xref: /linux/arch/x86/crypto/aesni-intel_glue.c (revision 8e07e0e3964ca4e23ce7b68e2096fe660a888942)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Support for Intel AES-NI instructions. This file contains glue
4  * code, the real AES implementation is in intel-aes_asm.S.
5  *
6  * Copyright (C) 2008, Intel Corp.
7  *    Author: Huang Ying <ying.huang@intel.com>
8  *
9  * Added RFC4106 AES-GCM support for 128-bit keys under the AEAD
10  * interface for 64-bit kernels.
11  *    Authors: Adrian Hoban <adrian.hoban@intel.com>
12  *             Gabriele Paoloni <gabriele.paoloni@intel.com>
13  *             Tadeusz Struk (tadeusz.struk@intel.com)
14  *             Aidan O'Mahony (aidan.o.mahony@intel.com)
15  *    Copyright (c) 2010, Intel Corporation.
16  */
17 
18 #include <linux/hardirq.h>
19 #include <linux/types.h>
20 #include <linux/module.h>
21 #include <linux/err.h>
22 #include <crypto/algapi.h>
23 #include <crypto/aes.h>
24 #include <crypto/ctr.h>
25 #include <crypto/b128ops.h>
26 #include <crypto/gcm.h>
27 #include <crypto/xts.h>
28 #include <asm/cpu_device_id.h>
29 #include <asm/simd.h>
30 #include <crypto/scatterwalk.h>
31 #include <crypto/internal/aead.h>
32 #include <crypto/internal/simd.h>
33 #include <crypto/internal/skcipher.h>
34 #include <linux/jump_label.h>
35 #include <linux/workqueue.h>
36 #include <linux/spinlock.h>
37 #include <linux/static_call.h>
38 
39 
40 #define AESNI_ALIGN	16
41 #define AESNI_ALIGN_ATTR __attribute__ ((__aligned__(AESNI_ALIGN)))
42 #define AES_BLOCK_MASK	(~(AES_BLOCK_SIZE - 1))
43 #define RFC4106_HASH_SUBKEY_SIZE 16
44 #define AESNI_ALIGN_EXTRA ((AESNI_ALIGN - 1) & ~(CRYPTO_MINALIGN - 1))
45 #define CRYPTO_AES_CTX_SIZE (sizeof(struct crypto_aes_ctx) + AESNI_ALIGN_EXTRA)
46 #define XTS_AES_CTX_SIZE (sizeof(struct aesni_xts_ctx) + AESNI_ALIGN_EXTRA)
47 
48 /* This data is stored at the end of the crypto_tfm struct.
49  * It's a type of per "session" data storage location.
50  * This needs to be 16 byte aligned.
51  */
52 struct aesni_rfc4106_gcm_ctx {
53 	u8 hash_subkey[16] AESNI_ALIGN_ATTR;
54 	struct crypto_aes_ctx aes_key_expanded AESNI_ALIGN_ATTR;
55 	u8 nonce[4];
56 };
57 
58 struct generic_gcmaes_ctx {
59 	u8 hash_subkey[16] AESNI_ALIGN_ATTR;
60 	struct crypto_aes_ctx aes_key_expanded AESNI_ALIGN_ATTR;
61 };
62 
63 struct aesni_xts_ctx {
64 	struct crypto_aes_ctx tweak_ctx AESNI_ALIGN_ATTR;
65 	struct crypto_aes_ctx crypt_ctx AESNI_ALIGN_ATTR;
66 };
67 
68 #define GCM_BLOCK_LEN 16
69 
70 struct gcm_context_data {
71 	/* init, update and finalize context data */
72 	u8 aad_hash[GCM_BLOCK_LEN];
73 	u64 aad_length;
74 	u64 in_length;
75 	u8 partial_block_enc_key[GCM_BLOCK_LEN];
76 	u8 orig_IV[GCM_BLOCK_LEN];
77 	u8 current_counter[GCM_BLOCK_LEN];
78 	u64 partial_block_len;
79 	u64 unused;
80 	u8 hash_keys[GCM_BLOCK_LEN * 16];
81 };
82 
83 static inline void *aes_align_addr(void *addr)
84 {
85 	if (crypto_tfm_ctx_alignment() >= AESNI_ALIGN)
86 		return addr;
87 	return PTR_ALIGN(addr, AESNI_ALIGN);
88 }
89 
90 asmlinkage int aesni_set_key(struct crypto_aes_ctx *ctx, const u8 *in_key,
91 			     unsigned int key_len);
92 asmlinkage void aesni_enc(const void *ctx, u8 *out, const u8 *in);
93 asmlinkage void aesni_dec(const void *ctx, u8 *out, const u8 *in);
94 asmlinkage void aesni_ecb_enc(struct crypto_aes_ctx *ctx, u8 *out,
95 			      const u8 *in, unsigned int len);
96 asmlinkage void aesni_ecb_dec(struct crypto_aes_ctx *ctx, u8 *out,
97 			      const u8 *in, unsigned int len);
98 asmlinkage void aesni_cbc_enc(struct crypto_aes_ctx *ctx, u8 *out,
99 			      const u8 *in, unsigned int len, u8 *iv);
100 asmlinkage void aesni_cbc_dec(struct crypto_aes_ctx *ctx, u8 *out,
101 			      const u8 *in, unsigned int len, u8 *iv);
102 asmlinkage void aesni_cts_cbc_enc(struct crypto_aes_ctx *ctx, u8 *out,
103 				  const u8 *in, unsigned int len, u8 *iv);
104 asmlinkage void aesni_cts_cbc_dec(struct crypto_aes_ctx *ctx, u8 *out,
105 				  const u8 *in, unsigned int len, u8 *iv);
106 
107 #define AVX_GEN2_OPTSIZE 640
108 #define AVX_GEN4_OPTSIZE 4096
109 
110 asmlinkage void aesni_xts_encrypt(const struct crypto_aes_ctx *ctx, u8 *out,
111 				  const u8 *in, unsigned int len, u8 *iv);
112 
113 asmlinkage void aesni_xts_decrypt(const struct crypto_aes_ctx *ctx, u8 *out,
114 				  const u8 *in, unsigned int len, u8 *iv);
115 
116 #ifdef CONFIG_X86_64
117 
118 asmlinkage void aesni_ctr_enc(struct crypto_aes_ctx *ctx, u8 *out,
119 			      const u8 *in, unsigned int len, u8 *iv);
120 DEFINE_STATIC_CALL(aesni_ctr_enc_tfm, aesni_ctr_enc);
121 
122 /* Scatter / Gather routines, with args similar to above */
123 asmlinkage void aesni_gcm_init(void *ctx,
124 			       struct gcm_context_data *gdata,
125 			       u8 *iv,
126 			       u8 *hash_subkey, const u8 *aad,
127 			       unsigned long aad_len);
128 asmlinkage void aesni_gcm_enc_update(void *ctx,
129 				     struct gcm_context_data *gdata, u8 *out,
130 				     const u8 *in, unsigned long plaintext_len);
131 asmlinkage void aesni_gcm_dec_update(void *ctx,
132 				     struct gcm_context_data *gdata, u8 *out,
133 				     const u8 *in,
134 				     unsigned long ciphertext_len);
135 asmlinkage void aesni_gcm_finalize(void *ctx,
136 				   struct gcm_context_data *gdata,
137 				   u8 *auth_tag, unsigned long auth_tag_len);
138 
139 asmlinkage void aes_ctr_enc_128_avx_by8(const u8 *in, u8 *iv,
140 		void *keys, u8 *out, unsigned int num_bytes);
141 asmlinkage void aes_ctr_enc_192_avx_by8(const u8 *in, u8 *iv,
142 		void *keys, u8 *out, unsigned int num_bytes);
143 asmlinkage void aes_ctr_enc_256_avx_by8(const u8 *in, u8 *iv,
144 		void *keys, u8 *out, unsigned int num_bytes);
145 
146 
147 asmlinkage void aes_xctr_enc_128_avx_by8(const u8 *in, const u8 *iv,
148 	const void *keys, u8 *out, unsigned int num_bytes,
149 	unsigned int byte_ctr);
150 
151 asmlinkage void aes_xctr_enc_192_avx_by8(const u8 *in, const u8 *iv,
152 	const void *keys, u8 *out, unsigned int num_bytes,
153 	unsigned int byte_ctr);
154 
155 asmlinkage void aes_xctr_enc_256_avx_by8(const u8 *in, const u8 *iv,
156 	const void *keys, u8 *out, unsigned int num_bytes,
157 	unsigned int byte_ctr);
158 
159 /*
160  * asmlinkage void aesni_gcm_init_avx_gen2()
161  * gcm_data *my_ctx_data, context data
162  * u8 *hash_subkey,  the Hash sub key input. Data starts on a 16-byte boundary.
