 1,				       \
1546 		.cra_ctxsize		= (ctxsize),			       \
1547 		.cra_module		= THIS_MODULE,			       \
1548 	},								       \
1549 }, {									       \
1550 	.setkey			= rfc4106_setkey_##suffix,		       \
1551 	.setauthsize		= common_rfc4106_set_authsize,		       \
1552 	.encrypt		= rfc4106_encrypt_##suffix,		       \
1553 	.decrypt		= rfc4106_decrypt_##suffix,		       \
1554 	.ivsize			= GCM_RFC4106_IV_SIZE,			       \
1555 	.chunksize		= AES_BLOCK_SIZE,			       \
1556 	.maxauthsize		= 16,					       \
1557 	.base = {							       \
1558 		.cra_name		= "rfc4106(gcm(aes))",		       \
1559 		.cra_driver_name	= rfc_driver_name,		       \
1560 		.cra_priority		= (priority),			       \
1561 		.cra_blocksize		= 1,				       \
1562 		.cra_ctxsize		= (ctxsize),			       \
1563 		.cra_module		= THIS_MODULE,			       \
1564 	},								       \
1565 } }
1566 
1567 /* aes_gcm_algs_aesni */
1568 DEFINE_GCM_ALGS(aesni, /* no flags */ 0,
1569 		"generic-gcm-aesni", "rfc4106-gcm-aesni",
1570 		AES_GCM_KEY_AESNI_SIZE, 400);
1571 
1572 /* aes_gcm_algs_aesni_avx */
1573 DEFINE_GCM_ALGS(aesni_avx, FLAG_AVX,
1574 		"generic-gcm-aesni-avx", "rfc4106-gcm-aesni-avx",
1575 		AES_GCM_KEY_AESNI_SIZE, 500);
1576 
1577 /* aes_gcm_algs_vaes_avx2 */
1578 DEFINE_GCM_ALGS(vaes_avx2, FLAG_VAES_AVX2,
1579 		"generic-gcm-vaes-avx2", "rfc4106-gcm-vaes-avx2",
1580 		AES_GCM_KEY_VAES_AVX2_SIZE, 600);
1581 
1582 /* aes_gcm_algs_vaes_avx512 */
1583 DEFINE_GCM_ALGS(vaes_avx512, FLAG_VAES_AVX512,
1584 		"generic-gcm-vaes-avx512", "rfc4106-gcm-vaes-avx512",
1585 		AES_GCM_KEY_VAES_AVX512_SIZE, 800);
1586 
register_avx_algs(void)1587 static int __init register_avx_algs(void)
1588 {
1589 	int err;
1590 
1591 	if (!boot_cpu_has(X86_FEATURE_AVX))
1592 		return 0;
1593 	err = crypto_register_skciphers(skcipher_algs_aesni_avx,
1594 					ARRAY_SIZE(skcipher_algs_aesni_avx));
1595 	if (err)
1596 		return err;
1597 	err = crypto_register_aeads(aes_gcm_algs_aesni_avx,
1598 				    ARRAY_SIZE(aes_gcm_algs_aesni_avx));
1599 	if (err)
1600 		return err;
1601 	/*
1602 	 * Note: not all the algorithms registered below actually require
1603 	 * VPCLMULQDQ.  But in practice every CPU with VAES also has VPCLMULQDQ.
1604 	 * Similarly, the assembler support was added at about the same time.
1605 	 * For simplicity, just always check for VAES and VPCLMULQDQ together.
1606 	 */
1607 	if (!boot_cpu_has(X86_FEATURE_AVX2) ||
1608 	    !boot_cpu_has(X86_FEATURE_VAES) ||
1609 	    !boot_cpu_has(X86_FEATURE_VPCLMULQDQ) ||
1610 	    !boot_cpu_has(X86_FEATURE_PCLMULQDQ) ||
1611 	    !cpu_has_xfeatures(XFEATURE_MASK_SSE | XFEATURE_MASK_YMM, NULL))
1612 		return 0;
1613 	err = crypto_register_skciphers(skcipher_algs_vaes_avx2,
1614 					ARRAY_SIZE(skcipher_algs_vaes_avx2));
1615 	if (err)
1616 		return err;
1617 	err = crypto_register_aeads(aes_gcm_algs_vaes_avx2,
1618 				    ARRAY_SIZE(aes_gcm_algs_vaes_avx2));
1619 	if (err)
1620 		return err;
1621 
1622 	if (!boot_cpu_has(X86_FEATURE_AVX512BW) ||
1623 	    !boot_cpu_has(X86_FEATURE_AVX512VL) ||
1624 	    !boot_cpu_has(X86_FEATURE_BMI2) ||
1625 	    !cpu_has_xfeatures(XFEATURE_MASK_SSE | XFEATURE_MASK_YMM |
1626 			       XFEATURE_MASK_AVX512, NULL))
1627 		return 0;
1628 
1629 	if (boot_cpu_has(X86_FEATURE_PREFER_YMM)) {
1630 		int i;
1631 