163  */
164 asmlinkage void aesni_gcm_init_avx_gen2(void *my_ctx_data,
165 					struct gcm_context_data *gdata,
166 					u8 *iv,
167 					u8 *hash_subkey,
168 					const u8 *aad,
169 					unsigned long aad_len);
170 
171 asmlinkage void aesni_gcm_enc_update_avx_gen2(void *ctx,
172 				     struct gcm_context_data *gdata, u8 *out,
173 				     const u8 *in, unsigned long plaintext_len);
174 asmlinkage void aesni_gcm_dec_update_avx_gen2(void *ctx,
175 				     struct gcm_context_data *gdata, u8 *out,
176 				     const u8 *in,
177 				     unsigned long ciphertext_len);
178 asmlinkage void aesni_gcm_finalize_avx_gen2(void *ctx,
179 				   struct gcm_context_data *gdata,
180 				   u8 *auth_tag, unsigned long auth_tag_len);
181 
182 /*
183  * asmlinkage void aesni_gcm_init_avx_gen4()
184  * gcm_data *my_ctx_data, context data
185  * u8 *hash_subkey,  the Hash sub key input. Data starts on a 16-byte boundary.
186  */
187 asmlinkage void aesni_gcm_init_avx_gen4(void *my_ctx_data,
188 					struct gcm_context_data *gdata,
189 					u8 *iv,
190 					u8 *hash_subkey,
191 					const u8 *aad,
192 					unsigned long aad_len);
193 
194 asmlinkage void aesni_gcm_enc_update_avx_gen4(void *ctx,
195 				     struct gcm_context_data *gdata, u8 *out,
196 				     const u8 *in, unsigned long plaintext_len);
197 asmlinkage void aesni_gcm_dec_update_avx_gen4(void *ctx,
198 				     struct gcm_context_data *gdata, u8 *out,
199 				     const u8 *in,
200 				     unsigned long ciphertext_len);
201 asmlinkage void aesni_gcm_finalize_avx_gen4(void *ctx,
202 				   struct gcm_context_data *gdata,
203 				   u8 *auth_tag, unsigned long auth_tag_len);
204 
205 static __ro_after_init DEFINE_STATIC_KEY_FALSE(gcm_use_avx);
206 static __ro_after_init DEFINE_STATIC_KEY_FALSE(gcm_use_avx2);
207 
208 static inline struct
209 aesni_rfc4106_gcm_ctx *aesni_rfc4106_gcm_ctx_get(struct crypto_aead *tfm)
210 {
211 	return aes_align_addr(crypto_aead_ctx(tfm));
212 }
213 
214 static inline struct
215 generic_gcmaes_ctx *generic_gcmaes_ctx_get(struct crypto_aead *tfm)
216 {
217 	return aes_align_addr(crypto_aead_ctx(tfm));
218 }
219 #endif
220 
221 static inline struct crypto_aes_ctx *aes_ctx(void *raw_ctx)
222 {
223 	return aes_align_addr(raw_ctx);
224 }
225 
226 static inline struct aesni_xts_ctx *aes_xts_ctx(struct crypto_skcipher *tfm)
227 {
228 	return aes_align_addr(crypto_skcipher_ctx(tfm));
229 }
230 
231 static int aes_set_key_common(struct crypto_aes_ctx *ctx,
232 			      const u8 *in_key, unsigned int key_len)
233 {
234 	int err;
235 
236 	if (key_len != AES_KEYSIZE_128 && key_len != AES_KEYSIZE_192 &&
237 	    key_len != AES_KEYSIZE_256)
238 		return -EINVAL;
239 
240 	if (!crypto_simd_usable())
241 		err = aes_expandkey(ctx, in_key, key_len);
242 	else {
243 		kernel_fpu_begin();
244 		err = aesni_set_key(ctx, in_key, key_len);
245 		kernel_fpu_end();
246 	}
247 
248 	return err;
249 }
250 
251 static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
252 		       unsigned int key_len)
253 {
254 	return aes_set_key_common(aes_ctx(crypto_tfm_ctx(tfm)), in_key,
255 				  key_len);
256 }
257 
258 static void aesni_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
259 {
260 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));
261 
262 	if (!crypto_simd_usable()) {
263 		aes_encrypt(ctx, dst, src);
264 	} else {
265 		kernel_fpu_begin();
266 		aesni_enc(ctx, dst, src);
267 		kernel_fpu_end();
268 	}
269 }
270 
271 static void aesni_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
272 {
273 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));
274 
275 	if (!crypto_simd_usable()) {
276 		aes_decrypt(ctx, dst, src);
277 	} else {
278 		kernel_fpu_begin();
279 		aesni_dec(ctx, dst, src);
280 		kernel_fpu_end();
281 	}
282 }
283 
284 static int aesni_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
285 			         unsigned int len)
286 {
287 	return aes_set_key_common(aes_ctx(crypto_skcipher_ctx(tfm)), key, len);
288 }
289 
290 static int ecb_encrypt(struct skcipher_request *req)
291 {
292 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
293 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
294 	struct skcipher_walk walk;
295 	unsigned int nbytes;
296 	int err;
297 
298 	err = skcipher_walk_virt(&walk, req, false);
299 
300 	while ((nbytes = walk.nbytes)) {
301 		kernel_fpu_begin();
302 		aesni_ecb_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr,
303 			      nbytes & AES_BLOCK_MASK);
304 		kernel_fpu_end();
305 		nbytes &= AES_BLOCK_SIZE - 1;
306 		err = skcipher_walk_done(&walk, nbytes);
307 	}
308 
309 	return err;
310 }
311 
312 static int ecb_decrypt(struct skcipher_request *req)
313 {
314 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
315 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
316 	struct skcipher_walk walk;
317 	unsigned int nbytes;
318 	int err;
319 
320 	err = skcipher_walk_virt(&walk, req, false);
321 
322 	while ((nbytes = walk.nbytes)) {
323 		kernel_fpu_begin();
324 		aesni_ecb_dec(ctx, walk.dst.virt.addr, walk.src.virt.addr,
325 			      nbytes & AES_BLOCK_MASK);
326 		kernel_fpu_end();
327 		nbytes &= AES_BLOCK_SIZE - 1;
328 		err = skcipher_walk_done(&walk, nbytes);
329 	}
330 
331 	return err;
332 }
333 
334 static int cbc_encrypt(struct skcipher_request *req)
335 {
336 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
337 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
338 	struct skcipher_walk walk;
339 	unsigned int nbytes;
340 	int err;
341 
342 	err = skcipher_walk_virt(&walk, req, false);
343 
344 	while ((nbytes = walk.nbytes)) {
345 		kernel_fpu_begin();
346 		aesni_cbc_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr,
347 			      nbytes & AES_BLOCK_MASK, walk.iv);
348 		kernel_fpu_end();
349 		nbytes &= AES_BLOCK_SIZE - 1;
350 		err = skcipher_walk_done(&walk, nbytes);
351 	}
352 
353 	return err;
354 }
355 
356 static int cbc_decrypt(struct skcipher_request *req)
357 {
358 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
359 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
360 	struct skcipher_walk walk;
361 	unsigned int nbytes;
362 	int err;
363 
364 	err = skcipher_walk_virt(&walk, req, false);
365 
366 	while ((nbytes = walk.nbytes)) {
367 		kernel_fpu_begin();
368 		aesni_cbc_dec(ctx, walk.dst.virt.addr, walk.src.virt.addr,
369 			      nbytes & AES_BLOCK_MASK, walk.iv);
370 		kernel_fpu_end();
371 		nbytes &= AES_BLOCK_SIZE - 1;
372 		err = skcipher_walk_done(&walk, nbytes);
373 	}
374 
375 	return err;
376 }
377 
378 static int cts_cbc_encrypt(struct skcipher_request *req)
379 {
380 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
381 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
382 	int cbc_blocks = DIV_ROUND_UP(req->cryptlen, AES_BLOCK_SIZE) - 2;
383 	struct scatterlist *src = req->src, *dst = req->dst;
384 	struct scatterlist sg_src[2], sg_dst[2];
385 	struct skcipher_request subreq;
386 	struct skcipher_walk walk;
387 	int err;
388 
389 	skcipher_request_set_tfm(&subreq, tfm);
390 	skcipher_request_set_callback(&subreq, skcipher_request_flags(req),
391 				      NULL, NULL);
392 
393 	if (req->cryptlen <= AES_BLOCK_SIZE) {
394 		if (req->cryptlen < AES_BLOCK_SIZE)
395 			return -EINVAL;
396 		cbc_blocks = 1;
397 	}
398 
399 	if (cbc_blocks > 0) {
400 		skcipher_request_set_crypt(&subreq, req->src, req->dst,
401 					   cbc_blocks * AES_BLOCK_SIZE,
402 					   req->iv);
403 
404 		err = cbc_encrypt(&subreq);
405 		if (err)
406 			return err;
407 
408 		if (req->cryptlen == AES_BLOCK_SIZE)
409 			return 0;
410 
411 		dst = src = scatterwalk_ffwd(sg_src, req->src, subreq.cryptlen);
412 		if (req->dst != req->src)
413 			dst = scatterwalk_ffwd(sg_dst, req->dst,
414 					       subreq.cryptlen);
415 	}
416 
417 	/* handle ciphertext stealing */
418 	skcipher_request_set_crypt(&subreq, src, dst,
419 				   req->cryptlen - cbc_blocks * AES_BLOCK_SIZE,
420 				   req->iv);
421 
422 	err = skcipher_walk_virt(&walk, &subreq, false);
423 	if (err)
424 		return err;
425 
426 	kernel_fpu_begin();
427 	aesni_cts_cbc_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr,
428 			  walk.nbytes, walk.iv);
429 	kernel_fpu_end();
430 
431 	return skcipher_walk_done(&walk, 0);
432 }
433 
434 static int cts_cbc_decrypt(struct skcipher_request *req)
435 {
436 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
437 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
438 	int cbc_blocks = DIV_ROUND_UP(req->cryptlen, AES_BLOCK_SIZE) - 2;
439 	struct scatterlist *src = req->src, *dst = req->dst;
440 	struct scatterlist sg_src[2], sg_dst[2];
441 	struct skcipher_request subreq;
442 	struct skcipher_walk walk;
443 	int err;
444 
445 	skcipher_request_set_tfm(&subreq, tfm);
446 	skcipher_request_set_callback(&subreq, skcipher_request_flags(req),
447 				      NULL, NULL);
448 
449 	if (req->cryptlen <= AES_BLOCK_SIZE) {
450 		if (req->cryptlen < AES_BLOCK_SIZE)
451 			return -EINVAL;
452 		cbc_blocks = 1;
453 	}
454 
455 	if (cbc_blocks > 0) {
456 		skcipher_request_set_crypt(&subreq, req->src, req->dst,
457 					   cbc_blocks * AES_BLOCK_SIZE,
458 					   req->iv);
459 
460 		err = cbc_decrypt(&subreq);
461 		if (err)
462 			return err;
463 
464 		if (req->cryptlen == AES_BLOCK_SIZE)
465 			return 0;
466 
467 		dst = src = scatterwalk_ffwd(sg_src, req->src, subreq.cryptlen);
468 		if (req->dst != req->src)
469 			dst = scatterwalk_ffwd(sg_dst, req->dst,
470 					       subreq.cryptlen);
471 	}
472 
473 	/* handle ciphertext stealing */
474 	skcipher_request_set_crypt(&subreq, src, dst,
475 				   req->cryptlen - cbc_blocks * AES_BLOCK_SIZE,
476 				   req->iv);
477 
478 	err = skcipher_walk_virt(&walk, &subreq, false);
479 	if (err)
480 		return err;
481 
482 	kernel_fpu_begin();
483 	aesni_cts_cbc_dec(ctx, walk.dst.virt.addr, walk.src.virt.addr,
484 			  walk.nbytes, walk.iv);
485 	kernel_fpu_end();
486 
487 	return skcipher_walk_done(&walk, 0);
488 }
489 
490 #ifdef CONFIG_X86_64
491 static void aesni_ctr_enc_avx_tfm(struct crypto_aes_ctx *ctx, u8 *out,
492 			      const u8 *in, unsigned int len, u8 *iv)
493 {
494 	/*
495 	 * based on key length, override with the by8 version
496 	 * of ctr mode encryption/decryption for improved performance
497 	 * aes_set_key_common() ensures that key length is one of