1632 		for (i = 0; i < ARRAY_SIZE(skcipher_algs_vaes_avx512); i++)
1633 			skcipher_algs_vaes_avx512[i].base.cra_priority = 1;
1634 		for (i = 0; i < ARRAY_SIZE(aes_gcm_algs_vaes_avx512); i++)
1635 			aes_gcm_algs_vaes_avx512[i].base.cra_priority = 1;
1636 	}
1637 
1638 	err = crypto_register_skciphers(skcipher_algs_vaes_avx512,
1639 					ARRAY_SIZE(skcipher_algs_vaes_avx512));
1640 	if (err)
1641 		return err;
1642 	err = crypto_register_aeads(aes_gcm_algs_vaes_avx512,
1643 				    ARRAY_SIZE(aes_gcm_algs_vaes_avx512));
1644 	if (err)
1645 		return err;
1646 
1647 	return 0;
1648 }
1649 
1650 #define unregister_skciphers(A) \
1651 	if (refcount_read(&(A)[0].base.cra_refcnt) != 0) \
1652 		crypto_unregister_skciphers((A), ARRAY_SIZE(A))
1653 #define unregister_aeads(A) \
1654 	if (refcount_read(&(A)[0].base.cra_refcnt) != 0) \
1655 		crypto_unregister_aeads((A), ARRAY_SIZE(A))
1656 
unregister_avx_algs(void)1657 static void unregister_avx_algs(void)
1658 {
1659 	unregister_skciphers(skcipher_algs_aesni_avx);
1660 	unregister_aeads(aes_gcm_algs_aesni_avx);
1661 	unregister_skciphers(skcipher_algs_vaes_avx2);
1662 	unregister_skciphers(skcipher_algs_vaes_avx512);
1663 	unregister_aeads(aes_gcm_algs_vaes_avx2);
1664 	unregister_aeads(aes_gcm_algs_vaes_avx512);
1665 }
1666 #else /* CONFIG_X86_64 */
1667 static struct aead_alg aes_gcm_algs_aesni[0];
1668 
register_avx_algs(void)1669 static int __init register_avx_algs(void)
1670 {
1671 	return 0;
1672 }
1673 
unregister_avx_algs(void)1674 static void unregister_avx_algs(void)
1675 {
1676 }
1677 #endif /* !CONFIG_X86_64 */
1678 
1679 static const struct x86_cpu_id aesni_cpu_id[] = {
1680 	X86_MATCH_FEATURE(X86_FEATURE_AES, NULL),
1681 	{}
1682 };
1683 MODULE_DEVICE_TABLE(x86cpu, aesni_cpu_id);
1684 
aesni_init(void)1685 static int __init aesni_init(void)
1686 {
1687 	int err;
1688 
1689 	if (!x86_match_cpu(aesni_cpu_id))
1690 		return -ENODEV;
1691 
1692 	err = crypto_register_alg(&aesni_cipher_alg);
1693 	if (err)
1694 		return err;
1695 
1696 	err = crypto_register_skciphers(aesni_skciphers,
1697 					ARRAY_SIZE(aesni_skciphers));
1698 	if (err)
1699 		goto unregister_cipher;
1700 
1701 	err = crypto_register_aeads(aes_gcm_algs_aesni,
1702 				    ARRAY_SIZE(aes_gcm_algs_aesni));
1703 	if (err)
1704 		goto unregister_skciphers;
1705 
1706 	err = register_avx_algs();
1707 	if (err)
1708 		goto unregister_avx;
1709 
1710 	return 0;
1711 
1712 unregister_avx:
1713 	unregister_avx_algs();
1714 	crypto_unregister_aeads(aes_gcm_algs_aesni,
1715 				ARRAY_SIZE(aes_gcm_algs_aesni));
1716 unregister_skciphers:
1717 	crypto_unregister_skciphers(aesni_skciphers,
1718 				    ARRAY_SIZE(aesni_skciphers));
1719 unregister_cipher:
1720 	crypto_unregister_alg(&aesni_cipher_alg);
1721 	return err;
1722 }
1723 
aesni_exit(void)1724 static void __exit aesni_exit(void)
1725 {
1726 	crypto_unregister_aeads(aes_gcm_algs_aesni,
1727 				ARRAY_SIZE(aes_gcm_algs_aesni));
1728 	crypto_unregister_skciphers(aesni_skciphers,
1729 				    ARRAY_SIZE(aesni_skciphers));
1730 	crypto_unregister_alg(&aesni_cipher_alg);
1731 	unregister_avx_algs();
1732 }
1733 
1734 module_init(aesni_init);
1735 module_exit(aesni_exit);
1736 
1737 MODULE_DESCRIPTION("AES cipher and modes, optimized with AES-NI or VAES instructions");
1738 MODULE_LICENSE("GPL");
1739 MODULE_ALIAS_CRYPTO("aes");
1740