498 	 * {128,192,256}
499 	 */
500 	if (ctx->key_length == AES_KEYSIZE_128)
501 		aes_ctr_enc_128_avx_by8(in, iv, (void *)ctx, out, len);
502 	else if (ctx->key_length == AES_KEYSIZE_192)
503 		aes_ctr_enc_192_avx_by8(in, iv, (void *)ctx, out, len);
504 	else
505 		aes_ctr_enc_256_avx_by8(in, iv, (void *)ctx, out, len);
506 }
507 
508 static int ctr_crypt(struct skcipher_request *req)
509 {
510 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
511 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
512 	u8 keystream[AES_BLOCK_SIZE];
513 	struct skcipher_walk walk;
514 	unsigned int nbytes;
515 	int err;
516 
517 	err = skcipher_walk_virt(&walk, req, false);
518 
519 	while ((nbytes = walk.nbytes) > 0) {
520 		kernel_fpu_begin();
521 		if (nbytes & AES_BLOCK_MASK)
522 			static_call(aesni_ctr_enc_tfm)(ctx, walk.dst.virt.addr,
523 						       walk.src.virt.addr,
524 						       nbytes & AES_BLOCK_MASK,
525 						       walk.iv);
526 		nbytes &= ~AES_BLOCK_MASK;
527 
528 		if (walk.nbytes == walk.total && nbytes > 0) {
529 			aesni_enc(ctx, keystream, walk.iv);
530 			crypto_xor_cpy(walk.dst.virt.addr + walk.nbytes - nbytes,
531 				       walk.src.virt.addr + walk.nbytes - nbytes,
532 				       keystream, nbytes);
533 			crypto_inc(walk.iv, AES_BLOCK_SIZE);
534 			nbytes = 0;
535 		}
536 		kernel_fpu_end();
537 		err = skcipher_walk_done(&walk, nbytes);
538 	}
539 	return err;
540 }
541 
542 static void aesni_xctr_enc_avx_tfm(struct crypto_aes_ctx *ctx, u8 *out,
543 				   const u8 *in, unsigned int len, u8 *iv,
544 				   unsigned int byte_ctr)
545 {
546 	if (ctx->key_length == AES_KEYSIZE_128)
547 		aes_xctr_enc_128_avx_by8(in, iv, (void *)ctx, out, len,
548 					 byte_ctr);
549 	else if (ctx->key_length == AES_KEYSIZE_192)
550 		aes_xctr_enc_192_avx_by8(in, iv, (void *)ctx, out, len,
551 					 byte_ctr);
552 	else
553 		aes_xctr_enc_256_avx_by8(in, iv, (void *)ctx, out, len,
554 					 byte_ctr);
555 }
556 
557 static int xctr_crypt(struct skcipher_request *req)
558 {
559 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
560 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
561 	u8 keystream[AES_BLOCK_SIZE];
562 	struct skcipher_walk walk;
563 	unsigned int nbytes;
564 	unsigned int byte_ctr = 0;
565 	int err;
566 	__le32 block[AES_BLOCK_SIZE / sizeof(__le32)];
567 
568 	err = skcipher_walk_virt(&walk, req, false);
569 
570 	while ((nbytes = walk.nbytes) > 0) {
571 		kernel_fpu_begin();
572 		if (nbytes & AES_BLOCK_MASK)
573 			aesni_xctr_enc_avx_tfm(ctx, walk.dst.virt.addr,
574 				walk.src.virt.addr, nbytes & AES_BLOCK_MASK,
575 				walk.iv, byte_ctr);
576 		nbytes &= ~AES_BLOCK_MASK;
577 		byte_ctr += walk.nbytes - nbytes;
578 
579 		if (walk.nbytes == walk.total && nbytes > 0) {
580 			memcpy(block, walk.iv, AES_BLOCK_SIZE);
581 			block[0] ^= cpu_to_le32(1 + byte_ctr / AES_BLOCK_SIZE);
582 			aesni_enc(ctx, keystream, (u8 *)block);
583 			crypto_xor_cpy(walk.dst.virt.addr + walk.nbytes -
584 				       nbytes, walk.src.virt.addr + walk.nbytes
585 				       - nbytes, keystream, nbytes);
586 			byte_ctr += nbytes;
587 			nbytes = 0;
588 		}
589 		kernel_fpu_end();
590 		err = skcipher_walk_done(&walk, nbytes);
591 	}
592 	return err;
593 }
594 
595 static int
596 rfc4106_set_hash_subkey(u8 *hash_subkey, const u8 *key, unsigned int key_len)
597 {
598 	struct crypto_aes_ctx ctx;
599 	int ret;
600 
601 	ret = aes_expandkey(&ctx, key, key_len);
602 	if (ret)
603 		return ret;
604 
605 	/* Clear the data in the hash sub key container to zero.*/
606 	/* We want to cipher all zeros to create the hash sub key. */
607 	memset(hash_subkey, 0, RFC4106_HASH_SUBKEY_SIZE);
608 
609 	aes_encrypt(&ctx, hash_subkey, hash_subkey);
610 
611 	memzero_explicit(&ctx, sizeof(ctx));
612 	return 0;
613 }
614 
615 static int common_rfc4106_set_key(struct crypto_aead *aead, const u8 *key,
616 				  unsigned int key_len)
617 {
618 	struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(aead);
619 
620 	if (key_len < 4)
621 		return -EINVAL;
622 
623 	/*Account for 4 byte nonce at the end.*/
624 	key_len -= 4;
625 
626 	memcpy(ctx->nonce, key + key_len, sizeof(ctx->nonce));
627 
628 	return aes_set_key_common(&ctx->aes_key_expanded, key, key_len) ?:
629 	       rfc4106_set_hash_subkey(ctx->hash_subkey, key, key_len);
630 }
631 
632 /* This is the Integrity Check Value (aka the authentication tag) length and can
633  * be 8, 12 or 16 bytes long. */
634 static int common_rfc4106_set_authsize(struct crypto_aead *aead,
635 				       unsigned int authsize)
636 {
637 	switch (authsize) {
638 	case 8:
639 	case 12:
640 	case 16:
641 		break;
642 	default:
643 		return -EINVAL;
644 	}
645 
646 	return 0;
647 }
648 
649 static int generic_gcmaes_set_authsize(struct crypto_aead *tfm,
650 				       unsigned int authsize)
651 {
652 	switch (authsize) {
653 	case 4:
654 	case 8:
655 	case 12:
656 	case 13:
657 	case 14:
658 	case 15:
659 	case 16:
660 		break;
661 	default:
662 		return -EINVAL;
663 	}
664 
665 	return 0;
666 }
667 
668 static int gcmaes_crypt_by_sg(bool enc, struct aead_request *req,
669 			      unsigned int assoclen, u8 *hash_subkey,
670 			      u8 *iv, void *aes_ctx, u8 *auth_tag,
671 			      unsigned long auth_tag_len)
672 {
673 	u8 databuf[sizeof(struct gcm_context_data) + (AESNI_ALIGN - 8)] __aligned(8);
674 	struct gcm_context_data *data = PTR_ALIGN((void *)databuf, AESNI_ALIGN);
675 	unsigned long left = req->cryptlen;
676 	struct scatter_walk assoc_sg_walk;
677 	struct skcipher_walk walk;
678 	bool do_avx, do_avx2;
679 	u8 *assocmem = NULL;
680 	u8 *assoc;
681 	int err;
682 
683 	if (!enc)
684 		left -= auth_tag_len;
685 
686 	do_avx = (left >= AVX_GEN2_OPTSIZE);
687 	do_avx2 = (left >= AVX_GEN4_OPTSIZE);
688 
689 	/* Linearize assoc, if not already linear */
690 	if (req->src->length >= assoclen && req->src->length) {
691 		scatterwalk_start(&assoc_sg_walk, req->src);
692 		assoc = scatterwalk_map(&assoc_sg_walk);
693 	} else {
694 		gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
695 			      GFP_KERNEL : GFP_ATOMIC;
696 
697 		/* assoc can be any length, so must be on heap */
698 		assocmem = kmalloc(assoclen, flags);
699 		if (unlikely(!assocmem))
700 			return -ENOMEM;
701 		assoc = assocmem;
702 
703 		scatterwalk_map_and_copy(assoc, req->src, 0, assoclen, 0);
704 	}
705 
706 	kernel_fpu_begin();
707 	if (static_branch_likely(&gcm_use_avx2) && do_avx2)
708 		aesni_gcm_init_avx_gen4(aes_ctx, data, iv, hash_subkey, assoc,
709 					assoclen);
710 	else if (static_branch_likely(&gcm_use_avx) && do_avx)
711 		aesni_gcm_init_avx_gen2(aes_ctx, data, iv, hash_subkey, assoc,
712 					assoclen);
713 	else
714 		aesni_gcm_init(aes_ctx, data, iv, hash_subkey, assoc, assoclen);
715 	kernel_fpu_end();
716 
717 	if (!assocmem)
718 		scatterwalk_unmap(assoc);
719 	else
720 		kfree(assocmem);
721 
722 	err = enc ? skcipher_walk_aead_encrypt(&walk, req, false)
723 		  : skcipher_walk_aead_decrypt(&walk, req, false);
724 
725 	while (walk.nbytes > 0) {
726 		kernel_fpu_begin();
727 		if (static_branch_likely(&gcm_use_avx2) && do_avx2) {
728 			if (enc)
729 				aesni_gcm_enc_update_avx_gen4(aes_ctx, data,
730 							      walk.dst.virt.addr,
731 							      walk.src.virt.addr,
732 							      walk.nbytes);
733 			else
734 				aesni_gcm_dec_update_avx_gen4(aes_ctx, data,
735 							      walk.dst.virt.addr,
736 							      walk.src.virt.addr,
737 							      walk.nbytes);
738 		} else if (static_branch_likely(&gcm_use_avx) && do_avx) {
739 			if (enc)
740 				aesni_gcm_enc_update_avx_gen2(aes_ctx, data,
741 							      walk.dst.virt.addr,
742 							      walk.src.virt.addr,
743 							      walk.nbytes);
744 			else
745 				aesni_gcm_dec_update_avx_gen2(aes_ctx, data,
746 							      walk.dst.virt.addr,
747 							      walk.src.virt.addr,
748 							      walk.nbytes);
749 		} else if (enc) {
750 			aesni_gcm_enc_update(aes_ctx, data, walk.dst.virt.addr,
751 					     walk.src.virt.addr, walk.nbytes);
752 		} else {
753 			aesni_gcm_dec_update(aes_ctx, data, walk.dst.virt.addr,
754 					     walk.src.virt.addr, walk.nbytes);
755 		}
756 		kernel_fpu_end();
757 
758 		err = skcipher_walk_done(&walk, 0);
759 	}
760 
761 	if (err)
762 		return err;
763 
764 	kernel_fpu_begin();
765 	if (static_branch_likely(&gcm_use_avx2) && do_avx2)
766 		aesni_gcm_finalize_avx_gen4(aes_ctx, data, auth_tag,
767 					    auth_tag_len);
768 	else if (static_branch_likely(&gcm_use_avx) && do_avx)
769 		aesni_gcm_finalize_avx_gen2(aes_ctx, data, auth_tag,
770 					    auth_tag_len);
771 	else
772 		aesni_gcm_finalize(aes_ctx, data, auth_tag, auth_tag_len);
773 	kernel_fpu_end();
774 
775 	return 0;
776 }
777 
778 static int gcmaes_encrypt(struct aead_request *req, unsigned int assoclen,
779 			  u8 *hash_subkey, u8 *iv, void *aes_ctx)
780 {
781 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
782 	unsigned long auth_tag_len = crypto_aead_authsize(tfm);
783 	u8 auth_tag[16];
784 	int err;
785 
786 	err = gcmaes_crypt_by_sg(true, req, assoclen, hash_subkey, iv, aes_ctx,
787 				 auth_tag, auth_tag_len);
788 	if (err)
789 		return err;
790 
791 	scatterwalk_map_and_copy(auth_tag, req->dst,
792 				 req->assoclen + req->cryptlen,
793 				 auth_tag_len, 1);
794 	return 0;
795 }
796 
797 static int gcmaes_decrypt(struct aead_request *req, unsigned int assoclen,
798 			  u8 *hash_subkey, u8 *iv, void *aes_ctx)
799 {
800 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
801 	unsigned long auth_tag_len = crypto_aead_authsize(tfm);
802 	u8 auth_tag_msg[16];
803 	u8 auth_tag[16];
804 	int err;
805 
806 	err = gcmaes_crypt_by_sg(false, req, assoclen, hash_subkey, iv, aes_ctx,
807 				 auth_tag, auth_tag_len);
808 	if (err)
809 		return err;
810 
811 	/* Copy out original auth_tag */
812 	scatterwalk_map_and_copy(auth_tag_msg, req->src,
813 				 req->assoclen + req->cryptlen - auth_tag_len,
814 				 auth_tag_len, 0);
815 
816 	/* Compare generated tag with passed in tag. */
817 	if (crypto_memneq(auth_tag_msg, auth_tag, auth_tag_len)) {
818 		memzero_explicit(auth_tag, sizeof(auth_tag));
819 		return -EBADMSG;
820 	}
821 	return 0;
822 }
823 
824 static int helper_rfc4106_encrypt(struct aead_request *req)
825 {
826 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
827 	struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(tfm);
828 	void *aes_ctx = &(ctx->aes_key_expanded);
829 	u8 ivbuf[16 + (AESNI_ALIGN - 8)] __aligned(8);
830 	u8 *iv = PTR_ALIGN(&ivbuf[0], AESNI_ALIGN);
831 	unsigned int i;
832 	__be32 counter = cpu_to_be32(1);
833 
834 	/* Assuming we are supporting rfc4106 64-bit extended */
835 	/* sequence numbers We need to have the AAD length equal */
836 	/* to 16 or 20 bytes */
837 	if (unlikely(req->assoclen != 16 && req->assoclen != 20))
838 		return -EINVAL;
839 
840 	/* IV below built */
841 	for (i = 0; i < 4; i++)
842 		*(iv+i) = ctx->nonce[i];
843 	for (i = 0; i < 8; i++)
844 		*(iv+4+i) = req->iv[i];
845 	*((__be32 *)(iv+12)) = counter;
846 
847 	return gcmaes_encrypt(req, req->assoclen - 8, ctx->hash_subkey, iv,
848 			      aes_ctx);
849 }
850 
851 static int helper_rfc4106_decrypt(struct aead_request *req)
852 {
853 	__be32 counter = cpu_to_be32(1);
854 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
855 	struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(tfm);
856 	void *aes_ctx = &(ctx->aes_key_expanded);
857 	u8 ivbuf[16 + (AESNI_ALIGN - 8)] __aligned(8);
858 	u8 *iv = PTR_ALIGN(&ivbuf[0], AESNI_ALIGN);
859 	unsigned int i;
860 
861 	if (unlikely(req->assoclen != 16 && req->assoclen != 20))
862 		return -EINVAL;
863 
864 	/* Assuming we are supporting rfc4106 64-bit extended */
865 	/* sequence numbers We need to have the AAD length */
866 	/* equal to 16 or 20 bytes */
867 
868 	/* IV below built */
869 	for (i = 0; i < 4; i++)
870 		*(iv+i) = ctx->nonce[i];
871 	for (i = 0; i < 8; i++)
872 		*(iv+4+i) = req->iv[i];
873 	*((__be32 *)(iv+12)) = counter;
874 
875 	return gcmaes_decrypt(req, req->assoclen - 8, ctx->hash_subkey, iv,
876 			      aes_ctx);
877 }
878 #endif
879 
880 static int xts_aesni_setkey(struct crypto_skcipher *tfm, const u8 *key,
881 			    unsigned int keylen)
882 {
883 	struct aesni_xts_ctx *ctx = aes_xts_ctx(tfm);
884 	int err;
885 
886 	err = xts_verify_key(tfm, key, keylen);
887 	if (err)
888 		return err;
889 
890 	keylen /= 2;
891 
892 	/* first half of xts-key is for crypt */
893 	err = aes_set_key_common(&ctx->crypt_ctx, key, keylen);
894 	if (err)
895 		return err;
896 
897 	/* second half of xts-key is for tweak */
898 	return aes_set_key_common(&ctx->tweak_ctx, key + keylen, keylen);
899 }
900 
901 static int xts_crypt(struct skcipher_request *req, bool encrypt)
902 {
903 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
904 	struct aesni_xts_ctx *ctx = aes_xts_ctx(tfm);
905 	int tail = req->cryptlen % AES_BLOCK_SIZE;
906 	struct skcipher_request subreq;
907 	struct skcipher_walk walk;
908 	int err;
909 
910 	if (req->cryptlen < AES_BLOCK_SIZE)
911 		return -EINVAL;
912 
913 	err = skcipher_walk_virt(&walk, req, false);
914 	if (!walk.nbytes)
915 		return err;
916 
917 	if (unlikely(tail > 0 && walk.nbytes < walk.total)) {
918 		int blocks = DIV_ROUND_UP(req->cryptlen, AES_BLOCK_SIZE) - 2;
919 
920 		skcipher_walk_abort(&walk);
921 
922 		skcipher_request_set_tfm(&subreq, tfm);
923 		skcipher_request_set_callback(&subreq,
924 					      skcipher_request_flags(req),
925 					      NULL, NULL);
926 		skcipher_request_set_crypt(&subreq, req->src, req->dst,
927 					   blocks * AES_BLOCK_SIZE, req->iv);
928 		req = &subreq;
929 
930 		err = skcipher_walk_virt(&walk, req, false);
931 		if (!walk.nbytes)
932 			return err;
933 	} else {
934 		tail = 0;
935 	}
936 
937 	kernel_fpu_begin();
938 
939 	/* calculate first value of T */
940 	aesni_enc(&ctx->tweak_ctx, walk.iv, walk.iv);
941 
942 	while (walk.nbytes > 0) {
943 		int nbytes = walk.nbytes;
944 
945 		if (nbytes < walk.total)
946 			nbytes &= ~(AES_BLOCK_SIZE - 1);
947 
948 		if (encrypt)
949 			aesni_xts_encrypt(&ctx->crypt_ctx,
950 					  walk.dst.virt.addr, walk.src.virt.addr,
951 					  nbytes, walk.iv);
952 		else
953 			aesni_xts_decrypt(&ctx->crypt_ctx,
954 					  walk.dst.virt.addr, walk.src.virt.addr,
955 					  nbytes, walk.iv);
956 		kernel_fpu_end();
957 
958 		err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
959 
960 		if (walk.nbytes > 0)
961 			kernel_fpu_begin();
962 	}
963 
964 	if (unlikely(tail > 0 && !err)) {
965 		struct scatterlist sg_src[2], sg_dst[2];
966 		struct scatterlist *src, *dst;
967 
968 		dst = src = scatterwalk_ffwd(sg_src, req->src, req->cryptlen);
969 		if (req->dst != req->src)
970 			dst = scatterwalk_ffwd(sg_dst, req->dst, req->cryptlen);
971 
972 		skcipher_request_set_crypt(req, src, dst, AES_BLOCK_SIZE + tail,
973 					   req->iv);
974 
975 		err = skcipher_walk_virt(&walk, &subreq, false);
976 		if (err)
977 			return err;
978 
979 		kernel_fpu_begin();
980 		if (encrypt)
981 			aesni_xts_encrypt(&ctx->crypt_ctx,
982 					  walk.dst.virt.addr, walk.src.virt.addr,
983 					  walk.nbytes, walk.iv);
984 		else
985 			aesni_xts_decrypt(&ctx->crypt_ctx,
986 					  walk.dst.virt.addr, walk.src.virt.addr,
987 					  walk.nbytes, walk.iv);
988 		kernel_fpu_end();
989 
990 		err = skcipher_walk_done(&walk, 0);
991 	}
992 	return err;
993 }
994 
995 static int xts_encrypt(struct skcipher_request *req)
996 {
997 	return xts_crypt(req, true);
998 }
999 
1000 static int xts_decrypt(struct skcipher_request *req)
1001 {
1002 	return xts_crypt(req, false);
1003 }
1004 
1005 static struct crypto_alg aesni_cipher_alg = {
1006 	.cra_name		= "aes",
1007 	.cra_driver_name	= "aes-aesni",
1008 	.cra_priority		= 300,
1009 	.cra_flags		= CRYPTO_ALG_TYPE_CIPHER,
1010 	.cra_blocksize		= AES_BLOCK_SIZE,
1011 	.cra_ctxsize		= CRYPTO_AES_CTX_SIZE,
1012 	.cra_module		= THIS_MODULE,
1013 	.cra_u	= {
1014 		.cipher	= {
1015 			.cia_min_keysize	= AES_MIN_KEY_SIZE,
1016 			.cia_max_keysize	= AES_MAX_KEY_SIZE,
1017 			.cia_setkey		= aes_set_key,
1018 			.cia_encrypt		= aesni_encrypt,
1019 			.cia_decrypt		= aesni_decrypt
1020 		}
1021 	}
1022 };
1023 
1024 static struct skcipher_alg aesni_skciphers[] = {
1025 	{
1026 		.base = {
1027 			.cra_name		= "__ecb(aes)",
1028 			.cra_driver_name	= "__ecb-aes-aesni",
1029 			.cra_priority		= 400,
1030 			.cra_flags		= CRYPTO_ALG_INTERNAL,
1031 			.cra_blocksize		= AES_BLOCK_SIZE,
1032 			.cra_ctxsize		= CRYPTO_AES_CTX_SIZE,
1033 			.cra_module		= THIS_MODULE,
1034 		},
1035 		.min_keysize	= AES_MIN_KEY_SIZE,
1036 		.max_keysize	= AES_MAX_KEY_SIZE,
1037 		.setkey		= aesni_skcipher_setkey,
1038 		.encrypt	= ecb_encrypt,
1039 		.decrypt	= ecb_decrypt,
1040 	}, {
1041 		.base = {
1042 			.cra_name		= "__cbc(aes)",
1043 			.cra_driver_name	= "__cbc-aes-aesni",
1044 			.cra_priority		= 400,
1045 			.cra_flags		= CRYPTO_ALG_INTERNAL,
1046 			.cra_blocksize		= AES_BLOCK_SIZE,
1047 			.cra_ctxsize		= CRYPTO_AES_CTX_SIZE,
1048 			.cra_module		= THIS_MODULE,
1049 		},
1050 		.min_keysize	= AES_MIN_KEY_SIZE,
1051 		.max_keysize	= AES_MAX_KEY_SIZE,
1052 		.ivsize		= AES_BLOCK_SIZE,
1053 		.setkey		= aesni_skcipher_setkey,
1054 		.encrypt	= cbc_encrypt,
1055 		.decrypt	= cbc_decrypt,
1056 	}, {
1057 		.base = {
1058 			.cra_name		= "__cts(cbc(aes))",
1059 			.cra_driver_name	= "__cts-cbc-aes-aesni",
1060 			.cra_priority		= 400,
1061 			.cra_flags		= CRYPTO_ALG_INTERNAL,
1062 			.cra_blocksize		= AES_BLOCK_SIZE,
1063 			.cra_ctxsize		= CRYPTO_AES_CTX_SIZE,
1064 			.cra_module		= THIS_MODULE,
1065 		},
1066 		.min_keysize	= AES_MIN_KEY_SIZE,
1067 		.max_keysize	= AES_MAX_KEY_SIZE,
1068 		.ivsize		= AES_BLOCK_SIZE,
1069 		.walksize	= 2 * AES_BLOCK_SIZE,
1070 		.setkey		= aesni_skcipher_setkey,
1071 		.encrypt	= cts_cbc_encrypt,
1072 		.decrypt	= cts_cbc_decrypt,
1073 #ifdef CONFIG_X86_64
1074 	}, {
1075 		.base = {
1076 			.cra_name		= "__ctr(aes)",
1077 			.cra_driver_name	= "__ctr-aes-aesni",
1078 			.cra_priority		= 400,
1079 			.cra_flags		= CRYPTO_ALG_INTERNAL,
1080 			.cra_blocksize		= 1,
1081 			.cra_ctxsize		= CRYPTO_AES_CTX_SIZE,
1082 			.cra_module		= THIS_MODULE,
1083 		},
1084 		.min_keysize	= AES_MIN_KEY_SIZE,
1085 		.max_keysize	= AES_MAX_KEY_SIZE,
1086 		.ivsize		= AES_BLOCK_SIZE,
1087 		.chunksize	= AES_BLOCK_SIZE,
1088 		.setkey		= aesni_skcipher_setkey,
1089 		.encrypt	= ctr_crypt,
1090 		.decrypt	= ctr_crypt,
1091 #endif
1092 	}, {
1093 		.base = {
1094 			.cra_name		= "__xts(aes)",
1095 			.cra_driver_name	= "__xts-aes-aesni",
1096 			.cra_priority		= 401,
1097 			.cra_flags		= CRYPTO_ALG_INTERNAL,
1098 			.cra_blocksize		= AES_BLOCK_SIZE,
1099 			.cra_ctxsize		= XTS_AES_CTX_SIZE,
1100 			.cra_module		= THIS_MODULE,
1101 		},
1102 		.min_keysize	= 2 * AES_MIN_KEY_SIZE,
1103 		.max_keysize	= 2 * AES_MAX_KEY_SIZE,
1104 		.ivsize		= AES_BLOCK_SIZE,
1105 		.walksize	= 2 * AES_BLOCK_SIZE,
1106 		.setkey		= xts_aesni_setkey,
1107 		.encrypt	= xts_encrypt,
1108 		.decrypt	= xts_decrypt,
1109 	}
1110 };
1111 
1112 static
1113 struct simd_skcipher_alg *aesni_simd_skciphers[ARRAY_SIZE(aesni_skciphers)];
1114 
1115 #ifdef CONFIG_X86_64
1116 /*
1117  * XCTR does not have a non-AVX implementation, so it must be enabled
1118  * conditionally.
1119  */
1120 static struct skcipher_alg aesni_xctr = {
1121 	.base = {
1122 		.cra_name		= "__xctr(aes)",
1123 		.cra_driver_name	= "__xctr-aes-aesni",
1124 		.cra_priority		= 400,
1125 		.cra_flags		= CRYPTO_ALG_INTERNAL,
1126 		.cra_blocksize		= 1,
1127 		.cra_ctxsize		= CRYPTO_AES_CTX_SIZE,
1128 		.cra_module		= THIS_MODULE,
1129 	},
1130 	.min_keysize	= AES_MIN_KEY_SIZE,
1131 	.max_keysize	= AES_MAX_KEY_SIZE,
1132 	.ivsize		= AES_BLOCK_SIZE,
1133 	.chunksize	= AES_BLOCK_SIZE,
1134 	.setkey		= aesni_skcipher_setkey,
1135 	.encrypt	= xctr_crypt,
1136 	.decrypt	= xctr_crypt,
1137 };
1138 
1139 static struct simd_skcipher_alg *aesni_simd_xctr;
1140 #endif /* CONFIG_X86_64 */
1141 
1142 #ifdef CONFIG_X86_64
1143 static int generic_gcmaes_set_key(struct crypto_aead *aead, const u8 *key,
1144 				  unsigned int key_len)
1145 {
1146 	struct generic_gcmaes_ctx *ctx = generic_gcmaes_ctx_get(aead);
1147 
1148 	return aes_set_key_common(&ctx->aes_key_expanded, key, key_len) ?:
1149 	       rfc4106_set_hash_subkey(ctx->hash_subkey, key, key_len);
1150 }
1151 
1152 static int generic_gcmaes_encrypt(struct aead_request *req)
1153 {
1154 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1155 	struct generic_gcmaes_ctx *ctx = generic_gcmaes_ctx_get(tfm);
1156 	void *aes_ctx = &(ctx->aes_key_expanded);
1157 	u8 ivbuf[16 + (AESNI_ALIGN - 8)] __aligned(8);
1158 	u8 *iv = PTR_ALIGN(&ivbuf[0], AESNI_ALIGN);
1159 	__be32 counter = cpu_to_be32(1);
1160 
1161 	memcpy(iv, req->iv, 12);
1162 	*((__be32 *)(iv+12)) = counter;
1163 
1164 	return gcmaes_encrypt(req, req->assoclen, ctx->hash_subkey, iv,
1165 			      aes_ctx);
1166 }
1167 
1168 static int generic_gcmaes_decrypt(struct aead_request *req)
1169 {
1170 	__be32 counter = cpu_to_be32(1);
1171 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1172 	struct generic_gcmaes_ctx *ctx = generic_gcmaes_ctx_get(tfm);
1173 	void *aes_ctx = &(ctx->aes_key_expanded);
1174 	u8 ivbuf[16 + (AESNI_ALIGN - 8)] __aligned(8);
1175 	u8 *iv = PTR_ALIGN(&ivbuf[0], AESNI_ALIGN);
1176 
1177 	memcpy(iv, req->iv, 12);
1178 	*((__be32 *)(iv+12)) = counter;
1179 
1180 	return gcmaes_decrypt(req, req->assoclen, ctx->hash_subkey, iv,
1181 			      aes_ctx);
1182 }
1183 
1184 static struct aead_alg aesni_aeads[] = { {
1185 	.setkey			= common_rfc4106_set_key,
1186 	.setauthsize		= common_rfc4106_set_authsize,
1187 	.encrypt		= helper_rfc4106_encrypt,
1188 	.decrypt		= helper_rfc4106_decrypt,
1189 	.ivsize			= GCM_RFC4106_IV_SIZE,
1190 	.maxauthsize		= 16,
1191 	.base = {
1192 		.cra_name		= "__rfc4106(gcm(aes))",
1193 		.cra_driver_name	= "__rfc4106-gcm-aesni",
1194 		.cra_priority		= 400,
1195 		.cra_flags		= CRYPTO_ALG_INTERNAL,
1196 		.cra_blocksize		= 1,
1197 		.cra_ctxsize		= sizeof(struct aesni_rfc4106_gcm_ctx),
1198 		.cra_alignmask		= 0,
1199 		.cra_module		= THIS_MODULE,
1200 	},
1201 }, {
1202 	.setkey			= generic_gcmaes_set_key,
1203 	.setauthsize		= generic_gcmaes_set_authsize,
1204 	.encrypt		= generic_gcmaes_encrypt,
1205 	.decrypt		= generic_gcmaes_decrypt,
1206 	.ivsize			= GCM_AES_IV_SIZE,
1207 	.maxauthsize		= 16,
1208 	.base = {
1209 		.cra_name		= "__gcm(aes)",
1210 		.cra_driver_name	= "__generic-gcm-aesni",
1211 		.cra_priority		= 400,
1212 		.cra_flags		= CRYPTO_ALG_INTERNAL,
1213 		.cra_blocksize		= 1,
1214 		.cra_ctxsize		= sizeof(struct generic_gcmaes_ctx),
1215 		.cra_alignmask		= 0,
1216 		.cra_module		= THIS_MODULE,
1217 	},
1218 } };
1219 #else
1220 static struct aead_alg aesni_aeads[0];
1221 #endif
1222 
1223 static struct simd_aead_alg *aesni_simd_aeads[ARRAY_SIZE(aesni_aeads)];
1224 
1225 static const struct x86_cpu_id aesni_cpu_id[] = {
1226 	X86_MATCH_FEATURE(X86_FEATURE_AES, NULL),
1227 	{}
1228 };
1229 MODULE_DEVICE_TABLE(x86cpu, aesni_cpu_id);
1230 
1231 static int __init aesni_init(void)
1232 {
1233 	int err;
1234 
1235 	if (!x86_match_cpu(aesni_cpu_id))
1236 		return -ENODEV;
1237 #ifdef CONFIG_X86_64
1238 	if (boot_cpu_has(X86_FEATURE_AVX2)) {
1239 		pr_info("AVX2 version of gcm_enc/dec engaged.\n");
1240 		static_branch_enable(&gcm_use_avx);
1241 		static_branch_enable(&gcm_use_avx2);
1242 	} else
1243 	if (boot_cpu_has(X86_FEATURE_AVX)) {
1244 		pr_info("AVX version of gcm_enc/dec engaged.\n");
1245 		static_branch_enable(&gcm_use_avx);
1246 	} else {
1247 		pr_info("SSE version of gcm_enc/dec engaged.\n");
1248 	}
1249 	if (boot_cpu_has(X86_FEATURE_AVX)) {
1250 		/* optimize performance of ctr mode encryption transform */
1251 		static_call_update(aesni_ctr_enc_tfm, aesni_ctr_enc_avx_tfm);
1252 		pr_info("AES CTR mode by8 optimization enabled\n");
1253 	}
1254 #endif /* CONFIG_X86_64 */
1255 
1256 	err = crypto_register_alg(&aesni_cipher_alg);
1257 	if (err)
1258 		return err;
1259 
1260 	err = simd_register_skciphers_compat(aesni_skciphers,
1261 					     ARRAY_SIZE(aesni_skciphers),
1262 					     aesni_simd_skciphers);
1263 	if (err)
1264 		goto unregister_cipher;
1265 
1266 	err = simd_register_aeads_compat(aesni_aeads, ARRAY_SIZE(aesni_aeads),
1267 					 aesni_simd_aeads);
1268 	if (err)
1269 		goto unregister_skciphers;
1270 
1271 #ifdef CONFIG_X86_64
1272 	if (boot_cpu_has(X86_FEATURE_AVX))
1273 		err = simd_register_skciphers_compat(&aesni_xctr, 1,
1274 						     &aesni_simd_xctr);
1275 	if (err)
1276 		goto unregister_aeads;
1277 #endif /* CONFIG_X86_64 */
1278 
1279 	return 0;
1280 
1281 #ifdef CONFIG_X86_64
1282 unregister_aeads:
1283 	simd_unregister_aeads(aesni_aeads, ARRAY_SIZE(aesni_aeads),
1284 				aesni_simd_aeads);
1285 #endif /* CONFIG_X86_64 */
1286 
1287 unregister_skciphers:
1288 	simd_unregister_skciphers(aesni_skciphers, ARRAY_SIZE(aesni_skciphers),
1289 				  aesni_simd_skciphers);
1290 unregister_cipher:
1291 	crypto_unregister_alg(&aesni_cipher_alg);
1292 	return err;
1293 }
1294 
1295 static void __exit aesni_exit(void)
1296 {
1297 	simd_unregister_aeads(aesni_aeads, ARRAY_SIZE(aesni_aeads),
1298 			      aesni_simd_aeads);
1299 	simd_unregister_skciphers(aesni_skciphers, ARRAY_SIZE(aesni_skciphers),
1300 				  aesni_simd_skciphers);
1301 	crypto_unregister_alg(&aesni_cipher_alg);
1302 #ifdef CONFIG_X86_64
1303 	if (boot_cpu_has(X86_FEATURE_AVX))
1304 		simd_unregister_skciphers(&aesni_xctr, 1, &aesni_simd_xctr);
1305 #endif /* CONFIG_X86_64 */
1306 }
1307 
1308 late_initcall(aesni_init);
1309 module_exit(aesni_exit);
1310 
1311 MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm, Intel AES-NI instructions optimized");
1312 MODULE_LICENSE("GPL");
1313 MODULE_ALIAS_CRYPTO("aes");
1314